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ABSTRACT

KEYWORDS: Conversational AI ; Affects in Conversations ; Dialogue Agents; Natural

Language Processing

In the past decade, Natural Language Processing has undergone a transformative journey, marked by
profound changes. The realm of conversational discourse, in particular, has witnessed remarkable
advancements, with contemporary systems exhibiting significant potential. The ubiquitous integration of
conversational agents into our daily lives often obscures the intricate computations underpinning their
functionality. Yet, instances of non-empathetic responses or a failure to grasp nuances like humour or
sarcasm serve as stark reminders that our interactions extend to the realm of machines. Addressing this
limitation forms the core of our research, which revolves around refining a specific facet of conversational
understanding – the nuanced focus on affects. Affects in conversation encapsulate a myriad of discourse
attributes, including emotions, sarcasm, humour, and speaker profiles, all playing a pivotal role in
comprehending the comprehensive meaning inherent in a spoken statement. Our dedicated efforts unfold
in the unraveling of these intricate characteristics, aimed at enhancing the interpretative capabilities of
dialogue agents. Moreover, we posit that the mere identification of these affective cues inadequately
captures the profound essence embedded within the uttered statement. Consequently, our inquiry extends
beyond identification to elucidate these affective dimensions, fostering a more profound understanding of
conversational discourse. Throughout this thesis, we address multiple novel problem statements, curate
innovative datasets, and develop cutting-edge methods tailored to solve each task. Specifically, our
focus encompasses the tasks of emotion recognition in conversation, emotion flip reasoning, humour
identification, sarcasm detection, sarcasm explanation, and speaker profiling. This thesis, therefore, seeks
to establish a foundation for dedicated research in the domain of affects in conversation.
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1. Introduction

1.1 Thesis Overview and Statement

Conversation1 serves as the cornerstone for the exchange of ideas among individuals (5). Consequently,
it has become a significant topic of scrutiny within the realms of linguistics (6), psychology (7), and
computation (8; 9). While the notion of interacting with a computer through speech or text is not new
(10), it has only recently transformed into a tangible reality with the advent of digital personal assistants,
smart speakers, and chatbots, exemplified by the likes of Google Assistant2, Apple Siri3, Amazon Alexa4,
and Samsung Bixby5. In the field of artificial intelligence, recent advancements have ushered in a new
generation of dialogue systems and conversational interfaces (11). These transformative developments
are closely intertwined with the accessibility of substantial computational power and the abundance of
extensive data resources (12). In today’s context, with the widespread availability of such dialogue agents
across various facets of life, their conversational capabilities extend beyond the realm of mere utilitarian
tasks like booking a table at a restaurant. They are increasingly expected to engage in more casual and
chit-chat based conversations (13). Moreover, many studies in the field of linguistics (14; 15; 16) have
established that a better understanding of affects, such as emotions and sarcasm, improves the quality of
responses of the interlocutors. To this end, it is imperative for a dialogue agent to possess a profound
understanding of various affective dimensions inherent to a conversation. Without a comprehensive
grasp of these nuanced elements, the generation of effective and contextually relevant responses becomes
challenging.

In addition to the intricacies of natural chit-chat conversations, the dynamics of linguistic diversity often
come into play, particularly in polyglot societies like India (17; 18). It is not a rare occurrence for
individuals to engage in dialogues that seamlessly intermingle multiple languages, forming a linguistic
phenomenon known as code-mixing. Within the scope of this thesis, we undertake a comprehensive
examination of monolingual English and Hindi-English code-mixed conversations, delving into the
intricate fabric of affective dimensions they embody. Our primary investigative lens remains fixed on four
pivotal facets of affect inherent to dialogues: emotions, humour, sarcasm, and the speaker profile.

Emotions: The intrinsic connection between emotion and humanity underscores the pivotal role of
emotion understanding in the pursuit of human-like AI (19). Within the ever-evolving landscape of NLP,
the domain of Emotion Recognition in Conversation (ERC) has emerged as a burgeoning research frontier
due to its remarkable capacity to extract valuable insights from social media platforms, its utility as a
powerful tool for psychological analysis, and its role in crafting empathetic responses (20). Furthermore,
delving into the fundamental catalysts of specific emotions or the dynamics behind emotional transitions
proves indispensable in unraveling the intricate web of emotional dynamics within a discourse (21).

Humour and Sarcasm: Moving beyond emotions, delving into the subtle nuances of sarcasm and humour
within an utterance emerges as a paramount endeavor in the quest for comprehensive understanding
(22; 23). humour, in its delightful playfulness, serves as a pivotal tool for infusing conversations with
levity (24), while sarcasm adds a layer of intrigue and complexity to the discourse (25). Furthermore,
while the task of identifying humour often presents itself as a relatively self-contained challenge, given

1We use the terms ‘conversation’, ‘dialogue’, and ‘discourse’ interchangeably in this thesis.
2https://assistant.google.com/
3https://www.apple.com/in/siri/
4https://alexa.amazon.com/
5https://www.samsung.com/us/apps/bixby/

https://assistant.google.com/
https://www.apple.com/in/siri/
https://alexa.amazon.com/
https://www.samsung.com/us/apps/bixby/


Hey Maya! Kahan ho tum? (Hey
Maya! Where are you?)

In here! (In here!)

Tum wahan kyun stand kar rhi ho?
(Why are you standing there?)

Wahan cockroach hai, and I don't
like looking at it! (There is a

cockroach there, and I don't like
looking at it.)

Tab to tumhe mirror me dekhna bhi
pasand nhi hoga! (Then you must
not like looking in the mirror too!)

Indu! (Indu!)

Emotion Flip

Neutral Joy

Fear

Joy

Emotion Flip

Fear Anger

Conversation

Excitem
ent

Excitem
ent, cheer

sarcastichumorous &

Indu implies that Maya
looks like a cockroach

Indu

Maya
Dislikes: Cockroaches

Dislikes: Maya
Trait: Funny

Figure 1.1: Thesis Overview: Given a conversation, our aim is to create an affective backdrop to it by
focusing on four critical aspects: emotions (their flip and the cause behind the flip), humour,
sarcasm (and its explanation), and speaker profile.

the absence of any concealed meaning within amusing utterances, the detection of sarcastic expressions
calls for a meticulous and discerning scrutiny to unveil the underlying intent concealed beneath the words.

Speaker Profiling: Each interlocutor in a conversation is shaped by a unique tapestry of life experiences,
giving rise to their individualistic personalities (26). This inherent variability naturally culminates in a
divergence of potential responses that these distinct speakers might produce, even when confronted with an
identical scenario. In light of this perceptible divergence, the notion of discerning and categorizing speaker
personas assumes a substantial role. By comprehending and characterizing the distinct speaker identities,
it becomes plausible to tailor and condition their responses in a manner that aligns with their respective
personas, thereby enhancing the contextual appropriateness and effectiveness of the conversation (27).

Within the scope of this thesis, our focal point centers on the intricate task of discerning and elucidating
these multifaceted affective dimensions inherent within conversations. This endeavor is underpinned
by a fundamental objective: to foster a deeper and more comprehensive understanding of the dialogues,
ultimately paving the way for the generation of responses that are not only more proficient but also more
contextually attuned. In pursuit of this overarching goal, we present the thesis statement below and a
diagramatical overview in Figure 1.1.

We aim to understand and explain four primary affective traits, namely emotion, humour, sarcasm,
and speaker profile in monolingual English and Hindi-English code-mixed conversations.

1.2 Background

1.2.1 Conversations

The dynamic interplay between two or more individuals engaged in interactive communication is com-
monly characterized as a conversation or a dialogue. Such exchanges encompass the transmission of
signals in various forms, including text, audio, and video modalities. Within the framework of a conversa-
tion, we encounter a succession of utterances articulated by the participating speakers. These utterances
possess the flexibility to manifest in multiple languages, thereby adding an intricate layer to the conversa-
tional landscape. Furthermore, these utterances bear the potential to exhibit a range of affective attributes,
such as emotions, humour, and sarcasm, imparting a multifaceted dimension to the discourse.

Broadly, a conversation can take place in two settings – goal-oriented and chit-chat. Goal-oriented
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conversations focus on achieving a specific objective or task, such as booking a hotel room or providing
information. These are typically formal and structured, with the primary aim of accomplishing a predefined
goal or obtaining information. Chit-chat conversations, on the other hand, are more informal and open-
ended. They serve the purpose of social interaction, entertainment, or casual communication, often
revolving around topics of general interest or personal anecdotes. Unlike goal-oriented conversations,
they lack a specific objective and are more flexible and relaxed in nature. This thesis mostly deals with
chit-chat conversations, driven by the significant influence and relevance of affective elements within this
context.

1.2.2 Affects

Affects, in general, refers to an entity that cause a change. In other words, something that affects someone
has an effect on them. For instance, the affect of sitting in the sun for too long can cause the effect
of tanning. In the context of human communication, affects refer to the wide spectrum of emotional,
cognitive, and expressive elements that influence and shape an individual’s thoughts, personality, and
behavior. These encompass emotions, humour, as well as more complex aspects like sarcasm, and
individual characteristics of the speakers involved in a conversation. Affects contribute significantly to
the tone, depth, and overall quality of human interactions and are pivotal in understanding the nuances
of social and emotional dynamics. In this thesis, we focus on four primary aspects of conversation –
emotions, humour, sarcasm, and speaker profile.

1.2.3 Code-mixing

Code-mixing is a linguistic phenomenon that occurs when speakers seamlessly blend two or more
languages within a single conversation or discourse. This practice, often observed in multilingual or
culturally diverse communities, such as India, allows individuals to draw from their language repertoires
to effectively communicate and convey their ideas. Code-mixing can manifest in various forms, such as
incorporating loanwords, phrases, or even whole sentences from one language into another. It serves as a
dynamic and natural expression of cultural and linguistic hybridity, reflecting the intricate interplay of
identities and influences within a given linguistic environment. Understanding code-mixing is pivotal
for researchers and language enthusiasts, as it sheds light on the complexities and fluidity of language
use in diverse and interconnected societies. In this thesis, along with monolingual English, we focus on
Hindi-English code-mixed conversations due to their predominance in the real-world Indian society.

1.2.4 Conversational Agents

Conversational agents, also known as chatbots, dialogue agents, or virtual assistants, are sophisticated
software programs designed to engage in human-like interactions through text, voice, or other communi-
cation modalities. These digital entities have evolved significantly, thanks to advancements in AI and NLP.
They are capable of understanding and generating human language, enabling them to assist users with a
wide array of tasks, from answering questions and providing information to facilitating transactions and
even offering emotional support.

In alignment with the distinct categories of dialogues, conversational agents too exhibit a duality, classified
as goal-oriented and chit-chat agents. The former, as the name implies, are tailored for conversations
driven by specific objectives, such as the reservation of a restaurant table. On the other hand, chit-chat
agents engage in more casual and open-ended dialogues, aiming to enhance overall interaction and
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engagement. Online chatbots like Cleverbot6, PandoraBots7, ChatBot8 and Simisimi9 fall within the chit-
chat category. However, considering real-world demands, a majority of prominent chatbots, like Google
Assistant, Apple Siri, and Samsung Bixby, adopt a hybrid approach, proficient in both goal-oriented and
chit-chat interactions. In the scope of this thesis, our exclusive focus centers on chit-chat dialogues, driven
by the compelling and multifaceted challenges they present.

1.2.5 Affects and Code-mixing in Conversational Agents

Affects and code-mixing in conversational agents represent two fascinating dimensions of human-machine
interaction, each laden with its unique complexities. Affects, encompassing emotions, humour, sarcasm,
and more, introduce the crucial element of intelligence to conversational agents. These chatbots are
increasingly expected to comprehend and respond to users’ cognitive nuances effectively, making their
interactions more contextually relevant. Moreover, the subtleties of humour and sarcasm detection add a
layer of sophistication, demanding intricate language analysis and the ability to decipher subtle expressions
within dialogues. A comprehensive understanding of these affective cues empowers conversational agents
to engage users on a deeper level, fostering more meaningful and enjoyable interactions.

On the other hand, code-mixing in conversational agents highlights the intricate interplay of language
diversity and cultural influences. In a multilingual and multicultural society, like India, code-mixing is a
common practice. For conversational agents to truly serve diverse user groups, they must be equipped to
handle code-mixed conversations seamlessly. This entails a thorough understanding of not only individual
languages but also the fluid transitions between them. By addressing code-mixing, conversational agents
can better adapt to users’ linguistic preferences, catering to a broader demographic and enhancing their
accessibility. Consequently, the synergy of affects and code-mixing in conversational agents leads to
more sophisticated and adaptable AI systems, poised to facilitate effective communication across diverse
linguistic and emotional landscapes.

I had a dentist visit today.

Ja.

They will have to remove my upper
molars

Ich dich aucht nicht.

It will cause a lot of pain.

It will hurt only me. share!

(a) Dialogue agent is apathetic

I am six feet tall so ofcourse I like
tight spaces.

It goes without saying. I hear that's
the most attractive height. I like blue.
You like tight spaces.

(b) Dialogue agent is unable to understand
sarcasm

Does it smell like updog in here?

What's up dog?

Nothing much, you tell.

I'm at work. share!

(c) Dialogue agent is unable to grasp hu-
mour

Figure 1.2: Drawbacks of existing dialogue systems. Examples (a) and (c) are taken from https://
www.cleverbot.com/?0; Example (b) is taken from https://www.pandorabots.
com/mitsuku/.

6https://www.cleverbot.com/?0
7https://www.pandorabots.com/mitsuku/
8https://www.chatbot.com/
9https://simsimi.com/
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1.3 Challenges

A typical dialogue agent is composed of three fundamental modules – (i) the input module, (ii) the
dialogue understanding module, and (iii) the output generation module. The integral capability to discern
and assimilate affective attributes is predominantly embedded within the second module, the dialogue
understanding component. Despite notable advancements in dialogue systems, their proficiency in
capturing the intricacies of affect within conversations remains limited (28). As illustrated in Figure 1.2,
existing online dialogue agents exhibit instances of apathetic responses, as well as a notable inability to
comprehend elements of sarcasm and humour.

In Figure 1.2(a), the depicted agent fails to grasp the user’s emotional distress, lacking the requisite
empathetic response, which is essential in such a sensitive context. Similarly, Figure 1.2(b) showcases
an agent’s inability to discern the user’s sarcastic tone when discussing preferences for confined spaces.
Additionally, the challenge of comprehending humour persists, as illustrated in Figure 1.2(c). This persis-
tent deficiency in affective understanding highlights a critical area of improvement in the development of
more emotionally intelligent and contextually aware dialogue agents.

1.4 Related Work

Within this thesis, our central focus lies in the comprehensive exploration and explanation of affective
dimensions, encompassing emotions, humour, sarcasm, and the distinctive speaker profile, evident in
both English and code-mixed conversations. It is worth noting that preceding our research endeavors,
numerous studies addressed analogous challenges, both in standalone settings and within the domain of
conversational inputs. In this section, we offer a concise overview of some of these prior investigations
for context and reference.

Emotion analysis (29; 30) initially revolved around the examination of isolated textual inputs, including
tweets (31; 32), online reviews (33; 34), and news articles (35; 36). While ascertaining emotions in
such contexts is undeniably significant, these forms of communication lack the dynamic and real-time
conversational backdrop. In contrast, the discernment of emotions within the fluid and evolving context
of conversations presents a notably intricate and invaluable task (20). This capability holds profound
relevance across a spectrum of applications, ranging from the development of chatbots and virtual assistants
(37) to mental health support (38) and customer service (39). As a result, a plethora of recent studies have
undertaken the challenge of emotion recognition in conversation (20), employing diverse methodologies
encompassing traditional machine learning (40; 41; 42), RNN-based approaches (43; 44; 45; 46; 47; 48),
and the more contemporary Transformer-based methodologies (49; 50; 51; 52). Identifying emotions
serve as the first step in obtaining a comprehensive view of the emotional dynamics in a dialogue, while
explaining the cause of emotions serve as the next step, contributing towards explainability (53; 21). To
this end, in this thesis, we focus on identifying emotions as well reasoning emotion-flips of speakers in a
conversation on the basis of triggers and instigators.

Humour and sarcasm analysis is the next pivotal stage in achieving a profound affective understanding
of textual input, following the comprehensive examination of emotions. Much like the progression of
emotion recognition, the journey of humour identification initially commenced with the analysis of non-
contextual inputs (54; 55; 56). Subsequently, research endeavors extended their purview to encompass
contextual inputs, such as conversations, for the nuanced analysis of humour (57). Yet, it is important to
note that humour analysis remains comparatively uncomplicated due to the absence of concealed meanings
within humorous statements. In contrast, the detection of sarcasm introduces a distinct layer of complexity,
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demanding an intricate grasp of the latent subtleties within a dialogue (23). As a consequence, sarcasm
analysis has garnered substantial attention within the domain of NLP. Various approaches, ranging from
the utilization of features like sentiment shifts and contextual incongruity (58; 59) to the application of
deep learning models (60; 61; 62), have been explored to unravel the intricacies of sarcasm. Given the
implicit nature of sarcasm, mere identification may fall short in comprehending the underlying meaning
of the input statement. Therefore, the imperative need arises to delve into the realm of explanation. In
alignment with this goal, this thesis embarks on the endeavor of humour and sarcasm identification,
complemented by the crucial task of explicating the concealed nuances of sarcasm within the textual
context.

Speaker profiling constitutes an indispensable facet in the endeavor to construct a comprehensive and
multifaceted affective backdrop for an individual. Given the diverse array of life experiences that shape
each individual, distinctive personalities emerge, replete with their own predilections and aversions
(26). As a corollary, the integration of personalization within dialogue systems assumes a pivotal role,
facilitating the tailored generation of contextually fitting responses for each unique interlocutor (27).
Within the domain of conversational agents, the incorporation of personalization has demonstrated its
capacity to notably enhance the efficacy of response generation (63; 64; 65; 66; 67; 68). While goal-
oriented dialogue systems have previously harnessed user profiles to condition responses and have
thereby manifested improved performance (67; 68), recent attention has shifted toward chit-chat settings
(69; 70; 63; 64; 65). In this context, user profiles can be deduced from the conversational context, serving
as a dynamic foundation for further response customization. With the advent of the PersonaChat dataset
(70), an increasing body of research has underscored the advantages of incorporating speaker profiles
when generating responses for users (63; 64; 65). While leveraging persona information undeniably
results in superior responses, it is essential to refrain from presuming the free availability of such data.
Therefore, the initial and imperative step in the development of any personalized dialogue system is the
generation or classification of speaker profiles. In alignment with this imperative, this thesis centralizes
its focus on the meticulous construction of speaker profiles and their strategic utilization in elevating the
performance of response generation.

1.5 Thesis Organization

We now discuss the organization for the rest of the thesis. The entire thesis is divided into three parts as
enumerated below. Further, we have provided the full form of the abbreviations used in this thesis in Table
1.1.:

1. Emotion Analysis: In this part, we tackle two tasks – Emotion Recognition in Conversation (ERC)
and Emotion Flip Reasoning (EFR) for monolingual English and Hindi-English code-mixed dialogues.
We propose two datasets, MELD-FR and MELD-I, an extension of the MELD dataset (71) to facilitate
the task of EFR in English language. In order to benchmark these datasets, we propose two models
– EFR-TX and TGIF. To handle the task of ERC and EFR in code-mixed setting, we develop the
E-MaSaC dataset and benchmark it using a novel deep learning architecture, COFFEE.

2. Humour and Sarcasm Analysis: This part focuses on identifying the humorous and sarcastic instances
in a dialogue and further explaining the sarcastic instances for language comprehension. We utilise the
MusTard dataset (2) to gauge the sarcasm in English and propose a new dataset, MaSaC, to analyse
humour and sarcasm in code-mixed dialogues. We propose three neural networks – MSH-COMICS,
MAF, and MOSES to analyse humour and sarcasm in conversations.

3. Speaker Profiling: In this part, we propose SPICE, an English based dataset of conversation with
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annotated speaker profile labels. Additionally, we propose SPOT and PA3, two deep learning based
architectures to extract speaker profiles from English and code-mixed dialogues, respectively.

Abbreviation Full form

AI Artificial Intelligence
CNN Convolutional Neural Networks
COFFEE COmmonsense aware Fusion For Emotion rEcognition
DPA Dot Product Attention
EFR Emotion Flip Reasoning
EFR-TX EFR-Transformer
ERC Emotion Recognition in Conversation
ERC-MMN ERC-Masked Memory Network
FNN Feedforward Neural Network
GPLMs Generative Pretrained Models
GRU Gated Recurrent Unit
kNN k-Nearest Neighbour
LSTM Long Short-Term Memory
MAF Modality Aware Fusion
MOSES MultimOdal Sarcasm Explanation with Spotlight
MSH-COMICS Multi-modal Sarcasm Detection and Humor Classification in COde-MIxed ConversationS
NLP Natural Language Processing
PA3 Personality-Aware Axial Attention
RNN Recurrent Neural Network
SED Sarcasm Explanation in Dialogues
SPC Speaker Profiling in Conversations
SPICE Speaker Profiling In ConvErsation
SPOT Speaker PrOfiling using Transformers
SVM Support Vector Machines
TGIF Transformer and GRU Inspired Flip reasoner
WITS Why Is This Sarcastic

Table 1.1: Abbreviations and their definitions used in the thesis.
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2. Emotion Recognition in Conversation

Understanding emotions during conversation constitutes a foundational facet of human
communication, propelling the field of NLP to delve into the task of Emotion Recognition in
Conversation (ERC). Despite the substantial body of research aimed at discerning emotions
in monolingual dialogues, the exploration of emotional dynamics within code-mixed conver-
sations has remained relatively underemphasized. This, in turn, serves as the driving force
behind our endeavor to explore ERC within code-mixed conversations, alongside mono-
lingual English, within the scope of this study. In pursuit of this objective, we introduce
ERC-MMN, a masked memory network tailored for ERC within the confines of mono-
lingual English, and rigorously evaluate its performance utilizing the widely recognized
MELD dataset. Transitioning to the domain of code-mixed dialogues, we acknowledge
the imperative role of emotional intelligence intertwined with a profound comprehension
of worldly knowledge. As a result, we present an innovative approach that seamlessly
integrates common-sense information with the contextual underpinnings of the dialogue,
thus paving the way for a deeper comprehension of emotions. To bring this concept to
fruition, we devise COFFEE, an astute pipeline architecture specifically engineered to
extract pertinent common-sense knowledge from existing knowledge graphs, all based on
the code-mixed input. Subsequently, an advanced fusion technique is used to harmoniously
blend the acquired commonsense information with the dialogue representation, obtained
through a dedicated dialogue understanding module. Furthermore, we meticulously curate a
pioneering ERC dataset tailored for Hindi-English code-mixed conversations, E-MaSaC.
Through a series of experiments, we demonstrate a notable enhancement in performance
stemming from the systematic integration of commonsense knowledge into ERC. This
enhancement is substantiated by both quantitative evaluations and in-depth qualitative analy-
ses, reaffirming the central role of common-sense integration in bolstering ERC. In addition
to this, we provide anecdotal evidence as well as rigorous qualitative and quantitative error
analyses, reinforcing the supremacy of our models in comparison to the baseline approaches.

2.1 Introduction

Early studies in the area of emotion analysis (72; 30) primarily focused on emotion recognition in
standalone text (73; 74; 75) which has been shown to be effective in a wide range of applications such
as e-commerce (76), social media (77; 78), and health-care (79). Recently, the problem of emotion
analysis has been extended to the conversation domain – usually dubbed as Emotion Recognition in
Conversation, aka ERC (20), where the inputs are no longer standalone; instead, they appear as a
sequence of utterances uttered by more than one speaker. The aim of ERC is to extract the expressed
emotion of every utterance in a conversation (or dialogue). Despite the extensive exploration of ERC in
numerous studies (43; 44; 46; 48; 50; 45; 47; 49; 80; 51; 52), the primary focus has been into monolingual
dialogues, overlooking the prevalent practice of code-mixing. Conversations, in their various forms such as
text, audio, visual, or face-to-face interactions (81; 82), can encompass a wide range of languages (83; 84).
In reality, it is commonplace for individuals to engage in informal conversations with acquaintances that
involve a mixture of languages (17; 18). For instance, two native Hindi speakers fluent in English may



predominantly converse in Hindi while occasionally incorporating English words. Figure 2.1 illustrates
an example of such a dialogue between two speakers in which each utterance incorporates both English
and Hindi words with a proper noun. This linguistic phenomenon, characterized by the blending of
multiple languages to convey a single nuanced expression, is commonly referred to as code-mixing.

Kya kal tumne cricket
match dekha?

(Did you watch the cricket
match yesterday?)

Sahi me! It is impossible to
beat him

(Truly! It is impossible to
beat him!)

Yes! Sachin played
badhiya!

(Yes! Sachin played
great!)

Neutral

Joy

Joy

Figure 2.1: Example of a code-mixed dialogue, with
emotions, between two speakers. Blue
denotes English words while red denotes
proper noun.

In this work, we aim to perform the task of ERC
for monolingual English and Hindi-English code-
mixed multi-party dialogues, thereby enabling the
modeling of emotion analysis in real-world casual
conversations as shown in Figure 2.1 of two speak-
ers with three utterances where the first utterance
is identified to be of neutral emotion and the sub-
sequent utterances emits the emotion of joy. We
use the popular MELD dataset (85) for the task
of ERC in the English language. MELD contains
multipartuy conversations from a popular English
sitcom. However, to the best of our knowledge, there is no previous work that deals with ERC for
code-mixed conversations, leading to a scarcity of available resources in this domain. As a result, we
curate a comprehensive dataset, E-MaSaC, comprising code-mixed conversations, where each utterance is
meticulously annotated with its corresponding emotion label.

Monolinual English Setting: We propose a masked memory network based framework for ERC . This
architecture effectively fuses the dialogue-level global conversational and speaker-level local conversa-
tional contexts to learn an enhanced representation for each utterance. Furthermore, we employ a memory
network (86) to leverage the historical relationship among all the previous utterances and their associated
emotions as additional information. We hypothesize that the memory content at state t can model the
dialogue-level emotional dynamics among the speakers so far. Thus, it can be a vital piece of information
for the future utterances corresponding to the states t+ y, where y = 1, · · · , n− t. For evaluation, we use
MELD (85), a benchmark ERC dataset. We also perform extensive ablation and comparative studies with
five baselines and different variations of our models and obtain state-of-the-art results for the ERC task. A
side-by-side diagnostics and anecdotes further explore the errors incurred by the competing models and
explain why our models outperform the baselines.

Hindi-English Code-mixed Setting: The elicited emotion in a conversation can be influenced by
numerous commonly understood factors that may not be explicitly expressed within the dialogue itself
(87). Consider an example in which the phrase “I walked for 20 kilometers” evokes the emotion of
pain. This association stems from the commonsense understanding that walking such a considerable
distance would likely result in fatigue, despite it not being explicitly mentioned. Consequently, capturing
commonsense information alongside the dialogue context becomes paramount in order to accurately
identify the elicited emotion. To address this, we propose incorporating commonsense for solving the
task of ERC. However, the most popular commonsense graphs, such as ConceptNet (88) and COMET
(89) are made for English, are known to work for the English language (90; 91), and are not explored for
code-mixed input. To overcome this challenge, we develop a pipeline to utilize existing English-based
commonsense knowledge graphs to extract relevant knowledge for code-mixed inputs. Additionally, we
introduce a clever fusion mechanism to combine the dialogue and commonsense features for solving the
task at hand. In summary, our contributions are listed below:

1. We develop a masked memory network based architecture for ERC in monolingual English dia-
logues, which outperforms several comparable systems.

2. We explore, for the first time, the task of ERC for multi-party code-mixed conversations.
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3. We propose a novel code-mixed multi-party conversation dataset, E-MaSaC, in which each discourse
is annotated with emotions.

4. We develop COFFEE (COmmonsense aware Fusion For Emotion rEcognition), a method to extract
commonsense knowledge from English-based commonsense graphs given code-mixed input and
fuse it with dialogue context efficiently.

5. We give a detailed quantitative and qualitative analysis of the results obtained and examine the
performance of the popular large language models, including ChatGPT.

2.2 Related Work

Emotion Recognition. Intial emotion analysis (29; 30) primarily centered around the analysis of isolated
textual inputs, such as tweets (31; 32), online reviews (33; 34), and news articles (35; 36). While the
recognition of emotions within these contexts holds undeniable significance, these forms of communication
lack the dynamic and real-time conversational context. In stark contrast, the task of identifying emotions
within the fluid and evolving backdrop of conversations is notably complex and invaluable (20). This
capability has profound implications across a wide array of applications, ranging from the development
of chatbots and virtual assistants (37) to applications in the domains of mental health support (38) and
customer service (39). Consequently, numerous recent studies have risen to the challenge of Emotion
Recognition in Conversation (ERC) (20). While ERC was solved using heuristics and standard machine
learning techniques initially (40; 41; 42), the trend has recently shifted to employing a wide range of deep
learning methods (43; 44; 45; 46; 47; 49; 50; 92; 48; 80; 51; 52). The identification of emotions serves as
the initial step toward obtaining a comprehensive understanding of the emotional dynamics in a dialogue.

Emotion and Commonsense. Given the implicit and pivotal significance ascribed to commonsense
knowledge in the intricate process of emotion identification, researchers have embarked on the formidable
journey of incorporating commonsense into the realm of emotion recognition. Particularly in contexts
where the textual input stands alone, and the expanse of contextual information is rather limited, scholars
advocate for the judicious employment of meticulously curated latent commonsense concepts that possess
the seamless capability to harmonize with the textual content (93; 90; 94). However, in more complex
scenarios where the textual context extends over extended sequences, such as dialogues, the intelligent
and nuanced capture of this contextual information becomes an imperative pursuit. In these intricate
scenarios, a multitude of studies delve into the task of ERC characterized by the fusion of commonsense
knowledge. This fusion process is facilitated through diverse resources for external knowledge, including
ConceptNet (88; 90), Atomic triplets (95; 96), and the comprehensive COMET graph (89; 91; 97).

Emotion and Code-mixing. The current landscape of research pertaining to emotion analysis within the
context of code-mixed language predominantly directs its attention towards isolated instances of social
media texts (98; 99; 100) and appraisals contained within reviews (101; 102). Within the subdomain of
code-mixed conversations, various facets, such as sarcasm (103; 104), humour (105), and instances of
offensive language (106), have been scrutinized, leading to insightful investigations. Nevertheless, despite
the depth and breadth of exploration into these nuanced dimensions, the domain of emotion analysis,
within the specific context of code-mixed conversations, remains conspicuously uncharted. To the best
of our knowledge, no pertinent literature exists in this domain, signifying a critical knowledge gap that
beckons for comprehensive investigation. It is within this unexplored expanse that our research endeavors
to make its significant mark. We embark on a rigorous exploration of the emotionally charged territory
of ERC, paying particular attention to code-mixed dialogues that transpire between Hindi and English
languages.
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2.3 Dataset

Monolingual English – MELD: The MELD dataset (85), an extension of the EmotionLines dataset
(107), represents a comprehensive resource for in-depth emotional analysis. Distinguished by its multi-
party dialogues, it encompasses a rich array of textual, acoustic, and visual data. These dialogues are
sourced from the popular television series, "Friends,"1 enhancing the dataset’s relatability and real-world
applicability. Each utterance within these dialogues is meticulously annotated with one of seven distinct
emotions, including anger, disgust, sadness, joy, surprise, fear, and neutral. This diverse range of emotions
finds its roots in the renowned emotion theory put forth by Paul Ekman (29), with the neutral category
thoughtfully added to account for scenarios devoid of emotional expression. In our study, we tailor
the MELD dataset to consider only the instances containing atleast one emotion flip, a topic explored
extensively in Chapter 3. It is crucial to note that the emotional labels for this specialized subset remain
consistent with the original MELD dataset, preserving the dataset’s integrity and relevance. Moreover,
we adhere to the dataset’s established train-validation-test partition, as proposed by its authors. Table
2.1 highlights the salient dataset statistics, offering a succinct yet comprehensive overview of its key
characteristics.

Split Emotions TotalDisgust Joy Surprise Anger Fear Neutral Sadness
Train 225 1466 1021 911 229 3702 576 8130
Dev 20 156 144 126 39 395 97 977
Test 61 325 238 283 42 943 169 2061

Table 2.1: Statistics of the MELD dataset for ERC. We only consider those dialogues from the original
MELD dataset where there is at least one emotion-flip. This step removed 271 dialogues from
MELD, resulting 1, 161 dialogues.

Code-mixed Hindi-English – E-MaSaC: A paucity of datasets exists for code-mixed conversations,
making tasks on code-mixed dialogues scarce. Nevertheless, our proposed dataset MASAC, introduced in
Chapter 4, compiled by extracting dialogues from an Indian TV series, contains sarcastic and humorous
Hindi-English code-mixed multi-party instances. We extract dialogues from this dataset and perform
annotations for the task of ERC to create E-MaSaC2. The resultant data contains a total of 8, 607 dialogues
constituting of 11, 440 utterances. Data statistics are summarised in Table 2.2.

Split Emotions
TotalDisgust Joy Surprise Anger Fear Neutral Sadness Contempt

Train 127 1596 441 819 514 3909 558 542 8506
Dev 21 228 66 118 88 633 126 74 1354
Test 17 349 57 142 122 656 155 82 1580

Table 2.2: Statistics of the E-MaSaC dataset for ERC in Hindi-English code-mixed dialogues.

Emotion Annotation. Given, as input, a sequence of utterances forming a dialogue, D, the aim here
is to assign an appropriate emotion, ei, for each utterance, ui, uttered by speaker sj . The emotion ei
should come out of a set of possible emotions, E. Following the standard work in ERC for the English
language, we use the latest set of Ekman’s emotions as our possible emotions, E = {anger, fear, disgust,
sadness, joy, surprise, contempt, neutral}. We ask three annotators who are linguists fluent in English
and Hindi with a good grasp of emotional knowledge with an age between 25-30, (a, b, c) to annotate

1https://www.imdb.com/title/tt0108778/
2We follow the original train-val-test split as is in MASAC
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each utterance, ui, with the emotion they find most suitable for it, eai such that eai ∈ E. A majority
voting is done among the three annotations (eai , ebi , e

c
i ) to select the final gold truth annotation, ei. Any

discrepancies are resolved by a discussion among the annotators; however, such discrepancies are rare.
We calculate the inter-annotator agreement, using Kriprendorff’s Alpha score (108), between each pair of
annotators, αab = 0.84, αbc = 0.85, and αac = 0.85. To find out the overall agreement score, we take the
average score, α = 0.85.

2.4 Proposed Methodology

2.4.1 ERC-MMN: ERC for English Dialogues

For ERC, at each time step t, we learn an emotion label for utterance ut. We employ an utterance-level
memory network as illustrated in Figure 2.2.

A dialogue D can have n utterances spoken by m distinct speakers, and each of these utterances has an
associated emotion label E. We model ERC as the sequence-labeling problem, where for each utterance
in the dialogue sequence, we predict its corresponding label. In our model, we employ m separate
speaker-level forward GRUs (sGRUsj )3 to capture the utterance pattern of each speaker sj ∈ S. The
hidden representations of each sGRUsj are arranged in the dialogue order and subsequently fed to cGRU
for emotion recognition. For each speaker sj ∈ S, we compute a d-dimensional speaker-level hidden
representation as follows:

[h̄
sj
1 , .., h̄

sj
k , .., h̄

sj
p ] = sGRUsj (v

sj
1 , .., v

sj
k , .., v

sj
p )

where v
sj
k ∈ Vsj denotes the utterance spoken by speaker sj in the dialogue, and p is the number of

utterances uttered by speaker sj . Evidently,

U = ∀sj∈S union(Vsj )

Using stacked GRUs, our model becomes agnostic to the number of speakers present in the dialogue. Note
that the modeling of a speaker-level GRU, e.g., sGRUsj , is in isolation with other speaker-level GRUs (i.e.,
sGRUsk , where j ̸= k). However, a natural conversation does not happen in isolation; therefore, to provide
a mechanism for the interaction among the speakers and to model the natural conversation, we leverage
the dialogue-level context in the learning process of the speaker dynamics. The dialogue-level context is
maintained through a global GRU (gGRU) which is shared across all the speakers within a dialogue. For
each utterance u

sj
i , we compute an association with the previous global state gGRU[u1,...,ui−1] through

an attention mechanism. It ensures that the current utterance is aware of the dialogue-level context.
The context-aware attended representation is then forwarded to sGRUsj to learn the speaker-specific
conversation dynamics. Mathematically,

v
sj
k = Attention(gGRU[u1,...,ui−1]

, u
sj
i )⊕ u

sj
i

where u
sj
i denotes the ith utterance in the dialogue sequence, and v

sj
k denotes the corresponding kth

utterance in the speaker sequence sj . In parallel, the attended vector is consumed by gGRU to update the
global state of the dialogue, i.e.,

gGRU[u1,...,ui]
= gGRU([u1, ..., ui−1], v

sj
k , d

sj
i )

3To model the natural conversation, we did not account for any future context anywhere in the architecture.
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Figure 2.2: The proposed masked memory network based ERC-MMN. ERC-MMN takes a dialogue (a
sequence of utterances) and aims to predict the emotion of each utterance in order.

where d
sj
i represents the hidden representation of utterance ui in the dialogue sequence.

Masked Memory Network. To learn the dialogue conversation efficiently, the role of each utterance ui
in the dialogue needs to be carefully examined. Some utterances have lesser importance in the dialogue
context, whereas others have a long-lasting effect. In general, there is a higher chance that important
utterances may participate in predicting emotions for multiple utterances. In our manual analysis of the
MELD dataset, we also observe a reasonable correspondence between a few utterances and the emotional
labels for multiple utterances in the dialogue. Hence, we hypothesize that the information regarding these
few utterances may be exploited by the future utterances ul, i < l, in the dialogue for emotion prediction.
To simulate this, we employ a memory network (86) that maintains the information captured during the
previous states. At each state t,4 the memory network learns over the state t−1 memory content through a
forward-GRU (mGRU) and updates it according to the current query qt. The updated memory at state t is
then utilized by the network in the emotion recognition for the utterance ui (represented by the query qt).
Furthermore, it also acts as input for the next state t+ 1. We argue that the memory content accumulated
over the emotion labels reveals the relationship among previous utterances, and the future utterances
leverage it to establish their relationships with the previous utterances.

Here, we employ a masked interactive attention mechanism (109) to incorporate the information regarding
the current query. For each state t, we compute the masked attention weights βt considering input It
(It = mGRU(Ot−1)) and the query qt = h̄i. Subsequently, the attended vector is computed for each
hidden representation of input It. Since the masked attention weight βt signifies the probability over the
first t input hidden representations (i.e., I1, I2, ..., It) and

∑
βt = 1, we compute the attended vector for

the first t hidden representations only and bypass the rest of the input representations (i.e., It+1, ..., In).
The two sets of representations, i.e., t attended and n − t bypassed, form the memory output Ot. The
attended vectors, i.e., Ot[1..t], are then utilized as the memory context at state t for the subsequent
processing corresponding to the utterance ui. We apply mean-pooling over Ot[1..t] to compute ōi, and
concatenate it with the enriched speaker-dialogue hidden representation h̄i for the final predictions, i.e.,
Ei = Softmax(ōi ⊕ h̄i).

4The memory state t corresponds to the utterance ui, t+ 1 to ui+1, and so on.
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Figure 2.3: A schematic diagram of COFFEE. The Commonsense Extraction (CE) module takes a code-
mixed input and provides a representation of the extracted commonsense information relevant
to it. The commonsense information is fused with the representation obtained from a Dialogue
Understanding Backbone (DUB) via the Commonsense Fusion (CF) and the Fusion Gate (FG)
modules.

2.4.2 COFFEE: ERC for Code-mixed Dialogues

The manifestation of emotional concepts within an individual during a conversation is not solely influenced
by the dialogue context, but also by the implicit knowledge accumulated through life experiences.
This form of knowledge can be loosely referred to as commonsense. In light of this, we present an
efficient yet straightforward methodology for extracting pertinent concepts from a given commonsense
knowledge graph in the context of code-mixed inputs. Additionally, we introduce a clever strategy
to seamlessly incorporate the commonsense features with the dialogue representation obtained from a
backbone architecture dedicated to dialogue understanding. Figure 2.3 outlines our proposed approach,
COFFEE while each of the intermediate modules is elucidated in detail below.

Dialogue Understanding Backbone (DUB). For input containing long contextual history, such as a
dialogue, it becomes crucial to capture and comprehend the entire progression leading up to the present
statement. Consequently, an effective dialogue understanding architecture which gives us a concrete
dialogue representation is required. We use existing Transformer based architectures as our Dialogue
Understanding Backbone, DUB. The given code-mixed dialogue D goes through DUB to give us the
contextual dialogue representation, Dc. Specifically, Dc = DUB(D), such that Dc ∈ Rn×d where n is the
maximum dialogue length, and d is the dimensionality of the resulting vectors.

Commonsense Extraction (CE). While the conversational context provides insights into the participants
and the topic of the dialogue, the comprehension of implicit meanings within statements can be greatly
facilitated by incorporating commonsense information. Therefore, in order to capture this valuable
commonsense knowledge, we employ the COMET graph (89), which has been trained on ATOMIC
triplets (95), to extract relevant commonsense information for each dialogue instance. However, it is worth
noting that the COMET graph is pretrained using triplets in the English language, making it particularly
effective for English inputs (87). Given that our input consists of a mixture of English and Hindi, we
have devised a specialized knowledge extraction pipeline to tackle this challenge. The entire process of
obtaining commonsense knowledge for a given code-mixed textual input is shown in Figure 2.3 and is
comprehensively explained below.
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1. Language Identification: To handle the input dialogue D, which includes a mix of English and Hindi
words, the initial task is to determine the language of each word to appropriately handle different
languages in the most suitable way.

2. Transliteration: The identified Hindi language words are transliterated to Devanagari script from
roman script so that language-specific preprocessing can be applied to them.

3. Text Processing: The next step is to preprocess the text. This step involves converting text to lowercase
and removal of non-ASCII characters and stopwords. The resultant text is considered important or

‘topic specifying’ for the text.
4. Translation: Since COMET is trained for monolingual English, the query can only have English terms.

