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Abstract

Blood cancer has emerged as a growing concern over the past decade, necessitating early
detection for timely and effective treatment. Traditional methods of diagnosing blood
cancers involve a series of pathological tests and consultations with medical experts, a
process that is not only time-consuming but also financially burdensome. The advent of
genomic data analysis offers a promising avenue for understanding the pathogenesis of
blood cancers, providing valuable insights into crucial biomarkers that could serve as
potential therapeutic targets, ultimately impeding the progression of the disease. In the
scope of this study, we have delved into the genomic intricacies of two prominent blood
cancer types: Chronic Lymphocytic Leukemia (CLL) and Multiple Myeloma (MM).
The treatment decisions for CLL and MM rely heavily on patient symptoms and are
underpinned by the genetic anomalies in the patient’s genome. Here, we have undertaken
a comprehensive omics data analysis, employing novel pipelines and methodologies
developed in-house. Our objective has been to unearth the genetic aberrations that
underlie these diseases’ development and identify pivotal biomarkers that hold promise
as therapeutic targets for each category of haematological malignancy.

Our first objective was to identify clinically relevant small non-coding RNAs (sncRNAs)
in CLL through a comprehensive genome-wide study of RNA-Seq data. This analysis re-
vealed a distinct pattern of dysregulated miRNAs in the CLL cohort. Among these, three
miRNAs were up-regulated (hsa-mir-1295a, hsa-mir-155, and hsa-mir-4524a), while five
miRNAs were down-regulated (hsa-mir-30a, hsa-mir-423, hsa-mir-486*, hsa-let-7e, and
hsa-mir-744). Moreover, our investigation identified seven novel miRNA sequences with
elevated expression in CLL, including tRNAs, piRNAs (piRNA-30799, piRNA-36225),
and snoRNAs (SNORD43). Notably, we observed a significant correlation between
the increased expression of hsa-mir-4524a and a shorter time to first treatment (TTFT)
(HR: 1.916, 95% CI: 1.080–3.4, p-value: 0.026) and higher expression of hsa-mir-744
with a longer TTFT (HR: 0.415, 95% CI: 0.224–0.769, p-value: 0.005) in CLL patients.
These findings suggest that further research may establish the potential integration of
these differentially expressed miRNA (DEM) markers into risk stratification models and
prognostic approaches for CLL.

We proceeded by developing an integrated and reproducible workflow for RNA-Seq
data analysis, known as miRPipe. This pipeline was designed to identify dysregulated
sncRNAs, including miRNAs and piRNAs, and functionally similar miRNAs, often
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called miRNA paralogues. To evaluate the performance and benchmark miRPipe, we
introduced an in-house synthetic sequence simulator called miRSim. miRSim utilizes
seed and xseed information from sncRNA sequences to generate synthetic sequences.
Additionally, it provides ground-truth data in a user-friendly comma-separated file
format, offering comprehensive information on known miRNAs, piRNAs, novel miRNAs,
their sequences, chromosome locations, expression counts, and CIGAR strings for all
sequences. We rigorously benchmarked miRPipe against seven existing state-of-the-art
pipelines using synthetic and publicly available real RNA-Seq expression datasets (lung
cancer, breast cancer, and CLL). In synthetic datasets, miRPipe demonstrated superior
performance to existing pipelines, achieving an accuracy of 95.23% and an F1-score of
94.17%. Furthermore, our analysis of all three cancer datasets indicated that miRPipe
excelled in extracting a more significant number of known dysregulated miRNAs and
piRNAs than existing pipelines.

Then, we designed an innovative AI-driven bio-inspired deep learning architecture
to identify altered signaling pathways (BDL-SP) and determine the pivotal genomic
biomarkers that can distinguish MM and its precursor stage, named Monoclonal gam-
mopathy of undetermined significance (MGUS). The proposed BDL-SP model com-
prehends gene-gene interactions using the protein-protein interaction (PPI) network
and analyzes genomic features using deep learning (DL) architecture to identify signifi-
cantly altered genes and signaling pathways in MM and MGUS. The exome sequencing
data of 1174 MM and 61 MGUS patients were analyzed for this. In the quantitative
benchmarking with the other popular machine learning models, BDL-SP performed
almost similarly to the best-performing predictive machine learning (ML) models of
Random Forest and CatBoost. However, an extensive post-hoc explainability analysis,
capturing the application-specific nuances, clearly established the significance of the
BDL-SP model. This analysis revealed that BDL-SP identified a maximum number of
previously reported oncogenes (OG), tumour-suppressor genes (TSG), both oncogene
and driver gene (ODGs) and actionable genes (AGs) of high relevance in MM as the top
significantly altered genes.

Further, the post-hoc analysis revealed a significant contribution of single nucleotide
variants (SNVs) and genomic features associated with synonymous SNVs in disease stage
classification. Finally, the pathway enrichment analysis of the top significantly altered
genes showed that many cancer pathways are selectively and significantly dysregulated
in MM compared to its precursor stage of MGUS. At the same time, a few that lost
their significance with disease progression from MGUS to MM were related to the
other disease types. These observations may pave the way for appropriate therapeutic
interventions to halt the progression to overt MM in the future.

Lastly, we designed a curated, comprehensive, targeted sequencing panel focusing on
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282 MM-relevant genes and employing clinically oriented NGS-targeted sequencing
approaches. To identify these 282 MM-relevant genes, we designed an innovative AI-
based Biological Network for Directed Gene-Gene Interaction Learning (BIO-DGI)
model for detecting biomarkers and gene interactions that can potentially differentiate
MM from MGUS. The BIO-DGI model leverages gene interactions from nine PPI
networks and analyzes the genomic features from 1154 MM and 61 MGUS samples. The
proposed model outperformed baseline ML and DL models, demonstrating quantitative
and qualitative superiority by identifying the largest number of MM-relevant genes in the
post-hoc analysis. The pathway analysis underscored the importance of top-ranked genes
by highlighting the MM-relevant pathways as the top-significantly altered pathways.
The 282-gene panel encompasses 9272 coding regions and has a length of 2.577 Mb.

Additionally, the 282-gene panel showcased superior performance compared to pre-
viously published panels, excelling in detecting genomic and transformative events.
Notably, the proposed gene panel also highlighted highly influential genes and their in-
teractions within gene communities in MM. The clinical relevance is confirmed through
a two-fold univariate survival analysis. The study’s findings shed light on essential gene
biomarkers and their interactions, providing valuable insights into disease progression.
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Chapter 1

Introduction

1.1 Background
Cancer is an intricate and multifaceted spectrum of diseases characterized by the unbri-
dled proliferation and division of cells. It is a formidable global health challenge, with
ongoing research continually enriching our understanding of its underlying biology. The
increasing global burden of cancer is rapidly outpacing our current capacities for control
and intervention. In 2020 alone, there were over 19 million new cancer cases diagnosed
worldwide, and cancer claimed the lives of 10 million individuals [6]. Projections from
the Global Cancer Observatory indicate that by 2040, the annual total of new cancer
cases will increase to approximately 30 million, with 16 million people succumbing to
the disease [7]. This relentless progression of cancer is rooted in the accumulation of
genetic mutations and epigenetic modifications that disrupt the intricately orchestrated
regulatory mechanisms governing cell division and growth. On a molecular level, cancer
stems from genetic abnormalities that subvert the finely tuned processes governing cell
proliferation. These genetic alterations may be hereditary, induced by environmental
factors, or occur spontaneously. Among the common genetic aberrations observed in
cancer are mutations in OGs, which drive unchecked cell growth, and mutations in
tumor-suppressor genes (TSGs), which act as crucial brakes on this growth.

CLL is the most frequently diagnosed hematologic malignancy worldwide, distinguished
by the accumulation of mature B lymphocytes. Its age-standardized incidence rate has
exhibited a range from 3.8 to 5.0 per 100,000 person-years since the 2000s [8, 9, 10,
11, 12]. The clinical trajectory of CLL is remarkably heterogeneous, encompassing
an indolent form that often remains stable for prolonged periods without the need for
treatment, as well as more aggressive variants that exhibit rapid relapse after initial
therapeutic interventions. As the population of long-term CLL survivors continues to
expand, it becomes imperative to gain insight into their long-term health outcomes. The
emergence of second primary malignancies (SPMs), which refer to cancers diagnosed
after the CLL diagnosis, represents a significant concern. These SPMs may contribute
to increased morbidity and potentially counteract the extended longevity achieved by
CLL patients. Thus, comprehending the nature and extent of SPMs in the context
of CLL is indispensable for health-related planning and ongoing surveillance efforts
[13, 14, 15, 16, 17].



MM is one of the most prevalent hematologic malignancies on a different hematologic
front, marked by the clonal expansion of malignant plasma cells within the bone marrow.
In 2018, the number of new MM cases recorded worldwide amounted to 159,985,
accounting for 0.9% of all newly diagnosed tumors. Notably, this figure nearly surpassed
the corresponding mortality rate, with MM-related deaths accounting for 1.1% of all
cancer-related fatalities [18]. The incidence rate of MM exhibits regional disparities,
with the highest rates observed in North America, Australia, New Zealand, and Europe.
At the same time, Asia, excluding Western Asia, registers the lowest incidence rates [19].
The median age at which MM is diagnosed is approximately 70 years, with 37% of the
patients falling below the age of 65, 26% in the age range of 65-74, and 37% at or above
the age of 75 [20]. Intriguingly, MM is an exceedingly rare diagnosis in patients under
the age of 30, accounting for only 0.02-0.3% of cases, with a slightly higher incidence
among males compared to females [21].

Recent advances in sequencing methods have not only illuminated the genomic intrica-
cies and diversity within cancer but also offered promising avenues to impede progression
to full-blown malignancy in the future. Traditional sequencing methods, such as Sanger
sequencing, were costly and time-consuming. The advent of Next-Generation Sequenc-
ing (NGS) technologies, including whole exome sequencing (WES), whole genome
sequencing (WGS), RNA-Seq, and more, has revolutionized the field. NGS methods are
high-throughput, allowing for the parallel sequencing of multiple genomic regions across
numerous samples in a single run. In WGS, the entire genome is sequenced from a large
DNA sample. Achieving high sequencing coverage in WGS is essential for detecting
clinically relevant mutations, but this can be prohibitively expensive and time-intensive.

On the other hand, WES focuses exclusively on the coding regions (exons) of the
genome, which is roughly 2% of the entire human genome. As a result, WES offers
a more cost-effective and time-efficient alternative to WGS and is widely utilized in
cancer genomics to identify rare and common variants. RNA-Seq plays a pivotal role
in deciphering changes in gene expression profiles, identifying alternative gene-spliced
transcripts, and detecting gene fusions. NGS technologies are also indispensable for
investigating epigenetic modifications, broadening their utility in cancer research.

Various NGS platforms are available today, with Illumina/Solexa, SOLiD (Sequencing
by Oligonucleotide Ligation and Detection), and Ion Torrent being well-known options.
Additionally, there are third and fourth-generation sequencers, such as PacBio sequencing
and nanopore sequencing, which, while slightly less accurate than NGS, boast longer read
lengths, making them suitable for specific applications. The 10x genomics technology
in 2016 enabled the genome and transcriptome analysis at a single-cell level, utilizing
the Chromium system. These sequencing platforms continue to evolve, becoming faster,
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Figure 1.1: An overview of the NGS pipeline for processing RNA-Seq and DNA-Seq
data. The workflow for both RNA-Seq and DNA-Seq begins with data generation and
pre-processing of raw sequencing data, provided in FASTQ/FASTA file format. During
data generation, nucleotide base calls are extracted from the sample using massively
parallel sequencing, and the resulting genomic information is stored in FASTQ/FASTA
files. In the pre-processing phase, FASTQ/FASTA files undergo quality checks using
FASTQC [3] to retain high-quality reads. Subsequently, high-quality reads are denoised
by trimming adaptor sequences with Trim-Galore. The trimmed reads are then aligned
with respect to the known human genome (hg19/38) using sequence alignment tools,
yielding BAM files. For RNA-Seq data processing, BAM files are further processed to
annotate sequences using known sncRNA databases. Annotated reads are counted to
determine the expression levels of known sncRNAs, which are compared with sncRNA
expression counts from healthy samples to identify deregulated sncRNAs. Once dereg-
ulated sncRNAs are determined, post-differential expression analysis is performed to
identify associated signaling pathways and target genes. In the case of DNA-Seq data
processing, mapped reads in the BAM files are further processed to identify SNVs, copy
number variants (CNVs), and structural variants (SVs). Identified variants are filtered
based on features such as allele depth (AD), variant allele frequency (VAF), etc. The
filtered variants (SNVs, CNVs, and SVs) are then annotated to identify associated genes.
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more efficient, and cost-effective. Consequently, they generate vast amounts of NGS
data, necessitating proficient computational and bioinformatics skills for data analysis.
Subsequently, substantial advancements have been made in data storage and management
capabilities and the development of computational methods to process and derive insights
from this massive genomic dataset. This evolving synergy between NGS technologies
and computational advancements paves the way for deeper insights into cancer genomics
and other complex biological processes.

The comprehensive NGS workflow for RNA and DNA-Seq data is depicted in Figure-1.1,
encompassing multiple critical steps. The journey commences with sample collection
and the generation of sequencing data, followed by the subsequent stages. Initially,
the collected sample is meticulously preserved at -80�C to maintain its integrity. Sub-
sequently, the sample undergoes processing to extract either RNA or DNA, which is
then transformed into a library of fragments suitable for sequencing. High-throughput
sequencing systems, such as Illumina, are employed to sequence this library, yielding
raw sequencing data as FASTQ/FASTA files. The next phase involves the essential
pre-processing of the raw sequencing data, focusing on quality assurance and adaptor
trimming. This pivotal step encompasses various operations, including filtering and
adaptor trimming, all preceded by a thorough quality assessment of the sequenced reads.
Tools like FastQC [3] are commonly employed for this purpose, generating compre-
hensive reports that furnish extensive insights into the quality and characteristics of the
FASTQ files.

The information obtained from the FastQC report guides the subsequent filtering of
reads. This filtering process is based on parameters such as base call quality (Phred
score) and read length, ensuring that only high-quality and relevant reads are retained
for further analysis. Moreover, the final aspect of this pre-processing stage involves the
removal of library adaptor sequences from the ends of the reads. This critical step is
imperative to prevent interference with subsequent processes, including read mapping
and assembly. Trim-Galore [22] stands out as a widely employed tool for proficiently
executing this adaptor trimming process, thereby streamlining data preparation for
downstream analyses.

After pre-processing the raw sequencing data, the reads are aligned to the known human
reference genome (hg19/38) using alignment tools like BWA [23], Bowtie1 [24], Bowtie2
[25] or similar tools. This alignment process generates SAM (Sequence Alignment Map)
or BAM (Binary Alignment Map) files. Subsequent post-alignment data processing
involves extracting alignment information and removing poorly mapped reads from
the SAM/BAM files, typically using tools like SAMTools [26]. For RNA-Seq data,
the BAM files are further processed to estimate the expression counts of sncRNAs. In
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the case of DNA-Seq data, the BAM files are processed to identify variants, including
SNVs, CNVs, or SVs. In RNA-Seq data analysis, the mapped reads are annotated using
well-established sncRNA databases such as miRBase [4], piRNAdb database (version
1.7.6) (https://www.pirnadb.org/), DASHR [27], snoDB 2.0 [28], GtRNAdb [29], and
others. Subsequently, the annotated reads are counted to determine the expression levels
of sncRNAs. This counting process is typically performed using tools like HTSeq-count
[30]. To identify deregulated sncRNAs (those that are up-regulated or down-regulated),
the sncRNA counts obtained in the previous step are compared with their corresponding
counts in healthy samples. Differential expression analysis tools such as DESeq2 [31],
edgeR [32], limma [33], and others are commonly employed for this purpose. Once
deregulated sncRNAs are identified, their target genes and associated signaling pathways
can be determined using specialized databases like miRNet 2.0 [34]. This comprehensive
analytical pipeline allows for extracting valuable insights from NGS data, shedding light
on the regulatory roles of sncRNAs in various biological processes.

In DNA-Seq data analysis, several intermediate steps are crucial before the variant
calling step after the reads have been aligned to the reference genome. These steps
include duplicate removal, local read alignment, base quality recalibration, etc. During
library preparation, the Polymerase Chain Reaction (PCR) technique can generate
duplicate reads, potentially introducing false positives. To mitigate this, duplicate
reads are identified and removed from the analysis using Picard tools. The presence
of insertions and deletions (InDels) can lead to read mismatches, and thus, local read
alignment is employed to reduce such discrepancies. Additionally, base quality scores,
which are generated by the sequencing platform, can be affected by various factors,
such as sequencing errors, library preparation artefacts, etc. As a result, these scores
may not accurately represent the true base-calling error rate. Therefore, recalibrating
the base quality scores is essential to enhance the accuracy of variant calling. This
recalibration process is typically performed using tools like the Genome Analysis Toolkit
(GATK) [35]. Following these pre-processing steps, variant identification begins in
the post-processed BAM file. Various variant callers, relying on Bayesian approaches,
likelihood calculations, or machine learning algorithms, have evolved significantly in
recent years. Most variant callers produce variant calling format (VCF) files as their
output. The identified variants can encompass a wide range, including SNVs, InDels,
and complex chromosomal alterations like translocations, inversions, and CNVs. To
identify SNVs and INDELs from WES or WGS data, tools such as MuSE [36], Mutect2
[37], SomaticSniper [38], and VarScan2 [39] are commonly employed. On the other
hand, to detect CNVs and SVs from WGS data, tools like Delly [40], BreakDancer [41],
and Pindel [42] are used. In the subsequent variant annotation step, SNVs identified

in the previous stage are subjected to annotation using tools such as ANNOVAR [43]
and Variant Effect Predictor (VEP) [44]. These annotation tools take the VCF files
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obtained from the variant callers and provide valuable information, including the precise
chromosomal location of the variants and their biological impact. The biological impact
is crucial for determining whether the variant is missense, nonsense, or synonymous or
if it results in a stop-gain or stop-loss mutation, among other possibilities. By filtering
variants based on their impact, the analysis becomes more focused, increasing the
likelihood of identifying actionable or driver variants. When the objective is to uncover
rare disease-causing variants within the dataset, it is common practice to exclude variants
commonly found in the general population, such as Single Nucleotide Polymorphisms
(SNPs). SNPs are single nucleotide variants present in at least 1% of the population.
Databases like dbSNP [45] are typically used for this purpose, allowing the removal
of these common variants from the analysis. To further refine the selection of variants,
multiple scoring systems, such as SIFT [46], Polyphen [47], FATHMM-XF [48], and
CADD [49], PROVEAN [50] are employed to filter out benign variants. These scoring
systems assess the potential functional impact of the variants based on factors like protein
structure, sequence conservation, and predicted pathogenicity. In addition to these filters,
population databases like COSMIC [51], ClinVar [52], and OncoKB [53] play a vital
role in determining the clinical relevance and association of variants. These databases
provide information on known associations of variants with diseases, especially cancer-
related ones. These tools and methods have become indispensable in identifying and
characterizing genetic variants, providing valuable insights into the genomic basis of
various diseases, including cancer.

The sequencing data furnishes a wealth of valuable information, enabling the identifi-
cation of up-regulated and down-regulated genes, detection of genomic variants, copy
number variations, and chromosomal alterations. As depicted in Figure-1.1, a wide
array of computational methods is continually being developed to analyze genomic
data with increasing precision and accuracy to identify genomic biomarkers. In the
context of CLL, many studies have delved into the transcriptional profiling of miRNAs,
unveiling numerous DEMs. Intriguingly, our focus gravitated toward comprehending
the collective influence of DEMs, alongside small nucleolar RNAs (snoRNAs), PIWI-
interacting RNAs (piRNAs), and transfer RNAs (tRNAs), on CLL survival outcomes.
As we ventured further into sncRNA data analysis, we encountered a critical challenge
concerning the reliability and reproducibility of workflows used to identify deregulated
sncRNAs. To address this challenge comprehensively, we delved deeper into sncRNA
analysis, culminating in designing a unified, reproducible, and highly accurate workflow
for identifying known and novel miRNAs and piRNAs.

Additionally, our explorations extended to other subtypes of blood cancer, mainly focus-
ing on MM and MGUS, incorporating WES data analysis. While analyzing the WES
data from MM and MGUS samples, we developed a bio-inspired model for pinpointing



Table 1.1: List of challenging problems and their computational workflow designed to
address these problems.

Problems Studied data types Outcomes

RNA-Seq profiling
of deregulated
miRNAs in CLL
and their impact on
clinical outcome

NGS RNA-Seq
data and CLL

patients survival
data

1. We proposed a unique sncRNA signature containing deregulated
known and novel miRNAs, tRNAs, piRNAs and snoRNAs to
characterize their impact on the clinical outcomes in CLL.

2. Multivariate analysis showed that miR-4524a (HR: 1.916, 95%
CI: 1.080–3.4, p-value: 0.026) and miR-744 (HR: 0.415, 95% CI:
0.224–0.769, p-value: 0.005) were significantly associated with
risk and time to first treatment.

Reproducible
workflow for accu-
rate identification
of novel miRNAs

NGS RNA-Seq
data

1. We developed an in-house seed-based small non-coding synthetic
RNA-Seq simulator, called miRSim, to generate synthetic RNA-
Seq data with the help of seed and xseed region information from
miRNA sequence.

2. We developed a unified workflow, miRPipe, for the accurate
and reliable identification of miRNAs and piRNAs from Next-
Generation Sequencing RNA-Seq data.

Identification of
pivotal biomarkers
that can distinguish
MM and MGUS

NGS whole exome
sequencing data

1. We designed an innovative AI-based model, the Bio-inspired
Deep Learning architecture, to identify altered Signaling Path-
ways (BDL-SP) and discover pivotal genomic biomarkers that can
potentially distinguish MM from MGUS.

2. Using the application-aware interpretability analysis of the trained
AI model, we demonstrated a way to identify the best AI model
from among the multiple machine learning or deep learning mod-
els that may have performed similarly on the quantitative metrics
on the available data.

A Directed Gene-
Gene Interactions
in Multiple
Myeloma

NGS whole exome
and whole genome

sequencing data
and MM patients

survival data

1. We designed a clinically oriented targeted panel of 282 genes that
potentially cause MGUS-to-MM transition and influence survival
outcomes in MM.

2. We designed an attention-based graph neural network, namely
BIO-DGI, that extracts gene-gene interactions utilizing a-priori
information from nine PPI databases.

3. The proposed BIO-DGI model outperformed baseline machine
learning (ML) and deep learning (DL) models, demonstrating
quantitative and qualitative superiority by identifying the highest
number of MM-relevant genes in the post-hoc analysis.

4. We identified five gene communities using five distinct learned
PPI adjacency matrices from five trained BIO-DGI classifiers.
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pivotal biomarkers capable of distinguishing MM from MGUS, a critical endeavour
given the evolving landscape of these hematologic malignancies. Further, we employed
the agnostic models for bio-inspired model post-hoc explainability to pinpoint the pivotal
biomarkers (genes and genomic features) to distinguish MM from MGUS. The agnos-
tic models represent interpretability approaches aimed at understanding the predictive
response of a model rather than its original response. These models are flexible and inde-
pendent of the original ML/DL model, allowing for broad applicability across different
models [54]. Intriguingly, we observed the presence of several vital distinguishing genes
that appeared to serve as epicentres in the disruption of disease-initiating and disease-
transformative genes associated with MM. Our in-depth analysis of MM WES and WGS
profiles revealed genes responsible for driving disease progression, further advancing
our understanding of the molecular mechanisms at play. The multifaceted challenges
addressed in this thesis, spanning diverse types of genomic data, are summarized in
Table-1.1.

1.2 Literature Review
CLL is a clinically heterogeneous malignancy where a large molecular inter-individual
heterogeneity is observed, which is fundamentally governed by differences in the un-
derlying genetic vulnerabilities of individual cases [55]. Congruent molecular and
pathological studies have identified several potential genomic biomarkers for CLL
prognosis or response to therapy. The most persistently observed somatic CNVs with
prognostic significance in CLL include del(13q14), del(11q22.3), del(17p), trisomy 12,
amp (8q24.21), amp(3q26.32) and del(8p) [56]. Recurrent mutations among genes be-
lieved to act as putative drivers of CLL, such as TP53, SF3B1, NOTCH1, MYD88, ATM,
SAMHD1, NRAS, and BIRC3 have also been shown to exhibit a significant prognostic
association [57]. Recent genomic studies using parallel high throughput technologies
like NGS and microarrays have revealed that the molecular heterogeneity of CLL is
further complicated by alterations in gene expression patterns and epigenetic regulatory
events and abundance of sncRNAs such as miRNAs,tRNA, piRNA, snoRNA, etc and
long noncoding RNAs (lncRNA) [58, 59]. A plethora of studies on transcriptional
profiling of miRNAs have identified a variety of DEMs in CLL [60, 61, 62, 63, 64].

In the landmark study, a 13 miRNA signature was reported in CLL patients with high
Zeta-chain-associated protein kinase 70 (ZAP70) expression and unmutated immunoglob-
ulin heavy chain variable region gene (IGHV) status [60]. Differential expression of
various miRNAs, including hsa-mir-15a, hsa-mir-16, hsa-mir-29a/b/c, hsa-mir-223 and
hsa-mir-150 have been consistently reported to be associated with well-established prog-
nostic factors such as IGHV status, ZAP70/CD38 expression, �2 microglobulin levels
and disease progression in CLL [65]. Several studies have delineated miRNA signatures
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specific to karyotype variations in CLL, enabling discrimination among patients with
del(17p), del(11q), del(13q), trisomy 12, and a normal karyotype [66, 67]. In cases of
the commonly encountered del(13q14), the concurrent deletion of the tumor suppressive
hsa-mir-15a and hsa-mir-16-1 occurs, resulting in increased BCL-2 expression and the
initiation of CLL [68]. Del(11q) has been linked to the co-deletion of hsa-mir-34b/c
clusters and elevated levels of hsa-mir-769-5p and miR-338-3p. Meanwhile, trisomy
12 is associated with the up-regulation of miR-181a and downregulation of miR-155,
miR-148a, and miR-483-5p in CLL [66, 69].

In poor prognostic subgroup with del(17p), differential regulation of various miRNAs
such as hsa-mir-34a, hsa-mir-29b/c, hsa-mir-17-5p, hsa-mir-223, hsa-mir-150, hsa-mir-
181, hsa-mir-33b, hsa-mir-96, and hsa-mir-21 has been observed [66, 70]. Owing
to the noteworthy prognostic potential of miRNAs, cumulative prognostic scores in
combination with other prognostic factors have also been proposed in CLL [71, 72].
Considering the growing diverse miRNA repertoire, their immense translational poten-
tial and advances in technology for their detection, we have studied whole sncRNA
transcriptome for identifying unique patterns of DEMs, targets and deregulated piRNAs
and snoRNA-related molecules in CLL.

