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INDRAPRASTHA INSTITUTE OF INFORMATION TECHNOLOGY, DELHI

Abstract
Doctor of Philosophy

SPATIO-TEMPORAL LINEAR STABILITY OF VISCOELASTIC
SAFFMAN-TAYLOR FLOWS

by Dipa Ghosh

This thesis is about an analytical study of viscoelastic fingering that solves the prob-
lem of predicting the finger width when a Newtonian fluid (with negligible viscosity)
drives a non-Newtonian (power-law) fluid. The finger thinning and widening phe-
nomena in non-Newtonian fluids have been empirically explained in a large number
of prior studies, but an analytical expression derived via a single, unified theory ex-
plaining both of these features has remained elusive until now. This work aims at
deriving an expression and contrast the findings with the in vitro and in silico data that
are already accessible. The dispersion relation is also derived in a rectilinear channel
for the power-law fluids, which is utilized in the linearized model. The description of
the five chapters is as follows:
• The classical Saffman-Taylor instability in a Hele-Shaw cell is introduced in the first
chapter, along with a summary of earlier findings from direct numerical simulations as
well as experimental and analytical findings for both Newtonian and non-Newtonian
fluids. It gives an overview of both a qualitative and a quantitative investigation of
viscous fingering in the linear and non-linear regimes. Additionally, its significant
interest in a wide range of fields, including physics, biology, applied mathematics,
and industrial research, is highlighted.
• In the second chapter, the basics of the various categories of instability modes
are discussed briefly. The phrase "temporal modes" refers to situations where the
real wave number determines the instability in the complex frequency. The convec-
tively unstable modes result in wave packets that eventually leave the medium in its
undisturbed state after traveling away from the source. In contrast, a point-source
disturbance gradually contaminates all of the absolutely unstable modes. If both of
the merging modes develop from waves traveling in the same direction, evanescent
modes (or the direct resonance mode) will appear. To discern between these instabil-
ities, elementary knowledge of the branch or pinch point and the Cusp-Map diagram
is required. An example of the Briggs’ contour integral method is used to discover
the flow-material properties contributing to stability-instability regions.
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• The third chapter highlights an analytical approach to the problem of predicting the
finger width of a simple fluid driving a non-Newtonian (power-law) fluid. The analysis
is based on the Wentzel-Kramers-Brillouin (WKB) approximation by representing
the deviation from the Newtonian viscosity as a singular perturbation in a parameter,
leading to a solvability condition at the fingertip, which selects a unique finger
width from the family of solutions. This solvability theory provides a reasonable
mechanism for the selection of the pattern, and it is done by constructing a function
called the cusp function, whose zeros will determine the possible solutions for the
pattern. It is found that the relation between the dimensionless finger width, Λ and the
dimensionless group of parameters containing the viscosity and surface tension, ν ,
has the form: Λ ∼ 1

2 −O(ν−1/2) for shear thinning case, and Λ ∼ 1
2 +O(ν2/(4−n)) for

shear thickening case, in the limit of small ν . This theoretical estimate is compared
with the existing experimental finger width data as well as the one computed with the
linearized model, and a good agreement is found near the power-law exponent, n = 1.
• The issues that have been encountered during this study, as well as some recent de-
velopments and potential future concerns requiring thorough spatiotemporal stability
assessments on the dynamics of fingering patterns, are discussed in the final chapter.
The potential future work includes but is not limited to the impact of changing the
viscosity contrast parameter on the dynamics of fingered structures, the competition
between the typical Saffman-Taylor single-finger stationary solution, and other attrac-
tor systems characterized by closed bubbles dominates the long-time asymptotics, the
existence of topological singularities in the form of interface pinch-off, wetting ef-
fects, and applications to other issues like interface roughening in the fluid invasion of
porous media, recent results on rotating Hele-Shaw flows, the impact of boundaries
like elastic boundaries and occlusions, the evolution of the moving interface, etc.
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Statement of Originality

The analytical investigation of viscoelastic fingering, also known as Saffman-Taylor
instability in a Hele-Shaw cell, is the focus of this thesis. It provides an answer to
the challenge of forecasting the finger thinning and widening phenomena for various
polymeric liquids. My original contributions to this thesis are listed below.
• Chapter 2: This chapter provides a clear understanding of the basics of temporal
and spatiotemporal stability analysis using linear stability theory, the concepts of
cusp map, branch, and pinch point (Bansal, Ghosh, and Sircar, 2021, Schmid and
Henningson, 2001, Koch, 1986, Kupfer, Bers, and Ram, 1987).
• Chapter 3: The competition between the viscous and capillary forces on the ad-
vancing front leads to the emergence of a characteristic length scale that determines
the relative finger width, ΛTemp. The remarks on the determination of ΛTemp using
linear stability analysis and identifying this as the most unstable mode, followed by
the analysis of Chuoke, van Meurs, and van der Pol (Chuoke, Van Meurs, and Poel,
1959), were done in this chapter (Bansal, Ghosh, and Sircar, 2023, Bansal, Chauhan,
and Sircar, 2022,Bansal, Ghosh, and Sircar, 2021) by deriving a dispersion relation
in a rectilinear channel for the power-law fluids.

In the mathematical model section: the derivation of McLean and Saffman’s
(McLean and Saffman, 1981) equations in order to consider the non-Newtonian
effect in the surface tension parameter. The extension of the solvability theory of
Hong and Langer (Hong and Langer, 1986) to include the shear-dependent viscosity
effect in the modified Darcy’s law ( (3.2), Bansal, Ghosh, and Sircar, 2023), which
is the starting point of this analysis. Next is the estimation of the shear rate, γ̇ ≈ q

b , in
the power-law model (3.5) (Bansal, Ghosh, and Sircar, 2023).

In the main result section: the derivation of the relation between Λ and ν0 using the
WKB expansion and also using the concept of branch point for the cases β > 1,β < 1.
The proof of solvability theory for the power law fluids, the derivation of the cusp
function. All nonlinear terms at the level of the Wentzel-Kramers-Brillouin (WKB)
approximation are included in the recomputed cusp function instead of just the leading
order term (Bansal, Ghosh, and Sircar, 2023).

In the validation part: the comparison of the theory and the dynamical simulation
with the experiments of Bonn and Meunier (Bonn and Meunier, 1997, Lindner et al.,
2002). In the conclusion part: there is a need to extend the theory for strong shear
thinning cases and include the elastic stresses as well.
• Chapter 4: In the first section, a discussion is made on the limitations of the work
of Chapter 3 with Dr. Diksha Bansal and Dr. Sarthok Sircar (the co-author and
corresponding author, respectively). In the second section, potential future research
is addressed on the dynamics of fingering patterns and the impact of varying the
viscosity contrast parameter, as well as the existence of topological singularities in
the form of interface pinch-off, wetting effects, and applications to other problems
from the previous study (Casademunt, 2004, McCloud and Maher, 1995) like interface
roughening in the fluid invasion of porous media, rotating Hele-Shaw flows, etc.
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Summary: 1) Contribution of Dipa Ghosh in Bansal, Ghosh, and Sircar, 2021
(Physics of Fluids): Part of the numerical derivations, part of the write-up and finding
the cusp map using zero contours.
2) Contribution of Dipa Ghosh in Bansal, Ghosh, and Sircar, 2023 (SIAM Journal
on Applied Mathematics): The estimation and the form of the shear rate and the
complete mathematical derivations of the main results, compiling all the derivations
in latex, part of the numerical validation of the theoretical results and concluding
remarks.
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Chapter 1

Introduction

The following chapter provides an overview of the theoretical, experimental, and
numerical study of Saffman-Taylor instability in its linear/non-linear regime with the
motivation of understanding the instabilities of the interfaces between two fluids in a
narrow channel, which is known as the Hell-Shaw cell.

In accordance with the experiments, the less viscous fluid pushes the more viscous
fluid into the Hele-Shaw cell, forming finger-like patterns at the interface referred
to as the viscous fingering phenomenon. This phenomenon of viscous fingering
leads to pattern formations, which have been a topic of acute interest in Physics,
applied mathematics as well as industrial research communities for many years as
it is responsible for a ubiquitous range of physical phenomena like: the breakup of
falling fluid into droplets, vortex patterns of fluid jets, crystal formation, dendritic
shape of snowflakes etc.

In order to get a clear understanding of the study, a concise summary of certain
important topics like classical Saffman-Taylor flows in a Hele-Shaw cell, delineation
of previous observations of direct numerical simulations, experimental and analytical
results for both Newtonian fluids and non-Newtonian fluids will be discussed below.
Finally, some industrial applications of Saffman-Taylor flows will also be discussed
in further course.

1.1 Classical Saffman-Taylor instability in a Hele-Shaw
Cell

The first theoretical treatment of the stability of an immiscible fluid-fluid interface
in a Hele-Shaw cell (see Figure-1.1) was published in a seminal paper in 1958 by
Saffman-Taylor (Saffman and Taylor, 1958) preceding which the viscous fingering
instability is commonly known as the Saffman-Taylor instability.

The classical Saffman-Taylor instability occurs when a less viscous fluid pushes
a more viscous fluid into a narrow channel. As an instance, if air (with a negligible
viscosity) pushes a more viscous fluid (with viscosity η), in a Hele-Shaw cell of height
b and width W , and if the surface tension between the two fluids is σ , then the flow
in the confined geometry governed by Darcy’s law gives the mean velocity (averaged
across the channel thickness) of the fluid as a function of an applied pressure gradient
V = −b

12η
∇p. Due to the incompressibility of the fluid, ∇.V = 0, and hence the

pressure field is Laplacian, i.e., ∆p = 0. The pressure jump at the interface is given
by δ p = σ(2

b + k), where k is the curvature in the direction of the channel width. In
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this two-dimensional approximation, the set of equations together with the boundary
conditions completely determine the problem (Lindner and Wagner, 2009).

Figure 1.1: Schematic of (a) fingering patterns in Rectilinear Hele-
Shaw cell, and (b) fingering patterns in Radial Hele-Shaw cell (Singh,

Singh, and Pandey, 2020)

An initially straight interface becomes unstable when the less viscous fluid pushes
the more viscous fluid, and minor perturbations increase the pressure gradient and
velocity in front of the perturbation. Surface tension, on the other hand, tends to
stabilize the initially straight interface. The rivalry between viscous and capillary
forces produces a characteristic length scale, which can be estimated using linear
stability analysis. The little fingers eventually expand and begin to compete with
the more advanced fingers. As a result of the non-linear development process, a
single finger may be observed propagating through the cell. The control parameter
1/B = 12Ca(w

b )
2 gives the relative width of a single finger as Λ, defined as the ratio

between the finger width w f and the cell width w; that is, the ratio between the two
length scales of the system w and the maximum growth rate for a wavelength lc = πb

Ca1/2

(where Ca is capillary number). The outcomes achieved in various cell geometries
as a function of the control parameter 1/B follow a universal curve. As fingertip
velocity U increases, viscous forces become more dominant than capillary forces,
and relative finger width falls. At high velocity, Λ does not go to zero but rather
settles near a plateau value of Λ = 0.5. Saffman and Taylor described this instability
in 1958 (Saffman and Taylor, 1958); however, they were unable to explain the finger
selection mechanism, and by ignoring surface tension, they discovered a family of
analytical solutions for the shape of the interface (Lindner and Wagner, 2009) that
agrees well with experimental observations but fails to clarify the selection of a given
finger width.

Taking surface tension into consideration, McLean and Saffman in 1981 (McLean
and Saffman, 1981) numerically explained the selection mechanism of a given finger
width. Analytical results of the selection process describe the fact that surface tension
represents a singular perturbation leading to a solvability condition at the fingertip,
which was solved much later (Hong and Langer, 1986; Shraiman, 1986; Combescot
et al., 1986).

An ideal two-dimensional problem was the targeted point of discussion so far.
However, when the problem is viewed in three dimensions, a thin wetting layer can
be seen between the advancing finger and the glass plate. This causes the pressure
fluctuation at the interface to be continuously altered, effectively causing minor
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modifications in finger width observed between different experimental geometries
(Lindner and Wagner, 2009; Tabeling and Libchaber, 1986).

1.2 Newtonian Saffman-Taylor instability
This section will be primarily focused on highlighting the various methods used
for studying Newtonian flow instability like direct numerical simulations (DNS)
and computational bifurcations, experimental observations, and analytical results,
respectively.

1.2.1 Computational results
In current times, much attention has been devoted to controlling the fingering patterns
(Karmakar et al., 2022), tip splittings, and reduction of the growth of the interfacial
fingers (Karmakar and Shukla, 2023) using direct numerical simulations on Newto-
nian fluids that have been reported here chronologically.

One of the significant aspects of the enduring interest in Newtonian fluid flow in
Hele-Shaw cells is its close similarity to quasi-static solidification (Kondic, Palffy-
Muhoray, and Shelley, 1996). In particular, it has also been reported that the fluid-fluid
interface plays the same role as the Mullins-Sekerka instability of the solidification
front (Kondic, Palffy-Muhoray, and Shelley, 1996). The features such as the growth
of stable dendritic fingers and side branching are associated with solidification, which
has also been observed in fluids with an imposed anisotropy.

Over the last decade, large-scale numerical simulations have emerged as a use-
ful new tool, which often can access information that is difficult to extract exper-
imentally by using a simple conventional method like finite difference approaches
(Christie, Jones, and Muggeridge, 1990; Christie, Muggeridge, and Barley, 1993;
Sorbie, Zhang, and Tsibuklis, 1995). Also, several experimental and computational
investigations on the role of permeability heterogeneities in viscously unstable dis-
placements (Araktingi and Orr, 1993; Tchelepi et al., 1993; Sorbie et al., 1994) have
been analyzed. However, the detailed numerical work by Tchelepi (Tchelepi et al.,
1993) was able to break new ground in this regard. The author employs a mixed
computational approach in both two- and three-dimensional homogeneous as well as
heterogeneous media that combines a traditional Eulerian finite difference discretiza-
tion for the pressure equation with Lagrangian particle tracking for the concentration
equation in order to analyze the transition from viscosity- to density-dominated dis-
placements. It is worth noting that if gravitational forces strongly dominate viscous
forces, two- and three-dimensional simulations display similar behavior. In all of the
above computational investigations, the governing equations are formulated in terms
of velocity and pressure variables. Due to the familiarization of primitive variables
like velocity and pressure, this approach may have the advantage that most researchers
are familiar with, but there are also some drawbacks, such as, in this formulation,
the equations do not allow a clear separation of the various physical effects. So, as
an alternative, rectilinear homogeneous miscible displacements with gravity override
are analyzed by Ruith et al. (Ruith and Meiburg, 2000) by means of direct numerical
simulations on the basis of the vorticity–streamfunction formulation of the governing
equations. This vorticity-based point of view often provides a clear overview of
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these flow characteristics to the effects of viscosity differences, density differences,
or impermeable boundaries. In particular, from this literature, one can understand the
formation of the gravity tongue in terms of a focusing mechanism. The author also
provides the numerical simulations for different values of the governing parameters
that lead to scaling results, which demonstrate that the thickness of the gravity tongue
grows with (G/Pe)1/2, where G is the gravity parameter and Pe is the Péclet number.

Density-driven instabilities between miscible fluids in a vertical Hele-Shaw cell
are investigated by Fernandez et al (Fernandez et al., 2002) by means of both ex-
perimental and two-three dimensional numerical simulations. In their article, their
work focuses on the initial stage of the growth instability, and they provide detailed
information about the growth rates as well as the most amplified wave numbers as a
function of the governing Rayleigh number, Ra. Gravitationally unstable interfaces,
i.e., interfaces that separate a lighter fluid from the heavier fluid located above it in
a gravitational field, are less understood in a vertical Hele-Shaw cell. Here, the flow
is dominated by viscous forces, while inertial forces, i.e., when the Reynolds number
(Re) is small, are negligible. So, the velocity profile is no longer parabolic across
the gap; hence, the Hele-Shaw equation is unable to provide an accurate descrip-
tion of the flow. Despite all the above facts, some successful nonlinear simulations
based on gap-averaged equations have been used to investigate nonlinear interaction
mechanisms among the evolving fingers.

Moreover, in the vertical Hele-Shaw setup, Goyal et al. (Goyal and Meiburg, 2006)
had also done a computational study based on the Stokes equations to investigate the
effects of gravitational forces on miscible displacements. Using nonlinear simulations
(provide the quasi-steady displacement fronts in the gap of the cell), they examined
the stability of spanwise perturbations by means of linear stability analysis. Due to
gravity, the two-dimensional simulations indicate a marked thickening or thinning
and slowing down or speeding up of the displacement front for flows stabilized or
destabilized. In order to investigate the transition between viscously driven and purely
gravitational instabilities, a comparison between displacement flows and gravity-
driven flows without net displacements is presented by them (Goyal and Meiburg,
2006).

Miscible porous media displacements have also been investigated by E. Upchurch
and E. Meiburg in 2008 (Upchurch and Meiburg, 2008) unlike Fernandez et al.
and Goyal et al. (Fernandez et al., 2002; Goyal and Meiburg, 2006), by non-vertical
injection wells. In their investigation, they provide insight into the mechanisms that
dominate variable viscosity and density. The numerical results reveal a significant
difference compared to vertical injection wells, which strongly influence breakthrough
times and recovery times. Due to the presence of a density difference, interesting
interactions and competitions between the dominant fingers and the emerging gravity
tongue are observed, and for sufficiently large mobility ratios, dendritic fingering
instabilities appear prominently on the flanks of the dominant finger along the exposed
side of the gravity tongue.

3D Navier-Stokes simulations of viscously unstable, miscible Hele-Shaw dis-
placements have been discussed by Oliveira et al. in 2011 (Oliveira and Meiburg,
2011). Quasi-steady fingers whose tip velocity increases with the Peclet number and
unfavorable viscosity ratio that shows the widest finger near the tip but progressively
narrower one towards the root have been observed. Their simulations also reveal a
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new mechanism which is inner tip-splitting, fundamentally different from the familiar
tip-splitting mechanism. It is furthermore observed that the Péclet number plays an
important role in miscible flow displacements that differs from the capillary number
for the case of immiscible flows (since inner splitting is delayed for large Pe numbers,
whereas higher capillary number promotes tip-splitting).

M.O. John et al. (John et al., 2013) performed direct numerical simulations of the
variable density and viscosity Naiver-Stokes equations in order to explore 3D effects
within miscible displacements in horizontal Hele-Shaw cells. These simulations
identify a number of mechanisms concerning the interaction of viscous fingering
with a span-wise Rayleigh-Taylor instability.

Gravitationally and viscously unstable miscible displacements in vertical Hele-
Shaw cells have been investigated via 3D Navier-Stokes simulations (Heussler et al.,
2014). These unstable vertical displacements show a strong vorticity quadruple along
the length of the fingers, which does match with the recent observations for neutrally
buoyant flows. It can also be noted that the velocity of the 2D base flow at the
front usually increases due to viscosity contrast and destabilizing density difference.
While displacement fronts moving faster than the maximum velocity of the Poiseuille
flow exhibit a single stagnation point in a moving frame of reference, gravitationally
stable fronts, on the other hand, move more slowly than the Poiseuille flow which
causes complex streamline patterns and form spike-like structures at the tip. These
findings are in line with the earlier observations for corresponding capillary tube
flows (Oliveira et al., 2014).

In the same year, Luis et al. (Cueto-Felgueroso and Juanes, 2014) proposed
a continuum model of two-phase (or multiphase) flow in a Hele-Shaw cell, which
describes a 3D flow in the cell gap using gap-averaged quantities such as fluid
saturation and Darcy flux. In the gap, viscous and capillary coupling between the
fluids leads to a non-linear fractional flow function. Within a phase-field framework,
capillarity and wetting phenomena are modeled to design a free energy function
that induces a phase segregation at equilibrium. Though the model has been tested
through the bubbles and viscously unstable displacement simulations, the behavior
of the model has been analyzed as a function of capillary number, viscosity contrast,
and cell geometry. This model has a great impact on wetting and flow rate on the
performance of microfluidic devices and geological flows through fractures (Cueto-
Felgueroso and Juanes, 2014).

It is worth noting from the previous observations that multiphase flow in porous
media has an enormous impact on industrial as well as environmental applications at
several spatiotemporal scales. Zaleski et al. (Lagrée, Zaleski, and Bondino, 2016)
focused on the sharp-interface method in porous media with a simplified Darcy-scale
approach and simulations of Saffman-Taylor fingering by modeling multiphase flows.
Thus, they measured the scaling properties of the fractal viscous fingering patterns
that can be seen in the numerical simulations. The scaling properties are fractal or
of Hausdorff dimension (DF), and variations of the area (A) of the viscous fingering
cluster are defined by the simple power law relation A ∼ Lα , where L is the length
of its perimeter. This helps to indicate an increase in recovery of the high-viscosity
fluid behind the fingering front, which is caused due to the reduction of the viscosity
contrast.
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In recent studies, it has been noticed that the addition of a low dose of nanopar-
ticles to the base fluids can well influence the dynamics of fingering patterns due
to a substantial increase of viscosity, and because of this potentiality, nanoparticles
are used to control the viscosity driven instabilities (Madhavan et al., 2023). This
phenomenon and its applications in recent times have been registered in the paper
of Sabet et al. (Sabet, Hassanzadeh, and Abedi, 2017). The impact of nonreactive
nanoparticle’s presence on the stability and subsequent mixing of an originally unsta-
ble binary system is investigated through linear stability analysis (LSA) and pseudo
spectral-based through direct numerical simulations (DNS). The investigated result
shows that nanoparticles have the capability to lessen the instability of an originally
unstable system.

Numerical investigation of controlling instabilities at the interface in non-standard
Hele-Shaw cells like angled or tapered was reported by Morrow et al. in 2019
(Morrow, Moroney, and McCue, 2019) and also in the same year by D. Lu et al. (Lu,
Municchi, and Christov, 2020). Their numerical simulations show how these non-
standard Hele-Shaw configurations influence the morphological characteristics of the
inviscid-viscous fluid interface.

Besides, D. Lu et al. (Lu, Municchi, and Christov, 2020) computationally analyzed
interfacial dynamics in order to formulate a three-regime theory based on the critical
capillary number (Cac). To present a theoretical and numerical study on the stability
or instability of the interface between two immiscible liquids, they have considered
two types of cells; one is diverging cells with a positive depth gradient, and the other
one is converging cells with a negative depth gradient. A modified linear stability
analysis is employed to construct an expression for the growth rate of perturbations on
the interface. Their 3-regime theory describes different growth rate situations of the
interface stability or instability. In regime I, the growth rate is always negative, and
thus, it shows a stable interface. In regime II, the growth rate remains zero (parallel
cells) but changes from negative to positive (converging cells) or from positive to
negative (diverging cells); the interface stability or instability possibly changes its
type at some location in the cell. In regime III, the growth rate is always positive
and hence causes an unstable interface. This study shows that the dynamic properties
possibly change during the interface’s propagation (Lu, Municchi, and Christov,
2020). In this paper, they used 3D simulations to verify the mathematical model (i.e.,
the theory part) for the growth rate of the interface.

1.2.2 Experimental results
The results of experiments involving the Saffman-Taylor instability (Hele-Shaw,
1898; Saffman and Taylor, 1958), known as viscous fingering, is a classical interfacial
instability that arises in a Hele-Shaw cell (Sandnes et al., 2007) when a low viscosity
fluid displaces a higher viscosity fluid (refer Figure-1.2(a)). A fingering phenomenon
occurs due to the instability at the moving interface, and the little fingers gradually
grow and compete with the more advanced fingers, repressing the less advanced
fingers (refer Figure-1.2(b)). As a result, one can finally see a single finger propagating
(refer Figure-1.2(c)) across the cell (Lindner and Wagner, 2009).
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Figure 1.2: (a) Interface between air (less viscous fluid) and glycerine
(more viscous fluid) at an early stage of the instability, (b) Develop-
ment of instability (fingering patterns), (c) Inhibiting effect of a finger
which gets ahead of its neighbor (beginning of a single propagating

finger) (Saffman and Taylor, 1958)

A fundamental topic in fluid mechanics, the two-phase displacement flow in a
constrained geometry has applications in biomechanics (biological fluid dynamics
(Nelson et al., 2021), microfluidics (Mannan and Leiderman, 2020; Eastham et al.,
2020), biofilms (Nooranidoost et al., 2023) and infectious diseases (Nooranidoost
et al., 2023)), geophysics, and industrial. The primary dynamic parameter is the
capillary number Ca = µU f∗/T , which quantifies the ratio of viscous to surface
tension forces when a viscous fluid (oil) is displaced by an inviscid one (air) and
the geometry is small enough to ignore gravitational and inertial effects. Here, µ

is the oil viscosity, T is the interface’s surface tension, and U f∗ is the advancing
interface’s velocity. The remaining characteristics that affect the behavior are all
geometric in nature. The Hele-Shaw channel, based on the classic work of Saffman
and Taylor (Saffman and Taylor, 1958), is the tube geometry that has gotten the most
attention: an axially uniform tube with a rectangular cross-section of large aspect ratio
α = W∗/H∗ ≫ 1, where W∗ is the width and H∗ the height of the cross-section. In
the absence of surface tension, Saffman and Taylor (1958) proposed a depth-averaged
model of the system with symmetric and asymmetric (Saffman, 1959; Chuoke, Van
Meurs, and Poel, 1959) families of solutions. A single modified capillary number
1/B = 12α2Ca is used in the depth-averaged system, which combines geometric
and dynamic effects. Only a single symmetric family of solutions is ever found in
experiments, and the fractional finger width λ = λ∗

W∗
, where λ∗ is the dimensional

finger width, does indeed collapse onto a master curve when plotted as a function of
1/B, provided 1/B < 7000 (Tabeling, Zocchi, and Libchaber, 1987).