Therefore, we translate the Devanagari Hindi ‘topics’ back to romanised English.
5. Querying COMET: Finally, all the ‘topics’ together are sent as a query to the COMET graph, and all

possible relations are obtained.

oEffect The impact of input on the listeners.
oReact The listeners’ reaction to the input statement.
oWant The listeners’ desire after hearing the input.
xAttr What the input reveals about the speaker.
xEffect The speaker’s desire after uttering the input.
xIntent The speaker’s objective in uttering the input.
xNeed The speaker’s needs according to the input.
xReact The speaker’s reaction based on the input.
xWant The speaker’s desire according to the input.

Table 2.3: Commonsense effect-types returned by the
COMET and their description.

COMET provides us with a vast array of
effect-types corresponding to the input text.
Specifically, it provides us with information
such as oEffect, oReact, oWant, xAttr, xEf-
fect, xIntent, xNeed, xReact, xWant. Refer
Table 2.3 for the description of each of these
values. We carefully select the relevant at-
tributes from the extracted pairs and encode
them using the BERT model (110). The
representation obtained from BERT acts as
our commonsense representation. Formally,
Dcs = CE(D), such that Dcs ∈ Rm×d

where m is the length of the commonsense
information, and d is the vector dimension
obtained from the BERT model. After we
obtain the commonsense representation Dcs, we need to integrate it with the dialogue representation Dc.
Consequently, we devise a sophisticated fusion mechanism as described below.

Commonsense Fusion (CF). Several studies discuss knowledge fusion, particularly in the context of
multimodal fusion (111), where the most successful approaches often employ traditional dot-product-based
cross-modal attention (112; 113). However, the traditional attention scheme results in the direct interaction
of the fused information. As each fused information can be originated from a distinct embedding space, a
direct fusion may be prone to noise and may not preserve maximum contextual information in the final
representations. To address this, taking inspiration from context-aware attention (114), we propose to
fuse commonsense knowledge using a context-aware attention mechanism. Specifically, we first generate
commonsense conditioned key and value vectors and then perform a scaled dot-product attention using
them. We elaborate on the process below.

Given the dialogue representation Dc obtained by a dialogue understanding backbone architecture, we
calculate the query, key, and value vectors Q, K, and V ∈ Rn×d, respectively, as outlined in Equation 6.1
where WQ,WK , and WV ∈ Rd×n are learnable parameters, and n and d denote the maximum sequence
length of the dialogue and dimensionality of the backbone architecture, respectively.[

QKV
]
= Dc

[
WQWKWV

]
(2.1)

On the other hand, with the commonsense vector, Dcs, we generate commonsense infused key and value
vectors K̂ and V̂ , respectively as outlined in Equation 2.2, where Uk and Uv ∈ Rd×d are learnable
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matrices. A scalar λ ∈ Rn×1 is employed to regulate the extent of information to integrate from the
commonsense knowledge and the amount of information to retain from the dialogue context. λ is a
learnable parameter learnt using Equation 6.3, where Wk1 ,Wk2 ,Wv1 , and Wv2 ∈ Rd×1 are trained along
with the model. [

K̂

V̂

]
= (1−

[
λk

λv

]
)

[
K
V

]
+

[
λk

λv

]
(Dcs

[
Uk

Uv

]
) (2.2)

[
λk

λv

]
= σ(

[
K
V

] [
Wk1

Wv1

]
+Dcs

[
Uk

Uv

] [
Wk2

Wv2

]
) (2.3)

Finally, the commonsense knowledge infused vectors K̂ and V̂ are used to compute the traditional scaled
dot-product attention.

D̂c = Softmax(
QK̂T

√
dk

)V̂ (2.4)

Fusion Gating (FG). In order to control the extent of information transmitted from the commonsense
knowledge and from the dialogue context, we use a Sigmoid gate. Specifically, g = [Dc ⊕ D̂c]W + b.
Here, W ∈ R2d×d and b ∈ Rd×1 are trainable parameters, and ⊕ denotes concatenation. The final
information fused representation D̂c is given by D̂c = Dc + g ⊙ D̂c. D̂c is used to identify the emotion
class for the input dialogue.

2.5 Experiments and Results

2.5.1 Evaluating ERC-MMN

Baseline Methods

In this work, we employ the following set of baseline methods for a comparative study –
• CMN (20): It utilizes memory networks to store the speaker-level contextual history within a

dialogue. The authors showed that maintaining the conversational history in a memory helped CMN
in predicting emotions more precisely. They also used these memories in capturing inter-speaker
dependencies.

• ICON (115): It maintains a memory network to preserve the interaction between the self and
inter-speaker influences in dyadic conversations. It models this interaction into the global memory
in a hierarchical way. Finally, the memory is used as a contextual summary which aid in predicting
the emotional labels.

• DGCN (116): It models the inter-speaker dynamics in a dialogue via a graph convolutional network.
This work also leverages the self and inter-speaker dependencies of the participants for modeling
conversations. By using graphs, the authors claim to have modeled context propagation in an
efficient way.

• AGHMN (117): It incorporates an attention GRU mechanism that controls the flow of information
through a modified GRU cell based on the attention-weights, computed over the historical utterances
in a dialogue.

• Pointer Network (118) : They are often used to generate output sequence when the length of
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System F1-score
Dg Jy Sr An Fr Ne Sa W-Avg

CMN 0.0 48.6 54.0 33.7 8.6 75.9 19.9 51.7
ICON 0.0 36.8 45.5 37.0 0.0 69.6 11.0 50.1
DGCN 0.0 48.1 52.9 31.6 4.5 75.8 15.5 51.8
AGHMN 0.0 40.1 43.1 11.7 0.0 63.0 25.0 44.2
Pointer Network 3.0 15.1 17.0 13.1 0.0 63.2 7.0 35.1
ERC-MMN 20.2 48.7 50.4 42.9 9.8 71.9 29.6 55.7

Table 2.4: Comparative analysis for ERC. (Dg: disgust, Jy: joy, Sr: surprise, An: anger, Fr: fear, Ne:
neutral, Sa: sadness). Performance is on the modified MELD dataset, which contains dialogues
only if it has atleast one emotion flip..

output sequence depends on the length of the input sequence. Pointer networks have been applied to
solve various combinatorial optimization and search problems such as Convex hull, and travelling
salesman problem. Here, we use it to map our input sequence of utterances of a dialogue into a
sequence of emotions.

These baselines are readily suitable for ERC, and a few of them reported their performance on the MELD
dataset. However, we reproduced the results of these baselines on the modified MELD data where we
discard any dialogues that contain no emotion flip for any speaker.

Results

We fine-tune BERT (110) for ERC and extract its last layer hidden representation as utterance represen-
tation. We keep the standard vector dimension of BERT to represent an utterance. All reported results
are averaged over 5 runs. The MMN based system, i.e., ERC-MMN, obtain F1-scores of 55.78%. We
utilize the publicly available implementations of the baselines for the comparative study and report the
performance in Table 2.4. DGCN turns out to be the best baseline (51.80%), while CMN (51.70%) and
ICON (50.15%) yield comparable performances. Pointer network seems to be the worst performing
baseline (35.1%). In comparison, our proposed system, ERC-MMN reports the best performance with an
improvement of ∼ 4% against DGCN with 55.78% F1-score. nother critical observation is that due to
class-imbalance, all baselines find it difficult to identify the disgust emotion. Similarly, three out of five
baselines fail to classify any fear emotion as well. In contrast, our proposed models correctly identify both
disgust and fear emotions for at least a few utterances. Furthermore, except for surprise and neutral, our
proposed model outperforms the baselines in remaining five emotion labels. We believe this performance
boost is the result of the use of memory network in an effective manner. As can be seen from the baseline
results, AGHMN and Pointer Network do not perform at par with the others since they do not contain any
memory component. While CMN, ICON and our method perform better.

ERC
Disgust Joy Surprise Anger Fear Neutral Sadness Total

0 671 44 1413 25 552 407 3112

Table 2.5: Statistics of the subset of IEMOCAP considered in this study.

Generalizability. To
analyze the performance
of our model on an out-
of-distribution general-
ization test set, we con-
sider another dataset,
IEMOCAP (119). It
contains crowdsourced conversations revolving around 16 topics. For the construction of our test set,
we randomly pick two conversations from each topic. Table 2.5 gives us a brief statistics of the subset
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of IEMOCAP dataset considered in this study. We test our model trained on MELD on IEMOCAP and
report the results in Table 2.6. Our model produces the best results. However, the results are significantly
less than the results obtained on MELD. This reduction can be attributed to the inherent differences in
the dialogues present in the two datasets. IEMOCAP contains more than 50 utterances in a dialogue
on average whereas MELD contains an average of 9 utterances per dialogue. Secondly, the emotion
distribution between the two sets also differ in a major way. IEMOCAP does not contain any disgust
emotion, and the neutral emotion is not as commonly present in it as it is in MELD. Consequently, the
task of emotion recognition becomes challenging for this dataset.

System F1-score
Dg Jy Sr An Fr Ne Sa W-Avg

CMN 0.0 7.1 0.0 56.4 0.0 2.1 2.3 28.2
ICON 0.0 14.2 0.0 49.7 0.0 9.1 8.0 28.4
DGCN 0.0 15.5 2.3 54.2 0.0 6.0 11.5 30.8
AGHMN 0.0 7.3 0.0 45.8 0.0 0.0 11.2 24.4
Pointer Network 0.0 12.4 0.0 32.2 0.0 2.6 6.0 18.1
ERC-MMN 0.0 19.3 3.2 52.7 0.0 10.2 17.1 33.7

Table 2.6: Comparative analysis for ERC on the subset of IEMOCAP dataset. (Dg: disgust, Jy: joy,
Sr: surprise, An: anger, Fr: fear, Ne: neutral, Sa: sadness). Trained on MELD; Tested on
IEMOCAP.

Error Analysis

This section presents both quantitative and qualitative analysis w.r.t. the confusion matrix and misclas-
sification examples. We also supplement our analysis of the proposed systems with DGCN (the best
baseline).

Confusion Matrix. Table 2.7 shows the confusion matrix for ERC. For most of the emotions, our proposed
EFR-MMN model reports better true-positives against the baseline, as highlighted in blue-colored text
in the Table. The confusion matrix reveals the most confusing pair of emotions as neutral and joy, with
104 joy samples misclassified as neutral and 72 neutral samples misclassified as joy. Another important
observation is that DGCN ignores the under-represented emotions, such as disgust and fear, completely.
In contrast, our proposed model assigns these two emotions to a few utterances with a bit of success. It
suggests EFR-MMN to be unbiased towards the under-represented emotion labels.

Qualitative Analysis. We also perform error analysis on the predictions of proposed systems. For
illustration, we present one representative dialogue with its gold and predicted labels (ours and DGCN)
for the ERC task. We observe from Table 2.8 that in a dialogue of ten utterances with three speakers,
EFR-MMN misclassifies only one utterance, whereas DGCN misclassifies five utterances in the same
dialogue. Moreover, DGCN predicts six utterances as neutral, out of which only four are correct. In
comparison, our proposed model does not misclassify any emotion as neutral in the dialogue. It can be
related to the biasness of DGCN towards the majority emotions.
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Predicted
Disgust Joy Surprise Anger Fear Neutral Sadness

A
ct

ua
l

Disgust 15/0 5/5 4/10 14/9 1/0 19/33 3/4
Joy 13/0 157/110 12/32 26/19 4/0 104/154 9/10
Surprise 7/0 31/40 115/87 32/21 4/0 44/80 5/10
Anger 16/0 32/45 31/56 118/74 6/0 64/101 16/7
Fear 1/0 4/5 5/9 7/2 4/0 14/24 7/3
Neutral 28/0 72/54 42/44 50/19 14/0 705/808 32/18
Sadness 7/0 18/25 9/12 19/17 6/0 68/100 42/15

Table 2.7: Confusion matrices for ERC. Cell (a/b) represents ‘a’ number of samples predicted by EFR-
MMN (our best model) and ‘b’ number of samples predicted by DGCN. Blue-colored and
red-colored texts represent superiority and inferiority of EFR-MMN, respectively, compared to
the baseline, DGCN.

Prediction# Speaker Utterance Actual
ERC-MMN DGCN

u1 Phoebe Well alright! We already tried feeding her, changing her, burping
her. Oh! Try this one.

sadness anger joy

u2 Phoebe Go back in time and listen to Phoebe! anger anger joy

u3 Monica
Alright here’s something. It says to try holding the baby close
to your body and then swing her rapidly from side to side.

neutral neutral neutral

u4 Rachel Ok. neutral neutral neutral
u5 Monica It worked! surprise surprise anger
u6 Rachel Oh! Oh! No, just stopped to throw up a little bit. sadness sadness neutral
u7 Rachel Oh come on! What am I gonna do? Its been hours and it won’t

stop crying!
sadness sadness neutral

u8 Monica Umm ’she’ Rach not ’it’, ’she’. neutral neutral neutral
u9 Rachel Yeah I’m not so sure. neutral neutral neutral
u10 Monica Oh my god! I am losing my mind! anger anger anger

Table 2.8: Actual and predicted emotions for a dialogue having 10 utterances (u1, ..., u10) from the test set.
Red-colored text represents misclassification. For the given example, ERC-MMN misclassifies
only one utterance, whereas DGCN (best baseline) commits mistakes for 5 out of 10 utterances.

2.5.2 Evaluating COFFEE

Dialogue Understanding Backbone

Existing approaches for ERC predominantly concentrate on the English language. Nonetheless, we
incorporate two state-of-the-art techniques for ERC using English datasets and leverage four established
Transformer-based methodologies as our foundation systems to address the ERC task.

• BERT (110) is a pre-trained language model that utilizes a Transformer architecture and bidirec-
tional context to understand the meaning and relationships of words in a sentence.

• RoBERTa (120) is an extension of BERT that improves its performance utilizing additional training
techniques such as dynamic masking, longer sequences, and more iterations.

• mBERT 5 (multilingual BERT) is a variant of BERT that is trained on a multilingual corpus,
enabling it to understand and process text in multiple languages.

• MURIL (121) (Multilingual Representations for Indian Languages) is a variant of BERT specifically
designed to handle Indian languages.

5https://huggingface.co/M-CLIP/M-BERT-Base-ViT-B
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• CoMPM (122) is a Transformer-based architecture especially curated for ERC. It extracts pre-
trained memory as an extractor of external information from the pre-trained language model and
combines it with the context model.

• DialogXL (50) addresses multi-party structures by utilizing increased memory to preserve longer
historical context and dialogue-aware self-attention. It alters XLNet’s recurrence method from
segment to utterance level to better represent conversational data.

• KET (123) or the Knowledge-Enriched Transformer deciphers contextual statements by employing
hierarchical self-attention, while simultaneously harnessing external common knowledge through
an adaptable context-sensitive affective graph attention mechanism.

• COSMIC (91) is a framework that integrates various aspects of common knowledge, including
mental states, events, and causal connections, and uses them as a foundation for understanding how
participants in a conversation interact with one another.

Although BERT and RoBERTa are trained using monolingual English corpus, we use them for romanised
code-mixed input, anticipating that finetuning will help the models grasp Hindi-specific nuances. To
ensure a fair comparison, we also include multilingual models such as mBERT and MURIL in our
analysis. Additionally, since we are dealing with the task of ERC, we consider two state-of-the-art
baseline architectures in this domain for monolingual English dialogues, namely CoMPM and DialogXL
and two state-of-the-art baseline that incorporates commonsense for ERC – KET, and COSMIC.

Experiment Setup and Evaluation Metric
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Figure 2.4: Correlation between different commonsense at-
tributes with the emotion attribute.

The COMET graph gives us multiple at-
tributes for one input text (c.f. Table
2.3). However, not all of them con-
tributes towards the emotion elicited
in the speaker. Consequently, we ex-
amine the correlation between the ex-
tracted commonsense attributes with
emotion labels in our train instances.
We use BERT to obtain representation
for each commonsense attribute and find
out their correlation with the emotion la-
bels. We show this correlation in Figure 2.4. As can be seen, ‘xWant’ is most positively correlated with the
emotion labels, and ‘oReact’ is most negatively correlated. Consequently, we select the attributes ‘xWant’,
and ‘oReact’ as commonsense. Further, for evaluating the performance, we select weighted F1 score as
our metric of choice to handle the imbalanced class distribution of emotions present in our dataset.

Results

Table 6.14 illustrates the results (F1-scores) we obtain for the task of ERC with and without using
COFFEE to incorporate commonsense knowledge. Notably, in the absence of commonsense, RoBERTa
and DialogXL outperform the other systems. However, it is intriguing to observe that mBERT and
MURIL, despite being trained on multilingual data, do not surpass the performance of BERT, RoBERTa,
or DialogXL. Further, when commonsense is included as part of the input using the COFFEE approach,
all systems exhibit improved performance. The F1 scores corresponding to individual emotions show
a proportional relationship with the quantity of data samples available for each specific emotion, as
anticipated within a deep learning architecture. The neutral emotion achieves the highest performance,
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Model Anger Contempt Disgust Fear Joy neutral Sadness Surprise Weighted F1

St
an

da
rd

BERT 0.23 0.18 0.11 0.20 0.45 0.54 0.16 0.32 0.40
RoBERTa 0.26 0.21 0.16 0.06 0.47 0.57 0.12 0.34 0.41
mBERT 0.10 0.11 0.00 0.11 0.23 0.50 0.13 0.08 0.30
MURIL 0.24 0.22 0.07 0.00 0.42 0.51 0.06 0.23 0.35
CoMPM 0.10 0.12 0.00 0.00 0.44 0.57 0.02 0.00 0.35
DialogXL 0.25 0.09 0.07 0.17 0.43 0.59 0.17 0.28 0.41

C
O

FF
E

E

BERT 0.24 (↑0.01) 0.2 (↑0.02) 0.12 (↑0.01) 0.19 (↓0.01) 0.46 (↑0.01) 0.56 (↑0.02) 0.18 (↑0.02) 0.35 (↑0.03) 0.41 (↑0.01)
RoBERTa 0.29 (↑0.03) 0.24 (↑0.03) 0.18 (↑0.02) 0.10 (↑0.04) 0.49 (↑0.02) 0.61 (↑0.04) 0.18 (↑0.06) 0.34 (↑ 0.00) 0.44 (↑0.03)
mBERT 0.11 (↑0.01) 0.13 (↑0.02) 0.04 (↑0.04) 0.12 (↑0.01) 0.24 (↑0.01) 0.51 (↑0.01) 0.12 (↓0.01) 0.10 (↑0.02) 0.31 (↑0.01)
MURIL 0.26 (↑0.02) 0.21 (↓0.01) 0.10 (↑0.03) 0.01 (↑0.01) 0.46 (↑0.04) 0.52 (↑0.01) 0.08 (↑0.02) 0.22 (↓0.01) 0.37 (↑0.02)
CoMPM 0.11 (↑0.01) 0.14 (↑0.02) 0.02 (↑0.02) 0.02 (↑0.02) 0.45 (↑0.01) 0.56 (↓0.01) 0.03 (↑0.01) 0.10 (↑0.01) 0.36 (↑0.01)
DialogXL 0.26 (↑0.01) 0.11 (↑0.02) 0.10 (↑0.03) 0.19 (↑0.02) 0.44 (↑0.01) 0.59 (↑ 0.00) 0.20 (↑0.03) 0.31 (↑0.03) 0.42 (↑0.01)

C
S KET 0.14 (↓0.15) 0.11 (↓0.13) 0.09 (↓0.09) 0 (↓0.10) 0.34 (↓0.15) 0.41 (↓0.20) 0.08 (↓0.10) 0.19 (↓0.15) 0.28 (↓0.16)

COSMIC 0.21 (↓0.08) 0.18 (↓0.06) 0.15 (↓0.03) 0.03 (↓0.07) 0.39 (↓0.10) 0.49 (↓0.12) 0.13 (↓0.05) 0.27 (↓0.07) 0.34 (↓0.10)

Table 2.9: Performance of comparative systems with and without incorporating commonsense via COF-
FEE. Numbers in parenthesis indicate the corresponding performance gain over the non-
commonsense (standard) version. The last two rows compare the performance of the best
performing COFFEE model (RoBERTa) with other commonsense (CS) based ERC methods.

followed by joy and surprise, as these classes possess a greater number of data samples (see Table 2.2).
Conversely, the minority classes such as contempt and disgust consistently obtain the lowest scores
across almost all systems. Furthermore, we can observe from the table that the existing strategies of
commonsense fusion perform poorly when compared with the COFFEE method. The loss in performance
can be attributed to two aspects of the comparative system – KET uses NRC_VAD (124), which is an
English-based lexicon containing VAD scores, i.e., valence, arousal, and dominance scores, to gather
words for which knowledge is to be retrieved. Since our input is code-mixed with the matrix language as
Hindi, using only the English terms makes the KET approach ineffective. In contrast, although COSMIC
uses the COMET graph, it uses the raw representations obtained from the commonsense graph and
concatenates them with the utterance representations obtained from the GRU architecture. Since we use
the generated natural language commonsense with the smart fusion method, we hypothesize that our
model is able to capture and utilize this knowledge effectively. Additionally, we performe a T-test on our
results to check the statistical significance of our performance gain and obtained a p-value of 0.0321 for
our RoBERTa model which, being less than 0.05, makes our results statistically significant.

Ablation Study

Fusion Methods. We investigate the effectiveness of COFFEE in capturing and incorporating common-
sense information. To evaluate different mechanisms for integrating this knowledge into the dialogue
context, we present the results in Table 6.7. Initially, we explore a straightforward method of concatenating
the obtained commonsense knowledge with the dialogue context and passing it through the RoBERTa
model. Interestingly, this simple concatenation leads to a decline in the performance of emotion recogni-
tion, suggesting that the introduced commonsense information may act as noise in certain cases. This
outcome can be attributed to the inherent nature of some utterances, where external knowledge may not
be necessary to accurately determine the expressed emotion. For instance, consider the sentence “Aaj me
sad hun” (“I am sad today”), which can be comprehended without relying on commonsense information
to identify the emotion as sadness. In such scenarios, enforcing additional information may disrupt the
model’s behavior, resulting in suboptimal performance. Conversely, by allowing the model the flexibility
to decide when and to what extent to incorporate commonsense knowledge, as demonstrated by the
attention and COFFEE approaches, we observe an improvement in system performance, with COFFEE
yielding the most favorable outcomes.
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RoBERTa Anger Contempt Disgust Fear Joy neutral Sadness Surprise Weighted F1

Standard 0.26 0.21 0.16 0.06 0.47 0.57 0.12 0.34 0.41

C
S

Concat 0.22 (↓0.04) 0.19 (↓0.02) 0.15 (↓0.01) 0.04 (↓0.02) 0.44 (↓0.03) 0.52 (↓0.05) 0.09 (↓0.03) 0.31 (↓0.03) 0.37 (↓0.04)
DPA 0.27 (↑0.01) 0.21 (↑ 0.00) 0.16 (↑ 0.00) 0.08 (↑0.02) 0.48 (↑0.01) 0.59 (↑0.02) 0.11 (↓0.01) 0.33 (↓0.01) 0.42 (↑0.01)

COFFEEEng 0.11 (↓0.15) 0.09 (↓0.12) 0.01 (↓0.15) 0 (↓0.06) 0.16 (↓0.31) 0.24 (↓0.33) 0.02 (↓0.10) 0.11 (↓0.23) 0.16 (↓0.25)
COFFEEHin 0.20 (↓0.06) 0.15 (↓0.06) 0.12 (↓0.04) 0.02 (↓0.04) 0.36 (↓0.11) 0.53 (↓0.04) 0.12 (↑0.00) 0.29 (↓0.05) 0.35 (↓0.06)
COFFEExW 0.26 (↑ 0.00) 0.22 (↑0.01) 0.15 (↓0.01) 0.04 (↑0.02) 0.47 (↑ 0.00) 0.59 (↑ 0.02) 0.16 (↑0.04) 0.33 (↓0.01) 0.42 (↑0.01)
COFFEEoR 0.27 (↑0.01) 0.24 (↑0.03) 0.17 (↑0.01) 0.07 (↑0.01) 0.43 (↓0.04) 0.59 (↑0.02) 0.18 (↑0.06) 0.33 (↓0.01) 0.41 (↑ 0.00)

COFFEE 0.29 (↑0.03) 0.24 (↑0.03) 0.18 (↑0.02) 0.10 (↑0.04) 0.49 (↑0.02) 0.61 (↑0.04) 0.18 (↑0.06) 0.34 (↑ 0.00) 0.44 (↑0.03)

Table 2.10: Ablation results comparing different fusion techniques for the best performing system
(RoBERTa). Numbers in parenthesis indicate the performance gain over the non-commonsense
(standard) version. Performance when only one of the matrix or embedding language is
used for experimentation is also shown. (CS: Commonsense; DPA: Dot Product Attention;
COFFEExW : COFFEE with only xWant attribute as commonsense knowledge; COFFEEoR:
COFFEE with only oReact attribute as commonsense knowledge).

Effect of Language. In code-mixing, the input amalgamates two or more languages, often with one
language being the dominant one, called the matrix language, while others act as embedding languages.
The foundation of grammatical structure comes from the matrix language (Hindi in our case), and solely
relying on the embedding language (English in our case) can lead to a decline in the model’s performance.
On the flip side, the embedding language plays a vital role in capturing accurate contextual details within
the input. Therefore, confining ourselves to only the matrix language should also result in a drop in
performance. To verify this hypothesis, the third and fourth row of Table 6.7 shows the performance of the
COFFEE methodology, using the RoBERTa model, when we use only English (the embedding language)
and only Hindi (the matrix language) in our input. The results reinforce our hypothesis, where the usage
of only embedding language (English only) deteriorates the model performance extensively, while the
sole use of matrix language (Hindi only) also hampers the performance when compared to the system that
uses both the languages.

oEffect oReact oWant xAttr xEffect xIntent xNeed xReact xWant

0.32 0.41 0.39 0.34 0.37 0.37 0.32 0.36 0.42

Table 2.11: Ablation results comparing different attibutes of commonsense
when fused with RoBERTa using the COFFEE. The scores
are weighted F1.

COMET Attributes. We ex-
plore the utilization of var-
ious COMET attributes as
our commonsense informa-
tion. The last three rows
in Table 6.7 demonstrate the
outcomes when we integrate
the two most correlated at-
tributes, xWant and oReact with the RoBERTa backbone model using COFFEE. It is evident that the
individual consideration of these attributes does not significantly enhance the performance of ERC com-
pared to when they are combined. Additionally, Table 2.11 presents the weighted F1 scores achieved by
the RoBERTa model when each commonsense attribute is incorporated individually using COFFEE. These
results align well with the observed correlation between the attributes and the corresponding emotion
labels in Figure 2.4.

Error Analysis

A thorough quantitative analysis, detailed in the previous section, revealed that the integration of com-
monsense knowledge enhances the performance of all systems under examination. However, to gain a
deeper understanding of the underlying reasons for this improvement, we conduct a comprehensive error
analysis, comprising of confusion matrices and subjective evaluations.
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# Speaker Utterance Emotion

Gold w/o CS w CS

u1 Maya Khatam ho gaya Sahil it’s over! (It’s over, Sahil!) sadness sadness sadness
u2 Monisha Mummyji, tissue paper ke aur 2 boxes hai, laati hun. (Mummyji, I have two more boxes of tissue paper,

I’ll bring them.)
neutral joy neutral

u3 Sahil Monisha, mom tissue paper ki baat nhi kar rhi hai... (Monisha, mom is not talking about tissue
paper...)

neutral sadness neutral

u4 Maya My life! Meri zindagi! Khatam ho gayi hai. Can you imagine Sahil? Uss Rita se toh Monisha zyada
achi hai. Can you imagine? (My life! My life! It’s over. Can you imagine, Sahil? Monisha is better
than that Rita. Can you imagine?)

sadness sadness sadness

u5 Monisha Mein kya itni buri hun mummy ji? (Am I that bad, mummyji?) sadness sadness contempt
u6 Maya Haan beta. Lekin wo Rita! Oh my god! Saans leti hai toh bhi cheekh sunai deti hai. Jab logo ko

pata chalega ke rosesh ne loudspeaker se shaadi ki hai?! (Yes, dear. But that Rita! Oh my god! Even
when she breathes, she makes a sound. When people find out that Rosesh got married through a
loudspeaker?!)

sadness disgust sadness

u7 Monisha Logo ko pata chal gaya mummyji... ( People found out, mummyji...) neutral surprise surprise
u8 Maya What do you mean?! (What do you mean?!) fear fear contempt
u9 Monisha Wo sarita aunty ka phone aaya tha na... (Sarita aunty called, right...) neutral surprise neutral

Table 2.13: Actual and predicted emotions (using RoBERTa) for a dialogue having nine utterances from
the test set of E-MaSaC. Red-colored text represents misclassification.

Predicted
An Co Di Fe Jo Ne Sa Su

G
ol

d

An 26/33 5/5 8/4 2/9 13/20 86/62 1/4 1/5
Co 6/4 9/16 6/6 1/2 7/8 50/42 2/2 1/2
Di 2/6 1/3 5/2 0/0 1/1 7/4 0/0 1/1
Fe 9/13 2/5 3/4 1/3 17/19 76/55 12/17 2/6
Jo 3/8 3/4 2/2 1/9 159/171 162/139 15/8 4/8
Ne 21/32 14/18 2/7 2/9 76/81 496/450 21/27 24/32
Sa 5/11 7/6 5/3 0/1 19/26 90/71 28/35 1/2
Su 1/1 0/0 0/0 0/0 8/6 22/18 0/1 26/31

Table 2.12: Confusion matrices for ERC for the best per-
forming RoBERTa model (without/with com-
monsense). (An: Anger; Co: Contempt; Di:
Disgust; Fe: Fear; Jo: Joy; Ne: Neutral; Sa:
Sadness; Su: Surprise).

Confusion Matrix. Given the superior per-
formance of the RoBERTa model we con-
duct an examination of its confusion matri-
ces with and without commonsense fusion,
as shown in Table 2.12. We observe that the
RoBERTa model with COFFEE integration
achieves higher true positives for most emo-
tions. However, it also exhibits a relatively
higher number of false negatives when com-
pared with its standard variant, particularly
for the neutral class. This observation sug-
gests that the commonsense-infused model
excels in recall but introduces some chal-
lenges in terms of precision, thereby pre-
senting an intriguing avenue for future re-
search. Additionally, we notice a heightened level of confusion between neutral and joy emotions,
primarily due to their prevalence in the dataset. Both models, however, demonstrate the least confusion
between the disgust and surprise emotions, indicating their distinguishable characteristics.

Subjective Evaluation

For the purpose of illustration, we select a single instance from the test set of E-MaSaC and present,
with it, the ground-truth and the predicted labels for the task of ERC for the best performing RoBERTa
model with and without using the COFFEE approach in Table 2.13. It can be observed that the inclusion
of commonsense knowledge in the model significantly reduces errors. Comparatively, the variant of
RoBERTa that does not incorporate commonsense knowledge makes errors in 5 out of 9 instances, whereas
the variant utilizing commonsense knowledge, using COFFEE, misclassifies only 3 utterances. Within
the test set, numerous similar instances exist where the commonsense-infused variant outperforms its
counterpart due to the implicit information embedded in the utterances.
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Figure 2.5: Screenshots of ChatGPT responses when prompted to provide emotions for the last utterance
in the dialogue.

ChatGPT and Code-mixing

Considering the emergence and popularity of ChatGPT, it becomes imperative to conduct an analysis of it
for the task of ERC in code-mixed dialogues. Although ChatGPT exhibits remarkable performance in a
zero-shot setting across various tasks and scenarios, it is important to note its shortcomings, particularly
when dealing with code-mixed input. To evaluate its performance, we extract instances from E-MaSaC
and engage ChatGPT in identifying the emotions evoked within the dialogues. To accomplish this, we
construct a prompt that includes a potential set of emotions along with the code-mixed dialogue as input.
Specifically, the prompt used is as follows:

“Out of the following emotion set : {Anger, Contempt, Disgust, Fear, Joy, Neutral, Sadness, Surprise},
find out the emotion for the last utterance given the following conversation. <Conv>"
Although ChatGPT demonstrated proficiency in discerning emotions within concise and uncomplicated
conversations, its performance waned when faced with the challenge of identifying the accurate emotion
as the dialogue context extended, occasionally encompassing more than three utterances. Figure 2.5
shows four such instances. Moreover, as ChatGPT primarily operates based on prompts, we conducted
experiments by employing varying prompts and querying the model to determine emotions. For instance,
we evaluated ChatGPT without restricting it to a predefined set of emotions. The prompt used for this
evaluation was:

“Find out the emotion for the last utterance given the following conversation. <Conv>"
In another assessment, we tasked the model with categorizing the utterances of a conversation based on
the similarity of emotions displayed within it. The prompt employed in this evaluation was: “Cluster
the utterances of the following conversations based on the emotions of the utterance. Only mention the
utterance numbers and the type of cluster in the cluster. <Conv>"
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Figure 2.6 depicts the responses generated by ChatGPT in response to the aforementioned prompts. It is
observed that while we analyze discrete emotions where a single utterance may convey a single emotion,
ChatGPT tends to attribute a mixture of emotions to a single utterance. Additionally, ChatGPT appears to
struggle in recognizing sarcasm in the utterance "hum logon mein bye-bye karne ke baad, chale jate hai.
(After saying bye-bye to each other, we leave.)", erroneously identifying it as a positive emotion utterance.

Figure 2.6: Screenshots of ChatGPT responses when provided with varied prompts based on emotion
analysis.

2.5.3 Evaluating LLMs

In recent years, there has been a significant surge in the emergence of both open-source and proprietary
Large Language Models (LLMs) such as Llama (125). To assess these models’ efficacy on the tasks and
datasets outlined in this chapter, we evaluate the Llama model and compare its performance against our
top-performing systems. Table 2.14 highlights the F1-scores obtained by these models. Our findings
reveal that while the larger language model excels in English dialogues, its performance in Hindi-English
code-mixed dialogues is comparable to our system when considering weighted F1 scores. This suggests
that while Llama demonstrates proficiency in processing English text, there remains room for enhancement
in its comprehension of multilingual text.

Dataset Model Anger Contempt Disgust Fear Joy Neutral Sadness Surprise Wtd. F1

MELD
ERC-MMN 0.42 - 0.20 0.09 0.48 0.71 0.29 0.50 0.55
Llama 0.45 - 0.27 0.12 0.51 0.75 0.33 0.49 0.58

E-MaSaC
COFFEE 0.29 0.24 0.18 0.10 0.49 0.61 0.18 0.34 0.44
Llama 0.30 0.21 0.20 0.11 0.51 0.59 0.21 0.35 0.44

Table 2.14: Performance of Llama when compared with our proposed methodologies for the ERC task.

2.6 Conclusion

This chapter delves into the multifaceted domain of emotion recognition in conversation, encompassing
both monolingual English and the intricacies of Hindi-English code-mixed dialogue. In the context of
monolingual English, our research introduces a sophisticated masked memory network. This network
adeptly captures the subtleties inherent in individual speakers’ emotions and the overarching emotional
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dynamics within a conversation. To put this system to the test, we turn to the well-regarded MELD dataset
as our benchmark. In parallel, when we shift our focus to the code-mixed setting, we take the initiative
to curate an emotion-laden dialogue dataset tailored for Hindi-English conversations. Our methodology
introduces an innovative approach that leverages existing knowledge graphs, specifically designed to
extract salient commonsense concepts relevant to code-mixed inputs. This extracted commonsense
knowledge is seamlessly integrated into the core architecture through a groundbreaking fusion technique,
employing a context-aware attention mechanism. Our rigorous findings unequivocally demonstrate that
the incorporation of these commonsense features yields a substantial enhancement in ERC performance,
substantiated through both quantitative metrics and in-depth qualitative analyses. Nevertheless, our
exploration does not conclude with the mere identification of emotions; it extends further into the
intricate terrain of understanding how emotions evolve within a dialogue. This nuanced endeavor seeks to
recognize the transitions in emotions, paving the way for more adaptive and contextually relevant dialogue
modifications. This pioneering task, known as Emotion Flip Reasoning (EFR), takes center stage in the
forthcoming chapter, amplifying our emotion analysis capabilities and offering a deeper insight into the
evolving dynamics of conversational emotions.
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3. Emotion Flip Reasoning

In a conversational dialogue, speakers may have different emotional states and their dynam-
ics play an important role in understanding dialogue’s emotional discourse. However, simply
detecting emotions is not sufficient to entirely comprehend the speaker-specific changes
in emotion that occur during a conversation. To understand the emotional dynamics of
speakers in an efficient manner, it is imperative to identify the triggers and instigators behind
any changes or flips in emotion expressed by the speaker. In this chapter, we propose a new
task called Emotion Flip Reasoning (EFR), which aims to identify the triggers and instigator
behind a speaker’s emotion flip within a conversation. For example, an emotion flip from
joy to anger could be caused by an instigator like threat. To facilitate this task, we present
MELD-FR and MELD-I, two datasets that includes ground-truth EFR trigger and instigator
labels, which are in line with emotional psychology. To evaluate the dataset, we propose
novel neural architectures called EFR-TX and TGIF, which leverage Transformer encoders
and stacked GRUs to capture the dialogue context, speaker dynamics, and emotion sequence
in a conversation. Our evaluation demonstrates state-of-the-art performance against five
baselines used for the task. Further, we establish the generalizability of EFR-TX and TGIF
on unseen datasets in a zero-shot setting. Additionally, we provide a detailed analysis of the
competing models, highlighting the advantages and limitations of our neural architectures.

3.1 Introduction

Understanding emotions is essential for assessing the current state of a speaker in a conversation. Con-
sequently, there has been a significant amount of research in this field (126). Emotional awareness has
proven beneficial in areas that involve aspect analysis of users such as social media (127; 128; 129),
and e-commerce (130). Initial studies focused on standalone texts like tweets (127; 128) to extract the
appropriate emotions. However, with the advent of online dialogue agents, the focus of emotion analysis
has shifted towards conversation data, usually termed as Emotion Recognition in Conversation (ERC)
(131). Here, the input is a sequence of utterances or a dialogue, instead of isolated texts, and the aim is to
identify the emotion of each dialogue utterance. Though emotion is an imperative aspect of a conversation,
we posit that it is insufficient to simply identify the speakers’ emotion in a dialogue. To reason out the
change/flip in emotion of a speaker, a more detailed analysis is required. To this end, we propose a new
task – Emotion Flip Reasoning aka EFR.

Exploring reasons behind emotion-flips of a speaker has wide variety of applications. For example,
a dialogue agent can utilize this as feedback for the response generation, as and when, it senses an
emotion-flip due to one of its generated responses. A positive emotional-flip (e.g., sadness → joy) can be
treated as a reward, whereas the system can penalize the agent for a negative emotional-flip (e.g., neutral
→ angry). Other than empathetic response generation, another possible application of identifying the
triggers for an emotion-flip is in the domain of affect monitoring. An organization or an individual can
reason upon the emotion-flip in a conversation and make an informed decision for a downstream task.

EFR deals with identifying the cause/reason behind an emotional flip of a speaker in a dialogue. The
entire EFR pipeline works in three stages-



1. Given a sequence of dialogue utterances with emotion labels, the first stage of EFR identifies the
utterance where a speaker experienced a flip of emotion.

2. In the second stage, EFR identifies utterances or triggers responsible for the emotion flip.
3. Finally, EFR assigns psychologically motivated (132; 133) instigator labels to triggers to explain

the emotion flip.

Problem Definition The first stage can be effortlessly executed from a dialogue with emotion labels and
this chapter focuses on the second and third phase of EFR. The second phase of EFR aims to find all
utterances that trigger a flip in emotion of a speaker within a dialogue. A few example scenarios are
presented in Figure 3.1. The first dialogue in Figure 3.1a exhibits five emotion-flips, i.e., u1 (neutral)
→ u3 (joy), u2 (neutral) → u4 (joy), u4 (joy) → u6 (sadness), u5 (joy) → u7 (sadness), and u6 (sadness)
→ u8 (neutral); and the utterances that trigger the emotion flips are u3, u3, u6, u6 and u7, respectively.
Note that some emotion-flips might not be triggered by other speakers in the dialogue; instead, the target
utterance can act as a self-trigger. We show such a scenario in Figure 3.1d in which utterance u3 is the
only reason for the emotion-flip observed. On the other hand, Figure 3.1b shows a case where more than
one trigger is instigating an emotion-flip while Figure 3.1c presents an example where more than two
speakers are involved in the conversation. In such a case, the trigger can come from any of the speakers’
utterances.

On similar lines, the third phase of EFR aims to find psychologically motivated instigators for an emotion-
flip in a conversation. Formally, given a sequence of n tuples of the form ⟨ui, sj , ek⟩ in a multiparty
conversation, where sj ∈ S is a speaker from a predefined speaker set S, ek ∈ E is a set of emotion labels,
and ui ∈ D is an utterance of the dialogue D, we associate psychologically motivated instigator label(s)
with a trigger utterance ul if it causes a flip/change in emotion of a speaker sm ∈ S in their consecutive
utterances in the conversation. Following the cognitive appraisal theory (133), we define a finite set of 27
instigators to reason out flips. Here, we do not account for implicit emotion flips, i.e., emotion flips due to
the absence of explicit instigator (e.g., verbal articulation). For instance, emotion flips due to reminiscence
can be regarded as implicit. On the other hand, an external trigger is associated with an emotion flip that
occurs due to something mentioned in the text (e.g., a person getting scolded).

Figure 3.2a illustrates an example of emotion flip with corresponding instigators. It shows a multiparty
scenario where three speakers are engaged in a conversation. There are two emotion flips – ⟨u1, Ross,
fear⟩ → ⟨u3, Ross, joy⟩ and ⟨u3, Ross, joy⟩ → ⟨u5, Ross, anger⟩. The first flip occurs due to two
trigger utterances, u2 and u3, each evoking the feeling of nervousness and adoration in the speaker (Ross).
Consequently, the instigator labels for the concerned flip would be Nervousness and Adoration. On the
other hand, the trigger for the second flip is a single utterance (u4), and the corresponding instigator
labels are Annoyance and Challenge as the trigger instigates the notion of annoyance and challenge in
the speaker (Ross). This example highlights the case when more than one trigger utterance can cause an
emotion flip. In Figure 3.2b, we show another example from our dataset. It shows a dyadic conversation
having two emotion flips (u3 and u4) corresponding to two speakers (Monica and Chandler) involved in
the conversation. The emotion flip at u3 is an example of a self-trigger emotion flip – the responsible
utterance (or trigger) is u3 itself. Moreover, the same utterance u3 acts as the trigger for both the emotion
flips but causes different instigators in the two cases. It is interesting to note that the same utterance causes
the emotion sadness in one speaker while the emotion surprise in another. This highlights the importance
of identifying the emotion instigators to understand emotion dynamics completely. To summarise, our
contributions are:

• We propose a novel task, called emotion-flip reasoning, in the conversational dialogue.
• We carefully draft a set of ground-truth labels, called instigators, to explain an emotion flip.
• We develop two new ground-truth datasets for EFR, called MELD-FR and MELD-I.
• We benchmark MELD-FR and MELD-I through Transformer and GRU based models.
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(b) Emotion-flip is caused by more than one utterance.