While a substantial array of computational methods has been devised to analyse exceed-
ingly complex sequencing datasets systematically, the quest for a singular approach that
robustly attains the necessary precision in detection and estimation remains unfulfilled.
In this relentless pursuit, numerous methods have emerged, undergone rigorous testing,
and been deployed. However, it is noteworthy that, to date, these methods face limita-
tions in accessibility as open-source tools and often fall short of the anticipated accuracy
in their functionality. The underlying molecular mechanisms by which miRNAs mature
and silence their target transcripts have been extensively studied. However, due to their
centralized position in regulating key cellular processes, a thorough understanding of
their identity and, hence, their function, both under the homeostatic and pathological
state, is an ever-daunting task due to the limited availability of computational methods for
their reliable detection. Likewise, in cancer, microRNAs have been centrally classified
in the networks of OGs and TSGs [73] and, therefore, reported to influence diverse
transcripts with distinct functions. Loss of function-related experiments in cancer cells
pinpointed the underlying mechanistic pathways by which miRNAs regulate cancer
initiation and progression.

Moreover, due to the specific expression of miRNAs in cancer, many of them have
been proposed as potential biomarkers for cancer detection. Despite their immense
importance, reliable computational methods are required to identify novel miRNAs
and estimate their expression levels systematically. Although several methods have
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been proposed in the past decade for detecting known and novel miRNAs from the
sequencing data, differences in the data processing pipelines of RNA-Seq data lead to
varying results on the same dataset. Some of the state-of-the-art pipelines are miRDeep2
[74], miRDeep* [75], mirPRo [76], mirnovo [77], miRge2.0 [78], sRNAtoolbox [79],
and MiR&moRe2 [80]. These pipelines for the analysis of smRNAs (small RNAs) yield
multiple false positives, do not identify paralogues of existing miRNAs, and often fail
to identify the reverse complement sequences of known miRNAs. Although the above
methods can detect several deregulated miRNAs, it is important to detect statistically
significantly dysregulated miRNAs. These results generally vary across methods because
of the algorithm for extracting the miRNAs and their count values. Hence, there is a need
to develop robust methods to detect accurate and statistically significant dysregulated
miRNAs and their count values.

To overcome the aforementioned limitations, we designed a robust computational work-
flow for the reliable identification and expression estimation of known and novel miRNAs
from RNA-seq data, namely miRPipe. We have performed a comparative analysis of
miRPipe with other well-known methods and found that miRPipe outperformed all these
methods when benchmarked with synthetic (known ground truth) and CLL RNA-Seq
expression datasets. No synthetic data simulators are available to generate ground truth
to benchmark miRNA pipelines. Therefore, we have also developed a highly flexible,
innovative, and faster synthetic sequence simulator tool, miRSim, for the comparative
analysis of various existing pipelines with miRPipe. Our analysis of CLL datasets identi-
fied 31 known and eight novel dysregulated miRNAs, which we have experimentally
validated using real-time PCR on clinical samples. An open-source, friendly synthetic
data simulator, miRSim and a free dockerized version of miRPipe are available for
deployment in a clinical setup. By providing the dockerized version of miRPipe pipeline,
our goal is to make our miRPipe pipeline accessible to bioinformaticians of all skill lev-
els, enabling effortless utilization and ensuring consistent reproducibility across various
computing environments. They can subsequently share the analyzed results with the
clinicians for further inference.

MM is a neoplasm of malignant plasma cells in the bone marrow, preceded by the
precancerous stage, or MGUS. Presently, the distinction between MM and its precursor
states (MGUS and smouldering multiple myeloma (SMM)) is based on the clinical
symptoms and disease load, including the percentage of aberrant plasma cells in the bone
marrow, levels of monoclonal protein secreted by the aberrant plasma cells, and the extent
of dysregulation of normal homeostasis. However, the distinction between different
stages is ambiguous sometimes in clinical practice. The role of early treatment and the
type of such treatment to prevent progression to MM or to reduce the associated morbidity
is also not clear. Although survival in MM has improved notably over the last few years,
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myeloma remains an incurable disease with an overall median survival of 2 to 10 years,
depending on the response to the treatment. Thus, it would be interesting to decipher
genes, genomic biomarkers and crucial pathogenic prognostic factors representative of
MGUS and MM to develop appropriate therapeutic interventions to halt the progression
to overt MM.

Multiple studies involving exome data have been performed to understand the genomic
abnormalities driving tumor progression in MM. Exome data analysis of MM patients
has revealed that the primary events in MM are either hyperdiploidy, i.e., trisomy
of chromosomes 3, 5, 7, 9, 11, 15, 17 and/or 21, or non-hyperdiploidy involving
translocations affecting the genes encoding immunoglobulin (Ig) heavy chains (IGH)-
mainly t(4;14), t(6;14), t(11;14), t(14;16), and t(14;20) [81]. Primary events are then
followed by multiple secondary events that are secondary translocations: t(8;14) linked
with MYC overexpression, loss of heterozygosity, CNVs, acquired mutations, and
epigenetic modifications [81], contributing to tumorigenesis. Initial deep sequencing
studies on 38 WGS and 23 WES MM patients revealed frequent mutations in the NF-kB
signaling pathway and activating mutations in the oncogene BRAF [82]. In another study
based on the WES data of 84 MM patients, SP140, LTB, ROBO1, and EGR1 genes
were identified as the novel drivers of MM [83]. Similarly, the analysis of 463 WES
data of MM patients revealed 15 recurrently mutated genes: IRF4, KRAS, NRAS, MAX,
HIST1H1E, RB1, EGR1, TP53, TRAF3, FAM46C, DIS3, BRAF, LTB, CYLD, and FGFR3
[84]. Further, the analysis of the same 463 MM samples reported RAS and NF-Kappa-B
pathways as the most altered signaling pathways. Furthermore, the same study reported
that the mutations in CCND1 and DNA repair pathway genes-TP53, ATM, and ATR
adversely impacted the overall survival (OS), while the alterations in IRF4 and EGR1
was associated with favourable OS.

Another study on the exome data analysis of 203 MM patients demonstrated tumor
heterogeneity with a subclonal pattern of mutations and multiple mutations within the
same pathway in the same patient [85]. A recent study on 62 newly diagnosed MM
(NDMM) patients reported the association of changes in the cellular prevalence of muta-
tions with disease progression [86]. Another study explored oncogenic dependencies
between mutations in driver genes, hyperdiploidy events, primary translocations, and
copy number alterations in MM patients [87]. Associations were established between
t(4;14) and mutations in FGFR3, DIS3, and PRKD2; t(11;14) and mutations in CCND1
and IRF4; t(14;16) and mutations in MAF, BRAF, DIS3, and ATM; and hyperdiploidy
with gain 11q and mutations in FAM46C, and MYC rearrangements [87]. A recent study
demonstrated the co-occurrence of mutations within the same or a different clone and
the clonal shifts in the co-occurring and mutually exclusive mutations with progression
in MM [88]. Similar phenomena may occur from the stage of MGUS to overt MM and
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require to be evaluated. Analysis of WES data of unpaired samples of MGUS and MM
has been carried out by several groups [89, 90, 91, 92]. These studies have demonstrated
a less complex genomic architecture in MGUS compared to MM, which has fewer
mutations and lower TMB in MGUS. In a landmark study, the analysis of MGUS and
MM paired samples reaffirmed the clonal heterogeneity and presence of most genomic
changes at MGUS stage [93]. The existence of the majority of genomic abnormalities
seen in MM at the MGUS stage poses a challenge in distinguishing MM from MGUS
based on the genomic signatures and in defining critical genomic events responsible for
the progression of MGUS to MM [89, 90, 91, 92, 93].

The early diagnosis of MM and identifying relevant differentiating genomic biomarkers
between MGUS and MM present several challenges at the genomic level and the subject
level. The unavailability of paired sequencing data (that is, sequencing data of MGUS
and MM from the same sample) because all the MGUS subjects do not progress to MM,
and the unavailability of reliable workflows for analyzing a pool of large mutational
information to decipher accurate and reliable genomic information, biomarkers, and
significantly altered pathways pose the key challenges at the genomic-level. Moreover, at
the subject level, limited information in the studies about the time intervals of a subject’s
treatment and death times poses key challenges in pursuing disease progression and
reliable identification of critical genes, genomic features, and signaling pathways for
targeted therapeutics. With advancements in bioinformatics and increasing inclination
toward ML or DL, newer methods are being developed for deducing salient information
from the genomic data. For example, ML models have been developed to predict the
survival outcome and treatment sensitivity in MM [94, 95]. Similarly, AI-assisted risk
stratification models for predicting survival and deciding the treatment regimen have
been developed for newly diagnosed MM patients [96, 97]. Pathway enrichment analysis
and classification have been shown to improve with the imputation of missing values in
the microarray data of blood cancers via ML methods [98, 99]. ML/DL methods have
also been proposed to detect somatic mutations from WES data [100, 101], prediction
of CNVs from whole exome data [102, 103, 104], driver genes in cancer [105, 106,
107, 108, 109] and, prediction of the survival-outcome and treatment-sensitivity in MM
[94, 95].

However, the multi-dimensional analysis of exonic mutational profiles from exome
sequencing data with gene-gene interaction has not yet been explored. This can be a
promising direction for detecting key biomarkers in any cancer type. In recent years,
geometric deep learning (GDL) has emerged to incorporate graph structures into a deep
learning framework. Graph Convolutional Networks (GCNs) [110, 111], a type of GDL,
can learn gene regulatory networks and do disease classification based on the network
topology and disease-associated features, enabling an integration of graph-based data
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with genomic profiles [112]. The PPI network captures the physical interactions between
proteins in an organism. Since the level of proteins and their interplay govern the
molecular, cellular, and signaling controls, which are the key to gene-level functionality
and help capture disease-specific information, PPI networks can be constructive if
utilized alongside genomic information. A study on the exploration of the PPI network
reported that the disease-related components in the PPI network are likely to be found
in the network-based vicinity of disease components [113]. Similarly, another study
on the PPI network revealed that the genes that contribute to a common disorder show
an increased tendency of their protein-protein interactions [114]. These observations
indicate that due to the interconnected nature of a PPI network, genes belonging to similar
diseases have a high predilection for interacting with other genes, forming a disease
module. Therefore, identifying such genes or disease modules with the help of the PPI
network can divulge the disease-related signaling pathways or other disease genes. These
observations motivated us to incorporate the biological interactions between genes as a
key attribute of the bio-inspired BDL-SP model. Thus, we have incorporated the PPI
information from the STRING database [115], the most comprehensive and global PPI
network.

We addressed the problem of identifying significant biomarkers that differentiate MGUS
from MM by incorporating a multidimensional analysis of exome profiles and their
PPI network in a BDL-SP model. One of the challenges with this task is the ability
to analyze a large amount of mutational information, a significant amount of which
overlaps in MGUS and MM samples. Since this mutational information is difficult to
decipher when extracting differentiable patterns among MGUS and MM, the current
literature shows this gap. To address the above gap, we have designed and implemented
a GCN-based model, BDL-SP, to extract important genomic information to discern
MGUS and MM. The BDL-SP model uses single nucleotide variant (SNV) profiles of
the significantly altered genes, the genes exhibiting statistically significant alterations as
compared to other genes, from the exome sequencing data and the topological features
of the PPI network to identify pivotal biomarkers that can distinguish MGUS from MM.
An in-depth analysis has been carried out to identify significantly altered genes and
pathways that are specifically associated with MM and may be beneficial for the early
identification of MGUS patients at a high risk of progression to the malignant MM stage.
This work can further lead to the identification of novel therapeutic targets, thereby
preventing or delaying the malignant transformation of MGUS to MM.

For post-hoc model explainability, several state-of-the-art agnostic models are available,
including SHapley Additive exPlanations (ShAP) [116], Local Interpretable Model-
agnostic Explanations (LIME) [117], GNNExplainer [118], etc. The LIME algorithm
implements the local surrogate models that are interpretable and used to explain individ-
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ual predictions of black box machine learning or deep learning models. Instead of global
explainability, LIME incorporate the local surrogate model to explain the individual
predictions. To explain the model predictive response, LIME generates a new dataset
consisting of perturbed samples and the corresponding predictions of the black box
model. On this new dataset, LIME trains an interpretable model (Ridge Regression or
Lasso Regression), which is weighted by the proximity of the sampled instances to the
instance of interest. The strength of LIME lies in its local view, providing interpretable
explanations for individual predictions.

The ShAP algorithm is considered one of the emerging and preferred approaches for
decoding a DL model as well as for estimating feature importance based on their
contribution to the model’s predictions. The ShAP algorithm is a game theoretic approach
that explains the output of any machine learning or deep learning model. The goal of
ShAP is to explain the prediction of an instance by computing the contribution of each
feature to the prediction. For this, the ShAP explanation method computes Shapley
values, highlighting the contribution of that feature in making a prediction. To get
the global importance of the feature, the average absolute shapley value per feature
across the data is estimated. Lastly, The GNNExplainer is a local explainer with a
model-agnostic approach that provides interpretable explanations for any graph neural
network (GNN)–based model. To explain the predictive behavior of the GNN-based
model, the GNNExplainer tries to find an explanatory sub-graph structure and its key
node features that define the reasons behind the GNN’s prediction of a specific label for
that node. By maximizing mutual information between the explanatory sub-graph and
the original computational graph, GNNExplainer provides local explanations for GNN
predictions. In our work, we choose the ShAP algorithm for post-hoc explainability due
to the following reasons:

1. ShAP builds upon the idea of Shapley values and extends it to provide a unified
framework for explaining the output of any machine learning model. It connects
the local explanations LIME provides to the global explanations offered by Shapley
values. ShAP values capture the average marginal contribution of each feature
across all possible coalitions of features, providing both local and global insights
into model predictions.

2. With ShAP, global interpretations are consistent with the local explanations since
the Shapley values are the "atomic unit" of the global interpretations.

3. The explanations provided by LIME and GNNExplainer are limited to a single
instance, making it difficult for these explainers to apply in the inductive setting
because the explanations are hard to generalize to other unexplained nodes.

We ranked the significantly altered genes based on their contribution to disease classifica-
tion using the ShAP score. Among all the ML models trained in this study, the BDL-SP
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model reported the largest numbers of previously reported driver genes, OGs, TSGs, and
AGs in the top-ranked significantly altered genes compared to the other models. The
BDL-SP model also shows novel genes in the top-ranking genes not reported in MM
but found to significantly alter and contribute significantly to disease prediction. We
performed pathway enrichment analysis for the top 500 significantly mutated genes. We
analyzed whether an altered signaling pathway becomes more or less significant with
disease progression from MGUS to MM. We observed that several signaling pathways
either become significant (from being insignificant at MGUS) or more significant with
disease progression from MGUS to MM. We benchmarked the BDL-SP with several
baseline ML models both quantitatively (that is, in terms of performance matrices, such
as balanced accuracy and AUPRC) and qualitatively (that is, the model ability to pri-
oritize the MM-relevant genes for sample classification) and observed that BDL-SP
outperformed the other models in both aspects. With the help of the BDL-SP model, we
identified the genes and their corresponding enriched signaling pathways that signifi-
cantly contributed to MM disease development. The BDL-SP model’s findings helped
us to improve the understanding of cell transformation from premalignant to malignant
state and strategic diagnosis to support the early detection of transformation to MM.

For comprehensive genomic profiling of MM and MGUS, several targeted sequencing
panels have been devised to decipher the genomic complexity of MM [119, 120, 121,
122, 123]. These panels encompass critical genomic aberrations related to MM (such as
SNVs, CNVs, and SVs). For instance, a 26-gene panel focused on prevalent mutations in
previously published MM-relevant genes [123] but lacked validation for SVs. Similarly,
another panel of 182 genes validated for SNVs, CNVs, and specific translocations (related
to IGH only) in previously published MM-relevant genes [121]. A more extensive 228-
gene panel covered various alterations, including SNVs, CNVs, and translocations
involving IGH and MYC genes [120]. In a similar quest for comprehensive genomic
profiling of MM, a 47-gene panel was crafted, encompassing dysregulated and frequently
mutated genes in MM and those targeted by common therapies, validated for SNVs only
[119]. Lastly, the largest gene panel of 465 genes was designed and validated for MM-
related SNVs, CNVs, and translocations related to the IGH gene only [122]. However,
these panels were designed using only MM samples and lacked markers and interactions
distinguishing MM from MGUS that can give insights into MM pathogenesis.

We addressed the challenge of designing an efficient gene panel for comprehensive
genomic profiling of MM by analyzing the unique characteristics of MM and MGUS in
terms of genomic profile and interactions. We meticulously analyzed SNV, CNV, and
SV profiles of key distinguishing genes between MM and MGUS to envision a targeted
sequencing panel. This effort resulted in the identification of 282 genes for inclusion in
the panel. To design the 282-genes targeted sequencing panel, we introduced a novel
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AI-based BIO-DGI model, employing graph network learning to discern differentiating
biomarkers and gene-gene interactions in MM and MGUS. In this proposed model, we
integrated bio-inspired learning, utilizing the topological information gathered from nine
PPI networks and exonic mutational profiles. This empowered the BIO-DGI model
to rank genes and genomic features based on their role in disease progression more
efficiently, with fewer GCN layers and multi-head attention modules than traditional
ML or DL models relying solely on exonic mutational profiles. Moreover, our proposed
BIO-DGI model outperformed exhaustive benchmarking against several baseline ML
and DL models, including quantitative and qualitative evaluations. We further identified
top-ranked genes and genomic features utilizing the ShAP algorithm.

To delve deeper, we identified five distinct gene communities using the Leiden algo-
rithm (LA) [124] by utilizing the adjacency matrices derived from five trained BIO-DGI
classifiers. This analysis sheds light on the influential genes within these communi-
ties, quantified through Katz centrality scores [125]. We have also highlighted the key
gene interactions involving highly haploinsufficient genes and the genes participating in
disease-initiating and disease-transformative genomic events within the gene communi-
ties to emphasize the genes mediating the progression of MM from MGUS. Interestingly,
we observed several corner genes (a group of genes interacting with one central gene)
were found in previously reported MM-related genes and were highly haploinsufficient
with high node influence.

We meticulously analysed various variant profiles, including SNVs, CNVs, SVs, and
Loss of Function (LOF) mutations. This detailed investigation drove the design of
a clinically tailored 282-gene panel, aiming for a clinically and biologically relevant
comprehensive genomic profiling of MM. Including genes from our proposed panel in
MM-related pathways strongly underlines their pivotal roles in the disease progression
from MGUS to MM and their potential impact on treatment outcomes in MM. This
discovery underscores the clinical relevance and potential of the targeted sequencing
panel designed for comprehensive genomic profiling in MM. Our study firmly establishes
this panel as a promising novel strategy, particularly in identifying MGUS samples likely
to progress to MM and pinpointing high-risk MM samples.

Lastly, it is essential to highlight that the biomarkers can be categorised as either
prognostic biomarkers or diagnostic biomarkers. The prognostic biomarkers are the
biomarkers that help in measuring the risk of disease progression or potential response to
therapy. On the other hand, diagnostic biomarkers are the biomarkers that help to identify
the early onset of disease [126, 127]. A gene and sncRNA can be used as prognostic and
diagnostic biomarkers as they are subjective to the disease and study hypothesis. Some
of the examples of genes and sncRNAs reported as prognostic and diagnostic biomarkers
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in the literature are shown below:

1. Genes as a prognostic and diagnostic biomarker: Genes represent a broader
set of biomarkers, and their mutational spectrum and expression profile help to
understand the underlying biology of the disease pathogenesis. For instance,
mutations in mutations in KRAS, NRAS, TP53, and cytogenetic abnormalities such
as del(17p) del(14q) are well-established prognostic biomarkers in MM [128, 129].
While IGH translocations (t(4;14), t(14;16)) are a well-established diagnostic
biomarker in MM [128, 130, 91]. Similar examples can also be found for other
diseases.

2. SncRNA as a prognostic and diagnostic biomarker: The association of sncRNAs
with post-transcriptional regulation and other biological processes has been exten-
sively studied in several diseases, including Cancer. The specificity of sncRNAs is
the disease-specific expression pattern that makes them a unique prognostic and
diagnostic biomarker. For instance, hsa-mir-21, hsa-mir-221, and hsa-mir-155 are
well-established prognostic biomarkers of MM [131]. Meanwhile, hsa-mir-15a
and hsa-mir-16-1 are well-established diagnostic biomarkers of MM [132, 133].

1.3 Thesis Contributions
The major contributions of the thesis are summarized below:

1. We comprehensively analysed the whole small RNA transcriptome in CLL and
identified a unique pattern of differential regulation of eight miRNAs. Among
these, three were up-regulated (hsa-mir-1295a, hsa-mir-155, hsa-mir-4524a) and
five were down-regulated (hsa-mir-30a, hsa-mir-423, hsa-mir-486*, hsa-let-7e,
and hsa-mir-744) in CLL. RT-qPCR validated the altered expression of all these
eight DEMs. Besides, seven novel sequences identified to have elevated expression
levels in CLL turned out to be tRNA, piRNAs (piRNA- 30799, piRNA-36225), and
snoRNA (SNORD43) related. Multivariate analysis showed that hsa-mir-4524a
(HR: 1.916, 95% CI: 1.080–3.4, p-value: 0.026) and hsa-mir-744 (HR: 0.415, 95%
CI: 0.224–0.769, p-value: 0.005) were significantly associated with risk and time
to first treatment.

2. We designed a robust, reproducible workflow for accurately identifying the novel
miRNAs, namely miRPipe. The miRpipe workflow detects unique novel miR-
NAs by incorporating the sequence information of seed and non-seed regions,
concomitant with clustering analysis. miRPipe can jointly identify miRNAs and
piRNAs and carry out parallel batch processing to efficiently utilise the compu-
tational resources. We validated the performance of miRPipe with the available
state-of-the-art pipelines using both synthetic datasets generated using the newly
developed miRSim tool and three cancer datasets (CLL, Lung cancer, and breast
cancer). In the experiment over the synthetic dataset, miRPipe is observed to
outperform the existing state-of-the-art pipelines (accuracy: 95.23% and F1-score:
94.17%). Analysis of all three cancer datasets shows that miRPipe can extract
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more known dysregulated miRNAs or piRNAs from the datasets than the existing
pipelines.

3. We designed an innovative, bio-inspired AI-based workflow BDL-SP to identify
pivotal genomic biomarkers to distinguish MGUS from MM. The proposed GCN-
based BDL-SP model can discover discriminative genomic biomarkers that can
distinguish MM from MGUS. BDL-SP outperformed all the baseline ML-based
models. Further, using the application-aware interpretability analysis of the trained
AI model, we have demonstrated a way to identify the best AI model from among
the multiple ML or DL models that may have performed similarly on the quantita-
tive metrics on the available data. In the post-hoc interpretability benchmarking,
BDL-SP outperformed all the baseline models by identifying the largest number
of previously reported genes such as KRAS, BRAF, LTB, NRAS, FGFR3, NF1,
NFKBIA, ARID2, RB1, HLA- A, TP53, SP140, TRAF3, EGR1, IRF1, SAMHD1,
DIS3, CYLD, KMT2B/C, MAX, ZFHX3 and NCOR1, that are of high relevance in
MM. Further, some of the genes that acted as differentiable biomarkers included
TSGs (HLA- B/C, NOTCH1, SDHA, MITF, ARID1B, FANCD2, KMT2D, APC,
CMTR2, and AMER1) and OGs (CARD11, NOTCH1, VAV1, IRS1, MGAM, ABL2,
TCL1A, PGR, MITF, RPTOR, TERT, BRD4, MECOM, and TAL1) that have not yet
been identified as MM drivers. These require validation by future studies before
being declared as MM drivers. We further validated our findings by performing
pathway analysis on the top mutated genes. It was inferred from the pathway
analysis that several signaling pathways, such as the Calcium signaling pathway,
B-Cell receptor signaling pathway, PI3K-Akt signaling pathway, MAPK signaling
pathway, etc., are selectively and more significantly dysregulated with disease
progression. Additional mutations in driver genes, critical OGs, TSGs, and AGs
fostered the transformation of benign MGUS to MM. Similarly, the genomic
mutation associated with the Synonymous SNV group (synonymous SNVs, UTR3,
and UTR5) was found to be the most significantly contributing biomarker differ-
entiating MM from MGUS. These observations may hold great significance from
a therapeutic point of view. We observed that the number of OGs, driver genes,
and AGs in the MGUS samples of European and Indian populations was statisti-
cally different. However, no population-specific differences were observed in our
analysis of the MM data, which consists of the American and Indian populations.
The results of the MGUS data indicate that ethnicity’s impact on MM’s disease
biology should be further explored.

4. We proposed a clinically oriented targeted sequencing panel of 282 genes har-
bouring key genomic biomarkers for early detection of MM. For 282 genes panel
crafting, we introduced the novel AI-based BIO-DGI model, encompassing gene
interactions from nine PPI databases and exonic mutational profiles from three
global MM and MGUS repositories (AIIMS, EGA, and MMRF). The BIO-DGI
model demonstrated quantitative and qualitative superior performance, ensuring
application-aware interpretability. Notably, the model identified the most previ-
ously reported genes, including OGs, TSGs, ODGs, and AGs, which are known for
their high relevance in MM. Further exploration of these genes is recommended
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to unveil novel driver genes. The validation of the top 500 genes set against
MM-related datasets using Geo2R confirmed disruption in 488 out of 500 genes,
underscoring their pertinence to MM. Similarly, pathway analysis of top-ranked
genes further corroborated the relevance of top-ranked genes, revealing a shift
in pathway deregulation from MGUS to MM. Key pathways like PI3K-AKT,
NFKBIA, and MAPK were prominently altered, emphasizing their role in MM
progression. Moreover, in the post-hoc analysis, the functional significance of
nonsynonymous mutations, allele depth of synonymous SNVs and total number
of other SNVs were found to be the most contributing genomic biomarkers in
distinguishing MM from MGUS. Through meticulous analysis of variant profiles
and validation using Geo2R, we curated a targeted sequencing panel comprising
282 MM-relevant genes. These observations hold immense potential for informed
therapeutic interventions and may facilitate early detection and interception of
disease progression in MM.

1.4 Thesis Organization
The rest of the thesis is organized into different chapters. In Chapter 2, we studied
the RNA-Seq profiling of CLL patients to identify the deregulated sncRNAs and their
impact on the clinical outcomes of CLL patients survival outcomes. We designed a
novel workflow for the RNA-Seq data analysis. We also demonstrated the joint impact
of multiple sncRNAs (such as miRNAs, piRNAs, snoRNAs, and tRNAs). Lastly, we
identified the target genes of disrupted sncRNAs. We also performed the pathway analy-
sis to gain deeper insights into deregulated miRNAs on altered pathways. Finally, the
survival analysis was performed to study the correlation between deregulated miRNAs
with several clinical parameters.