For 1/B > 7000, Tabeling et al. (Tabeling, Zocchi, and Libchaber, 1987) dis-
covered aberrations from the symmetric finger shape with tip splitting. When the
roughness was adjusted from 0.3% to 3% of the channel height, the instability oc-
curred at lower 1/B, implying that minor, uncontrollable geometric non-uniformities
were the cause of the instability. Chevalier (Chevalier, Lindner, and Clément,
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2007) demonstrated early destabilization owing to controlled interface perturbations,
Lindner and Clément (Chevalier, Lindner, and Clément, 2007) studied fingering
in a granular suspension in a viscous liquid, where the perturbation amplitude was
proportional to the grain size.

An experimental study of dissolution-driven convection from first contact between
KMnO4 (potassium permanganate) solute and water solvent through to 65% saturation
in a Hele–Shaw cell for Rayleigh numbers Ra in the range 100 < Ra < 1700 has been
presented by Slim et al. in 2013 (Slim et al., 2013). They described dynamical
details and quantified global measures throughout the evolution. Their work is
consistent with earlier experimental and numerical studies but also goes beyond them
in providing details of the dynamics at both a local and global level in a single
unifying, universal framework through the advection–diffusion scalings (based on
the distance over which advection and diffusion balance) and they also showed that
using a simple coarse-grained Howard-style phenomenological model, aspects of the
behavior (such as flux decay) can be captured (Slim et al., 2013).

The bulk fingering instabilities in viscous liquids confined in Hele-Shaw cells, also
known as the Saffman-Taylor instability, have been the subject of much experimental
and theoretical (Hirata, 1998) effort. This instability translates into a fingering to
fracture transition in the context of the liquid to solid transition (in gels (Park and
Durian, 1994), foams (Lemaire et al., 1991), yield stress fluids (Coussot, 1999;
Lindner, Coussot, and Bonn, 2000; Mora and Manna, 2010), and Maxwell liquids
(Ghatak et al., 2000)) (Saintyves, Dauchot, and Bouchaud, 2013).

Instabilities revealed through spatiotemporal analysis are thought to be antecedents
to topological transitions of fluid surfaces in Hele-Shaw flows, according to Gold-
stein (Goldstein, Pesci, and Shelley, 1993). The transition between the two classes of
flows, namely absolutely unstable and convectively unstable flows, has been empiri-
cally demonstrated in a variety of Newtonian flow scenarios. In liquid jets, absolute
instability was recently experimentally confirmed by Shoji (Shoji et al., 2020). There
is also a large body of literature on Newtonian wakes and mixing layers, including
the blunt body tests mentioned by Oertel (Oertel, 1990). Overall, these investigations
discovered that limited boundaries and their existence have a destabilizing effect, as
well as a transition to absolute instability in the near wake region.

In a horizontal Hele-Shaw cell, Haudin et al. (Haudin et al., 2014) investigated a
buoyancy-driven instability that occurs when a viscous fluid is injected into a miscible,
less viscous fluid. Even if the displacement is stable from a viscous standpoint, if
the density difference between the two solutions and the gap of the cell is significant
enough, a pattern consisting of very thin stripes aligned perpendicularly to the miscible
interface arises. In a vertical cell, though, it vanishes. As a result, buoyancy plays a
role in this phenomenon. They used a parametric experimental analysis of viscously
stable miscible displacements in a horizontal Hele-Shaw cell with radial injection
to investigate this buoyancy-driven instability and the striped pattern that goes along
with it. They also define the impact of the flow rate and the thickness of the material.
In a horizontal cell with radial injection, the pattern, which appears after a given onset
time, consists of radial stripes. Further away from the injection point, splitting of the
stripes is observed (Haudin et al., 2014).

Though the dynamics of a droplet confined between solid walls and pushed by
a surrounding liquid is an old problem, Huerre et al. (Huerre et al., 2015) in their
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letter, has developed recently an unexplored theory which is related to the study of the
motion of droplets in a confined, micrometric geometry, by focusing on the lubrication
film between a droplet and a wall. They noticed when capillary forces dominate, and
the lubrication film thickness evolves nonlinearly with the capillary number due to the
viscous dissipation between the meniscus and the wall. However, due to the thinness
of this film (tens of nanometers), intermolecular forces come into play and affect
classical scalings. They have resolved topographies of the shape of the interface
experimentally, which yields new insights into droplet dynamics in microfluidics.
They have also reported two dynamical regimes; one is for low capillary numbers,
where the film thickness is constant and set by the disjoining pressure, while the
second case is constituted of a capillary number above a critical value where the
interface behavior is well-described by a viscous scenario. Their experiment also
shows, at a high surfactant concentration, structural effects lead to the formation of
patterns on the interface, which can be further used to trace the interface velocity,
which yields direct confirmation of the boundary condition in the viscous regime
(Huerre et al., 2015).

Apart from the aesthetics of the structures, the focus on this instability can be
linked to its widespread applicability such as in porous media flows (Sandnes et al.,
2011; Johnsen et al., 2006), flame propagation (Sato, Sakai, and Chiga, 1996), and
bacterial colony formation (Ben-Jacob et al., 1994). The flow resistance decreases as
a lower viscosity fluid replaces the more viscous fluid, causing instability; the inverse
condition, when a highly viscous fluid is pushed into a cell filled with a weakly
viscous fluid, is stable.

More recently, de Lózar et al. (Lozar and Hof, 2009), Pailha et al. (Pailha et al.,
2012), and Hazel et al. (Hazel et al., 2013) examined two-phase flow via rectangular
tubes, driven by the physiological difficulty of airway reopening with aspect ratio
α ≫ 13 that was partially occluded by axially uniform rectangular blocks occupying
50% and 33.3% of the tube height. Multiple stable modes of propagation were found in
these geometries, including asymmetric modes, oscillatory modes, and the expected
symmetric mode. These states are linked by a complicated bifurcation structure that is
still unknown, owing to the fact that only stable modes could be found experimentally.
Thompson, Juel, and Hazel (Franco-Gómez et al., 2016) modified McLean and
Saffman’s (McLean and Saffman, 1981) depth-averaged model to incorporate a
specified depth profile and ran numerical simulations with a channel aspect ratio of
α = 10 and relative obstacle width of αw = 0.25, but variable relative occlusion height
αh. All experimentally observed states were anticipated by the model, according to
the simulations. The bifurcation structure that resulted was qualitatively consistent
with experimental data, but the nominal aspect ratio of α = 10 was thought to be
too tiny for the model to give quantitative agreement. Despite this, Thompson et
al. (Franco-Gómez et al., 2016) reduced the relative height of the occlusion from
αh = 0.2 to 0.01.

Morphological instability of a reactive fluid flowing in a soluble porous medium,
which is also referred to as reaction-infiltration instability, is an important factor for
many phenomena like weathering and diagenesis of rocks, melt extraction from the
mantle, etc. Xu et al. (Xu et al., 2019), in their study, focused on experiments on
dissolution finger growth in a radial geometry. They dissolved a plaster disk in a Hele-
Shaw cell by withdrawing water from the center, thus creating the inward flow pattern,
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and reported the reactive-infiltration instability and finger growth along the perimeter
of the circular plaster sample that forms fracture walls with controlled injection
rate and aperture. They also mentioned that the perimeter under consideration was
sufficient to perform a statistical study of the reactive-infiltration instability and the
dissolution of finger growth with time. Due to the strong competition between
the growing fingers with the longest fingers, exponential growth can be seen in their
experimental study, which is consistent with the theoretical and numerical predictions
on the finger growth dynamics such as screening and selection between the fingers (Xu
et al., 2019).

It is well known that Péclet number (Pe), viscosity ratio (V R), and Rayleigh
number (Ra) all these parameters are used to investigate instabilities due to injection
rate, viscosity contrast, and gravitational field. It has been experimentally reported
by Safari et al. (Hosseinalipoor et al., 2020) that as the Péclet number and viscosity
ratio increase, more complex fingers can be seen, although sweep efficiency will
be less. A new instability, known as Rayleigh–Taylor instability (Chandrasekhar,
2013) is encountered when the denser fluid, due to density contrast, moves into the
lighter one in the presence of the gravitational field, and if the gravitational field
is exerted by the rotating cell, this new instability will amplify the former fingers.
These instabilities usually occur in environmental and technological processes such as
filtration, hydrology, enhanced oil recovery, chromatography (Hosseinalipoor et al.,
2020), etc.

Numerous studies (Paterson, 1981; Chen, 1989; Homsy, 1987) show viscous
fingering (VF) with surfactants as capillary number increases, finger width decreases.
But Nagtasu et al. (Tsuzuki et al., 2019), in their recent work, have shown that the
nonlinear VF width in the surfactant system is independent of capillary numbers. An
experimental investigation was performed (Suzuki et al., 2020b) on the effects of
effective interfacial tension (EIT) on miscible VF by establishing two solution systems
(both fluids are Newtonian) with different concentrations and the same viscosity
contrast. A spinning drop tensiometer experiment is used to measure EIT for the
glycerol–water system, which also demonstrates that the typical finger at high EIT
is wider than that at low EIT (Suzuki et al., 2020b). This is an important study
in establishing a well-controlled process for the understanding of viscous fingering
dynamics in surfactant flooding, oil recovery, etc.

1.2.3 Analytical results
In recent times, pattern selection is a key issue that is related to the 2D Saffman-
Taylor finger (Saffman and Taylor, 1958; McLean and Saffman, 1981). Saffman-
Taylor dynamics control a variety of seemingly different physical phenomena, such as
viscous fingering (Lindner and Wagner, 2009), directional solidification, or thermal
plume (Zocchi, Tabeling, and Ben Amar, 1992). It is well known that the Saffman-
Taylor finger results from the displacement of a viscous fluid by an immiscible, less
viscous one in a Hele-Shaw cell. In this immiscible displacement problem, if the
capillary number is sufficiently small, the interface in the gap consists of a nearly
hemispherical meniscus, which completely spans the cell gap at the edges of the
finger (Park and Homsy, 1985).
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An increase in dimensionality affects the pattern selection rule (in 2D, signifi-
cant work has already been done), which has attracted many to do further research.
Lajeunesse et al. (Lajeunesse et al., 1997) studied the 3D instability of downward
miscible displacement of one fluid by a less viscous one in a Hele-Shaw cell using the
viscosity ratio and the flow velocity as control parameters. For sufficiently large flow
velocity, mixing by diffusion is prevented in order to get a well-defined and sharp
interface. If the value of control parameters is smaller than a critical value, the flow
pattern will be 2D, and that leads to a tongue-shaped interface of the injected fluid
spreading in the middle of the gap of the cell. However, above a threshold, in both
the flow velocity and the viscosity ratio, a series of periodic 3D finger patterns can
be developed (Lajeunesse et al., 1997).

The dynamics of a fluid bubble for a lifting plate in a Hele–Shaw cell (with time-
dependent gap-width) have been studied by Shelly et al. (Shelley, Tian, and Wlodarski,
1997), which was identified through a basic version of Saffman-Taylor instability in a
modified Darcy’s law to account for the plate time dependence. Analytical conditions
like existence, uniqueness, and regularity of solutions were established when the
surface tension was zero as well as exact analytical solutions were constructed both
with and without the presence of surface tension, which illustrate behaviors of the
system such as cusp formation and bubble fission. The inclusion of surface tension
gives some evidence of a topological singularity, although it is associated with the
fission of a thin neck of fluid rather than with the collision of incipient cusps.

It is worth mentioning that pattern formation plays an important role in many
hydrodynamics settings. The classical Saffman-Taylor problem is a widely studied
example where a fluid-fluid interface evolves. Either a pressure gradient advancing
the less viscous fluid against the more viscous one or gravity or a density difference
between the fluids destabilizes the initially flat interface separating the two fluids.
Due to the instability at the interface, first, it deforms, and different modes grow
and compete dynamically, leading to undulated patterns. Though the first stage of
interface instability is captured by linear stability analysis, however, after this initial
linear behavior, the system evolves through a "weakly nonlinear" (Miranda and
Widom, 1998) stage to a complex stage, which is characterized by the formation of
fingers and bubbles where nonlinear effects dominate.

Casademunt (Casademunt and Magdaleno, 2000) has studied singular effects of
surface tension in the dynamics of the finger competition in the Saffman-Taylor prob-
lem with channel geometry. First, they have done a detailed study of some relevant
classes of exact solutions in the absence of surface tension and then compared them
to finite surface tension. From there, they concluded that (nonsingular) zero-surface
tension solutions are commonly nonphysical, and hence, they showed that the elemen-
tary two-finger competition process in the absence of surface tension is structurally
unstable, and this fact is solely responsible for the lack of genuine finger competi-
tion. Second, they generalized solvability theory to study the selection of multi-finger
configurations with finite surface tension, which gives a discrete set of nontrivial
multi-finger solutions with stationary coexistence of distinct fingers and are selected
by surface tension out of a continuum of solutions. While Casademunt (Casademunt
and Magdaleno, 2000) has discussed the implications of dynamic solvability scenario
in pattern selection, earlier Hong and Langer (Hong and Langer, 1986) linearized
the integro-differential equation obtained by McLean and Saffman (McLean and
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Saffman, 1981) around the family of solutions obtained for the zero-surface tension
problem by considering the surface tension parameter as a singular perturbation to the
problem in order to obtain an inhomogeneous integro-differential equation for finite
surface tension and also constructed a necessary condition for the existence of solu-
tions and computed it via WKB (Wentzel–Kramers–Brillouin) methods (Shraiman,
1986; Hong and Langer, 1986). Since solvability theory has proved to provide a very
reasonable solution to the selection of the pattern in the isotropic problem with finite
surface tension, later in their paper, they have extended such a theory to incorporate
the effect of anisotropy (Hong and Langer, 1986).

Miranda et al. (Miranda and Widom, 1998) developed a mode-coupling the-
ory to investigate the onset of non-linear effects in the viscous fingering problem
in a rectangular Hele-Shaw cell, highlighting the link between interface asymmetry
and viscosity contrast. Their analysis shows that symmetry breaking occurs through
enhanced growth of sub-harmonic perturbations. Moreover, the absence of finger
tip-splitting in the early flow stages was explained, and the onset of saturation ef-
fects, which moderates the exponential growth of the linear instability, was identified
(Miranda and Widom, 1998).

A linear stability result was presented based on the three-dimensional Stokes
equations for chemically reacting, propagating fronts giving rise to an unstable density
stratification in a Hele-Shaw cell by Demuth et al. (Demuth and Meiburg, 2003). A
growing discrepancy can be seen between linear stability results based on Darcy’s and
Stokes equations, respectively, as the Rayleigh number increased, and that motivated
the authors to revisit the experiments in the paper of M. Böckmann and S.C. Müller
(Böckmann and Müller, 2000), as well as with a corresponding linear stability analysis
based on the Darcy equations that was performed in A. De Wit’s paper in 2001 (De
Wit, 2001). The results were in good agreement with the experiment for the relatively
low value of Rayleigh number, Ra = 79, that shows Poiseuille-type flow behavior,
and hence the Darcy equation is largely applicable (Demuth and Meiburg, 2003).

Ben Amar et al. (Amar and Bonn, 2005) studied the fingering instabilities that
occur in the debonding of model adhesives and performed a linear analysis of the
instability in the lifting Hele-Shaw cell that is relevant for the failure of soft adhesives.
Though the analysis is done for a Newtonian fluid, it can be extended to shear-thinning
fluids (non-Newtonian fluid). Significant differences are found between the linear
theory and the experimental results when compared to the experiment, and hence,
they discussed three-dimensional effects that improve the agreement; nevertheless,
significant differences between theory and experiment still remain (Amar and Bonn,
2005). On the other hand, Goyal et al. (Goyal and Meiburg, 2006) were particularly
interested in similarities and discrepancies between Stokes and Darcy results for the
viscous fingering instability in the systematic linear stability analysis of miscible
displacements in Hele-Shaw cells, based on the three- dimensional Stokes equations.

Earlier experiments and theory indicate that inertia has a significant influence on
the system’s behavior (Chevalier et al., 2006). In recent studies, Dias et al. (Dias
and Miranda, 2011) employed a perturbative-mode-coupling method to examine how
the stability and morphology of the viscosity-driven fingering patterns are affected by
inertia in both rectangular and radial Hele-Shaw flow geometries. In the rectangular
configuration, they have found that inertia has a stabilizing role at the linear stage
and tends to widen the fingers at the weakly nonlinear regime. Whereas in radial
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flow geometry, inertially induced, enhanced finger-tip splitting events at the onset of
nonlinearities can be captured. Linder et al. (Nase, Derks, and Lindner, 2011) studied
the dynamic evolution of fingering pattern formation in a Newtonian liquid during
the lifting of a circular Hele–Shaw cell. They showed that the number of growing
fingers depends only on the dimensionless surface tension and can be described by
linear stability analysis. On the other hand, the finger amplitude and, consequently,
the total number of fingers (growing and stagnant fingers) also depend on the cell
confinement, though the finger amplitude has a distinct influence on the debonding
force.

Housseiny et al. (Al-Housseiny and Stone, 2013) have considered two tapered
Hele-Shaw geometries (rectilinear and radial), which have a constant depth gradient
in the flow direction that show the presence of a depth gradient alters the stability of
the interface that controls and tunes fingering instabilities. This implies the stability
of the interface can be determined by both the viscosity contrast of the fluids and the
ratio of the depth gradient to the capillary number of the system. A new prediction
of wavelength selection in radial viscous fingering involving normal and tangential
stresses was considered by Nagel et al. (Nagel and Gallaire, 2013) in a Hele-Shaw cell.
They have used the so-called Brinkman equation to describe the flow field, which
takes into account viscous stresses in the plane of the confining plates, in order to
show that the in-plane stresses cannot always be neglected and that appeared naturally
in the potential flow problem. The dispersion relation obtained with the Brinkman
equation (Ho, Leiderman, and Olson, 2019; Nguyen, Olson, and Leiderman, 2019)
complies with the experimental results in contrast to the classical linear stability
analysis of radial fingering that uses Darcy’s law as a model for the fluid motion in
Hele-Shaw cells (Nagel and Gallaire, 2013).

In contrast to previous investigations (Wooding, 1969; Goyal and Meiburg, 2006),
Talon et al. (Talon, Goyal, and Meiburg, 2013) have been focused on analyzing the
linear stability of variable density and viscosity, miscible displacements in a horizontal
Hele-Shaw cell, where the influence of gravity on the base state and its linear stability
is quite distinct from vertical cell (Talon, Goyal, and Meiburg, 2013). Beeson-jones
(Beeson-Jones and Woods, 2015) examined the stability of a system with two radially
spreading fronts in a Hele-Shaw cell in which the viscosity increases monotonically
spreading in an annulus (that is, from the innermost to the outermost fluid) in order
to discuss the application of this approach to a problem of injection of treatment fluid
in an oil well (Beeson-Jones and Woods, 2015).

1.3 Non-Newtonian Saffman-Taylor instability
In this section, the focus will be on non-Newtonian flow instabilities and the various
approaches used in understanding the instability in non-Newtonian fluids, like DNS,
experiments, and stability analysis.

1.3.1 Computational results
In an earlier result of L. Kondic et al. (Kondic, Palffy-Muhoray, and Shelley, 1980),
they used the generalized Darcy’s law to perform fully nonlinear simulations of a
bubble expanding into a strongly shear-thinning liquid. Their simulations demonstrate
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that shear-thinning significantly modifies the evolution of the interface, which has a
dendritic appearance resembling those occurring in quasistatic solidification as tip
splitting of fingers is suppressed. These results are consistent with experimental
results. Moreover, the length scales under consideration from linear stability analysis
are consistent with simulation results. Furthermore, they also give a morphological
phase diagram in terms of flow and fluid parameters. In particular, they concluded
from their simulations that the typical length-scale (l) of the patterns scales with
driving pressure (P0) as l ∼ P−1/2

0 (Fast et al., 2001). In their analysis, they used the
Johnson– Segalman – Oldroyd (JSO model) for a viscoelastic fluid that considerably
simplifies the thin-gap limit ε = b/L ≪ 1, where b is the gap between the plates,
and L is the typical lateral dimension. In the ε leading order terms, they have found
that the natural Weissenberg number of the flow is of O(1) in order to retain the
shear-thinning property of the fluid. However, in this limit, elastic effects enter only
through the definition of a Weissenberg number as the viscoelastic fluid is reduced to
a generalized Newtonian fluid (Fast et al., 2001).

Singh et al. (Singh and Azaiez, 2001) have mentioned three types of instability
mechanisms for Newtonian flow displacements that occurred at the fluid-fluid inter-
face. These are shielding, coalescence, and fading. In addition to the patterns already
known for purely Newtonian flow displacements, the authors introduced new mecha-
nisms that are reported in the case of non-Newtonian flows. These new mechanisms
are termed diagonal-fingering, side-branching, trailing-lobe detachment, and double-
coalescence (Singh and Azaiez, 2001). It has become evident from their study that
the presence of a non-Newtonian fluid in the flow leads to finger patterns, just like the
case for Newtonian flow displacements, but that are richer and more complex than
the usual Newtonian flow displacements. They (Singh and Azaiez, 2001) have used
nonlinear pseudo-spectral numerical simulations based on the Hattley transform to
examine the viscous fingering instability in miscible displacements involving shear-
thinning fluids. A rectilinear Hele-Shaw cell has been used to study the instability,
and the Carreau equation has been used to model the shear-thinning character of the
fluids. Some of these new mechanisms that they have introduced here have also been
reported in earlier studies in terms of the velocity-dependent mobility of the flow
(Singh and Azaiez, 2001).

R.J.S. Booth (Booth, 2010) has observed that: “there is a close link between
the growth rate of the mixing zone and a shape selection problem for Saffman-
Taylor fingers”, and the author has noted this investigation in the paper (Booth,
2010) in 2010. It was long before observed that the most important property of
viscous fingering instability is that the smallest wavelength disturbances generally
grow fastest, whereas mechanisms such as diffusion or a diffused initial condition
typically lead to the existence of a cut-off or least stable wavelength, leading to
the expectation that small wavelength fingers will form. This suggests an ill-posed
problem, as well as the Musket problem (Siegel, Caflisch, and Howison, 2004) with
contrasting viscosity, which has been shown to develop singularities in the curvature
of the interface between the two fluids.

A miscible displacement between the two fluids with molecular diffusion and a
smoothly varying viscosity can be modeled by the well-posed equations:

∇.u = 0 (1.1)
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Figure 1.3: Numerical simulation of miscible viscous fingering (de-
fined in equations (1.1)-(1.3)), with a constant flux of solvent (on left
of image) into oil, and M (mobility ratio) = 5, Pe (Péclet number) =

3000. (Booth, 2010)

u =
−k

µ(c)
∇p (1.2)

φ
∂c
∂ t

+ ∇.(uc) = D∇
2c; (1.3)

where u : total flux of the fluid per unit area, k : permeability of the medium, c :
volume fraction of solvent, p : pressure, D: diffusion coefficient µ(c) : viscosity of
a homogeneous mixture of oil and solvent with a volume fraction c of solvent, which
is taken (Koval, 1963) as equation (1.4)

µ(c) = (µ
−1/4
s c+µ

−1/4
0 (1− c))−4 (1.4)

µs,µ0 are the viscosities of pure solvent and pure oil, respectively. For large
Peclet number (Pe =UL/D ≫ 1), the Koval model supports numerical simulations
of equation (1.1) to (1.3) (refer Figure-1.3). One of the most important features of
this model is that, as a hyperbolic equation, it can predict the finite speed at which
the mixing zone can encroach into the oil.