Oh, Professor Clerk we're kind of in 
the middle of a conversation, here.

Ok Geller. Last day of the 
conference, you know what 

happens to the keynote speaker.

Or we could throw 
you both in

Ok, gentlemen!

Conversation

Speaker B

Speaker A

Joy

anger

Neutral

Trigger

u1
u2 u3

u4 u5

Emotion Flip 

Emotion Flip 
Yeah, can you guys just 

throw him in the pool later?

Neutral

Speaker C

Neutral

Trigger

(c) Emotion-flip in a multi-party conversation.

What?

Uh-oh
I have to pee. And 
Rachel’s in the bathroom!

Speaker B

Speaker A

SadnessFear
Trigger

u1
u2

u3

Emotion Flip 

Neutral
Conversation

(d) Self-trigger emotion-flip.

Figure 3.1: Examples of trigger identification in emotion-flip reasoning.
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(a) Example of an emotion flip with triggers and instigators.
Ross’s emotion flipped from Fear (u1) to Joy (u3) due
to two trigger utterances (u2 and u3) caused by the
instigators, nervousness and adoration, respectively.

(b) Example of an emotion flip with self-trigger. Monica’s
emotion flipped from Neutral (u1) to Sadness (u3) due
to one trigger utterance (u3 itself) caused by the insti-
gators nostalgia and loss. The other speaker’s emotion
then flipped from Joy (u2) to Surprise (u4) due to a
single trigger utterance (u3 again) caused by the insti-
gators nostalgia, loss and shock.

Figure 3.2: Examples of instigator labeling in emotion-flip reasoning.

3.2 Related Work

Emotion Recognition. Earlier studies in the field of emotion analysis (29; 134; 135; 136; 137; 138)
dealt with only standalone inputs. A detailed survey is provided by (139). However, these studies are
performed for standalone text, which lacks any contextual information. Recently, the focus of emotion
detection has shifted to conversations. It has gained significant popularity due to numerous applications.
Existing literature suggests that a wide range of deep learning methods have been applied to address
the ERC task (43; 44; 45; 46; 47; 49; 50; 92; 48; 80; 51; 52; 140). ICON (43) used a memory network
architecture to model the interaction between self and inter-speaker states in two-party conversations.
On the other hand, the use of external knowledge has also been explored (44) along with a hierarchical
self-attention mechanism to detect emotions in conversation. BiERU (45) used a party ignorant framework
for conversation sentiment analysis. The use of graph convolutional networks to capture the inter-speaker
dynamics in a dialogue has also been explored (46). They utilized the dependencies among speakers
to capture the contextual dynamics in an efficient way. In another work, AGHMN (47) proposed a
hierarchical memory network with an attention mechanism to capture the essence of the dialogue in order
to get a better understanding of the emotional dynamics of the speaker. TL-ERC (49) exploited the learned
parameters of a dialogue generation module for emotion recognition through the transfer learning setup.
Recently, DialogXL (50) adopted XLNet (141) model for ERC. They encoded the dialogue utterances and
made use of dialogue-aware self-attention to exploit the dialogue semantics. A hierarchical gated recurrent
unit framework involving two GRUs at different levels was employed in a study (48) where a lower-level
GRU modeled the word-level inputs while an upper-level GRU captured the context at the utterance level.
Further, a correction model for previous approaches called “Dialogical Emotion Correction Network
(DECN)" was introduced (142). The aim of this work was to improve upon the emotion recognition
performance by automatically identifying errors made by emotion recognition strategies. The authors
proposed the use of a graphical network to model human interactions in dialogues. Another study
(143) used graph to solve the problem of ERC. They proposed a conversational affective analysis model
which combined dependent syntactic analysis and graph convolutional neural networks. A self-attention
mechanism captures the most effective words in the conversation, followed by graph construction. The
authors shows experiments on various datasets the report higher accuracy than previous methods.

Beyond Emotion Recognition. Most of the existing ERC systems do not account for the explainability
of emotions. In an attempt to do so, the task of emotion-cause analysis was proposed (144). The task
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(a) Emotion flip reasoning (b) Emotion-cause extraction

Figure 3.3: A sample dialogue to illustrate the difference between emotion-cause extraction in conversa-
tion and emotion-flip reasoning.

deals with identifying a span in the text responsible for a specific emotion. For instance, we observe two
emotions in the sentence ‘The queue was so long, but at last I got vaccinated’ – joy and disgust. The task
aims at identifying the phrases ‘the queue was long’ for disgust and ‘I got vaccinated’ for joy. Following
this work, a study (145) investigated the use of linguistic phenomenon by proposing an SVM-based model
for emotion-cause identification. Xia et al. (146) proposed another task- emotion-cause pair extraction.
This task tried to extract the potential pairs of emotions and the corresponding causes in a document.
The proposed a two-step approach where, first, individual emotion extraction and cause extraction are
performed via multi-task learning and then emotion-cause pairing and filtering are done. In another one
of their work (147), they proposed a joint emotion-cause extraction framework which consisted of two
encoders. A RNN based encoder was employed to get the word-level representations while a Transformer
based encoder was applied to to learn the correlation between multiple clauses in a document. They also
encoded relative position and global predication information that they claim helped capture the causality
between clauses. Recently, the emotion cause extraction task has been extended for conversation (148)
and the authors released a dataset called RECCON containing 1, 000+ dialogues accompanied by 10, 000
emotion-cause pairs.

How is our Task Different? EFR represents a novel paradigm in NLP as it deals explicitly and
quantitatively with identifying emotion triggers and instigators. While word embeddings may contain
some implicit information about utterance meaning and emotion dynamics, they provide no explainability
for an emotion-flip, and hence, cannot be used as a potential feedback mechanism to a response generator.
Additionally, the two tasks, namely emotion-cause extraction in conversation and EFR, may seem similar
at an abstract level; nonetheless, they differ considerably at the surface level. While emotion-cause
extraction in conversation aims to extract a text span that acts as grounds for the elicited emotion, EFR
is a more speaker-specific task that highlights the triggers and instigators responsible for a “flip" in the
speakers’ emotion. In our case, the triggers come from the dialogue context, while instigators (or causes)
for an emotion flip come from a finite set of predefined labels, in contrast with the infinite possibilities of
a span that the emotion-cause extraction task can extract. In order to reinforce the difference between the
two tasks, we show a sample dialogue in Figure 3.3 from MELD-I with annotated EFR and emotion-cause
labels. It can be observed that the reason behind the emotion fear in utterance u4 comes from utterances
u1 and u3. On the other hand, the emotion flip from neutral to fear (from utterance u2 to u4) was triggered
by the utterance u3 because of the feelings of annoyance and scold being instigated in the target speaker.

3.3 Dataset

The task of Emotion Flip Reasoning consists of identifying trigger utterances and psychologically
motivated instigator labels. To this end, we curate two specific datasets – MELD-FR and MELD-I for the
task of trigger identification and instigator recognition, respectively. We explain the creation process for
these datasets in this section.
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3.3.1 MELD-FR

We employ a recently released dataset, called MELD (85) and extend it for our EFR task. As described in
the previous chapter, it consists of 13, 708 utterances spoken by multiple speakers across 1, 433 dialogues,
where each utterance has an associated emotion label representing one of Ekman’s six basic emotions:
anger, fear, disgust, sadness, joy, and surprise along with a label for no emotion, i.e., neutral. Though
MELD is a multi-modal dataset, in this work, we employ textual modality only.

For EFR, we augment MELD with new ground-truth labels (dubbed as MELD-FR). For this, we take
inspiration from the Cognitive Appraisal Theory by Richard Lazarus (149) which states that emotions
are a result of our evaluations or appraisals of an event. We extend the concept of appraisals and try to
identify these in our dialogue instances. We consider the utterances that contain possible appraisals as
triggers. We employed three annotators who had vast experiences in the ERC task1. Below, we explain
the steps carried out for the EFR annotation.

1. For each speaker sj , we identify their utterances u
sj
i in a dialogue where a flip in emotion has

occurred, i.e., the speaker’s last emotion and the current emotion are different.
2. For each identified utterance u

sj
i , we analyse the dialogue context and mark all the utterances uk

(where 1 ≤ k ≤ i) as triggers that are responsible for the emotion-flip in utterance usji . For some of
the cases, the reason for the emotion-flip of a speaker was not apparent in the dialogue, and the flip
was self-driven by the speaker. We leave such cases and do not mark any triggers for them.

Annotation Guidelines

For annotating triggers, we define a set of guidelines as furnished below. We define a trigger as any
utterance in the contextual history of the target utterance (the utterance for which the trigger is to be
identified) that follows the following properties:

1. The whole utterance or a part of utterance directly influences a change in emotion of the target
speaker.

2. The utterance can be uttered by a different speaker or the target speaker.
3. The target utterance can also be classified as a trigger utterance if it contributes to the emotion-flip

of the target speaker. For example, if a person’s emotion changes from neutral to sad because of
some sad message that she is conveying herself, then the target utterance is the one responsible for
the shift.

4. There can be more than one trigger responsible for a single emotion-flip.
5. Since we deal with textual data only, it is possible that the reason behind an emotion-flip is not

evident from the data (for example, when the flip occurs due to a visual stimulus). In such cases, no
utterance can be marked as a trigger.

We calculate the alpha-reliability inter-annotator agreement (108) between each pair of annotators,
αAB = 0.824, αAC = 0.804, and αBC = 0.820. To find out the overall agreement score, we take the
average score, α = 0.816. Figure 3.1 shows a few example scenarios from our dataset. While Figures 3.1a,
3.1b, and 3.1d illustrate the case when two participants are involved in a conversation, Figure 3.1c shows
an example where more than two speakers are involved. For our work, we considered only those dialogues
where speakers experience at least one emotion-flip. After removing dialogues with no emotion-flip, we
were left with 834 dialogues in the training set, which account for 4, 001 utterances with emotion flips.
These dialogues were annotated by three annotators according to the above guidelines for identifying
triggers. Among three annotators, two of the annotators were male, and one was female. All of them were

1However, the annotation process can easily be carried out by anyone if one follows the annotation guidelines we have
provided.

34



researchers with 3-10 years of experience. They belong to the age group of 30-40. Though we employed
three expert annotators in our annotation phase, the process does not require experts (linguistics, social
scientists, etc.). Since the annotation guidelines that we provide above are very generic, they can easily
be extended to other dialogue datasets by crowdsourcing. We wanted to prepare our labeled dataset as
accurately as possible as it would be the first dataset of its kind.

Split #Dialogue with Flip #Utterance with Flip #Triggers
Train 834 4001 6740
Dev 95 427 495
Test 232 1002 1152

Table 3.1: Statistics for MELD-FR dataset for EFR. We only consider
those dialogues from the original MELD dataset where there
is at least one emotion-flip. This step removed 271 dialogues
from MELD, resulting 1, 161 dialogues.

Similarly, we obtained the
trigger annotations for the de-
velopment and test sets. We
show a brief statistic of the
datasets in Table 3.6. The re-
sultant dataset, called MELD-
FR, contains 8, 387 trigger ut-
terances for 5, 430 emotion-
flips. We also show the EFR
trigger distribution consider-
ing their distance from the tar-
get utterance in Figure 3.4. We observe that for the majority of the emotion-flips, the triggers appear in
the past few utterances only.
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Figure 3.4: Distribution of triggers w.r.t their distance from the target
utterance.

After the annotation process,
we analyze the directional-
ity of the emotion-flips in
MELD-FR. Table 3.2 shows
the statistics of the emotion-
flip from the source emotion
(row) to the target emotion
(column). We make some in-
teresting observations. We
consider the set of emotion-
joy and surprise as ‘positive’
and the set- disgust, fear,
anger, and sadness as ‘nega-
tive’ emotions. We analyse
the emotion flips based on
these positive and negative

emotion sets. There are in total 2612 emotion flips which result in an emotion from the positive set,
whereas 2818 emotion flips result in an emotion from the negative set. Out of these flips, the most
prominent emotion-flip pairs are neutral to joy (616) when the resultant (or target) emotion is positive, and
neutral to anger (370) when the target is negative. We also analyse the flips occurring from a positive to
positive emotions (e.g. joy to surprise) or from negative to negative emotions (e.g. anger to fear). Within
the positive class, the most emotion flips are observed for the pair surprise to joy (186), while anger to
sadness flip (99) prevails the negative class. Most of the emotion flips that result in a positive emotion
originate from neutral (1103), while most emotions flips that result in a negative emotion originate from
joy (907). When the target emotion of the emotion-flip is a positive emotion, it is mostly joy (1020),
whereas for the negative case, it is mostly anger (757). We also observe that the most frequent reasons for
positive emotion-flip are excitement, cheer, or being impressed by someone else. For negative emotion-flip,
awkwardness, loss, or being annoyed are the frequent reasons.
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Target
Disgust Joy Surprise Anger Fear Neutral Sadness Total

So
ur

ce
Disgust 0 24 30 47 6 76 13 196
Joy 34 0 169 86 42 665 81 1077
Surprise 39 186 0 137 32 400 70 864
Anger 37 96 104 0 20 318 99 674
Fear 7 20 23 45 0 87 27 209
Neutral 84 616 487 370 103 0 257 1917
Sadness 17 78 60 72 28 238 0 493
Total 218 1020 873 757 231 1784 547

Table 3.2: Directionality for emotion flips. The value at cell (i, j) denotes the number of emotion-flip
from emotion i to emotion j.

3.3.2 MELD-I

Instigator

Se
nt

im
en

t

Positive adoration, benefit, calmness, cheer, desire, excite-
ment, humour, impressed, relief, satisfaction

Negative abuse, annoyance, guilt, horror, loss, nervousness,
pain, scold, shock, sympathy, threat

Ambiguous awkwardness, boredom, challenge, confusion, cu-
riosity, nostalgia

Table 3.3: Division of 27 instigators into positive, negative, and
ambiguous instigators.

We further extend the MELD dataset
to augment it with intigator labels for
identified emotion flips and correspond-
ing triggers. Specifically, we propose
new labels and convert the original
MELD dataset into instances based on
emotion-flips resulting in 1161 dialogue
instances. We manually annotate all
these instances with the proposed insti-
gator labels. However, since we use the
dialogues and emotion labels from the
MELD dataset, we keep the name of the new dataset derived from it- MELD-I.

Instigator

Coarse-grained Annoyance Awkwardness Benefit Cheer Confusion

Fine-grained Annoyance Pain Awkwardness Benefit Cheer Humour Confusion

Coarse-grained Curiosity Ease Excitement

Fine-grained Curiosity Calmness Relief Excitement Satisfaction Desire

Coarse-grained Threat Others

Fine-grained Threat Horror Abuse Boredom Sympathy Challenge Nostalgia

Coarse-grained Dazzle Loss Nervousness Shock

Fine-grained Adoration Impressed Loss Nervousness Scold Guilt Shock

Table 3.4: Instigator labels with their definitions.

Instigator Labels

To understand the emotional dynamics of the speakers in a conversation, it is imperative to reason out any
change/flip of the emotion of any speaker. Following the Cognitive Appraisal Theory by Lazarus et al.
(133), which states that emotions are a result of appraisals, we aim to identify these appraisals for each
emotion flip in the dialogue. These instigators follow the following properties:

• The instigators need not be unique to an emotion flip. For example, threat can instigate the emotion
flip joy → fear as well as the flip anger → fear.
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Speaker Utterance Emotion
u1 Ross No! No sir umm, she means a lot to me. I mean, I care I-I love

Rachel.
Fear

u2 Mona What?! Surprise
u3 Ross Oh but not that way. I mean I mean I’m not in love with her. I

love her like a, like a friend.
Joy Emotion flip - 1

u4 Dr. Green Oh really? That’s how you treat a friend? You get her in trouble
and then refuse to marry her?

Anger

u5 Ross Hey! I offered to marry her! Anger Emotion flip - 2

(a) An example dialogue from MELD.

Speaker Utterance Emotion
u1 Ross No! No sir umm, she means a lot to me. I mean, I

care I-I love Rachel.
Fear

u2 Mona What?! Surprise
u3 Ross Oh but not that way. I mean I mean I’m not in love

with her. I love her like a, like a friend.
Joy

(b) Instance - 1.

Speaker Utterance Emotion Trigger Instigator
u1 Ross No! No sir umm, she means a lot to me. I

mean, I care I-I love Rachel.
Fear No -

u2 Mona What?! Surprise Yes Nervousness
u3 Ross Oh but not that way. I mean I mean I’m not in

love with her. I love her like a, like a friend.
Joy Yes Adoration

(c) MELD-I Annotation: Trigger/Instigator.

Speaker Utterance Emotion
u1 Ross No! No sir umm, she means a lot to me. I mean, I

care I-I love Rachel.
Fear

u2 Mona What?! Surprise
u3 Ross Oh but not that way. I mean I mean I’m not in love

with her. I love her like a, like a friend.
Joy

u4 Dr. Green Oh really? That’s how you treat a friend? You get
her in trouble and then refuse to marry her?

Anger

u5 Ross Hey! I offered to marry her! Anger

(d) Instance - 2.

Speaker Utterance Emotion Trigger Instigator
u1 Ross No! No sir umm, she means a lot to me. I mean, I

care I-I love Rachel.
Fear No -

u2 Mona What?! Surprise No -
u3 Ross Oh but not that way. I mean I mean I’m not in love

with her. I love her like a, like a friend.
Joy No -

u4 Dr. Green Oh really? That’s how you treat a friend? You get
her in trouble and then refuse to marry her?

Anger Yes Annoyance,
Challenge

u5 Ross Hey! I offered to marry her! Anger No -

(e) MELD-I Annotation: Trigger/Instigator.

Table 3.5: Dataset development for an instance shown in Figure 3.2a. (a) Original dialogue from MELD;
(b,d) Two instances corresponding to the two emotion flips in (a); (c,e) Trigger and instigator
annotations for both instances.

• An emotion flip need not necessarily arise from the same set of instigators. For example, the
emotion flip neutral → fear can be caused by threat and challenge in different situations.

• There can be more than one instigator corresponding to a single emotion flip. For example, for the
emotion flip neutral → fear, the instigator can be both threat and challenge.

• The instigators cannot be emotions themselves. For example, for the emotion flip neutral →
surprise, the instigator cannot be joy.

We organize these instigators in a 2-level hierarchy. The first level presents a coarser representation of the
instigators with 14 labels, while the second level defines all 27 instigators as fine-grained representation.
Table 3.4 presents the hierarchy of instigators and their definitions. Further, these instigators can be
divided into three sets, based on the target emotion they can instigate- positive, negative, and neutral.
Division of the instigator labels into the set of positive, negative, and ambiguous can be seen in Table 3.3.

Annotation Process

The first step in our annotation process is the instance creation for each emotion flip, followed by the
trigger identification and instigator labeling. Table 3.5 presents the outcome of the annotation process for
the example shown in Figure 3.2a. We explain these steps in detail below.

1. Instance creation: For each emotion flip of a speaker, we create a new instance. The instance
contains the utterances from the beginning of the dialogue till the target utterance (emotion flipped
utterance). Utterances u3 and u5 are the target utterances in Table 3.5, and utterances ⟨u1, u2, u3⟩
and ⟨u1, u2, u3, u4, u5⟩ are the respective candidate triggers for the target utterances. Among these
candidates, u2, u3 are the triggers for the target u3, while utterance u4 instigates the emotion flip in
the target u5. Intuitively, the last utterance of each instance is the target utterance – the location of
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emotion flip. Note that we remove all such dialogues from MELD that do not contain an emotion
flip which removed 271 dialogues from the set.

2. Trigger identification: After creating an instance for each emotion flip, we identify a set of trigger
utterances that cause the emotion to flip at the target. We mark each utterance that acts as a trigger
as ‘Yes’ and the ones not contributing as ‘No’. The two instances in Table 3.5 have utterances
⟨u2, u3⟩ and ⟨u4⟩ as triggers for the target utterances u3 and u5, respectively.

3. Instigator labeling: Finally, we assign one or more instigator labels to each trigger utterance
corresponding to the target utterance. For example, as presented in Table 3.5, we assign ‘nervous-
ness’ and ‘adoration’ instigators to the trigger utterances u2 and u3, respectively, for the target u3.
Similarly, for the target utterance u5 in Table 3.5, we annotate the trigger u4 with two instigator
labels ‘annoyance’ and ‘challenge’. It is evident that the instigator identification is a multi-label
problem.

We employ the services of three annotators2 to annotate MELD-I – two of them in the first stage of
annotation, while the service of the third expert was sought to resolve any disagreement. We compute
Krippendorff’s Alpha inter-annotator agreement (108) to measure the consistency in the annotation.
For trigger identification, we obtain the inter-annotator agreement between annotators A and B as
αAB = 0.817, between annotators B and C as αBC = 0.820, and between annotators A and C as
αAC = 0.811. We take the average of these three to get the overall agreement rating, i.e., α = 0.816. For
the instigator annotation, αAB = 0.511, αBC = 0.545, and αAC = 0.540. The average agreement comes
out to be α = 0.532. The low value for the latter is attributed to the multi-label characteristic of the task.

Dataset Statistics

Split #Dialogue with Flip #Utterance with Flip #Triggers
Train 834 4001 5262
Dev 95 427 495
Test 232 1002 1152

(a) MELD-I dataset for EFR

Target
Disgust Joy Surprise Anger Fear Neutral Sadness

So
ur

ce

Disgust 0 24 30 47 6 76 13
Joy 34 0 169 86 42 665 81
Surprise 39 186 0 137 32 400 70
Anger 37 96 104 0 20 318 99
Fear 7 20 23 45 0 87 27
Neutral 84 616 487 370 103 0 257
Sadness 17 78 60 72 28 238 0

(b) Frequency of emotion flips with respect to emotions

Table 3.6: Statistics of the dataset, MELD-I.

We show a brief statistic of
MELD-I in Table 3.6 along
with the distribution of emo-
tion flips. We also show the
distribution of instigators in
Figure 3.5. We can observe
from Figure 3.5b that the dis-
tribution of fine-grained in-
stigator labels is skewed to-
wards a few of the instigators.
As an attempt to reduce the
skewness, we group similar
instigator labels and obtain a
reduced set of 14 instigators
in the coarse-grained setup
(c.f. Figure 3.5a).

It is interesting to note that
emotion flips can be divided
into two categories – positive
emotion flips ({anger, fear, disgust, sadness} → {joy, surprise, neutral}) and negative emotion flips ({joy,
surprise} → {anger, fear, disgust, sadness, neutral}). The flips {neutral} → {joy, surprise} are also
considered as positive emotion flips whereas {neutral} → {anger, fear, disgust, sadness} are considered
as negative emotion flips. Considering the above categorization of emotion flips, we observe that not all

2They are NLP researchers or linguistics by profession; their age ranges between 30− 45 years.
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instigators can result in all emotions flips. For example, it is improbable for a person to feel joy because
of guilt – for an emotion flip with the target emotion joy, the instigator can almost never be guilt. Our
observation of the annotated dataset is in line with this phenomenon.
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Figure 3.5: Distribution of EFR instigators in MELD-I.

Consequently, we divide our
instigator labels into three
sets – positive, negative, and
ambiguous. We observe that
for a positive emotion flip,
only the instigators belonging
to the positive and ambiguous
set of instigators are responsi-
ble. Similarly, for a negative
emotion flip, the negative and
ambiguous sets are applica-
ble.

3.4 Methodology

3.4.1 EFR-TX

For the EFR task, we make
a sequence of predictions corresponding to each previous utterance ui, where i ≤ t, denoting the
trigger/reason behind emotion-flip at the target utterance ut. We employ an instance-level Transformer-
based (150) encoder. Figure 3.6 presents a high-level architecture of our model.

Target ut Instance Trigger labels

Figure 3.1a

u3 {u1, u2, u3} {0, 0, 1}
u4 {u1, u2, u3, u4} {0, 0, 1, 0}
u6 {u1, u2, u3, u4, u5, u6} {0, 0, 0, 0, 0, 1}
u7 {u1, u2, u3, u4, u5, u6, u7} {0, 0, 0, 0, 0, 1, 0}
u8 {u1, u2, u3, u4, u5, u6, u7, u8} {0, 0, 0, 0, 0, 0, 1, 0}

Figure 3.1b u8 {u1, u2, u3, u4, u5, u6, u7, u8} {0, 0, 0, 0, 1, 0, 1, 0}

Figure 3.1c
u4 {u1, u2, u3, u4} {0, 0, 1, 0}
u5 {u1, u2, u3, u4, u5} {0, 0, 0, 1, 0}

Figure 3.1d u3 {u1, u2, u3} {0, 0, 1}

Table 3.7: Instance creation corresponding to the dialogues in
Figure 3.1 for the EFR task.

We model the emotion-flip reasoning
task as an instance-based classification
problem. At first, we define an EFR
instance as a sequence of utterances,
u1, u2, ..., ut, where the aim is to iden-
tify a set of triggers for the target (last)
utterance ut. Intuitively, it can be ob-
served that the triggers for the target ut-
terance ut must belong to the utterance
set u1, u2, ..., ut. Thus, we classify each
utterance in the instance as trigger/non-
trigger for the target utterance ut. We
repeat the same process for each utter-
ance in the dialogue; however, if no emotion-flip is observed for the target utterance ut in the training set,
we do not process the error gradients in the backward pass.

We show the instance creation process for all the example dialogues (as shown in Figure 3.1) in Table 3.7.
In the first example (Figure 3.1a), there are five utterances, u3, u4, u6, u7 and u8, where the emotion of the
speakers has flipped; thus, we have created five instances for each target emotion-flip; the corresponding
trigger utterances are u3, u3, u6, u6 and u7, respectively. In the second one (Figure 3.1b), we show an
instance where triggers can come from multiple utterances. Here, the emotion of the speaker has flipped
once in utterance u8, and the triggers were identified as the utterances u5 and u7. We also show an example
when more than two interlocutors are involved in a conversation (Figure 3.1c). In the particular example,
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there are two emotion flips at utterances u4 and u5. The triggers utterances for the same are u3 and u4,
respectively. In the last example (Figure 3.1d), we show an instance where the emotion-flip is a result of
a self trigger, i.e., for the emotion-flip observed at utterance u3, the trigger is the same utterance itself.

EFR-TX

Transformer Encoder

Trigger Trigger Trigger Trigger

Transformer Encoder

Trigger Trigger Trigger Trigger

Transformer Encoder

Trigger Trigger Trigger Trigger

ui

ui+1

ui+2

Dialog sequence

ui-1u1

Figure 3.6: The proposed Transformer-based (EFR-TX) model
for EFR. EFR-TX models each instance as a tuple
<past utterances as trigger candidates, target utter-
ance as the location of emotion-flip>.

After compiling the EFR instances, we
employ the Transformer model for clas-
sification. We obtain the encoder output
hi for each utterance of an instance, and
concatenate it with the encoder output
of the target utterance ht, i.e., ∀i, ĥi =
hi ⊕ ht. Since emotion-flip reasoning
has a strong correspondence with the
emotion label, we supplement each con-
textual utterance with its emotion la-
bel to learn an appropriate representa-
tion for the trigger classification. Sub-
sequently, we classify each utterance as
trigger/non-trigger for the target utter-
ance.

3.4.2 TGIF

Figure 3.7: The proposed TGIF architecture. Input: {⟨u1, s1, e1⟩, ⟨u2, s2, e2⟩, ⟨u3, s1, e3⟩, ⟨u4, s3, e4⟩,
⟨u5, s2, e5⟩}, where ⟨ui, sj , ei⟩ represents the utterance ui by a speaker sj and its associated
emotion ei. Target (emotion flipped) utterance: ⟨u5, s2, e5⟩ as e2 ̸= e5.

The instigator identification task is a multi-label instance classification problem, as more than one
instigator is possible for each trigger. TGIF models the global utterance sequence (aka. dialogue context)
and speaker dynamics to capture the underlying semantics in the dialogue. Moreover, considering the
strong relationship of emotion with our task, we also encode the emotion sequence of the utterances
in TGIF. In total, TGIF has four submodules that exploit the global and speaker-specific dialogue and
emotion dynamics – Global Utterance Sequence (GUS), Global Speaker Sequence (GSS), Global Emotion
Sequence (GES), and Speaker-Specific Emotion Sequence (SSES). Finally, we combine the outputs of
these four modules through a series of fully-connected layers followed by a 14/27 neurons sigmoid layer
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for both coarse-grained and fine-grained instigator identifications. Furthermore, at the penultimate layer,
we apply an output mask to filter out the improbable instigator labels for the underlying emotion flip. The
output mask assists the model in focusing on the probable labels and blocks the gradients for the unlikely
labels to propagate back to the network. Below, we describe each module of TGIF in detail. Figure 5.5
presents the architecture of TGIF.

Global Utterance Sequence (GUS). The principle information about a dialogue lies in the utterances
spoken in it. Thus, we employ GUS to encode the utterance sequence. We use a Transformer (151)
encoder to extract a hidden representation hui for each utterance ui. For each, utterance, usii , in the
dialogue, we get an encoded vector, hui , after this state, i.e. ∀usii , hui = Tu(u

si
i ). Thus, hui represents the

context aware representation of the ith utterance of the dialogue D.

Global Emotion Sequence (GES). In this module, we employ a single-layer GRU (152), gGRU , to
capture the global emotion sequence of the dialogue. We hypothesize that the knowledge of emotion
sequence would assist the model in capturing a high-level snapshot of the emotion flow among speakers.
We feed the emotion sequence of the dialogue, {e1, e2, ..., et}, as input to the GRU where each emotion
ei is represented by a one-hot vector of dimension 7. As a result, we obtain the hidden representation as
follows: [he1, .., h

e
2, .., h

e
t ] = gGRU(e1, e2, .., et).

Speaker-Specific Emotion Sequence (SSES). Each emotion flip is associated with a speaker. Thus, we
hypothesize that the sequence of emotions at the speaker level is crucial and would exploit the emotion
dynamics of each speaker considering the target speaker. Moreover, it would distinguish between the
emotional states of the target speaker and other speakers. To achieve this, we employ separate GRUs for
each speaker in an instance.

For example, if there are three distinct speakers in an instance (c.f. instance 2 in Table 3.5), we learn
three GRUs. For each speaker, we extract its emotion from the dialogue and create the input for GRUs
as follows. Let an instance with five utterances of three distinct speakers be given as {⟨u1, s1, e1⟩,
⟨u2, s2, e2⟩, ⟨u3, s1, e3⟩, ⟨u4, s3, e4⟩, ⟨u5, s2, e5⟩}, where ui and ei denote the utterance and associated
emotion at turn i by speaker sj . We compile three inputs for each speaker as {e1, e3}, {e2, e5}, and {e4},
and feed them to three speaker-specific GRUs (sGRU).

[ĥe1, ĥ
e
3] = sGRU1(e1, e3)

[ĥe2, ĥ
e
5] = sGRU2(e2, e5)

[ĥe4] = sGRU3(e4)

Finally, we combine the hidden representations of GRUs by arranging them in the dialogue order for
further processing, i.e., Ĥ = [ĥe1, ĥ

e
2, ĥ

e
3, ĥ

e
4, ĥ

e
5].

Global Speaker Sequence (GSS). To explicitly capture the speaker information, their reactions with
respect to other speakers, and their relationships, we also propose to encode the speaker sequence in TGIF.
To capture the different reactions of a speaker with respect to the utterance of other speakers, we capture
the speaker sequence by employing another Transformer encoder, Ts, which takes as input the sequence
of speakers where each speaker is represented by a one-hot encoded vector. Each speaker goes through
the Transformer encoder to give a speaker sequence aware representation, hsi , i.e. ∀si, hsi = Ts(si). After
this, we have a speaker sequence aware representation for each speaker, hsi , in the dialogue.

Fusion. We fuse the outputs of the above four submodules in two steps. In the first step, we combine
the dialogue-level utterance and speaker sequence to obtain a global view of the conversation through a
fully-connected layer. In parallel, we combine the dialogue and speaker-level emotion dynamics to get the
essence of the flow of emotions in the conversation. Subsequently, in the second step, we concatenate
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the two representations. As the effect of an utterance on the final emotion changes with the change of
the target utterance, we append the target representation to each utterance before feeding it to the output
layer for prediction. We can justify the appending operation through the example shown in Table 3.5. It
can be observed that utterance u2 is present in both instances; however, it is the trigger only in the first
instance. Moreover, in Figure 3.2b, the same trigger utterance u3 resulted in an emotion flip from neutral
to sadness in the first instance, while it causes the speaker’s emotion change to surprise from joy for the
second instance. Finally, we apply gradient masking for the improbable instigators.

3.5 Experiments and Results

We evaluate our models on MELD-FR and MELD-Ifor the task of trigger identification and instigator
recognition, respectively. We will tackle both the models – EFR-TX and TGIF in different subsections in
this section.

3.5.1 Evaluating EFR-TX

Figure 3.4 shows the distribution of triggers based on their distance from the target utterance. We
notice that most of the triggers are the utterances that are spoken just before the target. This phenomenon
corresponds to the natural conversations where an emotion-flip occurs immediately after a trigger statement
is said. However, there are cases where the trigger lies beyond the last utterance of the target speaker.
After analyzing the distribution carefully, we restrict the context_size = 5 for the experiments involving
instance-level EFR classification.

Baseline Methods We employ a set of following baseline methods for a comparative study:
• CMN (20): It utilizes memory networks to store the speaker-level contextual history within a

dialogue. The authors showed that maintaining the conversational history in a memory helped CMN
in predicting emotions more precisely. They also used these memories in capturing inter-speaker
dependencies.

• ICON (115): It maintains a memory network to preserve the interaction between the self and
inter-speaker influences in dyadic conversations. It models this interaction into the global memory
in a hierarchical way. Finally, the memory is used as a contextual summary which aid in predicting
the emotional labels.

• DGCN (116): It models the inter-speaker dynamics in a dialogue via a graph convolutional network.
This work also leverages the self and inter-speaker dependencies of the participants for modeling
conversations. By using graphs, the authors claim to have modeled context propagation in an
efficient way.

• AGHMN (117): It incorporates an attention GRU mechanism that controls the flow of information
through a modified GRU cell based on the attention-weights, computed over the historical utterances
in a dialogue.

• Pointer Network (118) : They are often used to generate output sequence when the length of
output sequence depends on the length of the input sequence. Pointer networks have been applied to
solve various combinatorial optimization and search problems such as Convex hull, and travelling
salesman problem. Here, we use it to map our input sequence of utterances of a dialogue into a
sequence of emotions or triggers.

These baselines are readily suitable for ERC, and a few of them reported their performance on the MELD
dataset. On the other hand, by definition, for each utterance ui, EFR aims to predict a classification
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(trigger/non-trigger) label for each of the previous utterances (u1, ..., ui), i.e., the model has to predict a
vector of labels of length i. Since EFR is a new task and has no direct baseline model, we extend the above
ERC baselines to predict a vector of labels. We augment the output layer with i independent softmax
functions corresponding to each contextual utterance to achieve this. We keep the rest of the architecture
as the original.

Results

The tasks of EFR and ERC are highly correlated and thus, in this section, we study the results obtained
from EFR and its’ impact on the ERC task. In this section, we present our comparitive study for EFR and
ERC task by using the EFR-TX and the ERC-MMN(c.f. Chapter 2). We analyse the tasks in standalone
as well as pipeline fashion. More details can be found below.

System ERC (F1) EFR (F1)
Dg Jy Sr An Fr Ne Sa W-Avg Trigger

CMN† 0.0 48.6 54.0 33.7 8.6 75.9 19.9 51.7 37.5
ICON† 0.0 36.8 45.5 37.0 0.0 69.6 11.0 50.1 37.3
DGCN† 0.0 48.1 52.9 31.6 4.5 75.8 15.5 51.8 52.9
DGCN†

multi 0.0 39.2 43.7 37.1 0.0 71.7 12.1 51.1 53.0
AGHMN† 0.0 40.1 43.1 11.7 0.0 63.0 25.0 44.2 52.3
Pointer Network† 3.0 15.1 17.0 13.1 0.0 63.2 7.0 35.1 49.0
(ERC/EFR)-MMN 20.2 48.7 50.4 42.9 9.8 71.9 29.6 55.7 33.4
(ERC/EFR)-TX 0.0 4.0 5.0 1.9 0.0 61.2 0.0 29.5 44.8
EFR-ERCmulti 18.8 48.6 49.3 43.7 11.2 72.1 32.0 55.7 34.8
ERCTrue →EFR - - - - - - - - 53.9

Table 3.8: Comparative analysis for ERC and EFR. (ERC/EFR)-MMN represents ERC-MMN for the
emotion recognition task and EFR-MMN for the emotion-flip reasoning task (Dg: disgust, Jy:
joy, Sr: surprise, An: anger, Fr: fear, Ne: neutral, Sa: sadness). †Performance on the MELD-FR
dataset.

• Single-task Learning Framework: In this setup, both tasks are trained and evaluated separately.
We evaluate two tasks on both Transformer-based (TX) and masked memory network-based (MMN)
architectures. Table 3.8 summarizes the results. The MMN based systems, i.e., ERC-MMN and EFR-
MMN (jointly denoted as (ERC/EFR)-MMN in Table 3.8), obtain F1-scores of 55.78% and 33.42%,
respectively. The modeling of EFR-MMN as utterance-level classification follows the same procedure
adopted for the baselines of EFR (c.f. Baseline section). Though the MMN architecture yields moderate
performance on ERC, it underperforms on the EFR task, possibly due to the way the task was modeled.
This motivated us to model EFR as an instance-level classification, as mentioned in Table 3.7 and the
methodology section. Subsequently, we train a Transformer-based architecture EFR-TX and obtain a
44.79% F1-score on the test set. The improvement of more than 11% in F1-score justifies our EFR
modeling as instance-level classification. We argue that reasoning the flip requires the information
of the emotional states of the speakers. To support this hypothesis, we propose the ERCTrue →EFR
architecture, where we provide the true emotion labels in the EFR-TX architecture. The results obtained
from this model support our hypothesis as we obtain a 53.9% F1-score. That is, an improvement of
9% over the EFR-TX model is observed. Following the success of EFR-TX, we also experiment with
ERC-TX; however, the performance degrades significantly.

• Multitask Learning Framework: Since ERC and EFR depend on each other, we design a joint learning
approach where two tasks are learned simultaneously in a unified manner. This setting follows a pipeline
where the ERC-MMN model is extended to first detect the ERC labels, and if there is a flip observed in
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a speaker’s emotion, the EFR task is performed. Both the tasks share ERC-MMN till the penultimate
layer. Subsequently, we add two parallel fully-connected layers – one for each task. We train the model
by accumulating the losses incurred at the output layers of ERC and EFR and backpropagate employing
Adam optimizer. We call this model EFR-ERCmulti. Unfortunately, EFR-ERCmulti does not benefit much
for ERC and a slight improvement of ∼ 1.4% F1-score for EFR compared to EFR-MMN. However, the
obtained multitask performance on EFR is below-par compared to EFR-TX. Similar to the earlier case,
we attribute this performance drop to the different ways in which we model the tasks. We also perform
multitasking on the best baseline, DGCN, where we observe that EFR slightly improves (from 52.9%
to 53.0%), whereas we observe a 0.7% drop in ERC (51.8% to 51.1%).

• Other Cascade Models: Along with the experiments mentioned in Table 2.4, we also perform other
experiments to play around with our architectures, specifically for the EFR task. Previously, we have
explained two types of cascade models for the EFR task (ERC→EFRcas and ERCTrue →EFR). Here,
we will show two more cascade models that we tried for the EFR task.

– Early-fusion cascade: In this setting, we introduce emotion labels in the input layer of our model.
We concatenate the emotion representation (a 7-dimensional one-hot vector) with the utterance
representation (a 768-dimensional BERT vector) and then feed it to the transformer-based network.
The first row of Table 3.9 shows the results obtained using this model.

– Late-fusion cascade: In this setting, we introduce emotion labels in the penultimate layer of
our model. We concatenate the emotion representation (a 7-dimensional one-hot vector) with the
representation obtained from the transformer encoder. We then feed this representation to the
classification layers for classification. The second row of Table 3.9 shows the results obtained
using this model.

Early Fusion Late Fusion
Trigger F1 35.1 51.5

Table 3.9: Experimental results for early- and
late-fusion of emotion labels in the
ERCTrue →EFR model.

In comparison to the single-task model ERC-TX
with 44.79% F1, two of the baselines (CMN with
37.5% F1 and ICON with 37.3% F1) obtain lesser
F1-scores, while the other three baselines, DGCN,
AGHMN, and pointer network report improved
results of 52.93%, 52.30%, and 49.0% F1-scores,
respectively. However, all five baselines are out-
performed by our final model (ERCTrue →EFR)
which reports an improvement of 1− 17% in F1-score for the trigger label.

Generalizability

To analyze the performance of our model on an out-of-distribution generalization test set, we consider
another dataset, IEMOCAP (119). It contains crowdsourced conversations revolving around 16 topics.
For the construction of our test set, we randomly pick two conversations from each topic. We then create
instances from these dialogues as illustrated in Table 3.7 and manually annotate them with EFR labels
(inter-annotator agreement, α = 0.813; αAB = 0.818, αAC = 0.808, and αBC = 0.820. To measure
the overall agreement score, we take the average of these values, α = 0.813.). Table 3.10 gives us a
brief statistics of the IEMOCAP-FR dataset. We test our model trained on MELD-FR on IEMOCAP-FR
and report the results in Table 3.11. For ERC, our model produces the best results. However, the results
are significantly less than the results obtained on MELD-FR. This reduction can be attributed to the
inherent differences in the dialogues present in the two datasets. IEMOCAP contains more than 50
utterances in a dialogue on average whereas MELD contains an average of 9 utterances per dialogue.
Secondly, the emotion distribution between the two sets also differ in a major way. IEMOCAP does
not contain any disgust emotion, and the neutral emotion is not as commonly present in it as it is in
MELD-FR. Consequently, the task of emotion recognition becomes challenging for this dataset. On the
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other hand, our model and the baselines perform surprisingly well for the task of EFR, comparable to the
EFR performance on MELD-FR. This performance can be attributed to the fact that even if the emotion
distribution differs in IEMOCAP-FR, the distribution of triggers is still very similar to MELD-FR.