In Chapter 3, we continued our analysis on RNA-Seq data analysis as the reproducibility
and reliability of the workflow for identifying novel sncRNAs were not appropriately
addressed. We designed a unified, robust workflow, namely miRPipe, to identify sta-
tistically deregulated miRNAs, miRNA paralogues, functionally similar miRNAs and
miRNAs from the reverse complement sequence of known miRNAs from RNA-Seq data.
For the performance assessment of the miRPipe pipeline, we developed an in-house
synthetic sequence simulator, named miRSim, to generate the synthetic RNA-Seq data
with known ground truth. Using miRSim, we generated the synthetic RNA-Seq data in
three read-depth categories (50K, 0.1 million, and 1 million) with known ground truth
and assessed the miRPipe performance using the anticipated accuracy and f1-score. We
benchmarked miRPipe with three publicly available real RNA-Seq expression datasets
(CLL, lung and breast cancer). Further, the miRPipe identification accuracy was checked
with the RT-qPCR results obtained from CLL patients. Finally, once the miRPipe
pipeline is benchmarked, the source codes of the miRPipe pipeline and miRSim tool
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were uploaded to the public repository and the dockerized version of the miRPipe was
developed to ensure the reproducibility of the RNA-Seq data analysis.

In Chapter 4, we designed an innovative AI-based model, the Bio-inspired Deep Learning
architecture, for identifying altered Signaling Pathways (BDL-SP) to discover pivotal
genomic biomarkers that can potentially distinguish MM from MGUS. The proposed
BDL-SP model comprehends gene-gene interactions using the PPI network and an-
alyzes genomic features using DL architecture to identify significantly altered genes
and signaling pathways in MM and MGUS. For this, whole exome sequencing data of
1174 MM and 61 MGUS patients obtained from three global repositories (MMRF [134],
European Genome-phenome Archive (EGA) [135] and All India Institute of Medical
Sciences (AIIMS) [136]) were analyzed. In the quantitative benchmarking with the other
popular ML models, BDL-SP performed almost similarly to the two best-performing
predictive ML models of Random Forest and CatBoost. However, an extensive post-hoc
explainability analysis, capturing the application-specific nuances, clearly established
the significance of the BDL-SP model. This analysis revealed that BDL-SP identified
a maximum number of previously reported OGs, TSGs, and AGs of high relevance in
MM as the top significantly altered genes. Further, the post-hoc analysis revealed a
significant contribution of the total number of SNVs and genomic features associated
with synonymous SNVs in disease stage classification. Finally, the pathway enrichment
analysis of the top significantly altered genes showed that many cancer pathways are
selectively and significantly dysregulated in MM compared to its precursor stage of
MGUS. At the same time, a few that lost their significance with disease progression
from MGUS to MM were related to the other disease types. These observations may
pave the way for appropriate therapeutic interventions to halt the progression to overt
MM in the future.

Chapter 5 presents a curated, comprehensive, targeted sequencing panel focusing on
282 MM-relevant genes and employing clinically oriented NGS-targeted sequencing
approaches. To identify these 282 MM-relevant genes, we designed an innovative AI-
based Biological Network for Directed Gene-Gene Interaction Learning (BIO-DGI)
model for detecting biomarkers and gene interactions that can potentially differentiate
MM from MGUS. The BIO-DGI model leverages gene interactions from nine PPI
networks and analyzes the genomic features from 1154 MM and 61 MGUS samples. The
proposed model outperformed baseline ML and DL models, demonstrating quantitative
and qualitative superiority by identifying the largest number of MM-relevant genes
in the post-hoc analysis. The pathway analysis underscored the importance of top-
ranked genes by highlighting the MM-relevant pathways as the top-significantly altered
pathways. The 282-gene panel encompasses 9272 coding regions and has a length of
2.577 Mb. Additionally, the 282-gene panel showcased superior performance compared
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to previously published panels, excelling in detecting genomic and transformative events.
Notably, the proposed gene panel also highlighted highly influential genes and their
interactions within gene communities in MM. The clinical relevance is confirmed through
a two-fold univariate survival analysis. The study’s findings shed light on essential gene
biomarkers and their interactions, providing valuable insights into disease progression.

Chapter 6 summarizes the thesis work and provides suggestions for future work.
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Chapter 2

RNA-Seq profiling of dysregulated miRNAs in CLL and
their impact on clinical outcome

2.1 Introduction
CLL stands out as a highly diverse malignancy characterized by substantial molecular
and clinical heterogeneity that primarily stems from distinct genetic susceptibilities
among individuals [55]. Cutting-edge genomic investigations utilizing high-throughput
technologies like NGS and microarrays have unveiled the intricate molecular complexity
of CLL. This heterogeneity is further compounded by variations in gene expression
patterns, epigenetic regulatory mechanisms, and the abundance of noncoding RNAs,
including lncRNAs and sncRNAs such as miRNAs, tRNA, piRNA, and snoRNA [58, 59].
Recognizing the substantial prognostic potential of miRNAs, researchers have proposed
cumulative prognostic scores in conjunction with other factors to enhance prognostication
in CLL [71, 72]. In this study, we analyze the whole small RNA transcriptome in CLL
to identify the unique patterns of DEMs. Further, We have also co-analyzed genome-
wide gene expression profiles to gain a deeper bimodal insight into the CLL miRNome
circuitry and its mechanistic functional pathways. Moreover, this study has demonstrated
the first time deregulated piRNAs and snoRNAs-related molecules in CLL. Further
analysis has revealed a significant impact of specific DEMs on clinical outcomes in CLL.

2.2 Materials and Methods

2.2.1 Subjects

CLL patients diagnosed as per the diagnostic criteria of the International Workshop on
CLL-sponsored Working Group [137] and 10 age-matched healthy controls (5 males
and 5 females) were enrolled. The demographic, clinical and laboratory-based details
of the cases evaluated for different sets of experiments are provided in Table-2.1. The
study was conducted in accordance with the Declaration of Helsinki guidelines. Ethical
clearance for the study was obtained from the institute’s ethics committee, and written
informed consent was obtained from all the participants.



2.2.2 Genome-wide miR sequencing by NGS

Total RNA was extracted from the Mononuclear cells (MNCs) of CLL patients and
MACS-sorted CD19+ B cells (cat no. 130050301, Milteneyi Biotech, Germany) of
healthy controls using the miRVana kit (Thermofisher Scientific, MA, USA). The samples
having RNA Integrity Number (RIN)�7 were processed further. Small RNA libraries
were generated for 28 CLL cases and 2 pooled healthy controls (pooled from 5 males
and 5 females) using the “TruSeq small RNA sample preparation kit" (Illumina, San
Diego, CA, USA). The libraries with 76 nucleotide inserts were subsequently sequenced
on NextSeq 500 (Illumina).

Table 2.1: Baseline demographic, laboratory, and clinical characteristics of CLL patients
as per different experimental cohorts.

Parameter NGS (n=28)
Numbers

Gene Expression
Array (n=21)

Numbers

RT-qPCR (n=89)
Numbers (%)

Gender
Male 21 (75%) 16 (76%) 68 (76.5%)

Female 07 (25%) 05 (24%) 21 (23.5%)
Median age 60 60 60
65 years 20 (71.4%) 16 (76.2%) 69 (77.5%)
>65 years 08 (28.6%) 05 (23.8%) 20 (22.5%)

Rai stage
Stage 0/I/II 4/6/07 4/8/09 15/14/28
Stage III/IV 6-May -/- 13/19

Beta2 Microglobulin*
3.5 2 (7.1%) 6 (30%) 15 (17.2%)
>3.5 26 (92.9%) 14 (70% 72 (82.8%)

IGHV mutational status**
Mutated 10 (35.7%) 10 (48%) 47 (56%)

Unmutated 18 (64.3%) 11 (52%) 37 (44%)
Genetic abnormality***
No abnormality 09 (32%) 08 (42%) 34 (40.5%)

Del (13q)+ 07 (25%) 04 (21%) 22 (26.2%)
Del (11q)+ 07 (25%) 03 (16%) 07 (8.3%)
Del (17p)+ 01 (4%) 02 (10.5%) 14 (16.7%)
Trisomy12 04 (14%) 02 (10.5%) 07 (8.3%)

*Beta2 Microglobulin data was available for 20/21 and 87/89 patients of Gene expression (GE) array
and RQ-PCR cohorts, respectively. **IGHV mutational status was available for 84/89 patients of the
RT-qPCR cohort. ***Genetic aberrations data was available for 19/21 and 84/89 patients of GE array
and RQ-PCR cohort respectively
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2.2.3 RNASeq pipeline for analysis of NGS data

The FASTQ files, as obtained from RNA-Seq experiments, were further analyzed with
the bioinformatics pipeline developed in-house, which was pre-validated on publicly
available published data on Acute lymphocytic leukemia (ALL) [2]. A schematic
representation of the RNA-Seq analysis pipeline and related workflow is shown in
Figure-2.1.

Figure 2.1: Bioinformatics workflow for the processing and analysis of RNASeq data.

The base quality of the raw reads (>Q30) was initially checked with java based FastQC
developed by Babraham Bioinformatics. This was followed by adapter trimming and
sequence alignment with GRCh37 human genome assembly database using miRDeep*
[75] and miRBase v19 [4]. A custom Python script was used to compute the consolidated
count matrix from the result files obtained from miRDeep*, and the duplicates were
merged. The unaligned potential novel miRNAs were clustered with CD-HIT [138] and
their unique IDs were generated. Sequence annotations of potential novel miRNAs were
ascertained with DASHR [139]. The trimmed data obtained after post-processing using
CD-HIT and DASHR was further processed with Bioconductor DESeq2 [31] where the
consolidated count data were normalized and differentially expressed miRNAs (DEMs)
were identified along with corresponding Wald statistic p and Benjamini-Hochberg
adjusted p values to avoid false discovery rates. The miRNAs with adjusted p-values
0.05 and fold change (FC) �2 were considered to be significantly different.
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2.2.4 Validation of DEMs by Real-time quantitative PCR (RT-qPCR)

Eight miRNAs found to be differentially expressed in miRNA deep sequencing analysis
were validated on CLL (n=89) patients using Locked Nucleic Acid (LNA) – based
primers specific to each miRNA and SYBR green master mix as per the manufacturer’s
recommendations (Exiqon, South Korea) on Quantstudio 12K Flex system (Thermofisher
Scientific). The laboratory staff was kept unaware and blind to sample details. The data
was normalized using the geometric mean of two endogenous controls, SNORD44 and
SNORD48, and relative expression was evaluated using the comparative Ct method.

2.2.5 Prediction of gene targets of DEMs and their functional path-
ways

To predict the gene targets and functional pathways of all the eight significant DEMs, a
hypergeometric test was applied, and the Kyoto Encyclopedia of Genes and Genomes
(KEGG) database was evaluated in miRNet [140].

2.2.6 Statistical analysis

The differences in gene expression obtained from RT-qPCR between CLL and healthy
controls were compared using the Mann-Whitney Rank Sum test. The chi-square test
was used to correlate the expression of DEMs with prognostic parameters. The TTFT
was calculated from the date of diagnosis to the date of the start of the first therapy.
OS was calculated from the date of diagnosis to the date of last follow-up or date of
death due to any cause. For comparing cumulative incidence curves for risk of treatment,
Gray’s test was used where death previous to any treatment was also considered as a
competing event. The log-rank test was used to compare Kaplan Meier curves of OS.
Variables with significant differences in univariate analysis were subsequently subjected
to multivariate analysis using Fine-Gray and Cox regression models for TTFT and OS,
respectively. Gray’s test and Fine-Gray modelling were performed using the cmprsk
library from the CRAN R repository [141]. At the same time, the rest of the statistical
analysis was carried out with SigmaPlot V13.0 (Systat Software, Inc.).

2.2.7 Data access

NGS and gene expression data generated in the study have been submitted to the NCBI
Gene Expression Omnibus (GEO) ) under accession number GSE123436 and GSE81935,
respectively.
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2.3 Results

2.3.1 Identification of DEMs in CLL

A total of 239,039,053 raw reads were analyzed through the RNA-Seq pipeline, which
resulted in 872 miRNA sequences. Of these, fifteen sequences (8 known miRNAs:
hsa-let-7e, hsa-mir-1295a, hsa-mir-155, hsa-mir-30a, hsa-mir-423, hsa-mir-4524a, hsa-
mir-486, hsa-mir-744 and seven novel miRNAs) were found to be differentially dis-
tributed and significantly deregulated in CLL (p adj  0.05; Figure-2.2). Among the
significant DEMs, three were upregulated: hsa-mir-1295a ( log2FC= 8.28), hsa-mir-
4524a (log2FC= 7.39) and hsa-mir-155 (log2FC= 2.06) and five were downregulated:
hsa-mir-30a (log2FC=-4.19), hsa-let-7e (log2FC=-3.59), hsa-mir-744 (log2FC=-2.63),
hsa-mir-486* (log2FC=-1.54) and hsa-mir-423 (log2FC=-1.41).

Figure 2.2: Histograms of relative fold changes of the eight differentially expressed
miRNAs (DEM) as identified by RNA-seq.
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2.3.2 Annotation of novel miRNAs

The seven differentially expressed novel miRNAs identified with NGS (p adj. 0.05)
were analyzed with DASHR and UCSC human genome browser for sequence anno-
tations. Five of the novel miRNAs (hsa-novelmiR_4291, hsa-novelmiR_1520, hsa-
novelmiR_1559, hsa-novelmiR_1732 and hsa-novelmiR_4370) showed homology with
a multitude of tRNA molecules located on chromosomes 1, 6, 7, 9, 11, 12, 14, 15, 16
and 17. The novelmiR_4370 showed homology with a piRNA-36225 (alias piRNA-
28374; GenBank: DQ598159.1) as well. The novelmiR_763 got assigned on chr22
as piRNA-30799 (GenBank: DQ600599) and snoRNA U43 (SNORD43) (GenBank:
X96642). Further characteristics of snoRNA were obtained from snoRNA Base and
Rfam (version-14.1); and of piRNAs from piRNABase and IsopiRBank. The novel
miR_1496 with mature miR sequence did not yield any result in the DASHR database,
but when aligned using BLAST showed homology with a predicted uncharacterized
LOC107984496. When BLAST analyzed the precursor sequence of novel miR_1496, it
showed full alignment with 3’ end of tRNA-Ile (TAT)1-1 at Chr-19.

2.3.3 Prediction of DEM targets and networking of functional path-
ways

Eight significant DEMs identified by NGS were analyzed for putative gene targets
in miRNet. A list of gene targets that were predicted for each of the 8 DEMs by
miRNet is shown in Supplementary Table 2. These DEM targets consisted of several
crucial genes, including driver genes of CLL such as ATM (targeted by hsa-mir-30a-
5p), TP53 (hsa-mir-30a-5p), SF3B1 (hsa-mir-423-3p), NOTCH1 (hsa-mir-30a-5p) and
MYD88 (hsa-mir-155-5p). MirNet-based network analysis of inter-miR interactions of 8
DEMs and with their targets suggested significant enrichment of various KEGG-derived
pathways (Supplementary Table 3) such as RNA transport (p<0.001), Pathways in cancer
(p<0.001), cell cycle (p<0.001), mTOR signaling pathway (p<0.001) and p53 signaling
pathway (p<0.001).

2.3.4 Validation of DEMs by RT-qPCR

Eight differentially expressed miRNAs identified by NGS were validated using RT-qPCR.
As compared to healthy B-cells, hsa-mir-30a (FC=0.06; p=0.05), hsa-mir-423 (FC=0.21;
p=0.034), hsa-mir-744 (FC=0.03; p=0.024), let-7e (FC=0.14; p=0.038) and mir 486
(FC=0.166; p=0.096) were down-regulated while hsa-mir-155 (FC=6.39; p=0.019), hsa-
mir-1295 (FC=74.2; p=0.017) and hsa-mir-4524a (FC=52.2; p=0.026) were significantly
up-regulated in CLL. These results are congruent with the pattern obtained from miRNA
deep sequencing.
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2.3.5 Association of miRNA expression with prognostic factors and
clinical outcome

In the validation cohort of 89 patients, IGHV mutation status, beta 2 microglobulin levels
and genetic aberration data were available for 84, 87, and 84 patients, respectively. The
CLL-International prognostic index (IPI) [142] could be calculated for 78 patients, of
which 13 were assigned as low risk, 31 as intermediate risk, 28 as high risk and 6 as
very high-risk patients. No significant association was observed for any of the DEM
with IGHV status, beta 2 microglobulin levels and IPI score. The number of patients
in each subgroup based on the genetic aberrations was too small to draw any statistical
conclusion.

The expression level of DEMs was further investigated in terms of their association with
TTFT and OS. The median fold change values of individual miRNAs measured by RT-
qPCR were used as cut-offs to group the samples into high and low-expression groups.
TTFT was compared in early-stage CLL patients (Rai stage 0-II; n = 57) between the
groups. The univariate analysis using Gray’s test identified hsa-mir-4524 (p = 0.002), hsa-
mir-744 (p = 0.027) and IGHV mutation status (p = 0.001) as significant parameters for
the evaluation of TTFT. Multivariate analysis with the significant parameters suggested
that high expression of hsa-mir-4524a (HR: 1.916, 95% CI: 1.08–3.40, p = 0.026;
Figure-2.3a) and IGHV unmutated status (HR: 2.84; 95% CI = 1.58–5.120; p = 0.0005;
Figure-2.3b) were significantly associated with shorter time to first treatment while
higher expression of hsa-mir-744 was found to be associated with longer TTFT (HR:
0.415; 95% CI= 0.224–0.769; p = 0.005; Figure-2.3c). The OS was calculated for all the
patients of the validation cohort (n = 89). IGHV-mutated patients displayed longer OS
as compared to unmutated patients (p = 0.011). No association was observed between
the expression of any of the 8 DEMs with OS.

2.4 Discussions
The miRNA profiling in this study has identified differential regulation of eight important
known miRNAs and seven novel sncRNA species related to tRNA, piRNA, and snoRNA
that might contribute to the development/progression of CLL by targeting various crucial
genes. Of the eight known miRNAs, differential regulation of four miRNAs, i.e., hsa-
mir-155 [61, 62, 63], hsa-mir-486-5p [143], hsa-mir-423 [144] and hsa-let-7e [144] has
been earlier reported in CLL. The hsa-mir-30a miRNA, which has been shown to have
a tumor suppressor role in lung cancer [145] and breast cancer [146], was found to be
down-regulated in the present study. Of the various gene targets of hsa-mir-30a, GAB1,
which is a key molecule in the pathogenesis and progression of CLL, was found to be
up-regulated in the present study [70]. Higher mRNA levels of GAB1 have been shown
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to be associated with strong B-Cell receptor responsiveness and disease outcome in
CLL [147]. Higher mRNA levels of GAB1 with low expression of hsa-mir-30 in the
present study point towards a regulatory connection between these two, which might be
important for the malignant behaviour of CLL cells. Like previous studies, the present
study also reports up-regulation of oncogenic hsa-mir-155 in CLL [61, 62, 63]. Similar
to previous reports, expression of hsa-mir-155 was not found to be associated with
IGHV mutation status and survival outcome [61, 148]. Unlike a previous report in CLL,
down-regulation of hsa-mir-486 was observed in CLL patients in the present study [143].
Downregulation of hsa-mir-486 has been reported to contribute to the progression and
metastasis of lung cancer due to increased expression of its target Rho GTPase activating
protein 5 (ARHGAP5) [149]. In the present study, a concomitant downregulation of hsa-
mir-486 and an upregulation of mRNA expression of ARHGAP5 suggests a pathogenic
role of hsa-mir-486 in CLL. The perturbed levels of the hsa-mir-1295 cluster located on
chromosome 1 have been implicated in tumorigenesis in colorectal cancer and follicular
lymphoma [150, 151]. As per a very recent report in CLL, hsa-mir-1295 was amongst
one of the five most up-regulated miRNAs in CLL [152]. In the present study, hsa-mir-
1295 was also the most abundantly expressed miRNA in CLL. Consistent up-regulation
of hsa-mir-1295 suggests that it could be an important molecule in the pathobiology of
CLL. However, a detailed investigation is required to functionally characterize its role in
this process. The hsa-let-7e is yet another important miRNA that was downregulated in
CLL in this study and has been implicated in several cancers. Similar studies on CLL
have also reported lower expression of hsa-let-7e in CLL as well as poor prognostic
CD38+ CLL subgroup, which further supports observations of this study [144].

Incidentally, three of the eight DEMs observed in this study, namely hsa-mir-423, hsa-
mir-4524a and hsa-mir-744, are located on chromosome 17. The levels of expression of
hsa-mir-423, located at 17q11.2, have been shown to be influenced by an SNP rs6505162
C > A, which has been shown to correlate with risk in a, wide range of cancers although
the mechanistic processes remain elusive [153]. In this study, expression levels of
hsa-mir-423 were found to be reduced in CLL. An RT-qPCR-based study has also
reported reduced expression of hsa-mir-423 in CLL patients, particularly in the context
of higher lactate dehydrogenase (LDH) activity [144]. Higher expression of hsa-miR-744
among older female patients with ovarian carcinoma has been reported to correlate with
prolonged disease-free survival, suggesting its protective influence. This is comparable
to findings in this study, where higher expression of hsa-mir-744 correlates with extended
time to first treatment in CLL patients compared to those with reduced expression. The
hsa-mir-4524a present at 17q24.2 is located within intron 22 of the host gene ABCA6.
ABCA6 is an ATP binding cassette superfamily A, member 6 transporter, which plays
a role in macrophage lipid homeostasis. As per the present study, the expression of
hsa-mir-4524a was found to be upregulated in CLL, and a significant association was
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observed between its high expression levels and shorter TTFT. Furthermore, a study has
shown upregulation of the expression of ABCA6 in CLL [143]. It has been further shown
that hsa-mir-4524a/b targets LDH A that promotes aerobic glycolysis in colorectal cancer
and that it could become an important therapeutic target of cancer energy metabolism
[154].

In our study, we observed the sequence homology of seven novel DEMs to known
ncRNAs (Supplementary Table 1). Through sequence homology analysis, we observed
that the novel DEMs exhibit similarities with various classes of ncRNAs, including
tRNAs, piRNAs, and snoRNAs. Further, the matched ncRNAs were found to be associ-
ated with several biological processes, such as cell proliferation, apoptosis, cell cycle
stability, gene silencing, etc. The dysregulation in these ncRNAs may directly affect
these biological processes and support cancer progression. The significance of these
findings is multifaceted:

1. Functional Conservation: The observed sequence homology suggests that the novel
DEMs may share functional attributes with the known ncRNAs, which implies
potential involvement in similar biological processes or regulatory pathways. For
instance, piRNAs primarily contribute to maintaining genome stability in germline
cells. Therefore, if a novel DEM displays sequence homology with piRNAs, it
may possess similar functional characteristics.

2. Diagnostic and Therapeutic Implications: The homology between novel DEMs
and known ncRNAs could have diagnostic and therapeutic implications. If the
known ncRNAs are linked to specific diseases or conditions, the novel DEMs
might serve as biomarkers for diagnosis or as targets for therapeutic intervention.

Therefore, exploring the homology between novel DEMs and known ncRNAs offers
valuable insights into their potential functions, regulatory roles, and relevance in dis-
ease contexts. Two novel miRNA sequences (novel hsa-mir-4370 and novel hsa-mir-
763) having differential regulation in the present study showed homology with two
piRNA sequences (hsa-piR-36225 and hsa-piR-30799) and a C/D box snoRNA (U43 or
SNORD43). Recent molecular studies have rediscovered the structural and functional
diversity of snoRNAs [155] and piRNAs [156] and their aberrant expression in cancer.
Induction of C/D box snoRNAs has been reported to favor leukemogenesis [157]. A
number of snoRNAs have been reported to predict the clinical outcome in the early stage
as well as IGHV mutated CLL [158, 159]. Various tRNA fragments have been reported
to induce transient translational arrest, and tRNA-derived small RNAs can function
similarly to miRNAs [155]. Identifying tRNA molecules in the present study suggests
these might also be involved in developing CLL. The observed sequence homology
of novel DEMs with known ncRNAs paves the way for further investigation into their
biological significance and clinical applications.
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2.5 Limitations of the study
In this study, our primary focus was to delve into the transcriptional patterns of well-
established sncRNAs, whose functional characteristics are extensively documented
in the literature. The identification of novel DEMs was an additional aspect of our
research, and we found their sequence homology with known piRNAs, tRNAs, and
snoRNAs particularly intriguing, shedding light on their potential functions. Although
we discovered the novel DEMs, we didn’t validate the novel DEMs using RT-qPCR as
the RT-qPCR validation entails significant resources and time commitments. Therefore,
before embarking on validating novel DEMs, it is imperative to establish robust literature
support confirming that similar novel sncRNA sequences have been previously identified
as DEMs by other studies. This approach ensures the judicious allocation of resources
and enhances the validity of our findings.

2.6 Conclusion
Extensive studies aimed at a better elucidation of the global transcriptional landscape of
sncRNAs and their effects on clinical outcomes could help refine the patient stratification
schemes, and sncRNAs could surface as additional molecular biomarkers for improved
prognosis and exploration of therapeutic targets in future. These investigations are crucial
for a comprehensive understanding of the intricate molecular mechanisms that underlie
this malignancy. By unravelling the roles of sncRNAs and their impacts on clinical
outcomes, we aim to enhance patient stratification schemes, providing a more precise
and tailored approach to CLL treatment. Moreover, the identification of sncRNAs,
including miRNAs and piRNAs, holds immense promise, as these molecules could
serve as an additional molecular biomarker. These biomarkers not only contribute
to refining prognosis but also present novel opportunities for the identification and
exploration of therapeutic targets in the future. In the following chapter, we will discuss
a robust workflow for identifying the known and novel miRNAs, as well as piRNAs.
The extensive benchmarking of this workflow not only ensures accuracy, reproducibility,
and reliability but also paves the way for a deeper understanding of the roles of these
sncRNAs in cancer pathogenesis and progression.
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Chapter 3

A Unified Computational Framework for a Robust,
Reliable, and Reproducible Identification of Novel
miRNAs from the RNA Sequencing Data

3.1 Introduction
High-throughput sequencing techniques have ushered in a compelling need for reliable
computational tools to accurately discern sequenced molecular entities. Despite numer-
ous computational methods designed for the analysis of intricate sequencing datasets,
none have achieved the desired precision for detection and estimation. In the context
of cancer, miRNAs hold a central role within oncogene and tumor suppressor gene
networks, influencing a wide array of transcripts with distinct functions, often serving
as potential biomarkers for cancer detection. To address these challenges, we introduce
miRPipe, a robust computational workflow tailored for the identification and expression
estimation of known and novel miRNAs from RNA-seq data. miRPipe excelled com-
pared to state-of-the-art methods, proven through benchmarking against synthetic data
(with known ground truth) and real RNA-Seq expression data from CLL. In response to
the current absence of synthetic data simulators for miRNA pipeline benchmarking, we
present miRSim, a versatile and expedited synthetic sequence simulator. This tool facili-
tates a comprehensive comparative analysis of various existing pipelines in conjunction
with miRPipe. Our exploration of CLL datasets led to the identification of 31 known and
eight novel dysregulated miRNAs, validated through RT-qPCR on clinical samples. We
offer the freely accessible miRSim synthetic data simulator and a dockerized version of
miRPipe, catering to bioinformaticians of all levels and fostering seamless collaboration
with clinicians to gain further insights.