The important relationship between miscible viscous and density fingering is
described by Wooding in 1969 (Wooding, 1969). When the viscosity ratio between
the two fluids is close to 1, it is possible to show that, with a rescaling of diffusion,
the two problems are equivalent (Manickam and Homsy, 1995). Furthermore, the
growth rate of the mixing zone, as suggested by Koval for viscous fingering, agrees
with the observations of Wooding (Wooding, 1969) of miscible density fingering in
the Hele-Shaw cell. This agreement further provides support for the validation of the
Koval model over a wide range of values of M (= mobility ratio = µ0/µs) (Booth,
2010). However, the model fails for the mean finger width, which does not vary over
time.

The viscous fingering instability of miscible displacement involving a viscoelastic
fluid is explored for the first time in the paper of Shokri et al. (Shokri, Kayhani, and
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Norouzi, 2017) using both linear stability analysis and computational fluid dynam-
ics. The constitutive equation of a viscoelastic fluid is the Oldroyd-B model. One
of the displacing fluids or the displaced fluid is presumed to be viscoelastic in this
case. The quasi-steady state approximation and the six-order shooting approach are
used in linear stability analysis to anticipate the increasing rate of the disturbance in
the flow. When the elasticity (Weissenberg number) of the displaced or displacing
viscoelastic fluid is raised, the flow becomes more stable. The effect of the viscoelas-
tic fluid on this instability was investigated in a nonlinear simulation utilizing the
spectral method based on Hartley transforms and the fourth-order Adams-Bashforth
technique. The elasticity has a substantial effect on the fingering instability, and
the flow becomes more stable by raising the Weissenberg number, as measured by
concentration contours, mixing length, sweep efficiency, and transversely average
concentration (Shokri, Kayhani, and Norouzi, 2017).

1.3.2 Experimental results
Emphasizing the experimental approach to understanding instability in non-Newtonian
fluids, viscous fingering, because of its unique features, has received considerable
study. Nittmann et al.(Nittmann, Daccord, and Stanley, 1985) seminal work demon-
strates that viscous fingering patterns created in non-Newtonian fluids differ signif-
icantly from those formed in Newtonian fluids. Fracture-like patterns have been
discovered in clay slurries, colloidal fluids, and polymer solutions, for example
(Nittmann, Daccord, and Stanley, 1985; Zhao and Maher, 1993). Due to non-
Newtonian features such as shear thinning or thickening, viscoelasticity, yield stress,
and so on, the physical genesis of the extremely varied structures is yet unknown.

Two types of phenomena can occur in the case of non-Newtonian fluids. These
are as follows:

• Finger narrowing in shear-thinning fluids:
When performing experiments in a dilute solution of Xanthane, a strong

modification of the selection process can be observed. Fingers are substantially
narrower at high velocity than the traditional limit of Λ = 0.5. Qualitative
behavior shows that the shear-thinning fluid is pushed by the finger in the Hele-
Shaw cell. However, numerical simulations show that viscosity is not uniform
throughout the cell; regions of high fluid velocity and, thus, high shear rate
have a low viscosity. This is essentially the case in front of the (Fast et al.,
2001) fingertip, and for that, the system becomes anisotropic, leading to finger
narrowing.
For weak shear thinning (1 > n > 0.65) (Lindner, Coussot, and Bonn, 2000;

Lindner et al., 2002), they have shown (Lindner and Wagner, 2009) that by
simply replacing the constant viscosity η in the control parameter 1/B by a
shear-dependent viscosity η(γ̇) allows rescaling the data onto the universal
curve for Newtonian fluids, where, the shear rate γ̇ is the average shear rate in
the cell. On the other hand, for strong shear-thinning (n < 0.65), this rescaling
fails, and deviations from the classical result toward smaller fingers are observed
(refer Figure-1.4). Narrower fingers have also been documented by Rabaud et
al. (Rabaud, Couder, and Gerard, 1988a).
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Figure 1.4: Shear-Thinning: Narrower fingers differs from the classi-
cal limit of Λ = 0.5 (Lindner and Wagner, 2009)

Using a Hele-Shaw cell with engraved glass plates, they discovered viscous
fingers with Λ substantially less than 0.5 for Newtonian fluids. The observation
of such "anomalous" fingertips is explained by the engravings indicating a
local perturbation at the fingertip. The traditional selection of the discrete set
of solutions is disrupted by this disturbance. At high velocity, the continuum
of solutions given by Saffamn and Taylor’s analytical result without surface
tension becomes accessible; and can take values smaller than 0.5. Rabaud et
al. (Rabaud, Couder, and Gerard, 1988a) demonstrated that for a given value
of Ca, the shape predicted by Saffman and Taylor (Saffman and Taylor, 1958)
is not the shape. A similar mechanism is responsible for the selection of the
viscous finger in a shear-thinning fluid. When the shear-thinning character of
the fluid is strong enough, anisotropy plays the role of the perturbation at the
fingertip. The relation between ρ

b i.e. the dimensionless radius of curvature
and Λ is dependent on the shear thinning character of the fluid and thus the
shear thinning exponent n. So, knowledge of the relationship between ρ

b and Λ

solves the selection problem, and hence one can now predict the finger width
Λ from the rheological data. As a result of the presence of shear thinning, a
whole other selection mechanism emerges, one that is more similar to what is
seen in finger width, for example, and which may begin to play a role in this
low viscosity fluid. The dimensionless radius of curvature at the tip ρ

b can be
related to the finger width via the relation ρ = Λ2w

π(1−Λ) , which arises from finger
dendritic growth and necessitates anisotropy in the system.
Corvera poiré et al. (Corvera Poiré and Ben Amar, 1998) solved the problem

for a power law fluid directly, and their results are in good accord with the
experimental facts. At high velocities, the case may be that there is a saturation
of the finger widths, resulting in a widening of the finger widths. This may be
explained by inertial effects, which have been found to increase finger width
(Chevalier et al., 2006) and may begin to play a role in this low-viscosity fluid.

• Finger widening due to Normal stresses :
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In experiments, a completely different behavior is found using solutions
of the flexible polymer PEO. Unlike with shear-thinning fluids, where finger
narrowing occurs, in this situation (by comparing it to the Newtonian case),
finger widening can be observed. Study shows the presence of normal stresses
in the thin wetting layer might be responsible for the finger widening; one
can attempt to account for this effect by adding a supplementary pressure
to the system. In traditional theory, the radius of curvature determines the
pressure jump at the interface between two liquids. Tabeling et al. (Tabeling
and Libchaber, 1986) demonstrated that by correcting the surface tension in
the control parameter, one can account for the influence of the wetting film’s
limited thickness. Using the same logic, the extra pressure caused by normal
stress can be added to the surface tension term T ∗ = T + 1

2N1(γ̇)b in the control
parameter. This enables the data to be rescaled into a single universal curve,
which addresses the selection concerns for minor normal stresses yet again.
For shear thickening, the viscosity in Darcy’s law is unique, but the BVP can
change from elliptical to hyperbolic (Kondic, Palffy-Muhoray, and Shelley,
1996; Fast et al., 2001).

Experiments have been conducted in recent years to untangle the influence of
several non-Newtonian flow features on instability by using fluids with only one non-
Newtonian property while other non-Newtonian effects have been ignored (Nagatsu
et al., 2010). The relationship between viscous fingering and chemical reaction has
recently been examined (Shukla and De Wit, 2020), with De Wit and Homsy (De
Wit and Homsy, 1999b; De Wit and Homsy, 1999a) being the first to conceptually
study the alterations of the fingering pattern caused by changes in the fluid’s viscosity
in the miscible system. Nagtasu et al. (Nagatsu et al., 2010) conducted studies on
miscible viscous fingering, which involved changes in the viscosity of the displaced
less-viscous liquid as a result of rapid interactions. They employed the dependence
of viscosity of the PAA solution or the SPA solution on pH, as well as Nagatsu et
al. (Nagatsu et al., 2010) studied to investigate the impact of changes in the viscosity of
the displaced more-viscous liquid by instantaneous reactions on the fingering pattern.
The PAA solution or the SPA solution was utilized as the less viscous liquid in this
experiment. It was discovered that the shielding effect is decreased, and the fingers are
broadened when the viscosity is increased. As a result of the response, the fingering
pattern becomes denser. When the viscosity is reduced, however, the shielding effect
is intensified, the fingers thin, and the fingering pattern becomes less dense as a result
of the reaction. This research demonstrates that the effects of changes in viscosity
caused by instantaneous reactions are unaffected by whether the changes occur in the
displaced more viscous fluid or the displaced less viscous liquid.

The effects of reactant concentration in a more viscous liquid and bulk finger-
advancement velocity on the current systems have also been studied (Nagatsu et al.,
2010). In the system with increased viscosity, an increase in the reactant concentra-
tion c has a greater effect on the change in the fingering pattern as cm0,NaOH increases
up to a threshold value, but the effect on the change in the fingering pattern decreases
as cm0,NaOH increases above that threshold value. An increase in the reactant concen-
tration cm0,HCl causes a monotonic increase in the effect on the change in the fingering
pattern, which is required in a system where the viscosity is reduced. They came
to the conclusion that these tendencies are compatible with the correlations between



1.3. Non-Newtonian Saffman-Taylor instability 19

the polymer solution’s shear viscosity and pH. In the current work, the change in the
fingering pattern due to the reaction may be noticed under the experimental condition
of bulk finger-advancement velocity, indicated by the Péclet number, Pe. All of the
above findings are comparable to those of Nagatsu et al. (Nagatsu et al., 2010).

During the peeling of a thin layer of elastomer of a stiff substrate (Ghatak, 2006;
Shull et al., 1998) or in probe-tak studies (Saintyves, Dauchot, and Bouchaud,
2013), where a semispherical probe in contact with the soft solid is dragged up at
a constant speed, an elastic fingering instability has been reported. The crack line
is observed to progress in most cases, and the instability settles on it. Saintyves
et al. (Saintyves, Dauchot, and Bouchaud, 2013) demonstrated experimentally the
existence of a purely elastic, nonviscous fingering instability that appears when air
penetrates into an elastomer confined in a Hele-Shaw cell. As soon as a critical strain
(independent of the elastic modulus) is exceeded, fingers appear and grow sequentially
and propagate within the bulk of the material.

Ecke and Backhaus (Ecke and Backhaus, 2016) studied the mass-transport in
multi-species porous media through molecular diffusion and plume dynamics. They
studied a water and propylene–glycol system enclosed in a Hele-Shaw cell with
variable permeability that represents a laboratory analog of the general properties
of porous media convection. They observed a rapid decrease (and an approach to a
constant steady value) of the critical wavenumber representing the plume pattern and
validated their results for the plume velocities via the microscopic merger and the
renucleation of the advancing interface. Through their study, one can find that the
plume dynamics are closely related to the mass transport rate (Ecke and Backhaus,
2016).

Juel et al. (Franco-Gómez et al., 2016) in their paper, re-examine the channel
geometry previously introduced by de Lózar et al. (Lozar and Hof, 2009) to probe
the sensitivity of viscous fingering to a step change in channel depth as a function of
channel aspect ratio α by investigating the effects of centered, rectangular occlusions
in Hele-Shaw channels. For large occlusions, when air displaces a more viscous fluid
from within the channel, the geometry supports symmetric, asymmetric, and oscil-
latory propagation states. They have demonstrated that the depth-averaged model is
in quantitative agreement with laboratory experimental results for α ≥ 40, provided
that Ca ≤ 0.012. They have shown that in the absence of the occlusion (the classical
Saffman–Taylor viscous fingering problem (Saffman and Taylor, 1958; Saffman,
1959)), the multiplicity of solutions at finite occlusion heights arises through interac-
tions of the single stable and multiple unstable solutions already present. They have
also found that the height of occlusion required to observe bifurcations to asymmetric
and oscillatory modes of propagation within the experimental range of Ca decreases
with increasing aspect ratio. Hence, the system becomes more sensitive as the aspect
ratio increases in the sense that multiple solutions are provoked for smaller relative
depth changes. They estimated that the required depth changes have the same order as
the typical roughnesses of the experimental system (1µm) for aspect ratios α > 155,
which they conjectured that the sensitivity of Saffman-Taylor flow in large aspect
ratio is an inevitable consequence of the roughness-induced stabilization of unstable
solution branches in such Hele-Shaw channels (Franco-Gómez et al., 2016).

In contrast to classical Saffman-Taylor instability, it is revisited by Bihi et al. in
2016 (Bihi et al., 2016) for the inverse case of a viscous fluid displacing air when
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partially wettable hydrophilic particles are present on the walls. Though the inverse
situation is stable and it has been previously reported in the literature by Chan et
al. (Chan and Liang, 1997) and then by Fernandez et al. (Fernandez, Krechetnikov,
and Homsy, 2005), the authors showed that fingering instability still can be seen due
to the presence of the particles at low capillary number (Ca). They investigated that
the destabilization of the interface (or the capillarity-driven instability) occurs due
to interfacial energy minimization, provided all particles intersected by the meniscus
are collected. In order to quantify this phenomenon, they have considered both
axisymmetric and rectangular geometries.

Draga Pihler-Puzović et al. (Pihler-Puzović et al., 2018) have studied the viscous-
fingering instability in a radial Hele-Shaw cell in which the top boundary has been
replaced by a thin elastic sheet. In contrast to the previous study (Pihler-Puzović
et al., 2012) where highly branched patterns were observed in rigid-walled cells, the
presence of wall elasticity caused a delay in the onset of the fingering instability to
much larger values of the injection flow rate, and hence, when the instability develops,
the fingers that form on the expanding air–liquid interface are short and thick. From
this experimental study, one can identify the various physical mechanisms causing the
weakening of viscous fingering due to the presence of wall elasticity (Pihler-Puzović
et al., 2018).

In order to examine the transition from the primary to the secondary acoustic
instability, Lopez et al. (Veiga-López et al., 2019) experimentally studied the propa-
gation of laminar premixed methane-air, propane-air, and DME (dimethyl ether) air
flames inside a Hele-Shaw cell. Their experimental results revealed two distinct prop-
agation regimes depending on the equivalence ratio of the mixture as a consequence
of the coupling between the heat-release rate and the acoustic waves. Moreover, in the
same year, Lee et al. (Hooshanginejad, Druecke, and Lee, 2019), has discussed the
stabilizing mechanism through experiments and performed a linear stability analysis
of the radial (time-dependent) suspension flow in a Hele-shaw cell of a non-colloidal
particle (polyethylene) band on the fluid–fluid interface. Their main result models
the coupling between the unstable miscible interface and the inherently stable im-
miscible interface, which produces a finite wavenumber of the particle band breaking
(Hooshanginejad, Druecke, and Lee, 2019).

Petrolo et al. (Petrolo et al., 2020) have performed a set of experiments in a
Hele-Shaw cell (a two-dimensional porous medium) saturated with a heated, non-
Newtonian fluid, which is under a uniform horizontal pressure gradient. Their exper-
imental results allow us to study flow patterns as functions of the Rayleigh number.

Discrepancies between theory and experiments (more relevant for the critical
Rayleigh number) were accredited to a combination of factors such as the nonlin-
ear phenomena, possible subcritical bifurcations, approximations in the rheological
model, wall slip, aging, and degradation of the fluid properties. For partially miscible
system, Suzuki et al. (Suzuki et al., 2020b; Suzuki et al., 2020a) experimentally
discovered a new topological transition of VF instability that obtains a secondary in-
stability such as multiple moving-droplets formation and is driven by thermodynamic
instability like phase separation due to spinodal decomposition and Korteweg convec-
tion induced by compositional gradient during such phase separation by performing
an experiment in a Hele-Shaw cell. Experimental results of coupling between hydro-
dynamics and chemical thermodynamics are in good agreement with the theoretical
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findings.
Spatiotemporal analyses in viscoelastic flows are more recent and limited. An

early experimental work of Vihinen (Vihinen, Honohan, and Lin, 1997) revealed
absolute instability in viscoelastic liquid jets. Pipe (Pipe, 2005) found a stabilizing
impact of polymer addition in his studies, which is offset by shear thinning and a
transition from convective to absolute instability at greater polymer concentrations
on viscoelastic cylindrical wakes. In contrast, a significant range of parameters where
viscoelasticity was shown to be destabilizing (Bansal, Chauhan, and Sircar, 2022)
was relayed by the linear analysis of dilute mixing layers (Ray and Zaki, 2014) and
dilute jets (Ray and Zaki, 2015; Alhushaybar and Uddin, 2019; Alhushaybar and
Uddin, 2020).

Contrary to the Saffman-Taylor instability for Newtonian fluid, a study on the
impact of surfactant addition in a non-Newtonian fingering instability shows (due to
surface tension anisotropy along the finger surface) that the surfactant concentration
locally decreased the interfacial tension, leading to a reduction in viscosity, and
an increased impact on the capillary number which led to the evolution of wider
fingers (Ahmadikhamsi et al., 2020). However, the relative finger width of both non-
Newtonian experiments with and without the surfactant converged asymptotically to
the same value, caused by the decrease in surfactant concentration in the vicinity of
the tip so that only the shear-thinning feature of polymer prevails at long times.

1.3.3 Analytical results
Bonn et al. and others (Hong and Langer, 1986; Bonn et al., 1995; Kondic,
Palffy-Muhoray, and Shelley, 1996) had studied the Saffman Taylor instability of a
non-Newtonian fluid in a Hele-Shaw cell. In this case, the viscosity is dependent on
shear rate, and hence, a modified Darcy’s law is used whose viscosity depends upon
the square pressure gradient, which yields a natural non-linear boundary value for
the pressure. They (Bonn et al., 1995) have also computed the exact non-Newtonian
pressure for the circular expanding bubble in order to find

∇
2 p =

−24Ṙµ0

b2RD2(1+(r/DR)2)2 (1−β ) ; D =
τṘ
b

(1.5)

If β = 1 (constant viscosity), ∇2 p = 0, this implies the pressure is harmonic.
For shear-thinning fluids β ≪ 1. For a circular bubble, if ∇2 p = 0, then that gives a
relative error in the interface velocity ( in a channel geometry, this error is negligible).

If We (Weissenberg number) number is small, a generalized Darcy’s law can be
obtained, governing the bulk fluid flow,

u = −∇2 p
µ̄

(We2|∇2 p|2) ; ∇.u = 0 (1.6)

where, u is the gap averaged longitudinal velocity, p = pressure of the fluid, We:
Weissenberg number, µ̄: derived effective viscosity depending upon |∇2 p|2.

Equation (1.6) yields a non-linear, elliptic boundary value problem for the pressure
in the driven fluid (Jha and Kadalbajoo, 2021). For a small We number, the non-linear
BVP for the pressure can be simplified to a linear one, and hence, it can be solved
exactly using linear stability analysis (Fast et al., 2001).
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In the theoretical investigation of H. Pascal (Pascal, 1988), the approximate
analytical solutions for the description of conditions required for the stability of
non-Newtonian fluid interfaces in a porous medium have been studied, where the
displacing and displaced fluids have been considered to be of power law behavior.
Through this analysis, relevant results for an adequate understanding of the rheolog-
ical effects of non-Newtonian behavior in oil displacement mechanisms have been
obtained, where knowledge of possible performance in mobility control in enhanced
oil recovery floods with non-Newtonian displacing fluids is required. The author
has also mentioned in his paper that, in the absence of gravity, the oil displacement
mechanism has led to the existence of a critical interface velocity for a linear flow
geometry, for which the interface stability may be maintained, provided that fluids
are of pseudo-plastic type (Pascal, 1988).

S. Mora et al. (Mora and Manna, 2010) have studied theoretically and experi-
mentally the linear stability of an air front pushing on a viscoelastic upper convected
Maxwell fluid inside a Hele-Shaw cell using a unique time-dependent control param-
eter λ̃ (controls the elastic effects). In their theory, they have successfully described
the transition between viscous to elastic instability.

The effect of shear-thinning on the onset condition of viscous fingering has been
analyzed using the linear stability by M.C. Kim et al. (Kim and Choi, 2011). The
shear-dependent viscosity of the fluid is described using the Carreau model. In
the similar domain (Ben, Demekhin, and Chang, 2002; Pritchard, 2009), the new
stability equations have been derived and solved analytically and hence compared the
results numerically with and without the quasi-steady state approximation. Without
the quasi-steady state approximation, it has been shown that initially, the present
system is unconditionally stable, in contrast to the previous results where the system
is initially unstable. With the quasi-steady state approximation, it has been shown that
the flow where displacing fluid is a shear-thinning is always more unstable than the
Newtonian counterpart, but the system is reversed for the case of a Newtonian fluid
displacing a Newtonian one, the shear-thinning effect, in general, makes the system
stable (Kim and Choi, 2011).

J. Avendano et al. (Avendano et al., 2013) has done an enhanced displacement
of a liquid (Newtonian) pushed by different types of liquids, such as Newtonian,
shear-thinning, viscoelastic fluids, that has slightly higher apparent viscosity. Their
theoretical approach has confirmed that, when viscoelastic effects were absent, the
interface between the two fluids becomes sharper at larger velocities, and hence, the
thickness of the lateral film left behind increases with the flow rate and, on the contrary,
in the case of viscoelastic fluid, the shape of the interface is velocity independent and
hence the thickness of the lateral film is approximately constant. Furthermore, when
the ratio of normal to tangential stresses increases, that is, normal stress differences
increase, this thickness decreases (Avendano et al., 2013).

Analogous to the results of J. Avendano et al. (Avendano et al., 2013), Shokri et
al. (Shokri, Kayhani, and Norouzi, 2017) in their paper have considered the viscous
fingering instability of miscible displacement involving a viscoelastic fluid that has
been investigated using both linear stability analysis and numerical approach. Here,
they have assumed that one of the displacing fluids or the displaced one is viscoelastic.
In linear stability analysis, it is shown that the flow is more stabilized when the
elasticity (Weissenberg number) of the displaced or displacing viscoelastic fluid is
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increased.
O. A. Fadoul et al. (Fadoul and Coussot, 2019) have compared the theoretical

and experimental results of the Saffman-Taylor instability for yield stress fluids.
Although the validity of this hypothesis has only been partially tested thus far, it
is predicted from the theoretical analysis of this instability that fingering with a
finite wavelength will occur at vanishing velocity, and that material will be deposited
behind the front advance. Here, after reviewing the fundamental findings in that
area, they have suggested a novel set of traction-based experiments to evaluate this
fundamental theory’s capacity for data prediction. They have conducted tests using
various beginning material yield stresses, distances, and volumes. Additionally, a
master curve is produced when plotting the finger number as a function of the yield
stress times the sample volume divided by the square starting thickness over a wide
range of these parameters, which is consistent with the theoretical prediction for the
finger size. This, in particular, demonstrates that the material yield stress might be
estimated using the traction test (Fadoul and Coussot, 2019).

1.4 Industrial applications of Saffman-Taylor flows
Hele-Shaw flow displacements in a porous material (Kambhammettu, Deshpande,
and Chebolu, 2021) represent an important topic of research from both fundamental
and practical points of view. Such flows are encountered in a wide variety of in-
dustrial applications, such as secondary and tertiary oil alteration, hydrology, fixed
bed regeneration, chemical coating, electrodeposition, flooding, mixing of fluids, etc.
Here, a few industrial applications are described point-wise :

• In recent times, a process called miscible flooding is frequently employed in
the petroleum industry, in which a miscible solvent injected into oil-breaking
rock formations displaces the oil towards the production well (Upchurch and
Meiburg, 2008). Moreover, this flooding procedure can be used in the config-
uration of a vertically oriented gap for advanced oil production techniques via
hydraulically induced fractures that can be extended several hundred feet away
from the wellborn.