ERC EFR
Disgust Joy Surprise Anger Fear Neutral Sadness Total #Diag with Flip #Utt with Flip #Triggers

0 671 44 1413 25 552 407 3112 32 965 1388

Table 3.10: Statistics of the IEMOCAP-FR dataset.

System ERC (F1) EFR (F1)
Dg Jy Sr An Fr Ne Sa W-Avg Trigger

CMN 0.0 7.1 0.0 56.4 0.0 2.1 2.3 28.2 35.6
ICON 0.0 14.2 0.0 49.7 0.0 9.1 8.0 28.4 36.1
DGCN 0.0 15.5 2.3 54.2 0.0 6.0 11.5 30.8 49.6
DGCNmulti 0.0 11.3 2.2 53.4 0.0 5.1 13.1 29.2 48.4
AGHMN 0.0 7.3 0.0 45.8 0.0 0.0 11.2 24.4 49.3
Pointer Network 0.0 12.4 0.0 32.2 0.0 2.6 6.0 18.1 44.7
(ERC/EFR)-MMN 0.0 19.3 3.2 52.7 0.0 10.2 17.1 33.7 31.2
(ERC/EFR)-TX 0.0 11.9 1.3 36.5 0.0 4.2 9.5 21.2 40.1
EFR-ERCmulti 0.0 17.5 2.2 51.5 0.0 8.3 17.7 31.4 32.8
ERCTrue →EFR - - - - - - - - 52.8

Table 3.11: Comparative analysis for ERC and EFR. (ERC/EFR)-MMN represents ERC-MMN for the
emotion recognition task and EFR-MMN for the emotion-flip reasoning task (Dg: disgust, Jy:
joy, Sr: surprise, An: anger, Fr: fear, Ne: neutral, Sa: sadness). Trained on MELD-FR; Tested
on IEMOCAP-FR dataset.

Error Analysis

This section presents both quantitative and qualitative analysis w.r.t. the confusion matrix and misclas-
sification examples. We also supplement our analysis of the proposed systems with DGCN (the best
baseline). Table 3.12 show the confusion matrix for EFR.

Predicted
Non-Trigger Trigger

A
ct

ua
l Non-Trigger 2144 1359

Trigger 226 926
(a) ERCTrue →EFR

Predicted
Non-Trigger Trigger

A
ct

ua
l Non-Trigger 2913 590

Trigger 525 627
(b) Baseline: DGCN

Table 3.12: Confusion matrix of our best model and the best baseline for the EFR task.

The baseline DGCN reports comparable performance with ERCTrue →EFR. However, while analysing
the confusion matrices in Table 3.12, we observe that the number of true-positives considering the trigger
class is much higher for ERCTrue →EFR (926) than DGCN (627). Also, ERCTrue →EFR reports lesser
false-negatives. On the other hand, however, the false-positives are more, and due to which our proposed
model fails to leverage the higher true-positives to a full extent and reports only 1% improvement over
DGCN.

We also perform error analysis on the predictions of proposed systems. For illustration, we present one
representative dialogue with its gold and predicted labels (ours and DGCN) for the EFR task. Table 3.13
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shows a dialogue with two speakers, Ross and Rachel, and we observe an emotion-flip (neutral→anger)
for Rachel in utterance u5 considering her previous utterance u2. For the target utterance u5, actual
trigger utterances are u3 and u4. Our proposed model, ERCTrue →EFR, correctly identifies both triggers;
however, it also misidentifies one utterance, i.e., u5, as trigger. For the same dialogue, DGCN misclassifies
one trigger utterance as non-trigger and one non-trigger utterance as trigger.

Actual Prediction
Emotion Trigger# Speaker Utterance (MELD) (MELD-FR) ERCTrue →EFR DGCN

u1 Ross Okay

Context

neutral N-Trigger N-Trigger N-Trigger
u2 Rachel Ross didn’t you say that there

was an elevator in here?
neutral N-Trigger N-Trigger N-Trigger

u3 Ross Uhh yes I did but there isn’t okay
here we go!

sadness Trigger Trigger N-Trigger

u4 Ross Okay go left left left surprise Trigger Trigger Trigger

u5 Rachel Okay y’know what there is no
more left left!

Target anger N-Trigger Trigger Trigger

Flip

Table 3.13: Actual and predicted labels of triggers for a dialogue having five utterances (u1, ..., u5) from
the test set. There is an emotion-flip for Rachel (neutral→anger) in u5 and its triggers are u3
and u4. We mark them as triggers because Ross tricked her into believing that his apartment
had an elevator and still acted like nothing happened, thus instigating an emotion-flip.

3.5.2 Evaluating TGIF

We perform experiments for both the granularity levels – coarse-grained and fine-grained. In the fine-
grained setup, we observe a few instigator labels with a very low count. Since these labels are few in
number, the model does not have sufficient evidence to learn a mapping from the input to such labels.
Consequently, we compile another coarse-grained setup where we merge all instigator labels with count
< 250 into a set, called ‘other’. As a result, in total, we have three setups – one fine-grained with 27
instigator labels) and two coarse-grained (definition-based and count-based) with 14 instigator labels
each. In all three setups, we employ sigmoid neurons with focal loss (153) for multi-label classification.
We select the traditional precision, recall, and F1-score as our metrics of choice thus ensuring that our
evaluation is consistent with existing practices and establishes a universal benchmark.

Development Phase

Model Coarse-grained Fine-grainedDefn-based Count-based
GUS 41.4 37.0 29.9
+ GES 41.9 37.1 31.5

+ GSS 42.1 37.8 32.1
+ SESS (TGIF) 42.7 38.5 33.1

Table 3.14: Results (W-F1) of fine-tuning on the development
set. It shows the effect of each module when incor-
porated in TGIF. We obtain the best results when
all four submodules are employed (last row).

To find the best configuration for TGIF,
we investigate the effect of each module
in the development phase. We start with
the GUS module as the backbone net-
work and subsequently introduce other
modules (GES, GSS, and SESS) in an
incremental fashion. Table 3.14 illus-
trates the results we obtain. Looking at
the fine-grained setup, we notice a per-
formance increase of 1.6% in weighted
F1 when we add the GES module to the
backbone model. This performance increase is coherent with our argument that the inclusion of emotional
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information will help the model in learning a better mapping function. Additionally, the incorporation
of speaker-specific modules (GSS and SESS) gives a performance boost of 0.6% and 1.6%, respectively.
We use the model consisting of all four submodules as our final architecture since it yields the best
performance on the development set. After fine-tuning the hyperparameters during the development phase,
we fix the configuration and evaluate TGIF on the test set.

Baselines and Comparative Study

Since the problem of instigator classification for EFR is novel, we adapt various related existing systems
for comparison. Note that all these systems are recent state-of-the-arts and designed especially for the
task of emotion recognition in conversation (ERC).
1. DialogueGCN (46): Uses GRUs and a graph convolution network (GCN) for emotion recognition by

considering self and inter-speaker dependency.
2. AGHMN (47): Employs attention-based GRU to monitor information flow through hierarchical

memory networks and calculate attention weights for classification.
3. TL-ERC (49): Adopts transfer learning from a dialogue generation model, leveraging its weights for

emotion classification.
4. DialogXL (50): Customizes XLNet with utterance-level recurrence and dialogue-specific self-attention

to recognize emotions in conversations.
5. BERT (110): Utilizes the transformer architecture (150) as an encoder stack for various NLP tasks.

Model
Coarse-grained Fine-grainedDefn-based Count-based

Pre Rec F1 Pre Rec F1 Pre Rec F1
AGHMN 7.6 20.4 11.07 8.5 25.4 12.73 15.1 17.6 16.3
TL-ERC 9.6 49.0 16.6 14.4 54.8 21.7 7.1 33.0 12.8
DGCN 12.5 67.0 19.8 18.5 70.2 27.5 10.5 67.2 17.5
DialogXL 7.3 37.5 12.22 8.8 43.7 14.64 9.8 34.2 15.3
BERT 18.3 62.9 27.2 17.5 59.2 26.3 14.8 55.1 21.7
TGIF 24.3 58.6 31.6 28.3 63.4 37.5 26.5 55.6 33.3

Table 3.15: Comparative results on coarse-grained and fine-
grained instigators. All the metrics are weighted
average over all instigator classes.

Similar to TGIF, we perform instance-
wise experiments with output masking
for each baseline. That is, all the improb-
able instigators are masked. Moreover,
since we provide emotion labels as input
to our model, we do the same with the
baselines.

Table 3.15 shows that TGIF outperforms
all baselines with reasonable margin
across all setups. In the definition-
based coarse-grained setup, we obtain
11.07%, 16.6%, 19.8%, 12.2%, and
27.2% weighted-F1 for AGHMN, TL-

ERC, DGCN, DialogXL, and BERT respectively. In comparison, TGIF yields 31.6% W-F1 in the same
setup – an increment of 4.4 points over the best performing baseline (BERT). We observe a similar trend
for the count-based coarse-grained setup with TGIF and the best baseline (DGCN) reporting 37.5% and
27.5% W-F1, respectively – a difference of 10 points. In the fine-grained setup, the performance of the
baselines (ranging between 12.8%− 21.7%) are significantly inferior to TGIF (33.3%). It suggest that
TGIF also accounts for the increase in instigator labels more efficiently than the existing baselines. TGIF
beats all considered baselines in every setting but at the same time reports a weighted F1 score on the
lower side indicating the difficulty of the problem statement.

Error Analysis

As we can observe from the distribution of EFR instigators (c.f. Figure 3.5), there is a significant label
skewness. To inspect the learning of TGIF for individual labels, we analyze the results of top-3 (majority)
and bottom-3 (minority) instigator labels w.r.t. the number of training instances in MELD-I. The top-

47



3 labels are nervousness, awkwardness, and excitement in the coarse-grained setup, and annoyance,
awkwardness, and excitement in the fine-grained setup. Similarly, The bottom-3 labels in the coarse-
grained setup are shock, dazzle, and threat, while instigators nostalgia, pain, and boredom are the three
least occurring labels in the fine-grained setup.

Model
Top-3 Majority Bottom-3 Minority

Coarse-grained Fine-grained Coarse-grained Fine-grained
Ner Awk Exc Ann Awk Exc Shk Daz Tht Nos Pain Bor

AGHMN 11.2 10.1 8.6 17.8 12.8 15.3 3.9 4.2 3.2 13.4 7.2 16.9
TL-ERC 23.0 23.3 18.8 14.9 23.5 14.6 2.2 10.6 5.4 6.6 0.6 1.8
DGCN 28.9 28.4 28.3 24.8 26.9 23.2 10.5 9.8 6.0 0.0 7.6 2.1
DialogXL 12.2 14.7 12.6 13.9 11.9 11.1 2.1 3.6 4.2 6.4 5.2 2.9
BERT 36.0 26.8 35.3 38.9 26.8 36.1 10.7 2.5 0.0 3.2 2.0 0.0
TGIF 37.8 35.7 28.4 53.5 35.8 56.7 35.1 18.6 9.8 12.5 5.5 0.0

Table 3.16: Class-wise comparative analysis (F1-score) for the
top-3 (majority) and bottom-3 (minority) classes.
⟨Ner: Nervousness, Awk: Awkwardness, Exc: Ex-
citement, Ann: Annoyance, Shk: Shock, Daz: Daz-
zle, Tht: Threat, Nos: Nostalgia, Bor: Boredom⟩.

Tables 3.16 report the results of TGIF
and baselines for the majority and minor-
ity classes, respectively. As expected,
the performance of each model for the
majority classes is comparatively on the
higher side of the spectrum than the per-
formance on minority classes. Except
for the instigators, nostalgia, pain, bore-
dom in the fine-grained minority cases
and excitement in the coarse-grained
majority case, TGIF reports the best
weighted-F1 for each case. The ob-
served behaviour can be attributed to
the fact that Transformer based architectures are data-hungry models, and thus they learn a better mapping
for majority classes.

Qualitative Error Analysis. In order to perform qualitative error analysis, we take a sample dialogue
from our test set and show the gold and predicted labels in Table 3.17 for the fine-grained setup. For the
target utterance u5, TGIF predicts confusion and shock instigators against the gold labels confusion and
curiosity instigated by the trigger utterance u4. Similarly, for the the trigger u5, TGIF identifies two correct
(confusion and shock) and one incorrect label (curiosity). An abstract view of the prediction suffices that
the set of instigator labels for the emotion flip target u5 (without regarding the triggers separately) is
same as the set of gold labels. On the other hand, BERT (best baseline) commits many mistakes in both
cases. It predicts one correct label for the trigger u5 but no correct instigator for the trigger u4. It can be
observed that BERT gives precision scores of 0% for the first trigger while a precision of 50% is observed
for the second trigger. Recall value also comes out to be 0% and 50% for the two triggers, respectively.
In comparison, TGIF obtains moderate scores in both cases, i.e., recall = 50.0%; precision = 50.0% in
the first case and recall = 100.0%; precision= 66.7% in the second case. A similar trend is observed for
coarse-grained instigator labels. We note that, for a given target emotion, the BERT method consistently
identifies the same instigators, giving little heed to the conversation context. In contrast, our approach
takes both the target emotion and conversation context into account when identifying instigators, resulting
in more accurate and nuanced predictions. Further, we show the zero-shot results of the proposed method
in the supplementary.

Speaker Utterance Emotion Trigger
Instigator

Gold Prediction
TGIF BERT

u1 Monica Yeah, but without the costumes. neutral No - - -
u2 Phoebe Oh. neutral No - - -
u3 Joey And it’s not fake, it’s totally brutal. neutral No - - -
u4 Chandler Yeah, it’s two guys in a ring, and the

rules are: They are no rules.
neutral Yes confusion,

curiosity
confusion, shock

excitement, nervousness, shock

u5 Monica So you can like, bite, and pull people’s
hair and stuff?

surprise Yes confusion,
shock

confusion, shock,
curiosity

curiosity, shock

Table 3.17: Fine-grained analysis: Actual and predicted instigator labels for an EFR instance. TGIF
predicts one and two correct instigator labels for the two trigger utterances, u4 and u5,
respectively. In each case, it wrongly predicts one instigator. In contrast, BERT reports a high
percentage of false positives.
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Directionality of Triggers. In this work, we consider Ekman’s emotion labels along with a label for no
emotion (neutral). That is, we have six emotion labels, namely disgust, joy, surprise, anger, fear, and
sadness. An emotion flip for a target speaker can occur between any two pair of emotions. In other words,
we can have 42 possible emotion flips in a dialogue. Based on the source-target emotion pairs, we analyse
the effect of directionality of emotion flips in MELD-I. We show the frequency of emotion flips with
respect to the source-target emotion pairs in Table 3.6. Cell (i, j) in the table represents the number of
flips in MELD-I where the source emotion is ei, and the resultant or target emotion is ej . As discussed
in Section 3.3.2, there can be two types of emotion flips – positive and negative. Here, we see how the
emotion flips frequency and instigators are dependant on the type of flips. Based on our ground-truth EFR
labels, there are a total of 2612 positive emotion flips and 2818 negative emotion flips. Out of these flips,
the flip neutral → joy is the most prominent positive emotion flip whereas the flip, joy → neutral is the
most prominent negative emotion flip. It is crucial to note that joy → neutral considered as a negative flip
because it involves a shift from a highly positive emotional state (joy) to a less positive or neutral state.
While neutral isn’t inherently negative, it represents a decrease in positive affect, which can be interpreted
as a move towards a less positive or even somewhat negative emotional state, depending on the context
and interpretation.

Type of Flip
Coarse-grained Fine-grainedDefn-based Count-based

Pre Rec F1 Pre Rec F1 Pre Rec F1
Negative to Positive 27.3 54.6 33.9 26.1 52.5 32.7 19.3 52.2 26.2
Positive to Negative 26.4 61.2 35.1 28.0 59.1 35.4 32.2 58.1 38.8

Table 3.18: Result analysis on directionality of flips for coarse-
grained and fine-grained instigators. All the metrics
are weighted average over all instigator classes.

Apart from the emotion flips which have
opposite polarities at both ends, we can
also have intra-polarity flips. For in-
stance, flips like anger → fear is a neg-
ative to negative emotion flip, while joy
→ surprise is a positive to positive emo-
tion flip. We see, for the intra-polarity
cases, that the flip surprise → joy and
the flip anger → sadness are the most
prominent intra-positive and intra-negative flips, respectively. We also observe that most of the flips that
result in a negative emotion (anger, disgust, fear, sadness) originate from joy. On the other hand, the
flips that result in a positive emotion (joy, surprise) originate from neutral. We also observe that, for
positive emotion flips, the top-3 frequent instigators are excitement, cheer, or impressed. For negative
emotion flip, awkwardness, loss, or annoyance are the more frequent instigators. In addition, we check
the performance of our models on the two most prominent types of flip directions – positive to negative
and negative to positive. We show these results in Table 3.18 and observe that positive to negative flips
are better predicted by our model for all the classes of instigators. This can be attributed to the fact that
our data contains more negative emotions, thus containing more negative instigators. Consequently, our
model is able to learn those instigators in a better fashion. This result is encouraging as it is an indication
that with more data, our model will be able to learn the instigators in a better way.

Generalizability of TGIF

Correctness Completeness Prefered Instigator set

BERT 2.67 3.42 25%
TGIF 3.21 3.44 75%

Table 3.19: Human Evaluation Results on IEMO-
CAP (1) in a zero-shot setting. Scores
are average across all evaluators.

In order to emphasise the relevance of EFR
and evaluate the generalizability of the proposed
methodology, TGIF, we perform a zero-shot exper-
iment. We consider IEMOCAP (1) which consists
of emotion annotated conversations on 16 topics.
We randomly sample 15 conversations to construct
emotion flip instances, with triggers identified as
shown in Table III of the main text. We then task
TGIF and BERT, the best baseline, with predicting
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the emotion flip instigators. After collecting the predictions, we asked 20 human annotators to rate them
based on correctness, completeness, and preference (TGIF vs. BERT). The cumulative results in Table
6.16 indicate that while TGIF outperforms BERT, the latter is comparable in terms of completeness.

3.5.3 Evaluating LLMs

F1-scores EFR-TX TGIF
53.9 31.6 37.5 33.3

Llama 51.4 33.8 39.2 36.1

Table 3.20: Performance of Llama when
compared with our proposed
methodologies for EFR.

Similar to the evaluation conducted in Section 2.5.3, we as-
sess the efficacy of Llama, a large language model, across
the tasks and datasets outlined in this chapter. Our primary
objective is to compare the performance of Llama against
our top-performing systems, namely EFR-TX and TGIF. The
results are summarized in Table 3.20. Notably, while Llama
demonstrates proficiency in instigator identification against
TGIF, its performance in trigger discovery falls short when
compared with EFR-TX. This discrepancy can be attributed to the relatively sparse data available for
trigger detection, which may not suffice for a large-scale model to learn meaningful insights. Consequently,
a lighter model exhibits superior performance in this scenario.

3.6 Emotion Flip Reasoning in Hindi-English Code-mixed Conversation

So far in this chapter, we have focused on the emotion dynamics of monolingual English dialogues.
However, emotions also play a pivotal role in Hindi-English code-mixed conversations. Consequently,
we have organised a shared task in SemEval 20243 called EDiREF4. The EDiReF shared task is an
amalgamation of three subtasks tasks- (i) ERC in Hindi-English code-mixed conversations, (ii) EFR in
Hindi-English code-mixed conversations, and (iii) EFR in English conversations. For code-mixed tasks,
we follow the same guidelines as English and curated an EFR dataset from our code-mixed conversation
dataset, E-MaSaC. Specifically, we annotated 11, 908 utterances in 449 dialogues with eight emotion
labels (we added ‘contempt’ in addition to the six basic emotions and netural) and 7550 trigger utterances
for 5873 emotion-flips. Similar to the English dataset, we acquired the service of experts who are native
speakers of Hindi and well-versed in English. As a quality assurance, the Krippendorff alpha-reliability
inter-annotator agreement (108) is computed as α = 0.853. A brief statistics of code-mixed EFR dataset is
shown in Table 3.21.

Split Emotions TotalDisgust Joy Surprise Anger Fear Neutral Sadness Contempt
Train 127 1646 444 856 530 4091 572 549 8815
Dev 21 242 68 122 91 652 132 75 1403
Test 21 382 57 150 129 697 167 87 1690

(a) ERC – Hindi

Split #D with Flip #U with Flip #Triggers
Train 344 4406 5565
Dev 47 686 959
Test 58 781 1026

(b) EFR – Hindi

Table 3.21: Statistics of the Code-mixed E-MaSaCdataset for ERC and EFR.

3https://semeval.github.io/SemEval2024/
4https://lcs2.in/SemEval2024-EDiReF/
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3.7 Conclusion

This chapter addressed the critical need to delve deeper into the emotional dynamics of speakers within
conversational dialogues. While identifying emotions in isolation was undoubtedly valuable, it fell short
in providing a comprehensive understanding of the intricate and speaker-specific changes in emotions
that transpired throughout a conversation. To bridge this gap in the emotional discourse analysis, we
introduced a novel task of EFR. EFR is designed to unravel the triggers and instigators that underlay
shifts or flips in a speaker’s emotional state during a dialogue. These instigators could range from external
factors like threats, which might have caused a shift from joy to anger, to a myriad of other emotional
catalysts. To support the pursuit of EFR, we presented two meticulously crafted datasets, MELD-FR
and MELD-I, each adorned with ground-truth labels for EFR triggers and instigators. These labels
aligned with well-established principles in emotional psychology, lending credibility to our research.
Furthermore, we harnessed the power of advanced neural architectures, namely the EFR-TX and TGIF,
incorporating Transformer encoders and stacked GRUs to adeptly capture the rich nuances within dialogue
context, speaker dynamics, and the evolving emotional sequences. The results of our rigorous evaluation
spoke volumes, showcasing the state-of-the-art performance of EFR-TX and TGIF, which surpassed the
effectiveness of five baseline models designed for this challenging task. Additionally, we proved the
adaptability and robustness of our neural architectures in handling unseen datasets, thereby demonstrating
their generalizability in a zero-shot setting. Additionally, we explore the task of EFR in the code-mixed
setting by organising a shared task in SemEval 2024. Although the emotional comprehension of English
and Hindi-English code-mixed conversations improves the understanding of dialogues, they do not provide
a holistic view of the discourse. In order to gain a complete grasp of the conversation, we also need the
perception of other affective cues, such as humour and sarcasm, which we explore in the subsequent part.
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Part II

Sarcasm and Humour Analysis
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4. Sarcasm and Humour Detection

Sarcasm detection and humour classification are inherently subtle problems, primarily due
to their dependence on the contextual and non-verbal information. Furthermore, existing
studies in these two topics are usually constrained in non-English languages such as Hindi,
due to the unavailability of qualitative annotated datasets. In this chapter, we make two
major contributions considering the above limitations: (1) we develop a Hindi-English code-
mixed dataset, MaSaC, for the multi-modal sarcasm detection and humour classification
in conversational dialogue, which to our knowledge is the first dataset of its kind; (2)
we propose MSH-COMICS, a novel attention-rich neural architecture for the utterance
classification. We learn efficient utterance representation utilizing a hierarchical attention
mechanism that attends to a small portion of the input sentence at a time. Further, we
incorporate dialogue-level contextual attention mechanism to leverage the dialogue history
for the multi-modal classification. We perform extensive experiments for both the tasks by
varying multi-modal inputs and various submodules of MSH-COMICS. We also conduct
comparative analysis against existing approaches. We observe that MSH-COMICS attains
superior performance over the existing models by >1 F1-score point for the sarcasm
detection and 10 F1-score points in humour classification. We diagnose our model and
perform thorough analysis of the results to understand the superiority and pitfalls. Further,
we consider two monolingual datasets for humour and sarcasm detection in monolingual
English using our proposed architecture and attain valuable improvements.

4.1 Introduction

Figure 4.1: Example of sarcasm and humour identification in conversation.

Unlike traditional sentiment
(154; 155; 156; 157) or emo-
tion classification (158; 159;
75; 160; 161), sarcasm or
humour detection in a stan-
dalone textual input (e.g., a
tweet or a news headline) is
a non-trivial task due to its
below-the-surface semantics.
Most of the time, the surface-
level words carry sufficient cues in the text to detect the expressed sentiment or emotion. However,
sarcastic or humorous inputs do not offer such simplistic information for classification. Instead, the ex-
pressed semantic information in sarcastic or humorous inputs often have dependency on the context of the
text, and it is important to leverage the contextual information for the identification task as shows in Figure
4.1, where the previous utterances are required to figure out whether an utterance is sarcastic/humorous
or not. Moreover, in many cases, the presence of multi-modal signals, such as visual expression, speech
pattern, etc., provide auxiliary but crucial cues for sarcasm or humour detection. At times, they are
the only cues that support a sarcastic/humorous expression. For example, it is extremely difficult (or
nearly impossible) to detect sarcasm in the text ‘Thanks for inviting me!’ without any context or other
information. However, the same is less challenging if multi-modal signals accompany the text (e.g., a



disgusting facial expression, gaze movement, or intensity/pitch of the voice while uttering the text) or the
context (e.g., the text was preceded by a dispute/argument/insult).

A conversational dialogue records the exchange of utterances among two or more speakers in a time
series fashion. Thus, it offers an excellent opportunity to study the sarcasm or humour in a context.
A few previous attempts (162; 2; 163) on sarcasm classification involved multi-modal information in
a conversation to leverage the context and extract the incongruity between the surface and expressed
semantics. Similarly, many studies (57; 164) employed images and visual frames along with the text
to detect humour. Surveys on multi-modal analysis (165; 166; 167; 168; 169; 170) reveal two prime
objectives while handling multi-modal contents: (a) to leverage the distinct and diverse information
offered by each modality, and (b) to reduce the effect of noise among the multi-modal information sources.

Code-mixed
Original: Sachin ne 21 years pehle apna debut match khela tha.
Translation: Sachin played his debut match 21 years ago.

Code-switched
Original: Agle hafte meri garmi ki chuttiyan shuru hone wali hain. I

am planning to go to Europe during my vacation.
Translation: My summer vacation is starting next week. I am planning

to go to Europe during my vacation.

Table 4.1: Examples for the code-mixed and code-
switched inputs. Bold text represents En-
glish words and Italic texts signify Hindi
words or named entity.

Usually, the solution to a natural language process-
ing task handles only a single language. However,
with the globalization of languages, many applica-
tions demand for solutions that can handle more
than one language at a time. Thus, a new frontier
of multi-lingual processing has emerged. India is
a multi-lingual country, and a vast population are
comfortable with more than one language. Their
comfort is apparent in the regular usage of words
from multiple languages to form a single sentence
in both writing and speaking. For example, the text
‘Sachin ne 21 years pehle apna debut match khela
tha.’ (‘Sachin played his debut match twenty one
years ago.’) has three English words (i.e., ‘years’, ‘debut’, and ‘match’) and one named-entity (i.e.,
‘Sachin’), while the rest of the words are part of romanized Hindi language. Similarly, it is common to
switch languages for the consecutive sentences as well. For example, two sentences in Table 4.1 are in two
different languages – not only their words are in different languages, but also they follow language-specific
syntactic structure. These two variants are usually termed as the code-mixed and code-switched inputs,
respectively.

Though the code-mixed and code-switched inputs are natural in a multi-lingual culture, they offer a
significant challenge in the automatic processing of such text. The foremost task in handling code-mixed
input is the language identification of each word. Dictionary-based lookup is a trivial solution to identify
language-specific words; however, the complexity escalates when a token (in transliterated form) is a
valid word in more than one language. For example, the word ‘main’ has the meaning ‘important’ in
English, while it also means ‘I’ in Hindi. Once the language is identified for each word, literature suggests
language-specific processing for the downstream tasks in a trivial setup. Recently, the quest of handling
multi-lingual inputs in a deep neural network architecture has paved the way for the development of more
sophisticated multi-lingual/cross-lingual word representation techniques (171; 172).

Most of the existing datasets for the multi-modal sarcasm and humour detection involve only monolingual
data (primarily English). To explore the challenges of code-mixed scenarios, in this paper, we introduce
MaSaC1, a new multi-modal contextual sarcasm and humour classification dataset in English-Hindi
code-mix environment. MaSaC comprises ∼1,200 multi-party dialogues extracted from a popular Indian
television show ‘Sarabhai vs. Sarabhai’2. It contains ∼15,000 utterance exchanges (primarily in Hindi)
among the speakers. We manually analyze all the utterances and mark the presence/absence of sarcasm
and humour for each of them.

1MaSaC can be vaguely pronounced as Mazaak (Joke) in Hindi.
2https://www.imdb.com/title/tt1518542/
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To evaluate MaSaC dataset, we propose MSH-COMICS3, a multi-modal hierarchical attention framework
for the utterance classification in conversational dialogues. At first, we encode the textual utterance
representation using a hierarchy of localized attention over the tokens in a sentence. In the next step,
we learn the modality-specific dialogue sequence using LSTM (173) layers. Further, to leverage the
contextual information, we employ three attention mechanisms that learn the importance of preceding
utterances with respect to each of the textual, acoustic, and textual+acoustic modalities. Since one of
the prime concerns in multi-modal analysis is to counter the presence of noise among modalities, we
employ a simple gating mechanism that aims to filter the noise in accordance with the interactions among
the modalities. Finally, we utilize the filtered representations for the sarcasm and humour classification.
For a complete evaluation, we also check the performance of our model on two multimodal monolingual
English datasets – MUStARD (174) and MUMOR-EN (175), for the task of sarcasm detection and humour
classification, respectively.

Experimental results suggest significant performance for both the sarcasm and humour classification tasks.
We also evaluate MaSaC and the monolingual English datasets on the existing multi-modal contextual
sentence classification systems. The comparative study reveals that MSH-COMICS yields superior
performance compared to the baselines for both the tasks. The contributions of the current work are as
follows:

• We develop MaSaC, a qualitative multi-modal dataset for the sarcasm detection and humour
classification.

• We propose a novel architecture for the multi-modal contextual sentence classification.
• We provide strong baselines for the two tasks on the proposed dataset.
• We report detailed analysis of the experimental results and the reported errors.
• Through our developed MaSaC dataset, we offer an opportunity to the community to carry forward

the research on the code-mixed environment in Indian context.

4.2 Related Work

In this section, we present a survey of the literature on the sarcasm detection and humour classification
focusing on the following three dimensions – context, multi-modality, and Indian languages.

Sarcasm Detection: Sarcasm detection is an interesting as well as a challenging task. It has gained
significant attention in the last few years (58; 176; 59; 177; 178; 179). Earlier work on sarcasm detection
involved investigation on the lexical aspects of the text expressing sarcasm (58). More specifically, the
authors studied the influence of adjectives, adverbs, interjections, and punctuation marks in sarcasm
detection, and showed that their presence have positive correlation (though small) with the sarcastic text.
Tsur et al. (59) proposed a semi-supervised approach for sarcasm discovery in Amazon product reviews.
The authors employed punctuation and pattern-based features to classify the unseen samples using a kNN
classifier. A similar study on tweet was proposed in (176). Other works claimed the presence of sentiment
shift or the contextual incongruity to be an important factor in accurate sarcasm prediction (177). Son et
al. (180) proposed a hybrid Bi-LSTM and CNN based neural architecture for the sarcasm detection.

Most of the above studies involve sarcasm discovery in the standalone input - which are reasonably
adequate for the sentence with explicit sarcastic clues. However, for the implicit case, more often than not,
the context in which the sarcastic statement was uttered is of utmost importance (181; 3; 182). Joshi et al.
(181) exploited the historical tweets of a user to predict sarcasm in his/her tweet. They investigated the
sentiment incongruity in the current and historical tweets, and proposed it to be a strong clue in sarcasm

3MSH-COMICS is short for Multi-modal Sarcasm Detection and Humor Classification in COde-MIxed ConversationS.
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detection. In another work, Ghosh et al. (183) employed an attention-based recurrent model to identify
sarcasm in the presence of a context. The authors trained two separate LSTMs-with-attention for the two
inputs (i.e., sentence and context), and subsequently, combined their hidden representations during the
prediction. The availability of context was also leveraged by (3). The authors learned a CNN-BiLSTM
based hybrid model to exploit the contextual clues for sarcasm detection. Additionally, they investigated
the psychological dimensions of the user in sarcasm discovery using 11 emotional states (e.g., upbeat,
worried, angry, depressed, etc.).

Although a significant number of studies on sarcasm detection have been conducted in English, only
a handful attempts have been made in Hindi or other Indian languages (184; 185). One of the prime
reasons for limited works is the absence of sufficient dataset on these languages. Bharti et al. (185)
developed a sarcasm dataset of 2,000 Hindi tweets. For the baseline evaluation, they employed a rule-
based approach that classifies a tweet as sarcastic if it contains more positive words than the negative
words, and vice-versa. In another work, Swami et al. (184) collected and annotated more than 5,000
Hindi-English code-mixed tweets. They extracted n-gram and various Twitter-specific features to learn
SVM and Random Forest classifiers. Though the dataset proposed by Swami et al. (184) and MaSaC
involve Hindi-English code-mixed inputs, they differ on the contextual dimensions, i.e., the instances
in their dataset are standalone and do not have any context associated with them, whereas, the sarcastic
instances in MaSaC are a part of the conversational dialog. Moreover, MaSaC also includes multi-modal
information for each dialog.

Recently, the focus on sarcasm detection has shifted from the text-based uni-modal analysis to the multi-
modal analysis (162; 2). Cai et al. (162) proposed a hierarchical fusion model to identify the presence of
sarcasm in an image in the pretext of its caption. The authors exploited the incongruity in the semantics of
the two modalities as the signals of sarcasm. Another application of the multi-modal sarcasm detection
is in the conversational dialog system. During the conversation, it is crucial for a dialog agent to be
aware of the sarcastic utterances and respond accordingly. Castro et al. (2) developed a multi-speaker
conversational dataset for the sarcasm detection. For each sarcastic utterance in the dialog, the authors
identified a few previous utterances as the context for sarcasm. The dataset developed in the current
work is on the similar line except two major differences: (a) MaSaC contains Hindi-English code-mixed
utterances, which is the first dataset of its kind; and (b) instead of defining the explicit context, we let the
model learn the appropriate context during training.

Humour Detection: Like sarcasm detection, computational humour analysis is a fascinating but subtle
task in the domain of natural language processing. Recent literature suggests that contextual information
plays an important role in computational humour detection (164; 57). However, due to the complexity
in processing the contextual information, many of the earlier studies aim to identify humorous contents
in standalone text without consulting the context (54; 186; 55; 56). Their prime inputs are one-liners or
punchlines - which usually have rich comic or rhetoric content to attract someone’s attention. Though the
strategy of detecting humour in standalone texts seem appealing, often the absence of context makes it
extremely difficult (even for humans) to interpret the humorous content. Moreover, the textual form of
the humorous contents are complemented with other crucial non-verbal signals such as animated voice,
impersonation, funny facial expression, etc. This difference in acoustic features between humorous and
non-humorous utterances is validated by Amruta et al. (187) Many researchers have exploited these
meta-data for humour classification (57; 164; 188). Hasan et al. (57) extended humour classification
in punchlines by considering both the contextual and multi-modal information. The authors utilized
Transformer’s (189) encoder architecture to model the contextual information in addition to the memory
fusion network (190) for combining the multi-modal signals. Bertero and Fung (164) relied on the text and
acoustic features for contextual humour classification. Dario et al. (188) treated the humour classification
task as sequence labelling and employed conditional random field to get the output. In the context of
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Indian languages, the study on humour classification, like any other NLP task, is limited. To the best
of our knowledge, Khandelwal et al. (191) is one of the first studies that involve humour classification
in Hindi-English code-mixed language. They developed a dataset of ∼3,500 tweets with almost equal
number of humorous and non-humorous tweets. The authors bench-marked the dataset on SVM classifier
using bag-of-word features. Sane et al. (192) improved the state-of-the-art on the same dataset using
neural models. In comparison with MaSaC, the dataset of Kandelwal et al. (191) lacks both the contextual
as well as multi-modal information. Furthermore, MaSaC has significantly more number of instances, and
annotations for two tasks, i.e., sarcasm and humour detection.

Problem Statement. Sarcasm is defined as an expression meant to criticize, taunt, or hurt someone’s
feeling in a sober and explicitly non-disrespectful manner. On the other hand, humorous statements aim to
incite amusing or comic feelings with the intention to make their audience laugh. A light-hearted sarcastic
statement which does not offend the target can be interpreted as humorous. However, it is important to
note that all sarcastic statements may not be amusing, whereas a humorous expression is always intended
to amuse the listeners.

Kyun? Mene to apna bhensa building ke bahar park kiya hai... [Humour]
(Why? I have parked my bull outside the building...)

Figure 4.2: An example frame highlighting the irrel-
evant visual content considering the hu-
mour (or sarcasm) prediction, and the
model may defile the learning process
by attending to irrelevant contents (or
noise).

In the current work, our objective is to identify all
the instances of sarcastic or humorous utterances
in a multi-speaker conversational dialog. Given
a sequence of utterance U = (u1, u2, ..., un) in a
dialog video, we wish to classify each utterance
into – (i) sarcastic or non-sarcastic, and (ii) hu-
morous or non-humorous. Each utterance ui has
multiple representations corresponding to the avail-
able modalities, i.e., visual frames of the utterance
uVi , acoustic signals of the utterance uAi , and the
utterance transcripts uTi . In our study, we do not
account for the visual frames while learning the
model. A valid explanation for leaving out the vi-
sual modality is due to the presence of multiple
actors in a frame, and most of them do not offer
any constructive assistance to the model. We argue
that the inclusion of the visual frames in the model
would defile the learning process by attending to
irrelevant content (or noise).To support our claim,
in Figure 4.2, we show one of many such scenarios.
Therefore, we employ only the textual and acoustic
features in our model.

4.3 Dataset

4.3.1 Monolingual English

For the task of monolingual English humour classification and sarcasm detection, we use the prevalent
MUMOR-EN (175) and MUStARD (174) datasets. We explain them below.

• MUMOR-EN (175): MUMOR-EN is constructed based on the MELD dataset (85). The authors
of MUMOR-EN discarded dialogues from MELD which contained less than three utterances in
them since the purpose of the dataset is to recognize humour in long conversations rather than short
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texts. The MUMOR dataset contains humour, emotion, and sentiment labels for each utterance.
The authors asked three annotators to watch the video clips with subtitles of each utterance, and let
them decide whether this utterance is humorous or not and which kind of emotion it belongs to. For
humour label, two categories were considered – humorous and non-humorous. The overall Fleiss’
kappa score of humour annotation process was 0.81, which indicates a decent agreement among
annotators.

• MUStARD (174): Similar to MUMOR-EN, MUStARD also contains conversations from popular
English sitcoms including Friends4 and Big Bang Theory5. MUStARD contains multimodal cues
along with the textual dialogue utterances. Each utterance in the data is marked with a binary label
indicating the presence of sarcasm in the utterance. The dataset consists of 690 samples, where 345
samples are sarcastic and 345 samples are non-sarcastic in nature.

4.3.2 Code-mixed Hindi-English

Our multi-modal sarcasm and humour classification dataset is based on the video clips of the popular
Indian comedy TV show ‘Sarabhai vs. Sarabhai’6. The show resolves around the day-to-day life of
five family members, namely, Indravardan (aka Indu), Maya, Saahil, Monisha, and Roshesh, with a few
infrequent characters. Each scene of the show involves conversation among two or more speakers, and
based on the speaker, we split the conversation into utterances. In all, we extract more than 15K utterances
from 400 scenes spread across 50 episodes. We refer to the conversation (or sequence of utterances) in
each scene as a standalone dialogue. For each utterance in the dialogue, we assign appropriate sarcasm
(sarcastic or non-sarcastic) and humour (humorous or non-humorous) labels. The context for any utterance
is restricted to the conversation in the current dialogue only. We employed three annotators, all fluent
in English and Hindi with age between 20-35 years, for assigning sarcasm and humour labels to each
utterance and aggregate the annotations using majority voting. We calculate the Cohen Kappa inter-rater
agreement score for the annotations. The average score for humour classification is 0.654, whereas for
sarcasm detection it is 0.681 signifying a sufficient agreement.

Data Preprocessing. The multi-modal information extraction from a comedy video poses two primary
challenges: (1) alignment of the multi-modal signals, and (2) laughter removal from the acoustic signal.
For the alignment, we mark the boundary of each utterance on the time spectrum for mapping the
corresponding speech and visual frames. This was performed by detecting a prolonged silence in the
video, and subsequently, discarding the silence portions on the time spectrum. As a consequence, we
obtain the boundary for each utterance in the dialogue. Subsequently, we extract the speech signals
employing the Google Speech API-based automatic speech recognition tool, called Gnani.ai.7

Like many other comedy shows, our input video also contains audiences’ laugh as they react to the scene.
It is a popular practice to highlight the comic or humorous situation in the video. Since one of our target
tasks is humour classification, we remove laughter from the audio signal to avoid the model to overfit on
the audience laugh. We employ open source Audacity8 tool for the laughter and background noise removal.
Audacity’s algorithm works as follows — It initially identifies different sound bands corresponding to
the laughter frequency range. It then suppresses the audio frequency signals above the threshold of the
laughter sample frequency. Then a sampling function is applied to smooth the suppressed audio, resulting
in an audio file with reduced laughter frequency bands.

4https://www.imdb.com/title/tt0108778/
5https://www.imdb.com/title/tt0898266/
6https://www.imdb.com/title/tt1518542/
7Gnani.ai
8https://github.com/audacity/audacity/blob/master/src/effects/NoiseReduction.cpp
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Speakers (Characters)
Indravardan Maya Saahil Monisha Roshesh

Sarcastic 1383 826 692 115 123
Humorous 2391 1733 733 769 168

Table 4.2: Speaker-wise sarcastic and humorous ut-
terance distribution in MaSaC.

Data Statistics. In Table 4.3, we list the dataset
statistics along with the annotated class label
counts. We split the dataset into train and test
set with 1, 100 and 90 dialogues, respectively. Fur-
thermore, we use 10% of train set as the validation
set during experiments. Out of 14, 000 utterances
in the train set, the number of sarcastic and humor-
ous utterances are 2, 748 and 5, 054, respectively. Similarly, the test set comprises 391 sarcastic and 740
humorous utterances. Table 4.3 also lists the word distribution for the Hindi-English code-mixed input.
MaSaC consists of ∼36,000 Hindi and ∼3,000 English words.