3.2 Materials and Methods
We have used synthetic and real RNA-Seq expression datasets for benchmarking against
the available state-of-the-art miRNA pipelines. Of note, we have developed an in-house
tool miRSim [160] to assess the pipeline performance by comparing pipeline outcomes
with matched ground truth. For miRPipe validation, we have considered three publicly
available GEO datasets, that is, the CLL dataset (GSE123436)[1], breast cancer dataset
(GSE171282) [161] for miRNA identification and Lung Cancer dataset (GSE37764)



[162] for piRNA identification.

3.2.1 Proposed miRSim tool: Synthetic data simulator

Assessing the performance of existing bioinformatics tools or developing new ones,
such as sequence aligners or quantification tools, relies heavily on the availability
of ground truth data. Presently, several synthetic sequence simulators available for
the generation of synthetic sequencing data, such as ART [163], pIRS [164], Flux
[165], polyester [166], RSEM [167], CAMPAREE [168], BEERS2 [169], NEAT [170],
DWGSIM [171], WGSIM [172], SimNGS [173], SimSeq [174], ISS [175], Mason
[176], and RNA-Seq simulator [177] to generate synthetic RNA-Seq sequencing data.
These synthetic RNA-Seq data generator tools are generic in nature, and data generation
depends on platform-specific parameters. However, out of these simulators, only five
simulators (ART, NEAT, BEERS2, CAMPAREE, and RSEM) provide the ground truth
for the generated synthetic data. Additionally, it’s worth highlighting that most of these
simulators focus on generating full-length synthetic mRNA transcriptome sequencing
data; our study aims at sncRNA sequencing, encompassing miRNAs and piRNAs. To
bridge this gap, we developed a small sncRNA sequencing simulator, miRSim.

The design and workflow outline of the miRSim tool is illustrated in Fig.3.1. Mech-
anistically, the standard miRNA sequences and their genomic location can be stored
in FASTA and GFF file formats (gff3) as the reference input to the miRSim tool. The
miRNA, piRNA, and novel miRNA sequences were collected from the miRBase [4],
piRNAdb database (version 1.7.6) (https://www.pirnadb.org/), and the recent literature
[1, 2], respectively. For the robustness of any RNA-Seq pipeline, it is essential to detect
known miRNAs, novel miRNAs, and their paralogues robustly. Hence, miRSim provides
the option to add a selected percentage of altered sequences of miRNAs and piRNAs as
the ‘Other’ category, which acts as a true negative to assess the efficiency of the pipeline.
In the ‘Other’ category, the new miRNA sequence is generated by altering either the seed
region’s nucleotides (red-colored nucleotides in Figure-3.1A) or by altering the xseed
region’s nucleotides (green-colored nucleotides in Figure-3.1A) or both by at least 2nt.
The altered nucleotides are shown in capital letters in each of the seed and xseed regions.
The seed and xseed regions (regions other than the seed region) of a miRNA govern the
functionality of miRNA in biological processes [178]. The 2nt cut-off was based on
the fact that the recommended tolerance used in the standard RNA-seq aligners such as
STAR [179], TopHat2 [180], miRDeep2, and miRDeep*. The resulting sequence will
not be a miRNA or piRNA. The fraction of sequences for each error type is provided in
the form of an error profile as input to the miRSim tool by the user.
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Figure 3.1 (previous page): (A) Example of synthetic reads based on hsa-mir-155 miRNA
hairpin structure. The red color shows the seed region, the green color shows the xseed
region and capital letters denote altered nucleotide. (B) One example of data from the
miRSim pipeline. Here, the miRNA/piRNA region is represented by µ1, µ2, .... Here
µ1 represents original miRNA and µ2-µ7 are derived from µ1 by alterations in the seed
and xseed sequence of µ1 and may or may not constitute a valid miRNA. The number of
miRNAs present in chromosome-1 and the total number of miRNAs in all chromosomes
are taken from miRBase (version22) [4]

One example is shown in Fig.3.1. Here, Fig.3.1(A) shows the hairpin structure of hsa-mir-
155 with highlighted seed (red-colored nucleotides in Fig.1A) and xseed (green-colored
nucleotides in Figure-3.1(A)) regions. Similarly, Figure-3.1(B) shows one example
calculation of synthetic sequence generation by miRSim by doing alterations in the
miRNA sequences.

Workflow of miRSim Tool: The miRSim tool accepts reference sequences of miRNAs
and their genomic location from the input fasta and gff3 files provided by the user. In
addition, the user provides other input parameters such as the total number of sequences
to be generated, % of known miRNAs, % of novel miRNAs, % of known piRNAs, quality
score encoding, minimum depth and expression profile distribution for generating the
synthetic data. The miRSim tool utilizes this information first to infer the distribution of
reads (that is, the number of reads per chromosome). The read distribution is directly
proportional to the number of miRNAs present in each chromosome. Using the read
distribution, the number of miRNAs per chromosome is computed such that each miRNA
gets a read depth greater than or equal to the minimum required read depth. Using this
miRNA distribution, each chromosome’s expression profile is generated based on either
the Poisson or the gamma distribution. Finally, the synthetic sequences are generated by
adding the adaptor sequence and primer sequence so that the overall sequence length
becomes 75, which is written in the output FASTQ/FASTA file. The miRSim tool
supports parallel thread operation to write the synthetic sequences in multiple threads
simultaneously in order to generate data expeditiously.

miRSim also provides the ground truth in a readable comma-separated file format that
contains information about known miRNAs, piRNAs, and novel miRNAs along with
their sequences, chromosome location, expression counts, and the CIGAR string for all
the sequences. The ‘Other’ category sequences also specify the known miRNAs/piRNAs
(with chromosome location) from which these altered sequence reads are generated
besides the above information. Any robust pipeline should discard these noisy reads.
miRSim delivers output in the form of a compressed FASTQ or FASTA file format. As
of now, the miRSim tool has been developed and tested for the human genome only. For
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other genomes, miRSim parameters can be readjusted accordingly. For other non-human
genomes, a user has to adjust 1). RNA-sequence length for that genome, and 2). seed
region and xseed region location. The core algorithm will remain the same. The source
code of miRSim is available in GitHub and zenodo in both the command line version
and the jupyter notebook version.

3.2.2 Synthetic RNA-seq expression dataset used in this study

In this study, we have generated the miRSim simulated synthetic dataset for the pipeline
benchmarking on the identification of known/novel miRNAs and known miRNAs. Using
miRSim, we generated thirty synthetic FASTQ files with a varying read depth of 50K
reads, 0.1 million reads, and 1 million reads with known proportions of both altered and
unaltered known/novel miRNAs and known piRNAs (Table-3.2). The reason behind
considering the multiple read-depth categories is to assess the pipeline for low-depth
as well as high-depth data. However, the synthetic data experiments can extend to a
higher depth (more than 1 million reads). For known miRNA identification experiments,
reads were generated using high-confidence miRNAs taken from miRBase (version 22)
to ensure the least false positives or false negatives in the experimental design. Similarly,
miRpipe includes the genomic and structural features for novel miRNA identification.
Novel miRNAs detected recently in [1, 2] were added to the synthetic data experiments
as the ground truth sequences. The complete list of novel miRNAs used in synthetic
data experiments is provided at Supplementary Material S9. Moreover, for known
piRNA identification, the reads were generated from the piRNAdb database (version
1.7.6). We have also generated the synthetic data file for benchmarking pipelines on the
identification of reverse complement sequences known as miRNAs. For this purpose, we
have generated a synthetic FASTQ file with the reverse complement reads of 887 high-
confidence miRNAs (added from miRBase database version 22) with a read depth of 10
each. Thus, the synthetic FASTQ file contained 8870 reads with a reverse complement
of 887 high-confidence miRNAs.

3.2.3 Real RNA-seq expression datasets used in this study

In our study, we have incorporated three publicly available datasets for miRPipe val-
idation: the CLL dataset (GSE123436), the breast cancer dataset (GSE171282), and
the lung cancer dataset (GSE37764). In the CLL dataset, the RNA-Seq profile of 28
CLL cases and 10 age-matched healthy controls were studied to identify the unique
pattern of eight dysregulated miRNAs in CLL. This study also validated the altered
expression levels of eight dysregulated miRNAs by RT-qPCR. The breast cancer dataset
(GSE171282) consists of 3 normal and 6 tumor RNA-Seq samples. The breast cancer
dataset was studied to understand the effects of two commonly used local anaesthetics,

38

https://www.frontiersin.org/articles/10.3389/fbinf.2022.842051/full#SM1


lidocaine and bupivacaine, on the malignancy of MCF-7 breast cancer cells. The original
publication of the breast cancer dataset (GSE171282) has reported 11 RT-qPCR-validated
dysregulated known miRNAs. We have used CLL and breast cancer datasets for the
miRPipe validation in miRNA identification. Similarly, in the lung cancer dataset, the
primary non-small cell lung adenocarcinoma tissues of 6 never-smoker Korean female
patients were studied to identify dysregulated piRNAs to identify the altered expression
patterns of non-coding RNAs in the non-smoker females. The original publication of the
lung cancer (GSE37764) dataset has not reported any dysregulated piRNAs. We have
used this dataset for miRPipe validation in piRNA identification.

3.2.4 Description of the proposed miRPipe

A complete block diagram of miRPipe is provided in Fig. 3.2.
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Identification of unique novel miRNAs and 
Functional annotation of novel miRNAs as 
paralogues.

-1.23
2.54

piRNA ID     Log-fold Change

…..…..

piRNA Counts Diff. Expression Analysis (DESeq2)

8. Final Count file Preparation for 
DESeq2 Analysis

miRNA ID     Sample-1    Sample-2
120
10
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55

miR-1
miR-2
miR-3
miR-4A. Sequence Alignment

B. Precursor Excision

C. Precursor Alignment

D. Novel miRNA Prediction

X
ü

Poor Base  pairing

Bulges in  Hairpin
Proper Hairpin 
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X
Stable Hairpin Structure Examples:

m
iRDeep*

2. Pre-processing

Figure 3.2: Infographic representation of miRPipe workflow: This pipeline identifies
differentially expressed novel miRNAs, known miRNAs, and known piRNAs.The RNA-
Seq data in standard FASTQ format is cleaned for adaptor contamination. Reads of
specific lengths are aligned to the human reference genome for miRNA and piRNA
identification. Further, the aligned reads are processed using novel seed-based clustering
for their functional annotation. Lastly, their differential expression analysis is computed
using DESeq2 to find the significantly dysregulated miRNAs and piRNAs.
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Input Data:

The miRPipe allows both single or multiple sample processing with input files in FASTQ
format (either .fastq or .fastq.gz). For computing the differentially expressed miRNAs,
miRPipe utilizes the widely accepted DESeq2 method. Importantly, the information
on the adaptor sequence, human reference genome, and miRBase version can be either
provided by the user, or the default options of miRPipe can be chosen.

Hardware & Software Dependencies

Pipelines: miRPipe, miRDeep*, miRDeep2, mirPRo, sRNAToolbox, miRge2.0, mirnovo,
MiR&moRe2 were installed and run on a workstation with the hardware configuration
of Single Intel(R) Core(TM) i7-8700 CPU 6Cores,12Threads,@Base frequency of
3.20GHz, 32GB DDR4 RAM. The docker is fully functional on the Linux platform and
requires the following system configuration: Ubuntu 18.04 operating system with at least
8 GB RAM. The miRSim tool was developed on the hardware configuration of Single
Intel(R) Core(TM) i5-8400 CPU 2Cores, 4Threads, @Base frequency of 2.80GHz, 8GB
DDR4 RAM.

3.2.5 miRPipe Workflow

miRPipe is an integrated pipeline for the identification of statistically significant differ-
entially expressed known/novel miRNAs and known piRNAs simultaneously by parallel
threaded operations.

The following steps are sequentially carried out in the miRPipe (Fig. 3.2):

1. Input: miRPipe accepts sequencing files in the FASTQ format, along with the
sample information file in the CSV format that contains a sample (or subject)
IDs and sample group (whether treated and control or the data collected at two
different time points).

2. Pre-processing: miRPipe performs adapter removal in the raw FASTQ files using
the Trim-Galore tool. Post-trimming, miRPipe segregates reads based on their
sequence lengths. The first category contains read sequences of 17-24nt lengths
that are processed further for miRNA identification. The second category contains
read sequences of 25-31nt lengths that are processed for piRNA identification.
The remaining read sequences of lengths �32nt are rejected by miRPipe.

3. Sequence alignment: In Step 3, miRPipe initializes parallel threads for (a) the
identification of known and novel miRNAs and (b) the identification of piRNAs.
While one CPU thread is allocated for piRNA identification, the remaining CPU
threads are allocated for miRNA identification.

3 (A) piRNA identification pipeline: For piRNA identification, reads of length
25-31nt are screened based on their quality scores. Reads having more than
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Figure 3.3: Functional annotation of novel miRNAs using seed-based clustering. The
above figure shows an example of all possible scenarios for cluster formation of novel
miRNAs functional annotation with known and novel miRNAs, along with their genomic
location of sequence alignment.

10% bases with a phred score of less than 20 are filtered out. The remaining
reads of better quality are aligned to the human genome using the Bowtie2
with the following fixed parameters: (a) minimum length of sequence l =
25,; (b) zero mismatch in the seed region ; (c) with no reverse complement
alignment allowed to obtain the alignment results. All the alignment results
are then post-processed using the bedtools [181] intersect. miRPipe utilizes
piRNA annotations from piRNAdb. Subsequent analysis results in a final
count matrix of all the annotated piRNAs across all samples that are used as
input for the DESeq2 for the differential gene expression analysis.

3(B) miRNA alignment: The first step in miRNA identification is the sequence
alignment using miRDeep*. miRDeep* sequence aligner is developed on the
top of the bowtie and allows the sequence mapping with zero mismatches in
both strands of the human genome reference.

4. Post-processing: All known miRNA and novel miRNA reads are collected from
all the samples (multiple subjects) to prepare a list of reads for the DASHR blast
search processing.

5. Blast search using DASHR: All miRNAs that are not annotated as known miRNA
are blast-searched with the DASHR database to check if they match with any
known miRNA sequences. Moreover, there can be some sequences that are
annotated as novel miRNAs, whose annotation is missed due to it being present as
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a reverse complement sequence in the fastq file. Although bowtie can map a reverse
complement sequence of a known miRNA to its correct genomic location, due
to differences in the mapping strand and precursor sequence from the respective
mapping strand and precursor sequence of that known miRNA, miRDeep* fails
to annotate the reverse complement sequence to its true known miRNA. Such
cases are referred to as novel by miRDeep*, although they should have been
assigned as known miRNA. Thus, in such cases, we blast search these sequences
in the DASHR database and check if they match with any of the known miRNAs.
The DASHR database tries to find the best possible match with known miRNAs
(according to the reference genome hg19 or hg38 as specified by the user). If the
DASHR database does not find any hit with any known miRNA, then we take
the reverse complement of these sequences and blast search again in the DASHR
database. Now, if they match any known miRNA at the same genomic location
as that of the novel miRNA, the novel miRNA will be re-annotated as known
miRNA, and the count of the novel miRNA will be merged with that of the known
miRNA. For other reads, the miRNA nomenclature system used in miRBase [182]
is followed for their renaming, as explained in the next step.

6. Novel seed-based clustering and functional annotation of novel miRNAs: In Step-6,
miRPipe performs the seed-based clustering on both known and novel miRNA
sequences. The methodology of seed-based sequence clustering and functional
annotation is as follows:

6 (A) Novel seed-based clustering: In this step, seed-based clustering is employed
by miRPipe on known and novel miRNAs to identify unique novel miRNAs
and known miRNA paralogues. Different scenarios of seed-based clustering
are shown in Fig.3.3. First, we perform CD-hit [138] clustering on the seed
sequences of all novel and known miRNAs. novel miRNAs whose seed
sequences are identical (that is, 0nt mismatch) are subsequently checked,
again via CD-hit clustering, but now on xseed region sequences. All novel
miRNA reads having identical seed sequences, maximum alterations of 2nt
in the xseed sequence, and similar genomic location (that is, maximum 2nt
variation in the genomic position) was identified as a single novel miRNA.
Their counts were merged.

6 (B) Functional annotation of novel miRNAs: According to [183], if a given
sequence has an identical seed sequence with a different genomic location,
such a sequence is called the paralogous. Using these criteria, all novel
miRNAs that share an identical seed with different genomic locations are
called paralogues. If the novel miRNA has the identical seed as that of
a known miRNA (say hsa-mir-x) and a different genomic location, then
the novel miRNA will be called a paralogue of known miRNA and will
be labeled as “hsa-mir-x_n” where n is 1,2,3,... as more paralogues are
discovered. Similarly, if the novel miRNA has an identical seed as that of a
novel miRNA (say novel-mir-x) and a different genomic location, then the
novel miRNA will be called a paralogue of novel miRNA and will be labeled
as “novel-mir-x_n” where n is 1,2,3,... as more paralogues are discovered.
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Functionally, the paralogues behave identically [184] due to the same seed
in their mature miRNA sequence.

7. Final count file preparation: Once the functional annotation of novel miRNAs is
completed, miRPipe returns the final count matrix containing expression counts of
all novel miRNAs, known miRNAs, and known piRNAs across all the samples.
Since there are many miRNAs in miRBase whose mature sequences are identical
and located at multiple genomic locations in the human genome. Such miRNAs
represent the miRNA paralogues. The sequence aligner in Step 3 of the miR-
Pipe workflow lists all these miRNA paralogues with the same expression counts.
Thus, in real RNA-Seq expression data, miRPipe deduplicates the final count file
to remove the multiple entries of the same mature sequence present in the count file.

8. Differential expression analysis: miRPipe carries out DEMs using the DESeq2
method. Any miRNA or piRNA is considered to be statistically and differentially
expressed if its p-adj value after Benjamini-Hochberg (BH) correction is  0.05.

9. Renaming of novel miRNAs: The novel miRNAs identified in CLL datasets are
renamed using the miRNA nomenclature system used in miRBase [4]. The rules
for miRNA nomenclature are as follows:

(a) Previously annotated miRNAs: If the novel miRNA sequence has already
been annotated in another organism, then the same identifier will be used in
other organisms also. For this, we have blast-searched all the novel miRNA
sequences in the Rfam database with E-values less than or equal to 0.01 and
then renamed them using the same identifier.

(b) Sequential annotation: If the above conditions are not met for any novel
miRNAs, then the renaming was done sequentially. In the end, we have
added “*” in the suffix of all novel miRNA new names to represent that these
names are putative names only.

10. Output: The final output file in the corresponding user data directory contains the
significantly differentially expressed miRNAs and piRNAs.

3.3 Results
Benchmarking of miRPipe with existing standard pipelines

miRPipe is benchmarked with seven standard pipelines introduced in the recent past for
the novel miRNA detection. These are mirdeep2, mirdeep*, mirPRo, mirnovo, miRge2.0,
sRNAToolbox, and MiR&moRe2. We have proposed an innovative strategy for miRNA
pipeline validation and benchmarking, where we have used synthetic RNA-Seq data with
known ground truth and real RNA-Seq expression data. The synthetic data experiments
allow us to evaluate the accuracy, sensitivity, and specificity for extensive comparison
with other pipelines in identifying and annotating correct miRNAs. Hence, results are
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presented: (1) by comparing the workflow and architecture of all the pipelines, (2)
by using the pipelines on the synthetic data generated by the miRSim tool, where the
ground truth is known, and (3) by comparing the results obtained on the real RNA-Seq
expression CLL, lung cancer and breast cancer dataset.

3.3.1 Summary comparison of different pipelines

We have compared various attributes of all eight bioinformatics pipelines, such as
sequence quality control criteria (minimum phred quality score), miRNA sequence
length criteria, sequence aligner used for sequence alignment, type of miRNA an-
notation database (miRBase/miRGeneDB), RNA profiles (types of other sncRNA),
model types (whether based on machine learning or not), platform dependencies (Win-
dows/Linux/MAC OSX), etc. and shown them in Table-3.1. The pre-processing of
sequencing data in any bioinformatics pipeline includes 1. adaptor-trimming, 2. se-
quence quality control, and 3. sequence length control. The adaptor trimming and
sequence quality control steps are mandatory steps to prepare reads for downstream
analysis, such as sequence alignment with respect to the reference genome, miRNA
annotation, etc. In the sequence length filtration step, all eight pipelines have different
criteria for miRNA sequence length, e.g., miRDeep2 and miRDeep* consider sequences
having a length range of 18nt-23nt as miRNA. In contrast, miRPro considers all the
sequences having a length greater than 17nt as miRNA, etc.

We have observed that most of the human miRNAs lie in the range of 17nt-24nt. Also,
both miRNAs and piRNAs sequences have slightly varying lengths across different
miRNAs and piRNAs instead of strictly defined fixed lengths. Thus, it is challenging to
find the exact cutoff of sequence length that can help infer a maximum number of true
positive miRNAs or piRNAs. We have observed that there are 1.3% miRNAs that are
present in the miRBase database, having sequence lengths of 25nt to 28nt. At the same
time, there are 21.3% piRNAs that are present in the piRNAdb database, having sequence
lengths of 25nt to 28 nt. Considering sequences of length 25nt to 28nt for miRNAs may
lead to false negatives in the piRNAs pipeline, and we may miss many important piRNAs.
Similarly, rejecting a sequence of length less than 18nt may lead to ignoring the actual
miRNAs. Hence, we consider the sequence length range of 17nt-24nt for miRNAs and
25nt-31nt for piRNAs. Thus, all the steps in sequencing data pre-processing, especially
length filtration, play a crucial role in pipeline performance evaluation.

In addition, selecting sequence aligners also plays an important role in sncRNA identifi-
cation. Most of the pipelines have used bowtie1 except mirPRo, mirnovo, and miRPipe
because bowtie1 is very sensitive to small and medium-length sequences. Currently,
Bowtie1 is deprecated, and the development team does not provide technical support.
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For miRNA annotation, miRBase is considered a standard database used in all eight
pipelines except miRge2.0, which lets the user choose the annotation database (either
miRBase or miRGeneDB) as per user requirement. In addition to identifying known
and novel miRNAs, some pipelines like mirnovo, miRge2.0, MiR&moRe2, and sRNA-
Toolbox provide information about other RNA types such as tRNA, rRNA, snoRNA,
microRNA-offset RNAs (moRNA), loop-RNA, etc. Only three out of the seven existing
pipelines (mirnovo and miRge2.0, sRNAToolbox) use the machine learning-based model
(random forest, SVM, and Weka, respectively) for novel miRNA prediction. Also, each
pipeline has been developed using a different programming language and has differ-
ent platform dependencies. The difference in the miRNA selection criteria, sequence
alignment strategy, annotation database, the model used for sncRNA identification, etc.,
makes these pipelines methodologically unique and causes different outputs for the same
input data.

Table 3.1: Comparison of recently published bioinformatics pipelines on all the interme-
diate steps such as sequence pre-processing, de-duplication, sequence alignment, and
sequence annotation. In all the intermediate steps, each pipeline uses different tools
(with different versions) or their own module written in languages such as Python, Perl,
R or C++. Further, each pipeline has its own miRNA consideration criteria. For exam-
ple, miRge2.0 pipeline considers 16-25nt length of sequence for miRNA identification,
while sRNAToolbox considers all the sequences of length less than 25nt for miRNA
identification. The variation in length criteria significantly impacts the accuracy of the
miRNA sequence alignment step, which is the most crucial step in the bioinformatics
pipeline for miRNA identification. The majority of the above-mentioned pipelines use
Bowtie1 for sequence alignment, while the mirnovo pipeline uses Bowtie2, and the
mirPRo pipeline uses a Novoalign sequence aligner. In our proposed pipeline miRPipe,
we have used the miRDeep* (in Step 3 of the workflow) with DASHR blast search (in
Step 5 of the workflow) and seed-based clustering of the novel miRNAs (in Step 6 of
the workflow). Most of the pipelines report other categories of RNAs present in the
sequencing data, such as rRNA, moRNA, piRNA, etc. We have integrated our pipeline
piRNA identification pipeline in miRPipe with parallel thread execution for optimum
use of computational resources to facilitate less overall time to deliver the output results.
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3.3.2 Benchmarking of pipelines on synthetic data

Synthetic data is generated using the miRSim tool for pipeline validation with the known
percentage of reads of known/novel miRNAs and known piRNAs (Refer to Table-3.2 for
an example). Since the ground truth is known, pipelines are assessed on the metrics of
accuracy and F1-score. The following notations are used for four class label detection:
Class-1: known miRNA, class-2: novel miRNA, class-3: known piRNA, and class-4:
Not belonging to other 3 classes.

Table 3.2: An example of synthetic data generation by miRSim tool, where the user
specifies the fraction of sequences of a particular RNA type and a particular sub-category
of sequence in the synthetic data required to be generated. Say synthetic data is generated
having a total of 10K reads. Of these 10K reads, 20% belong to known miRNAs, 10%
belong to novel miRNAs (sequences collected from the [1, 2]), and 10% reads are of
the known piRNAs. The reads of the ‘Other’ class are generated by making random
alterations to the sequences of known miRNA, novel miRNAs, and to those of the known
piRNAs. In this example, the user has specified to generate 10% reads (of overall total
read count) by making alterations to the seed regions of known miRNAs,10% by making
alterations to the xseed regions, and 5% by making alterations to both seed and xseed
regions of known miRNAs to simulate the reads of the ‘Other’ class. The % fraction
of each sub-category of other classes for other sncRNAs (novel miRNAs and known
piRNAs) are also mentioned in this example.