• In geological systems, dissolution plays an important role in the weathering
and diagenesis of chemical erosion of salt deposits (Bekri, Thovert, and Adler,
1995; Steefel and Lasaga, 1994), Earth’s rocks (Iyer et al., 2008; Ortoleva
et al., 1987), and melt extraction from the mantle (Aharonov, Spiegelman, and
Kelemen, 1997). It is also of fundamental importance in many engineering
applications, including dam stability (Romanov, Gabrovšek, and Dreybrodt,
2003) andCO2 sequestration (Michael et al., 2010). The important applications
in the oil industry include acidization of petroleum reservoirs (Fredd and
Fogler, 1998) in order to enhance oil and gas production by increasing the
permeability of the rock (Xu et al., 2019; Liang et al., 2007; Sudaryanto and
Yortsos, 2001).

• The viscous fingering phenomenon finds its uses in oil spills and pollution
control in oceans where dispersants are used to coagulate the oil particles.
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Figure 1.5: (a) Oil spill cleanup (b) Oil, gas recovery (c) Dendrite
formation (Open source)

The dispersants are generally hydrophobic and oleophilic in nature, which,
when distributed over the polluted seawater surface, helps in coagulating the
oil particles, thus creating a jelly-like structure that can be easily removed from
the water surface. The viscous fingering instability is used in the research
for new biologically sustainable dispersants like alcanivorax bacteria and fuso
bacteriota, which not only coagulates oil but also helps in the degradation of
the oil particles known as bioremediation (Cogan, Gunn, and Wozniak, 2011).

• Flows involving an arbitrary number of interfaces (Using the idea of single-
interface in viscous fingering flows (Saffman and Taylor, 1958)) arise during
various flooding schemes in chemically enhanced oil recovery, a subject of
intense current interest due to rising energy demands worldwide in a market of
tight supply. To alleviate this situation, there is ongoing, much-needed research
in the energy resources area. One such energy resource area is oil recovery.
A fractional increase in the rate of oil recovery from an oil field using new
oil recovery technology or even smarter use of existing technology will have a
significant impact worldwide (Daripa and Ding, 2012).

• Water flooding, surfactant flooding, and, recently, polymer flooding are being
used in the oil industry in order to recover oil from the earth’s oil wells.
These methods are called enhanced oil recovery (EOR) methods. In surfactant
flooding, surfactants are effective in lowering the interfacial tension between
oil and water to a level that promotes mobilization of trapped oil drops (Daripa
and Ding, 2012; Reed, Healy, and Shah, 1977), whereas polymer flooding
relies on reducing mobility contrast between displacing and displaced fluids
(Daripa and Ding, 2012).

• The study of heat and mass transfer in porous media (Bernardi et al., 2023;
Kambhammettu, Deshpande, and Chebolu, 2021) has a large number of ap-
plications in the areas of environmental geothermal, secondary and tertiary
oil recovery, fixed bed regeneration in chemical processing, hydrology, and
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filtration. Viscous fingering is an extremely important phenomenon in many
applications of enhanced oil recovery, underground liquid waste disposal, and
geothermal energy production (Islam and Saghir, 1999).

• Multiphase flow in porous media provides a wide range of applications: from
the environmental understanding (aquifer, site-pollution) to industrial process
improvements (oil production, waste management) (Pramanik, Kulukuru, and
Mishra, 2012).

• During the production of heavy oil reservoirs, the movement of the fluids,
namely oil and water, significantly affects the production rates. Viscous Finger-
ing is the root cause of high water production rates. Studying and understanding
this phenomenon is essential for comprehending the current challenges faced
by oil and gas companies in producing heavy oil. This phenomenon has a direct
impact on the assets managed by Enhanced Oil Recovery Techniques (EOR)
(Pinilla, Asuaje, and Ratkovich, 2021).

• In a wide variety of situations, the formation of patterns results from a growth
process. Such processes include viscous fingering, dendritic growth of crystals,
electrodeposition, growth of bacterial colonies, propagation of flame fronts,
fractures in brittle solids, dielectric breakdown, diffusion-limited aggregation,
corrosion of solids, etc. These phenomena have been investigated not only for
fundamental reasons but also for the need of its wide applications in industrial
research such as in petroleum industry, oil recovery in porous media, chemical
coating (Veeramani et al., 2023), dendritic growth in electrodeposition (the
growth of dendritic fingers, are analogous to those associated with the instability
of a solidification front (Barbieri, Hong, and Langer, 1987)), formation of
lungs, etc.

This chapter has provided a brief summary of earlier research on Saffman-Taylor
fluid instabilities for Newtonian and non-Newtonian fluids, as well as the technical-
ities and methodology involved in this study of fluid instability and the enormous
industrial and practical implications connected with it. As the discussion continues,
chapter 2 will provide a thorough review of the local instabilities in free shear flows.
Chapter 3 will cover the numerical or mathematical method for comprehending fluid
instabilities. In Chapter 4, the selection mechanism in non-Newtonian Saffman-Taylor
fingers and the numerical approach for the same will be covered. The thesis is finally
concluded in Chapter 5 by outlining the difficulties this study encountered and the
potential for future work.
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Chapter 2

Basics of spatiotemporal instability

2.1 Introductory remark
In several flows of consideration, throughout the streamwise direction, the mean
velocity profile is nonuniform, and in order to differentiate between local and global
spatiotemporal instability features, it is necessary first to assume that mean flow
streamwise changes are non-stiff processes over a typical instability wavelength.
The phrase "local" refers to the instability of the local velocity profile, whereas the
phrase "global" refers to the entire flow field. This chapter aims to characterize the
system’s local impulse response at each streamwise position within the parallel-flow
approximation.

To start with, it will be appropriate to briefly recall the classical hydrodynamic
instability analysis of open flows. Many controlled studies have been done so far to
test their sensitivity to different stimulation frequencies since some spatially evolving
shear flows are known to be particularly sensitive to external noise. As a consequence,
it has been common practice to depict the downstream development of vortical struc-
tures as a collection of spatially increasing instability waves of varying frequencies
(see (Ho and Huerre, 1984) for a review of such studies applied to mixing layers). In
other words, in general, the experimental data have been compared to the results of
local spatial stability calculations (with a specified real frequency and an unknown
complex wave number) done on the recorded time-averaged mean velocity profile
at each streamwise position. In forced experiments, a similar deduction has been
quite effective in elaborating the emergence of vortices. Crighton (1976) (Crighton
and Gaster, 1976) and Gaster (1985) (Gaster, Kit, and Wygnanski, 1985), among
many other similar research, are cited as instances of this kind of study. However,
much of the work on hydrodynamic stability has been devoted to temporal theory
(with a defined real wave number and unknown complex frequency), in which it is
implicitly believed that the flow develops from some given initial state. The question
then becomes, "What is the fundamental reason for adopting a spatial theory point
of view in many open shear flows?" Local "absolute/convective" instability is said
to provide a robust foundation for picking spatial theory in specific open flows such
as homogeneous mixing layers, flat-plate wakes, uniform-density jets, and so on.
More intriguingly, applying similar principles to other open flows, like in bluff-body
wakes, hot jets, etc., leads to the conclusion that rigorous local spatial theory (i.e.,
real frequency) is not applicable. Both wave number and frequency must be regarded
as complex, and a global temporal instability may occur, allowing the entire non-
parallel mean flow to admit self-sustaining global modes with well-defined complex
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frequencies.
The influence of such theories on the research of fluid-mechanical instability

appears to be much more recent. Gaster et al. (Gaster, Kit, and Wygnanski, 1985)
developed an early spatiotemporal description of Tollmien-Schlichting wave packets
in boundary layers, and a general formal methodology was proposed without explic-
itly introducing a definite distinction between the absolute or convective nature of
the instability mechanism. Whereas the Briggs method (Briggs, 1964) has been used
numerous times to investigate the receptivity of compressible shear flows to acoustic
forcing. Thacker (Thacker, 1976) and Merkine (Merkine, 1977) found the transition
from absolute to convective instability in a two-layer model of baroclinic instability
in geophysical fluid dynamics. However, these concerns have only recently come to
the forefront in the explanation of hydrodynamic instabilities in spatially developing
shear flows. The distinction between absolute and convective instability appears to
have been made for the first time in a broad context by Twiss (Twiss, 1952) and
Landau (Landau and Lifshitz, 1959). It should be noted that plasma physicists have
made significant and seminal contributions to the theoretical underpinnings behind
these concepts, as well as applying them to the study of several plasma instabili-
ties. Sturrock (Sturrock, 1958), Briggs (Briggs, 1964), and Lifshitz (Lifshitz and
Pitaevskii, 1981) are recommended for methodical exploration of the main princi-
ples. Bers (Bers, 1983) comprehensive and straightforward overview is especially
recommended for an up-to-date summary of theoretical work in the description of
spatiotemporal plasma instabilities. Absolute and convective instabilities have made
their way into the mainstream of plasma-physics literature, with presentations of the
basic principles appearing in the book by Dougherty and Clemmow (Clemmow and
Dougherty, 1969).

The concepts of local/global and absolute/convective instability give the theoret-
ical framework required to identify distinct open shear flows based on the qualitative
nature of their dynamic behavior. For example, if localized disturbances extend up-
stream and downstream, contaminating the entire parallel flow, the velocity profile is
said to be locally totally unstable. Shear flows that are locally convectively unstable
everywhere (e. g., mixing layers, flat-plate wakes) essentially exhibit extrinsic dynam-
ics, as opposed to shear flows with a sufficiently large pocket of absolute instability
(e. g., bluff-body wakes, hot or low-density jets), which exhibit intrinsic dynamics of
the same type as in closed-flow systems. Fluid particles are still advected downstream,
but there is a possibility of temporally developing global modes. These flows act like
oscillators. The evolution of vortices is based on an increase in initial disturbances
over time rather than the spatial amplification of external perturbations. In addition,
the distribution of global modes is streamwise synchronized. This type of open flow
lends itself particularly well to the nonlinear dynamical system methodology applied
to closed systems. If deterministic chaos exists, it is likely to be clearly described
in these systems: It is envisaged that a well-ordered sequence of bifurcations from
a limit cycle (the global mode) to a low-dimensional odd attractor would definitely
occur. On the contrary, the vulnerability of convectively unstable flows to external
noise makes it significantly more challenging to distinguish between low-dimensional
chaos emerging from the flow dynamics and spatially amplified random noise. Fi-
nally, there is a third class of marginally globally stable flows in which the local
velocity profiles are, strictly speaking, locally convectively unstable throughout the
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field, but absolute instability is incipient at one or more streamwise positions. Global
modes are frequently weakly damped in time in such conditions, and they can be pref-
erentially destabilized by applying external forcing near the global-mode frequency.
For more details on this particular problem, an example is supplied in section 2.7.

This chapter is organized as follows: In sections 2.2, 2.3, and 2.4, the temporal
instability, absolute and convective instability, and concepts of evanescent modes,
have all been examined in that sequence. In sections 2.5 and 2.6, a fundamental
understanding of the branch/pinch point, as well as the Cusp-Map diagram, are built
to distinguish between these instabilities. The Briggs’ Contour Integral Method,
which is used to identify the flow-material features that lead to the aforementioned
stability-instability regimes, is illustrated with an example in section 2.7.

2.2 Temporal instability
The traditional linear stability theory of parallel shear flows deals with the evolution
of infinitesimal perturbations in space and time around a given fundamental flow
U(y;Re). Here, x,y, and t represent the streamwise, cross-stream, and time directions,
respectively, and the only component of the basic flow in the x-direction is given by
U(y;Re). It is now to be noted that as the fundamental state is parallel, it is considered
to be independent of x. Typically, fluctuations are decomposed into elementary
instability waves φ(y;α)exp[i(αx−wt)] with complex wave number α and complex
frequency w. The cross-stream distribution φ(y;α) is subsequently shown to satisfy
an ordinary differential equation of the Orr-Sommerfeld type in most circumstances.

An eigenvalue problem arises, say, Y1 and Y2, when proper boundary conditions
are enforced. In this case, eigenfunctions φ(y;α) exist only if α and w are required
to meet a dispersion relation of the form

D[α,w,MMM] = 0. (2.1)

where MMM is the vector of material and fluid parameters. This relationship can be
determined precisely for simple basic flows. It is generated by numerical integration
of the Orr-Sommerfeld equation with more realistic velocity profiles. Temporal
modes w(α,Re) are circumstances in which the complex frequency w is determined
as a function of the real wave number α . spatial branches α(w;Re), on the other
hand, are derived by solving for complex wave numbers α when w is given real.
Fluctuations in the cross-stream direction y have been purposefully disregarded in
this section; instead, this focuses on the spatiotemporal evolution of instability waves
in the (x, t)-plane. This projection considerably simplifies the explanation of the
core principles while retaining all of the crucial features of the instability. As a
result, a differential or integro-differential operator D[−i(∂/∂x), i(∂/∂ t);MMM] can be
associated in physical space (x, t) to the dispersion relation (2.1) in spectral space
(MMM,w), such that fluctuations u(x, t) satisfy

D
[
−i

∂

∂x
, i

∂

∂ t
;MMM
]

u(x, t) = 0 (2.2)
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In order to solve the relevant receptivity problem for the preceding equation (2.2),
one incorporates Green’s function by defining the impulse response G(x, t) of the
flow with δ denoting the Dirac delta function, as

D
[
−i

∂

∂x
, i

∂

∂ t
;R
]

G(x, t) = δ (x)δ (t) (2.3)

The basic flow is said to be linearly stable if

lim
t→∞

G(x, t) = 0 along all rays x/t = constant (2.4)

and it is linearly unstable if

lim
t→∞

G(x, t) = ∞ along at least one ray x/t = constant. (2.5)

2.3 Absolute and Convective instability
In this section, a further differentiation between the two forms of impulse response
among the linearly unstable flows has been discussed as follows:

The basic flow is known as absolutely unstable if

lim
t→∞

G(x, t) = ∞ along the ray x/t = 0, (2.6)

and it is convectively unstable if

lim
t→∞

G(x, t) = 0 along the ray x/t = 0 (2.7)

as shown in Fig 2.1. The above definitions ((2.7), (2.6)) can possibly be demon-
strated in the Ginzburg Landau linearized model. Hence, the operator D takes the
form

D
[
−i

∂

∂x
, i

∂

∂ t
;MMM
]

u(x, t) =
∂ψ

∂ t
+Vg

∂ψ

∂x
i
2

Vgg
∂ 2ψ

∂x2 + iVgr (R ·Re)ψ = 0 (2.8)

where Vg is a real positive constant group velocity, and Vgg and Vgr are complex
constants with Vgg.i < 0. This model is known to develop in many marginal-stability
assessments of fluid-dynamical systems close to the onset (Newell and Whitehead,
1969; Stewartson and Stuart, 1971) when an adequate cubic nonlinearity is added.

Convectively unstable flows typically produce wave packets that migrate away
from the source and eventually leave the medium undisturbed. In contrast, absolutely
unstable flows are gradually contaminated everywhere by a point-source input. In
order to differentiate between absolute and convective instabilities, it is important to
investigate the long-time characteristic of the wave number α0 noticed along the ray
x/t = 0 at a fixed spatial point using definitions (2.7) and (2.6). By definition, this
complex α0 has a zero group velocity, i.e.,

∂ω

∂α
(α0) = 0, (2.9)
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Figure 2.1: (a) Convective, (b) Absolute instability (Source (Schmid
and Henningson, 2001))

and the corresponding ω0 = ω(α0) is called the absolute frequency. Here, the
absolute growth rate is expressed as ω0,i = Imag(ω(α0)), and it can characterize the
temporal evolution of the wave number α0 observed at a fixed station in the limit t →∞.
On the contrary, the previously defined maximum growth rate ωi,max is observed as the
peak of the wave packet. The sign of ωi,max determines the unstable/stable nature of
the flow, whereas in the same way, the sign of ω0,i determines its absolute/convective
nature. Therefore, it leads us to the following criterion:

ω0,i >0 absolutely unstable flow,

ω0,i <0 convectively unstable flow. (2.10)

2.4 Notion of Evanescent modes
In general, a flow field regulated by the Navier-Stokes equations can support three
forms of modal wave fields: acoustic, vorticity, and entropy waves (refer Pierce (Pierce,
1981)). Except at boundaries or maybe at direct resonances, these modal fields are
uncoupled under the linear approximation. A direct resonance occurs when two (or
more) wave modes coalesce in a physical system that enables more than one wave
mode. The focus of this study will be on the coalescence of modes of the same wave
type, specifically the coalescence of vorticity modes. Direct resonance can be a very
powerful selection process resulting in algebraic development for short time frames
or short distances if no or only very minor instabilities exist, and the correspond-
ing potentially large amplitudes may initiate the nonlinear solution long before the
exponentially developing mode does.

The idea of direct resonance appears to have important implications in the creation
(on a weekly nonlinear theory) of waves by wind (Akylas, 1982) and in the stability of
locally parallel shear flows (Benny and Gustavsson, 1981; Gustavsson and Hultgren,
1980; Gustavsson, 1981; Hultgren and Gustavsson, 1981; Akylas and Benney, 1980;
Akylas and Benney, 1982). In the above-referred papers concerning the stability
of parallel shear flows, the resonant forcing of the vertical vorticity (and hence the
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horizontal velocity components) by the vertical velocity has been investigated with
the intention of elucidating the laminar-turbulent transition process. This corresponds
to the "Squire" mode, which is a direct resonance between an Orr-Sommerfeld and
a vertical vorticity. The research on this so-called Benney-Gustavsson resonance
mechanism is particularly promising and has been intensively pursued. The major
goal of this thesis is to see: (i) if the flow can support a direct resonance between
two Orr-Sommerfeld modes on their own, and if so, (ii) whether such a resonance
mechanism is physically relevant. The nature of a direct resonance is determined
by the type of singularity in the dispersion relation at the time of mode coalescence
and it is frequently determined by the reaction to a point source in time and place.
The "cut-off" phenomena, in a hard-walled duct, distinguishing propagating from
evanescent acoustic waves belongs to this group of events in a linear neutrally stable
system (Aranha, Yue, and Mei, 1982).

The associated singularity is of the double pole type if the two merging modes arise
from waves traveling in the same direction, as in the case of a convectively unstable
flow. According to linear theory, such a disturbance will eventually dissipate. A
double pole is associated with short-term algebraic growth; on the other hand, it
may play a crucial role in driving the system into a nonlinear state. The damping
rate connected with the modal coalescence determines whether this is physically
achievable. When the damping rate is high, such resonances are important in certain
linear optimization problems (for example, the ducts with acoustically absorbent walls
(Cremer, 1953)).

If the two coalescing modes originate from waves propagating in the same direc-
tion as in the case of a convectively unstable flow, the corresponding singularity is
of the double pole type. Such a disturbance will decay ultimately according to linear

Figure 2.2: Effect of direct resonance on amplitude evolution
(Source (Koch, 1986))

theory. However, the short-term algebraic growth associated with such a double pole
may be decisive and carry the system into a nonlinear state. Whether this is physically
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possible is determined by the damping rate associated with the modal coalescence.
If the damping rate is large such resonances are of importance in certain linear op-
timization problems (an example is the (Cremer, 1953) for ducts with acoustically
absorbing walls). If the coalescing modes are practically neutral, the related damping
rates are very low, and algebraic growth may locally outnumber exponential decay.
This is the case handled by Benny in 1981 (Benny and Gustavsson, 1981) as well as
the current exploration of plane Poiseuille and boundary-layer type mean flows (both
represent the convectively unstable flow).

In order to have an understanding of the concept of evanescent mode, an example
of a function, given by f (x) = exp(−αix) has been considered here. It is illustrated in
Fig. 2.2 by plotting the functions xexp(αix) and exp(−αix) for various αi = Im(α).
Now, for large αi, high amplitudes f (x) are rapidly reached by the exponentially
growing mode exp(αix). However, notice that if αi is very small, the growth is very
slow, and therefore, a direct resonance generating xexp(−αix) can produce large
amplitudes much faster. According to linear theory, although these modes ultimately
decay, the locally high amplitudes may initiate the nonlinear state. To determine if
this is possible for a given flow, one needs to ascertain (i) under which conditions
direct resonances exist and (ii) how large the corresponding damping rates are.

2.5 Pinch points and Branch points
A pinch point in the α-plane and a branch point in the w-plane simultaneously occur,
and it can be illustrated as follows:

A pinch point, denoted as α pinch, in the complex α-plane, can be identified as a
special kind of saddle point that fulfills the relation given by the following equations:

D
(

α
pinch,ωcusp

)
= 0;

∂D
∂α

(
α

pinch,ωcusp
)
= 0;

∂ 2D
∂α2

(
α

pinch,ωcusp
)
̸= 0
(2.11)

A Taylor series expansion of the dispersion relation in the neighborhood of the
singularity (α pinch,ωcusp) then leads to
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(2.12)
This expression gives a relation between the neighborhood of ωcusp in the w-plane

and the neighborhood of α pinch in the α-plane. Because of the quadratic nature of the
local map between the α and w-planes, a square root singularity will occur between
the local maps of w and α-planes.

If the contour deformation process produces a pinch point in the α-plane, the
accompanying branch point in the w-plane sits above the imaginary w-axis, indicating
an absolute instability. Absolute instability is defined as the presence of an unstable
wave with zero group velocity. The group velocity, Vg, is obtained at an unstable
pinch or branch point, such that,
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Vg =
∂ω

∂α
=

∂D
∂α

/
∂D
∂ω

= 0. (2.13)

2.6 The Cusp map
Till now, it can be noticed that the asymptotic space-time evolution of a linear instabil-
ity is determined by the placement of pinch points in the complex α-plane, which can
be identified by analytically extending the Laplace inversion contour into the lower
half of the w-plane. Solving the dispersion relation for the spatial wavenumber α as
a function of frequency w is required for this technique. This seems to be extremely
undesirable because computing w as a function of α is usually much simpler. The
purpose of this section is to present a method for finding absolute instabilities that
are based simply on a mapping from the α-plane to the w-plane. This technique was
developed by Kupfer (1987) (Kupfer, Bers, and Ram, 1987), who referred to it as the
"cusp map" in the complex-frequency plane.

So, to begin, let’s look at the mapping from the α-plane to the w-plane. Dispersion
relations, in general, are higher order polynomials (or transcendental) in the wave
number α , and hence the mapping of the F-contour into the w-plane is multivalued.
The image of F in the w-plane is denoted as w(F). In the dispersion relation, the
inverse mapping of w(F) back into the α-plane will result in n branches αk(w(F))
with n as the highest order of α . Nonetheless, from one of the n branches, the
original F-contour can be recovered. Now, by supplying the n Riemann sheets in the
complex w-plane and then by associating the n contours in the multi-sheeted w-plane
with the n branches αk(w(F)) in the α-plane, the mapping of the F-contour into the
w-plane can be made single-valued. It is well-known that the dispersion relation is a
relation between the wavenumber (α) and frequency (ω) of a wave, and hence, the
mapping between the w and α-plane is governed by the dispersion relation D(α,w)
= 0. Moreover, the additional constraints for a pinch point in the complex α-plane,
given by the equations

∂D(α,ω)

∂α
= 0

∂ 2D(α,ω)

∂α2 ̸= 0 (2.14)

A point w0 that satisfies these conditions in the complex w-plane for a correspond-
ing α0, has only n1 image points in the complex α0 plane. In other words, at this
specific point w0, it can be stated that the two sheets in the w-plane connect to each
other. Now careful attention will be given to these two sheets, and for that, a vertical
ray is introduced that connects the contour L in each of the two sheets to the point w0
(refer Fig. 2.3). These rays are denoted as R1 and R2, and they can eventually help to
determine whether the point w0 in the w-plane corresponds to a pinch point α0 in the
α-plane.

If and only if the images of the rays R1 and R2 in the complex α-plane, i.e.,
α(R1) and α(R2) in Fig. 2.3, originate on two different sides of F , the branch point at
w = w0 corresponds to a pinch point in the α-plane. On the other hand, if the images
α(R1) and α(R2) originate on different sides of F but connect at one single point α0,
which is not on F , then a conclusion can be drawn that at least one of these images
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Figure 2.3: Sketch illustrating the cusp map method (Source (Kupfer,
Bers, and Ram, 1987)).

crosses F . But, if more than one crossing occurs, the total number of crossings by
both images must be odd.