We also present the speaker-wise sarcastic and humorous statistics in Table 4.2. Out of the five speakers,
one speaker stands out in both sarcastic and humorous utterances, i.e., Indravardan, followed by Maya,
Saahil, and others.

#dialogue #Utterance #Speaker/dialogue
Utterance Len Vocab Labels
Avg Max Hindi English Sarcastic Humorous

Train 1100 14000
3 (Avg) 20 128

27574 2462 2748 5054
Test 90 1576 8664 669 391 740

Table 4.3: Statistics of MaSaC for code-mixed sarcasm and humour classification. For each utterance, we
extract the visual, acoustic, and transcript of the dialogue.

Feature Extraction. We employ pre-trained FastText multilingual word embedding model (171; 172)
and Librosa (193) tool for the textual and acoustic representations, respectively. For each token in the
utterance, we extract a 300-dimensional word vector. Following the uncased version, we obtain embedding
coverage for more than 90% of vocabulary words. For the acoustic representation, we use Librosa (193)
tool to extract the acoustic features for each frame – we extract the maximum possible (128) MFCCs
(Mel-frequency cepstral coefficients) for every frame. To obtain the utterance-level acoustic representation,
we follow the standard acoustic feature extraction technique (194; 195; 196) by utilizing a time distributed
1D convolution layer on top of MFCCs of all frames. We do not use visual signals in our models because
the quality of visual frames present in our dataset was not good enough, and thus the features extracted
from these frames were acting as noise.

4.4 Methodology

In this section, we describe MSH-COMICS, our proposed system for sarcasm and humour classification.
Figure 4.3 presents a high-level architectural overview of MSH-COMICS. It takes a sequence of utterances
(a dialogue) as input and produces a corresponding label for each utterance.

To learn the context of the dialogue, we employ two LSTMs on top of textual (uTi ) and acoustic (uAi )
representations of dimensions dT and dA, respectively.

hAi = LSTMA(uAi , h
A
i−1) (4.1)

hTi = LSTMT (uTi , h
T
i−1) (4.2)

where hAi ∈ RdA and hTi ∈ RdT are the learned hidden representations for acoustic and textual modalities,
respectively. The textual representation (uTi ) is computed through an application of the utterance-level
hierarchical attention module (discussed later), whereas, the acoustic representation (uAi ) is obtained
through an audio processing tool, Librosa (193) (c.f. Section 4.3.2).
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Dialogue-level contextual attention (C-ATND): Subsequently, we employ three separate attention
modules that compute attention weights (i.e., α, β, and γ) of the contextual (preceding) utterances
considering the acoustic pattern, textual pattern, and cross-modality pattern.

αi =
exp(hAi )∑i
j=1 exp(h

A
j )

(4.3)

βi =
exp(hTi )∑i
j=1 exp(h

T
j )

(4.4)

γi =
exp(hi)∑i

j=1,X∈(A,T ) exp(h
X
j )

(4.5)

These attention weights signify the importance of contextual utterances u1, ..., ui−1 for the classification
of utterance ui. Therefore, we compute the mean of the contextual attended vectors for each hidden
representation hi. Further, we utilize the residual skip connection (197) to form the final attended
representations ĥAi , ĥTi , and ĥAi T corresponding to the acoustic, textual, and cross-modal attention
modules, respectively as follows:

ĥAi =
i∑
k

αkh
A
k /i⊕ hAi (4.6)

ĥTi =
i∑
k

βkh
T
k /i⊕ hTi (4.7)

ĥAT
i =

i∑
k,X∈(A,T )

γkh
X
k /2i⊕ hAi ⊕ hTi (4.8)

where ⊕ is the concatenation operator. Collectively, we term these three attention modules as the dialogue-
level contextual attention module C-ATND, i.e., C-ATND = [ĥAi , ĥ

T
i , ĥ

AT
i ]. In the subsequent steps, we

consume these representations for the final classification.

Filtering: Prior to feeding these representations to the fully-connected layers, we incorporate a noise
filtering mechanism (198) to enhance the representation for each modality. The intuition behind the
filtering mechanism is to learn the interaction among the available modalities, which has not been
incorporated in the model so far, and subsequently, filter the noise in correspondence with the other
modalities. We argue that the filtering mechanism provides assistance to the model to pass only the
relevant features such that the filtered representations of different modalities can complement each other
in retaining the diverse and distinct features. For each modality, we implement filtering as follows:

h′
A
i = tanh(ĥAi ) · σ(ĥAT

i ) (4.9)

h′
T
i = tanh(ĥTi ) · σ(ĥAT

i ) (4.10)

where σ(·) refers to the sigmoid function and is learned during the training. Since σ(·) lies in the range
[0, 1], it controls the amount of information that can pass through the filter, i.e., a value close to 0
signifies extremely irrelevant information and is blocked, whereas, for a value approaching 1, all the
information can be forwarded to the upper layers. Finally, we take the filtered representations along with
the cross-modal attended vector for the final classification.
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Hierarchical attention module H-ATNU : One of the crucial aspects of a deep neural architecture for any
natural language processing task is the efficient input representation. Literature suggests the availability
of many techniques to obtain an efficient sentence vector from the word-level embeddings, e.g., mean
of constituent word embeddings, the last time-step representation in a recurrent layer, etc. However, a
significant challenge in such approaches is to reduce the effect of irrelevant words and to find relations
among the far apart words in the sentence.
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Figure 4.3: System architecture of MSH-COMICS. Each instance is a
sequence of utterances in a conversational dialogue, and the
classification is performed for each utterance. H-ATNU com-
putes efficient textual representation for each utterance in the
dialogue. C-ATND learns attention weights of the contextual
(preceding) utterances considering the acoustic (α), textual (β),
and cross-modal (γ) patterns. Filtering mechanism reduces
the effect of noise in the learned representation of individual
modality.

In this paper, we propose a
hierarchical attention module
H-ATNU to learn the signif-
icance of constituent words
in the final sentence vector.
We apply a series of local-
ize attentions, each one at-
tending to a small portion of
the sentence. For example,
AtnWidthU=3 signifies that
each attention mechanism at-
tends to a sequence of three
words only, and a context
vector is obtained by taking
a mean of the attended vec-
tors followed by a linear layer
with ReLU activation. As a
consequence, we obtain N -
AtnWidthU + 1 context vec-
tors at the first hierarchical
level l=1, where N is the num-
ber of words in a sentence.
Similarly, we apply localized
attentions at the second hier-
archical level l+1, i.e., on N
- AtnWidthU + 1 context vec-
tors. Following this process,
we compute localized atten-
tion for ⌈ N−1

AtnWidthU−1
⌉ hierar-

chical levels, and at the final
level, we obtain a single con-
text vector representing the entire sentence. It is to be observed that, as we go higher in the hierarchy,
H-ATNU attends to a wider sequence of words, thus offers a mechanism to extract long-term relations.
We formulate the utterance-level hierarchical attention mechanism in Algorithm 1.

4.5 Experiments and Results

We implemented our model in Python-based PyTorch deep learning library. For the evaluation, we
compute precision, recall, F1-score, and accuracy for both the tasks. Though we compute and report
both accuracy and F1-score for the sake of completeness, our preferred evaluation criteria is F1-score for
the MaSaC dataset due to the unbalanced label distribution of classification labels (e.g., sarcastic/non-
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Algorithm 1 Utterance-level Hierarchical Attention (H-ATNU )

procedure H-ATNU ([w1, ., wN ] = W,X = AtnWidthU )
for k ∈ 1, ..., N do

CV(0,k) = ReLU(wl)

M = ceiling( (N − 1)/(X − 1))
for l ∈ 1, ...,M do

Q = N − (l ∗X) + l
for k ∈ 1, ..., Q do

ζl,k = Attention(CV(l−1,k), ..., CV(l−1,k+X−1))

ϕl,k = (
∑X

i ζl,k · CV(l−1,k+i−1))
/
X

CV(l,k) = ReLU(ϕl,k)

return CVM,1

procedure Attention(CV(1), ..., CV(X))
for i ∈ 1, ..., X do

ζi =
exp(CV(i))∑X
j exp(CV(j))

return ζ

sarcastic: 391/1185) in it. We employ forward LSTM (173) to learn the contextual pattern of the dialogue,
where each state of the recurrent layer learns a 128 dimensional hidden vector. We set dropout= 40%
(199), batch size= 32, and ReLU (200) as the activation function for the experiments. At the output,
we employ sigmoid with binary cross-entropy to compute the loss. Subsequently, the computed loss is
backpropagated utilizing the Adam (201) optimizer.

4.5.1 Results

For the utterance-level localized hierarchical attention mechanism, we experiment with varying attention
widths AtnWidthU in the range [2, 5], and obtain AtnWidthU = 3 to be the optimal value. Similarly, for the
dialogue-level modality-specific attention mechanism, we observe that AtnWidthD = 5 is best suited for
the sarcasm and humour classification. We also experimented with visual features. We used the Affectiva
API9 and the GoogleNet Model (202) to obtain the visual expression features. Model LSTM(Va) and
LSTM(Vg) in Table 4.4 represent the case when only Affectiva and GoogleNet visual features are used
for classification respectively for the MaSaC. The last row of the table illustrates the case when all three
modalities of MaSaC are used in our model. It can be observed that the results using only visual features
are far from satisfactory. This behavior can be attributed to the fact that the video frames present in
MaSaChave low quality frames. The last row of each modality type illustrates the results obtained on the
monolingual English datasets – MUStARD and MUMOR-EN, using the best performing system for the
modality, for the tasks of sarcasm detection and humour classification, respectively. Table 4.4 reports the
experimental results for both the tasks. It is to be noted that we train and evaluate all the models for both
tasks separately.

Uni-modal evaluation – Acoustic

The first five rows of Table 4.4 list the results where we classify the utterance employing the acoustic
signals only. We obtain F1-scores of 21.6% and 21.5% using LSTM(A) model for the sarcasm and humour
classification, respectively for MaSaC. The possible explanation for low F1 score would be the absence

9https://github.com/cosanlab/affectiva-api-app
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Modality Model
Sarcasm Detection Humor Classification

Pre Rec F1 Acc Pre Rec F1 Acc

Acoustic (A)

LSTM(A) 0.419 0.146 0.216 0.738 0.475 0.139 0.215 0.523
LSTM(H-ATNA) 0.383 0.129 0.193 0.537 0.445 0.171 0.247 0.463
LSTM(A) + C-ATND 0.422 0.222 0.290 0.628 0.400 0.570 0.470 0.851
LSTM(H-ATNA) + C-ATND 0.254 0.207 0.228 0.537 0.273 0.597 0.375 0.619
†‡LSTM(H-ATNA) + C-ATND 0.710† 0.726† 0.718† 0.784† 0.743‡ 0.697‡ 0.719‡ 0.762‡

Text (T)

LSTM(Tavg) 0.569 0.558 0.563 0.669 0.753 0.617 0.678 0.867
LSTM(TBERT ) 0.646 0.524 0.579 0.774 0.707 0.667 0.687 0.717
LSTM(H-ATNU ) 0.862 0.573 0.688 0.871 0.711 0.724 0.717 0.735
LSTM(H-ATNU ) + C-ATND 0.833 0.601 0.698 0.871 0.760 0.830 0.793 0.797
†‡LSTM(H-ATNU ) + C-ATND 0.652† 0.634† 0.642† 0.714† 0.725‡ 0.736‡ 0.730‡ 0.774‡

Visual (V)
LSTM(Va) 0.113 0.084 0.096 0.178 0.161 0.105 0.127 0.226
LSTM(Vg) 0.318 0.127 0.182 0.310 0.387 0.179 0.245 0.491
†‡LSTM(Vg) 0.349† 0.334† 0.336† 0.378† 0.289‡ 0.247‡ 0.266‡ 0.302‡

Text+Acoustic
(T+A)

LSTM(A) + LSTM(Tavg) 0.571 0.401 0.563 0.789 0.528 0.662 0.587 0.628
LSTM(A) + LSTM(H-ATNU ) 0.801 0.586 0.674 0.865 0.809 0.801 0.805 0.818
LSTM(A) + LSTM(H-ATNU ) + C-ATND 0.865 0.555 0.676 0.868 0.755 0.832 0.797 0.807
LSTM(A) + LSTM(H-ATNU ) + C-ATND + Filter 0.811 0.636 0.711 0.873 0.785 0.858 0.820 0.823
†‡LSTM(A) + LSTM(H-ATNU ) + C-ATND + Filter 0.697† 0.682† 0.689† 0.731† 0.776‡ 0.764‡ 0.769‡ 0.820‡

Text+Acoustic+Visual
(T+A+V)

LSTM(Va) + LSTM(A) + LSTM(H-ATNU ) + C-ATND + Filter 0.695 0.596 0.642 0.726 0.800 0.747 0.773 0.810
LSTM(Vg) + LSTM(A) + LSTM(H-ATNU ) + C-ATND + Filter 0.748 0.571 0.647 0.774 0.762 0.775 0.768 0.792
†‡LSTM(Vg) + LSTM(A) + LSTM(H-ATNU ) + C-ATND + Filter 0.729† 0.716† 0.722† 0.761† 0.794‡ 0.786‡ 0.789‡ 0.831‡

Table 4.4: Experimental results for the sarcasm detection and humour classification. All models of
each task are separately trained and evaluated. A → Acoustic features from Librosa; H-
ATNU → Utterance-level hierarchical attention mechanism over textual modality ; H-ATNA →
Utterance-level hierarchical attention mechanism over acoustic modality; C-ATND → Dialogue-
level contextual attention mechanism; Tavg → Textual Utterance embedding computed as an
average of the constituents word embeddings; Va → Visual features from Affectiva; Vg →
Visual features from GoogleNet. †‡ → Experiments on Monolingual English Dataset – † →
Experiments on MUStARD, ‡ → Experiments on MUMOR-EN.

of any semantic entity in the representation – acoustic feature mainly captures the intensity, excitation
mode, pitch, etc. Together with the textual feature, which contains semantic entities (words), the acoustic
feature assists the model in leveraging the acoustic variations (e.g., excitement) for sarcasm and humour
classification. Subsequently, we incorporate a dialogue-level contextual attention mechanism C-ATND

over the LSTM layer (i.e., LSTM(A) + C-ATND model) and observe performance improvements of ∼8
and ∼26 points in F1-scores for the sarcasm detection and humour classification, respectively. The
performance difference between the two models for both tasks is primarily due to the reduction in false
negatives (and thus improvements in the recall values). Moreover, we credit the improvement to the
attention module, which provides crucial assistance to the model in identifying the underrepresented
sarcastic and humour classes. In other words, it helps the model to exploit the semantics of the relevant
(attended) context in classifying the utterance as sarcastic or humorous. We also experiment with acoustic
feature obtained from utterance-level hierarchical attention module, H-ATNA. We observe a performance
decrease of ∼7 and ∼10 in F1 scores for sarcasm and humour classification respectively when we use
H-ATNA instead of A. Thus, we continue with using A as our acoustic features. Another important
observation suggests that the width of contextual attention (i.e., the number of contextual utterances
considered in the attention computation) has an effect on the systems’ performance. As we increase the
attention width (AtnWidthD) beyond five utterances, the performance of the systems begins to degrades.
It suggests that the context of sarcasm or humour usually resides in the close proximity of the target
utterance - which intuitively follows the real world as both sarcasm and humour lose their effect and
relevancy, if delayed for a longer period. On the other hand, smaller AtnWidthD does not offer sufficient
context for the model to learn. Hence, for rest of the experiments, we choose AtnWidthD=5. Additionally,
for the monolingual English dataset, MUStARD, we obtain an F1-score of 71.8% when only audio is used
as feature for detecting sarcasm, and an F1-score of 71.9% is obtained for the task of humour classification
on the MUMOR-EN dataset.
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Uni-modal evaluation – Textual

Similar to the acoustic modality, we also perform experiments with only the textual modality on code-
mixed and English datasets. In total, we perform four variants, i.e., LSTM(Tavg), LSTM(H-ATNU ),
LSTM(TBERT ) and LSTM(H-ATNU ) + C-ATND on MaSaC and LSTM(H-ATNU ) + C-ATND on English
datasets. The first variant is a vanilla LSTM based classification model trained on the textual utterance
embeddings - which is computed as the mean of FastText multilingual embeddings of constituent words,
and is represented as Tavg. The second variant, LSTM(H-ATNU ), is similar to the first except that the
textual utterance embeddings is computed utilizing the utterance-level hierarchical attention module. The
third variant is also similar to the first two with the difference of type or utterance embedding used. In
this variant, we experimented with BERT (110) to get the utterance embeddings. The fourth variant is an
extension of the second where we also incorporate the dialogue-level contextual attention in classifying the
utterances. We evaluate all these variants on both tasks and report the results in Table 4.4. For code-mixed
sarcasm detection, we obtain F1-scores of 56.3%, 68.8%, and 69.8% for the three variants, respectively.
Similarly, the models yield 67.8%, 71.7%, and 79.3% F1-scores for code-mixed humour classification. We
can observe that the incorporation of utterance-level hierarchical and dialogue-level contextual attention
mechanisms have positive effect on the overall performance in both tasks. Further, F1-scores of 64.2% and
73.0% are obtained for monolingual English sarcasm detection and humour classification, respectively.

Bi-modal evaluation – Textual + Acoustic

Next, we leverage the availability of both modalities (i.e., text and acoustic) for training MSH-COMICS.
We learn two separate LSTMs for each modality, and at each step, we combine the two representations
together utilizing the three dialogue-level contextual attention modules, i.e., text-specific contextual
attention, acoustic-specific contextual attention, and cross-modal contextual attention on both text and
acoustic signals. Further, we incorporate a gating mechanism to filter out the noise from the learned
representations. Similar to the earlier case, we also experiment with the two variants of the textual
representations, i.e., a mean vector Tavg and the vector computed by employing hierarchical attention
H-ATNU . The Text+Acoustic part of Table 4.4 report the ablation results for the different combinations of
individual components - with the last row representing the complete model, as depicted in Figure 4.3.

The first model under the bi-modal inputs (i.e., LSTM(A)+LSTM(Tavg) model) yields 56.3% and 58.7%
F1-scores for the sarcasm and humour classification, respectively. It can be observed that the simple
addition of the acoustic information to the textual information does not effect the performance of the
system (LSTM(A)+LSTM(Tavg)) in a positive way, as compared to the system (LSTM(Tavg)) with textual
information only (c.f. row three of Table 4.4). We observe a performance drop of 9 points in F1-score in
humour classification and no changes in case of sarcasm detection. Similarly, we see ∼2% drop in the
accuracies values with the simple incorporation of acoustics signal for both tasks. This phenomenon can
be attributed to the fact that the two modalities does not complement each other in the feature space and
treat each other as the potential noise. We argue that the fusion of two modalities should be performed in
an intelligent way such that they complement each other in the model training, and our incorporation of
the filtering mechanism in the proposed model, indeed, assists the system to extract the complementary
features only. The second model, LSTM(A) + LSTM(H-ATNU ), and the third model LSTM(A) + LSTM(H-
ATNU ) + C-ATND) with bi-modal inputs, reflect the incorporation of utterance-level hierarchical and
the dialogue-level contextual attention modules. However, similar to the previous case, acoustic signal
does not have a positive influence on the results for the sarcasm detection. Finally, the performance on
monolingual English shows complimentary performance when compared to the text only model. However,
along our previous observations, the performance for the bimodal system is less than the scores obtained
for acoustic only model due to potential noise while mixing information.
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In the subsequent experiment, we evaluate our complete model on the two tasks, i.e., with the incorporation
of filtering mechanism to dictate the complementary feature extraction. The proposed model yields the
best F1-scores of 71.1% and 82.0% for the sarcasm and humour classification in the code-mixed setting.
Moreover, it is also evident that the filtering mechanism leverages the acoustic signals in association with
the textual information with a ∼2% jump in F1-scores compared to the text-based model. We also observe
improvements in accuracy values for the two tasks as well. Further, F1-scores of 72.2% and 78.9% are
obtained for monolingual English setting. In summary, we observe the following phenomena:

• As evident from the obtained results, the textual utterance embedding computed using hierarchical
attention mechanism extracts richer features than the mean vector.

• The dialogue-level contextual attention module learns relevant context to conceive below-the-surface
semantic for the target utterance.

• The filtering mechanism helps the system to extract relevant information from a modality in the
proximity of others.

Joint-learning of Sarcasm and Humor

Since the two tasks are related in the problem space, i.e., both are classification tasks and both have depen-
dencies on the context to extract the hidden semantics, we learn the sarcasm and humour classification
tasks in a joint framework. The base architecture (till the filter module) for the joint-learning remains
the same as earlier. We only add task-specific layers at the output, i.e., the architecture is extended with
two branches corresponding to the two tasks after the filter module. During training, we compute loss at
both the branches and propagate them back to the network. The results obtained using the joint-learning
approach are reported in Table 4.5. We repeat the same set of experiments as in the case of separate
learning (c.f. Table 4.4) for the MaSaC since it contains annotations for both, humour and sarcasm.

We can observe that the obtained results follow the same trend as in the case of separate learning. The
usage of hierarchical attention, contextual attention, and the filtering modules help the system to obtain the
F1-scores of 68.6% and 81.4% for the sarcasm detection and humour classification, respectively. However,
excluding the filtering module, the system yields inferior F1-scores of 65.4% and 80.7%, respectively.
Moreover, the incorporation of acoustic information without filtering mechanism also degrades the
performance of the system. In comparison with the separate learning of two tasks, the joint-learning
architecture yields lesser performance by 2.5 and 0.6 points in F1-scores; however, it requires lesser
(approximately half) parameters to learn, and hence is about 50% less complex than the two separate
models combined.

Comparative Analysis

We also perform comparative analysis by evaluating the existing systems on MaSaC. In particular, we
evaluate MaSaC dataset on the following baseline models.

• SVM (203): We incorporate an SVM classifier on standalone utterances (without any context)
as the baseline system. Depending on the textual representation, we evaluate two variants: a) on
the average of the constituent word embeddings (Tavg), and b) on the embedding computed using
the hierarchical attention module H-ATNU . For the acoustic signal, we utilize the raw feature
representation as mentioned in Section 4.3.2.

• MUStARD (2): It is an SVM-based system that takes an utterance and its contextual utterances for
the classification. For the evaluation, we define previous five utterances as the context and learn
the sarcastic and humorous utterance classification. We experiment with the publicly available
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Modality Model
Sarcasm Detection Humor Classification

Pre Rec F1 Acc Pre Rec F1 Acc

Acoustic (A)
LSTM(A) 0.457 0.107 0.174 0.747 0.543 0.291 0.379 0.552
LSTM(H-ATNA) 0.297 0.126 0.177 0.611 0.391 0.255 0.309 0.442
LSTM(A) + C-ATND 0.520 0.263 0.350 0.757 0.565 0.381 0.455 0.572
LSTM(H-ATNA) + C-ATND 0.432 0.211 0.255 0.635 0.498 0.356 0.415 0.557

Text (T)
LSTM(Tavg) 0.803 0.488 0.607 0.843 0.749 0.818 0.782 0.786
LSTM(H-ATNU ) 0.843 0.506 0.633 0.854 0.754 0.832 0.791 0.794
LSTM(H-ATNU ) + C-ATND 0.695 0.634 0.663 0.840 0.745 0.877 0.806 0.801

Text+Acoustic
(T+A)

LSTM(A) + LSTM(Tavg) 0.675 0.537 0.598 0.821 0.718 0.764 0.740 0.748
LSTM(A) + LSTM(H-ATNU ) 0.799 0.540 0.644 0.852 0.776 0.824 0.799 0.806
LSTM(A) + LSTM(H-ATNU ) + C-ATND 0.800 0.552 0.654 0.855 0.766 0.851 0.807 0.808
LSTM(A) + LSTM(H-ATNU ) + C-ATND + Filter 0.785 0.609 0.686 0.862 0.756 0.882 0.814 0.811

Table 4.5: Experimental results for the joint-learning of sarcasm detection and humour classification. H-
ATNU → Utterance-level hierarchical attention mechanism over textual modality; C-ATND →
Dialogue-level contextual attention mechanism. Tavg: Textual utterance embedding computed
as an average of the constituents word embeddings.

Systems
Sarcasm Detection Humor Classification

Pre Rec F1 Acc Pre Rec F1 Acc

Text

SVM (Tavg) 0.170 0.332 0.225 0.618 0.284 0.475 0.356 0.492
SVM (H-ATNU ) 0.320 0.343 0.331 0.656 0.658 0.299 0.411 0.598
MUStARD (2) 0.510 0.404 0.451 0.756 0.673 0.538 0.598 0.661
Ghosh et al. (3) 0.595 0.432 0.500 0.786 0.648 0.518 0.576 0.644
DialogRNN (4) 0.751 0.604 0.670 0.759 0.730 0.698 0.714 0.764
MSH-COMICS 0.833 0.601 0.698 0.871 0.711 0.724 0.759 0.735
†‡MUStARD (2) 0.609† 0.596† 0.598† 0.659† 0.674‡ 0.696‡ 0.685‡ 0.713‡
†‡MSH-COMICS 0.652† 0.634† 0.642† 0.714† 0.725‡ 0.736‡ 0.730‡ 0.774‡

Text + Audio

SVM (Tavg+A) 0.217 0.281 0.245 0.571 0.389 0.370 0.379 0.431
SVM (H-ATNU+A) 0.274 0.384 0.320 0.595 0.429 0.397 0.413 0.469
MUStARD (2) 0.520 0.458 0.487 0.761 0.692 0.546 0.610 0.673
DialogRNN (4) 0.725 0.690 0.708 0.761 0.714 0.725 0.720 0.749
MSH-COMICS 0.853 0.636 0.711 0.873 0.785 0.858 0.820 0.823
†‡MUStARD (2) 0.639† 0.647† 0.643† 0.701† 0.735‡ 0.719‡ 0.727‡ 0.763‡
†‡MSH-COMICS 0.697† 0.682† 0.689† 0.731† 0.776‡ 0.764‡ 0.769‡ 0.820‡

Table 4.6: Comparative study against existing approaches. MUStARD (2): SVM-based system with
pre-defined context; Ghosh et al. (3): CNN-BiLSTM with pre-defined context; DialogRNN
(4): Recurrent model for the classification of each utterance in the conversational dialogue.
†‡ → Experiments on Monolingual English Dataset – † → Experiments on MUStARD, ‡ →
Experiments on MUMOR-EN.

implementation10 provided by Castro et al. (2).
• Ghosh et al. (3): The underlying architecture of Ghosh et al. (3) also incorporates the contextual

information while classifying an utterance. The authors proposed a deep neural network architecture
that models the contextual and target utterances using two separate CNN-BiLSTM layers. Further,
the learned representations are combined in DNN for the classification11. Similar to the earlier case,
for the evaluation, we define previous five utterances as context. The implementation of the model
was adopted from (3)12.

• DialogRNN (4): The DialogRNN (DRNN) (4) is one of the recent classification models capable of
handling conversational dialogue. It was originally proposed for the ERC task; however, it is the
closest approach considering our modeling of the two tasks, i.e., classifying each utterance in the

10https://github.com/soujanyaporia/MUStARD
11Gosh et al. (3) also employed authors’ profile information for the modeling; however, we did not utilize such information

during the evaluation.
12https://github.com/AniSkywalker/SarcasmDetection
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conversational dialogue. The DRNN architecture encodes speaker-specific utterances independent
of other speakers, and subsequently, incorporates each speaker-specific sequence to maintain the
dialogue sequence. We utilize the implementation13 of DRNN (4) for the evaluation.

In Table 4.6, we report the results of above comparative systems. For each comparative system, we
evaluate on both uni-modal14 textual and bi-modal textual+acoustic information. In text modality, SVM
on Tavg reports mediocre F1-scores of 22.5% and 35.6% for the sarcasm and humour classification,
respectively. In contrast, the same SVM classifier improves the performance of two tasks (11% and 6%,
respectively) by utilizing the embeddings of hierarchical attention module. In comparison, the contextual
models (MUStARD (2) and Ghosh et al. (3)) yield decent F1-scores of 45.1% and 50.0% in sarcasm
detection. Similarly, the two comparative systems obtains 59.8% and 57.6% F1-scores for the humour
classification. Finally, we evaluate DialogRNN (4) for both sarcasm and humour classification, and
obtains the best comparative F1-scores of 67.0% and 71.4%, respectively. In comparison, for the same
input (i.e., textual modality), our proposed system reports ∼3% and ∼4.5% improvement over the best
comparative system.

We observe similar trends with the bi-modal textual+acoustic inputs for both the tasks under consideration.
The SVM-based system records the least F1-scores of 24.5% and 37.9%, while DialogRNN (4) reports
the best performance among the comparative systems with 70.8% and 72.0% F1-scores for the sarcasm
and humour classification tasks, respectively. Comparison shows the superiority of the proposed system
over the comparative system with >1 and 10 points improvement in the F1-scores. Finally, last two lines
of text and text+audio represents the experiments on the monolingual English dataset.

4.5.2 Error Analysis

Though MSH-COMICS performs better than the existing systems, it did misclassify some utterances as
well. In this section, we report our quantitative and qualitative analysis on the errors. At first, we analyze
the system’s performance in terms of confusion matrix, as depicted in Table 4.7.

Sar Non-Sar
Sar 249 142
Non-Sar 58 1127

Hum Non-Hum
Hum 635 105
Non-Hum 174 662

Table 4.7: Confusion matrix for MSH-COMICS.

Next, we choose a dialogue (consisting of 10 utterances) from the test set and present system’s prediction
in Table 4.8. It reports code-mixed utterances (with English translation), its speakers, and its actual and
predicted labels for both sarcasm and humour classification tasks. Across 10 utterances in the dialogue,
two of them are labeled as sarcastic in the gold set, while, the count of humorous utterances is 4. The
dialogue in Table 4.8 also exhibits the contextual and/or multi-modal dependencies for an utterance to be
labeled as sarcastic/humorous. For example, humorous utterances u2 and u3 do not convey any explicit
textual semantics on their own; instead, they rely on the contextual utterances, i.e., u1 for u2 and u1&u2
for u3. Moreover, utterance u2 also depends on the multi-modal information, i.e., the excited voice of
the speaker (Indu) along with the context signals the presence of humour in u2. We also highlight the
English words (blue colored text) along with its count for each utterance in the dialogue which constitute
approximately 15% of the complete text. Out of these English words, some word plays crucial role in the
identification of sarcasm/humour in the utterance. For example, the metaphorically used English word
‘vegetable’ in utterance u6 is the prime clue for the utterance to be identified as humorous.

13https://github.com/declare-lab/conv-emotion
14We do not report uni-modal acoustic results due to extremely poor performance.
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# Speaker Utterance
Sarcasm Humor

Actual Pred Actual Pred

u1 Maya:
Viren ka phone aaya tha, Los Angeles se. mere popat kaka. [Eng words: 1]

✗ ✗ ✗ ✗
I got a call from Viren from Los Angeles. My Popat uncle.

u2 Indu:
gaye kya? [Eng words: 0]

✗ ✗ ✓ ✓
Did he die?

u3 Maya:
nahin. tayaari mein hain [Eng words: 0]

✗ ✗ ✓ ✗
No, preparing for it.

u4 Indu:
come on come on, maya. don’t cry. tum janti ho tum roti ho aur bhi acchi nahin lagti ......... [Eng
words: 6]

✓ ✓ ✓ ✓

Come on Come on, Maya. Don’t cry. You know when you cry, you look even worse.

u5 Maya:
Indravardan! Please! you know, viren keh raha tha ki unhone bilkul bistar pakad liya hai. chal phir
bhi nahi sakte bechare [Eng words: 3]

✗ ✗ ✗ ✓

Indravardan! Please! you know, Viren was saying he is completely bed-ridden, the miserable man
can’t even walk.

u6 Indu:
come on maya vo navve saal ke hain. is umr mein koi bhi insaan vegetable jaisa ho jaata hai [Eng
words: 3]

✗ ✓ ✓ ✓

Come on Maya. He is 90 years old. At his age, every one becomes miserable (seems like a vegetable).

u7 Maya:
I know, I know, darling. I mean, apni monisha ko hi dekh lo, itni choti umr mein bilkul vegetable jaisi
ho gayi hai. din bhar sofa par padi rehti hai. dopahar ki t.v. serial dekhti rehti hai. sabzi bhi wahin
lete lete kaatti hai. chai piti hai to glass uthakar phir kitchen nahin le rakhti. tel laga sir sofa ke
cushions mein rakh deti hai [Eng words: 15]

✓ ✓ ✗ ✗

I know, I know, darling. I mean, look at our Monisha, she looks so miserable at this young age. She
spend her whole day on the sofa watching daytime T.V. serial. She chops vegetable while reclining
there. She does not put the cup back in the kitchen after having a cup of tea. She puts her oily hair on
sofa’s cushion.

u8 Indu:
popat kaka. maya, hum popat kaka ki baat kar rahe the, na [Eng words: 0]

✗ ✗ ✗ ✗
Popat uncle! Maya, were’nt we talking about Popat uncle?

u9 Maya:
haan, viren keh raha tha ki din bhar mujhe yaad karte rehte hain. maya, maya, maya ko bulao [Eng
words: 0]

✗ ✗ ✗ ✓

Yes, Viren was mentioning that he remembers me the whole day. Maya, Maya, ask Maya to come.

u10 Indu:
accha to kab jana ho raha hai los angeles tumhara? [Eng words: 0]

✗ ✗ ✗ ✗
Great, when are you leaving for Los Angeles?

Table 4.8: Actual and predicted labels for sarcasm detection and humour classification for a dialogue
having 10 utterances (u1, ..., u10) in MaSaC dataset. Blue-colored texts represent English
words, while black-colored texts are either romanized Hindi or named entities. For sarcasm
detection, MSH-COMICS yields 66% precision and 100% recall. Similarly, we obtain 60%
precision and 75% recall for the humour classification.

On evaluation, our system predicts three utterances as sarcastic (i.e., u4, u7, and u7) and 5 utterances as
humorous (i.e., u2, u4, u5, u6, and u9). In both cases, it makes some correct predictions as well as some
incorrect predictions. For the sarcasm detection, our system yields precision of 66% (i.e., two out of three
predictions are correct) and recall of 100% (i.e., both sarcastic utterances are correctly predicted). On the
other hand, we obtain precision and recall of 60% and 75%, respectively, for the humour classification,
i.e., we observe two false-positives and one false-negatives along with three true-positives.

Model Data Sarcasm Detection Humor Classification
Prec Rec F1 Acc Prec Rec F1 Acc

MSH-COMICS Set1 0.67 0.79 0.72 0.83 0.92 0.91 0.91 0.87
Set2 0.62 0.62 0.62 0.82 0.51 0.96 0.67 0.76

Table 4.9: Experimental results on sampled data from test set to analyze
the effect of the extent of code-mixing in our model. Set1
contains 100 utterances containing ∼18 English words (on avg)
per sentence, whereas Set2 contains 100 utterances with ∼1
English word per sentence.

We also analyse the effect of
the level of code-mixing for
both the tasks. In the given
example, there is on an aver-
age one English word in ev-
ery six words. For sarcasm
classification, our model only
returns one false positive. It
is for the case where the utter-
ance contains three English
words out of the total 19
words, i.e., one English word
for every 6.3 words. Whereas it gives correct predictions for utterances 4 and 7 which contains one English
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word for every three words and one English word for every 4.3 words, respectively. For the humour
classification task, our model misclassifies for utterances u3, u5 and u9, having 0, 3 and 0 English words
respectively. The ratio for English words to total words then turns out to be 0:4, 1:3 and 0:18. Whereas
it predicts humour correctly for utterances u2, u4 and u6, having 0, 6 and 3 English words respectively.
The ratio of English words to total being 0:2, 1:3 and 1:6.3 respectively. Looking at these results, we
hypothesize that our model performs better for the utterances containing comparatively more English
words. To validate this hypothesis, we sample two sets from our test set. Both the set has 100 utterances.
One of the set contains the utterances having the most number of English words (∼18 English words per
utterance) and another contains utterances containing the least number of English words (∼1 English
word per utterance). We evaluate our final model on these two sets and report the result in Table 4.9. It
can be easily seen from the table that the our model performs better when there are more English words in
the utterance thus validating our hypothesis.

u1 u2 u3 u4 u5 u6 u7 u8 u9 u10

u1

u2

u3

u4

u5

u6

u7

u8

u9

u10

1 0 0 0 0 0 0 0 0 0

0.74 0.26 0 0 0 0 0 0 0 0

0.018 0.042 0.94 0 0 0 0 0 0 0

0.01 0.027 0.018 0.95 0 0 0 0 0 0

0.01 0.22 0.12 0.19 0.45 0 0 0 0 0

0 0.03 0.043 0.11 0.3 0.52 0 0 0 0

0 0 0.13 0.21 0.31 0.0022 0.35 0 0 0

0 0 0 0.052 0.017 0.022 0.12 0.79 0 0

0 0 0 0 0.1 0.1 0.22 0.093 0.48 0

0 0 0 0 0 0.0023 0.032 0.013 0.17 0.78

0.0

0.2

0.4

0.6

0.8

1.0

(a) Textual attention.
u1 u2 u3 u4 u5 u6 u7 u8 u9 u10

u1

u2

u3

u4

u5

u6

u7

u8

u9

u10

1 0 0 0 0 0 0 0 0 0

0.39 0.61 0 0 0 0 0 0 0 0

0.16 0.27 0.57 0 0 0 0 0 0 0

0.048 0.071 0.24 0.64 0 0 0 0 0 0

0.048 0.071 0.071 0.29 0.52 0 0 0 0 0

0 0.03 0.043 0.11 0.3 0.52 0 0 0 0

0 0 0.038 0.22 0.05 0.16 0.53 0 0 0

0 0 0 0.1 0.039 0.092 0.19 0.58 0 0

0 0 0 0 0.037 0.085 0.081 0.44 0.36 0

0 0 0 0 0 0.083 0.067 0.067 0.32 0.47

0.0

0.2

0.4

0.6

0.8

1.0

(b) Acoustic attention.
u1 u2 u3 u4 u5 u6 u7 u8 u9 u10 u1 u2 u3 u4 u5 u6 u7 u8 u9 u10

u1

u2

u3

u4

u5

u6

u7

u8

u9

u10

1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0.22 0.78 0 0 0 0 0 0 0 0 0.14 0.86 0 0 0 0 0 0 0 0

0.18 0.36 0.46 0 0 0 0 0 0 0 0.048 0.4 0.55 0 0 0 0 0 0 0

0.094 0.051 0.13 0.72 0 0 0 0 0 0 0.094 0.023 0.23 0.65 0 0 0 0 0 0

0.012 0.12 0.15 0.11 0.61 0 0 0 0 0 0.031 0.026 0.19 0.24 0.51 0 0 0 0 0

0 0.11 0.011 0.022 0.21 0.64 0 0 0 0 0 0.038 0.0077 0.012 0.3 0.65 0 0 0 0

0 0 0.055 0.1 0.18 0.15 0.52 0 0 0 0 0 0.035 0.013 0.32 0.19 0.44 0 0 0

0 0 0 0.12 0.039 0.05 0.41 0.39 0 0 0 0 0 0.017 0.059 0.043 0.36 0.52 0 0

0 0 0 0 0.014 0.0092 0.043 0.36 0.57 0 0 0 0 0 0.0027 0.039 0.033 0.18 0.74 0

0 0 0 0 0 0.1 0.0077 0.18 0.21 0.5 0 0 0 0 0 0.092 0.063 0.12 0.19 0.53

0.0

0.2

0.4

0.6

0.8

1.0

(c) Textual and acoustic cross-modal attention.

Figure 4.4: Humor Classification: Heatmap analysis of the dialogue-level contextual attention module for
the dialogue presented in Table 4.8. For each utterance ui on the y-axis, we compute attention
weights for the 5 utterances, i.e., the current and previous four utterances (AtnWidthD = 5).
The cell values (i, i − 4), (i, i − 3), (i, i − 2), (i, i − 1), and (i, i) represents the attention
weights of utterances ui−4, ui−3, ui−2, ui−1, and ui, respectively. The colormap signifies
the amount attention weight for the respective utterances. The darker the shade, higher the
attention weight assigned by MSH-COMICS.

u1 u2 u3 u4 u5 u6 u7 u8 u9 u10

u1

u2

u3

u4

u5

u6

u7

u8

u9

u10

1 0 0 0 0 0 0 0 0 0

0.22 0.78 0 0 0 0 0 0 0 0

0.098 0.46 0.44 0 0 0 0 0 0 0

0.094 0.19 0.27 0.44 0 0 0 0 0 0

0.094 0.016 0.19 0.13 0.57 0 0 0 0 0

0 0.0084 0.014 0.12 0.21 0.66 0 0 0 0

0 0 0.01 0.12 0.047 0.35 0.48 0 0 0

0 0 0 0.12 0.039 0.05 0.41 0.39 0 0

0 0 0 0 0.039 0.038 0.18 0.35 0.39 0

0 0 0 0 0 0.038 0.0077 0.21 0.19 0.56

0.0

0.2

0.4

0.6

0.8

1.0

(a) Textual attention.
u1 u2 u3 u4 u5 u6 u7 u8 u9 u10

u1

u2

u3

u4

u5

u6

u7

u8

u9

u10

1 0 0 0 0 0 0 0 0 0

0.54 0.46 0 0 0 0 0 0 0 0

0.0077 0.3 0.69 0 0 0 0 0 0 0

0.05 0.037 0.048 0.87 0 0 0 0 0 0

0.07 0.2 0.15 0.12 0.46 0 0 0 0 0

0 0.0084 0.014 0.12 0.21 0.66 0 0 0 0

0 0 0.03 0.011 0.61 0.022 0.33 0 0 0

0 0 0 0.052 0.017 0.022 0.12 0.79 0 0

0 0 0 0 0.0023 0.0025 0.019 0.19 0.78 0

0 0 0 0 0 0.022 0.022 0.19 0.13 0.63

0.0

0.2

0.4

0.6

0.8

1.0

(b) Acoustic attention.
u1 u2 u3 u4 u5 u6 u7 u8 u9 u10 u1 u2 u3 u4 u5 u6 u7 u8 u9 u10

u1

u2

u3

u4

u5

u6

u7

u8

u9

u10

1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0.36 0.64 0 0 0 0 0 0 0 0 0.34 0.66 0 0 0 0 0 0 0 0

0.078 0.35 0.57 0 0 0 0 0 0 0 0.0084 0.2 0.79 0 0 0 0 0 0 0

0.094 0.021 0.23 0.65 0 0 0 0 0 0 0.094 0.07 0.13 0.7 0 0 0 0 0 0

0.082 0.016 0.13 0.19 0.58 0 0 0 0 0 0.011 0.016 0.15 0.17 0.65 0 0 0 0 0

0 0.078 0.0065 0.12 0.18 0.61 0 0 0 0 0 0.098 0.003 0.018 0.2 0.69 0 0 0 0

0 0 0.035 0.1 0.078 0.3 0.49 0 0 0 0 0 0.035 0.013 0.43 0.2 0.32 0 0 0

0 0 0 0.12 0.039 0.05 0.41 0.39 0 0 0 0 0 0.007 0.059 0.043 0.16 0.73 0 0

0 0 0 0 0.004 0.039 0.14 0.36 0.45 0 0 0 0 0 0.007 0.059 0.043 0.16 0.73 0

0 0 0 0 0 0.042 0.0077 0.24 0.2 0.51 0 0 0 0 0 0.022 0.053 0.1 0.2 0.62

0.0

0.2

0.4

0.6

0.8

1.0

(c) Textual and acoustic cross-modal attention.