RNA-Type % fraction of
actual miRNA

% fraction of other class

Generated by
altering seed

regions of miR-
NAs/piRNAs

Generated by
altering xseed

regions of miR-
NAs/piRNAs

Generated by
altering both

seed and xseed
regions of miR-
NAs/piRNAs

Known miRNA 20 10 10 5
Novel miRNA 10 7 7 3.5
Known piRNA 10 7 7 3.5

• A read is counted as true positive (TP) if the pipeline correctly identifies it.
• A read is considered as false positive (FP) to class-‘x’ when it belongs to one of

the other classes but is identified as a class-‘x’ read.
• A read is considered as false negative (FN) when it belongs to class-‘x’ but is

rejected by the pipeline to class-4 (Others).
• A read is considered as true negative (TN) when it is an altered miRNA/piRNA

and is also labeled the same by the pipeline, that is, all the reads with sequences
not belonging to valid miRNAs or piRNAs or novel miRNAs (in other words, not
belonging to any of the above three classes) are called as true negatives.

The performance metrics are computed as follows.

Accuracy =
TP + TN

TP + TN + FP + FN
,
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F1 Score = 2
⇣Precision⇥ Recall

Precision + Recall

⌘
,

where
Precision =

TP

TP + FP
, and Recall =

TP

TP + FN
.

Benchmarking of pipelines on the identification of known miRNAs

In the synthetic data experiment for identifying known miRNAs, we have observed
that many mature miRNA sequences can match at multiple genomic locations on the
human genome, wherein the miRNAs at these different genomic locations correspond
to different precursor sequences. For such cases, we have compared the miRPipe
outcome with the miRSim-generated ground truth for miRPipe pipeline assessment. The
comparative analysis with miRPipe revealed that miRPipe outperforms existing pipelines
with an average accuracy (across all depths) of 96.58% and an average F1-score of
89.95% on the identification of known miRNAs (Table-3.4, Fig. 3.4, and Table-3.3a,
Supplementary Material S1-S3, synthetic data experiment results for 50K, 0.1M and 1M
read depth).

Benchmarking of pipelines on the identification of novel miRNAs

Comparison of inter-computational pipelines revealed that miRPipe outperformed all the
other computational methods, with an average accuracy of 99.55% and average F1-score
of 97.55% across all depths in synthetic data experiments on novel miRNA identification
(Table-3.4, Fig. 3.4, and Table-3.3b, Supplementary Material S1-S3.

Benchmarking of pipelines on the identification of Known piRNAs

We performed a comparative analysis with sRNAToolbox, which uses RNAcentral for
piRNA and other sncRNA annotations for piRNA identification. Notably, it is the only
dedicated computational workflow that allows simultaneous identification of miRNAs
and piRNAs. While miRPipe yielded an average accuracy of 98.91% and an average F1-
score of 94.35%, sRNAToolbox yielded an average accuracy of 74.25% and an average
F1-score of 4.34% across all depths (Table-3.4, Fig. 3.4, and Table-3.3c, Supplementary
Material S1-S3.
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(a) Overall Performance on 50K read 
depth

(b) Overall Performance on 0.1 million read 
depth

(c) Overall Performance on 1 million read 
depth

(d) Known miRNA Identification Performance 
on 50K read depth

(e) Known miRNA Identification Performance 
on 0.1 million read depth

(f) Known miRNA Identification Performance 
on 1 million read depth

(g) Novel miRNA Identification Performance 
on 50K read depth

(h) Novel miRNA Identification Performance 
on 0.1 million read depth

(i) Novel miRNA Identification Performance 
on 1 million read depth

(j) piRNA Identification Performance on 50K 
read depth

(k) piRNA Identification Performance on 0.1 
million read depth

(l) piRNA Identification Performance  on 1 
million read depth

Figure 3.4: Benchmarking of miRPipe with the existing pipelines on synthetic data.
Averaged results are reported over 10 FASTQ files generated for each read depth of
50k, 0.1 million, and 1 million reads. The overall performance of all existing pipelines
is shown in (a) to (c). All the pipelines are benchmarked against miRPipe for known
miRNAs in (d) to (f) and for novel miRNAs in (g) to (I). Among the existing pipelines,
only sRNAToolbox identifies piRNA, and hence, comparison results of miRPipe for
piRNA are compared with only sRNAToolbox in (j) to (l).
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Table 3.3: Average performance of pipelines for the identification of (A) known miRNAs,
(B) novel miRNAs and (C) known miRNAs for three categories of read depth (50K,
0.1M, and 1M, where M represent a million reads). The cells with ‘-’ indicate that the
pipeline does not identify that particular type of RNA.

(a) Average performance of pipelines for identification of Known miRNA

Pipelines 50K read depth 0.1M read depth 1M read depth
Accuracy F1-Score Accuracy F1-Score Accuracy F1-Score

miRDeep2 94.76 85.36 94.08 84.49 95.37 87.15
miRDeep* 95.97 88.70 94.82 86.05 96.23 89.44

mirPRo 79.34 2.11 77.57 0.75 79.28 1.52
mirnovo 87.94 60.51 86.57 58.88 88.28 62.46

miRge2.0 87.12 43.78 79.48 16.97 81.08 16.96
sRNAToolbox 88.62 64.36 88.95 69.25 90.00 70.19
MiR&moRe2 91.04 73.09 91.18 75.97 91.01 73.12

miRPipe 96.88 90.77 95.78 87.77 97.10 91.32

(b) Average performance of pipelines for identification of Novel miRNA

Pipelines 50K read depth 0.1M read depth 1M read depth
Accuracy F1-Score Accuracy F1-Score Accuracy F1-Score

miRDeep2 97.46 84.79 97.25 85.79 97.31 85.24
miRDeep* 98.99 94.96 99.11 96.01 99.03 95.45

mirPRo 93.20 58.19 92.62 61.21 93.30 63.40
mirnovo 91.82 35.94 91.31 44.66 92.22 47.25

miRge2.0 - - - - - -
sRNAToolbox - - - - - -
MiR&moRe2 92.81 44.51 92.30 48.57 92.45 47.21

miRPipe 99.48 97.01 99.56 97.74 99.61 97.90

(c) Average performance of pipelines for identification of Known piRNA

Pipelines 50K read depth 0.1M read depth 1M read depth
Accuracy F1-Score Accuracy F1-Score Accuracy F1-Score

miRDeep2 - - - - - -
miRDeep* - - - - - -

mirPRo - - - - - -
mirnovo - - - - - -

miRge2.0 - - - - - -
sRNAToolbox 62.89 3.98 88.76 5.08 71.11 4.06
MiR&moRe2 - - - - - -

miRPipe 98.82 93.52 99.13 95.61 98.79 93.95

(d) Overall Average performance of pipelines for identification of sncRNA

Pipelines 50K read depth 0.1M read depth 1M read depth
Accuracy F1-Score Accuracy F1-Score Accuracy F1-Score

miRDeep2 84.58 56.72 83.09 56.76 84.15 57.46
miRDeep* 87.57 61.22 85.74 60.69 86.99 61.63

mirPRo 68.60 20.10 66.19 20.65 67.96 21.64
mirnovo 74.66 32.15 72.59 33.85 74.71 36.57

miRge2.0 72.25 14.59 64.47 5.66 66.05 5.65
sRNAToolbox 73.64 37.01 72.39 45.31 73.49 24.75
MiR&moRe2 77.75 39.20 76.76 41.51 76.71 40.11

miRPipe 95.37 93.96 94.64 93.99 95.66 94.60
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Table 3.4: Average performance of pipelines for known miRNA, novel miRNA and
known piRNAs. The cells with ‘-’ indicate that the pipeline does not identify that
particular type of RNA.

Pipelines
Average Accuracy across

all depths (in %)
Average F1 score across

all depths (in %)
known
miRNA

novel
miRNA

known
piRNA

known
miRNA

novel
miRNA

known
piRNA

miRDeep2 94.74 97.33 - 85.66 85.27 -
miRDeep* 95.67 99.04 - 88.06 95.47 -

mirPRo 78.73 93.04 - 1.45 60.93 -
mirnovo 87.59 91.78 - 60.61 41.95 -

miRge2.0 82.56 0.0 - 25.90 0.0 -
sRNAToolbox 89.18 0.0 74.25 67.93 0.0 4.34
MiR&moRe2 91.07 92.52 - 74.05 46.76 -

miRPipe 96.58 99.55 98.91 89.95 97.55 94.35

Table 3.5: Comparison of pipeline performance in CLL real RNA-Seq expression dataset

S. No. Pipeline

No. of
dysregulated

miRNA identified
by pipeline

Number of
miRNAs validated

with RT-qPCR
results

% False
Positive % False Negative

1 miRDeep2 29 9 68.96 70.96
2 miRDeep* 22 10 54.54 67.74
3 miRPro 34 12 64.70 61.29
4 mirnovo 32 6 81.25 80.64
5 miRge2.0 25 4 84 87.09
6 sRNAToolbox 5 1 80 96.77
7 MiR&moRe2 5 1 80 96.77
8 miRPipe 31 17 45.16 45.16

Overall benchmarking of all the pipelines

The overall cumulative performance of all the pipelines is done by considering
known/novel miRNAs and piRNAs in the synthetic data experiments, and they are
reported in Fig. 3.4. In consistency with the previous results, cumulative performance of
miRPipe revealed an average accuracy of 95.22% and an average F1-score of 94.17%
across all depths, a way higher than all tested alternative computational methods (Table-
3.4, Fig. 3.4, and Table-3.3d, Supplementary Material S1-S3.
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Benchmarking of pipelines on the identification of reverse complement miRNA
sequence as known miRNAs

We have also benchmarked miRPipe with seven standard pipelines introduced in the
recent past for the annotation of reverse complement sequences as known miRNAs. As
mentioned in Section 3.2.2 (Synthetic RNA-seq expression dataset used in this study),
we have generated the synthetic data for pipeline benchmarking on the annotation of
reverse complement sequence using 887 high-confidence miRNAs in the miRBase
database (version 22). The comparative analysis with miRPipe revealed that miRPipe
outperformed existing pipelines with an accuracy of 42.16% and an F1-score of 59.31%.
We have observed that miRDeep2, miRDeep*, miRPro, mirnovo, miRge2.0, sRNATool-
box, MiR&moRe2, and miRPipe has identified 4, 35, 7, 0, 6, 56, 0, and 374 miRNAs
respectively out of 887 high confidence miRNAs in miRBase database (version 22). We
have shown the pipeline performance comparison on the identification of the reverse
complement miRNA sequence in Fig.3.5. Although miRPipe has also missed annotating
many reverse complement miRNAs, miRPipe has still successfully identified the most
number of reverse complement sequences as known miRNAs among all eight pipelines.

Figure 3.5: Benchmarking of miRPipe with the seven standard pipelines on the identifi-
cation of reverse complement miRNA sequence as known miRNA.
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3.3.3 miRPipe validation on publicly available CLL dataset
(GSE123436)

We have validated miRPipe with the publicly available CLL real RNA-Seq expression
dataset (GSE123436) for miRNA identification. In the CLL dataset, miRNA profiling
of 28 CLL cases and ten age-matched healthy controls were studied to understand the
involvement of dysregulated miRNAs in CLL and their impact on clinical outcomes.

Results of all pipelines on CLL dataset (GSE123436)

A total of 31 known miRNAs were found to be dysregulated by the miRPipe pipeline on
the CLL real RNA-Seq expression dataset (GSE123436). Out of 31 dysregulated known
miRNAs, 24 miRNAs were found to be upregulated, and 7 miRNAs were downregulated.
On the other hand, we have observed that miRDeep2, miRDeep*, miRPro, mirnovo,
miRge2.0, sRNAToolbox, and MiR&moRe2 have identified 29, 22, 34, 32, 25, 5,
and 5 dysregulated known miRNAs respectively. Further, miRPipe has identified 28
dysregulated piRNAs in CLL real RNA-Seq expression data. Out of 28 dysregulated
piRNAs, one piRNA was found to be up-regulated, and the remaining 27 were down-
regulated (shown in Table-3.6). The average percentage of known piRNAs across CLL
samples was observed as 5.94%, calculated as,

% piRNAs across CLL samples =
⇣

npi

npi + nmi

⌘
⇤ 100,

where
npi = Total no. of sequences annotated as piRNAs, and
nmi = Total no. of sequences annotated as miRNAs.

Literature validation of all pipelines on CLL dataset (GSE123436)

According to the original publication of this dataset [1], eight miRNAs were found
as dysregulated in the CLL real RNA-Seq expression dataset. Out of 8 dysregulated
miRNAs reported in the original publication, there were five common miRNAs reported
by miRPipe. In comparison of dysregulated known miRNAs identified by miRDeep2,
miRDeep*, miRPro, mirnovo, miRge2.0, sRNAToolbox, MiR&moRe2 and miRPipe
with the literature, 17 out of 29 (58.62%), 18 out of 22 (81.81%), 21 out of 36 (58.33%),
14 out of 25 (56%), 8 out of 25 (32%), 2 out of 5 (40%), 2 out of 5 (40%) and 27 out
of 31 (87.09%) miRNAs, respectively, were found to be reported as dysregulated in the
literature of CLL. Here, the dysregulated miRNAs identified by miRPipe are found to be
reported in multiple CLL-related literature [65, 185, 186, 187, 188, 189, 190, 143, 191,
192, 193]. To the best of our knowledge, we have also reported 28 dysregulated piRNAs
in CLL, which no one has reported to date.
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Comparison of all pipeline results with RT-qPCR on CLL dataset (GSE123436)

Next, we compared the results of DEMs obtained from all the pipelines on the CLL real
RNA-Seq expression dataset. Further, we validated these findings using semi-quantitative
real-time PCR. The miRNA profiling was carried out on treatment naïve 28 CLL cases
using the TaqMan Array Human MicroRNA Card A+B v2.0 (Applied Biosystems, CA,
USA), each of which profiles 380 TaqMan MicroRNA Assays enabling the simultaneous
quantitation of 754 (377+377) human miRNAs plus 4 endogenous controls. The data
was normalized using three endogenous controls: U6 snRNA, RNU48 and RNU44. The
results obtained were also validated in additional cohorts of de novo CLL patients using
the miRCURY LNA™ Universal RT microRNA PCR System (Exiqon). Our group also
generated additional data on 89 CLL patients in the same CLL cohort

Table 3.6: Differentially expressed piRNAs in CLL dataset

S. No. piRNA up/down
Regulation

Fold
Change

1 hsa-piR-23019 down -3.15
2 hsa-piR-23020 down -3.27
3 hsa-piR-32157 down -3.21
4 hsa-piR-32158 down -3.22
5 hsa-piR-32159 down -3.22
6 hsa-piR-32160 down -3.22
7 hsa-piR-32161 down -3.22
8 hsa-piR-32166 down -3.21
9 hsa-piR-32178 down -3.21
10 hsa-piR-32181 down -3.15
11 hsa-piR-32185 down -3.27
12 hsa-piR-32186 down -3.22
13 hsa-piR-32194 down -3.27
14 hsa-piR-32234 down -3.27
15 hsa-piR-32237 down -3.27
16 hsa-piR-32838 down -3.22
17 hsa-piR-32839 down -3.22
18 hsa-piR-32845 down -3.18
19 hsa-piR-32852 down -3.19
20 hsa-piR-32978 down -3.72
21 hsa-piR-32995 down -3.72
22 hsa-piR-33013 down -3.75
23 hsa-piR-32963 up 3.46
24 hsa-piR-32990 down -1.54
25 hsa-piR-33010 down -1.54
26 hsa-piR-33053 down -1.59
27 hsa-piR-32847 down -1.99
28 hsa-piR-32920 down -1.16
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enrolled in the study, as mentioned in Kaur et al. [1]. A unique set of 68 DEMs was
validated out of 754 miRNAs tested with TaqMan Array Human MicroRNA Card A+B
v2.0 (Applied Biosystems, CA, USA). The complete list of RT-qPCR validated 68 DEMs
in CLL is provided at Supplementary Material S5.

We have compared the number of DEMs identified by the existing pipelines to the
results of RT-qPCR to assess the pipeline performance. In the comparison of pipeline
performance for miRNA identification, we have observed that each pipeline (including
miRPipe) has detected many dysregulated miRNAs (DEMs). However, after comparing
them with the results of RT-qPCR, the true DEM count decreased considerably. This
is because it is practically difficult to test and validate all the predicted DEMs in the
laboratory for at least three reasons: (a) The assays used for DEM validation may
not contain all the predicted DEMs, (b) the limitation of sample material available,
and (c) it adds a huge cost and extra working hours. Hence, only the topmost or
prioritized DEMs are preferably tested and validated. The false-positive miRNAs are
the miRNAs that are identified as dysregulated by the pipeline but not validated in
RT-qPCR experiments. Similarly, the false-negative miRNAs are the miRNAs that are
not identified as dysregulated by the pipeline but are RT-qPCR validated. The % false
positives and % false negatives of the pipeline are computed as,

% False Positives =
⇣
1� NRTmiR

NTotalmiR

⌘
⇤ 100,

where
NRTmiR = Number of RT-qPCR validated miRNAs identified by the pipeline and
NTotalmiR = Total number of miRNA identified by the pipeline, and

% False Negatives =
⇣
1� NRTmiR

NTotalRTmiR

⌘
⇤ 100,

where
NRTmiR = Number of RT-qPCR validated miRNAs identified by the pipeline and
NTotalRTmiR = Total number of RT-qPCR validated miRNA.

We combined the RT-qPCR-validated miRNAs identified by all eight pipelines to get
the total number of RT-qPCR-validated miRNAs, which gives a total of 134 miRNAs.
Out of 134 miRNAs, 31 miRNAs were found to be RT-qPCR validated. The miRPipe
has outperformed all other pipelines with the least false positives and false negatives. In
miRPipe, out of 31, 17 miRNAs are found as RT-qPCR validated, giving the least false
positives, that is, (1-17/31*100=45.16%) and least false negatives (1-17/31*100=45.16%)
among all eight pipelines. The % false positives and % false negatives for the remaining
seven pipelines are shown in Table-3.5 and Supplementary Material S4.
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3.3.4 miRPipe validation on publicly available Lung Cancer dataset
(GSE37764)

We have validated miRPipe with the publicly available lung cancer data set (GSE37764)
for the identification of piRNAs. In the lung cancer dataset, the role of dysregulated
miRNAs and piRNAs in nonsmoking female lung cancer patients was studied. Among
eight pipelines used for benchmarking, only miRPipe and sRNAToolbox identify piRNAs.
According to the original publication of this dataset [162], no piRNAs were found to be
dysregulated in RNA-Seq samples of non-smoker females. However, a total of 18 and
20 dysregulated piRNAs were identified by the miRPipe and sRNAToolbox, respectively.
The complete list of dysregulated piRNAs in lung cancer dataset obtained from miRPipe
and sRNAToolbox pipeline is provided at Supplementary Material S7. The two pipelines
detected no common piRNA. Out of the 18 piRNAs (identified by miRPipe), 6 piRNAs
(33.33%) were found to be reported as dysregulated in lung adenocarcinoma in the
literature [194]. On the contrary, none of the piRNAs identified by sRNAToolbox were
found to be reported in the literature.

3.3.5 miRPipe validation on publicly available Breast Cancer
dataset (GSE171282)

We have also validated the miRNA identification pipeline in miRPipe with a publicly
available breast cancer dataset (GSE171282). In [161], 11 dysregulated miRNAs were
identified to understand their involvement in the effects of anaesthetics on breast cancer
cells. We have observed that miRDeep2, miRDeep*, miRPro, mirnovo, miRge2.0,
sRNAToolbox, MiR&moRe2, and miRPipe have identified 22, 8, 31, 29, 34, 14, 42,
and 21 known dysregulated miRNAs respectively. The complete list of dysregulatd
miRNAs in the breast cancer dataset obtained from all eight pipelines is provided at
Supplementary Material S8. In comparison with the literature reported miRNA 9 out
of 22 (40.90%), 7 out of 8 (87.5%), 10 out of 31 (32.25%), 8 out of 29 (27.58%), 19
out of 34 (55.88%), 12 out of 14 (85.71%), 23 out of 42 (54.76%), and 19 out of 21
(90.47%) miRNAs were found to be reported as dysregulated in the literature of breast
cancer. Here, the dysregulated miRNAs identified by miRPipe are found to be reported
in multiple breast cancer-related research papers [195, 196, 197, 198, 199, 200, 201,
202, 203, 204, 153, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215]. Only 6
out of 11 (54.54%) miRNAs reported in the original publication of this dataset [161]
were found to be reported as dysregulated in the literature. Of the pipelines compared,
miRPipe and MiR&moRe2 reported miRNAs matched most with the literature (19 and
23, respectively). However, miRPipe has the least number of FPs because of the 21
reported by miRPipe, 19 matched with the literature.
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3.4 Discussions
In this work, we have benchmarked our pipeline, miRPipe, with seven recent pipelines
(miRDeep2, miRDeep*, mirPRo, mirnovo, miRge2.0, sRNAToolbox, and MiR&moRe2)
using a newly developed synthetic RNA-sequence simulator, miRSim tool that gener-
ates FASTQ file with known fraction of altered/unaltered known/novel miRNAs and
piRNAs, and help evaluate pipelines on identifying true positives and rejecting false
miRNA/piRNA reads looking similar to known miRNAs/piRNAs.

3.4.1 Specificities of miRSim Synthetic Sequence Simulator

Numerous read simulators for generating synthetic RNA-Seq data are documented in
the literature. The list of 15 such simulators and their respective characteristics is
summarized in Table- 3.7. While most of these simulators adhere to Illumina-based
error models, a subset—such as RNA-Seq Simulator, RSEM, and Polyester offers the
flexibility to customize error profiles by adjusting parameters like substitution rate and
fraction of indels. Typically, users are required to input read abundances alongside their
desired error profiles. However, simulators like RSEM and CAMPAREE accept real
RNA-Seq samples in FASTQ format, and BEERS2 utilizes output from CAMPAREE to
generate synthetic RNA-Seq data.
Notably, only five simulators — ART, NEAT, BEERS2, CAMPAREE, and RSEM
provide ground truth for the generated synthetic data. Additionally, it’s worth high-
lighting that most of these simulators focus on generating full-length synthetic mRNA
transcriptome sequencing data; our study aims at sncRNA sequencing, encompassing
miRNAs and piRNAs. To bridge this gap, we developed a sncRNA sequencing simulator
named miRSim. To the best of our knowledge, the specificities of the miRSim synthetic
sequence simulator are as follows:

1. While numerous synthetic sequence simulators exist for generating RNA-Seq data,
the existing simulators are primarily designed for generating full-length mRNA
transcriptome data, neglecting the need for synthetic sncRNA Seq data (Table-
3.7). To address this gap, we developed miRSim, which is designed explicitly
for generating synthetic sncRNA Seq data, which is crucial for assessing the
performance of sncRNA identification pipelines.

2. We performed synthetic data experiments by generating the synthetic RNA Seq
data using the available simulators and observed that none of them were producing
valid miRNAs. To the best of our knowledge, these simulators overlook the
essential criteria for valid miRNA sequences, zero alterations in seed and xseed
region and the presence of a valid precursor sequence with a stable hairpin structure.
To bridge this gap, we developed miRSim to generate the synthetic sncRNA Seq
data by leveraging the sequence information (seed and xseed region) and accepting
the customized reference from the miRbase database to generate a synthetic
sequence with valid precursor and stable hairpin structure.
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Table 3.7: Characteristics of 15 previously published synthetic DNA/RNA sequence
simulators.

Synthetic
sequence
simulator

Simulator Characteristics

Read
Length Read Type Input Error

Model

Quality
Score
Profile

Multi-
threading

Ground
Truth

Sequence
Type

RNA-Seq
Simulator Variable Single-end,

paired-end

Number of
reads and
positional

error profile

Custom No No No mRNA

RSEM Variable Single-end,
paired-end

Fastq Format
Sequence Custom Yes Yes Yes mRNA

Polyester Variable Single-end,
paired-end

Number of
reads Custom No No No mRNA

CAMPAREE Variable Single-end,
paired-end

Fastq format
sequence Illumina Yes No Yes mRNA

BEERS2 Variable Single-end,
paired-end

Accept
output from

CAMPAREE
Illumina Yes No Yes mRNA

ART 36bp-
250bp

Single-end,
paired-end

Number of
reads, custom
error profile

Illumina Yes No Yes DNA/mRNA

NEAT Variable Single-end,
paired-end Coverage Illumina No No Yes DNA/mRNA

DWGSIM Variable Single-end,
paired-end

Number of
reads Illumina Fixed

Score No No DNA/mRNA

ISS 125bp-
301bp Paired-end Number of

reads Basic No Yes No DNA/mRNA

Mason Variable Single-end,
paired-end

Number of
reads Illumina Yes Yes No DNA/mRNA

wgsim Variable Single-end Number of
reads Illumina No No No DNA/mRNA

Flux 50bp-
150bp

Single-end,
paired-end

Number of
reads Illumina Yes No No mRNA

SimNGS Variable Single-end,
paired-end

Covariance
of noise

between the
base

Illumina Yes No No DNA/mRNA

pIRS Variable Paired-end
Number of
reads, error

profile
Illumina Yes Yes No DNA/mRNA

SimSeq Variable Paired-end,
mate-pair

Number of
reads, error

profile
Illumina Yes No No mRNA

miRSim 17nt-31nt Single-end
Number of
reads, error

profile
Custom Yes Yes Yes

sncRNA
(miRNA

and
piRNA)
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3. Only a few available RNA-Seq simulators provide ground truth data with syn-
thetic sequences, yet the format is often cumbersome and not user-friendly for
performance assessment. For instance, the formats such as BAM/SAM provided
by simulators like ART, BEERS, CAMPAREE, MASON, NEAT and RSEM re-
quire additional parsing to extract meaningful information, such as expression
of altered sequence and location of alterations in the sequence, etc. In contrast,
miRSim generates ground truth data in a user-friendly format, presenting altered
sequences alongside their original counterparts, corresponding CIGAR strings, and
expression counts extracted from associated FASTQ files in a comma-separated
file.

4. miRSim offers both command-line and user-friendly Jupyter Notebook versions.
The Jupyter Notebook version allows users to effortlessly modify parameters
such as seed and xseed region information, error profiles, and output file types
(Fastq or Fasta). Moreover, miRSim’s adaptability extends to non-human genomes,
ensuring its utility across diverse research domains. This user-friendly approach
sets miRSim apart from other simulators, enhancing accessibility and ease of use
for researchers.

5. While most existing simulators adhere to Illumina-based error models, miRSim
offers the flexibility to customize error profiles by adjusting parameters like the
number of alterations in seed and xseed region, the number of synthetic reads to
be generated, etc.