This criterion indeed forms the basis of the cusp map method. One can determine
whether the branch point w0 corresponds to a pinch point in the α-plane by simply
counting the number of times that each vertical ray, R1 and R2 intersects the contour
wk(F). The above approach, which is entirely universal, can be used in conjunction
with the following procedure to establish the stability properties of any dispersion
relation. The process entails mapping a piece of the α-plane into a region indicated
beneath w(F). The w-plane is mapped by a series of vertical rays spanning the range
of unstable wave numbers. These parallel rays in the α-plane may have pictures
that meet, indicating a branch point. The angle-doubling property of the local map
identifies the singularity. This is seen in The process that entails mapping a piece
of the α-plane into a region indicated beneath w(F). The w-plane is mapped by a
series of vertical rays spanning the range of unstable wave numbers. These parallel
rays in the α-plane may have pictures that meet, indicating a branch point. The
angle-doubling property of the local map identifies the singularity. This is seen in
Fig. 2.4, where the branch point is nested at the edge of a cusp-like trajectory. One
obtains a mapping consistent with the multi-sheeted structure implied by the contour
w(F) if a branch cut is taken downward from the singularity, and in that case, the
branch point is covered only once by w(F) and thus corresponds to a pinch point. In
many cases, replacing the vertical rays depicted in Fig. 2.4 with a series of horizontal
contours representing deformations of the Fourier integral path is simpler. These
contours will proceed downhill from w(F) in the w-plane and form a cusp as they
approach the singularity; see Fig. 2.4. The angle-doubling (or angle-tripling, etc.)
characteristic of the branch point’s local map is used to locate it once more. A similar
method can be applied to dispersion relations with several unstable branches.
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Figure 2.4: Outline of the numerical procedure for detecting branch
points in the w-plane used in the cusp map method (Source (Kupfer,

Bers, and Ram, 1987)).

2.7 Briggs’ method
In this section, general mathematical criteria based on the singularity structure of the
dispersion relation in the complex w and α-planes have been discussed to categorize
instabilities as convective or absolute. Locating pinch points in the complex α-plane
is an important step in discovering absolute instability. In 1964, Briggs’ (Briggs,
1964) proposed a systematic method for accomplishing this, in which one needs to
repeatedly solve for the spatial branches of the dispersion relation for frequencies w
provided along specified pathways in the complex w-plane. To keep things simple,
one can consider straight lines that are parallel to the imaginary w-axis. Mapping
points along these w pathways into the α-plane traces out spatial branches of the
dispersion relation corresponding with the given temporal branches in the w-plane.
One can gradually visualize the map of the w-plane into the α-plane by altering the
real component of the w lines under the dispersion relation D(α ,w) = 0. It should then
be rather simple to locate saddle points in the α-plane. Another key consideration
is that the saddle point must be composed of spatial branches that start in various
half-spaces. As the w lines are modified, a saddle point clearly forms in the α-plane.
Furthermore, the two spatial branches that comprise the saddle point originate in two
distinct half-spaces. According to Briggs’ criterion, the appropriate branch point in
the w-plane, denoted by a circle along the third ray (see Fig. 2.5), sits below the real
w-axis and so does not constitute an absolute instability.

Now, let’s begin with the solution to the stability problem in Fourier-Laplace
space. The use of Fourier- and Laplace-transform Eqn. (2.3) and formally reverting
back to physical space can provide
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Figure 2.5: Illustration of the numerical procedure for detecting sad-
dle points in the α-plane used in the Briggs’ method (Source (Schmid

and Henningson, 2001)).

G(x, t) =
1

4π2

∫
L

∫
F

exp[i(αx−ωt)]
D(α,ω,MMM)

dαdω (2.15)

where L and F denote the inversion contour in the Laplace-w-plane and the Fourier
α-plane, respectively. Even though the Fourier-Laplace integral (2.15) could be cal-
culated for all x and t, the dispersion relation’s complexity suggests a time-asymptotic
solution of the integral. Furthermore, the notion of convective and absolute insta-
bility as a limit process for a large duration necessitates an asymptotic approach to
calculating the Fourier-Laplace integral (2.15). The modification of the integration
contours in the complex α and w-planes will be required for the time-asymptotic as-
sessment of the integral expression for the Green’s function. The method of steepest
descent can be utilized to evaluate the time-asymptotic behavior by deforming the
integration path through a saddle point in the α-plane. According to the definition, if
this evaluation yields a divergent integral, the flow under consideration is regarded as
utterly unstable. The flow will be convectively unstable if the asymptotic limit results
in a convergent integral (in fact, in a zero integral). However, special care has to be
taken when applying the method of steepest descent. This topic will be revisited later.
By introducing Briggs’ method, the time-asymptotic behavior of the Fourier-Laplace
integral (2.15) can be carefully evaluated. In Briggs’ method (Briggs, 1964), the
wave number integral is chosen first,

G̃(x,ω) =
1

2π

∫
F

exp[iαx]
D(α,ω,MMM)

dα (2.16)

which is followed by the w-inversion

G(x, t) =
1

2π

∫
L

G̃(x,ω)exp[−iωt]dω (2.17)

The analytic continuation method is used to deflect the initial L-contour in an
attempt to decrease it below the real w-axis (see Fig. 2.6). If this is accomplished,
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the exponent in the w-inversion integral (2.17) causes the integrand to vanish as
t → ∞; otherwise, the time-asymptotic discrete response is guided by the highest
discrete singularity in the w-plane. Lowering the w-contour may fail if a singularity
is encountered above the true w-axis. This singularity in the w-plane will have an
associated singularity in the α-plane due to the link via the dispersion relation.

To begin, let’s select the real α-axis as the inversion contour for the spatial
component. This integration path, indicated by w(F), maps through the dispersion
relation to a curve in the w-plane. To satisfy causality, the temporal inversion contour
must sit above this curve: The integration route for t < 0, which involves closure
in the upper half-plane, cannot encircle any singularities; that is, the integrand of
the w integral (2.17) must be analytic in the w-half-space: 0 > maxIm(w(F)). The
temporal contour L can also be mapped back into the α-plane, yielding the α+(L)
and α−(L) branches. The dynamics downstream of the origin are related to the
spatial branch above the real axis, whereas the perturbation behavior upstream of
the source is governed by the branch below the real α-axis. Now, try to lower the
w inversion contour below the real axis via analytic continuation. As the w-contour
starts to distort, the picture in the α-plane deforms as well. The original α-contour
will eventually be squashed between the two branches, necessitating deformation of
the original α-contour as well. This, in turn, will change the w-contour. The crossing
of singularities can be avoided by constantly modifying the inversion contours and
their maps into the related plane. If this happens, the temporal inversion contour
cannot be decreased anymore because a branch point forms in the w-plane.

When the L contour is distorted onto the actual α-axis, convectively unstable
modes are produced by α-roots that end up in a different half of the α-plane from the
one from which they originated. They are distinguished from evanescent modes by the
crossing of the real α-axis. Bers (Bers, 1983) provides a more detailed description
of the theory. The merging of two eigenmodes results in an absolute instability
eigenmode. As a result, its existence can be seen intuitively as a type of resonance
between the modes; a resonance that leads to growth because the merged eigenmode
has wi > 0. The modal interaction associated with merging occurs physically over
the source of the perturbation. This is due to the participating modes coming from
the upstream (x10) and downstream (x1 > 0) sides of the source. As a result, the
instability is localized with respect to the source’s position and gradually wraps an
ever-increasing neighborhood of the disturbance source. A shear flow with a large
pocket of absolute instability may exhibit the dynamics of a closed-flow (compact)
system. These instabilities behave like oscillators. A convectively unstable mode,
on the other hand, has been linked to a sinusoidal wave that grows in amplitude as it
moves away from the source and receives its frequency. A driven mode is essentially
a convectively unstable mode. When the driving source is switched off, it decays
to zero over time; however, a completely unstable mode is more analogous to a
self-sustaining temporal mode and has been labeled as such by Bers (Bers, 1983).

A probable absolute instability is detected when (w0)i > 0. However, it is still
important to confirm that the intersection results from roots originating in opposing
halves of the α-plane. At least one of the α-roots must cross the αr-axis of the
α-plane at least once for such an intersection to be possible. An even number of
crossings returns a α-root to its original half of the α-plane, while an odd number
returns it to the opposite half. For a genuine pinch point, the total number of crossings
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Figure 2.6: Sketch of contour deformation procedure for Briggs’
method. Left: complex w-plane, right: complex α-plane

(Source (Schmid and Henningson, 2001)).
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Figure 2.7: An example in the schematic of an absolute instability
created by the intersection of two α-roots with three crossing of the
αr-axis (αi = 0). The vertical ray from w0 cuts the αi = 0 contour in
the three places in the double-sheeted w-plane (Source (Yeo, Khoo,

and Zhao, 1996)).

must be an odd number. This criteria can be met by drawing a straight ray vertically
upward (wr= constant) from the suspected cusp point and counting the number of
times this ray crosses the image of the αr-axis (αi = 0) in the w-plane (a double or
multisheeted Riemann surface). This phenomenon is happening due to the fact that
every crossing of the αr-axis in the α-plane by the α-roots (as the wi is varied with
the lowering of the L contour) is reflected by a corresponding crossing of the image
of the αr-axis (αi = 0) in the w-plane by the vertical ray (which represents variation
in wi) in one of the Riemann sheets of the co-plane. Figure 2.7 shows a simplified
application of this criterion to a situation in which the crossing pair of α-roots crosses
the αr-axis three times. In this scenario, the upward vertical ray emerging from the
cusp point cuts the image of the αr-axis on the two Riemann sheets three times.
When the Riemann sheets of the branch point wcusp correspond to spatial branches
in the same α-plane for large enough L, there is no pinching of F as L is reduced.
The absolute growth rate is unrelated to the associated branch point in the w-plane.
To detect branch-point singularities belonging to spatial branches originating from
distinct sides of the α-plane, care must be taken. The vertical-ray criterion can also
be used to differentiate between true convective instabilities and evanescent modes.

Now, let’s aim to summarize Briggs’ contour integral method as follows: The
vanishing characteristic of the group velocity, vg, at the saddle point in the α-plane
or the branch point in the ω-plane is a required (but not sufficient) condition for
the presence of absolute instability (vg =

∂ω

∂α
= ( ∂D

∂α
)/( ∂D

∂ω
) = 0 such that ω = D(α)).

However, the group velocity is zero at every saddle point, especially when the two
α branches meet, regardless of whether the branches originate from the same half
of the α-plane (i.e. when evanescent modes are identified). Briggs’ (Briggs, 1964)
devised the idea of analytic continuation to overcome this inadequacy, in which the
Laplace contour L, in equation (2.15), is deformed towards the ωr axis of the complex
ω-plane, with the simultaneous adjustment of the Fourier contour F in the α-plane
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to maintain the separation of the α-branches; those which originate from the top half
(the upstream modes with αi > 0) from those which originate from the bottom half
of the α-plane (or the downstream modes).

The deformation of the F contour is prevented (while preserving causality) when
the paths of the two α-branches originating from the opposite halves of the α-plane
intersect, resulting in the appearance of saddle points, which are the pinch point and
the αpinch. The concurrent branch point appearance in the ω-plane is the cusp point,
ωcusp (i. e., D(αpinch,ωcusp)= ∂D(αpinch,ωcusp)

∂α
=0 but ∂ 2D(αpinch,ωcusp)

∂α2 ̸=0). Kupfer
(Kupfer, Bers, and Ram, 1987) conceptualized the stability features of this branch
point and used a local mapping approach. A local Taylor expansion near a "reasonably
close" neighborhood of the pinch point yields a dispersion relation with a second-
order algebraic form in the ω-plane (and a first-order saddle point in the α-plane),
i.e., (ω −ωcusp) ∼ (α −αpinch)2. Because of the map’s period-doubling property,
the αi-contours "rotate" around the ωcusp, forming a cusp. In the ω-plane, draw a ray
parallel to the ωi-axis from the cusp point and count the number of intersections with
the image of the F-contour (or αi = 0 curve) and consequently, count the number of
times both α-branches cross the αr-axis before forming a pinch point in the α-plane,
as shown in Figure 2.7. If the ray traced from the cusp point intersects the image of the
F-contour in the ω-plane an even number of times (or if either one or both α-branches
cross the αr-axis), the flow dynamics correspond to an evanescent mode. Otherwise,
in the case of odd intersections, the observed cusp point is genuine, leading to either
an absolutely unstable (upper half of the ω-plane) or a convectively unstable (lower
half of the ω-plane) system, provided the system is temporally unstable (Bansal,
Ghosh, and Sircar, 2021).

To demonstrate this crucial method further, a sample dispersion relation (adapted
from (Kupfer, Bers, and Ram, 1987)) is presented, and Briggs’ method is also used
here. The dispersion relation is a mathematical relationship that is only utilized
for illustration purposes in this case. Because of its simplicity, it provides explicit
solutions for pinch point and branch point positions. Now, consider

D(ω,α) = ω −
[

1
3
(α − i)3 + i−αV

]
(2.18)

where a parameter, V, is introduced here.
By solving dw/dα = 0, the pinch points and branch points can be found, which

yields

α1,2 = i±
√

V (2.19)

for the pinch points and

ω1,2 = (1−V )i∓ 2
3

V
√

V (2.20)

for the associated branch points in the w-plane.
To proceed with the Briggs’ method as outlined earlier, first set V = 0.75 and then

map lines of constant w into the complex α-plane by solving the cubic dispersion
relation (2.18).
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Figure 2.8: Map of the complex w-plane into the complex α-plane
under the dispersion relation (2.18)(Source (Schmid and Henningson,

2001)).

A saddle point clearly forms in the complex α-plane, which is denoted by a
symbol and corresponds to the solution of equation (2.19) for V = 0.75 (refer to
Fig. 2.8 ). Its branches emerge from several half-spaces of the α-plane. In the w-
plane, the relevant branch point is also marked. The branch point is clearly above the
actual w-axis, indicating the presence of an absolute instability. To be sure, this is a
very simplified example. Nonetheless, it highlights the utility of Briggs’ method for
detecting absolute instability. More sophisticated dispersion relations can be created
to test the readers’ understanding of analytic function theory.

The approach just described for calculating absolute and convective stability
characteristics is closely linked to the steepest descent method. The steepest descent
approach makes no distinction between branches that originate in the same or different
half-spaces. Additional examination of the global topology of the phase function is
required to focus on the certain category of saddle points in the α-plane. The
integral representation of Green’s function solution, in fact, advises looking for
saddle points of the phase function and evaluating the integral asymptotically using
traditional approaches. It is also necessary to evaluate the global topology of the phase
function; not all points with dw

dα
= 0 are connected with absolute instabilities. Failure

to incorporate the global topology of the phase function may result in inaccurate
calculations and false conclusions concerning the absolute or convective character
of the instability, according to Huerre (Huerre and Monkewitz, 1990). The reader
is referred to Lingwood, 1997 for a more complete approach, including numerical
examples.

2.8 Concluding remark
This chapter discusses the fundamentals of temporal and spatiotemporal stability
characterization of confined and open flows using progressive moving of isocontours
in the complex frequency (ω) and wavenumber (α) planes. Based on the singularity
structure of the dispersion relation in the complex ω and α-planes, the principles
of Briggs’ technique are used to construct general mathematical criteria for defining
instabilities as convective or absolute. Locating pinch points in the complex α-plane
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is a key step in detecting absolute instability, which is known as the "cusp map" in the
complex-frequency plane (Kupfer, Bers, and Ram, 1987). Furthermore, this chapter
attempts to highlight absolute instabilities (perturbations that grow exponentially in
time at the point of excitation), convective instabilities (disturbances that are swept
downstream from the source and decay at any fixed position in space), and evanescent
modes (non-propagating modes or false modes) (Patne and Shankar, 2017). While
convectively unstable flows act as spatial amplifiers of incoming interface perturba-
tions, absolutely unstable flows exhibit intrinsic self-sustained dynamics or global
modes (Huerre and Monkewitz, 1990). As a result, studying the transition from
convective to absolute instability is crucial; however, this study is complicated by
the presence of evanescent modes (stable modes) arising from the direct resonance
of two coalescing modes originating from waves propagating in the same direction
(Koch, 1986).
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Chapter 3

An analytical approach to the WKB
approximation method

3.1 Introductory remark
Injecting a fluid into a more viscous fluid in a thin linear channel (or the Hele-Shaw
cell) triggers a two-dimensional viscous fingering pattern which is characterized by
increasingly long fingers undergoing tip splitting and branching events, also known
as the Saffman-Taylor instability (STI) (Saffman and Taylor, 1958). These complex
structures are considered to be a paradigm for interfacial pattern formation and have
continued to receive prolonged interest in theoretical and experimental studies (Ben-
simon et al., 1986; Couder, 2000) as well as due to its practical applicability in crude
oil recovery (Homsy, 1987), surface coating (Grillet, Lee, and Shaqfeh, 1999) and
electrodeposition (Schröder et al., 2002).

The classical (or Newtonian) STI was outlined by Saffman and Taylor (Saffman
and Taylor, 1958), however, the finger selection mechanism in their experiments
remained an enigma for several decades. Omitting surface tension, they found a
continuous family of solutions with the shape of the interface in the x−y plane, given
by the expression,

x =
w(1−Λ)

2π
ln
[

1
2
(1+ cos

2πy
Λw

)

]
, 0 < Λ < 1.0. (3.1)

Although their analytical expression for the shape of the finger matched well with
their experimental observations, the treatment did not explain the specific selection
of the relative finger width or Λ = 0.5 (Λ is defined as the ratio of the width of the
protruding interface to the cell width, w). The significance of the surface tension on
the shape selection procedure was analytically highlighted much later by Hong (Hong
and Langer, 1986), Shraiman (Shraiman, 1986) and Combescot (Combescot et al.,
1986), who showed that the surface tension represented a singular perturbation leading
to a solvability condition at the finger tip, thereby isolating a particular value from
the continuum of solutions proposed by Saffman (which is Λ = 0.5).

Experiments of viscous fluids pushing a dilute solution of a shear-thinning poly-
meric liquid (xanthate gum) reveal a strong modification of the finger selection pro-
cess, in particular, fingers were found to be narrower than the classical limit (Lindner,
Bonn, and Meunier, 2000). Numerical simulations of shear thinning fluids (Kondic,
Palffy-Muhoray, and Shelley, 1996; Kondic, Palffy-Muhoray, and Shelley, 1980; Fast
et al., 2001) divulge that the viscosity is not uniform throughout the cell; regions
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of high fluid velocity (thus high shear rate) have low viscosity, especially in front
of the fingertip, which leads to an anisotropic system. For weakly shear thinning
case (with the viscosity exponent 0.65 < n < 1 in Ostwald-de Waele fluids (Ostwald,
1925; Waele, 1923)), Lindner (Lindner, Bonn, and Meunier, 2000) showed that sim-
ply replacing the constant viscosity by a shear dependent viscosity, in the control
parameter, allows for the rescaling of the data for the relative finger width onto the
same, universal curve for Newtonian fluids. Whereas for stronger shear-thinning
fluids (dilute solution of polyethylene oxide or PEO, a shear thickening liquid and
n < 0.65), this rescaling fails, and deviations from the classical limit result towards
smaller fingers (Lindner et al., 2002). The experiments of a finger widening phenom-
ena (compared with the Newtonian case) show that the presence of normal stresses
in the thin wetting layer was held accountable for the finger widening (Tabeling and
Libchaber, 1986). For moderate normal stresses, this allows for the rescaling of
the data onto the universal curve for Newtonian fluids and again resolves the finger
selection problem.

Despite the fact that the aforementioned investigations have been partially effective
in describing the finger widening and thinning phenomena in non-Newtonian fluids
empirically, an analytical expression generated via a single, unified theory explaining
both of these aspects has yet to be discovered. This chapter seeks to derive such an
expression and contrast the findings with the in vitro and in silico data that are already
accessible. It also provides a mathematical method for forecasting the finger width
of a straightforward fluid driving a non-Newtonian (power-law) fluid. The Wentzel-
Kramers-Brillouin (WKB) technique approximation has been used to characterize the
departure from Newtonian viscosity as a singular perturbation in a parameter, leading
to a solvability condition at the fingertip, which chooses a unique finger width from the
family of solutions. Here, in the limit of small ν , one can discover that the relationship
between the dimensionless finger width Λ and the dimensionless group of parameters
containing the viscosity and surface tension, ν , has the form: Λ ∼ 1

2 −O(ν−1/2) for
shear thinning case, and Λ ∼ 1

2 +O(ν2/(4−n)) for shear thickening case. Finally, a
comparison made between the theoretical and experimental finger width data using
the linearized model is found to arrive at an excellent agreement near to the power-law
exponent, n = 1.

This chapter is organized as follows: the mathematical model, along with the
assumptions, are delineated in 3.2. 3.3 outlines the main result and it also includes
the re-calculated cusp function to include all nonlinear terms at the level of the WKB
approximation rather than just the leading order term. 3.4 presents the numerical
and experimental validation of the analytical results with in silico and in vitro data
collected from the available literature, and the conclusions follow in 3.5.

3.2 Mathematical model
The starting point of our analysis is the model proposed by Palffy-Muhoray and co-
workers (Kondic, Palffy-Muhoray, and Shelley, 1996), of the slow, two-dimensional
flow of an incompressible, non-Newtonian (driven) fluid inside the Hele-Shaw cell,
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governed by the (shear-rate) modified Darcy’s law,

u =− b2

12µ(γ̇)
∇p, ∇ ·u = 0, (3.2)

where b,u = (ux,uy), p,µ, γ̇ are the cell gap, the gap averaged velocity vector,
pressure, viscosity of the non-Newtonian fluid and the shear-rate, respectively. (x,y,z)
denote the flow direction, the direction parallel to the channel width, and the direction
along the cell gap, respectively. The adjective ‘lateral’ will be applied to variations in
the x− y plane, whereas the adjective ‘transverse’ will be applied to changes across
the gap in the z direction. The other parameters utilized in the model are U , the
velocity of the fingertip, w, the half-width of the channel (such that b/w ≪ 1), T , the
interfacial tension between the driven (outside finger) and driving fluids and θ̃ is the
angle between the tangent to the interface and the flow direction (figure 3.1). The
boundary conditions are,

n ·u =U sin θ̃

p0 − p = T
R

}
on the advancing finger

uy = 0 on the walls: y =±w
ux =UΛ,uy = 0 as x → ∞,−w < y < w,

ux = uy = 0 as x →−∞,wΛ < |y|< w. (3.3)

where p0 is the constant pressure inside the finger (assumed zero), n is the unit normal
to the interface, and R is the lateral radius of curvature. The underlying assumptions
in the model are as follows:

1. In congruence with the in vitro (Lindner, Coussot, and Bonn, 2000; Lindner et
al., 2002) and in silico (Kondic, Palffy-Muhoray, and Shelley, 1980; Fast et al.,
2001) experiments, it is assumed that the viscosity of the driving (Newtonian)
fluid as well as the buoyancy forces are negligible.

2. The driving fluid completely expels the driven fluid. In experimental se-
tups (Tabeling and Libchaber, 1986), this assumption is generally not true since
a thin film of the driven fluid is left adhering to the plates. The presence of
this finite, spatially varying, wetting film, controls the shape of the advancing
interface.

3. The steady, gap-averaged velocity of the fluid, u, is low such that the inertial
terms in the Navier-Stokes equation may be neglected (i. e., the Stokes-Darcy
hypothesis).

4. Palffy-Muhoray and co-workers have argued that the pressure, p, is essentially
harmonic (Kondic, Palffy-Muhoray, and Shelley, 1996), since applying the
divergence free condition to equation (3.2) leads to,

µ∇
2 p−µ

′
∇(u ·u) ·∇p = 0.

Since ∇(u ·u) scales like the convective derivative in the Navier-Stokes equa-
tion, in the limit of zero Reynolds number, this term may be neglected. Thus,
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Figure 3.1: Schematic diagram of a Saffman-Taylor finger in the
laboratory frame, assumed symmetric about the x̃-axis.

from equation (3.2) and the harmonicity of p, an inference can be drawn that,

p =−12µ

b2 φ , (3.4)

where φ is the velocity potential. Later, the stream function, ψ has also been
introduced, which is the harmonic conjugate of φ , such that F = φ + iψ is a
complex analytic function of (x,y).

5. This work is primarily focused on the shear-thinning feature (thereby ne-
glecting the effects of elasticity), and utilize the Ostwald-de Waele (Ostwald,
1925; Waele, 1923) power-law model, representing the viscosity of the non-
Newtonian fluid,

µ(γ̇) = µ0γ̇
n−1, (3.5)

where, µ0,n, are considered constants. When n = 1 (or µ = µ0), the Newtonian
fluid is recovered. If n < 1, the fluid is said to be “pseudoplastic” or “shear
thinning” and if n > 1, the fluid is “dilatant” or “shear thickening”. In reality,
both µ0,n, are temperature dependent, and in particular, µ0 decreases rapidly
with increasing temperature.