Figure 4.5: Sarcasm Detection: Heatmap of the dialogue-level contextual attention module for the dialogue
presented in Table 4.8.

We also perform heatmap analysis of the attention weights as computed by the system. For the analysis,
we take the same dialogue as presented in Table 4.8 and depict the heatmaps of dialogue-level contextual
attention C-ATND in Figures 4.4 and 4.5 for the humour classification and sarcasm detection, respectively.
For each case, we show three separate heatmaps of the attention matrices corresponding to the textual,
acoustics, and cross-modal attention modules. Each row i represents an utterance for which we compute
attention weights for the five (current and four previous) utterances (i.e., AtnWidthD=5) and the color
shade signifies the amount of attention the model assigns to the corresponding utterances - darker shades
represent higher weight, while lighter shades signify lower weights. Rest of the entries have attention
weight zero, as they don’t participate in the computation.

From the heatmaps, we can observe that the attention modules assign different wights to the contextual
utterances depending upon their importance. For example, the system assigns higher weight on the
previous textual content (c.f. Figure 4.4a β1 = 0.74&β2 = 0.26) and the current acoustic context (c.f.
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Figure 4.4b α1 = 0.39&α2 = 0.61) for utterance u2 in the humour classification. The distribution of
attention weights can be justified by manual observation as well. The textual content of u2 (i.e., gaye
kya?|Did he die?) does not offer significant information about being humorous and one has to consider the
context for the semantic. On the other hand, the audio signal reveals the excitement and tone in the voice
of the speaker, and thus validates the higher attention weights by the system. Similarly, we observe many
scenarios in other dialogs as well where the attention weights have high correlation with the contextual
and multi-modal semantics of the utterances.

4.5.3 Evaluating LLMs

In order to see the performance of large language models such as Llama when compared with the proposed
MSH-COMICS, we finetune the LLM with our MaSaC dataset and show its performance alongside the
performance by MSH-COMICS in Table 4.10 for code-mixed conversations. For the English counterpart,
we employ the MUMOR-EN and the MUStARD dataset for humour and sarcasm detection, respectively.
As expected, Llama, being a larger model, performs better than the proposed methodologies, for the two
tasks of sarcasm detection and humour identification.

Sarcasm Humour
Prec Rec F1 Prec Rec F1

Code-mixed MSH-COMICS 0.811 0.636 0.711 0.785 0.858 0.820
Llama 0.904 0.711 0.796 0.853 0.871 0.862

English MSH-COMICS 0.729 0.716 0.722 0.794 0.786 0.789
Llama 0.711 0.731 0.721 0.795 0.789 0.792

Table 4.10: Performance of Llama when compared with our proposed methodologies for sarcasm and
humour identification.

4.6 Conclusion

In conclusion, this chapter addressed the challenges inherent in sarcasm detection and humour classi-
fication, recognizing their nuanced nature reliant on contextual and non-verbal cues. The limitation of
existing studies, particularly in non-English languages like Hindi, prompted two significant contributions –
Firstly, the creation of MaSaC, a novel Hindi-English code-mixed dataset, marked a pivotal step forward
for multi-modal sarcasm detection and humour classification in conversational dialogues. It stood as
the first dataset of its kind. Secondly, the introduction of MSH-COMICS, an innovative attention-rich
neural architecture, elevated the realm of utterance classification. The model efficiently learned utterance
representation through a hierarchical attention mechanism, focusing on specific segments of the input
sentence. Additionally, a dialogue-level contextual attention mechanism capitalized on the dialogue
history for more robust multi-modal classification. Through extensive experiments for both tasks, varying
multi-modal inputs, and exploring different submodules of MSH-COMICS, the chapter demonstrated its
superiority over existing models. A comprehensive diagnostic analysis of the model provided insights into
its strengths and weaknesses. Furthermore, the extension of our proposed architecture to two monolingual
datasets for humour and sarcasm detection in monolingual English yielded valuable improvements. This
comprehensive exploration not only advanced the state-of-the-art in multi-modal sarcasm detection and
humour classification but also contributed insights that may shape future developments in this nuanced
field.
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5. Sarcasm Explanation

Conversations emerge as the primary media for exchanging ideas. Identifying various
affective qualities, such as sarcasm, humour, and emotions, is paramount for comprehending
the true connotation of the emitted utterance. However, one of the major hurdles faced in
learning these affect dimensions is the presence of figurative language viz. irony, metaphor,
or sarcasm. Though sarcasm identification has been a well-explored topic in dialogue
analysis, for conversational systems to truly grasp a conversation’s innate meaning and
generate appropriate responses, simply detecting sarcasm is not enough; it is vital to explain
its underlying sarcastic connotation to capture its true essence. In this chapter, we study
the discourse structure of sarcastic conversations and propose a novel task – Sarcasm
Explanation in Dialogue (SED). Set in a multimodal and multilingual setting, the task aims
to generate natural language explanations of satirical conversations. To this end, we curate
WITS, a new dataset to support our task. We propose MAF and MOSES, two deep neural
networks, which take multimodal (sarcastic) dialogue instance as an input and generates
a natural language sentence as its explanation. Subsequently, we leverage the generated
explanation for various natural language understanding tasks in a conversational dialogue
setup, such as sarcasm detection, humour identification, and emotion recognition. Our
evaluation shows that MAF and MOSES outperforms the state-of-the-art system for SED
on different evaluation metrics, such as ROUGE, BLEU, and BERTScore. Further, we
observe that leveraging the generated explanation advances three downstream tasks for
affect classification – an average improvement of ∼ 14% F1-score in the sarcasm detection
task and ∼ 2% in the humour identification and emotion recognition task. We also perform
extensive analyses to assess the quality of the results.

5.1 Introduction

Expressing oneself eloquently to our conversation partner requires employing multiple affective com-
ponents such as emotion, humour, and sarcasm. All such attributes interact with each other to present
a concrete definition of an uttered statement (204). While affects such as emotion and humour deem
easier to comprehend, sarcasm, on the other hand, is a challenging aspect to understand (205). The use of
figurative language serves many communicative purposes and is a regular feature of both oral and written
communication (204). Predominantly used to induce humour, criticism, or mockery (206), paradoxical
language is also used in concurrence with hyperbole to show surprise (207) as well as highlight the
disparity between expectations and reality (208). While the use and comprehension of sarcasm is a
cognitively taxing process (205), psychological evidence advocate that it positively correlates with the
receiver’s theory of mind (ToM) (209), i.e., the capability to interpret and understand another person’s
state of mind. Thus, for NLP systems to emulate such anthropomorphic intelligent behavior, they must not
only be potent enough to identify sarcasm but also possess the ability to comprehend it in its entirety. To
this end, moving forward from sarcasm identification, we propose the novel task of Sarcasm Explanation
in Dialogue aka SED.

For dialogue agents, understanding sarcasm is even more crucial as there is a need to normalize its
sarcastic undertone and deliver appropriate responses. Conversations interspersed with sarcastic statements



often use contrastive language to convey the opposite of what is being said. In a real-world setting,
understanding sarcasm goes beyond negating a dialogue’s language and involves the acute comprehension
of audio-visual cues. Additionally, due to the presence of essential temporal, contextual, and speaker-
dependent information, sarcasm understanding in conversation manifests as a challenging problem.
Consequently, many studies in the domain of dialogue systems have investigated sarcasm from textual,
multimodal, and conversational standpoints (210; 211; 212; 105). However, baring some exceptions
(213; 214; 215), research on figurative language has focused predominantly on its identification rather
than its comprehension and normalization. This paper addresses this gap by attempting to generate natural
language explanations of satirical dialogues.

Figure 5.1: SED: Given a sarcastic dialogue, the aim
is to generate a natural language expla-
nation for the sarcasm in it. Blue text
represents the English translation for the
text.

To illustrate the proposed problem statement, we
show an example in Figure 5.1. It contains a dyadic
conversation of four utterances ⟨u1, u2, u3, u4⟩,
where the last utterance (u4) is a sarcastic remark.
Note that in this example, although the opposite
of what is being said is, “I don’t have to think
about it," it is not what the speaker means; thus,
it enforces our hypothesis that sarcasm explana-
tion goes beyond simply negating the dialogue’s
language. The discourse is also accompanied by
ancillary audio-visual markers of satire such as an
ironical intonation of the pitch, a blank face, or
roll of the eyes. Thus, conglomerating the con-
versation history, multimodal signals, and speaker
information, SED aims to generate a coherent and
cohesive natural language explanation associated
with sarcastic dialogues.

For the task at hand, we extend our MASAC
dataset – a sarcasm detection dataset for code-
mixed conversations – by augmenting it with nat-
ural language explanations for each sarcastic dia-
logue. We name the dataset WITS1. The dataset is
a compilation of sarcastic dialogues from a popular
Indian TV show. Along with the textual transcripts
of the conversations, the dataset also contains mul-
timodal signals of audio and video.

We experiment with unimodal as well as multimodal models to benchmark WITS. Text, being the
driving force of the explanations, is given the primary importance, and thus, we compare a number of
established text-based sequence-to-sequence systems on WITS. To incorporate multimodal information,
we propose a unique fusion scheme of Multimodal Context-Aware Attention (MCA2). Inspired by
(114), this attention variant facilitates deep semantic interaction between the multimodal signals and
textual representations by conditioning the key and value vectors with audio-visual information and
then performing dot product attention with these modified vectors. The generated audio and video
information-informed textual representations are then combined using the Global Information Fusion
Mechanism (GIF). The gating mechanism of GIF allows for the selective inclusion of information relevant
to the satirical language and also prohibits any multimodal noise from seeping into the model. We further
propose MAF (Modality Aware Fusion) module and the MOSES (MultimOdal Sarcasm Explanation

1WITS: “Why Is This Sarcastic"
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with Spotlight) methodology, where the aforementioned mechanisms are introduced in the Generative
Pretrained Language Models (GPLMs) as adapter modules. Our fusion strategies outperform the text-
based baselines and the traditional multimodal fusion schemes in terms of multiple text-generation metrics.
Finally, we conduct a comprehensive quantitative and qualitative analysis of the generated explanations.

All affective components, such as sarcasm, humour, and emotion, work in tandem to convey a statement’s
intended meaning (216; 217). Accordingly, we hypothesize that understanding one of the affective
markers, like sarcasm, in its entirety will influence comprehending others. Consequently, in this chapter,
we also deal with leveraging sarcasm explanations for three affect understanding tasks in dialogues,
namely sarcasm detection, humour identification, and emotion recognition. The performance obtained
from these tasks can be employed as a method to estimate the relevance of the SED task extrinsically. In a
nutshell, our contributions are summarised below:

• We propose SED, a novel task aimed at generating a natural language explanation for a given
sarcastic dialogue, elucidating the intended irony.

• We extend an existing sarcastic dialogue dataset, to curate WITS, a novel dataset containing human
annotated gold standard explanations.

• We benchmark our dataset using MAF and MOSES variants of BART, that incorporate the audio-
visual cues using a unique context-aware attention mechanism and pronunciation embeddings.

• We carry out extensive quantitative and qualitative analysis along with human evaluation to assess
the quality of the generated explanations.

5.2 Related Work

Sarcasm and Text: A well-compiled survey (218) on computational sarcasm expanded on the relevant
datasets, trends, and issues for automatic sarcasm identification. Early work in sarcasm detection dealt
with standalone text inputs like tweets and reviews (58; 59; 177; 219). These initial works mostly focused
on the use of linguistic and lexical features to spot the markers of sarcasm (58; 59). More recently,
attention-based architectures are proposed to harness the inter- and intra-sentence relationships in texts for
efficient sarcasm identification (60; 61; 62). Analysis of figurative language has also been extensively
explored in conversational AI setting. A study (220) utilised attention-based RNNs to identify sarcasm in
the presence of context. Two separate LSTMs-with-attention were trained for the two inputs (sentence
and context) and their hidden representations were combined during the prediction. The study of sarcasm
identification has also expanded beyond the English language. One study (221) collected a Hindi corpus
of 2000 sarcastic tweets and employed rule-based approaches to detect sarcasm. Another (222) curated a
dataset of 5000 satirical Hindi-English code-mixed tweets and used n-gram feature vectors with various
ML models for sarcasm detection. Other notable studies include Arabic (223), Spanish (224), and Italian
(225) languages.

Sarcasm and Multimodality: In the conversational setting, MUStARD, a multimodal, multi-speaker
dataset (211) is considered the benchmark for multimodal sarcasm identification. A study (217) leveraged
the intrinsic interdependency between emotions and sarcasm and devised a multi-task framework for
multimodal sarcasm detection. Currently, the state-of-the-art on this dataset utlised a humour knowledge
enriched transformer model (216). In the bimodal setting, sarcasm identification with tweets containing
images has also been well explored (162; 226; 227) .

Beyond Sarcasm Identification: While studies in computational sarcasm have predominantly focused on
sarcasm identification, some forays have been made into other domains of figurative language analysis.
The work of converting sarcastic utterances into their non-sarcastic interpretations using deep learning has
started (214). In another direction, a study (213) devised a modular unsupervised technique for sarcasm
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Figure 5.2: Distribution of attributes in WITS. The number of utterances in a dialogue lies between 2
and 27. Maximum number of speakers in a dialogue are 6. The speaker ‘Maya’ is the most
common common sarcasm source while the speaker ‘Monisha’ is the most prominent sarcasm
target.

generation by introducing context incongruity through fact removal and incongruous phrase insertion.
Following this, another research (215) proposed a retrieve-and-edit-based unsupervised framework for
sarcasm generation. Their proposed model leverages the valence reversal and semantic incongruity to
generate sarcastic sentences from their non-sarcastic counterparts. In summary, much work has been done
in sarcasm detection, but little, if any, effort has been placed into explaining the irony behind sarcasm. We
attempt to fill this gap by proposing a new problem definition and a supporting dataset.

5.3 Dataset

# Dlgs # Utts # Eng utts # Hin utts
2240 9080 101 1453
# CM utts Avg. utt/dlg Avg. sp/dlg Avg.

words/utt
7526 4.05 2.35 14.39
Avg.
words/dlg

Vocab size Eng vocab
size

Hin vocab
size

58.33 10380 2477 7903

Table 5.1: Statistics of dialogues present in WITS.

Situational comedies, or ‘Sitcoms’,
vividly depict human behaviour and
mannerism in everyday real-life settings.
Consequently, the NLP research com-
munity has successfully used such data
for sarcasm identification (211; 105).
However, as there is no current dataset
tailored for the proposed task, we cu-
rate a new dataset named WITS, where
we augment the already existing MaSaC
dataset with explanations for our task.
We manually analyze the data and clean
it for our task. While the original dataset
contained 45 episodes of the TV series, we add 10 more episodes along with their transcription and
audio-visual boundaries. Subsequently, we select the sarcastic utterances from this augmented dataset and
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manually define the utterances to be included in the dialogue context for each of them. Finally, we are left
with 2240 sarcastic dialogues with the number of contextual utterances ranging from 2 to 27. Each of
these instances is manually annotated with a corresponding natural language explanation interpreting its
sarcasm. Each explanation contains four primary attributes – source and target of sarcasm, action word
for sarcasm, and an optional description for the satire as illustrated in Figure 5.1. In the explanation “Indu
implies that Maya is not looking good.", ‘Indu’ is the sarcasm source, ‘Maya’ is the target, ‘implies’ is
the action word, while ‘is not looking good’ forms the description part of the explanation. We collect
explanations in code-mixed format to keep consistency with the dialogue language. We split the data into
train/val/test sets in an 80:10:10 ratio for our experiments, resulting in 1792 dialogues in the train set and
224 dialogues each in the validation and test sets. We also consider the monolingual English dataset -
MUStARD, curated for the task of sarcasm identification. We follow the same guidelines as mentioned in
the next subsection to annotate it with sarcasm explanations. The next section illustrates the annotation
process in more detail. Table 5.1 and Figure 5.2 show detailed statistics of WITS.

5.3.1 Annotation Guidelines

Each of the instance in WITS and MUStARD is associated with a corresponding video, audio, and textual
transcript such that the last utterance is sarcastic in nature. We first manually define the number of
contextual utterances required to understand the sarcasm present in the last utterance of each dialogue.
Further, we provide each of these sarcastic statements, along with their context, to the annotators who
are asked to generate an explanation for these instances based on the audio, video, and text cues. Two
annotators were asked to annotate both the datasets. The target explanation is selected by calculating
the cosine similarity between the two explanations. If the cosine similarity is greater than 90% then the
shorter length explanation is selected as the target explanation. Otherwise, a third annotator goes through
the dialogue along with the explanations and resolves the conflict. The average cosine similarity after the
first pass is 87.67% for WITS and 91.03 for MUStARD. All the final selected explanations contain the
following attributes:

• Sarcasm source: The speaker in the dialogue who is being sarcastic.
• Sarcasm target: The person/ thing towards whom the sarcasm is directed.
• Action word: Verb/ action used to describe how the sarcasm is taking place. For e.g. mocks,

insults, taunts, etc.
• Description: A description about the scene which helps in understanding the sarcasm.

5.3.2 Variations of WITS
WITS sWITS hWITS eWITS

#S #NS #S #NH #H #Ntrl #Sad #Joy #Ang

Train 1792 1669 1792 2795 995 1590 1147 623 429
Val 224 213 224 362 112 196 133 87 57
Test 224 218 224 367 106 195 141 70 67

Total 2240 2100 2240 3524 1213 1981 1421 780 553

Table 5.2: Statistics of the sarcasm, humour, and emotion (N:
Ntrl: Neutral, Ang: Anger) datasets in consideration
(number of dialogue instances marked as sarcastic
(#S), non-sarcastic (#NS), non-humorous (#NH), and
humorous (#H).).

In order to gauge the effect of sarcasm
explanation on affective attributes, we
augment WITS to perform sarcasm de-
tection, humour identification, and emo-
tion recognition on it. We create in-
stances for sarcastic and non-sarcastic
utterances with their context to perform
sarcasm detection. We call this varia-
tion of the dataset sWITS. Adapted from
MaSaC, WITS can also be mapped to
annotations for humour identification,
where each utterance contains a binary
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marker showcasing whether the utterance is amusing or not. Consequently, we map each instance in
sWITS to its corresponding humour annotation. Additionally, we determine emotion labels for the
instances at hand and identify the following emotions – sadness, joy, anger, and neutral. Three annotators
were involved in this phase and achieved an inter-annotator agreement of 0.86. Accordingly, we obtain
four variations of the dataset:

1. WITS: It contains multimodal, multiparty, code-mixed, sarcastic instances with associated explana-
tions.

2. sWITS: It contains sarcastic and non-sarcastic instances constructed from WITS. The last utterance
of each instance is marked by a binary tag indicating whether the statement contains sarcasm or not.

3. hWITS: For each instance created in sWITS, each target utterance is marked with another binary
label revealing the existence of humour in it.

4. eWITS: Similar to hWITS, this variant contains emotion labels for the target utterances.

Table 5.2 illustrates the elementary statistics for the explained dataset variations. We explain each dataset
curation in detail below.

Figure 5.3: Construction of sWITS from WITS.

sWITS: The parent dataset, WITS contains sarcas-
tic instances along with their explanations. Each
instance of WITS contains a sequence of utterances
where the last utterance is sarcastic. However, for
the sarcasm detection task, we need both sarcastic
as well as non-sarcastic instances. To create the
non-sarcastic instances, we randomly sample utter-
ances from the context of the instances present in
WITS. Figure 5.3 illustrates the process of creating
sWITS from WITS.

hWITS: To gauge the effect of sarcasm explana-
tion on humour identification, we will need in-
stances with humour labels. As a result, we explore the mapping existing between WITS and the MaSaC
dataset. MaSaC contains binary markers identifying the presence of sarcasm and humour in all utterances.
The WITS dataset is an extended version of the MaSaC dataset where all the sarcastic utterances are
appended with their corresponding natural language explanation. Ergo, we map the humour labels from
MaSaC to the instances present in sWITS and get hWITS.

eWITS: Sarcasm significantly affects the emitted emotion of an utterance. Wherefore, we hypothesize that
emotion recognition in conversation can be improved in the presence of utterance explanations. Therefore,
we need emotion labels for the instances present in sWITS to create eWITS. We annotate the instances
for emotion labels following the Ekman (72) emotion scheme. Out of the seven possible emotion labels,
namely anger, fear, disgust, sadness, joy, and surprise, neutral, we were able to identify four for our set
of instances – anger, sadness, joy, and neutral. Three annotators (ABC) were involved and achieved
Krippendorff’s Alpha (108) inter-annotator scores as αAB = 0.84, αBC = 0.88, and αAC = 0.86 giving
an average score of 0.86. We show couple of instances from all the discussed datasets in Table 5.3.
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Context Speakers Context Utterances Target Speaker Target Sarcastic Utterance Explanation

INDRAVARDHAN Accha suno Monisha tumhaare ghar mein been ya
aisa kuuch hain? (Listen Monisha, do you have a
flute or something similar?)

MAYA Kaise hogi? Monisha aapne ghar pe dustbin
mushkil se rakhti hain to snake charmer waali been
kaha se rakhegi? (How will it be there? Monisha
hardly keeps a dustbin in her home so how will she
has a snake charmer’s flute?)

Maya Monisha ko tana marti hai safai ka dhyan
na rakhne ke liye. (Maya taunts Monisha for not
keeping a check of cleanliness)

SAHIL Ab tumne ghar ki itni saaf safai ki hai and secondly
us Karan Verma ke liye pasta, lasagne, caramel cus-
tard banaya. (Now you have cleaned the house so
much and secondly made pasta, lasagne, caramel
custard for that Karan Verma.)

SAHIL
Walnut brownie, matlab wo khane wali? (You
mean edible walnut brownie?)

Sahil monisha ki cooking ka mazak udata hai.
(Sahil makes fun of Monisha’s cooking.)

MONISHA Walnut brownie bhi. (And walnut brownie too.)

(a) For WITS

Context Speakers Context Utterances Target Speaker Target Utterance sWITS hWITS eWITS

MONISHA Dukan se yaad aya, mummy ji wahan pe South-
hall ya Wembley ki kisi dukan se please mere liye
chandi ka mangalsutra le aaiega na (Talking about
shops, mom please get me a silver necklace from
any shop from Southhall or Wembley.)

MONISHA
Haan wahan pe kali mani ke neeche Big Ben ki
pendant wala mangalsutra milta hai. (Yes, we can
get a necklace of black beads from there.)

0 1 Joy

SAHIL Mangalsutra London se? (You want a necklace
from London?)

ROSESH Momma mujhe bohot achi lagti hai. (I like momma
very much) INDRAVARDHAN Rakshas! (Monster!) 1 0 Anger

INDRAVARDHAN I know that. Momma pari hai pari! (I know that.
Your mother is like a fairy.)

ROSESH Aur me? (And me?)

(b) For sWITS, hWITS, and eWITS

Table 5.3: Sample instances for WITS, sWITS, hWITS, and eWITS
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Figure 5.4: Model architecture for MAF. The proposed Multimodal Fusion Block captures audio-visual
cues using Multimodal Context Aware Attention (MCA2) which are further fused with textual
representations using Global Information Fusion (GIF) block.

5.4 Methodology

5.4.1 MAF

In this section, we present our model and its nuances. The primary goal is to smoothly integrate multimodal
knowledge into the BART architecture. To this end, we introduce Multimodal Aware Fusion (MAF),
an adapter-based module that comprises of Multimodal Context-Aware Attention (MCA2) and Global
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Information Fusion (GIF) mechanisms. Given the textual input sarcastic dialogue along with the audio-
video cues, the former aptly introduces multimodal information in the textual representations, while the
latter conglomerates the audio-visual information infused textual representations. This adapter module
can be readily incorporated at multiple layers of BART/mBART to facilitate various levels of multimodal
interaction. Figure 5.4 illustrates our model architecture.

Multimodal Context Aware Attention

The traditional dot-product-based cross-modal attention scheme leads to the direct interaction of textual
representations with other modalities. Here the text representations act as the query against the multimodal
representations, which serve as the key and value. As each modality comes from a different embedding
subspace, a direct fusion of multimodal information might not retain maximum contextual information
and can also leak substantial noise in the final representations. Thus, based on the findings of (114), we
propose multimodal fusion through Context Aware Attention. We first generate multimodal information
conditioned key and value vectors and then perform the traditional scaled dot-product attention. We
elaborate on the process below.

Given the intermediate representation H generated by the GPLMs at a specific layer, we calculate the
query, key, and value vectors Q, K, and V ∈ Rn×d, respectively, as given in Equation 6.1, where
WQ,WK , and WV ∈ Rd×d are learnable parameters. Here, n denotes the maximum sequence length of
the text, and d denotes the dimensionality of the GPLM generated vector.[

QKV
]
= H

[
WQWKWV

]
(5.1)

Let C ∈ Rn×dc denote the vector obtained from audio or visual representation. We generate multimodal
information informed key and value vectors K̂ and V̂ , respectively, as given by (114). To decide how
much information to integrate from the multimodal source and how much information to retain from the
textual modality, we learn matrix λ ∈ Rn×1 (Equation 6.3). Note that Uk and Uv ∈ Rdc×d are learnable
matrices. [

K̂

V̂

]
= (1−

[
λk

λv

]
)

[
K
V

]
+

[
λk

λv

]
(C

[
Uk

Uv

]
) (5.2)

Instead of making λk and λv as hyperparameters, we let the model decide their values using a gating
mechanism as computed in Equation 6.3. The matrices of Wk1 ,Wk2 ,Wv1 , and Wv2 ∈ Rd×1 are trained
along with the model.

[
λk

λv

]
= σ(

[
K
V

] [
Wk1

Wv1

]
+ C

[
Uk

Uv

] [
Wk2

Wv2

]
) (5.3)

Finally, the multimodal information infused vectors K̂ and V̂ are used to compute the traditional scaled
dot-product attention. For our case, we have two modalities – audio and video. Using the context-aware
attention mechanism, we obtain the acoustic-information-infused and visual-information infused vectors
HA and HV , respectively (c.f. Equations 5.4 and 5.5).

Ha = Softmax(
QK̂T

a√
dk

)V̂a (5.4)
Hv = Softmax(

QK̂T
v√

dk
)V̂v (5.5)
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Global Information Fusion

In order to combine the information from both the acoustic and visual modalities, we design the GIF
block. We propose two gates, namely the acoustic gate (ga) and the visual gate (gv) to control the amount
of information transmitted by each modality. They are as follows:

ga = [H ⊕Ha]Wa + ba (5.6)

gv = [H ⊕Hv]Wv + bv (5.7)

Here, Wa,Wv ∈ R2d×d and ba, bv ∈ Rd×1 are trainable parameters, and ⊕ denotes concatenation. The
final multimodal information fused representation Ĥ is given by Equation 5.10.

Ĥ = H + ga ⊙Ha + gv ⊙Hv (5.8)

This vector Ĥ is inserted back into GPLM for further processing.

5.4.2 MOSES

Figure 5.5: MOSES: The MAF model captures acoustic and visual hints using the Multimodal Context
Aware Attention (MCA2) and combines them using Global Information Fusion (GIF). Each
modality is kept in spotlight using the Modality Spotlight (MS) module. To capture the
subjectivity in the code-mixed spellings, we propose pronunciation embeddings.

This section illustrates the working of our proposed model, MOSES as presented in Figure 5.5. The
existing SED model, MAF, which uses a modified version of context-aware attention (114), takes the
multimodal (audio/video) vectors as context and fuses them with the text modality to generate multimodal
fused text vectors. This way of multimodal fusion makes text the primary modality and treats the other
signals (acoustic and visual) as secondary. Such a fusion technique might result in the downplay of the
audio and video modalities. However, in the complete duration of the discourse, modalities other than text
could play the deciding role in resolving the affects in consideration. Consequently, we propose using
context-aware fusion in such a way that each modality gets a chance to play a pivotal role in the fusion
computation. We propose two additional modules in tandem with the previously proposed MCA2 and
GIF module, which we describe below.

Modality Spotlight (MS).

We discussed how we can generate multimodal infused vector representation considering one modality as
primary and the rest as context. Our work deals with three modalities – text, acoustic, and visual. The
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spotlight module is responsible for treating each of these modalities as the primary modality at a time and
generating the corresponding fused vectors. For instance, if text is considered the primary modality, then
we need to calculate two multimodal fused vectors, HTa and HTv, such as audio and video, play the role
of context in the representations, respectively. Similarly, when audio and video are considered the primary
source of information, HtA and HtV are calculated. Note that we do not calculate HAv or HaV because
we are dealing with a textual generation task where the textual information plays the preliminary role.

Apart from bi-modal interactions, we also deal with tri-modal interactions in our work, where all three
modalities are infused using the GIF module. Unlike bi-modal fusion, it is unfair to let text be the only
primary modality in the tri-modal fusion. Consequently, we compute three tri-modal vectors, HTav, HtAv,
and HtaV , such that text, audio, and video individually play the primary role, respectively. The GIF
module is responsible for combining the information from multiple modalities together in an efficient
manner. G gates are used to control the amount of information disseminated by each modality, where
2 ≤ G ≤ 3 is the number of modalities to fuse. For instance, if we calculate the interaction between the
text and audio modalities with text being the primary source of information, we will first need to calculate
the gated information from the audio representation using Equation 5.9.

ga = [H ⊕Ha]Wa + ba (5.9)

where Wa and ba are learnable matrices, and ⊕ denotes vector concatenation. The final representation to
be passed on to the next encoder layer will be obtained using Equation 5.10.

HTa = H + ga ⊙Ha (5.10)

On similar lines, if we are to calculate the tri-modal representation keeping the text as the primary modality,
we first compute the gated vector for audio and video and then compute a weighted combination of the
three modalities. The following sequence of equations illustrates this process,

ga = [H ⊕Ha]Wa + ba

gv = [H ⊕Hv]Wv + bv

HTav = H + ga ⊙Ha + gv ⊙Hv

Likewise, we calculate the following set of vectors: HTa, HtA, HTv, HtV , HTav, HtAv, and HtaV .
Further, another GIF module is used to conglomerate these seven vectors, as shown in Equation 5.11.

Hall = gt ⊙H + gTa ⊙HTa + gtA ⊙HtA +

gTv ⊙HTv + gtV ⊙HtV + gTav ⊙HTav +

gtAv ⊙HtAv + gtaV ⊙HtaV (5.11)

Pronunciation Embedding (PE)

The textual input in WITS is present in romanised code-mixed format. Thereby, it may contain terms with
the same meaning but varying spellings that are phonetically identical. For instance, the word “main"
in Hindi (translating to “I" in English) can be written as “main" or “mein". To capture the similarity
between all these spelling variations, we propose using Pronunciation Embeddings (PE) that capture the
phonetic equivalence between the words of the input text. We convert the text into a standard speech
format using python’s gTTS library2. This converted audio does not contain any tone or pitch variation
for any term and thus, sounds the same for phonetically similar terms. We then extract the audio features

2https://pypi.org/project/gTTS/
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from this converted speech. This pronunciation vector is fused with the text representation, obtained from
any encoder model like BART, using the GIF module to obtain the final text representation.

5.5 Experiments and Results

This section illustrates the feature extraction strategy we use and the baseline systems to which we
compare our model, followed by the results we obtain for the SED task. We use the standard generative
metrics – ROUGE-1/2/L (228), BLEU-1/2/3/4 (229), and METEOR (230) to capture the syntactic and
semantic performance of our systems.

5.5.1 Feature Extraction

The primary challenges for generating vector representations for the instances in WITS come from the
code-mixed and multimodal aspects of the dataset. We alleviate these by proposing intelligent feature
extraction methods. The same methods are used for the MUStARD dataset as well.

Audio: Acoustic representations for each instance are obtained using the openSMILE python library3.
We use a window size of 25 ms and a window shift of 10 ms to get the non-overlapping frames. Further,
we employ the eGeMAPS model (231) and extract 154 dimensional functional features such as Mel
Frequency Cepstral Coefficients (MFCCs) and loudness for each frame of the instance. These features are
then fed to a Transformer encoder (150) for further processing.

Video: We use a pre-trained action recognition model, ResNext-101 (232), trained on the Kinetics dataset
(233) which can recognise 101 different actions. We use a frame rate of 1.5, a resolution of 720 pixels, and
a window length of 16 to extract the 2048 dimensional visual features. Similar to audio feature extraction,
we employ a Transformer encoder (150) to capture the sequential dialogue context in the representations.

5.5.2 Comparative Systems

We use various established sequence-to-sequence (seq2seq) models to obtain the most promising textual
representations for the discourse.
• RNN: The openNMT44 implementation of the RNN seq2seq architecture is used to obtain the results.

• Transformer (150): Explanations are generated using the vanilla Transformer encoder-decoder model.

• Pointer Generator Network (PGN) (234): A combination of generation and copying mechanisms is
used in this seq2seq architecture.

• BART (235): We use the base version of this denoising autoencoder model. It has a bidirectional
encoder with an auto-regressive left-to-right decoder built on standard machine translation architecture.

• mBART (236): Trained on multiple large-scale monolingual corpora, mBART follows the same
objective and architecture as BART5.

3https://audeering.github.io/opensmile-python/
4https://github.com/OpenNMT/OpenNMT-py
5https://huggingface.co/facebook/mbart-large-50-many-to-many-mmt
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5.5.3 Evaluating MAF

Text Based: As evident from Table 5.4, BART performs the best across all the metrics for the textual
modality, showing an improvement of almost 2-3% on the METEOR and ROUGE scores when compared
with the next best baseline. PGN, RNN, and Transformers demonstrate admissible performance consid-
ering that they have been trained from scratch. However, it is surprising to see mBART not performing
better than BART as it is trained on multilingual data.

Multimodality: Psychological and linguistic literature suggests that there exist distinct paralinguistic
cues that aid in comprehending sarcasm and humour (237; 238). Thus, we gradually merge auditory and
visual modalities using MAF module and obtain MAF-TAV and MAF-TAVm for BART and mBART,
respectively. We observe that the inclusion of acoustic signals leads to noticeable gains of 2-3% across
the ROUGE, BLEU, and METEOR scores. The rise in BERTScore also suggests that the multimodal
variant generates a tad more coherent explanations. As ironical intonations such as mimicry, monotone,
flat contour, extremes of pitch, long pauses, and exaggerated pitch (239) form a significant component
in sarcasm understanding, we surmise that our model, to some extent, is able to spot such markers and
identify the intended sarcasm behind them.

Mode Model R1 R2 RL B1 B2 B3 B4 M BS

Te
xt

ua
l

RNN 29.22 7.85 27.59 22.06 8.22 4.76 2.88 18.45 73.24
Transformers 29.17 6.35 27.97 17.79 5.63 2.61 0.88 15.65 72.21
PGN 23.37 4.83 17.46 17.32 6.68 1.58 0.52 23.54 71.90
mBART 33.66 11.02 31.50 22.92 10.56 6.07 3.39 21.03 73.83
BART 36.88 11.91 33.49 27.44 12.23 5.96 2.89 26.65 76.03

M
ul

tim
od

al
ity

MAF-TAm 39.02 15.90 36.83 31.26 16.94 11.54 7.72 29.05 77.06
MAF-TVm 39.47 16.78 37.38 32.44 17.91 12.02 7.36 29.74 77.47
MAF-TAVm 38.52 14.13 36.60 30.50 15.20 9.78 5.74 27.42 76.70
MAF-TA 38.21 14.53 35.97 30.58 15.36 9.63 5.96 27.71 77.08
MAF-TV 37.48 15.38 35.64 30.28 16.89 10.33 6.55 28.24 76.95
MAF-TAV 39.69 17.10 37.37 33.20 18.69 12.37 8.58 30.40 77.67

Table 5.4: Experimental results. (Abbreviation: R1/2/L: ROUGE1/2/L;
B1/2/3/4: BLEU1/2/3/4; M: METEOR; BS: BERT Score; PGN:
Pointer Generator Network).

We notice that visual infor-
mation also contributes to
our cause. Significant perfor-
mance gains are observed for
MAF-TV and MAF-TVm, as
all the metrics show a rise of
about 3-4%. While MAF-TA
gives marginally better per-
formance over MAF-TV in
terms of R1, RL, and B1, we
see that MAF-TV performs
better in terms of the rest of
the metrics. Often, sarcasm
is depicted through gestural
cues such as raised eyebrows, a straight face, or an eye roll (237). Moreover, when satire is conveyed
by mocking someone’s looks or physical appearances, it becomes essential to incorporate information
expressed through visual media. Thus, we can say that, to some extent, our model is able to capture these
nuances of non-verbal cues and use them well to normalize the sarcasm in a dialogue. In summary, we
conjecture that whether independent or together, audio-visual signals bring essential information to the
table for understanding sarcasm.

Ablation Study

Table 5.5 reports the ablation study. CONCAT1 represents the case where we perform bimodal concate-
nation ((T ⊕ A), (T ⊕ V )) instead of the MCA2 mechanism, followed by the GIF module, whereas,
CONCAT2 represents the simple trimodal concatenation (T ⊕ A ⊕ V ) of acoustic, visual, and textual
representations followed by a linear layer for dimensionality reduction. In comparison with MCA2, CON-
CAT2 reports a below-average performance with a significant drop of more than 14% for MAF-TAV and
MAF-TAVm. This highlights the need to have deftly crafted multimodal fusion mechanisms. CONCAT1,
on the other hand, gives good performance and is competitive with DPA and MAF-TAV.
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Model R1 R2 RL B1 B2 B3 B4 M BS
MAF-TAVm 38.52 14.13 36.60 30.50 15.20 9.78 5.74 27.42 76.70

- MCA2 + CONCAT1 37.56 14.85 34.90 30.16 15.76 10.12 6.82 28.59 76.59
- MAF + CONCAT2 17.22 1.70 14.12 13.11 2.11 0.00 0.00 9.34 66.64
- MCA2 + DPA 36.43 13.04 33.75 28.73 14.02 8.00 4.89 25.60 75.58
- GIF 36.37 13.85 34.92 28.49 14.34 9.00 6.16 25.75 76.86

MAF-TAV 39.69 17.10 37.37 33.20 18.69 12.37 8.58 30.40 77.67
- MCA2 + CONCAT1 36.88 13.21 34.39 29.63 14.56 8.43 4.84 26.15 76.08
- MAF + CONCAT2 21.11 2.31 19.68 12.44 2.44 0.73 0.31 9.51 69.54
- MCA2 + DPA 38.84 14.76 36.96 30.23 15.95 9.88 5.83 28.04 77.20
- GIF 39.45 14.85 37.18 31.85 15.97 9.62 5.47 28.87 77.54

Table 5.5: Ablation results on MAF-TAVm and MAF-TAV (DPA: Dot
Product Attention).

We speculate that treating the
audio and video modalities
separately and then merging
them to retain the compli-
mentary and differential fea-
tures lead to this performance
gain. Our proposed MAF out-
performs DPA with gains of
1-3%. This underlines that
our unique multimodal fusion
strategy is aptly able to cap-
ture the contextual informa-
tion provided by the audio and video signals. Replacing the GIF module with simple addition, we observe
a noticeable decline in the performance across almost all metrics by about 2-3%. This attests to the
inclusion of GIF module over simple addition. We also experiment with fusing multimodal information
using MAF before different layers of the BART encoder. The best performance was obtained when the
fusion was done before the sixth layer of the architecture.

5.5.4 Evaluating MOSES

Model R1 R2 RL B1 B2 B3 B4 M

Te
xt

ua
l

RNN 29.22 7.85 27.59 22.06 8.22 4.76 2.88 18.45
Transformer 29.17 6.35 27.97 17.79 5.63 2.61 0.88 15.65

PGN 23.37 4.83 17.46 17.32 6.68 1.58 0.52 23.54
mBART 33.66 11.02 31.5 22.92 10.56 6.07 3.39 21.03
BART 36.88 11.91 33.49 27.44 12.23 5.96 2.89 26.65

M
ul

tim
od

al

MAF-TA 38.21 14.53 35.97 30.58 15.36 9.63 5.96 27.71
MAF-TV 37.48 15.38 35.64 30.28 16.89 10.33 6.55 28.24
MAF-TAV 39.69 17.1 37.37 33.2 18.69 12.37 8.58 30.4

MOSES-TA 38.27 14.53 35.72 31.57 16.37 9.66 6.06 29.27
MOSES-TV 39.62 16.78 37.48 32.69 17.76 11.01 6.89 31.65
MOSES-TAV 40.88 18.33 38.38 33.27 18.87 12.6 8.8 31.41

MOSES 42.17 20.38 39.66 34.95 21.47 15.47 11.45 32.37

Table 5.6: Experimental results (Abbreviation: R1/2/L:
ROUGE1/2/L; B1/2/3/4: BLEU1/2/3/4; M:
METEOR; PGN: Pointer Generator Network).
Final row denotes MOSES including the pro-
nunciation and spotlight modules.

Textual: Table 5.6 shows the results obtained
when textual systems are used to obtain the
generated explanations. We notice that while
PGN delivers us with the least performance
across most metrics, BART-based represen-
tations outperform the rest by providing the
best performance across the majority of all
evaluation metrics.