3.4.2 Difference in miRDeep2, miRDeep* and miRPipe

We have added the following methods in miRPipe to make it better than miRDeep2 and
miRDeep*:

1. Novel Seed-based clustering: Both miRDeep* and miRDeep2 do not report the
known miRNA paralogues and yield many false positives and false negatives,
which reduce their accuracy and F1 score. In Step 3 of the miRPipe workflow (that
is, by miRDeep*), there can be many novel miRNA sequences that are not assigned
to their correct miRNA family; in other words, they are not detected properly.
For example, some known miRNAs paralogues are declared novel miRNAs by
the sequence aligner in Step 3 of miRPipe (miRDeep*). However, they should
have been assigned to their respective known miRNA families. miRPipe clusters
such as miRNAs are declared as novel in Step 3 of miRPipe using novel seed-
based clustering (Step-6). In Step-6, miRPipe identifies novel miRNAs and
known miRNA paralogues by comparing the seed, xseed sequence (other than the
seed sequence), and their genomic locations. Similarly, Step-6 of the miRPipe
workflow also combines novel miRNAs sharing the same seed sequence as that
of a known miRNA (or another novel miRNA), a maximum of two alterations
in xseed sequence and similar genomic location through seed-based clustering.
After Step-6, miRPipe eventually yields uniquely identified novel miRNAs and
their paralogues. This step helps miRPipe to yield the least false positives and
false negatives. For example, let us consider a sequence “tccctgtcctccaggagctc”
identified as a novel miRNA (say novelMir-1) in Step 3 of the miRPipe workflow.

59



The novelMir-1 has an identical seed as that of hsa-mir-339, has more than 2nt
alteration in the xseed region, and is mapped at a genomic location other than that
of hsa-mir-339. Therefore, novelMir-1 should be called a paralogue of hsa-mir-339
and should be labeled as hsa-mir-339_1. Thus, the naming of novelMir-1 leads
to a false positive for the novel miRNA class and a false negative for the known
miRNA class. In the miRPipe pipeline, the false positive and false negative would
be reduced by assigning the correct class to novelMir-1 as hsa-mir-339_1.

2. Identification of reverse complement miRNAs as known miRNA using DASHR
blast search: miRPipe checks whether the miRNAs identified as a novel miRNA
in Step 3 of the miRPipe pipeline are indeed novel. In Step 3 of the miRPipe
workflow, some sequences can be annotated as novel miRNAs, whose annotation
is missed due to it being present as a reverse complement sequence in the fastq file.
miRDeep2 fails to identify the reverse complement sequence known as miRNA.
Out of 887 high-confidence known miRNAs, miRDeep2 has correctly annotated
only four reverse complement sequences as known miRNAs. Moreover, miRDeep*
can annotate only those reverse complement sequences, known as miRNA, already
annotated in the miRBase database, regardless of the mapping strand of the reverse
complement sequence with the human genome. For example, the miRNAs hsa-
mir-3529-5p (aggtagactgggatttgttgtt) and hsa-mir-7-2 (aacaacaaatcccagtctacct)
are reverse complementary pairs. The reverse complement of hsa-mir-3529-
5p (or hsa-mir-7-2) will be mapped to hsa-mir-7-2 (or hsa-mir-3529-5p) in the
opposite strand. Similarly, for the reverse complimentary pair hsa-mir-103a-
3p (agcagcattgtacagggctatga) and hsa-mir-103b-1 (tcatagccctgtacaatgctgct), the
reverse complement of hsa-mir-103a-3p (or hsa-mir-103b-1) will be mapped
to hsa-mir-103b-1 (or hsa-mir-103a-3p) in the same strand. Out of 887 high-
confidence known miRNAs, miRDeep* has correctly annotated only 35 reverse
complement sequences as known miRNAs. However, in many cases, due to
different mapping strands and precursor sequence of the reverse complement
sequence with the respective mapping strand and precursor sequence of that
known miRNA, miRDeep* failed to annotate the reverse complement sequence to
its true known miRNA and annotated them as novel miRNAs. Due to the incorrect
annotation of reverse complement sequences as known miRNAs, miRDeep2 and
miRDeep* yield many false positives and false negatives. On the other hand,
miRPipe correctly annotates the reverse complement sequence to its true known
miRNA in Step 5 of the workflow (DASHR blast search). For example, a sequence
“ctacagaggcgacatgggggtca” (say mir-1), which is the reverse complement of hsa-
mir-6859-3p (tgacccccatgtcgcctctgtag). The sequence of mir-1 is mapped at the
genomic location chr1:17369-17391 (chromosome_number:chromosome_start,
chromosome_end), which is the same as the genomic location of hsa-mir-6859-
3p reported in the miRBase database. The mapping strand of mir-1 is opposite
to the respective strand of hsa-mir-6859-3p. The precursor sequence generated
by miRDeep* for mir-1 is the reverse complement of the respective precursor
sequence of hsa-mir-6859 in miRBase. Hence, miRDeep* will annotate mir-1 as
a novel miRNA, while miRPipe will correctly annotate mir-1 to hsa-mir-6859 in
Step-5 of the workflow (DASHR blast search).

60



3. Identification of piRNA: Unlike most bioinformatics pipelines that either identify
miRNAs or piRNAs, miRPipe also identifies piRNAs along with the miRNAs
from the RNA-Seq data.

4. Customized reference genome: miRPipe allows users to choose the reference
genome hg19/hg38) and miRBase version (version 19/20/21/22) as per the re-
quirement. The sequence aligner used in miRPipe uses the miRBase database
for sequence annotation. If required, a user can add another database for miRNA
annotation. For example, MirGeneDB can be used instead of miRBase, and the
sequences can be annotated according to this database. If a user replaces the
miRBase annotation files with that of mirGeneDB, then miRPipe will annotate the
miRNA according to the MirGeneDB database.

5. Batch-mode operation: Since miRDeep* is a single-threaded memory-intensive
sequence aligner, the sequential operation increases the time the pipeline takes
when data of multiple subjects is required to be processed. On the other hand,
miRPipe allows the execution of sequence alignment in batch mode for multiple
subjects’ data analysis and, therefore, significantly reduces execution time in
downstream analysis. In order to provide operational flexibility in miRPipe, a user
can control whether to run a job in the sequential mode (one subject’s file or one
sample file at a time) or in the batch mode (multiple subjects’ files or multiple
samples’ files). In sequential mode, miRPipe will align one file at a time. Similarly,
in batch mode, the entire dataset consisting of multiple files is divided into several
small batches. All these batches are processed parallelly on dedicated (individual)
CPU threads. Further, the user can also control the number of threads and memory
allocation per thread (as per the system hardware RAM limits). This operation is
faster and less time-consuming than the sequential operation for a big dataset.

6. Cohort analysis and identification of dysregulated miRNAs: miRPipe can perform
cohort analysis (dataset containing multiple samples) and report the dysregulated
known miRNAs, novel miRNAs, and known piRNAs via the statistical test of
DESeq2. For cohort analysis, miRPipe can split the cohort into multiple batches,
process each batch on a dedicated thread parallel, and then use DESeq2 to report
dysregulated miRNAs or piRNAs. On the contrary, since miRDeep* can process
only one sample at a time, it does not report the dysregulated miRNAs or dys-
regulated piRNAs. Still, it can only detect miRNAs present in the fastq file of a
subject.

7. Synthetic Data Generator (miRSim): We have also developed the miRSim tool to
generate synthetic data for the extensive benchmarking of different pipelines.

8. Both miRSim and miRPipe are open-source and available publicly in an interactive
jupyter notebook at the GitHub repositories.

9. Selective pipeline execution: We have developed miRPipe in an interactive jupyter
notebook. The miRPipe pipeline is developed so that both piRNA and miRNA
pipelines can run together. If a user wants to run only one pipeline at a time, that
can be done easily in the jupyter notebook.
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3.4.3 Comparison of all pipelines on known miRNA identification

Of the existing pipelines, miRDeep2 identifies miRNAs by hierarchical sequence align-
ment followed by RNA secondary structure prediction of potential precursors and
estimation of the performance statistics of all potential precursors to filter false positives.
However, it allows mismatches of 1 to 2nt in the reads while matching the corresponding
sequence to those of known miRNAs, introducing false positives. In addition, if a known
miRNA sequence has a reverse complement, it either rejects it or annotates it as novel
miRNA. On the other hand, miRdeep* follows the same methodology as miRDeep2,
except that it incorporates an improved strategy for miRNA precursor sequence identifi-
cation and additional isomiR detection capacity. Further, it does not allow any mismatch
with known miRNAs, unlike miRdeep2, reducing the false positives. mirPRo also fol-
lows the same methodology as miRDeep2 except that it imposes a stringent condition,
wherein only perfectly mapped reads are allowed for known miRNA prediction. mirPRo
also includes isomiR detection. mirPRo pipeline does not report the paralogues of known
or novel miRNAs. mirPRo uses a Novoalign sequence aligner for the identification of
known miRNAs, allowing a maximum 2nt mismatch or three indels in one opening gap.
This could be the reason for more false positives with mirPRo.

We observed that six out of eight pipelines performed well on known miRNA. Of these,
miRPipe, miRDeep2, and miRDeep* performed best, while mirnovo, miRge2.0, and sR-
NAToolbox yielded average performance, while mirPRo comparatively underperformed.
The performance of miRDeep2 was close to miRDeep* except for a few miRNAs, whose
precursors were inconsistent for dicer processing. On the other hand, the miRDeep* tool
has an improved precursor excision strategy over miRDeep2, leading to better perfor-
mance on known miRNA identification. We have observed that the average accuracy
and average F1-score of miRDeep2 and miRDeep* across all depths for known miRNA
identification was 94.74%, 85.66% and 95.67%, 88.06%, respectively. At the same
time, miRPipe has an average accuracy and average F1-score of 96.58% and 89.95%
(Table-3.4). The improvement in the miRPipe performance on the identification of
known miRNAs was due to the DASHR blast search and seed-based clustering method.

3.4.4 Comparison of all pipelines on novel miRNA identification

For novel miRNA identification, miRDeep2, miRDeep*, mirPRo, MiR&moRe2, and
miRPipe use the hybrid approach that includes both genomic features and hairpin
structural features. A sequence has to pass through 6 conditions to be annotated as
novel miRNAs, such as 1. Position of potential mature sequence to potential hairpin
sequence, 2. Potential star sequence, 3. Potential loop sequence, 4. Number of base
pairs between mature and star sequence, 5. Percentages of reads aligned to the location
of mature miRNA for proper dicer processing (at least 90% read should be aligned) and,
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6. Log-odds probability score for potential mature miRNA. These six conditions are
used to rigorously scan the precursor sequence to identify a read as a novel miRNA.
miRDeep* additionally employs the improved precursor excision strategy compared
to miRDeep2, which leads to better performance. mirPRo has improved performance
on novel miRNA compared to known miRNA detection. It also performs better on
novel miRNA identification than miRge2.0, sRNAToolbox, and MiR&moRe2 because
mirPRo follows the same six conditions and allows a maximum mismatch of 1nt. It
considers mapped read lengths between 18 to 25nt and the fold-change criterion (that
is, keep only mapped reads with the highest read stack with at least two-fold change
compared to the second-highest read stack) to reduce the false positives. Since miRPipe
is an improvisation for reducing false positives and false negatives by incorporating
DASHR blast search and seed-based clustering on novel miRNA sequences, it yields
better results than these tools and other pipelines. Of note is that miRPipe has the lowest
false positives and false negatives compared to other pipelines.

sRNAToolbox imposes stringent conditions for novel miRNA prediction, such as within-
cluster ratio, 5’ fluctuation, minimum number of hairpin bindings, minimum number of
mature bindings, length intervals, and minimum reads. The threshold for each feature is
derived from the same machine-learning model training dataset used in miRAnalyzer
[216]. We have observed that no novel miRNA was identified in miRSim simulated
synthetic data due to the sRNAToolbox stringent conditions. The sRNAToolbox has also
not identified any novel miRNAs in the synthetic data experiment on the identification
of reverse complement sequences as known miRNAs. Moreover, sRNAToolbox has
reported only three, one, and three novel miRNAs in the CLL dataset (GSE123436), lung
cancer dataset (GSE37764), and breast cancer dataset (GSE171282) dataset, respectively.
None of the novel miRNAs were found as dysregulated in differential expression analysis
in any of the datasets. Similarly, miRge2.0 utilizes an SVM machine-learning model
that uses 22 structural and compositional features for novel miRNA predictions. The
SVM model has been trained on 17 tissues of the human and mouse datasets. Due to
these stringent conditions, miRge2.0 did not report any novel miRNAs in synthetic data
benchmarking experiments. Moreover, the miRge2.0 pipeline identified 18, zero, and
zero novel miRNAs in the CLL dataset (GSE123436), lung cancer dataset (GSE37764),
and breast cancer dataset (GSE171282) dataset, respectively. None of the identified
novel miRNAs were found as dysregulated in differential expression analysis in any of
the datasets. This could be due to the lack of generalizability of the SVM model trained
by miRge2.0, which has led to such high false negatives.

Similarly, the mirnovo pipeline uses machine learning (random forest model) with 12
coverage profile features, 12 sequence complexity, and nine genomic features hairpin
structural features for novel miRNA identification. It provides not only novel miRNAs
but also other non-coding RNAs such as tRNA or rRNAs. It is also observed to have

63



high false negatives. All three above (sRNAToolbox, miRge2.0, and mirnovo) are simple
methods that do not impose many stringent conditions for detecting novel miRNAs and,
hence, lead to many false positives.

MiR&moRe2 identifies loop-RNAs, moRNAs, and novel miRNAs with the precursor ex-
cision methodology similar to miRDeep2, except that the candidate precursor sequences
are extended to 30nt on both upstream and downstream for the identification of the
possible moRNAs. It also checks for the sequences that are aligned in the offset region
or loop region of the miRNAs hairpin and can be annotated as moRNAs and loop-RNAs.
The miRNA sequences that are neither moRNAs nor loop-RNAs and located in close
proximity to the mature sequence of the hairpin precursor are considered novel miRNAs.
MiR&moRe2 lacks the identification paralogues and has many false negatives due to an
inefficient precursor excision strategy. miRPipe addresses the issues of identification
of paralogues functional annotation of novel miRNAs, utilizing both the genomic and
precursor features and, hence, outperforming all the other pipelines.

3.4.5 Comparison of all pipelines on known piRNA identification

Among all these pipelines, only miRPipe and sRNAToolbox identify piRNAs and,
hence, reported these in the synthetic data experiments. We observed average accuracy
and a low F1-score for piRNA identification in the sRNAToolbox due to high false
negatives. In miRPipe, the stringent condition of zero nucleotide mismatch in the seed
region and no reverse complement alignment helped in reducing the false positives
during piRNA identification. Compared to other pipelines, sRNAToolbox also reports
other non-coding RNAs (long non-coding RNAs, piRNAs etc.) using blast search for
all unmapped/unassigned reads to several remote databases hosted at NCBI (such as
GenBank, EMBL etc.) with the help of several helper tools in sRNAToolbox such as
Ensembl Parser, NCBI Parser, RNA central parser, and Genomic tRNA database parser.

3.4.6 Assessment of bioinformatics workflow using sequence homol-
ogy

In this study, we assessed the performance of the bioinformatics workflow by introducing
the notation of TP read, defined as "A read is counted as TP if it is correctly identified
by the pipeline". In the context of sequence analysis, the following two key parameters
are considered for a sequence to be “correctly identified”:

1. Sequence alignment with Reference Genome: The first step for a sequence to be a
TP sequence is to precisely be mapped with zero nucleotide mismatch with respect
to the reference genome. This criterion ensures the accuracy and robustness of
sequence alignment.

2. Valid miRNA Characteristics: In the second step, a valid miRNA sequence must
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exhibit specific characteristics, including a valid precursor sequence within the
reference genome and forming a stable hairpin structure.

Only the sequences meeting both criteria are deemed true positives, ensuring their
conformity to established miRNA attributes. In this scenario, the sequence homology is
accounted for in identifying true positive sequences and calculating accuracy as follows:

1. Sequence Alignment: Within the miRPipe workflow, we considered the sequence
of length 17 – 24nt for identifying miRNA sequence. We employed miRDeep*
for miRNA sequence alignment. For mapping the query sequence to the human
reference genome, the miRDeep* aligner does not allow any nucleotide mismatch.
It maps the query sequence to the reference genome only when all the nucleotides
of the query sequence match precisely with the reference sequence. Here, the
sequence homology is considered by assessing the similarity between the query
sequence and reference genome sequence.

2. piRNA Sequence Alignment: Similarly, for the piRNA sequence, we incorporated
the stringent criteria of zero nucleotide mismatch while mapping with the reference
genome, hence ensuring maximum similarity between the query sequence and
reference genome.

3.4.7 General remarks and limitations of the study

It is possible that the combination of different methods can improve the results. The
combination of multiple methods can be either the consensus of results of all methods or
the union of results of all methods. If we consider the consensus results, it is possible
to reduce false positives. However, it may lead to high false negatives because of the
methodological differences of pipelines that impact miRNA identification. Similarly,
considering the union results, it may lead to high false positives, which is also not good.
We believe that miRPipe addresses this issue because miRPipe is an end-to-end unified
workflow that can report all important miRNAs/piRNAs in one go with the least false
positives or false negatives, as shown in the benchmarking results.

We have validated miRPipe using miRSim simulated synthetic data with ground truth and
three publically available real RNA-Seq expression datasets (GSE123436, GSE37764,
GSE171282). The bioinformatics pipeline can also be validated using some publicly
available sequencing data with added synthetic microRNAs, usually using an equimolar
mixture of 962 synthetic microRNAs miRXplore Universal Reference from Miltenyi
[217]. Further, miRPipe or any other bioinformatics pipeline can also be tested on the
comprehensive atlas of the human transcriptome from “The RNA Atlas expands the
catalogue of human non-coding RNAs.” [218], which includes small polyA RNA as well
as total RNA from 300 human tissues and cell lines. Since miRPipe is an open-source
bioinformatics pipeline, any future researcher can test the pipeline on these datasets.

miRPipe is a generic workflow and can be used for both human and non-human datasets.
Currently, the miRPipe pipeline has been tested for human datasets only and has default
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parameters, such as miRNA sequence length, piRNA sequence length, etc., adjusted
according to the human genome. However, the miRPipe pipeline can also be used for
the non-human genome. For this, the user needs to replace the human genome and its
reference index with the corresponding non-human reference genome, its reference index
and the corresponding sequence annotation database in the sequence aligner step (Step
3) of the miRPipe pipeline. After replacing the reference and annotation files, miRPipe
can be used for the non-human genome, as the core algorithm will remain the same.
Similarly, the applicability of the miRSim simulator to the non-human genome can be
extended by providing the non-human genome reference sequences and adjusting the
seed and xseed region location within the miRSim tool. To make this adjustment, we
have provided miRSim with command-line and Jupyter Notebook versions, enabling
users to modify parameters according to their genome requirements easily.

Notably, miRPipe was developed between 2019 and 2021. The developer team was
actively supporting the Bowtie 1 sequence aligner during this period. The most recent
update for Bowtie 1 was posted on September 13, 2021. The source codes of the miRSim
synthetic simulator are available at Zenodo open-source repository, published on June
14, 2021. Further, we have provided the dockerized version of the miRPipe pipeline to
ensure reproducibility. This approach ensures the smooth deployment of the miRPipe
pipeline irrespective of system configurations and prevents package dependency or
conflict issues. Furthermore, the dockerization also ensures the operational consistency
of miRPipe even when Bowtie1 is deprecated. However, we acknowledge the current
status of Bowtie 1 being deprecated, with Bowtie 2 now available as an alternative. In the
future, we will focus on releasing the next version of the miRPipe docker, incorporating
the recent versions of the tools used within the miRPipe workflow and the capability to
analyze non-human genome data.
All the source codes necessary to reproduce the results given in figure-3.4 (a-l) and the
Table-3.3 are available in the GitHub for the synthetic data. The synthetic fastq data
files are also available in the same repository. The open-source synthetic data simulator
tool miRSim is available at GitHub. The RNA-Seq CLL real RNA-Seq expression data
data can be accessed from the repository GSE123436. Similarly, lung cancer and breast
cancer real RNA-Seq expression data can be accessed from the repository GSE37764
and GSE171282 respectively.

3.5 Conclusion
The synthetic data experiment validation and benchmarking strategy, along with the
validation on real RNA-Seq expression data, establishes miRPipe as a robust, reliable, and
reproducible pipeline for the detection of known/novel miRNAs, paralogues, and piRNAs
from the RNA-Seq data. miRPipe outperforms recent state-of-the-art pipelines. miRPipe
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can jointly identify miRNAs and piRNAs and carries out parallel batch processing
for the efficient utilization of the computational resources. The Jupyter Notebook
for bioinformatics pipeline and containerization of tools makes its configuration and
deployment easy with minimum effort. As we delved deeper into CLL, we learned
about the critical importance of MM, a vital subtype of blood cancer that exhibits a
unique, benign precursor stage. MM is characterized by the presence of abnormal plasma
cells in the blood, which presents a distinctive challenge in distinguishing between this
precursor stage, known as MGUS, and the disease stage itself. Additionally, there
is a pressing need to identify reliable biomarkers for tracking disease progression in
MM. Our concentrated efforts to pinpoint differentiating biomarkers between MM and
MGUS serve as a foundational step toward gaining a more profound understanding of
MM pathogenesis and identifying the genomic events that drive disease progression.
In the forthcoming chapter, we delve into the application of artificial intelligence (AI)
in genomics, focusing on developing application-aware models aimed at discerning
biomarkers capable of distinguishing MM from MGUS. We introduce an innovative
GCN-based bio-inspired model meticulously engineered to identify pivotal genomic
biomarkers, including genes and genomic features, and to dissect disrupted signaling
pathways, providing insights into their roles in disease progression. The intricacies of
this model and post-hoc interpretability analysis are presented in-depth in the following
chapter.
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Chapter 4

Bio-inspired DL model for the identification of altered
Signaling Pathways in Multiple Myeloma using WES
data

4.1 Introduction
Multiple Myeloma is a neoplasm of malignant plasma cells in the bone marrow, preceded
by the precancerous stage of MGUS. However, in clinical practice, the distinction
between different stages is, at times, ambiguous. The role of early treatment and the type
of such treatment to prevent progression to MM or to reduce the associated morbidity
is also not clear. Thus, it would be interesting to decipher genes, genomic biomarkers
and crucial pathogenic prognostic factors that are representative of MGUS and MM in
order to develop appropriate therapeutic interventions to halt the progression to overt
MM. In this study, we address the challenge of identifying significant biomarkers that
can effectively distinguish MGUS from MM by employing a multidimensional analysis
of exome profiles and their PPI network within a bio-inspired deep learning-based
architecture named the “BDL-SP” model. Additionally, we underscore the importance
of selecting models based on their interpretability within the context of the application
domain. We rank the genes based on their distinguishing ability in MM and MGUS. The
pathway analysis of these top-ranked genes sheds light on the disruptive role of pathways
in MM pathogenesis. These novel findings hold the potential to pave the way for tailored
therapeutic interventions aimed at halting the progression to overt MM in the future.

4.2 Material and Methods

4.2.1 Whole-exome sequencing datasets of MM and MGUS patients

In this work, we utilized two external WES datasets available with controlled access and
one in-house WES dataset of MM and MGUS patients. These datasets are: 1) Multiple
Myeloma Research Foundation (MMRF) CoMMpass data (of the American population),
2) EGA dataset (of the European population), and 3) AIIMS WES dataset (of the Indian
population). The MMRF CoMMpass (https://research.themmrf.org) is an open-source,
extensive clinical and molecular database of MM. The majority of MM samples in the
MMRF CoMMpass dataset (>75%) were collected from people of American ethnicity.
The MMRF CoMMpass dataset is aimed to provide molecular characterization and to



correlate clinical datasets of MM patients for finding new, actionable targets to facilitate
future clinical trial designs [134]. In our study, we have included 1092 bone marrow
(BM) samples of MM collected from the Genomic Data Commons (GDC) portal via
dbGaP authorized access (phs000748; phs000348). This is to note that the MMRF dataset
also contained 20 peripheral blood samples that were not included in this study for the
uniformity of the data. Similarly, the EGA contains over 700 studies of multiple diseases
(including cancer and non-cancer) worldwide. EGA (http://www.ebi.ac.uk/
ega/) was launched in 2008 by the European Molecular Biology Laboratory’s European
Bioinformatics Institute (EMBL-EBI) to provide secure storage of biological data and
distribution only to authorized users [135]. The whole exome sequencing data of 33
MGUS European patients were obtained from the EGA repository EGAD00001001901.
Besides the above two external datasets, we also included the WES data collected in-
house from patients of Indian origin registered at AIIMS, New Delhi, India. This dataset
included 82 MM and 28 MGUS samples. We have used the tumor-normal matched pairs
of all BM samples obtained from MMRF, EGA and AIIMS WES data repository. Thus,
we have included MGUS and MM WES datasets from three different databases.

4.2.2 Methods

Data pre-processing

Four variant callers, namely, MuSE, Mutect2, VarScan2, and SomaticSniper were used
for finding the variants in MM patients from the MMRF CoMMpass study. Therefore,
for each patient, four VCF files corresponding to each variant caller were downloaded
from the GDC portal via dbGaP authorized access (phs000748; phs000348). Exome data
obtained from EGA and AIIMS were processed with an exome sequencing pipeline [219]
using BWA and GATK, which is also considered a standard pipeline and mostly adopted
to process the exome sequencing data. Similar to the MMRF data, the SNVs in EGA
and AIIMS exome sequencing data were extracted using MuSE, Mutect2, VarScan2, and
SomaticSniper variant callers. SNVs were annotated using ANNOVAR tool that provides
information about mutated genes, mutation type, the property of being deleterious or not,
and clinical validation. In our study, we considered 23 types of functionally significant
SNVs clustered into three groups based on their functional impact as follows: 1) Non-
Synonymous (NS) SNV Group: This group consists of non-synonymous SNVs, exonic,
ncRNA_exonic, stop gain, stop loss, start loss, exonic; splicing, splicing, frameshift
insertion, and frameshift deletion type SNVs; 2) Synonymous SNV Group: This group
consists of synonymous SNVs, UTR3 and UTR5 SNVs; and 3) Other SNV Group:
This group consists of non-frameshift insertion/deletion/substitution, intronic, intergenic,
ncRNA_intronic, upstream, downstream, unknown, and ncRNA_splicing SNVs.