6. Finally, in the absence of elastic effects and in the Darcy regime, the flow is
assumed to be symmetric about the centerline.

Based on the assumptions listed above, the equations for the steady two-dimensional
non-Newtonian flow produced by a finger inside a channel with surface tension effects
due to the inclusion of lateral curvature has been derived. Utilizing equations (3.3),
the corresponding boundary conditions on the velocity potential, φ and the pressure,
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p are,

∂φ

∂n
=U sin θ̃ , p0 − p =

T
R

on the finger

φ →UΛx as x → ∞,−w < y < w,
φ → 0 as x →−∞,wΛ < |y|< w. (3.6)

Next, a frame of reference moving with the interface (say, located at ζ0) with origin
at the finger-tip is chosen and the dimensionless variables, w and (1−Λ)U as length
and velocity scales are also introduced, respectively,

x̃ = (x−ζ0)/w, ỹ = y/w, R̃ = R/w,

φ̃ =
φ −Ux

(1−Λ)Uw
, ψ̃ =

ψ −Uy
(1−Λ)Uw

. (3.7)

Symmetry about the centre-line of the channel has been assumed. The center-line
and the interface is the streamline, ψ̃ = 0, while the wall, ỹ = 1 is the streamline,
ψ̃ =−1 (figure 3.1). Thus, the region inside the channel maps onto an infinite strip
in the potential plane −∞ < φ̃ < ∞,−1 < ψ̃ < 0 and our goal is to study the analytic
function − log q̃+ iθ̃ , where ũ− iṽ = q̃eiθ̃ is the (dimensionless) complex velocity
relative to the finger, in terms of the complex potential, F̃ = φ̃ + iψ̃ .

Now, it can be inferred that the interface (characterized by the arclength, s)
evolves with time, t, and in order to describe this evolution more precisely, a complex
conformal map, σ(s, t), is introduced, such that

σ = s+ it = e−(F̃−φ̃0)π , (3.8)

mapping the potential plane onto the upper half of the σ -plane, with the upper wall
(de) mapped into −∞ < s < 0, the interface (ab) into 0 ≤ s ≤ 1, the centerline (bc)
into 1 < s < ∞ (refer figure 3.1 for a diagrammatic description). φ̃0 is a (constant)
reference potential. If S̃ denotes the dimensionless arclength along the interface from
the finger-tip, then the radius of curvature takes a simple form,

1
R̃
=

dθ̃

dS̃
=

∂ θ̃

∂ φ̃

∂ φ̃

∂ S̃
= q̃

∂ θ̃

∂ φ̃
. (3.9)

Using Cauchy’s integral theorem, the speed, q̃, on the interface (ab) is related to
the direction, θ̃ , by the Cauchy’s principle value integral,

log(q̃) =− 1
π

P
∫ 1

0

θ̃ −π

s′− s
ds′, (3.10)

where the constants are fixed by the requirement that q̃ → 1 as φ → −∞. Equa-
tion (3.10) is found solely from kinematic considerations. However, the dynamics is
introduced through equations (3.6, 3.7) and (3.9), which gives,

T b2

12µUw2
q̃

(1−Λ)

∂ θ̃

∂ φ̃
− x̃

1−Λ
= φ̃ , φ̃0 < φ̃ < ∞. (3.11)



48 Chapter 3. An analytical approach to the WKB approximation method

Using s as the independent variable and the relations,

cos θ̃ =
dx̃
dS̃

,
dφ̃

dS̃
= q̃,

dφ̃

ds
=− 1

πs
, (3.12)

now differentiate (3.11) along the interface to obtain the second relation between q̃
and θ̃ (the first relation is equation (3.10)),

T b2π2

12Uw2 q̃s
d
ds

(
q̃s
µ

dθ̃

ds

)
− (1−Λ)q̃ = cos θ̃ , 0 < s < 1, (3.13)

along with the appropriate boundary conditions,

θ̃(0) = π, q̃(0) = 1/(1−Λ),

θ̃(1) = π/2, q̃(1) = 0, (3.14)

where s = 1 denote the finger-tip. Next, notice that the main shear in the Hele-Shaw
cell occurs in the transverse direction, and thus, one may estimate the shear rate,
γ̇ ≈ q̃/b in the power law model (3.5). Further, note that at s = 0, equation (3.10)
reduces to

log(1−Λ) =
1
π

∫ 1

0

θ̃ −π

s′
ds′, (3.15)

Utilizing equation (3.15), and introducing a set of new variables,

θ = θ̃ −π, q = (1−Λ)q̃, (3.16)

leads us to rewrite the equations (3.10, 3.13),

ν0

{
1

b(1−Λ)

}(1−n)

qs
d
ds

(
q(2−n)s

dθ

ds

)
= q− cosθ ,

logq =− s
π

P
∫ 1

0

θ(s′)
s′(s′− s)

ds′, s ∈ [0, 1], (3.17)

alongwith the boundary conditions,

θ(0) = 0, q(0) = 1, θ(1) =−π/2, q(1) = 0, (3.18)

where ν0 =
T b2π2

12µ0Uw2(1−Λ)2 .

3.3 Main results
A crucial feature of the integro-differential equations (3.17) is the fact that ν0 appears
in the equation as a singular perturbation parameter. It multiplies the highest deriva-
tive and, therefore, completely changes the mathematical structure of the problem.
When ν0 = 0, equations (3.17) can be solved explicitly to yield,

q0 = cosθ0 =

[
1− s

1+αs

] 1
2

, (3.19)
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where α = (2Λ− 1)/(Λ− 1)2. McLean (McLean, 1980) showed that the equa-
tion( 3.19) satisfies the family of solutions (3.1) proposed by Saffman. Equation (3.19)
is automatically consistent with the boundary conditions (3.18) for any Λ, and thus
this solution fails to selectively determine a unique value of Λ. Hence, our main
result (obtained by Dipa Ghosh, the author of this thesis) (Bansal, Ghosh, and Sircar,
2023) is the following proposition, providing us with a unique solution for the system
of equations (3.17), (3.18) in the limit ν0 → 0 (but ν0 ̸= 0).

In the limit ν0 → 0, (q,θ ) satisfying equations (3.17) along with the boundary
conditions (3.18) has a unique solution provided Λ satisfies the following relation
(accurate unto the leading order in ν0),

Λ ∼

{
1
2 −O(ν

−1/2
0 ), n < 1

1
2 +O(ν

(2/(4−n))
0 ). n ≥ 1.

(3.20)

Let us now begin the proof of the above statement by first stating the following
trivial (but vital) result, which gives us the necessary condition for the existence of a
unique solution.

Consider Θ ∈C∞(R) and a differential operator L such that,

L Θ = R̄,

where R̄∈ L1(R). Let Θ0 be the null eigenvector of the adjoint of L , or Θ0 ∈N (L †).
Further, define the cusp function, C ∈ L1(R), such that

C =
∫

∞

−∞

dηΘ0R̄(η). (3.21)

If Θ exists uniquely, then C ≡ 0.
The proof of the above result follows from the observation that∫

∞

−∞

dηΘ0L (Θ) =
∫

∞

−∞

dηΘ0R̄(η) =
∫

∞

−∞

dηΘL †(Θ0) = 0,

provided that Θ is sufficiently well behaved such that the above integral is convergent.
Next, let us linearize around the zero-surface tension solution by defining θ1

through,
θ(s) = θ0(s)+ν0θ1, (3.22)

where the perturbation θ1 satisfies the boundary conditions θ1(0) = θ1(1) = 0. Sim-
ilarly, as a consequence of equation (3.17), the perturbation in q takes the form,

lnq1(s) =− s
π

P
∫ 1

0

θ1(s′)
s′(s′− s)

ds′ =− 1
π

P
∫ 1

0

θ1(s′)
(s′− s)

ds′, (3.23)

where the second equality in equation (3.23) holds via a direct application of the
Cauchy residue theorem and the fact that θ1(0) = 0. From equations (3.22) and (3.23),
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it can be inferred that,

q ≈ q0(1+ν0 lnq1)

cosθ0 ≈ q0 −ν0θ1 sinθ0. (3.24)

Next, a singular perturbation expansion is carried out in which, the terms which
are quadratic and higher order in ν0 are neglected, to arrive at the following form of
equation (3.17), substitute the relations (3.24) in equations (3.17), to get,

ν0(q0 +ν0q0 lnq1)s
d
ds

[
{b(1−Λ)}(n−1) (q0 +ν0q0 lnq1)

(2−n)s
d
ds

(θ0 +ν0θ1)

]
= q0(1+ν0 lnq1)− cos(θ0 +ν0θ1).

But cos(θ0 +ν0θ1)≈ q0 −ν0θ1 sinθ0. This implies,

ν0(q0 +ν0q0 lnq1)s
d
ds

[
{b(1−Λ)}(n−1) (q0 +ν0q0 lnq1)

(2−n)s(
dθ0

ds
+ν0

dθ1

ds
)

]
= q0 +ν0q0 lnq1 −q0 +ν0θ1 sinθ0

= ν0(q0 lnq1 +θ1 sinθ0),

or

{b(1−Λ)}(n−1) (ν0q0s+ν
2
0 q0s lnq1)

d
ds

[
(q0 +ν0q0 lnq1)

(2−n)s(
dθ0

ds
+ν0

dθ1

ds
)

]
= ν0(q0 lnq1 +θ1 sinθ0).

Next, using the binomial expansion of (1+ x)−n, it can be found that,

q(2−n)
0 (1+ν0 lnq1)

2(1+ν0 lnq1)
−n = q(2−n)

0 (1+ν
2
0 (lnq1)

2 +2ν0 lnq1)

(1−nν0 lnq1 +
n(n+1)

2!
(ν0 lnq1)

2 + . . .) = q(2−n)
0 (1+2ν0 lnq1)(1−nν0 lnq1).

Now, using the above binomial expansion and neglecting terms involving ν2
0 and

higher powers of ν0 simplifies the above equation and provides the following relation
for θ1,

{b(1−Λ)}(n−1) (q0s)
d
ds

[
(q0)

(2−n)s
dθ0

ds

]
+ν0 {b(1−Λ)}(n−1) (q0s)

d
ds

[
(q0)

(2−n)s
dθ1

ds

]
= q0 lnq1 +θ1 sinθ0.

Dividing the above equation throughout by {b(1−Λ)}(n−1) and rearranging the
terms, the following equation (3.25) is arrived at.
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ν0
d2θ1

ds2 +
1

q(2−n)
0 s

ν0

{
s

d
ds

(q(2−n)
0 )+q(2−n)

0

}
dθ1

ds
−

{
1

(b(1−Λ))(n−1)
1

q(3−n)
0 s2

sinθ0

}
θ1

− 1
(b(1−Λ))(n−1)

1

q(2−n)
0 s

lnq1 =− 1

q(2−n)
0 s

d
ds

(
q(2−n)

0 s
dθ0

ds

)
.

(3.25)

Alternatively, the equation (3.25) can be written in a concise form as follows,

ν0
d2θ1(s)

ds2 +ν0P(s)
dθ1(s)

ds
+Q(s)θ1(s)+H(s)P

∫ 1

0
ds′

θ1(s′)
(s′− s)

= R(s), (3.26)

where

P(s) =
1
s
+

1

q(2−n)
0

d
ds

(
q(2−n)

0

)
=

1
s
−
(2−n

2

) (1+α)

(1− s)(1+αs)

Q(s) =− 1

{b(1−Λ)}(n−1)
1

q(3−n)
0 s2

sinθ0 =
1

{b(1−Λ)}(n−1)
(1+α)

1
2 (1+αs)(

2−n
2 )

(1− s)(
3−n

2 )s
3
2

H(s) =
1
π

1

{b(1−Λ)}(n−1)
1

q(2−n)
0 s2

=
1
π

1

{b(1−Λ)}(n−1)
(1+αs)(

2−n
2 )

s2(1− s)(
2−n

2 )

R(s) =− 1

q(2−n)
0 s

d
ds

(
q(2−n)

0 s
dθ0

ds

)

=
(1+α)

1
2

2s
1
2 (1− s)

1
2 (1+αs)

[
1
2s

−
(1−n

2

) 1
(1− s)

−
(4−n

2

)
α

1+αs

]
, (3.27)

where the second equality in each of the above expressions follows from equa-
tion (3.19). Next, the following change of variable is made,

η =

[
1− s

(1+α)s

] 1
2

. (3.28)

In terms of Cartesian coordinates, η is the slope which varies from −∞ to ∞ as one
traverses the finger arc-length through η = 0 at the finger tip, i. e., s = 1 (equivalently,

η = tan(π/2+θ0) =−cotθ0 =
(

1−s
(1+α)s

) 1
2 ). Now, equation (3.28) is used to rewrite

equation (3.26), that is given as follows,

ν0
d2θ1(η)

dη2 +ν0
[d2η

ds2 +P
dη

ds

] 1(dη

ds

)2
dθ1(η)

dη
+

Q(dη

ds

)2 θ1(η)+
H(dη

ds

)2 I =
R(dη

ds

)2 ,

(3.29)
where I is defined as the integral in equation (3.26). Here, a change of variable
is made in order to eliminate the first derivative. This is done by introducing the
variable Θ(η), and defining θ1(η) = g(η)Θ(η), where g(η) is chosen in such a way
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that the coefficient of the first derivative vanishes in equation (3.29). Thus, ignoring
the non-singular terms of order ν0 and considering only terms consistent with the first
approximation can give us the following form,

ν0
d2Θ

dη2 +ν0

(
2

g′

g
+

d2η

ds2 +Pdη

ds(
dη/ds

)2

)
dΘ

dη
+

Q(dη

ds

)2 Θ(η)+
H

g
(dη

ds

)2 I =
R

g
(dη

ds

)2 . (3.30)

In order to eliminate the first derivative, the function g should satisfy the following
equation,

lng = ln(k)− 1
2

∫ d2η

ds2 +Pdη

ds(
dη/ds

)2 dη . (3.31)

Using equation (3.28) to find the derivatives,

η
′ =− 1

2s3/2(1− s)1/2(1+α)1/2 ,

η
′′ =− 1

2s3/2(1− s)1/2(1+α)1/2

[
1

2(1− s)
− 3

2s

]
, (3.32)

the following form of g(s) is obtained,

g =
s1/4(1− s)(n−1)/4

(1+α)1/4(1+αs)(n−2)/4
, (3.33)

where the scale k in equation (3.31) is chosen as k = 1. ()′ denotes the derivative with
respect to s. The function g can be written in terms of the new variable η as follows,

g =
η(n−1)/2(1+η2)(2−n)/4

(1+β 2η2)1/2 , (3.34)

such that,

Θ =
(1+β 2η2)1/2

η(n−1)/2(1+η2)(2−n)/4
θ1. (3.35)

The parameter β = (1+α)1/2 = Λ

1−Λ
is introduced in equations (3.34), (3.35). The

coefficients of (3.30) should be computed in terms of η . To do that, let us first see
that the integral I is,

I =−2
∫ 0

∞

dη
′η

′(n+1)/2(1+η ′2)(2−n)/4

(η2 −η ′2)

1+β 2η2

(1+β 2η ′2)3/2 Θ(η ′). (3.36)

The integral term H̄ = H

g
(

dη

ds

)2 I can be written as,

H̄ =
4β 4η(n+1)/2(1+η2)

2−n
4

π {b(1−Λ)}(n−1) (1+β 2η2)1/2

∫ 0

∞

(η ′2 +1)(2−n)/4(η ′2)(n−1)/4

(1+β 2η ′2)3/2

(
1

η +η ′ −
1

η −η ′

)
Θ(η ′)dη

′

(3.37)
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Now, by substituting η ′→−η ′ in equation (3.37) and considering Θ(−η ′)=−Θ(η ′),
H̄ can be written as,

H̄ =
4β 4η(n+1)/2(1+η2)

2−n
4

π {b(1−Λ)}(n−1) (1+β 2η2)1/2

[
P
∫

∞

−∞

(η ′2)(n−1)/4(η ′2 +1)(2−n)/4

(1+β 2η ′2)3/2
Θ(η ′)

η −η ′dη
′

]
.

(3.38)
The extension of the range of η to include the negative real axis is allowed since
only symmetric fingers are considered. Hence θ1 and therefore Θ are antisymmetric
functions of their arguments. Similarly, the coefficients of the linear term and the
inhomogeneous term on the right-hand side of equation (3.30) are redefined as Q̄1 =
Q/(dη/ds)2 and R̄ = R/g(dη/ds)2. Hence, equations (3.17) have been transformed
into

ν0
d2Θ(η)

dη2 + Q̄1(η)Θ(η)+
1
π

P
∫

∞

−∞

dη
′ Q̄2(η ,η ′)Θ(η ′)

η −η ′ = R̄(η), (3.39)

where,

Q̄1(η) =
4

{b(1−Λ)}(n−1)

[
(1+η2)

2−n
2

η1−n
β 4

(1+β 2η2)2

]

Q̄2(η ,η ′) =
4β 4η(n+1)/2(1+η2)

2−n
4

{b(1−Λ)}(n−1) (1+β 2η2)1/2

[
η ′(n−1)/2(η ′2 +1)(2−n)/4

(1+β 2η ′2)3/2

]

R̄(η) =
η

3−n
2

(1+β 2η2)1/2(1+η2)
10−n

4

[
β

2(1+η
2)− (1−n)

(1+η2)

η2 − (4−n)(β 2 −1)
]
.

(3.40)

Now, utilize equation (3.21) to find the null eigenvector of the adjoint operator,
L †, in equation (3.39). Multiplying by Θ0 and integrating, the left hand side of
equation (3.25) is,∫

∞

0
dηΘ0(η)L Θ(η) =

∫
∞

0
dηΘ0(η)ν0

d2Θ(η)

dη2 +
∫

∞

0
dηΘ0(η)Q̄1(η)Θ(η)+∫

∞

0
dηΘ0(η)

1
π

{
P
∫ 0

−∞

dη
′ Q̄2(η ,η ′)Θ(η ′)

η −η ′ +P
∫

∞

0
dη

′ Q̄2(η ,η ′)Θ(η ′)

η −η ′

}
(3.41)

Integrating by parts, the first term on the right-hand side of (3.41) can be written as∫
∞

0
dηΘ0(η)ν0

d2Θ(η)

dη2 =
[
Θ0ν0Θ

′−Θ
′
0ν0Θ

]
|∞0 +

∫
∞

0
dηΘ(η)ν0

d2Θ0(η)

dη2 .

(3.42)
First, the term in the square bracket on the right-hand side of equation (3.42) is
analyzed. It was shown that this term is at the side of the finger for which η = ∞

vanishes (Hong and Langer, 1986). The later discussion is centered around the value
of this term at the fingertip for which η = 0. The explicit form of Θ is unknown, but
as the equation (3.35) relates Θ to the angle at the tip of the finger, this problem is
resolved. So, from equation (3.35), it can be found that when η = 0, Θ|tip = θ1|tip.
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Further, the derivative of equation (3.35) with respect to η reveals that at the tip of
the finger, Θ′|tip = θ ′

1|tip. Furthermore, it can be seen that dθ1
dη

|tip = dθ1
ds |tip

ds
dη

|tip, but
ds
dη

|tip = 0, so the first term in the square bracket on the right-hand side of (3.42)
vanishes. For physical solutions, the term θ1|tip is required to vanish (or θ1(0) = 0)
and therefore consequently the second term in the square bracket also vanishes.

Next, by changing η ′ →−η ′ and η →−η , the third term on the right hand side
of equation (3.41) modifies to,∫

∞

0
dηΘ0(η)

1
π

P
∫ 0

−∞

dη
′ Q̄2(η ,η ′)Θ(η ′)

η −η ′ =
∫ 0

∞

−dη
′
Θ(−η

′)
1
π

P
∫ −∞

0
−dη

Q̄2(−η ,−η ′)Θ0(−η)

η ′−η

=
∫ 0

∞

dη
′
Θ(η ′)

1
π

P
∫ −∞

0
dη

Q̄2(η ,η ′)Θ0(η)

η −η ′

=
∫

∞

0
dη

′
Θ(η ′)

1
π

P
∫ 0

−∞

dη
Q̄2(η ,η ′)Θ0(η)

η −η ′

=
∫

∞

0
dηΘ(η)

1
π

P
∫ 0

−∞

dη
′ Q̄2(η

′,η)Θ0(η
′)

η ′−η
.

(3.43)

In the above implication, the symmetries Q̄2(−η ,−η ′) =−Q̄2(η ,η ′) and Θ(−η ′) =
−Θ(η ′) are utilized in order to find a Θ0(η) such that Θ0(−η) =−Θ0(η). Further,
η ′ and η has been changed to η and η ′, respectively, to write the last equality in
equation (3.43). Similarly, changing η ′ → η and η → η ′, the fourth term in the
right-hand side of equation (3.41) is rewritten as∫

∞

0
dηΘ0(η)

1
π

P
∫

∞

0
dη

′ Q̄2(η ,η ′)Θ(η ′)

η −η ′ =
∫

∞

0
dηΘ(η)

1
π

P
∫

∞

0
dη

′ Q̄2(η
′,η)Θ0(η

′)

η ′−η
.

(3.44)
Using relations (3.42, 3.43, 3.44), the equation (3.41) can be rewritten as,∫

∞

0
dηΘ0(η)L Θ(η) =

∫
∞

0
dηΘ(η)ν0

d2Θ0(η)

dη2 +
∫

∞

0
dηΘ(η)Q̄1(η)Θ0(η)+∫

∞

0
dηΘ(η)

1
π

{
P
∫

∞

−∞

dη
′ Q̄2(η

′,η)Θ0(η
′)

η ′−η

}
.

(3.45)

From equation (3.45), the adjoint operator L † can be defined as,

L †
Θ0 ≡ ν0

d2Θ0(η)

dη2 + Q̄1(η)Θ0(η)+
1
π

P
∫

∞

−∞

dη
′ Q̄2(η

′,η)Θ0(η
′)

η ′−η
(3.46)

From (3.21), a conclusion can be drawn that if a solution to the equation L †Θ0 = 0,
is found, with Θ0(−η) =−Θ0(η), then the right-hand side of equation (3.45) as well
as the cusp function vanishes (see equation (3.21)).

Suppose Θ0 has the WKB form e
S√
ν0 , where the real part of S < 0, and S has

points of stationary phase (i.e. points η̄ where S′(η̄) = 0). Then, in the limit of
ν0 → 0, the following integral can be evaluated by expanding the exponent around
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the point of the stationary phase,

P
∫

∞

−∞

dη
′ Q̄2(η

′,η)Θ0(η
′)

η ′−η
≃ e

S(η)√
ν0 P

∫
∞

−∞

dη
′ Q̄2(η

′,η)e
S′′(η)(η ′−η)2

2!
√

ν0

η ′−η
. (3.47)

The only contribution to the integral that is not exponentially small comes from the
pole at η ′ = η , hence,

P
∫

∞

−∞

dη
′ Q̄2(η

′,η)Θ0(η
′)

η ′−η
= πie

S(η)√
ν0 e

S′′(η)(η−η)2

2!
√

ν0 Q̄2(η ,η) = πiQ̄2(η ,η)Θ0(η),

(3.48)
and defining Q̄= Q̄1+ iQ̄2(η ,η), the equation for the null eigenvector of L † becomes

ν
d2Θ0(η)

dη2 + Q̄Θ0(η) = 0, (3.49)

where

Q̄(η) =
4β 4

{b(1−Λ)}(n−1)
η(1−n)

[
(1+ iη)

4−n
2 (1− iη)

2−n
2

(1+β 2η2)2

]
. (3.50)

Now, a solution of the equation (3.49) is searched, which is of the form Θ0 ∼
exp(S/

√
ν0), where S can be expanded in powers of

√
ν0,

S =
∞

∑
n=0

Snν
n
2 . (3.51)

In this section, the first two terms of this expansion are retained and also the
method is extended in nth order to include all terms. Thus, Θ0 can be written as,

Θ0 = e
S0√
ν0
+S1, (3.52)

dΘ0

dη
=

(
S′0√
ν0

+S′1

)
e

S0√
ν0
+S1, (3.53)

and
d2Θ0

dη2 =

(
S′′0√
ν0

+S′′1

)
e

S0√
ν0
+S1 +

(
S′0√
ν0

+S′1

)2

e
S0√
ν0
+S1. (3.54)

Substituting equations (3.52), (3.53) and (3.54) into equation (3.49), equation (3.55)
is obtained as,

ν0

(
S′′0√
ν0

+S′′1 +
S′20
ν0

+2
S′0S′1√

ν0
+S′21

)
+ Q̄ = 0. (3.55)

From equation (3.55), the leading and the first order terms ν0 can be written, as
follows,

S′20 + Q̄ = 0, (3.56a)
S′′0 +2S′0S′1 = 0, (3.56b)
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which gives a set of equations for S0 and S1. From equation (3.56a), S0 has the form,

S0 = i
∫

η

0
dηQ̄1/2, (3.57)

and from equation (3.56b), S1 has the form,

S1 = ln Q̄−1/4, (3.58)

Equations (3.57) and (3.58) implies that,

Θ0 =
eS0/

√
ν0

Q̄1/4 . (3.59)

Using equation (3.50), S0 can be written as,

S0 =
2β 2i

{b(1−Λ)}(n−1)/2

∫
η

0
dη

′

[
(1+ iη ′)(4−n)/4(1− iη ′)(2−n)/4

η ′(1−n)/2(1+β 2η ′2)

]
. (3.60)

Since the complex conjugate of Θ0 is also a solution of equation (3.49). So, the
appropriate antisymmetric combination of the solution is given by

1
2i

[
Θ0 −Θ

∗
0
]
= ImΘ0, (3.61)

implying that the cusp function (3.21) is

C (Λ,ν0) =
∫

∞

−∞

dηImΘ0R̄(η) =
∫

∞

−∞

dηF (η)eS0/
√

ν0, (3.62)

where F can be written from equation (3.40) and (3.50), as follows,

F =
R̄

iQ̄1/4

=
−i{b(1−Λ)}(n−1)/4

√
2βη

3n+1
4 (1+η2)

23−3n
8

[
(n−1)+η

2
(

3+β
2(η2 +n−3)

)](1− iη
1+ iη

) 1
8

.