Pronunciation Embeddings (PE): Due to
the subjective nature of how other languages
(Hindi, in our case) are written in a roman-
ised format, the spellings of the words come
from their phonetic understanding. To resolve
the ambiguity between the same words with
differing spellings, we propose to use pronun-
ciation embeddings. As illustrated in Table
5.6, we observe that by adding the PE com-
ponent to the model with the help of the GIF module, the performance of text-based systems jumps by an
average of ∼ 4% across all evaluation metrics.

Multimodality: After we obtain the representation for the code-mixed text by fusing textual representation
with pronunciation embeddings, we move on to adding multimodality to the system. We experimented
with an established SED method (MAF-TAV) to estimate the effect of multimodality. Table 5.6 exhibits
that while the addition of acoustic signals does not result in a performance gain, the addition of visual cues
boosts the performance by ∼ 1% across all metrics. This phenomenon can be attributed to the fact that
audio alone may cause confusion while understanding sarcasm, and visual hints may help in such times.
Thereby, improving the visual feature representations can be one of the future directions. Finally, when
we add all multimodal signals together, we observe the best performance yet with an average increase of
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further ∼ 1% across majority metrics.

Modality Spotlight: As hypothesised, we obtain the best performance for sarcasm understanding when
all the three modalities are used in tandem. We argue that especially in the case of sarcasm, multimodal
signals such as audio and video might play the principal role in many instances. To comprehend this
rotating importance of modalities, we use the spotlight module that aims to treat each modality as the
primary modality while calculating the final representation. We observe an increase of ∼ 2% across all
evaluation metrics as shown in Table 5.6. These results directly support our hypothesis of the effect of
multimodality in sarcasm analysis.

Ablation Study

Model R1 R2 RL B1 B2 B3 B4 M

BART 36.88 11.91 33.49 27.44 12.23 5.96 2.89 26.65
+concat 17.22 1.7 14.12 13.11 2.11 0.0 0.0 9.34
+DPA 36.43 13.04 33.75 28.73 14.02 8.0 4.89 25.6
+MCA2 36.37 13.85 34.92 28.49 14.34 9.0 6.16 25.75

+ GIF 39.69 17.1 37.37 33.2 18.69 12.37 8.58 30.4
+ PE 40.88 18.33 38.38 33.27 18.87 12.6 8.8 31.41

+ MS (MOSES) 42.17 20.38 39.66 34.95 21.47 15.47 11.45 32.37

Table 5.7: Ablation results on MOSES (Abbreviation: DPA:
Dot Product Attention).

To highlight the importance of all mod-
ules in consideration, we perform ex-
tensive ablation studies on the WITS
dataset. Table 5.7 shows the results
when we add the different proposed
modules to our system sequentially. The
first row highlights the BART model’s
results for the text modality which re-
sults in a ROUGE-2 of 11.91%. As illus-
trated, the use of naive trimodal concate-
nation (T ⊕A⊕ V ) of text, audio, and
video representations produces a noisy
fusion resulting in decreased performance (−10.2% ROUGE-2). Next, we try with the standard dot-
product attention, which, being a comparatively smarter way of multimodal fusion, results in a slightly
improved performance over the text-only modality (+2% ROUGE-2). Further, adding the multimodal
context-aware attention module (MCA2) and replacing standard dot-product attention, produces a further
performance boost by ∼ 1% across all metrics, signifying the importance of the intelligent fusion that the
MCA2 module provides us. The performance is increased even more when the GIF module is introduced
to compute the final multimodal vector representation (+4% ROUGE-2), signifying the positive effect
gated fusion has on efficient multimodal representations. Next, we incorporate pronunciation embeddings
(PE) into the model and observe another performance boost across majority metrics (∼ 1%), suggesting
that we can obtain better code-mixed representations by reducing the spelling ambiguities. Finally, our
entire model with modality spotlight included produces the best performance, verifying the necessary use
of each module discussed.

5.5.5 Result Analysis

mBART BART MAF MOSES

Source 75 77.23 91.07 90.17
Target 45.33 52.67 46.42 56.69

Table 5.8: Accuracy for the sarcasm
source and target for BART-
based systems.

Quantitative Analysis We evaluate the MAF and MOSES
on their ability to capture sarcasm source and target in the
generated explanations. We compare them with mBART
and BART. Table 5.8 shows that BART performs better than
mBART for both source and target detection. The inclusion of
multimodal signals, even without pronunciation embeddings
and modality spotlight, improves the source identification
performance by ∼ 14%. MOSES is able to detect the sarcasm source most efficiently, resulting in an
improvement of ∼ 4% over the next best result. Consequently, we can relate the presence of multimodal
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capabilities to capture speaker-specific peculiarities more efficiently, resulting in better source/target
identification.

Qualitative Analysis We sample a few dialogues from the test set of WITS and show their generated
explanations by MAF and MOSES along with the ground-truth explanations in Table 5.9. We show one
of the many instances where our model generates the correct explanation for the given sarcastic instance
in the first row. The last row, highlights a case where the generated explanation is not syntactically similar
to the ground-truth explanation but resembles it semantically. To evaluate the semantic similarity properly,
we perform a human evaluation.

Dialogue Ground Truth MAF MOSES

KISMI: Bas na Sahil bhai, meri firki kheech rahe
ho na!? (Enough brother Sahil, are you teasing
me?!)

Sahil Kismi ko taunt maarta
hai kyuki use rail gaadi ki
awaaj sunni hai. (Sahil
taunts Kismi that she wants
to hear the sound of a train)

Sahil Kismi ko taunt maarta
hai ki use pasand nahi.
(Sahil taunts Kismi that he
doesn’t like)

Sahil Kismi ko taunt maarta
hai kyuki use rail gaadi ki
awaaj sunni hai. (Sahil
taunts Kismi that she wants
to hear the sound of a train)

SAHIL: Nahi, nahi, kya hai ki, mere CD ki collec-
tion mein na, ye train ke awaaj vali CD nahi hai...
(No no, see I don’t have train’s sound in my CD
collection...)

MONISHA: Say hello to Tommy the dog. (Say
hello to Tommy the dog.)

Maya monisha ko tana
marti hai kyunki usne apne
kutte ka naam tommy the
dog rakha hai. (Maya
taunts Monisha on naming
her dog Tommy the dog.)

Maya kehti hai ki uske
kutte ka naam tommy the
dog rakha hai. (Maya says
that her dog’s name is
Tommy the dog.)

Maya taunts monisha
kyunki usne apne kutte ka
naam tommy the dog rakha
hai. (Maya taunts Monisha
that she has named her dog
Tommy the dog.)

MAYA: Tumne iss kutte ka naam Tommy the dog
rakha? (Did you name your dog Tommy the dog?)

Table 5.9: Generated samples from test set. The last utterance is the sarcastic utterance for each dialogue.

Coherency On topic Capturing sarcasm

mBART 2.57 2.66 2.15
BART 2.73 2.56 2.18
MAF 3.03 3.11 2.77

MOSES 3.96 3.27 3.10

Table 5.10: Human evaluation for the SED
task comparing MAF and
MOSES model with BART
based systems.

Human Evaluation. We sample a total of 25 random in-
stances from the test set and ask 20 human evaluators (the
evaluators are fluent in English and their age ranges in 25-30
years) to evaluate the generated explanations (on a scale of
1 to 5) on the following basis:
• Coherence: Checks the generated explanation for correct

structure and grammar.
• On topic: Measures the extent to which the generated

explanation revolves around the dialogue topic.
• Capturing sarcasm: Estimates the level of emitted sar-

casm being captured in the generated output.

We show the average score for the human evaluation parameters in Table 5.10. As illustrated, the proposed
MOSES model exhibits more coherent, on topic, and sarcasm related explanations. However, there is still
a scope for improvement, which can be taken up as future work.

5.5.6 Results for Monolingual English

Textual: Table 5.11 shows the results on MUStARD obtained when textual systems are used to obtain the
generated explanations. Just as we noticed with WITS, PGN delivers us with the least performance across
most metrics while BART-based representations outperform the rest by providing the best performance
across the majority of the metrics.

Multimodality: We experimented with MAF-TAV and MOSES to estimate the effect of multimodality.
Table 5.11 exhibits that, unline WITS, the addition of acoustic signals results in performance gain, while
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adding visual cues boosts the performance further across all metrics. Finally, when we add all multimodal
signals together and observe the best performance for both, MAF and MOSES.

Model R1 R2 RL B1 B2 B3 B4 M

Te
xt

ua
l

RNN 24.71 7.58 21.93 24.08 9.87 1.61 0.63 17.98
Transformers 26.62 12.41 22.95 26.02 11.76 3.86 0.67 19.74

PGN 23.06 9.84 19.64 22.10 8.61 0.16 0.86 16.22
mBART 27.13 13.71 24.53 26.17 12.23 3.90 2.82 20.61
BART 28.94 13.78 26.90 28.44 12.85 7.84 4.17 21.29

M
ul

tim
od

al

MAF-TA 31.01 14.75 28.74 30.61 14.39 9.32 6.82 23.74
MAF-TV 31.89 14.70 28.86 31.67 15.69 10.16 6.80 24.59
MAF-TAV 32.95 15.17 30.92 32.80 16.84 10.46 7.53 26.46

MOSES-TA 32.07 17.05 28.74 31.80 15.51 11.94 7.43 24.67
MOSES-TV 34.11 16.31 30.58 33.65 17.67 12.27 9.89 27.19
MOSES-TAV 34.86 21.50 31.12 34.42 17.90 11.67 9.92 28.14

MOSES 36.73 18.21 33.16 32.84 19.21 12.54 9.12 28.38

Table 5.11: Experimental results on MUStARD (Abbre-
viation: R1/2/L: ROUGE1/2/L; B1/2/3/4:
BLEU1/2/3/4; M: METEOR; PGN: Pointer
Generator Network). Final row denotes
MOSES including the pronunciation and spot-
light modules.

Modality Spotlight: As hypothesised, we
obtain the best performance for sarcasm un-
derstanding when all the three modalities are
used in tandem. We argue that especially
in the case of sarcasm, multimodal signals
such as audio and video might play the prin-
cipal role in many instances. To comprehend
this rotating importance of modalities, we
use the spotlight module that aims to treat
each modality as the primary modality while
calculating the final representation. Similar
to WITS, we observe an increase of ∼ 2%
across all evaluation metrics for MUStARD
as well, as shown in Table 5.11. These results
directly support our hypothesis of the effect of
multimodality in sarcasm analysis. Moreover,
we believe that this increase comes primarily
from the modality spotlight and little from
pronunciation embedding as there is hardly any spelling variation in English texts.

5.5.7 Understanding Affects with Explanation

We study three understanding tasks in dialogues – sarcasm detection, humour identification, and emotion
recognition using sWITS, hWITS, and eWITS, respectively. A trained SED system is used to obtain
the explanations for all the instances present in these datasets. To verify our hypothesis that sarcasm
explanation helps affect understanding, we perform experiments with and without explanations, as
explained in the subsequent sections.

Sarcasm Detection. We take a base RoBERTa model (120) and perform the task of sarcasm detection
over sWITS. The experimentation is performed using three setups as described below:

1. When we do not provide any utterance explanation to the input dialogue.
2. When we provide utterances appended with their generated explanation at the training time. Plain

dialogues are given at the testing time in this case.
3. When dialogue instances are appended with their corresponding explanations during train and test

time.

Table 5.12 illustrates the results we obtain for all the settings for MAF and MOSES. As can be seen,
RoBERTa obtains 62% F1 score when we do not use any explanations. However, with the use of the
generated explanations by MOSES during the train time, we obtain an improvement of 6% F1-score. On
the other hand, the best performance is achieved by the last case, where the input instances are appended
with their corresponding explanations both at the train and test time, with an increase of 8% F1-score.
Consistent to the results obtained by MOSES’s generation, MAF also reports an improved performance
over no explanation model. However, the improvement shown by MAF is not at par with the improvement
obtained by MOSES. These results directly support our hypothesis that utterance explanations can assist
an efficient detection of sarcasm in the input instances.
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Model Use of Expl Sarcasm Humour Emotion

Train Test P R F1 Acc P R F1 Acc P R F1

None 0 0 0.57 0.68 0.62 0.57 0.69 0.78 0.73 0.87 0.8 0.78 0.78

MAF 1 0 0.58 0.73 0.65 0.6 0.57 0.87 0.69 0.81 0.78 0.78 0.78
1 1 0.66 0.77 0.71 0.68 0.73 0.71 0.72 0.87 0.78 0.81 0.79

MOSES
1 0 0.65 0.71 0.68 0.66 0.84 0.63 0.72 0.89 0.79 0.78 0.78
1 1 0.70 0.83 0.76 0.73 0.72 0.77 0.75 0.88 0.81 0.80 0.80

Table 5.12: Experimental results on RoBERTa base when ex-
planations generated by MOSES and MAF are used
for completing the respective tasks. The first row
indicates the performance without explanation.

Humour Identification. Another
RoBERTa base is used to perform hu-
mour identification on hWITS. As for
sarcasm detection, humour identifica-
tion is also evaluated for the three setups
described in the previous section. Table
5.12 illustrates the results obtained for
the described setups. When no expla-
nations are used during the training or
testing time, we get an F1-score of 73%.
This score is comparable to the perfor-
mance we get when input instances are
appended with their corresponding ex-
planations generated by MOSES at the training time. This performance is boosted by 3% when the
explanations are provided at the train/test time. However, it is important to note that the explanations
generated by the MAF model resulted in a slightly decreased performance indicating the superiority of
MOSES.

Emotion Recognition. Table 5.12 illustrates the results obtained for the task of emotion recognition on
eWITS. We see the same value for the weighted F1 when we add explanations during the training phase
of the system for both MAFand MOSES. However, when explanations assist both the training and testing
phase, we observe an increase of 2% in the weighted F1 score for MOSES and 1% increase for MAF,
indicating the positive effect explanations deliver for emotion recognition.

Error Analysis

Quantitative To capture the improvement exhibited by explanations in affect understanding, we show the
confusion matrices emitted by the understanding models with and without using explanations. Table 5.13
illustrates these matrices – and as can be seen, the methods with explanation obtains higher true positive
rate with a decreased false positive and false negative rates for majority of the classes among sarcasm,
humour, and emotion labels.

NS S

NS 137/100 81/117
S 39/70 185/153

(a) Sarcasm detection on
sWITS.

NH H

NH 335/330 32/37
H 24/23 82/83

(b) Humour identification
on hWITS.

Neutral Sadness Joy Anger

Neutral 148/137 13/23 18/19 16/16
Sadness 5/2 62/66 3/2 0/0
Joy 7/5 10/9 120/124 4/3
Anger 0/9 0/1 8/9 50/48

(c) Emotion recognition on eWITS.

Table 5.13: Confusion matrix of the systems with and without (with/without) explanations.

Qualitative. While quantitative results confirm that explanations assist in identifying affects efficiently,
qualitative analysis can further corroborate this hypothesis. Table 5.14 shows one instance from the test
set where the presence of explanation helps for all affective tasks in question. More such examples can be
found in the supplementary.
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Dialogue
MAYA: And this time I thought lets have a theme party! (And this time I thought lets have a theme party!)
MONISHA: Animals! Hum log sab animals banenge! (Animals! Let us all be animals this time!)
MAYA: Mai hiran, Sahil horse, and Monisha chhipakalee! (I’ll be a deer, Sahil a horse, and Monisha can be a
lizard!)

Exp Maya Monisha ko animal keh ke taunt maarti hai. (Maya taunts Monisha by calling her an animal)

Sarcasm Humour Emotion

GT 1 0 Anger
w/o Exp 0 1 Neutral
w Exp 1 0 Anger

Table 5.14: True and predicted labels for the three affect tasks with and without using MOSES’s explana-
tion.

5.5.8 Evaluating LLMs

We experiment with models such as BART and T5 in the main results of this chapter. However, with
the rise in popularity and the ease of availability of larger language models such as Llama, it becomes
imperative for us to compare our models’ performance with these LLMs. For comparison, we consider
Llama, and perform the task of sarcasm explanation for monolingual English and Hindi-English code-
mixed conversations. Table 5.15 illustrates this comparison. Due to the size of Llama, it outperforms the
tested BART and T5 in all of the observed metrics.

Model R1 R2 RL B1 B2 B3 B4 M

Code-mixed
MAF 39.69 17.10 37.37 33.20 18.69 12.37 8.58 30.40
MOSES 42.17 20.38 39.66 34.95 21.47 15.47 11.45 32.37
Llama 45.61 23.16 40.34 35.98 23.14 17.27 12.54 34.41

English
MAF 32.95 15.17 30.92 32.80 16.84 10.46 7.53 26.46
MOSES 36.73 18.21 33.16 32.84 19.21 12.54 9.12 28.38
Llama 38.64 19.73 35.24 33.71 21.84 14.76 10.36 30.74

Table 5.15: Performance of Llama when compared with our proposed methodologies for sarcasm expla-
nation.

5.6 Conclusion

In summary, this chapter explored the complex domain of conversational affective understanding, focusing
on discerning nuanced qualities like sarcasm, humour, and emotions. While sarcasm identification
has made strides, understanding the underlying sarcastic nuances remains a challenge. To tackle this,
we introduced the Sarcasm Explanation in Dialogue (SED) task within a multimodal and multilingual
framework. Anchored by the WITS dataset, meticulously crafted to support SED, we proposed two
deep neural networks, MAF and MOSES. These models process multimodal sarcastic dialogue instances
to generate coherent natural language explanations. Our evaluation showcased the superiority of MAF
and MOSES over state-of-the-art systems for SED across various metrics like ROUGE, BLEU, and
BERTScore. Moreover, leveraging these explanations led to significant improvements in downstream
tasks such as sarcasm detection, humour identification, and emotion recognition, demonstrating an average
F1-score enhancement of approximately 14% in sarcasm detection and around 2% in humour identification
and emotion recognition. Detailed analyses underscored the robustness of our findings, highlighting the
potential of Sarcasm Explanation in Dialogue as a crucial step towards more nuanced and context-aware
conversational systems.
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Part III

Personalising Dialogues
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6. Speaker Profiling

In the context of conversational dynamics, individuals manifest idiosyncratic behaviors,
rendering a uniform, one-size-fits-all strategy inadequate for the generation of responses
by dialogue agents. While previous studies have endeavored to craft personalized dia-
logue agents harnessing speaker persona data, their reliance on the presupposition that
the speaker’s persona is readily available is not universally applicable. To this end, we
aim to bridge this existing gap by embarking on an exploration of the Speaker Profiling
in Conversations (SPC) task. We tackle this task using two distinct approaches for two
different language settings. For monolingual English, we consider the fundamental aim
of SPC to be the creation of a concise synthesis of persona attributes for each individual
participant within a dialogue. This version of SPC can be dissected into three core subtasks:
persona discovery, persona-type classification, and persona-value extraction. Within a given
dialogue, the initial subtask is centered on the identification of all utterances containing
persona-related information. Subsequently, the second subtask scrutinizes these utterances,
elucidating the specific category of persona details they encapsulate. Finally, the third
subtask unearths the precise persona values corresponding to each ascertained category. To
tackle the multifaceted challenge of SPC, we have meticulously assembled a novel dataset,
SPICE, annotated with explicit profiling labels. This dataset serves as the foundation for
our careful evaluation of diverse baseline models. Furthermore, we benchmark these results
against a novel neural model, SPOT. Additionally, we present an exhaustive analysis of
SPOT, encompassing a nuanced assessment of both quantitative and qualitative advantages
and limitations exhibited by its constituent modules. For the other variant of SPC, we
consider Hindi-English code-mixed conversations, and propose an unsupervised method
to extract speaker profiles on the go while trying to improve response generation. We
introduce a novel approach centered on harnessing the Big Five personality traits acquired
in an unsupervised manner from the conversations to bolster the performance of response
generation. These inferred personality attributes are seamlessly woven into the fabric of
the dialogue context, using a novel fusion mechanism, PA3. It uses an effective two-step
attention formulation to fuse the dialogue and personality information. This fusion not
only enhances the contextual relevance of generated responses but also elevates the overall
performance of the model. Our experimental results, grounded in a dataset comprising of
multi-party Hindi-English code-mix conversations, highlight the substantial advantages
offered by personality-infused models over their conventional counterparts. This is evident
in the increase observed in ROUGE and BLUE scores for the response generation task
when the identified personality is seamlessly integrated into the dialogue context. Qualita-
tive assessment for personality identification and response generation aligns well with our
quantitative results.

6.1 Introduction

Understanding natural language inputs is crucial for effective processing, as evidenced by a substantial
body of work dedicated to the analysis of standalone textual content (240; 241; 242; 243). However,



Figure 6.1: Example of speaker profiling in conversation.

recent research has shifted towards contextual conversational data, emphasizing the need for mutual
understanding among speakers and leading to extensive investigations in emotional analysis (244; 245;
246), intent discernment (247; 248), and dialogue act detection (249; 250). This change is driven by the
growing prevalence of dialogue agents, necessitating contextually appropriate response generation. In this
context, research has explored the engagement of participants, including empathetic (251; 252; 253) and
stylistic dialogue generation (254; 255; 256). While such agents enhance system appeal, there is a need to
address personalized dialogue generation, incorporating users’ personas as essential inputs (70; 63; 64;
65; 66). Although persona details improve response intuitiveness and engagement (70; 63; 64; 65), the
studies in this domain assume prior persona provision, a rarity in practical applications.

To tackle the challenge of persona information unavailability within chatbots, we embark on the task of
Speaker Profiling in Conversations aka SPC as shown in Figure 6.1. We explore the task of SPC for
monolingual English and Hindi-English code-mixed dialogues. For monolingual English, we consider
SPC as a task geared towards the creation of comprehensive profiles for all participants engaged in a
conversation, encompassing various speaker-centric attributes, including traits, likes, and occupation. On
the other hand, we focus on the Big-five personality traits as possible personalities for Hindi-English
code-mixed conversations. We also focus on improving response generation in this setting. We highlight
each of these settings below.

Speaker Profiling for Monolingual English. The intricate task of SPC for English language unfolds into
a triad of subtasks: persona discovery, persona-type identification, and persona-value extraction. In the
first subtask, the objective is to discern which utterances within the conversation harbor persona-related
insights. Subsequently, the second subtask entails the discernment of the specific persona information
type within each identified utterance. Finally, the last subtask involves the meticulous extraction of
precise values associated with each recognized persona type. To bolster research efforts in this domain,
we present SPICE1, a novel dataset teeming with multi-party conversations, thoughtfully adorned with
annotated labels for all three subtasks. Complementing this, we introduce SPOT2, a neural methodology
that amalgamates RoBERTa (257), Transformer (150), and attention based methods, adept at capturing
both the minutiae of dialogue-level context and the nuances of speaker-specific context for persona
discovery. In our rigorous evaluation, SPOT outshines four baseline approaches, both in standalone
and pipeline configurations, excelling in both subtasks. To gain deeper insights into its efficacy, we
conduct a comprehensive analysis of the discrete components of SPOT, thereby affording a more nuanced
understanding of its strengths and limitations.

Speaker Profiling for Hindi-English Code-mixed Conversations. Personality traits, by their very nature,
span a vast spectrum and thus possess the potential for infinite possibilities (258). Numerous studies have
been conducted to quantify these traits (259; 260; 261), with the Big Five personality traits (262) emerging
as the prominent framework in this context. This theory distils human personality into five distinctive

1SPICE: Speaker Profiling In ConvErsation
2SPOT: Speaker PrOfiling using Transformers
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dimensions: Openness (OPN), Conscientiousness (CON), Extraversion (EXT), Agreeableness (AGR), and
Neuroticism (NEU), in which each dimension encapsulates a pivotal facet of an individual’s character.
For instance, elevated levels of openness may signify a predisposition towards imagination. Here, we
adopt this widely accepted model as the foundation for characterizing a speaker’s personality. Our central
hypothesis contends that incorporating personality indicators within the response generation process plays
a pivotal role in generating contextually appropriate responses to given queries. Given the intricate and
non-generalizable nature of manually annotating personality traits, we propose an unsupervised learning
approach to acquire these traits, which, in turn, enhances response generation capabilities. We introduce
PA3, a neural architecture to improve response generation while identifying appropriate personalities on
the fly. Our evaluation shows that PA3 delivers superior performance for the task of response generation,
when compared with comparable systems.

In a nutshell, our contributions are enlisted below, for both the settings:
• We explore the problem of Speaker Profiling in Conversations from two angles, where given a

dialogue as input, the task is to extract the speaker-centric personality information of all speakers
present in the dialogue.

• For English SPC, we curate SPICE, a multi-party conversation dataset with human annotated SPC
labels.

• We benchmark SPICE with a RoBERTa and attention based novel model, SPOT for the SPC task.
• We explore the task of personality-aided code-mixed response generation.
• For code-mixed SPC, we propose an unsupervised mechanism to identify speakers’ personality

traits and leverage them for better response generation.
• We propose a novel method, PA33, which combines the identified traits with dialogue context to

generate responses.
• Our quantitative and qualitative analyses show the benefits of identifying personality traits and

including them in code-mixed response generation.
• We perform a comparative analysis of our models with several baselines and establish the superiority

of our systems.

6.2 Related Work

Personalised Dialogue Systems. Several studies have shown that incorporating customization in dialogue
systems improves their performance (63; 64; 65; 66; 67; 68). In the case of goal-oriented dialogue
systems, various studies have been conditioned upon the user’s profile to adjust responses (67; 68);
however, recently, the focus has shifted to chit-chat setting. Personalization in vector form was used in
some early projects. For example, a study (69) captured Twitter user’s persona by learning distributed
embeddings for each user to incorporate individual characteristics such as writing style or past experience.
Later, (70) released a dataset, called PersonaChat which contains dyadic dialogues where the speakers are
assigned fictitious persona, and are required to converse accordingly. Following this, a few studies showed
the benefit of the PersonaChat dataset for personalization while generating replies to the user (63; 64; 65).
Although leveraging persona information for dialogue generation results in better responses, it is vital not
to presume that this information is freely available.

Persona Identification in Dialogues. An intitial study (263) investigated the extraction of speaker
qualities from conversations. They proposed the MovieChAtt dataset and completed their objective using
additional datasets such as PersonaChat and Reddit. However, the authors only evaluated profession,
gender, and family status as possible speaker attributes. Another work (264) used a two-stage attribute

3Personality-Aware Axial Attention
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extractor to extract user attributes as triplets of (subject, predicate, object). The dataset and model they
utilised, however, were designed for dyadic interactions and cannot be expanded to a multi-party scenario.
Recently, (265) used the PersonaChat dataset and offered the task of speaker persona detection, which
classifies each speaker into one of the predefined personas.

Conversation and Code-mixing. Dialogues represent a well-established domain in NLP, having under-
gone extensive exploration (266; 267). However, the bulk of this research has predominantly revolved
around monolingual text, despite the enduring prevalence of code-mixing, a timeworn linguistic phe-
nomenon (17). Consequently, recent years have witnessed a surge in studies dedicated to unravelling
the intricacies of code-mixing within dialogues (268). These investigations have honed in on exploring
various nuances of code-mixed dialogues, delving into attributes such as intents (269; 270), the presence of
hate speech (271; 106), humour (191; 272), and sarcasm (272; 103). Yet, the landscape for the generative
dimension of code-mixing remains relatively uncharted, with limited concerted efforts in this direction.

Response Generation. For dialogue agents, it is of paramount importance to keep the conversation
engaging (273). Consequently, generating apt responses becomes a primary field of research in terms of
dialogue analysis. Many studies have been conducted to generate the right responses for monolingual
English dialogues (274; 275; 276). However, response generation in the code-mixed setting remains a
comparatively unexplored topic with only a handful of existing studies (277; 278). (279) illustrated that
multilingual speakers prefer chatbots that can code-mix, thus making code-mixed response generation
crucial.

Big Five Personality Traits. In pursuit of a deeper understanding of the user’s personality, a range of
studies have delved into the realm of the Big Five personality (280; 281). Numerous studies endeavored
to categorize individuals into one of these personality archetypes based on their salient attributes (282;
283; 284; 285). A few studies have also attempted to use different personality theories other than the Big
Five personality traits such as MBTI (259; 286).

6.3 Dataset

In this chapter, we handle the task of SPC in two different ways and linguistic settings. Consequently, we
utilise two distinct datasets for benchmarking, which we describe in detail below.

6.3.1 Dataset for SPC in Monolingual English Dialogues

Set #Dlg #Utt #Sp/Dlg #P Utt #P Utt/Dlg
Train 1039 9989 2.70 1005 0.96
Dev 114 1109 3.01 109 0.96
Test 280 1983 2.66 305 1.09

Set #Persona Slot
Trait Likes Relation Occ Misc

Train 389 244 107 89 179
Dev 32 36 10 10 24
Test 120 88 28 18 53

Table 6.1: Statistics of SPICE. (Dlg: Dialogue; Utt: Utterance; Sp: Speaker; P Utt: Persona Utterance)

We introduce a new dataset, SPICE, tailored for speaker profiling in multi-party dialogues. Leveraging
conversations extracted from the MELD dataset (71), we meticulously annotate each utterance for our
designated task. Following MELD’s original train-dev-test distribution, we undertake three subtasks for
annotation.

• Persona discovery: We identify the presence of persona information in each utterance of the
dialogue by marking it as ‘yes’ in this subtask.
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• Persona-type identification: We associate a type of persona with each utterance marked as ‘yes’ in
the previous phase, within this subtask. Following a comprehensive analysis of each conversation in
the dataset, we define five persona types - trait, likes, relation, occupation, and misc - to encapsulate
various personality characteristics of the speakers.

• Persona-value extraction: In this subtask, we extract persona values from the given instance for
each identified persona type. These values may include a span from the input (e.g., for occupation),
reference to another speaker present in the conversation (e.g., for relationship), or something
inferred from the context (e.g., for trait).

Three annotators4 were engaged in annotating SPICE. The initial two annotators assigned relevant persona
labels to dialogue utterances, with any discrepancies resolved by the third annotator. Inter-annotator
agreement was assessed using Krippendorff’s Alpha (108). For persona discovery, an inter-annotator
agreement score of 0.83 was attained, while persona-type identification achieved an agreement score of
0.71. Refer to Table 6.1 for dataset statistics, including the persona type distribution within SPICE.

Annotation guidelines for SPICE

We employ three annotators, all aged between 20-35 years of age and are fluent in English and Hindi,
to annotate the proposed dataset. The annotations are performed in three stages. In the first stage, the
annotators are asked to identify all the utterances in each dialogue that contain any persona related
information by marking them as ‘yes’ and all others as ‘no’. In the second stage, we ask the annotators to
consider only the utterances marked as ‘yes’ in the previous stage and identify the type of persona present
in it (out of the five possible persona-types defined earlier). Finally, for each persona type, the annotators
are asked to identify the value of the corresponding persona slot. These values can either be present as a
span in the input or can be a result of an inference made by the annotator.

Each instance for the second stage is made up of a sequence of utterances {u1, u2, · · · , ui}, where the
last utterance is the one marked as containing persona information in the first stage. The annotators are
given the following guidelines to decide the persona-type for the utterance ui:
• Trait: Mark the utterance ui as containing trait persona information if the information gathered from

utterances {u1, u2, · · · , ui} indicates towards the speaker having any type of a distinguishing quality.
• Likes: The utterance ui contains persona information about likes if the utterances from u1 to ui indicate

the concerned speaker finds someone/something pleasant or enjoyable.
• Occupation: If until utterance ui we have enough evidence to conclude the profession of the speaker,

we mark that utterance as containing information about the persona type occupation.
• Relation: Mark an utterance ui as having the persona information of the speaker’s relationship if enough

evidence has been found from context of them being related to someone either biologically (mother,
father) or non-biologically (friend, spouse).

• Miscellaneous: If the annotators find evidence of some important perpetual information related to the
speaker (like education, and important dates) present in utterance ui and if this information does not fall
under any other identified persona types, then they mark it as miscellaneous.

6.3.2 Dataset for SPC in Hindi-English Dialogues

Datasets for code-mixed conversations are inadequate, especially for multi-turn, multi-party conversations.
In this study, we consider the MaSaC dataset We extract the conversations from this dataset and construct
our response generation instances. We highlight the critical statistics of the dataset in Table 6.2. The

4They were NLP researchers or linguistics by profession; and their age ranges between 20− 45 years.
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Set #Dlgs #Utts Avg sp/dlg Utt len Vocab len

Avg Max English Hindi

Train 8506 8506 3.60 10.82 113

3157 14803
Val 45 1354 4.13 10.12 218
Test 56 1580 4.32 10.61 84

Total 8607 11440 12.05 31.55 415

Table 6.2: Statistics of MaSaC.
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Figure 6.2: Dataset description of MaSaC (Abbreviation: Dlgs: Dialogues, Utts: Utterances, sp: speakers,
Ma: Maya, In: Indravardhan, Sa: Sahil, Mo: Monisha, Ro: Rosesh, Oth: Others).

speaker distribution in Figure 6.2a and Figure 6.2b shows that there are five primary speakers in the
dataset, each with varying personalities. Thus, aiding response generation with speaker personalities can
improve its performance.

6.4 Methodology

Since we deal with two distinct views for the task of SPC using two distinct datasets, we propose two
different novel approaches to accomplish our end goal.

6.4.1 SPOT: Solving SPC for Monolingual English

In this section, we illustrate SPOT, our proposed method to benchmark the task on SPICE. SPOT
constitutes three subtasks – persona discovery, persona-type identification, and persona-value extraction.

Persona Discovery

In this stage, we employ a RoBERTa encoder (257) to capture dialogue-level contextual information,
as illustrated in Figure 6.3. The model input comprises a sequence of utterances forming the dialogue,
denoted as D = {u1, u2, ..., um}. Subsequently, the dialogue-level representations are fed into fully-
connected layers for classification. It’s noteworthy that SPICE, resembling a real world scenario, exhibits
an inherent skew towards utterances lacking persona information. To address this imbalance, we apply the
SMOTE upsampling technique (287) to boost the representation of persona-related utterances.
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Figure 6.3: Persona discovery: The utterance representations obtained from dialogue-level RoBERTa are
used for classification. Persona-type identification: Utterance representations are obtained
from Dialogue-level Transformers and the speaker-specific Transformers. After receiving the
representation from context, speaker, and global attention mechanism, the final representation
is used to obtain adaptive decision boundary. We initialize the centroids {ci}Ki=1 and the
radius of decision boundaries {δ}Ki=1 for each persona type and use the boundary loss for
optimisation. Persona-value extraction: The context, target utterance, and the complete
dialogue is transformed using a BART encoder following which attention is applied to get
target attended vectors. Finally a concatenated vector is sent to the BART decoder for output
generation.

Persona-type Identification

With a clear identification of persona-bearing utterances within the dialogue, the focus shifts to the
subsequent subtask. This phase processes a sequence of utterances denoted as I = {u1, u2, ..., uk},
where uk signifies the target utterance, i.e., the one containing persona information, while u1, u2, ..., uk−1

encompass the contextual utterances. For this task, our proposition integrates a fusion of RoBERTa and
Transformer (150) elements, as depicted in Figure 6.3.

Dialogue representation. Every utterance uj within the input sequence I undergoes processing via a
Transformer layer to yield its representation.

Speaker-specific representation. In our quest to proficiently encapsulate the speaker sequence within a
dialogue, we implement distinct Transformer encoder layers, one for each participating speaker in the
discourse, thus yielding contextually tailored speaker-specific representations. Each of these speaker-
specific encoders receives input from the utterance representations that are specific to the respective
speaker i.

Attention. The creation of a speaker-aware representation, denoted as HSAR, hinges on the judicious
application of attention mechanisms (288) that facilitate the integration of speaker-specific representations
with the target representation. Specifically, HSAR = Softmax(

hshT
t√

dk
)hs. Similarly, HCAR is computed

by calculating the attention between the target representation, ht, and context obtained from the RoBERTa
model, hc, i.e., HCAR = Softmax(

hchT
t√

dk
)hc. Building upon this foundation, we embark on the synthesis

of a global attention representation, denoted as HGAR, serving as the cohesive fusion point for the
speaker-aware and context-aware representations.

Adaptive decision boundary. Additionally, to capture the dialogue-level context effectively, we forward
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the RoBERTa embeddings to the model as a skip connection. Finally, we acquire the adaptive decision
boundary for the persona classes through a k-means (289; 290) methodology. Moreover, for the optimiza-
tion of decision boundaries specific to each class and to achieve maximal class separation, we employ the
innovative boundary loss (291). The loss is computed using the following equation:

Lb =
1

N

N∑
i=1

[∆i(||zi − cyi||2 − δyi)+

(1−∆i)(δyi − ||zi − cyi||2)]

where N is the total number of samples in our set, zi is the representation of the ith instance, cyi is the
centroid for class yi, and δyi is the radius for class yi. Here,

∆i =

{
1, if ||zi − cyi||2 > δyi
0, if ||zi − cyi||2 ≤ δyi

Persona-value Extraction

In the culmination of shaping a speaker profile, the extraction of persona values for designated persona
types within a dialogue emerges as the ultimate stride. Notably, these persona values can be conjectured
from the input, often lacking specific constraints. Consequently, we adopt an encoder-decoder framework
aligned with a generative objective to undertake this task effectively. This endeavor hinges upon adeptly
encompassing the entirety of the conversation to grasp its essence, the contextual utterances to assimilate
contextual knowledge, and the focal utterance, as it constitutes the primary wellspring for persona
attributes.

In our approach, we employ a BART encoder (235) to meticulously encode the context, target, and dialogue
utterances, resulting in c, t, and d, respectively. These representations undergo a pivotal phase where
an attention mechanism amalgamates the key kc and value vc extracted from the context representation
with the query qt derived from the target utterance. This sophisticated interplay encapsulates the dynamic
interaction between the target utterance and contextual utterances, thereby adeptly capturing the context-
driven persona nuances embedded in the target utterance. The resultant representation is seamlessly
integrated with the dialogue representation, and subsequently channeled into the BART decoder for the
generation of output.

6.4.2 PA3: Solving SPC for Hindi-English Code-mixing

In this section, we discuss PA3, our proposed methodology for benchmarking SPC in code-mixed setting.
Here, we focus on enhancing response generation with the foremost objective being the effective identifi-
cation of personality attributes from the dialogue context. To achieve this, we propose an unsupervised
technique that leverages response generation performance to improve personality identification. Subse-
quently, we fuse the personality attributes into the dialogue context to generate responses influenced by
individual traits. We propose the incorporation of an intermediary module within the core encoder. This
module leverages a straightforward yet effective two-step attention mechanism, facilitating the fusion of
personality attributes with the representation of the dialogue. Broadly, we employ context-aware attention
(114), which is instrumental in infusing personality characteristics into the key and value vectors of the
dialogue. Subsequently, we employ Axial attention (292) to yield a refined, conclusive representation,
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Trait Templatic Definition
Openness The speaker has high openness trait. They embrace new ideas, are curious about the world, and are

often drawn to creative and unconventional pursuits.

Conscientious The speaker has conscientiousness trait. They are reliable, organized, and detail-oriented, demonstrat-
ing a strong work ethic and a commitment to achieving their goals.

Extraversion The speaker has extraversion trait. They thrive in social settings, energized by interactions with others,
and enjoy being at the center of activities.

Agreebleness The speaker has agreeableness trait. They prioritize cooperation, are empathetic, and often go out of
their way to maintain harmonious relationships and help others.

Neuroticism The speaker has high neuroticism trait. They have a greater tendency for emotional instability, anxiety,
and a propensity to experience negative emotions such as fear, sadness, and anger.

Table 6.3: Personality traits in the Big Five personality model along with their templatic definitions.

which ultimately feeds into the decoder. Figure 6.5 provides a schematic diagram of our model. In the
following subsections, we offer a comprehensive overview of individual modules.

Personality Identification
M

od
el

S2

S1

S2

S1

S2

S1

D
ia

lo
gu

e 
co

nt
ex

t

S1

S2

S1

S2

S1

S2

Trait definition

D
ialogue contextGenerated response

Response generation

Personality identification

R
oB

E
R

Ta
Trait definition

Identified trait

Figure 6.4: Outline of learning personality
traits using the ‘pseudo’ task of re-
sponse generation.

In this section, we describe our methodology for dis-
cerning the personality traits of each speaker and subse-
quently mapping them to their corresponding trait defi-
nitions. Although multiple theories quantify a speaker’s
personality traits (259; 260; 261), existing NLP applica-
tions widely use the Big Five Personality theory (262).
Consequently, we select this model for our study, encom-
passing five distinct personality dimensions as shown in
Table 6.3, where one of these dimensions is presumed
to be dominant. To find the most suitable personality
trait for a speaker in a dialogue, we employ an approach
similar to Word2Vec (293), where a ‘pseudo’ task is
implemented to facilitate the acquisition of word em-
beddings. In the context of personality identification,
our ‘pseudo’ task takes the form of response genera-
tion, where we seek to enhance the generated response
based on the intermediary step of personality identifica-
tion. Figure 6.4 gives an overview of our mechanism for
personality identification. We employ RoBERTa base
(257) to classify personalities attributed to the target
speaker, using the input dialogue as the primary data
source. Once the personality is identified, it is subsequently linked to its templatic definition — a de-
scriptive representation of the speaker’s character, as outlined in Table 6.3. This personality definition is
presented alongside the input dialogue to an encoder for further steps in the proposed pipeline.

Personality-Aware Attention (PAA). With the personality definition and the input dialogue at our
disposal, our next step is to seamlessly integrate the personality information with the dialogue information
to craft a suitable response. Conventional attention-based fusion mechanisms often facilitate a direct
interplay between the input representations, in which one representation functions as the query while the
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is used to learn personality-infused key and value pairs and axial attention is then used to
combine query, key, and value vectors into one final representation.

others assume the roles of key and value. However, as each representation captures distinct attributes,
straightforward fusion may not preserve the optimal contextual information and could introduce significant
noise into the final representations. Consequently, we introduce personality-aware attention (PAA) fusion
employing context-aware attention (114). Our method entails the initial generation of personality-
conditioned key and value vectors, followed by applying axial attention (292) to obtain the final fused
values. We explain the process in detail below.