The benign SNVs were filtered out using the FATHMM-XF method. Genomic annota-
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Gene 1 2 3 4 . . . . . . . . . . . . . . . . . . . . . 26 27 28
MAX . . . . . . . . . . . . . . . . . . . . . . . . . . . .
TP53 . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Feature 
Number Feature Name

1 Total number of the SNVs
2 Total number of the SNVs in synonymous group
3 Maximum VAF of the SNVs in synonymous group
4 Median VAF of the SNVs in synonymous group
5 Mean VAF of the SNVs in synonymous group
6 VAF’s standard deviation of the SNVs in synonymous group
7 Maximum AD of the SNVs in synonymous group
8 Median AD of SNVs in synonymous group
9 Mean AD of SNVs in synonymous group

10 AD’s standard deviation of the SNVs in synonymous group
11 Total number of SNVs in non-synonymous group
12 Maximum VAF of SNVs in non-synonymous group
13 Median VAF of SNVs in non-synonymous group
14 Mean VAF of SNVs in non-synonymous group
15 VAF’s standard deviation of the SNVs in non-synonymous group
16 Maximum AD of SNVs in non-synonymous group
17 Median AD of SNVs in non-synonymous group
18 Mean AD of SNVs in non-synonymous group
19 AD’s standard deviation of the SNVs in non-synonymous group
20 Total number of SNVs in other group
21 Maximum VAF of SNVs in other group
22 Median VAF of SNVs in other group
23 Mean VAF of SNVs in other group
24 VAF’s standard deviation of the SNVs in other group
25 Maximum AD of SNVs in other group
26 Median AD of SNVs in other group
27 Mean AD of SNVs in other group
28 AD’s standard deviation of the SNVs in other group

Description of genomic features used in the feature matrix

28 Genomic Feature
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Figure 4.1: Schematic layout of genomic feature matrix used for the training of proposed
BDL-SP model. The dimension of the genomic feature matrix is 824×28 with 824
significantly altered genes (See Table S1 of supplementary material) and 28 genomic
features obtained from MMRF, EGA and AIIMS WES datasets using the AI-based
workflow shown in Figure 2. The genomic features were extracted from three groups
of SNVs, namely: 1. Nonsynonymous SNV group, 2. Synonymous SNV group, and 3.
Other SNV groups. A total of nine features were extracted for each SNV group to learn
the distributive statistics (maximum, mean, median, and standard deviation).
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tions of SNVs (i.e., SNV type, mutated gene name, etc.) obtained from ANNOVAR were
pooled and analyzed to identify the top significantly mutated genes using the ‘dndscv’
tool [220] based on the q-value ( 0.05) in both MM and MGUS individually. Union
of significantly mutated genes from all four variant callers for MM (1174 patients) and
MGUS (61 patients) groups led to 617 and 362 genes, respectively, and further union
of the genes mentioned above yielded a total of 824 genes (Table S1 of supplementary
material). For each gene, a total of 28 genomic features were created that include the
total variant count and the distributive statistics (maximum, mean, median, and standard
deviation) of VAF and AD of each of the three groups of SNVs (nonsynonymous SNV
group, synonymous SNV group, and Other SNV group). A detailed description of the
28 genomic features is presented in Figure-4.1. The complete AI workflow is presented
in Figure-4.2. For gene-gene interaction network information, we used the STRING
database to get the PPI of 824 significantly altered genes. The STRING database con-
tains all the known and predicted associations of protein-protein interactions, including
physical and functional associations for more than 14000 organisms.

Proposed shallow bio-inspired deep learning architecture from signaling pathways
(BDL-SP):

The conventional convolutional neural network (CNN) often fails to learn data from
non-Euclidean space because non-Euclidean data cannot be modelled into n-dimensional
linear space. The PPI network used in our model has a similar underlying non-Euclidean
structure. Thus, a GCN could help us learn the PPI data of non-Euclidean space. The
proposed BDL-SP model performs disease classification using a graph convolutional
network that learns significant features from the exonic mutational profiles of genes in-
teracting among each other according to the PPI network interactions. The mathematical
description of the GCN model is as follows:

For a given undirected graph, g = (�, ✏) where � is a collection of a finite set of nodes
and ✏ is a collection of the finite set of edges, a graph convolution network learn the node
representation by applying the graph laplacian with the input feature matrix X 2 RN⇥p

(where N denotes the number of nodes and p the number of features) and follows the
propagation rule for each layer shown below:

H
(l+1) = �(LH(l)

W
(l)) (4.1)

Where L denoted the normalized graph laplacian defined below.

L = I �D
� 1

2 ÃD
� 1

2 = U⇤UT (4.2)

Where Di,j = ⌃n
i=1A(i, j), degree matrix of the graph and Ã = A+ I , where A is the
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Variant Filtration

Extraction of significantly mutated 
genes from each variant caller
for both MGUS and MM datasets.

BAM Files

SNV 
Identification

Genomic Feature extraction of three 
SNV clusters give a total of 28 features 
for each gene of every patient.

Identification of MM driver & MM actionable genes; Identification of 
oncogene and tumor-suppressor genes; Pathway analysis to find altered 
pathways;  Noting the differentiable pattern in MGUS & MM.

VCF Files

1092 MM VCF files in MMRF Dataset

MuSE Mutect2

Somatic 
Sniper Varscan2

No. of Variants in MGUS: 49423 variants 
in MuSE; 445872 variants in Mutect2; 662645 variants in 

Somatic-Sniper; 67017 variants in Varscan2.
No. of Variants in MM: 798222 variants 

in MuSE; 12208915 variants in Mutect2; 12282973 
variants in Somatic-Sniper; 1160770 variants in 

Varscan2.

Final list of top significantly mutated genes

SHAP Analysis to obtained feature 
importance and top genes

5-fold cross validation of BDL-SP

Protein-Protein Interaction Network for 
824 significantly altered genes from 

STRING Database

Feature matrix (824 genes x 28 
features) is obtained for all 1235 

patients.

Union of significantly mutated genes from all 4 
variant callers for MGUS lead to 362 genes.

&
Union of significantly mutated genes from all 4 

variant callers for MM lead to 617  genes.
&

Union of above significantly altered genes in 
MGUS and MM lead to 824 genes in total.

Identification of significantly mutated 
genes for each individual variant 
caller using dndscv based on q-value 
(≤ 0.05)

Keeping 23 types of functionally significant SNVs
and clustered them into three groups i.e.
1. Non-synonymous SNV Group: Non-synonymous,
exonic, ncRNA_exonic, stop gain, stop loss, start loss,
exonic;splicing, splicing, frameshift insertion, and
frameshift deletion SNVs,
2. Synonymous SNV group: Synonymous, UTR3,
and UTR5 SNVs, and
3. Other SNV Group: Non-frameshift insertion/
deletion/ substitution, intronic, intergenic,
ncRNA_intronic, upstream, downstream, unknown,
and ncRNA_splicing SNVs.

Filtering SNVs declared as benign using Fathmm-
XF method

Variant Annotation 
using ANNOVAR

28 MGUS BAM files in AIIMS Dataset
33 MGUS BAM files in EGA Dataset
82 MM BAM files in AIIMS Dataset

Figure 4.2: AI-based workflow to infer differentiable genomic biomarkers to identify
MGUS and MM using the WES data.
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adjacency matrix, U is the matrix of eigenvectors of the graph, ⇤, denote the respective
eigenvectors, and W 2 Rp⇥m (where m corresponds to the number of filters in the graph
convolution) denotes a learnable weight matrix. A GCN model transforms a graph into
the spectral domain by graph Fourier transformation defined as below:

x ⇤ g = UgU
T
x (4.3)

The above Fourier transformation can be computed by approximating Chebyshev poly-
nomials and the renormalization trick mentioned in [30] as:

Z = D̃
� 1

2 ÃD̃
� 1

2XW (4.4)

The infographic representation of the architecture of BDL-SP with an end-to-end pipeline
is shown in Figure 3 and is explained here. The BAM files from the EGA and AIIMS
datasets and VCF files from the MMRF dataset are processed to extract 824 significantly
altered genes using the dndscv tool (as shown in the WES Data pre-processing block) in
Figure-4.3. The interaction among these 824 genes is extracted using the PPI network
(from the STRING database). A network of nodes and edges is set up using this
information, where each node denotes one of these 824 genes, and each link implies that
the two nodes/genes of that link were connected as per the PPI network. Each node is set
up with its 28-length feature vector extracted earlier (as shown in Figure-4.1). Hence, the
28-length genomic feature vectors of all 824 genes are added to the network established
using the PPI network. This input layer is followed by two hidden layers of GCN, which
are further followed by one fully connected layer of 824 neurons to 2 neurons, giving
output through a log-softmax activation function. Since there were 95% samples of
MM class and 5% samples of MGUS class, which made the data highly imbalanced
(class imbalance ratio = 19.22), a cost-sensitive loss function was utilized to train the
BDL-SP model in order to deal with the data imbalance problem. BDL-SP is trained in
a supervised fashion, where the MM/MGUS target class label, along with the feature
matrix of 824⇥ 28, is provided as input to the architecture. The network is trained until
the loss reduces and saturates. Five-fold cross-validation was performed, which led to
the training of five BDL-SP classifiers, one for each fold of test data. Next, the ShAP
algorithm is used on these five trained BDL-SP classifiers to obtain the top genomic
features and significantly altered signaling pathways, as explained in the next subsection.
The setting of layers of BDL-SP and the values of the hyperparameters are shown in
Table-4.1.
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Figure 4.3: Infographic representation of the proposed AI-based BDL-SP model architec-
ture and the application-aware post-hoc analysis for the identification of pivotal genomic
biomarkers that distinguish MGUS from MM. The BAM files from the EGA and AIIMS
datasets and VCF files from the MMRF dataset are processed to extract 824 significantly
altered genes using the dndscv tool (as shown in the WES Data pre-processing block).
The interaction among these 824 genes is extracted using the PPI network (from the
STRING database). A network of nodes and edges is set up using this information,
where each node denotes one of these 824 genes, and each link implies that the two
nodes/genes of that link were connected as per the PPI network. Each node is set up
with its 28 genomic features extracted for the corresponding gene, as explained earlier.
This input layer is followed by two hidden layers of GCN, one fully connected layer,
and a softmax layer at the output. Thus, each subject’s WES data is analyzed, and the
feature vectors of all 824 genes are extracted. These are given as input along with the
subject’s MM/ MGUS target class label to train the GCN in a supervised mode. Once
the BDL-SP model is learned to distinguish MGUS from MM, the top genomic features
and significantly altered signaling pathways were obtained from the ShAP algorithm and
the Enrichr Pathway Database.
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Table 4.1: Hyperparameters values and layer dimensions of the BDL-SP model architec-
ture

GCN Architecture Attribute/ Hyperparameter Hyperparameter Value
Number of GCN layers 2

GCN layer dimensions

Input sample dimension: 824x28
1st layer dimension (for each node): 28x7
2nd layer dimension (for each node): 7x1
Output dimension: 824x1

Output linear layer dimension 824x2 (number of classes = 2)

Dropout 0.75

Cost function and adjusted cost
for class imbalance

Cost function: Cross-entropy loss
Cost adjusted: 20.0

GCN weight initlization Uniform Xavier

Quantitative benchmarking of BDL-SP model with traditional machine learning
classifiers

We have benchmarked the proposed BDL-SP model with six baseline ML models
(random forest, decision tree, logistic regression, XGBoost, CatBoost, and SVM from
scikit-sklearn [221]). The conventional cost-blind machine learning models do not
account for the imbalanced classes in the data and tend to make decisions favoring the
majority class resulting in misclassification. In the case of medical diagnosis, such
misclassification can lead to erroneous direction of strategic treatment, causing patients
to suffer. In our study, there were 95% samples of MM class and 5% samples of MGUS
class, which made the data highly imbalanced (class imbalance ratio = 19.22). Therefore,
we have used cost-sensitive ML models to account for the class imbalance in our data.
During training, the cost-sensitive loss function penalizes the mistake in identifying each
MGUS sample (minority class) more than the mistake in identifying each MM sample
(majority class). This ensures that the classifier is not biased toward the majority class
and learns to identify the samples of both classes. These baseline models are trained
with the traditional data pre-processing pipeline using principal component analysis
(PCA). Each baseline ML model was trained exhaustively with five-fold cross-validation,
where the confusion matrix of the hold-out set was kept separate for each fold. The final
confusion matrix was obtained by adding the confusion matrices of all five hold-out sets,
and the performance metrics were calculated for each ML model.
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Qualitative application-aware post-hoc benchmarking of BDL-SP model using
ShAP

ShAP is an algorithm that measures the significance of an attribute in the prediction of a
model, scoring each attribute proportional to its contribution. Therefore, it was utilized
to explain the post-hoc explainability of the BDL-SP model. The most-contributing
genomic features and significantly altered genes at the group (i.e., either MGUS or MM)
as well as at the individual sample-level were identified. Since five-fold validation was
carried out during training, the ShAP algorithm was applied to each trained classifier
to obtain the significant genomic attributes (both genes and genomic features) for each
sample. Note that the ShAP score can either be positive or negative. Here, the positive
ShAP score for an attribute indicates its contribution to the model’s prediction toward
the MGUS class (positive class). In contrast, the negative score indicates its contribution
to the model’s prediction toward the MM class (negative class). Therefore, the higher the
magnitude of the ShAP score, the higher its impact on the model’s positive class outcome.
Moreover, only those samples were considered for extracting ShAP interpretability that
were correctly predicted by at least one of the five classifiers.
Next, we devised the algorithms for the estimation of the best ShAP score: 1) for
all 824 significantly altered genes (Figure-4.4(A)) and 2) for all 28 genomic features
(Figure-4.4(B)) at a sample-level to understand their contribution to the BDL-SP model’s
prediction. The pseudo-codes with mathematical descriptions for estimating the best
ShAP scores for genes and genomic features are provided in Table-4.2, Algorithm-A,
and Algorithm-B. The algorithms shown in Figure-4.4(A) and 4.4(B) take the sample
feature matrix as input and estimate the best ShAP scores for genes and genomic features
at a sample-level. For each sample feature matrix, the corresponding sample class was
predicted using all five trained classifiers of the BDL-SP model and the ShAP algorithm
was applied only to those classifiers that predicted the sample’s class correctly. Here,
the ShAP score for all the genomic attributes was collected at the classifier-level and the
sample-level. For each genomic attribute, the best ShAP score was first calculated at
a classifier level. Then, the final best ShAP score was estimated among all classifiers
at a sample-level. For each gene, we first collected the ShAP score of all 28 genomic
features at a sample-level and then grouped them based on their positive and negative
signs. Next, we compared the absolute value of the sum of ShAP scores of genomic
features having positive ShAP scores with the absolute sum of those having negative
ShAP scores. The ShAP score having the largest absolute value was considered the best
ShAP score for that gene and the classifier. This step was repeated for all those classifiers
that predicted the sample’s class correctly, and the best ShAP score was saved for each
of them. The ShAP score, having the largest absolute value among all the classifiers, was
considered the best ShAP score for a gene at a sample-level. For a better clarity of the
steps employed in the estimation of the best ShAP scores of significantly altered genes
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Figure 4.4: Flowchart showing steps for estimating the best ShAP score for (A) 824
significantly altered genes and (B) 28 genomic features at sample-level to reveal their
contribution to the BDL-SP model prediction.
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and genomic features at a sample-level, one may refer to Figure-4.4(A) and Algorithm-A
of Table4.2, Figure-4.4(B) and Algorithm-B of Table4.2, respectively.

Similarly, for each genomic feature, we first collected the ShAP score of all 824 genes at
a sample-level and grouped them based on their positive and negative signs. Next, we
compared the absolute value of the sum of ShAP scores of genes having positive scores
with the sum of ShAP scores of genes having negative ShAP scores. The ShAP score
having the largest absolute value was considered the best ShAP score for a genomic
feature and the classifier. We repeated the above step for all the classifiers that predicted
the sample’s class correctly and saved the best ShAP score for each classifier. The ShAP
score, having the largest absolute value among all the classifiers, was considered the best
ShAP score for that genomic feature at a sample-level. Once the best ShAP scores were
obtained for all the genes and all the genomic attributes, the top-ranked genes and the
top-ranked genomic attributes were identified at the group-level and at the sample-level.

Further, the top-ranked significantly altered genes revealed by BDL-SP were also com-
pared with the MM-related studies to identify the previously reported significantly
altered genes. We included information from multiple databases for model validation
and post-hoc analysis at gene level analysis (OncoKB, COSMIC, IntoGen, and TargetDB
databases). We downloaded a list of 1064 cancer genes from OncoKB to deduce the OGs
and TSGs in our top mutated genes. Further, 318 OGs and 320 TSGs obtained from the
COSMIC database were also used to deduce OGs and TSGs in our top-mutated genes.
Similarly, we created a list of MM driver genes reported by [222, 87]. MM Driver genes
were also extracted from the IntoGen database [223] to infer MM driver genes present
in our top mutated gene list. Finally, a list of 180 AGs from the COSMIC database
and 135 AGs from the TargetDB database [224] was used to infer the AGs present in
our top mutated gene list. The top-ranked significantly altered genes were grouped into
four categories based on their functional significance as follows: 1. OGs; 2. TSGs; 3.
ODGs; 4. AGs. The top-ranked significantly altered genes in each of the above gene
categories were then collected at the group-level (MM/MGUS) and the sample-level.
We also checked the role of genomic features on the disease classification in post-hoc
interpretability analysis of the BDL- SP model.

Statistical analysis

We performed the unpaired Wilcoxon rank-sum statistical analysis to study the impact
of ethnicity in MM. In this analysis, we first extracted the top significantly altered genes
from the WES data of MGUS/MM patients of American (MMRF), European (EGA),
and Indian (AIIMS) populations using the top-performing BDL-SP model. Next, for
each sample, we computed the total number of significantly altered genes that belonged
to the reported categories of OGs, TSGs, ODGs, and AGs of MM literature. Then, we
performed a statistical comparison of the number of significantly altered genes of the
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reported category of OGs, TSGs, ODGs, and AGs on the groups of American (MMRF),
European (EGA), and Indian (AIIMS) populations to study the impact of ethnicity on
individual gene category.

Gene pathway analysis

The significant genes identified by BDL-SP, which helped differentiate MM from MGUS,
were mapped back to the significant gene list obtained for MM and MGUS using
the dndscv tool. Some genes were found to be common in both groups, while some
were found to be significantly mutated either in MGUS or in MM only. Pathway
analysis was done on the top 500 genes obtained from the BDL-SP model. KEGG and
Reactome pathways were found via Enrichr gene set enrichment analysis web server
[225, 226, 227].

Impact of Nonsynonymous SNVs on protein structure

To evaluate the influence of nonsynonymous SNVs on protein structure and function,
we initially collate those classified as pathogenic by the FATHMM-XF algorithm and
identified by all four variant callers (MuSE, Mutect2, SomaticSniper, and Varscan2).
These SNVs are then refined using four deleteriousness scores: SIFT, PolyPhen2-
HDIV, PolyPhen2-HVAR, and PROVEAN, considering only those deemed deleterious
or damaging by all four scores. Subsequently, utilizing ANNOVAR, we ascertain the
affected Pfam domains to gain deeper insights into the ramifications of these SNVs
on protein function. Finally, we utilized SWISS-MODEL [228] for visualizing their
corresponding structural conformation.

4.3 Results
Using the dndscv tool (as shown in Figure-4.2), 362 and 617 significantly altered
genes were identified in MGUS and MM, respectively. Of these, 155 genes were
common in MGUS and MM. The complete list of all 824 genes is shown in Table S1 of
supplementary material. We then inferred the important genes that were accountable for
distinguishing MGUS from MM as obtained through our graph-based BDL-SP model.

79

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10164815/bin/ajcr0013-1155-f19.xlsx


Table 4.2: (A) Pseudo-codes of algorithm A for estimating the best ShAP score of
824 genes, (B) Pseudo-codes of algorithm A for estimating the best ShAP score of 28
features.

Algorithm A: Estimate the Best ShAP Score (BSS) for each gene at a sample level
1 Fivefold classifiers [List of five classifiers trained on each fold of test dataset]
2 CPC  [List of correct prediction classifiers, i.e. classifiers that correctly predicted

the sample’s class]
3 SFM  Sample feature matrix
4 Genes [List of 824 genes]
5 GFPSg|c  [List of genomic features having positive ShAP score for a gene “g”

and classifier “c”]
6 GFNSg|c [List of genomic features having negative ShAP score for a gene “g”

and classifier “c”]
7 CSGg|c Best ShAP score of gene “g” and classifier “c”
8 ACGS[c]g  [List of best ShAP scores of gene “g” for all the classifiers that

correctly predicted the sample]
9 BSGg  Best ShAP score of gene “g” among all classifiers

10 LBSGgenes List of the best ShAP score of all the genes among all the classifiers
11 procedure BSSgene(SFM )
12 for classifier in Fivefold classifiers do
13 Predict the sample’s class with the help of a classifier
14 if classifier predicts the correct sample class then
15 CPC  [Append the classifier in CPC list]
16 Apply ShAP algorithm on the classifier
17 Collect the ShAP score for all 824 genes on their respective 28 genomic

features for that classifier
18 for gene in Genes do
19 for classifier in CPC do
20 GFPSgene|classifier  Collect features having positive ShAP score
21 GFNSgene|classifier  Collect features having negative ShAP score
22 if

��PGFPSgene|classifier
�� >

��PGFNSgene|classifier
�� then

23 CSGgene|classifier  GFPSgene|classifier

24 else
25 CSGgene|classifier  GFNSgene|classifier

26 ACGS[classifier]gene CSGgene|classifier

27 BSGgene ACGS[argmax[|CSG| for CSG in ACSG]]
28 LBSGgenes[gene] BSGgene

29 Output LBSGgenes
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Algorithm B: Estimate the Best ShAP Score (BSS) for each genomic feature (GF) at a
sample level

1 Fivefold classifiers [List of five classifiers trained on each fold of test dataset]
2 CPC  [List of correct prediction classifiers, i.e. classifiers that correctly predicted

the sample’s class]
3 SFM  Sample feature matrix
4 Genomic Features [List of 28 genomic features]
5 GPSgf |c [List of genes having positive ShAP score for genomic feature “gf” and

classifier “c”]
6 GNSg|c [List of genes having negative ShAP score for genomic feature “gf” and

classifier “c”]
7 CSGFgf |c Best ShAP score of genomic feature “gf” and classifier “c”
8 ACGFS[c]g  [List of best ShAP scores of genomic feature “gf” for all the classi-

fiers that correctly predicted the sample]
9 BSGFg  Best ShAP score of genomic feature “gf” among all classifiers

10 LBSGFgenes List of the best ShAP score of all genomic features among all the
classifiers

11 procedure BSSGenomicFeature(SFM )
12 for classifier in Fivefold classifiers do
13 Predict the sample’s class with the help of a classifier
14 if classifier predicts the correct sample class then
15 CPC  [Append the classifier in CPC list]
16 Apply ShAP algorithm on the classifier
17 Collect the ShAP score for all 824 genes on their respective 28 genomic

features for that classifier
18 for features in Genomic Features do
19 for classifier in CPC do
20 GPSfeature|classifier  Collect genes having positive ShAP score
21 GNSfeature|classifier  Collect genes having negative ShAP score
22 if

��PGPSfeature|classifier
�� >

��PGNSfeature|classifier
�� then

23 CSGFfeature|classifier  GPSfeature|classifier

24 else
25 CSGFfeature|classifier  GNSfeature|classifier

26 ACGFS[classifier]feature CSGFfeature|classifier

27 BSGFfeature ACGFS[argmax[|CSGF | for CSGF in ACGFS]]
28 LBSGFGenomicFeatures[feature] BSGFfeature

29 Output LBSGFGenomicFeatures
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4.3.1 Comparative performance of BDL-SP and standard ML mod-
els

Using our AI-based workflow of BDL-SP (Figures-4.2 and 4.3), we trained the BDL-SP
model with a 5-fold cross-validation and compared its performance with six standard
cost-sensitive machine learning models. Results of the BDL-SP model and all the six
cost-sensitive classifiers are presented in Figure-4.5. The proposed BDL-SP model
outperformed the rest of the models in terms of balanced accuracy and AUPRC (area
under the precision-recall curve), while the area under the curve (AUC) was largest (and
equal) for the top three models. The BDL-SP model performed best with a balanced
accuracy of 96.26%. Cost-sensitive Random Forest (CSRF) performed the next best
with a balanced accuracy of 95.5%, and cost-sensitive Catboost (CS-Cat) performed the
third best with a balanced accuracy of 91.3% (Figure-4.5A). All three models reported
an Area Under the Curve (AUC) value of 0.99. BDL-SP model also outperformed other
models on AUPRC, scoring the largest AUPRC of 0.92, while the AUPRC of both CSRF
and CS-Cat model was 0.86 (Figure-4.5B-D). It is worth noting that AUPRC is one
of the most important quantitative metrics and is more relevant than AUC in terms of
unbalanced data. BDL-SP outperformed the other models on AUPRC by a great margin.
This shows that, quantitatively, BDL-SP performed best, with the CSRF model being the
second-best model.

BDL-SP identified the maximum number of minority class samples, i.e., 60 out of 61
MGUS samples and 1087 MM samples out of a total of 1153 MM samples. The second-
best model was CSRF, which identified 59 out of 61 MGUS samples and 1086 out of
1153 MM samples. The third best-performing model was CS-Cat, which identified
52 out of 61 MGUS samples and 1121 out of 1153 MM samples. Thus, BDL-SP
outperformed other models on minority class detection, and CSRF performed next to
this model. Since the performance of CSRF was close to the leading BDL-SP model on
metrics other than AUPRC, we performed post-hoc interpretability benchmarking of the
top three performing models (BDL-SP, CSRF, and CS-Cat). In post-hoc benchmarking,
we utilized the ShAP algorithm. We tabulated the top 250 and top 500 genes identified
by the top three trained models to understand the reasons for the model’s predictions.
Then, the top-ranked genes were further analyzed to identify previously reported OGs,
TSGs, ODGs, and AGs in MM. As demonstrated later in this Section with the post-
hoc interpretability analysis results, we observed that BDL-SP identified the maximum
number of the previously reported genes in the top 250 and 500 genes.