(3.63)

From equation (3.60), it is seen that η = i is the point of stationary phase while
η = ηb =

i
β

is a logarithmic branch point of the integral in equation (3.62). There
are two qualitatively different situations, as can be seen in fig 3.2.

• Case I: β < 1 (or Λ < 1/2)

In this case, the branch point, ηb, lies out of the contour of integration for
evaluating C (fig 3.2a), which implies that it can be integrated by expanding
S0(η) around the point of stationary phase, η = i. Introducing a variable ω
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Figure 3.2: Contours of integration for the evaluation of the cusp
function, C (3.21):Cusp

.

such that η = i+ω , S0 can be written as,

S0 =
2β 2i

{b(1−Λ)}(n−1)/2

∫ i

0
dη

′

[
(1+ iη ′)(4−n)/4(1− iη ′)(2−n)/4

η ′(1−n)/2(1+β 2η ′2)

]

+
2β 2i

{b(1−Λ)}(n−1)/2

∫ i+ω

i
dη

′

[
(1+ iη ′)(4−n)/4(1− iη ′)(2−n)/4

η ′(1−n)/2(1+β 2η ′2)

]
. (3.64)

In the first integral on the right-hand side of equation (3.64), a change of variable
u =−iη ′ is made, and the resultant integral is,

I1(Λ) =

[
− 2β 2

{b(1−Λ)}(n−1)/2

∫ 1

0

(1−u)
4−n

4 (1+u)
2−n

4

(1−β 2u2)u
1−n

2
du

]
i

n−1
2

≈ −2Λ2

{b(1−Λ)}(n−1)/2 (1−2Λ)
B

(
n+1

2
,
8−n

4

)
2F1

(
n−2

4
,
n+1

2
;
n+10

4
;−1
)

︸ ︷︷ ︸
= A1 (to be used in equation (3.69))

i
n−1

2 ,

(3.65)

where B(·, ·) and 2F1(·, ·, ·, ·) are the Beta function and the Hypergeometric
function, respectively. For the second integral in equation (3.64), approximating
it for small ω can reduce the integral to

I2(Λ) =
2

14−n
4 i

6+n
4

(8−n){b(1−Λ)}
n−1

2

Λ2

(1−2Λ)︸ ︷︷ ︸
= A (to be used in equation (3.68))

ω
8−n

4 . (3.66)

The details of the expressions are found in equation (3.65) and (3.66). Thus,
S0(η) = I1(Λ)+ I2(Λ) , in the neighborhood of the point of stationary phase.
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For consistency, F (η) is expanded in the neighbourhood of η = i (i. e., sub-
stituting η = i+ω in equation (3.63)), leading to,

F (ω) = {b(1−Λ)}(n−1)/4 (4−n)

2
27−3n

8

(1−2Λ)

Λ(1−Λ)
21/8i

14−3n
8︸ ︷︷ ︸

= B (to be used in equation (3.68))

ω
3n−24

8 . (3.67)

Finally, the cusp function is,

C =
∫

∞

−∞

F (η)e
S0√
ν0 dη =

∫
∞

−∞

F (ω)e
S0√
ν0 dω

= Be
I1(Λ)√

ν0

∫
∞

−∞

ω
3n−24

8 e
A√
ν0

ω
8−n

4
dω. (3.68)

Substituting, x = A√
ν0

ω
8−n

4 in equation (3.68), it is found that,

C =
4

8−n
Be

I1(Λ)√
ν0

(√
ν0

A

) 3n−16
16−2n ∫ ∞

−∞

x
5n−32
16−2n exdx

= Be
I1(Λ)√

ν0 2πi
( 4

8−n

)(√
ν0

A

) 3n−16
16−2n 1

Γ(32−5n
16−2n)

=
(4−n)π 2

26−4n
8−n

b
(n−1)(n−4)

16−2n (8−n)
32−5n
16−2n Γ(32−5n

16−2n)

(1−2Λ)
n

16−2n Λ
8−2n
8−n

(1−Λ)
12+3n−n2

16−2n ν

16−3n
32−4n
0︸ ︷︷ ︸

= N

i
34−6n
8−n e

A1i
i−1

2
√

ν0

= Ne
A1(Λ)√

ν0
cos( n−1

2
π

2 )ei
[
( 34−6n

8−n
π

2 )+
(

A1(Λ)√
ν0

sin (n−1)π
4

)]
. (3.69)

Since the cusp function is real-valued, it can be concluded that,

C = Ne
A1(Λ)√

ν0
cos( n−1

2
π

2 ) cos
[(

34−6n
8−n

π

2

)
+

(
A1(Λ)√

ν0
sin

(n−1)π
4

)]
. (3.70)

Equation (3.70) illustrates the singular nature of the surface tension parameter,
ν0: C has no regular series expansion in powers of ν0. From equation (3.70),
it can also be deduced that the cusp function will vanish at each zero of the
cosine term. For the Newtonian fluid, it has been proven that only the solution
coming from the first zero of the cosine is linearly stable (Hong and Langer,
1986). This solution corresponds to the branch having the thinner finger. This
idea is intuitively correct since wider fingers have curvatures at the tip that are
smaller, and they can be subject to the same type of instabilities that made the
fiat interface unstable in the first place. Consequently, from equation (3.69),
the following expression is obtained,(34−6n

8−n
π

2

)
+
(A1(Λ)√

ν0
sin

(n−1)π
4

)
=

π

2
(3.71)
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Substituting A1 from equation (3.65), it is found that

Λ− 1
2
=

[
sin (n−1)π

4

]
1
4B
(

n+1
2 , 8−n

4

)
2F1

(
n−2

4 , n+1
2 ; n+10

4 ;(−1)
)

(
26−5n

8−n
π

2

)
b

n−1
2 (1−Λ)

n−1
2︸ ︷︷ ︸

C0

ν
− 1

2
0 (3.72)

Now, from the above equation (3.72), it can be noticed that for n > 1 (and in
the vicinity of n = 1), the constant C0 > 0 leads to a contradictory conclusion
that Λ > 1

2 (or β > 1). Hence, the power-law exponent n < 1 in this case.

• Case II: β > 1 (or Λ > 1/2)

In this case, the integral in S0 (equation (3.60)) has a pole at ηb(< i), and the
contour of integration for the cusp function must deform around this pole (see
fig 3.2b). Consequently, the evaluation of S0 is divided into 3 integrals,

S0 =

{∫ i−δ

0
+
∫ i+δ

i−δ

+
∫ i+ω

i+δ

}
dη

′ 2β 2i

{b(1−Λ)}(n−1)/2

[
(1+ iη ′)

4−n
4 (1− iη ′)

2−n
4

η ′ 1−n
2 (1+β 2η ′2)

]
︸ ︷︷ ︸

ψ(η)to be used in equation (3.74)

,

(3.73)
where δ (limδ → 0) is large enough in the second integral in equation (3.73)
such that the contour of integration includes the pole. The evaluation of the
first and the third integral in equation (3.73) follows an identical process as in
the evaluation of the first and the second integral in case I (respectively) and
hence omitted for brevity. For the second integral, J2, the Cauchy’s residue
theorem is used in equation (3.73),

J2 = lim
δ→0

[ψ(i+δ )−ψ(i−δ )] = 2π
(2Λ−1)

4−n
4

b
n−1

2 (1−Λ)
i

n+1
2 . (3.74)

Using the expressions for I1(Λ), I2(Λ),F (η) from equations (3.65), (3.66),
and (3.67), the cusp function is evaluated as follows,

C =
∫

∞

−∞

F (η)e
S0√
ν0 dη

= Be
I1√
ν0 e

I2√
ν0

∫
∞

−∞

ω
3n−24

8 e
A√
ν0

ω
8−n

4
dω

= Ne

{
A1√
ν0

cos
(
(n−1)π

4

)
+

2π(2Λ−1)
4−n

4

b
n−1

2 (1−Λ)
√

ν0

cos
(
(n+1)π

4

)}
·

e
i

{
− 34−6n

8−n
π

2 +
A1√
ν0

sin (1−n)π
4 +

2π(2Λ−1)
4−n

4

b
n−1

2 (1−Λ)
√

ν0

sin (n+1)π
4

}
. (3.75)
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In order to find the first zero of the (real-valued) cusp, the condition must be,

6n−34
8−n

π

2
+

A1√
ν0

sin
(1−n)π

4
+

2π(2Λ−1)
4−n

4

b
n−1

2 (1−Λ)
√

ν0
sin

(n+1)π
4

=
π

2
, (3.76)

and utilizing the expression for A1 from equation (3.65), and the fact that
−2Λ2

1−2Λ
> 1 for Λ > 1/2, the following relation is obtained,

Λ− 1
2
=

[ 42−7n
8−n

π

2 −
B( n+1

2 , 8−n
4 ) 2F1( n−2

4 ,n+1
2 ;n+10

4 ;−1)
(b/2)(n−1)/2√ν0

sin (1−n)π
4

b
1−n

2 2
12−n

4 π sin( (n+1)π
4 )

] 4
4−n

(ν0)
2

4−n .

(3.77)
In expression (3.77), n = 1 leads to the familiar Newtonian limit, Λ− 1

2 ∼
O(ν2/3) (Combescot et al., 1986; Hong and Langer, 1986; Shraiman, 1986).
However, in the limit ν0 → 0, it is seen that n < 1 (such that n ≈ 1) leads to a
contradiction, β < 1. Hence, the conclusion is that in this case, n ≥ 1.

Hence, equations (3.72) and (3.77) completes the proof of our proposition.
Now, while evaluating terms for m ≥ 2

Θ0 = e
S0√
ν0

∞

∑
m=0

gmν
m
2

0 (3.78)

(S′20 +Q)g0 +
[
(S′20 +Q)g1 +(2S′0g′0 +S′′0g0)

]
ν

1
2
0

+
∞

∑
m=0

[
g′′m +(S′20 +Q)gm+2 +(2S′0g′m+1 +S′′0gm+1)

]
ν

m/2+1
0 = 0

Equating same power in ν0,the following is obtained,
(a) (S′20 +Q)g0 = 0 ⇒ g0 ̸= 0,

S0 = i
∫

η

0
Q1/2dη (3.79)

(b) (S′20 +Q)g1 +(2S′0g′0 +S′′0g0) = 0

⇒ g′0 +
S′′0
2S′0

g0 = 0

(c) g′′m +(S′20 +Q)gm+2 +(2S′0g′m+1 +S′′0gm+1) = 0
⇒ g′′m +2S′0g′m+1 +S′′0gm+1 = 0

⇒ g′m+1 +
S′′0
2S′0

gm+1 =− 1
2S′0

g′′m

Around the point of stationary phase η = i, let us consider η = i+ω .

Now, Q̄ =
4β 4

{b(1−Λ)}n−1
η1−n

(1+ iη)(4−n)/2(1− iη)(2−n)/2

(1+β 2η2)2
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=
4β 4

{b(1−Λ)}n−1
1

i1−n
i(4−n)/2ω(4−n)/22(2−n)/2

(1−β 2)2

=
2(6−n)/2i(n+2)/2

{b(1−Λ)}n−1

(
Λ2

1−2Λ

)2
ω

4−n
2

⇒ Q̄ = aω
4−n

2 where, a =
2(6−n)/2i(n+2)/2

{b(1−Λ)}n−1

(
Λ2

1−2Λ

)2
(3.80)

Now,
S′′0
2S′0

=
Q′

4Q
≡
(4−n

8

)
ω

−1 (3.81)

Also, 2S′0 = 2iQ1/2 = 2ia1/2
ω

4−n
4

Now, the expression of (b) can be written as, g′0 +
S′′0
2S′0

g0 = 0 ⇒ g′0 +
(4−n

8

)
ω

−1g0 = 0

⇒ g0 = a0ω
n−4

8 where, a0 = constant

And (c) implies g′m+1 +
(4−n

8

)
ω

−1gm+1 =− 1

2ia1/2ω
4−n

4
g′′m

Using g′+Fg = G ⇒ g = gh

∫ G
gh

dω where, gh = e−
∫

dωF

Now, one can get, gm+1 = ω
−AB

∫
dωω

A− 4−n
4 g′′m where, A =

4−n
8

and B =
−1

2ia1/2

Suppose, gm has the form: gm = amω−Am . Then gm will have the same form, and
hence the form can be obtained recursively.

gm = amω
−Am

⇒ g′m =−Amamω
−Am−1

⇒ g′′m = Am(Am +1)amω
−Am−2

So, gm+1 = ω
−AB

∫
ω

A1− 4−n
4 amAm(Am +1)ω−Am−2dω

=
ω−ABamAm(Am +1)

A−Am − 4−n
4 −1

ω
A−Am− 4−n

4 −1

⇒ gm+1 = am+1ω
−Am+1 (3.82)

where, am+1 =
BamAm(Am +1)
A−Am + n−8

4

and Am+1 = Am +
8−n

4
(3.83)
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So, A1 = A0 +
8−n

4

A2 = A1 +
8−n

4
= A0 +2

8−n
4

... ... ...

... ... ...

... ... ...

... ... ...

... ... ...

Am = A0 +m
8−n

4

Thus, the form that is recursively obtained is,

Am+1 = A0 +(m+1)
8−n

4
(3.84)

Comparing the multiplicative coefficients determines am

am =
[
−
(8−n

4

)]m
Bm Γ(m+ 4−n

16−2n)Γ(m+ 12−n
16−2n)

Γ( 4−n
16−2n)Γ(

12−n
16−2n)Γ(m+1)

(3.85)

For consistency, e
S0√
ν0 and R̄ are expanded around the point of stationary phase η̄ .

So, S0 can be approximated from (3.64) and (3.79) as,

S0 ≈ I1(λ )+ I2

S0 ≈ A1(Λ)i
n−1

2 +Mω
8−n

4 (M = A from β < 1 case) (3.86)

where, ω = η − i and therefore it can be written as,

e
S0√
ν0 = e

I1√
ν0 e

I2√
ν0 = e

A1(Λ)i
n−1

2
√

ν0 e
M√
ν0

ω
8−n

4

With the above results (3.78) becomes,

Θ0 = e
A1(Λ)i

n−1
2

√
ν0

∞

∑
m=0

[
amν

m
2

0 ω
− 8−n

4 m− 4−n
8 e

M√
ν0

ω
8−n

4
]

(3.87)

R̄(η) =
η

3−n
2

(1+β 2η2)1/2(1+η2)
10−n

4

[
β

2(1+η
2)− (1−n)

(1+η2)

η2 − (4−n)(β 2 −1)

]
For, η = i+ω,

=
(i+ω)

3−n
2

(1+β 2(i+ω)2)1/2(1+(i+ω)2)
10−n

4

[
β

2(1+(i+ω)2)− (1−n)
(1+(i+ω)2)

(i+ω)2

− (4−n)(β 2 −1)

]
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⇒ R̄(ω) =
(4−n)(1−β 2)

1
2

2
10−n

4 i
n+4

4
ω

− 10−n
4

So, R̄(ω) = b1ω
− 10−n

4 where, b1 =
(4−n)(1−β 2)

1
2

2
10−n

4 i
n+4

4

Now, the cusp function can be written as

C =
∫

∞

−∞

dωImΘ0(ω)R̄(ω) =
1
i
b1e

I1√
ν0

∞

∑
m=0

amν
m
2

0 Im (3.88)

where, Im is defined as

Im =
∫

∞

−∞
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− 8−n

4 m− 24−3n
8 e

M√
ν0
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4
dω
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exx
5n−32
16−2n−mdx
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( 8πi
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The Cusp function then can be written as:

C =

[
8π
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a0b1M

(
16−3n
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)
1

ν

16−3n
32−4n
0

]
e
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Where,
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=
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∞
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1
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Now, M =
( 8
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) 2
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4 i
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4
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)
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)m 2
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6+n

4 m
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2mimam/2

But, a =
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Thus, MmBm

[
− (

8−n
4

)

]m

=

[
1
2

]m

Hence, ∆ can be expressed as,

∆ =
1

Γ( 4−n
16−2n)Γ(

12−n
16−2n)

∞

∑
m=0

[
1
2

]m
Γ(m+ 4−n

16−2n)Γ(m+ 12−n
16−2n)

Γ(m+1)Γ(m+ 32−5n
16−2n)

(3.90)

There is an overall constant which is irrelevant since what is uniquely determined
is the normalized cusp function.

To compare with the original calculation, a0 is to be set to agree with the results
of (3.70) when only the term m = 0 in (3.90) is considered.

Thus C has the form,

C = Ne
A1(Λ)√

ν0
cos( n−1

2
π

2 ) cos

[(34−6n
8−n

)
π

2
+

A1(Λ)√
ν0

sin
((n−1)π

4

)]
∆Γ(

32−5n
16−2n

)

(3.91)

where, N =
(4−n)π 2

26−4n
8−n

b
(n−1)(n−4)

16−2n (8−n)
32−5n
16−2n Γ(32−5n

16−2n)

(1−2Λ)
n

16−2n Λ
8−2n
8−n

(1−Λ)
12+3n−n2

16−2n ν

16−3n
32−4n
0

= N1
(1−2Λ)

n
16−2n Λ

8−2n
8−n

(1−Λ)
12+3n−n2

16−2n ν

16−3n
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0

here, N1 =
(4−n)π 2

26−4n
8−n

b
(n−1)(n−4)

16−2n (8−n)
32−5n
16−2n Γ(32−5n

16−2n)

Hence, the quantity ∆Γ(32−5n
16−2n) gives a multiplicative factor which tells us how

different this result is from the result where only two terms in (3.51) are kept. So,
when setting m = 0, ∆Γ(32−5n

16−2n) = 1, the result of (3.70) is recovered.
The general form of N1 is given as follows,

N1 =
(4−n)π 2

26−4n
8−n

b
(n−1)(n−4)

16−2n (8−n)
32−5n
16−2n Γ(32−5n

16−2n)

At n=1, N1 =
3π 2

22
7

7
27
14 Γ(27

14)
= 2.008

Therefore, the result of D.C. Hong and J.S. Langer (for n = 1) are recovered.

3.4 Experimental and numerical validation
The competition between the viscous and the capillary forces on the advancing front
leads to the emergence of a characteristic length scale that determines the relative
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finger width, ΛTemp and the same can be calculated using the linear stability analysis.
This physical reasoning has been made rigorous by deriving a dispersion relation
relating the growth-rate, ω of the instability to the wavenumber α , assuming a normal
mode expansion of the disturbance, ei(αx−ωt) and by choosing real wavenumbers, α ∈
R, and allowing for complex frequencies, ω ∈ C, or the so-called temporal stability
analysis (Huerre and Monkewitz, 1985). Following the analysis by Chuoke (Chuoke,
Van Meurs, and Poel, 1959), the dispersion relation has been derived in a rectilinear
channel for the power law fluids. From equation (3.2), it is found that the Darcy flow
inside (outside) the finger, denoted by subscript ‘1’ (and ‘2’), is given by

u1 =− b2

12µ1
∇p1,

u2 =− bn+1

12µ2
∇p2, (3.92)

where the assumption is made that the flow inside (outside) the finger is Newtonian
(non-Newtonian) and µ2 is given by the power-law (3.5). For the moving interface,
ζ0, the nonlinear interface conditions are

∂ζ

∂ t
+u j.ey

∂ζ

∂y
= u j.ex, j = 1,2 (3.93)

and

p2 − p1 = T

(
∂ 2ζ

∂y2

)
[

1+
(

∂ζ

∂y

)2
]3/2

︸ ︷︷ ︸
interface curvature

. (3.94)

Let us proceed to the stability analysis of a plane front propagating at constant ve-
locity Uex. The mean pressure field for fluids 1 and 2 is obtained by integrating (3.92)
and choosing the pressure to be zero on the interface located at x = ζ0 = Ut, it can
be found that,

P1 =−
(

12µ1

b2

)
U(x−Ut),

P2 =−
(

12µ0

b(n+1)

)
Un(x−Ut). (3.95)

Next, a linearization of the variables is considered with p=P+ε p′,u=Uex+εu′

and η =Ut + εη ′ (ε ≪ 1). Now, at the interface, notice that,

p2 − p1 ≈ T
(

∂ 2η

∂y2

)
. (3.96)
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From equation (3.92), linearized Darcy’s law for both the fluids is given by,

u′
1 =− b2

12µ1
∇p′1,

u′
2 =

−
[

b(n+1)U (1−n)

12µ0
∇p

′
2

]
[

1+ b(n+1)

6µ0Un ∇P2

] , (3.97)

Also, the linearized interface equation is,

∂η
′

∂ t
= u

′
j.ex (3.98)

Considering the independent fate of each wavenumber α chosen to be real positive
in the y direction (without loss of generality), it is natural to look for a normal
mode expansion p

′
i = p̂i exp(i(αy−ωt)) and η

′
=C exp(i(αy−ωt) suggested by the

invariance of the base flow solution with respect to y. Imposing far-field boundary
conditions in each fluid yields

p̂1 = A1 exp(kx), p̂2 = A2 exp(−kx). (3.99)

Using equations (3.97) and (3.98), the following equations can be obtained at the
interface,

− iωC =− b2

12µ1
αA1 exp(αUt)

− iωC =
b(n+1)U (1−n)

12µ0
αA2 exp(−αUt), (3.100)

Now, by using equations (3.96) and (3.100), it can be found that,

−12U
b2 C

[
µ2U (n−1)

b(n−1)
−µ1

]
+A2 exp(−αUt)−A1 exp(αUt) =−T α

2C (3.101)

Finally, using equations (3.100) and (3.101), the system of equations governing
the solution vector, [A1 A2 C]T can be obtained and it is given by,
− b2

12µ1
k exp(kUt) 0 iω

0 b(n+1)U (1−n)

12µ2
k exp(−kUt) iω

−exp(kUt) exp(−kUt) γk2 − 12U
b2

[
µ2U (n−1)

b(n−1) −µ1

]

A1

A2
C

=

0
0
0


(3.102)
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A non-trivial solution of the system (3.102) involves a zero determinant of the
matrix A, leading to the dispersion relation,

ω = i

[(
b2µ0 −b(n+1)U (1−n)µ1

b2µ0 +b(n+1)U (1−n)µ1

)
Uα −T α

3 b(n+1)

12

(
U (1−n)

µ0 +b(n−1)U (1−n)µ1

)]
(3.103)

In the case of a low-viscosity fluid displacing a high-viscosity fluid such that
µ0 ≫ µ1, here it is considered µ1 = 0. Hence, equation (3.103) simplifies to

ω = i

[
Uα −T α

3 b(n+1)

12

(
U (1−n)

µ0

)]
,

= i U
[
α −Bα

3w2] , (3.104)

under the assumption that the viscosity of the driving fluid is negligible. B(γ̇) =
T b2

12µ(γ̇)Uw2 is a control parameter, discussed later in this section. From equation (3.104),
it can be concluded that the existence of the most unstable temporal mode (obtained
by setting dω

dα
= 0, leading to a value αTemp =

(
w
√

3B
)−1). Based on the physical

explanation by Chuoke (Chuoke, Van Meurs, and Poel, 1959), it is conjectured that
the relative finger width of the advancing interface, ΛTemp, is the wavelength of the
instability found at the most unstable temporal mode, or

ΛTemp =
2π

αTemp
. (3.105)

Table 3.1: Viscosity data for the power-law model (equation (3.5))
for different concentrations of Xanthane and PEO, utilized in equa-
tions (3.72), (3.77) and (3.104) (Sources: (Bonn and Meunier, 1997;

Lindner, Bonn, and Meunier, 2000)).