For an encoder model, we have the intermediate representation H at a specific layer to compute the
query, key, and value vectors denoted as Q, K, and V respectively, in Rn×d as outlined in Equation 6.1.
WQ,WK , andWV are model parameters each with dimensions of Rd×d. In this context, n signifies the
maximum sequence length of the text, while d represents the dimensionality of the dialogue vector.[

QKV
]
= H

[
WQWKWV

]
(6.1)

The vector P in Rn×dp , the encoded personality vector is used to create personality-influenced key and
value vectors, K̂ and V̂ respectively, based on the method outlined by (114). For balancing of information
from the personality source and information retention from the dialogue, we train a matrix λ in Rn×1

(Equation 6.3). Uk and Uv in Rdp×d are matrices that can be learned.[
K̂

V̂

]
= (1−

[
λk

λv

]
)

[
K
V

]
+

[
λk

λv

]
(P

[
Uk

Uv

]
) (6.2)

Rather than setting λk and λv as hyperparameters, we allow the model to autonomously determine their
values through a gating mechanism, as defined in Equation 6.3. Additionally, the matrices Wk1 ,Wk2 ,Wv1 ,
and Wv2 , each with dimensions Rd×1, are trained in conjunction with the model.

[
λk

λv

]
= σ(

[
K
V

] [
Wk1

Wv1

]
+ P

[
Uk

Uv

] [
Wk2

Wv2

]
) (6.3)

Once we obtain the personality-infused key and value vectors, we use the Axial attention mechanism.
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Axial Attention

Axial attention (292) finds its primary application in computer vision, where its utility extends to managing
multidimensional tensors. The fundamental aim is to approach each axis independently, thereby compre-
hensively exploring relationships between the various dimensions. The proposed approach preserves the
original shape of the multidimensional tensor, performing either masked or unmasked attention along
a single axis at any given time. This specific operation, referred to as axial attention and denoted as
Attentionk(x), is responsible for directing attention over axis k within the tensor x. In doing so, it blends
information across axis k while maintaining the independence of information along the remaining axes.
Implementing axial attention for a given axis k involves a series of steps, such as transposing all axes ex-
cept k to the batch axis, invoking standard attention as a subroutine, and reverting the transpose operation.
Within our network architecture, we leverage two axial attention layers, culminating in the derivation of
the ultimate dialogue representation denoted as Ĥ , signifying the personality-infused representation of
the dialogue, which is then passed on to the next encoder/decoder layer. For our input two dimensional
arrays of K̂, V̂ , and Q:

Ĥ = Attentionk(K̂, V̂ , Q) (6.4)

6.5 Experiments and Results

6.5.1 Evaluating SPOT

We perform experiments for all three subtasks in two settings – standalone and pipeline. Following
sections present both settings.

Standalone Evaluation. In this configuration, the distinct phases’ models are individually trained and
assessed. To elucidate, in the persona discovery phase, all dialogues undergo processing by SPOT,
meticulously scrutinizing each utterance for persona-related cues. Transitioning to persona-type identifi-
cation, we strictly adhere to the ground-truth, selectively forwarding solely the persona-laden utterances,
alongside their contextual information, to the model, as visually depicted in Figure 6.3. Ultimately, when
it comes to persona-value extraction, we furnish SPOT with the ground truth persona categories, together
with the persona-imbued utterances and their contextual backdrop, thereby enabling the precise extraction
of persona values.

Pipeline evaluation. In this context, the persona discovery process aligns with the standalone setup. Yet,
in the persona-type identification phase, we exclusively supply the model with the utterances pinpointed
as persona-bearing in the preceding subtask, without adhering to the ground truth. Subsequently, the
results yielded from the second phase serve as input for the ultimate persona-value extraction task, devoid
of any ground-truth reference.

Baseline methods. Given that persona discovery and persona-type identification are classification-
oriented tasks, we have leveraged four classification baselines that are originally designed for akin tasks
like emotion detection and dialogue-act identification.

• BERT: BERT (Bidirectional Encoder Representations from Transformers) (110) is encoder stack
of transformer architecture (150). We use pre-trained BERT base and fine-tune it for our tasks.

• RoBERTa: RoBERTa (Robust BERT) (257) extends upon BERT by adjusting critical hyperparam-
eters, eliminating the next-sentence pretraining task, and utilizing significantly larger mini-batches
and learning rates during training.

• DialogXL: Shen et al. (246) modified XLNet by changing the segment-level recurrence mecha-
nism to an utterance-level recurrence mechanism so that XLNet could be mapped to a dialogue
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setting. They also incorporated dialogue-aware self-attention to capture the intra- and inter-speaker
dependencies in a conversation.

• Co-GAT: Qin et al. (249) proposed a co-interactive graph interaction layer with cross-utterance
and cross-tasks connections.

• AGHMN: Jiao et al. (245) used an attention-based GRU to monitor the flow of information through
a hierarchical memory network. The attention weights are calculated over the contextual utterances
in the conversation and combined for the final classification.

For the third subtask of persona-value extraction, we consider sequence-to-sequence models for compari-
son.

• RNN: OpenNMT5 provides with an implementation of the RNN seq-to-seq architecture which we
use in our study.

• Transformers: We use the standard encoder and decoder stack to generate the output (150).
• Pointer Generator Network (PGN): The standard seq-to-seq architecture supporting both genera-

tion of new words as well as copying words from input (234).
• BART: BART (235) contains a bidirectional encoder and an auto-regressive decoder to create a

denoising auto-encoder model.
• T5: T5 (294) is a seq-to-seq model trained on a mixture of unsupervised and supervised tasks.

Evaluation metrics. Since the first two subtasks are multi-class classification problems, we use F1 score
as our choice of evaluation metric. We consider F1 score of the positive class for the task of persona
discovery, while weighted F1 score is used for persona type identification. On the other hand, since the
task of persona-value extraction follows a generative objective, we use the ROUGE (228) and the BLEU
(229) scores to gauge the performance of the systems.

Results

Standalone evaluation. We evaluate SPOT for all subtasks of SPC separately and show the results in
Table 6.4 and Table 6.6.

• Persona discovery: We train SPOT as a binary classifier using cross-entropy loss. We obtain 52% F1
score, which is ∼ 21% better than the best baseline, DialogXL, as can be seen in Table 6.4. The gain
in performance can be attributed to the efficient way we use different modules in our architecture to
capture different essence of a conversation. It is interesting to observe that Co-GAT produce the
best performance in terms of recall scores while SPOT holds a balance between precision and recall
to obtain the highest F1 score, which is our metric of choice due to the class imbalance present in
our data.

• Persona-type identification: We use boundary loss (291) to train SPOT for this task. Table 6.4 shows
that SPOT yields a weighted average of 56% F1-score with the maximum score for persona-type
likes. AGHMN, the best baseline, results in a weighted average of 48% F1-score, which is ∼ 8%
less than SPOT. We observe that SPOT achieves the best F1-score for all persona slots showcasing
a global dominance of our system. It is interesting to observe that our model performs quite well
across the persona slots that are dominantly present in our data and consistently decreases for the
slots based on their availability in the data.

• Persona-value extraction: Using a generative objective, we obtain the results by SPOT for this
subtask. Table 6.6 demonstrates that SPOT outperforms the baselines by around 1% for all metrics
except BLEU 1 and BLEU 3.

Pipeline evaluation. Tables 6.5 and 6.6 show the performance obtained by our model along with the
baseline scores. For the task of persona discovery, we obtain the same results as standalone due to the
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Systems Persona Discovery Persona-type Identification
P R F1 Trait Likes Rel Misc Occ Wtd

BERT 0.17 0.72 0.27 0.48 0.0 0.09 0.24 0.05 0.24
RoBERTa 0.20 0.56 0.29 0.51 0.17 0.11 0.26 0.04 0.27
DialogXL 0.45 0.23 0.31 0.52 0.0 0.0 0.0 0.0 0.18
Co-GAT 0.15 0.94 0.27 0.50 0.35 0.06 0.14 0.05 0.33
AGHMN 0.43 0.14 0.21 0.56 0.58 0.38 0.26 0.25 0.48

SPOT 0.47 0.58 0.52 0.61 0.63 0.49 0.35 0.31 0.56

Table 6.4: Comparative results for standalone evaluation. (P: Precison; R: Recall; Rel: Relationship; Occ:
Occupation; Wtd: Weighted F1 score.)

Systems Persona Discovery Persona-type Identification
P R F1 Trait Likes Rel Misc Occ Wtd

BERT 0.17 0.72 0.27 0.12 0.0 0.05 0.07 0.0 0.07
RoBERTa 0.20 0.56 0.29 0.14 0.02 0.07 0.09 0.02 0.09
DialogXL 0.45 0.23 0.31 0.33 0.0 0.0 0.0 0.0 0.07
Co-GAT 0.15 0.94 0.27 0.31 0.26 0.0 0.07 0.0 0.15
AGHMN 0.43 0.14 0.21 0.48 0.43 0.41 0.21 0.16 0.40

SPOT 0.47 0.58 0.52 0.57 0.52 0.38 0.28 0.24 0.46

Table 6.5: Comparative results for pipeline evaluation. (P: Precison; R: Recall; Rel: Relationship; Occ:
Occupation; Wtd: Weighted F1 score.)

same type of input and evaluation strategies. However, we observe a performance drop of ∼ 10% for the
persona-type identification task and a drop of at most ∼ 6% for the persona-value extraction task when
compared to the standalone results. This is expected as the erroneous predictions from the previous stage
may propagate to the next stage. Nevertheless, when compared to the baseline systems, our proposed
mechanism gives the best score, with an increase of ∼ 6% over the best baseline and ∼ 39% over the
worst performing baseline for the former task (c.f. Table 6.5). Apart from relation, SPOT performs
the best for all persona slots. While for the last subtask, we obtain an improvement of ∼ 1% over the
baselines. Consequently, we establish that SPOT is able to capture the essence of persona more clearly
when compared with the baseline systems.

Ablation Study

SPOT captures two primary aspects of a dialogue – the dialogue context and the speaker semantics. To
capture the dialogue-level context, we use SPOTBase, containing the dialogue-level Transformer followed
by context HCAR, and global attention representation HGAR. That is, no speaker level information
in captured in this variant. We reinforce the dialogue context by using the RoBERTa representation
as a skip connection in this architecture, SPOTBase+RoBERTa. Speaker semantics are captured by the
speaker-specific Transformers and attention representation HSAR. We add these modules in our final
model, SPOT. We observe that the addition of the RoBERTa representation improves the performance of
our model considerably (21%) while the addition of speaker module improves it further (7%) verifying
the use of each module.

Error Analysis

Predicted
No Yes

Tr
ue No 1191 487

Yes 121 184
(a) SPOT

Predicted
No Yes

Tr
ue No 1594 84

Yes 235 70
(b) DialogXL

Table 6.8: Confusion matrices for SPOT and Di-
alogXL (best baseline) for the persona dis-
covery task.

In this section, we present a detailed analysis of
the results obtained for SPOT. We first show the
quantitative analysis by analysing the confusion
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Models Standalone Pipeline
R1 R2 B1 B2 B3 R1 R2 B1 B2 B3

RNN 26.85 2.28 24.78 1.48 0.36 19.64 0.37 18.98 0.36 1.12
Transformer 26.02 2.37 23.93 1.54 0.58 19.48 0.70 18.82 0.69 2.05

PGN 24.40 1.59 23.12 1.08 0.36 17.11 0.49 16.13 0.33 9.28
BART 28.93 2.16 27.23 1.51 0.36 22.41 1.01 21.37 0.80 0.08

T5 15.07 0.0 14.90 2.25 1.20 11.62 0.37 11.51 0.36 1.12
SPOT 29.51 2.97 27.16 2.27 0.60 23.40 0.60 22.12 1.12 0.08

Table 6.6: Comparative results for standalone and pipeline evaluation for persona-value extraction. (R1/2:
ROUGE1/2; B1/2/3: BLEU1/2/3)

Systems Trait Likes Relation Misc Occ Weighted
SPOTBase 0.36 0.27 0.22 0.23 0.07 0.28

SPOTBase+RoBERTA 0.56 0.53 0.45 0.40 0.26 0.49
SPOT 0.61 0.63 0.49 0.35 0.31 0.56

Table 6.7: Ablation results for persona-type identification. (Misc: Miscellaneous; Occ: Occupation)

matrices obtained. After this, we show a qualitative analysis by observing a few test samples and their
predicted persona slots and values. We also pick some predicted examples to illustrate the shortcomings
of our approach and give a possible direction for future research.

Quantitative Analysis We compare the confusion matrices obtained by SPOT and the best baseline for
this subtask, AGHMN in Table 6.9. Both the models produce a comparable performance with maximum
accurate predictions for the persona-type trait. Moreover, we observe that the classes likes and trait are
most confused, followed by likes, relation, misc and occupation for SPOT as well as for AGHMN, while
occupation and relation are least confused among all classes.

Predicted
Trait Occ Misc Likes Relation

Tr
ue

Trait 72/65 8/11 10/10 22/23 6/9
Occ 4/5 8/6 3/3 2/3 1/1
Misc 16/16 7/8 17/12 5/7 8/10
Likes 24/25 2/5 3/4 55/51 4/3
Relation 3/3 0/0 7/8 3/5 17/12

Table 6.9: Confusion matrices for the persona-type identification task. Each cell represents value like
{SPOT/AGHM}.

Table 6.8 presents the confusion matrices for SPOT and the best performing baseline, DialogXL for
the persona discovery task. SPOT correctly predicts 184 out of 305 positive instances (60.3%) while
DialogXL is only able to predict 70 (22.9%). Although DialogXL performs poorly while identifying the
true positives, it does a better job in identifying the true negatives. It is able to correctly classify 1594
instances as negative (94.9%), whereas SPOT predicts only 1191 true negative instances (70.9%).

Common Errors by SPOT: False positives. While attaining a decent value for true positives, SPOT
obtains a significant value of false positives (487) for persona discovery (c.f. Table 6.8). We analyse the
type of misclassified instances and observe that SPOT often identifies utterances containing questions
as having persona information. For example, the utterance ‘We’re in a relationship?’ is marked as a
positive instance for persona discovery when in true sense, its answer was the one carrying persona.
Table 6.10 presents similar examples. This phenomenon can be attributed to the presence of words
such as ‘relationship’ (instance 1), ‘like’ (instance 2), or ‘father’ (instance 4) in the utterances as these
words may hint towards the presence of explicit persona information in a statement. In addition, SPOT
frequently predicts the utterances expressing a temporary/trivial state for the speaker as containing persona
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information. For instance, the utterance ‘Oh my god, I am losing my mind.’ is marked as the one containing
persona information. We show more such instances in Table 6.10. Future work could be done to handle
such cases of false positives.

# Speaker Utterance PD
True Pred

1 Chandler We’re in a relationship? 0 1
2 Danny So you like the short hair better? 0 1
3 Rachel Yeah. Oh! Was how you invented the

cotton gin?!
0 1

4 Phoebe Well, so, umm, anyway umm, I’ve
been, I’ve been looking for my Father,
and umm, have you heard from him,
or seen him?

0 1

5 Janice So, I hear, you hate me? 0 1

(a) Persona does not lie in questions.

# Speaker Utterance PD
True Pred

1 Monica Oh my god, I am losing my mind. 0 1
2 Phoebe Because we’re girls. 0 1
3 Monica No, Phoebe, I’ll tell you what, if you

get ready now I’ll let you play it at the
wedding.

0 1

4 Leslie My best shoes, so good to me. 0 1
5 Chandler Okay uh, for now, temporarily, you

can call me, Clint.
0 1

(b) Persona is not temporary/trivial attributes.

Table 6.10: Examples of false positives by SPOT for the Persona Discovery (PD) task.

Common Errors by SPOT: False negatives. In addition to falsely identifying utterances containing
no persona information as positive instances, SPOT identifies 121 true positive instances as belonging
to the negative class. We analyse the misclassified positive instances and identify two situations where
such misclassifications happen. When the persona information is present in the answer to a question, it
is often misclassified by SPOT. For example, in the dialogue ‘Ross: Okay! All right! Now, Chandler
you-you wanna live with Monica, right? Chandler: Yeah, I do.’, Chandler’s utterance contains information
about his persona (relationship with Monica), but SPOT is unable to identify this instance correctly. Table
6.11 highlights similar examples from SPICE. Furthermore, SPOT often misclassifies instances where
the persona information is implicit in nature. For instance, the utterance ‘Ya see, it’s just, see I was a
regular on a soap opera y’know?’ contains persona information (that the speaker’s occupation is an actor);
however, SPOT is not able to relate the phrase ‘soap opera’ to occupation and thus does not mark the
instance as having persona information. Supporting examples are shown in Table 6.11.

# # Speaker Utterance PD
True Pred

1
u1 Ross Okay! All right! Now, Chandler you-

you wanna live with Monica, right?
0 1

u2 Chandler Yeah, I do. 1 0

2
u1 Judge So based on your petition you are seek-

ing an annulment on the grounds that
Mr. Geller is mentally unstable?

1 1

u2 Ross Fine, I’m mentally unstable. 1 0

3
u1 Ross Are you intrigued? 0 0
u2 Chandler You’re flingin’-flangin’ right I am! 1 0

4
u1 Rachel Why, does she have a bad personality? 1 1
u2 Phoebe Oh no, Bonnie’s the best! 1 0

5
u1 Chandler Soo, ah, Eric, what kind of photogra-

phy do ya do?
0 0

u2 Eric Oh, mostly fashion, so there may be
models here from time to time, I hope
that’s cool.

1 0

(a) Persona lies in answer to a question.

# Speaker Utterance PD
True Pred

1 Joey Ya see, it’s just, see I was a regular on
a soap opera y’know?

1 0

2 Joey Awww, one of my students got an au-
dition. I’m so proud.

1 0

3 Joey Yeah but we won’t be able to like get
up in the middle of the night and have
those long talks about our feelings and
the future.

1 0

4 Janice Oh, Chandler, look. You and Monica
are meant to have children. I am sure
it’s gonna be just fine.

1 0

5 Steve Umm, see, I was thinking maybe you
two could switch apartments because
Phoebe’s more our kind of people.

1 0

(b) Persona is implicit.

Table 6.11: Examples of false negatives by SPOT for the Persona Discovery (PD) task.

Qualitative Analysis This section presents a subjective analysis of the quality of predictions made by
SPOT and the best baselines, based on a sample dialogue from the test set. The dialogue contains six
utterances, where utterances u1, u3, and u5 are identified as having the persona type relationship, as shown
in Table 6.12. In the first subtask of persona discovery, SPOT correctly identifies two positive instances
out of the total three, while the best baseline, DialogXL, only identifies one such instance. However,
both SPOT and DialogXL misclassify one utterance as false negative. Moving on to the second subtask
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of persona-type identification, SPOT correctly classifies two instances of persona-type relationship but
misclassifies one instance as trait. On the other hand, the best baseline, AGHMN, only predicts one
correct class and misclassifies the others as likes.

# Speaker Utterance
Persona Discovery Persona Type Identification

True Predicted True Predicted
SPOT DialogXL SPOT AGHMN

u1 Rachel Everybody, this is Paolo, Paolo, I want you to meet
my friends. This is Monica

Yes Yes No relationship relationship likes

u2 Monica Hi! No No No - -
u3 Rachel And Joey... Yes No Yes relationship relationship relationship
u4 Monica Hi! No No No - -
u5 Rachel And Ross... Yes Yes Yes relationship trait likes
u6 Monica Hi! No No Yes - -

Table 6.12: Actual and predicted labels for the persona discovery and persona type identification tasks.
DialogXL and AGHM are the best performing baseline for the respective tasks.

6.5.2 Evaluating PA3

Sp GT OPN CON EXT EXT NEU

Ma CON 14% 54% 8% 13% 11%
In AGR 6% 18% 8% 65% 3%
Sa CON 14% 52% 4% 16% 14%
Mo OPN 58% 11% 21% 8% 2%
Ro EXT 16% 14% 51% 15% 4%

Table 6.13: Percentage of times a personality trait is assigned to a speaker. (Abbr - Sp: Speakers, GT:
Ground Truth, Ma: Maya, In: Indravardhan, Sa: Sahil, Mo: Monisha, Ro: Rosesh, Oth:
Others)

Evaluation Metrics. Given the absence of ground-truth labels for evaluating personality detection, we
resort to a manual assessment process, meticulously scrutinizing the outputs for the primary speakers to
derive meaningful insights into the system’s performance in this regard. To assess the response generation
proficiency, we employ established evaluation metrics, specifically ROUGE (228) and BLEU (229) scores.
These metrics are adept at quantifying the syntactic competence of the system in question. Additionally,
we incorporate BERTScore (295), which serves to gauge the semantic aptitude of the system, and human
evaluation provides a more comprehensive evaluation.

In this section, we present a comprehensive overview of the quantitative and qualitative results achieved
by personality identification and response generation. Additionally, we offer a closer look at our ablation
results, shedding light on the significance of each submodule within our proposed architectural framework
for response generation. Further, human evaluation highlights the pros and cons of the generated responses
and personalities.

Personality Identification

As shown in Figure 6.4, our initial step predicts the most suitable personality from the Big Five personality
traits for the target speaker. To gauge the efficacy of our predicted personalities, we focus on the five
primary speakers featured in the MaSaC dataset. Figure 6.2a shows the distribution of the speakers where
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it can be observed that the speakers — Maya, Indravardhan, Sahil, Monisha, and Rosesh, are the most
frequently occurring speakers. We perform a manual evaluation of the personality predictions. Using
information from Wikipedia5, we procure character descriptions for each of the five prominent speakers
which were given to five expert annotators.
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Figure 6.6: Distribution of the predicted
personality traits assigned to
different speakers (Abbr - Ma:
Maya, In: Indravardhan, Sa:
Sahil, Mo: Monisha, Ro:
Rosesh, Oth: Others).

The annotators then categorize each speaker within the Big
Five personality framework. This annotator-driven classifi-
cation enables the construction of a definitive ground-truth
for evaluation encompassing the five speakers, each asso-
ciated with an assigned personality trait value as shown in
Table 6.13. We compare the obtained ground-truth person-
alities with the ones predicted by the RoBERTa model, an
outcome of the ‘pseudo’ task centred around response gen-
eration. The ensuing distribution of these predictions is laid
out for scrutiny in both Table 6.13 and Figure 6.6. We can
see that the personalities found most suitable by the human
annotators are the ones preferred by the RoBERTa model,
too, validating the performance of our system.

6.5.3 Response Generation

Here, we discuss the effect of adding personality information
to the dialogue context quantitatively.

Comparative Systems

To attain the most promising textual representations for discourse, we employ a range of well-established
encoder-decoder-based sequence-to-sequence (seq2seq) models.

• RNN: We leverage the RNN seq2seq architecture, implemented through openNMT46.
• Pointer Generator Network (PGN) (234): In this seq2seq architecture, a fusion of generative and

copy mechanisms is harnessed, offering a versatile approach to content generation.
• Transformer (150): Responses are generated using the conventional Transformer encoder-decoder

model.
• T5 (296): We deploy the base version of the text-to-text-transfer-transformer (T5), which excels in

framing multiple NLP tasks as text-to-text challenges, facilitating a unified and efficient approach
to tasks such as translation, summarization, and question answering.

• BART (235): We utilize the basic denoising autoencoder model with a bidirectional encoder and a
left-to-right auto-regressive decoder.

• mBART (236): mBART7, trained on multiple extensive monolingual datasets, shares the same
objective and architectural structure as BART.
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Model R1 R2 RL B1 B2 B3 B4 BS

w
/o

pe
rs

on
al

ity RNN 8.17 0.02 8.09 5.11 0.01 0.11 0 54.16
PGN 7.06 0 7.01 4.31 0 0.08 0 53.12
Transformers 10.64 0.83 10.35 7.22 0.92 0.13 0.01 58.94
mBART 11.36 1.23 10.9 7.91 1.01 0.21 0 61.02
T5 11.87 1.01 11.43 8.41 1.02 0.17 0.02 61.98
BART 12.94 1.66 12.34 9.66 1.64 0.43 0.07 63.12

w
pe

rs
on

al
ity

RNNPA3 9.96 (↑1.79) 0.08 (↑0.06) 10.71 (↑2.62) 6.87 (↑1.76) 1.04 (↑1.03) 0.43 (↑0.32) 0.22 (↑0.22) 56.24 (↑2.08)
PGNPA3 8.45 (↑1.39) 1.11 (↑1.11) 9.41 (↑2.40) 5.95 (↑1.64) 1.03 (↑1.03) 0.37 (↑0.29) 0.21 (↑0.21) 55.87 (↑2.75)
TransformersPA3 12.76 (↑2.12) 1.75 (↑0.92) 12.14 (↑1.79) 8.46 (↑1.24) 2.02 (↑1.10) 0.45 (↑0.32) 0.24 (↑0.23) 61.06 (↑2.12)
mBARTPA3 13.43 (↑2.07) 2.36 (↑1.13) 12.15 (↑1.25) 8.89 (↑0.98) 2.61 (↑1.60) 0.56 (↑0.35) 0.18 (↑0.18) 63.42 (↑2.40)

T5SC 12.02 (↑0.15) 1.51 (↑0.50) 11.98 (↑0.55) 8.52 (↑0.11) 1.51 (↑0.49) 0.39 (↑0.22) 0.11 (↑0.09) 62.05 (↑0.07)
T5DPA 12.04 (↑0.17) 1.56 (↑0.55) 12.01 (↑0.58) 8.58 (↑0.17) 1.58 (↑0.56) 0.41 (↑0.24) 0.14 (↑0.12) 62.35 (↑0.37)
T5PA3−Axial 12.79 (↑0.92) 1.64 (↑0.63) 12.53 (↑1.10) 9.04 (↑0.63) 1.96 (↑0.94) 0.46 (↑0.29) 0.18 (↑0.16) 62.99 (↑1.01)
T5OT 13.48 (↑1.61) 1.97 (↑0.96) 12.89 (↑1.46) 9.21 (↑0.80) 2.23 (↑1.21) 0.52 (↑0.35) 0.21 (↑0.19) 63.14 (↑1.16)
T5PA3 13.61 (↑1.74) 2.03 (↑1.02) 13.92 (↑2.49) 9.78 (↑1.37) 2.62 (↑1.60) 0.51 (↑0.34) 0.26 (↑0.24) 63.87 (↑1.89)

BARTSC 13.05 (↑0.11) 1.89 (↑0.23) 12.64 (↑0.30) 9.84 (↑0.18) 1.82 (↑0.18) 0.52 (↑0.09) 0.12 (↑0.05) 63.48 (↑0.36)
BARTDPA 13.12 (↑0.18) 1.98 (↑0.32) 12.81 (↑0.47) 9.96 (↑0.30) 1.94 (↑0.30) 0.54 (↑0.11) 0.15 (↑0.08) 63.82 (↑0.70)
BARTPA3−Axial 13.97 (↑1.03) 2.21 (↑0.55) 13.05 (↑0.71) 10.16 (↑0.50) 2.07 (↑0.43) 0.61 (↑0.18) 0.18 (↑0.11) 64.34 (↑1.22)
BARTOT 14.29 (↑1.35) 2.54 (↑0.88) 13.72 (↑1.38) 10.59 (↑0.93) 2.16 (↑0.52) 0.73 (↑0.30) 0.22 (↑0.15) 65.05 (↑1.93)
BARTPA3 14.67 (↑1.73) 2.77 (↑1.11) 14.11 (↑1.77) 10.92 (↑1.26) 2.51 (↑0.87) 0.73 (↑0.30) 0.27 (↑0.20) 65.93 (↑2.81)

Table 6.14: Experimental and ablation results for the response generation task with and without fusing
personalities. (Abbr: R1/2/L: ROUGE-1/2/L, B1/2/3/4: BLEU-1/2/3/4, BS: BERTScore (F1
score), SC: Simple Concat, DPA: Dot Product Attention, OT: Only Traits, PA3: Personality-
Aware Axial Attention).
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Figure 6.7: R1 scores for the responses generated by the most frequent five speakers in the dataset when
the GT personality, other personalities sans GT, and no personalities are used for response
generation.

Quantitative Results

Table 6.14 presents the scores achieved across the evaluation metrics for the MaSaC dataset. Apparently,
the inclusion of personality information elevates the performance of our comparative systems across all
metrics. Notably, BART outperforms the competition, whether with or without personality information,
across majority of the metrics. We observe increased ROUGE-1 scores for all models, typically ranging
from +13% to +21%. BLEU-1 also increases simultaneously from +12% to +38%. The consistent
improvement in BERTScore (+3% to +5%) also underscores that the fusion of personality information
into the dialogue context results in responses marked by enhanced coherence.

5https://en.wikipedia.org/wiki/Sarabhai_vs_Sarabhai
6https://github.com/OpenNMT/OpenNMT-py
7https://huggingface.co/facebook/mbart-large-50-many-to-many-mmt
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Dialogue Context Monisha: Mummy ji, use apni pehli anniversary yaad hai, ye sunkar aap chaunki kyun? (Mother-in-
law, why did you seem surprised when he remembered his first anniversary?)
Maya: Kyunki mardon ko, cricket match kab hai, WWF kab dikhane wale hain, inn do baaton ko
chhod bahut jyada yaad ni rehta. And that’s fine. (Because men tend to remember when the next
cricket match or WWE show is rather than things like anniversaries. And that’s fine.)
Monisha: Kya fine? Mujhe to har important din yaad rehta hai. (What do you mean, fine? I remember
every important day.)
Maya: Haan, kyunki mard aur aurat alag-alag hain. Unke dimag alag tarah se kaam krte hain. (Yes,
because men and women are different. Their minds work in different ways.)

GT Response Monisha: Mai nhi manti. pichhle saal raat ko barah baje daddy ji ne aapko anniversary wish kiya
tha na? Yaad krk? (I don’t believe that. Didn’t Daddy wish you a happy anniversary last year at
midnight? Remember?)

BART Monisha: daddy ji ka dimag alag tarah se kaam krte hain. (Daddy’s mind work in different way.)

BARTPA3 (OPN) Monisha: Mai nhi manti. daddy ji ko apni pehli anniversary yaad hai. (I don’t believe that. Daddy
remembers his first anniversary.)

Table 6.15: Responses generated for a sample dialogue from the test set of MaSaC by different model
architectures.

Effect of Personality

We monitor ROUGE scores for responses from the top five most frequent speakers, as shown in Figure 6.2a.
Comparing the responses generated by the BART model with ground-truth (GT) personalities (as listed
in Table 6.13), we also assess results without personality fusion. The findings, presented as ROUGE-1
scores in Figure 6.7, consistently demonstrate improved performance after personality fusion. Notably,
except for Sahil, every speaker exhibits enhanced performance when infused with the GT personality
within the dialogue context.

Ablation Study

It is essential to recognize that integrating personality information into the dialogue context can be
achieved through various techniques, each varying in complexity. In our study, we have delved into several
fusion methodologies, encompassing straightforward concatenation, conventional dot-product attention,
and personality-aware attention, both with and without the inclusion of Axial attention. We provide results
for both BART and T5 since they exhibit comparable capabilities in Table 6.14. Evidently, the fusion of
personality information contributes to better responses. Nevertheless, our findings emphasize that simple
concatenation falls short in efficiency, yielding only marginal performance gains. In contrast, introducing
attention mechanisms elevates performance, with our proposed approach of personality-aware fusion,
coupled with Axial attention, being the most effective strategy. Additionally, we investigate the potential
impact of fusing solely the identified personality trait without the intermediary step of mapping it into a
trait definition. Our observations underscore the advantages of incorporating the complete trait definition
rather than merely the isolated trait string within the response generation pipeline.

Qualitative Analysis

We select a sample dialogue from the test set and present the predicted responses generated by the
conventional BART model alongside those generated after the integration of personality factors using PA3.
These responses are compared with the ground-truth responses, comprehensively detailed in Table 6.15.

108



We observe that utilising personality information (OPN for the speaker in this case) aligns the response
closer to the ground truth when compared with the standard BART model.

Human Evaluation

Model Fluency Coherence Relevancy Personality
oriented

T5 2.13 2.07 1.64 2.01
BART 2.17 2.03 1.79 2.04
T5PA3 3.07 2.84 2.26 3.11
BARTPA3 3.14 3.09 2.98 3.23

Table 6.16: Results of human evaluation for the re-
sponse generation task.

For generative tasks such as response generation,
simple reliance on quantitative results proves in-
sufficient, primarily due to the tendency of such
metrics, like ROUGE and BLEU scores, to priori-
tize syntactic similarity over semantic equivalence.
Therefore, we perform human evaluation. We con-
duct a comparative analysis of predictions derived
from BART and T5 with and without the incorpo-
ration of personality information using PA3. We
engage 25 human evaluators8 who are tasked with
assessing a randomly selected set of 50 responses generated by these methods. They assign each response
a rating within the range of 1 to 5, considering common human evaluation metrics, including fluency,
relevance, coherence, and personality orientation. To monitor the validity of the human evaluations, we
calculate Cohen’s Kappa (297) to quantify the inter-annotator agreement between the annotators. The
average Kappa score for fluency, coherence, relevancy and personality oriented came out to be 0.83,
0.79, 0.68, and 0.71, respectively. The consolidated results of our human evaluation, shown in Table
6.16, reflect the averaged ratings across all obtained responses. Evidently, BART, when equipped with
personality information using PA3, emerges as the top performer across all metrics.

6.5.4 Evaluating LLMs

Similar to the rest of the chapters, we compare the performance of our best performing systems with
Llama, a large language model. Table 6.17 highlights the results obtained for the SPICE data for the tasks
of persona discovery, persona-type identification, and persona value extraction. It can be observed that,
although Llama performs better than SPOT in almost all tasks, it performs comparably to SPOT. This
minor increase in performance signifies the importance of data availability over parameter increase. For
the task of personality-assisted response generation in the code-mixed setting, we show the results in
Table 6.18. Here also, we see a minor increase in the response generation performance when Llama is
used in place of our top performing system. PA3.

Persona Discovery Persona-Type Identification Persona Value Extraction
Prec Rec F1 Weighted F1 Score R1 R2 B1 B2

SPOT 0.47 0.58 0.52 0.56 29.51 2.97 27.16 2.27
Llama 0.47 0.60 0.53 0.58 31.02 3.54 28.90 4.01

Table 6.17: Performance of Llama when compared with our proposed methodology for the three tasks of
speaker profiling.

8The evaluators are linguists fluent in English and Hindi with a good grasp of personalized dialogues, aged between 25-30.
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ROUGE 1 ROUGE 2 ROUGE L BLEU 1 BLEU 2 BLEU 3 BLEU 4 BERTScore
PA3 14.67 2.77 14.11 10.92 2.51 0.73 0.27 65.93
Llama 15.71 3.06 14.98 11.46 3.74 1.08 1.01 67.64

Table 6.18: Performance of Llama when compared with our proposed methodology for personality-
assisted response generation.

6.6 Conclusion

In conclusion, this chapter addressed the critical issue of personalization in dialogue agents, recognising
the inadequacy of one-size-fits-all approaches in the dynamic landscape of conversational interactions. The
exploration of the Speaker Profiling in Conversations task, undertaken through two distinct approaches
for monolingual English and Hindi-English code-mixed conversations, contributed significantly to the
advancement of personalised dialogue generation. For monolingual English, our focus on persona discov-
ery, persona-type classification, and persona-value extraction within dialogues led to the development
of a novel dataset, SPICE, annotated with explicit profiling labels. The meticulous evaluation of diverse
baseline models against this dataset, along with the introduction of the SPOT, provided a comprehensive
understanding of the advantages and limitations exhibited by different constituent modules. In the realm of
Hindi-English code-mixed conversations, our proposed unsupervised method for speaker profile extraction
introduced a unique approach leveraging the Big Five personality traits. The fusion of these inferred
personality attributes with the dialogue context, facilitated by the PA3, demonstrated substantial improve-
ments in response generation. The observed enhancements in ROUGE and BLUE scores underscored the
effectiveness of integrating personality information seamlessly into the dialogue context, offering a more
contextually relevant and personalised dialogue generation experience.
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7. Conclusion and Future Work

With this chapter, we now summarize the contributions made by this thesis and a discussion of possible
directions in which future research could be extended.

This thesis centrally explored the integration of affective cues into chatbots, with the aim of endowing
them with an acute awareness of the nuanced dimensions of human conversation. Our investigation
delved into four pivotal affective elements: emotion, humour, sarcasm, and speaker profile. In addition to
comprehending these attributes, we embarked on explaining their underlying mechanisms. The impetus
for delving into this research domain stemmed from a dedication to advancing the ambitious objective
of Artificial General Intelligence. The underlying premise was that an exemplary conversational agent
should not merely engage in dialogue but should also adeptly navigate the intricate landscape of emotions,
humour, sarcasm, and other affective facets. The aspiration was to foster an affective understanding in
conversational agents so that ultimately they become capable of emulating human-like conversational
prowess. Below we provide a conclusion for each of the explored affect in the thesis.

Emotions is the primary affect that influence a conversation. Consequently, emotion analysis becomes
of paramount importance in the conversational AI domain. To this end, we handled the task of Emotion
Recognition in Conversation and Emotion Flip Reasoning in monolingual English and Hindi-English
code-mixed conversations. While the former task deals with recognising the emotions of a dialogue, the
latter focuses on giving an explanation behind any emotion shift present in a dialogue. We proposed
multiple models for the different settings of the ERC and EFR tasks based on the target language. We
also curated datasets to perform the EFR and the code-mixed ERC task. We explored standalone as
well as external knowledge infused mechanisms and found them to perform well when compared with
comparative systems.

Apart from emotions, humour and sarcasm also directly effect the speaker dynamics in a conversation. To
this end, we explore the analysis of humour and sarcasm to obtain the underlying meaning of a statement
in a dialogue. We focus on identifying utterances in a dialogue that display the presence of amusement
and/or irony in them. Further, we also proposed a new task – Sarcasm Explanation in Dialogues, which
aimed at generating natural language explanations for the sarcasm present in a dialogue. We posit that
sarcasm needs an external explanation for the dialogue agent as otherwise, it becomes difficult to capture
the true connotation behind an uttered remark. We explore the classification and explanation tasks for
monolingual English and Hindi-English code-mixed conversations and consequently curated datasets for
all these tasks. We experimented with multimodality using Transformer based systems assisted with novel
attention mechanisms. Thorough analysis shows considerable improvement and importance of our results.

Once we obtain a clear understanding of emotions, humour, and sarcasm, we focus on another aspect
of human behaviour, that is, speaker profile. An individual experiences life in a distinct manner which
results in a unique set of characteristics and demeanour, which in turn affect the style of their responses in
a dialogue. In other words, different speakers respond differently in the exact same situation based on
their inherent perception and bias. Consequently, we explore the task of speaker profiling in monolingual
English and Hindi-English code-mixed to classify or generate a speaker’s profile so that the profile can be
used to generate appropriate responses. We curated a dataset for generating speaker profile for English
dialogues. Whereas, we present the task of speaker profiling as an unsupervised task in the code-mixed
setting. Experimentation with Transformer based architectures and attention based fusion mechanisms,
we establish the superiority of our proposed systems over baseline methods.

Throughout this thesis, deep learning methods such as Transformers and RNNs are employed extensively.



While these techniques excel in handling large datasets and complex conversational scenarios, obtaining
sufficient computational resources for larger datasets may pose challenges. Longer training times and
extended hardware utilization are typically necessary for such models. Therefore, achieving an optimal bal-
ance between compute resource allocation and model performance is crucial for scalability considerations.
Regarding generalizability, our methods have been rigorously tested across a diverse array of datasets,
encompassing multilingual and multimodal dialogues. This extensive evaluation highlights the robustness
and transferability of our systems across various data domains. However, when addressing affective
traits, it is imperative to navigate a myriad of ethical considerations. Prior to real-world deployment,
comprehensive studies must be conducted to ensure that these models uphold principles of inclusivity,
fairness, and sensitivity toward diverse user demographics.

In summary, we have explored emotion analysis, humour and sarcasm analysis, and speaker profiling for
monolingual English and Hindi-English code-mixed conversations. With this understanding, we have
set the stage for further research in the direction of affect understanding, explanation, and generation for
multilingual dialogues. Below, we highlight a few possible research direction for the future.

Intensity aware emotion analysis: In this thesis, we have exclusively focused on Ekman’s emotion labels.
However, many studies have also focused on other types of emotion sets, such as Piccard’s emotions.
Future studies, that aims to perform ERC and EFR tasks for dialogue systems can consider these other
emotion sets, some of which also contain an emotional intensity indicator with them. Emotional intensity
indicates the extent to which a particular emotion is being experienced. For example, being denied
your favourite food can make you sad, but a demise of a pet will make you more sad, thus increasing
the intensity of the sadness emotion. Consequently, monitoring the change in emotional intensity and
reasoning it can also be a possible direction for future research.

Multimodal triggers for emotion flips: We use the textual modality only to monitor the emotional
dynamics of speakers in a dialogue in this thesis. We focus on the textual utterances as triggers in our
setting. However, there can be cases where a person’s emotion shift from one to another due to some
other modality. For instance, suppose a person sees an overflowing trashcan and their emotion shifts
from joy to disgust, in this case the trigger modality is visual and it becomes impossible to identify the
appropriate emotion flip trigger from text. Thus, multimodal trigger identification for emotion flips can be
an interesting research avenue.

Cognitive analysis of affects: The ability to gauge affects lies in the cognitive behaviour of the listener.
From a computational standpoint, we have explored affect comprehension using deep neural networks,
which tries to mimic the cognitive behaviour of the interlocutors. However, the correlation between the
biological neural network and the computational neural network for understanding the various affects is
not yet fully understood. Moreover, the use of cognitive and physiological signals such as EEG and gaze,
which is implicitly a part of biological neural networks, is not yet entirely explored from a computational
viewpoint. To this end, an interesting future direction could be to utilise an individual’s cognitive signals
to explain various affects in a conversation.

Affect aware response generation: Once we obtain the values and explanation for distinct affects of
an individual, the direct implication of them would be to generate apt responses. This thesis focuses on
the understanding aspect and introduces various new datasets and methods to give a head-start for the
research in this area. One of the future work can be to use these affects for generating responses which are
more human in nature.

This thesis has illuminated novel perspectives for research in affects for English and code-mixed dialogues,
shedding light on previously unexplored facets and contributing valuable insights to the existing body
of knowledge. We also underscore the ongoing need for continued exploration, encouraging future
researchers to build upon this foundation and explore new avenues for further innovation and discovery.
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Links to codes and datasets
• https://github.com/LCS2-IIITD/Emotion-Flip-Reasoning.git

• https://github.com/LCS2-IIITD/EMNLP-COFFEE.git

• https://github.com/LCS2-IIITD/EFR-Instigators.git

• https://github.com/LCS2-IIITD/MSH-COMICS.git

• https://github.com/LCS2-IIITD/MAF.git

• https://github.com/LCS2-IIITD/MOSES.git

• https://github.com/LCS2-IIITD/SPOT.git

• https://github.com/LCS2-IIITD/PA3.git
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