Xanthane
Conc. (ppm) µ0 (mPa sn) n

50 2.06 0.930
100 5.23 0.818
500 40.62 0.607
1000 160.35 0.463

PEO
Conc. (ppm) µ0 (mPa sn) n

5 7.9 1.018
50 29.2 1.032
500 70.7 1.052

Investigation of STI for polymer solutions allows us to consider the most common
non-Newtonian effects: shear thinning behavior and the effect of normal stresses.
Figure 3.3 (also refer table- 3.1 for the corresponding viscosity data) highlights the in
vitro data for Xanthane gum, which is a shear thinning fluid, versus different polymer
concentrations (fig 3.3a) as well as for different cell geometries (fig 3.3b) (Lindner,
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Figure 3.3: Finger width as a function of 1/B for solutions of (a)
Xanthane for concentrations of 50 ppm (⃝), 100 ppm (2), 500 ppm
(△), 1000 ppm (+), and at fixed cell geometry, w = 2.0cm and b =
0.25mm (Source: (Lindner, Bonn, and Meunier, 2000)), (b) Xanthane
at different cell geometries, w = 2.0cm and b = 0.66mm (⃝), w =
2.0cm and b = 0.25mm (+), w = 4.0cm and b = 0.5mm (△), w =
4.0cm and b = 0.25mm (2), and at fixed concentration of 1000 ppm
(Source: (Lindner et al., 2002)), (c) PEO for concentrations of 5 ppm
(⃝), 50 ppm (2), 500 ppm (△), and at fixed cell geometry, w = 2.0cm
and b = 0.5mm (Source: (Lindner et al., 2002)). (- - -) predictions
from the linear stability analysis (equation (3.105)). (—) predictions

from the theoretical estimate (equations (3.72), (3.77)).
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Coussot, and Bonn, 2000). A reasonably good agreement is found between the
experimental data, the one computed with the linearized model (equations (3.104),
(3.105)) and the theoretical estimate (equation (3.72), (3.77)), for larger values of the
parameter, 1/B. For this class of fluids, the results of the finger width versus the
control parameter are separated into two different regimes. For low polymer con-
centrations (e.g., for the case of 50 ppm and 100 ppm, fig 3.3a), the non-Newtonian
(or shear thinning) effects are weak. These effects can be taken into account solely
by incorporating the power-law viscosity in the dispersion relation (equation (3.104))
or the control parameter, thereby resolving the finger selection problem. For higher
polymer concentrations (e.g., 1000 ppm, cyan curve in fig 3.3a, and all cases in fig
3.3b), the shear-thinning effects become prominent, and there is a discrepancy in
the stacking of the numerical results onto the experimental dataset. This discrep-
ancy (in the matching between the theory and the experiments) was explained by
Rabaud (Rabaud, Couder, and Gerard, 1988a), who concluded that it is the radius
of the fingertip, (equations (3.3), (3.6)) which is the selection (or the perturbation)
parameter and which will (supposedly) resolve the finger selection mechanism for
strong shear-thinning fluids.

Contrary to the observations for the shear thinning fluid, a widening of the finger
for solutions of PEO, compared with the Newtonian case, is found. From fig 3.3c, it
is observed that the finger decreases with increasing values of the (inverse) control
parameter, followed by stabilization on a plateau value with Λ > 0.5. This widening
becomes more pronounced as the polymer concentration increases. The finger se-
lection mechanism for this class of shear thickening fluids is understood as follows:
in a related experiment of the flow of finite bubbles in a capillary, Bonn (Bonn and
Meunier, 1997) found that the observed thickness of the thin wetting film left between
the moving bubble and the walls of the tube, was much larger when polymers were
added in the solvent. The explanation for the increase in the film thickness was due
to the presence of high normal stresses in the film exerting extra pressure on the
bubble, which becomes more elongated. Bonn also suggested that for the viscoelastic
fingers in the Hele-Shaw cell, a similar effect could lead to pressure buildup within
the wetting film between the advancing finger and the glass plates of the cell, thereby
causing a finger widening. Tabeling (Tabeling and Libchaber, 1986) incorporated the
effect of the finite thickness of the wetting film by correcting the surface tension, as
follows,

T ∗ = T

[
π

4
+1.7

(
Λ

b/w

)(
µU
T

)2/3
]
, (3.106)

ensuing in a renormalized control parameter, 1
B∗ =

12µw2

b2

( U
T ∗
)
, which, again, leads to

a rescaling of the linearized model onto the experimental dataset.

3.5 Concluding remark
This chapter provides an analytical treatment of predicting the Saffman-Taylor fingers
for a class of non-Newtonian fluids. The first objective is to provide a systematic
description of the way in which the singular perturbation introduced by the viscous and
the capillary forces leads to a solvability mechanism for pattern selection. It is then
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shown how the experimental observations for shear thinning fluids (Lindner, Coussot,
and Bonn, 2000) and shear thickening fluids (Bonn and Meunier, 1997; Lindner et
al., 2002) can be interpreted in terms suggested by this mechanism. The obtained
results in this chapter extend the classical results for Newtonian fluids of Hong (Hong
and Langer, 1986), Shraiman (Shraiman, 1986) and Combescot (Combescot et al.,
1986), showing that the finger width has the form Λ− 1

2
∼ ν

2/3
0 , in the limit of

small ν0. However, besides the cell geometry, finger velocity, and surface tension,
this analysis highlights on how the power-law exponent of the viscosity, modifies
the selected finger width to explain the finger thinning (finger thickening) for shear
thinning (shear-thickening) fluids.

Although, the analysis presented here has generalized previous findings (Hong and
Langer, 1986), via the introduction of a shear-dependent, power-law form of viscosity,
certain shortcomings of the model must not be overlooked, including the absence
of elastic stresses (especially important for shear thickening fluids), absence of a
characteristic time scale and a characteristic viscosity and the presence of large errors
in viscosity measurements near zero shear rates (Bird, Armstrong, and Hassager,
1987). A future endeavor is the perturbative expansion of the model via the radius of
the fingertip to explain the selection mechanism for strong shear-thinning fluids.
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Chapter 4

Conclusion

4.1 Introductory remark
The investigation of viscous fingering in a Hele-Shaw cell is a well-known issue
that has evolved into an archetype of the development of interfacial patterns, yet it
keeps bringing new surprises that challenge our knowledge of the non-local, nonlinear
pattern dynamics of interfaces.

In the first section of this last chapter, the limitations and difficulties encountered
when formulating the underlying assumptions for building the mathematical model
are discussed, along with the key findings that has been arrived at about the finger
width for a class of non-Newtonian fluids (Bansal, Ghosh, and Sircar, 2023). On the
other hand, future directions in the context of viscous fingering have been discussed
in the second section of this chapter.

4.2 Limitations of the current work

4.2.1 In formulating the mathematical model
In this thesis, an analytical method is used to resolve the Saffman-Taylor finger
selection mechanism for a class of non-Newtonian fluids. The spatiotemporal analysis
of the viscoelastic flows is more recent and sparse. In order to derive the equations
for the steady two-dimensional non-Newtonian flow produced by a finger inside a
channel with surface tension effects resulting from lateral curvature, the literature on
the temporal and spatiotemporal stability analysis of viscous and viscoelastic Hele-
Shaw flows has been reviewed. This review allowed us to highlight specific and
important hypotheses. The procedure of developing the hypothesis and validating
the findings with previous experiments and numerical simulations is limited but
challenging enough to be worth mentioning in this chapter. The following limitations
are used as follows:
• The driving (Newtonian) fluid’s viscosity and buoyancy forces are assumed to be
negligible in accordance with the in vitro (Rabaud, Couder, and Gerard, 1988b;
McLean, 1980) and in silico (Lindner, Bonn, and Meunier, 2000; Ostwald, 1925)
experiments. In our analysis, a low-viscosity (µ1) fluid pushes a high-viscosity (µ0)
fluid such that µ1 ≪ µ0, the dispersion relation takes the form of equation (3.104)
(Bansal, Ghosh, and Sircar, 2023).
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• The assumption that the driving fluid expels the driven fluid completely is typically
false in experimental setups (Sircar and Wang, 2010) because a thin film of the driven
fluid is left adhering to the plates. In reality, the shape of the advancing interface is
controlled by the presence of this finite, spatially varying, wetting film.
• In this study, the inertial term in the Navier-Stokes equation is neglected, and to do
that, a low, steady, gap-averaged velocity of the fluid is considered.
• The main mathematical challenge posed by the ’viscoelastic fingering’ instability is
that pressure may no longer be a Laplacian field, complicating numerical prediction
of finger width (Lindner et al., 2002). Lindner et al. (Lindner et al., 2002) have argued
that the pressure, p, is essentially harmonic, as divergence-free condition applied to
the modified Darcy’s law can lead to,

µ∇
2 p−µ

′
∇(u ·u) ·∇p = 0.

• Although this work is largely focused on the shear thinning feature, the impacts
of elastic stresses have been ignored as a result. This is a high-intensity problem in
terms of computation, but in the Stokes-Darcy regime and in the absence of elastic
effects, the flow was believed to be symmetric about the centerline. Costs gradually
decrease as a consequence.
• There are several numerical difficulties as well since the problem is inherently
nonlinear and nonlocal. Even for simpler models, such as the geometrical model
where non-locality is completely neglected, disagreement existed between the theory
and numerics on the prefactors of the cusp function. In light of this, it becomes
desirable to carefully reexamine some of the mathematical approximations used in
the original solvability theory proposals and perhaps improve them systematically in
the context of the Hele-Shaw flow, where solving the entire nonlocal model is required.
The prefactor of the cusp function is re-computed (in equations (3.78),(3.87),(3.90))
to include all nonlinear terms at the level of the WKB approximation, rather than just
the leading term (Bansal, Ghosh, and Sircar, 2023). A 5% numerical difference is
found between this extended method and the original theory for the Hele-Shaw flow
problem.

4.2.2 In determining a unique value of Λ

The fact that ν0 appears in the equation as a single perturbation parameter is a
critical aspect of the integro-differential equations (3.17) in general (Ramesh et al.,
2020; Gupta, Kadalbajoo, and Dubey, 2019). The mathematical foundation of the
issue is entirely altered because ν0 multiplies the highest derivative. Equation (3.17)
can be explicitly solved to provide the equation (3.19) when ν0 = 0. According to
McLean (McLean, 1980), the equation (3.19) satisfies the family of solutions (3.1) put
forth by Saffman. This solution fails to selectively determine a unique value of Λ since
the equation (3.19) is automatically consistent with the boundary conditions (3.18)
for any Λ. In general, it says that even for accurate solutions that operate smoothly
without any finite-time singularities, the limit of vanishing surface tension generally
does not converge to the precise zero-surface tension solutions after a time of order
unity. This indicates that the solutions with and without surface tension do not
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approach each other in the limit of vanishing surface tension after a time that is
largely independent of surface tension. Mathematically, it was quite difficult to solve
this astonishing finding. However, in the range of ν0 → 0, I was able to offer a unique
solution for Λ (Bansal, Ghosh, and Sircar, 2023).

4.3 Future problems
This section provides a quick overview of some recent advances and potential future
research on the dynamics of fingering patterns. Now, this discussion goes into further
depth when talking about the impact of changing the viscosity contrast parameter
(Casademunt, 2004). Here, it demonstrates that the dynamics of fingered structures
are quite sensitive to this parameter and that the competition between the typical
Saffman-Taylor single-finger stationary solution and other attractors characterized by
closed bubbles dominates the long-time asymptotics. Moreover, in this section, the
future prospects in the field with regard to the existence of topological singularities in
the form of interface pinch-off, wetting effects, and applications to other issues like
interface roughening in the fluid invasion of porous media in this context while also
taking into account recent results on rotating Hele-Shaw flows (McCloud and Maher,
1995), has been discussed.

4.3.1 The role of viscosity contrast
The broad picture of finger competition where fingers try to distinguish the Laplacian
pressure field from each other, ending up with a single finger surviving and approach-
ing the Saffman-Taylor solution. Including the singular effects of surface tension,
is restricted to the one-sided Saffman–Taylor problem, that is, to viscosity contrast
c = 1, where c = µ2−µ1

µ2+µ1
is the viscosity contrast or Atwood ratio. The dynamics

under consideration are basically controlled by these important dimensionless pa-
rameters: viscosity contrast (c) and surface tension (ν). It has already been observed
by Tryggvason and Aref (Tryggvason and Aref, 1983) and later on by Maher (Maher,
1985) that the viscosity contrast has a strong influence on the dynamics of Hele-Shaw
flows and consequently in the morphology of the fingering patterns formed. In 1985,
Tryggvason and Aref (Tryggvason and Aref, 1985) also studied the simple two-finger
configurations to confirm the dramatic differences between high c and low c dynamics
by direct numerical simulations. In conclusion, Curtis (Curtis and Maher, 1989) and
Vinals (Vinals and Jasnow, 1992) showed that for low c the finger competition process
was strongly inhibited, and the coarsening process observed for high c that leads to
the formation of a single finger does not seem to take place.

In order to clarify the issue on more rigorous grounds, J. Casademunt and D. Jas-
now (Casademunt and Jasnow, 1991; Casademunt and Jasnow, 1994) have developed
a topological approach to study finger competition that allowed new insights on the
dynamics of low c. They conjectured that the size of the basin of attraction of the
Saffman–Taylor depended on the value of c. That is, even though a Saffman-Taylor
finger solution exists and is stable for any value of c, it might not be the universal
attractor of the dynamics for any viscosity contrast, c. It begs the question of what
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will happen to the system in the long run if it is not drawn to a single-finger arrange-
ment. Thus, it seemed crucial to take another look at those unanswered questions and
attempt to provide fresh insight.

Another essential justification for investigating this matter with precise numerics
is its applicability to the fundamental query regarding the occurrence of topological
singularities (Eggers, 1997). In both experiments and simulations, for low c, an
enhanced tendency to interface pinch-off can be observed. While the author did
not specifically address in his work the nontrivial question of whether the dynamics
leads spontaneously to finite-time pinch-off, he pushed the idea that the tendency to
pinch-off can be related to the fact that attractors with different topologies coexist and
compete. In comparison to the high viscosity case, the problem of Hele-Shaw flows
with arbitrary viscosity contrast has received some attention also from a mathematical
point of view. To draw the community’s attention to this fundamental issue, Howison
(Howison, 2000) has presented a formal method for locating explicit solutions to the
two-phase flow in a Hele-Shaw cell.

4.3.1.1 Basin of attraction of Saffman-Taylor finger

Figure 4.1: Two types of finger dynamics observed for c = 0 (Upper
plot) and c ̸= 0 (Lower plot) (Casademunt, 2004)

J. Casademunt and E. Paune (Pauné, Siegel, and Casademunt, 2002) aimed to
add this subsection in order to present and characterize in a quantitative way the
dependence of the basin of attraction of the ST finger on viscosity contrast c (See
figure-4.1). It is clear from their literature (Pauné, Siegel, and Casademunt, 2002)
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that the two-finger configurations will be adequate to study the finger competition.
Although the authors did not address the small surface tension limit for general
viscosity contrast, they recognized this as an interesting and completely open problem.
They have shown that the basin of attraction of the Saffman–Taylor’s finger is only
the full phase space for the strict limit of high viscosity contrast (c = 1), while it
decreases gradually with c to a small but not vanishing region for c = 0. The behavior
for smaller c, for which no finger competition is evident, must be treated as more
generic. The maximal sensitivity to c is precisely at c = 1.

4.3.1.2 The competing attractors of Taylor-Saffman bubbles

For arbitrary viscosity contrast, finger competition is generically absent or weak,
and the ST finger may not be reached. Instead, a more complex structure, such as
a bubble-shaped tip connected to the rest of the interface by a long, narrow neck,
that can be extremely thin next to the bubble region may arise, and attractors absent
for high viscosity contrast may also appear (see figure-4.2). This bubble formation
process has been observed (Casademunt, 2004) for a wide range of values of the
viscosity contrast, c, except for values very close to 1. Formation of bubbles for low
viscosity contrast has been previously reported by Tryggvason and Aref (Tryggvason
and Aref, 1983) in more complex interfacial configurations. The (partial) attractors
of the dynamics that compete with the ST finger have been identified as closed bubble
solutions. The fact that these have a different topology than the initial condition
provides an explanation of the observed tendency to interface pinch-off. A thorough
study of the dynamics that lead to finite-time pinch-off is indeed one of the future
directions to be explored. The fundamental idea is that regardless of whether or not
there is a finite-time pinch-off, it seems clear that the isolated bubble solutions do
behave in practice as attractors of the dynamics, at least partially.

J. Casademunt and D. Jasnow (Casademunt and Jasnow, 1991; Casademunt and
Jasnow, 1994) in their computations showed that, for a given initial condition, as
the viscosity contrast is decreased, the area of the bubble gets smaller. They have
given a possible explanation for this behavior with more details in (Pauné, Siegel, and
Casademunt, 2002). While many interesting questions remain open, most remarkably
are those concerning finite-time pinch-off, the conclusions of this analysis are clear
from (Casademunt and Jasnow, 1991; Pauné, Siegel, and Casademunt, 2002). On
the one hand, the dynamics of low viscosity contrast appear to be more general
than those of high viscosity contrast (which are more frequently discussed in the
literature), in that the typical scenario of a finger competition only occurs for values
of c that are extremely close to one. Thus, in the vicinity of c = 1, there is a very
large sensitivity of the dynamics to c. On the other hand, they have strengthened
the hypothesis that Saffman-Taylor’s basin of attraction is continuously decreasing
with c. Furthermore, they have identified the isolated Taylor–Saffman bubbles as the
missing attractors that compete with the Saffman–Taylor finger. The general tendency
to pinch-off observed in experiments and simulation finds a natural explanation by
having a different topology from that of the interface in the initial configuration
(Casademunt, 2004).

Till now, the effect of viscosity contrast has only been studied for dimensionless
surface tension of order one. It remains an open and challenging question to explore
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Figure 4.2: Bubble shaped region for a given surface tension and
viscosity contrast (Casademunt, 2004)
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how the perturbative picture of small surface tension is modified if viscosity contrast
is different from c = 1. While classical (static) solvability theory is not fundamentally
modified by varying c, the situation for the time-dependent behavior is expected to
be much more involved, as suggested by the lack of explicit time-dependent solutions
for B = 0 and c ̸= 1. As far as the (time-dependent) single-ST finger of relative
width Λ = 1/2 (Jacquard and Séguier, 1962) is concerned, it is the only exact time-
dependent solution for arbitrary c (B = 0). Remarkably, other filling fractions Λ have
time-dependent single-finger solutions only for (Pauné, Siegel, and Casademunt,
2002; Alvarez-Lacalle, Casademunt, and Ortín, 2001) c = 1. This finding reveals a
fascinating relationship between the width selection issue and the dynamical function
of viscosity contrast.

4.3.1.3 Rotating Hele-Shaw flows

Figure 4.3: Typical experimental pattern of low viscosity contrast
fingering under rotation (Casademunt, 2004)

The case of rotating Hele-Shaw flows has been studied only quite recently, both
theoretically and experimentally, and has revealed a wealth of new phenomena and
new interesting questions. Apart from the interplay between dynamics and interface
morphology, the most salient feature in terms of future research has been the enhanced
occurrence of topological singularities and their relation to viscosity contrast. While
pinch-off singularities have been studied in Hele-Shaw problems in the past, it is,
in particular, a usual setup to specifically design to produce pinch-off. In the case
of rotating Hele-Shaw flows (see figure-4.3), it has been shown that the dynamics
lead naturally to situations approaching pinch-off. However, a detailed study of the
asymptotic approach to pinch-off within a lubrication approximation is still lacking.
This point is currently being explored both analytically and numerically (Folch et al.,
2004; Folch et al., 2009).
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Figure 4.4: Typical experimental pattern for c = 1, with air as the
outer fluid, if the cell is initially dry (Casademunt, 2004)

The study of rotating flows has also highlighted the need for a more thorough
investigation of the effective boundary condition at the interface during the displace-
ment of the wetting fluid by the non-wetting one (see figure-4.4), a circumstance that
is typical for centrifugally driven flows but unusual in more conventional experiments.
Having the cell prewetted makes a significant difference in the first scenario. A typical
but frequently unsolved issue in fluid mechanics is the motion of a contact line, which
is related to the description of the wetting fluid moving forward in a dry cell. An
extremely intriguing early investigation demonstrates that the influence is not only
perceptible computationally but also qualitatively in the overall shape of the gener-
ated patterns, even with a rather crude description of the contact line motion. The
adoption of a microscopic length scale is necessary for the treatment of the contact
line. (related to the thickness of the precursor wetting film). Thus, it is noteworthy
that such a microscopic length scale has a significant impact on the macroscopic
pattern morphology in a manner that is similar to the impact of the capillary length
on pattern selection in the microscopic solvability scenario. This open question is
also of great interest and also sets forth a promising future perspective.

Finally, one of the most interesting lines of future research in the context of
Hele-Shaw flows consists of adding controlled modifications of the classical setup to
define richer model systems and use them to pursue basic and general principles of
more complicated systems, in the spirit of McCloud and Maher, 1995 (McCloud and
Maher, 1995). The case of the random Hele-Shaw cell as a model of a porous medium
is a paradigmatic and fruitful recent example (Pauné, Siegel, and Casademunt, 2002;
Pauné and Casademunt, 2003). This specific instance has led to the preliminary
derivation of an interface equation, which has allowed generalizations to be made
regarding the issue of interface roughening in the fluid invasion of porous media.
It has also provided a suitable theoretical framework within which renormalization
group analysis and numerical simulation can operate with assurance.
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The usefulness of the Hele-Shaw-type model-system analysis has thus been re-
markable in a field where controversy and confusion have been too common. The
explicit knowledge of all interface equation parameters enables one to design new
experiments with the best possible parameter selection. This is more important
than simply being able to reinterpret old experimental and simulational results after
deriving the exact interface equation with all noise contributions. Experiments on
Hele-Shaw cells with a random gap as a model system for porous media have already
been carried out by J. Soriano and co-workers (see, for instance, (Soriano, Ortín, and
Hernandez-Machado, 2002)). The possibility of a clear connection between theory
and experiment and the good control that is possible in both aspects makes this line
also a promising and exciting direction.

4.4 Concluding remark
The section summary concludes with the observation that viscous fingering and its
modifications continue to be a challenging and consistently surprising model system
despite years of research and study. It is useful for understanding fundamental physics,
but it also provides a strong foundation for analyzing various issues with interfacial
pattern generation through controlled experimentation and analytical insight.

Although the work on the analysis (Bansal, Ghosh, and Sircar, 2023) that is pre-
sented here has been built on earlier findings (Hong and Langer, 1986) by introducing
a shear-dependent, power-law form of viscosity, there are some flaws in the model
that shouldn’t be ignored, including the lack of elastic stresses (which are crucial
for fluids that thicken under shear), the absence of a characteristic time scale and
viscosity, and the presence of significant measurement errors in the vicinity of zero
shear rates (Bird, Armstrong, and Hassager, 1987). A future aim will be to explain the
selection mechanism for strong shear-thinning fluids by perturbatively expanding the
model via the radius of the fingertip. Also, notice that, with a large aspect ratio and
in the inertial regime, the boundary effects are especially important for cell geometry.
Hence, a deeper consideration of the impact of boundaries like: elastic boundaries
and occlusions, the moving boundaries should be worthwhile in the future (Bansal,
Chauhan, and Sircar, 2022).
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