Out of 824 significantly altered genes identified from the workflow shown in Figure-
4.2, there were 31 OGs (e.g. KRAS, LTB, CARD11, NOTCH1, etc.), 43 TSGs (e.g.
HLA-A/B/C, TRAF3, TP53, SDHA, etc.), ten genes that were ODGs (KRAS, LTB, NRAS,
FGFR3, BRAF), and 19 AGs (e.g. MITF, ARID1B, ARID2, RPTOR, etc.) (Table-4.3).
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A. Balanced Accuracy, AUC, and AUPRC of BDL-SP and other cost-sensitive 
ML models

B. BDL-SP Precision-Recall Curve (PRC) 
for each fold

C. CSRF Precision-Recall Curve (PRC) for 
each fold

D. CS-Cat Precision-Recall Curve (PRC) 
for each fold

E. CS-XGB Precision-Recall Curve (PRC) 
for each fold

F. CSLR Precision-Recall Curve (PRC) 
for each fold

G. CS-SVC Precision-Recall Curve 
(PRC) for each fold

H. CSDT Precision-Recall Curve (PRC) 
for each fold

Fold-1 Fold-2 Fold-3 Fold-4 Fold-5 No Skill

Figure 4.5: (A) The benchmarking of the performance of BDL-SP with six cost-sensitive
ML models on the metrics of balanced accuracy, AUC, and AUPRC (Area under
Precision-Recall Curve). Precision-Recall Curves (PRC) for all five folds of (B) BDL-SP,
(C) CSRF, (D) CS-Cat, (E) CS-XGB, (F) CSLR, (G) CS-SVC, and (H) CSDT. No skill
line is also shown in each of the AUPRC plots, representing the inability of the classifier
to correctly classify a sample. The full form of the abbreviation used in these figures are
as follows: CSDT = Cost-Sensitive Decision Tree, CS-SVC = Cost-Sensitive Support
Vector Machine, CSLR = Cost-Sensitive Logistic Regression, CS-XGB = Cost-Sensitive
XGBoost, CS-Cat = Cost-Sensitive CatBoost, and CSRF = Cost-Sensitive Random
Forest.
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Table 4.3: Types of four different gene categories (OG, TSG, ODG, and AG) and their
counts in 824 significantly altered genes

Gene type based on functionality
Total number of previously reported

genes present in our list of 824
significantly altered genes

Oncogenes 31

Tumor-suppressor genes 43

Both oncogene and driver gene 10

Actionable genes 19

Table 4.4: Counts of previously reported 4 categories of genes as found in the post-hoc
analysis based on top 250 and top 500 genes of the top 3 models (BDL-SP, CSRF, and
CS-Cat)

Top Genes
BDL-SP

(Top-performing model)
CSRF

(Second best model)
CS-Cat

(Third best model)
OG TSG ODG AG OG TSG ODG AG OG TSG ODG AG

top 250 20 21 7 11 7 10 1 4 6 5 1 4
top 500 27 37 10 17 7 10 1 4 6 5 1 4

The number of previously reported genes (OG/TSG/ODG/AG) obtained in each category (top 250/top
500) using the best performing model is highlighted in bold.

This full list of genes is provided in Table S1 of supplementary material. For each of the
top three models, we have considered only those genes in the top 250 or top 500 gene
list that have a non-zero ShAP score in the post-hoc explainability analysis. The total
counts of previously reported genes as found in the top 250 and top 500 genes of the top
three models is shown in Table-4.4.

From Table-4.4, we observed that the BDL-SP model identified 20 out of 31 OGs in
the top 250 and 27 out of 31 OGs in the top 500 gene list, while CSRF and CS-Cat
could identify only 7 and 5 OGs in top 250 and top 500 gene list, respectively. Similarly,
out of 43 TSGs, the BDL-SP model identified 21 and 37 TSGs in the top 250 and top
500 gene lists, while CSRF and CS-Cat identified only 10 and 5 TSGs, respectively, in
the top 250 and top 500 gene lists. Further, the BDL-SP model identified 7 and all 10
ODGs, while CSRF and CS-Cat could identify only one ODG in the top 250 and top 500
significantly altered genes. Finally, the BDL-SP model identified 11 and 17 AGs in the
top 250 and top 500 genes, respectively, while CSRF and CS-Cat could identify only 4
AGs in the top 250 and top 500 significantly altered genes. The post-hoc benchmarking
of the top three models is shown in Table-4.4 and the list of OGs, TSGs, ODGs, and AGs
in the top 250 and top 500 significantly altered gene list of BDL-SP, CSRF, and CS-Cat
models is provided in Table-4.5. Since the BDL-SP model identified the largest number
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of previously reported OGs, TSGs, ODGs, and AGs, this model can be inferred as the
best-performing model and was used subsequently for inferring the top significantly
altered genes, genomic features, and altered signaling pathways to identify the pivotal
genomic biomarkers to distinguish MM and MGUS. This analysis shows that one can
obtain similar quantitative results with two or more different ML models, but one should
choose the model that is more interpretable with reference to the application domain.

4.3.2 Pathway analysis on the top 500 genes obtained from the BDL-
SP model

On comparing the top 500 significantly altered genes obtained from the BDL-SP model
(that helped in differentiating MM from MGUS) to the significant gene list obtained
for MM and MGUS using the dndscv tool, 301 genes were observed to be statistically
significantly mutated only in the MM cohort, 101 genes were observed to be statistically
significantly mutated only in the MGUS cohort, while 98 genes were observed to be
statistically significantly mutated in both MM and MGUS cohorts. The set of 301 genes
that were found to be significantly mutated only in the MM cohort included several
important OGs, ODGs, TSGs, and AGs such as BCL7A, BRAF, CARD11, CYLD, DIS3,
EGR1, FAM46C, IGLL5, KRAS, KMT2D, NRAS, MECOM, etc. Similarly, the set of 101
genes significantly mutated only in the MGUS cohort included APC, FAM47B, MGAM,
NOTCH1, TYRO3, etc. The set of 98 common genes observed to be significantly mutated
in MGUS and MM cohorts included AMER1, FANCD2, HLA-B, KMT2C, PABPC1,
TRRAP, etc. The complete list of top significantly altered genes only in MM, only in
MGUS, and common in both MM and MGUS is provided in Table S7 of supplementary
material.

Enrichr and Reactome were used to infer the KEGG and Reactome pathways altered
by 399 MM and 199 MGUS genes. A total of 5 KEGG pathways inferred from Enrichr
were significantly altered in MGUS (Table S2 of supplementary material) and 108
KEGG pathways were significantly altered in MM (Table S3 of supplementary material).
Similarly, a total of 10 Reactome pathways inferred from Enrichr were significantly
altered in MGUS (Table S2 of supplementary material) and 134 Reactome pathways
inferred from Enrichr were significantly altered in MM (Table S3 of supplementary
material). Further, we grouped the significantly altered pathway into four categories
based on the variations in their significance with disease progression from MGUS to
MM as follows:

1. Category-1: Pathways that become more significant with disease progression from
MGUS to MM.

2. Category-2: Pathways that become less significant with disease progression from
MGUS to MM.

3. Category-3: Significantly altered pathways observed only in MM and not observed

85

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10164815/bin/ajcr0013-1155-f25.xlsx
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10164815/bin/ajcr0013-1155-f20.xlsx
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10164815/bin/ajcr0013-1155-f21.xlsx
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10164815/bin/ajcr0013-1155-f20.xlsx
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in MGUS.
4. Category-4: Significantly altered pathways observed only in MGUS and not

observed in MM.

The complete list of significantly altered pathways for the above-mentioned four cate-
gories is provided in Tables S4 and Table S5 of supplementary material. In Category-1
of significantly altered pathways, 05 KEGG and 09 Reactome pathways became more
significant as the disease progressed from MGUS to MM (Figure-4.6). In Category-2,
no pathway became less significant with disease progression in KEGG and in Reactome.
In Category-3, 103 KEGG pathways and 125 Reactome pathways were observed as
significantly altered only in MM and not in MGUS (Figures-4.7 and 4.8).

We further observed that 14 out of 103 KEGG pathways and 14 out of 125 Reactome
pathways had no overlapping genes with the set of 199 significantly altered genes in
MGUS. Finally, in Category-4, no KEGG pathway, but one Reactome pathway was
observed as significantly altered only in MGUS and not in MM (Figure-4.9). Further,
we observed that several signaling pathways, such as Calcium signaling, B-cell receptor
signaling, MAPK signaling pathway, regulation of actin cytoskeleton, etc., were sig-
nificantly altered only in MM (adjusted p-value  0.05) and were not observed to be
significantly altered in MGUS. The KEGG pathways that were significantly involved in
disease progression from MGUS to MM with highlighted top-ranking genes identified
by BDL-SP are shown in Figure-4.10.

4.3.3 Explainability of the BDL-SP model using ShAP algorithm

We utilized the ShAP algorithm for post-hoc model explainability and to rank genomic
attributes based on their contribution to the model prediction. Here, each genomic
attribute was assigned a ShAP score based on its contribution to each class (MM/MGUS)
and has been ranked at the group-level (MM versus MGUS) and sample-level accordingly.
We conducted the ShAP analysis for the post-hoc explainability of the trained model in
three different ways, as explained in the subsequent sections.

4.3.4 Ranking of genes at the group-level from the explainability
analysis of BDL-SP using ShAP

Based on the best ShAP score estimated for each genomic attribute using the algorithms
shown in Figure-4.4 A and Figure-4.4B, we ranked all the significantly altered genes at
the group-level (MM/MGUS) to identify the top genes that significantly contributed to
the model’s prediction. The gene ranking of all 824 genes at group-level is shown in the
beeswarm plot in Table S6 of supplementary material.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10164815/bin/ajcr0013-1155-f22.xlsx
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10164815/bin/ajcr0013-1155-f23.xlsx
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10164815/bin/ajcr0013-1155-f24.xlsx


Figure 4.6: Pathway enrichment analysis of the top-genes obtained from BDL-SP model.
A. KEGG Pathways that gained more significance during progression from MGUS to
MM. B. Reactome Pathways gained more significance during the progression from
MGUS to MM. Here, in both of the figures, pale golden and orange ribbon means
significant p-adjusted value (  0.05); orange refers to more significance, and pale
golden color refers to less significance.
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Figure 4.7 (previous page): A, B. Pathway enrichment analysis of the top-genes obtained
from BDL-SP model: KEGG Pathways that are uniquely significant in MM. In the
above figure, the orange ribbon means a significant p-adjusted value ( 0.05), and the
gray color refers to a non-significant p-adjusted value (> 0.05). A total of 108 KEGG
pathways were observed to be significantly altered. Due to the large number of altered
pathways, the above river plot was split into two parts to get more clarity.

In the beeswarm plot, each sample is represented as a dot, and the color of each dot
corresponds to the best ShAP score of the gene. We have also highlighted all the
previously reported genes of high relevance in MM in the beeswarm plot. In our analysis,
FCGR2A, IGLL5, and KIR3DL2 are observed to be the top three genes based on their
best ShAP scores in MGUS and MM samples from among the 824 significantly altered
genes. Several previously reported driver genes in MM, such as EGR1, FGFR3, HLA-A,
IGLL5, IRF1, KRAS, LTB, NFKBIA, NRAS, TP53, etc. are observed in these top-ranked
genes. Similarly, the previously reported OGs such as ABL2, CARD11, IRS1, MGAM,
NOTCH1, VAV1 , etc., and TSGs such as HLA-B, HLA-C, SDHA, etc. are observed in the
top-ranked genes in our analysis. Also, many AGs are observed among the top genes,
such as ARID1B, FGFR3, KRAS, NOTCH1, TP53 , etc.

4.3.5 Ranking of genes at the sample-level from the explainability
analysis of BDL-SP using ShAP

In the sample-level analysis, we ranked genes found significantly altered in a sample
according to their best ShAP scores estimated using the algorithm shown in Figure-4.4A
and Algorithm A of Table-4.2. We observed that several previously reported OGs, TSGs,
ODGs, and AGs were found in the top-ranked gene list of each sample. On assessing the
ShAP scores of top significantly altered genes among all MM and MGUS samples, we
observed that the mean ± standard deviation of the 100th ranked gene’s ShAP score for
all MM and MGUS samples is 0.017±0.0037 and 0.0171±0.0040, respectively. Further,
the ShAP score reduced to a considerably low value as we moved to a lower rank. Hence,
we considered the top 100 significantly altered genes from all MM and MGUS samples
based on their best ShAP scores for further analysis. The violin distribution plots for
four gene groups of previously reported genes for all MM versus MGUS samples, only
MGUS samples of EGA and AIIMS datasets, and only MM samples of MMRF and
AIIMS datasets are shown in Figure-4.11A-C, respectively.

4.3.6 Analysis in MM & MGUS samples with ethnicity

We performed the statistical comparison of the disease stages (MM/MGUS) across
American, European, and Indian populations (as mentioned in Section-4.2.2) on the basis
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Figure 4.8 (previous page): A. Pathway enrichment analysis of the top-genes obtained
from BDL-SP model: Reactome Pathways that are uniquely significant in MM. In the
above figure, the orange ribbon means a significant p-adjusted value ( 0.05), and the
gray color refers to a non-significant p-adjusted value (> 0.05). A total of 134 Reactome
pathways were observed to be significantly altered. Due to the large number of altered
pathways, the above river plot was split into two parts to get more clarity. B. Pathway
enrichment analysis of the top-genes obtained from BDL-SP model: Reactome Pathways
that are uniquely significant in MM. In the above figure, the orange ribbon means a
significant p-adjusted value ( 0.05), and the gray color refers to a non-significant
(p-adjusted value > 0.05). A total of 134 Reactome pathways were observed to be
significantly altered. Due to the large number of altered pathways, the above river plot
was split into two parts to get more clarity.

Figure 4.9: Pathway enrichment analysis of the top genes obtained from BDL-SP model:
Reactome Pathways that are uniquely significant in MGUS. In the above figure, the
orange ribbon means a significant p-adjusted value (  0.05), and the gray color refers
to a non-significant (p-adjusted value > 0.05).

of the number of previously reported genes in four gene groups using unpaired Wilcoxon
rank-sum test. We observed that the number of genes in OG, ODG, and AG gene groups
is significantly different between the disease stages (MM and MGUS) in the analysis of
combined data of different geographic populations (Figure-4.11A). Further, the medians
of the number of genes in the OG, TSG, and AG gene groups were observed to be higher
than the respective medians in the precursor stage (MGUS) (Figure-4.11A). Similarly,
comparing the number of genes in all four gene groups between the MGUS samples
of the Indian (AIIMS dataset) and European (EGA dataset) populations, the number of
genes in OG, ODG, and AG gene groups were observed to be significantly different
(Figure-4.11B). On the contrary, the number of genes in all four gene groups was not
found to be statistically and significantly different in MM samples of the Indian and
American populations (MMRF dataset) (Figure-4.11C). These observations indicate that
ethnicity might play a significant role in disease development. Thus, ethnicity-specific
analysis can be helpful in further gaining in-depth insights into the disease biology of
the premalignant stage of MM (MGUS).
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MGUS MM

MAPK signaling cascade

CACNA1B; FLNC; 
PAK2; CACNA1G

MAP4K1; DUSP2; MAX; CACNA1B; CACNA2D2;
CACNA1A; BRAF; TRAF2; CACNA1F; CACNA1I; NRAS;
MECOM; NF1; FLNA; KRAS; TP53; PAK2; FGFR3

0.57833 0.00034

Calcium signaling pathway

RYR1; CACNA1B; ITPR1; 
ITPR2; SLC25A5; RYR3; 
CACNA1G

RYR1; RYR2; CHRM3; PDE1C; CACNA1B; ITPR1;
CACNA1A; ITPR2; ATP2B3; ITPR3; ATP2B2; CACNA1F;
RYR3; GRIN2D; CACNA1I; PTK2B; NOS1; SLC25A5; FGFR3

0.16102 0.00002

KMT2E; KMT2D; MECOM; KMT2C; KMT2B; ASH1L
Lysine degradation

KMT2E; KMT2C; ASH1L
0.18224 0.00683

CHRM3; GSN; ITGA2; BRAF; ACTR3B; VAV1; MYL5; NRAS;
MYH14; MYH11; KRAS; EZR; PAK2; FGFR3; VCL

Regulation of actin cytoskeleton
ENAH; APC; ACTR3B; 
PAK2

0.42260 0.00040

Osteoclast differentiation
FCGR2A; SIRPA; LILRB1 NFKBIA; CYLD; SIRPA; MITF; TRAF2; LILRB1; LILRA1;

LILRB2; LILRA2; SIRPB1; LILRA4

0.42260 0.00048

NRAS; ITGA2; ITPR1; FZD8; FLNA; ITPR2; BRAF; ITPR3;
KRAS; EZR; TP53; VAV1

Proteoglycans in cancer
GPC1; ITPR1; ITPR2; 
FLNC

0.42260 0.00428

B cell receptor signaling pathway
LILRB1 NFKBIA; NRAS; INPP5D; LILRB1; KRAS; LILRA1; LILRB2;

LILRA2; VAV1; CARD11; LILRA4

0.73326 0.00002

PI3K-Akt signaling pathway
HSP90AB1; LAMA3 HSP90AB1; VWF; LAMA2; IRS1; ITGA2; LAMA3; LAMC2;

YWHAZ; RPTOR; TCL1A; NRAS; EIF4EBP1; KRAS; TP53;
FGFR3

0.88434 0.01655

ITPR1; ITPR2; 
SLC25A5; MYH7

cGMP-PKG signaling pathway
IRS1; ITPR1; ITPR2; ATP2B3; ITPR3; ATP2B2; CACNA1F;
SLC25A5; MYH6; MYH7; ADCY5

0.36247 0.00314

Adjusted P-value Adjusted P-value

Figure 4.10: KEGG pathways were found to be significantly involved in the progression
of MGUS to MM. Top genes that were identified by post-hoc analysis of BDL-SP using
the ShAP algorithm as significantly mutated either in MGUS only or in MM only (acting
as differentiators of MGUS and MM) are shown in red colored font.
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Disease Type of 
previously 

reported gene

Median of 
number of 

genes
MM/MGUS OG 5/3
MM/MGUS TSG 7/8
MM/MGUS ODG 1/1
MM/MGUS AG 6/2

Dataset Type of 
previously 

reported gene

Median of 
number of 

genes
AIIMS/EGA OG 3/2
AIIMS/EGA TSG 8/7
AIIMS/EGA ODG 1/0
AIIMS/EGA AG 5/2

Dataset Type of 
previously 

reported gene

Median of 
number of 

genes
AIIMS/MMRF OG 5/5
AIIMS/MMRF TSG 7/7
AIIMS/MMRF ODG 1/1
AIIMS/MMRF AG 6/6

(A)

(B)

(C)

Figure 4.11: The distribution of the number of previously reported genes in four gene
groups (OGs, TSGs, ODGs, and AGs) was found significantly altered and ranked in the
top 100 across all MM and MGUS samples (combined dataset of MMRF, EGA, and
AIIMS samples). B. The distribution of the number of previously reported genes found
significantly altered and ranked in the top 100 across all MGUS samples in EGA and
AIIMS datasets. C. The distribution of the number of previously reported genes found
significantly altered and ranked in top 100 across all MM samples in MMRF and AIIMS
datasets. The P-value shown with each violin plot was estimated using an unpaired
Wilcoxon rank-sum statistical test to check whether the number of genes in a particular
gene group significantly differs from their respective counts in the other group. The gene
group having a P-value with a superscript “*” (star) symbol represents that the number
of genes in that gene group is significantly different compared to the other group. The
table on the right of each figure shows the median of the number of genes in each gene
group for disease stages (MM/MGUS) and datasets (MMRF, EGA, and AIIMS). Note:
To have a better view of the violin plots, refer to the colored version of this figure.
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4.3.7 Genomic feature ranking at a sample-level using ShAP analy-
sis

Besides identifying the top significantly altered genes in MM and MGUS, we also
ranked the genomic features based on their contribution to the model prediction. A set
of 28 genomic features (Figure-4.1) was used to train the BDL-SP model. These genes
were ranked on the basis of their ShAP scores. The algorithm for estimating the best
ShAP score for each genomic feature is shown in Figure-4.4B. We observed that the
total number of SNVs, the total number of SNVs in the Other SNV group (as shown in
Figure-4.1), and VAF’s standard deviation of SNVs in the Other SNV group were the top
three genomic features, while VAF’s standard deviation of SNVs in the nonsynonymous
SNV group, VAF’s standard deviation of SNVs in the Synonymous SNV group, and
AD’s standard deviation of SNVs in the nonsynonymous SNV group were the least
contributing genomic features. The beeswarm plot for genomic feature ranking from
BDL-SP model post-hoc analysis using ShAP is shown in Figure-4.11.

4.3.8 Significance of nonsynonymous SNVs in MM pathogenesis

To understand the role of nonsynonymous SNVs on MM pathogenesis, we meticulously
analyzed the nonsynonymous SNVs identified using four variant callers. For this, we
identified the genes having the most pathogenic nonsynonymous SNVs. Further, we
analyzed the impact of nonsynonymous SNVs on protein function and alterations in the
protein structure due to protein structure.

Distribution of nonsynonymous SNVs across critical genes and pathways

First, we identified the most pathogenic and deleterious SNVs. For this, first, filtered
out the pathogenic nonsynonymous SNVs jointly identified by four variant callers. This
yielded a total of 47,686 nonsynonymous SNVs identified collectively by all four variant
callers. Next, we considered only those nonsynonymous SNVs classified as deleterious
or damaging by all four deleteriousness scores, resulting in a subset of 9518 SNVs
associated with 5508 genes. On comparing with 824 significantly altered genes, out
of 6046 genes, we identified 903 nonsynonymous and deleterious SNVs associated
with 325 significantly altered genes. Additionally, 760 nonsynonymous and deleterious
SNVs were associated with 244 genes ranked within the top 500 ranked genes identified
through the BDL-SP model post-hoc analysis (Table-4.6)
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Figure 4.11 (previous page): Genomic feature ranking based on the BDL-SP model’s
post-hoc explainability in MM and MGUS using the ShAP algorithm. Each genomic
feature is ranked according to its best ShAP score estimated using the algorithm shown
in Figure-4.4 and Table-4.2. The negative ShAP score represents the contribution of the
genomic feature towards MM, while the positive ShAP score represents the contribution
of the genomic feature towards MGUS. Further, each dot in the individual scatter plot of
the genomic feature represents a sample, and the color of the dot represents the value of
that genomic feature with the color codes as follows: the dark blue color represents low
value, and the pink color represents the high value of the genomic feature. Note: Refer
to the colored version of this figure for a clear view of the sample distribution for each
genomic feature.

Gene Rank
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Figure 4.12: Frequency of nonsynonymous and deleterious mutations among the top 10
genes having the largest number of such mutations, as identified through the aforemen-
tioned strategy. The number highlighted in back color in each bar is the rank obtained
through BDL-SP post-hoc analysis.

Intriguingly, several key MM driver genes, such as DIS3, KRAS, TRAF2, TRAF3, etc.,
emerged as the top genes harboring the most nonsynonymous and deleterious mutations,
highlighting their relevance to multiple myeloma progression (Figure-4.12). On further
analysis of the genes not included in the 232-gene set but ranked within the top 500, we
observed their significance as pivotal biomarkers in distinguishing between MM and
MGUS. Among these genes, there were several MM-relevant genes such as ARID2,
BRAF, HLA-A, PRSS3, etc. These genes exhibited nonsynonymous and deleterious
SNVs, identified by three or fewer variant callers and characterised as deleterious by
three or fewer scoring methods.
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Table 4.6: List of genes having both nonsynonymous jointly reported by all four variant
callers (MuSE, Mutect2, SomaticSniper, and Varscan2) and deleterious mutations jointly
declared by four deleteriousness scores (SIFT, PolyPhen2-HDIV, PolyPhen2-HVAR,
and PROVEAN) and ranked in top 500 in the post-hoc analysis of BDL-SP model.

Range of number
of nonsynonymous

and deleterious
mutations

Number of
genes having
nonsynony-
mous and

deleterious
SNVs in the
given range

Number of genes
in ranked in top
500 in BDL-SP

post-hoc analysis

Name of genes in
ranked in top 500

in BDL-SP
post-hoc analysis

Names of missing
genes

>40 1 1 DIS3 -
20 – 40 2 2 TP53, TRAF3 -

10 – 20 20 11

FAM46C, CSMD1,
RYR1, KRAS,

PRKD2, RYR3,
MAX, DNAH9,

DNAH5, FGFR3,
TTN

FAT4, CSMD3,
TTN-AS1, PCLO,

ATM, FAT1,
KLHL6, LRP1B,

PCDHA4

7 – 10 28 7

RYR2, HUWE1,
OBSCN,

CACNA1B,
CYLD, DNAH2,

NF1

PRDM1, LRP2,
MPDZ,

CACNA1E,
DDX3X, EHD1,
ROBO1, PXDN,
FBN2, SHANK1,
ATP7B, KALRN,
RP11-799N11.1,

NOTCH3,
COL4A1,

NCKAP5, MAF,
HIST1H2BD,
MYH2, DST,

SLIT2
1 – 7 5457 211 * *

“*” indicates that the gene list is omitted due to its length.
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The other top mutated genes included CSMD1, FAM46C, KRAS, MAX, PRKD2, RYR1,
and RYR3. Notably, the pathways associated with these genes are implicated in various
key cellular processes contributing to MM progressions, such as Apoptosis, Gap Junction,
Pathway in Cancer, and the MAPK signaling pathway. To gain deeper insights into the
impact of alterations on the corresponding protein function and structure, we focused on
the SNVs associated with the two most reported MM driver genes, named KRAS and
TP53, shown in the subsequent section.

Alterations in protein structure caused by nonsynonymous SNVs

1. Altrations in KRAS Genes Protein Structure:

Using the strategy shown in 4.2.2, we identified 14 nonsynonymous and deleterious
SNVs in KRAS genes. These SNVs were consistently associated with the PF00071,
PF08477, PF00025, and PF00009 Pfam domains. Further, we meticulously analyzed
the structural change in the protein structure of the KRAS gene protein (LZRSL8) using
SWISS-MODEL. To understand the impact of nonsynonymous SNV on protein structure
alterations in KRAS protein (L7RSL8), first, we identified the protein associated with the
KRAS gene mutation with the help of ANNOVAR, which was L7RSL8 protein. Next,
we fetched the sequence of L7RSL8 protein from NCBI and compared the change in
protein structure in both unaltered and altered states. The fasta sequence of unaltered
and altered L7RSL8 protein are as follows (with highlighted nucleotide, black bold
represents the actual nucleotide, and red bold represents the altered nucleotide) is shown
in Figure-4.13.

Unaltered Sequence of L7RSL8:
 
>tr|L7RSL8|L7RSL8_HUMAN small monomeric GTPase OS=Homo sapiens OX=9606 GN=KRAS PE=3 
SV=1
MTEYKLVVVGAGGVGKSALTIQLIQNHFVDEYDPTIEDSYRKQVVIDGETCLLDILDTAGQEEYSAM
RDQYMRTGEGFLCVFAINNTKSFEDIHHYREQIKRVKDSEDVPMVLVGNKCDLPSRTVDTKQAQDLA
RSYGIPFIETSAKTRQRVEDAFYTLVREIRQYRLKKISKEEKTPGCVKIKKCIIM

Altered Sequence of L7RSL8 (Chr12: 25378561:G>A):

>tr|L7RSL8_altered|L7RSL8_HUMAN small monomeric GTPase OS=Homo sapiens OX=9606 GN=KRAS 
PE=3 SV=1|p.A146V
MTEYKLVVVGAGGVGKSALTIQLIQNHFVDEYDPTIEDSYRKQVVIDGETCLLDILDTAGQEEYSAM
RDQYMRTGEGFLCVFAINNTKSFEDIHHYREQIKRVKDSEDVPMVLVGNKCDLPSRTVDTKQAQDLA
RSYGIPFIETSVKTRQRVEDAFYTLVREIRQYRLKKISKEEKTPGCVKIKKCIIM

Figure 4.13: Altered and unaltered fasta sequence of KRAS protein structure (L7RSL8).
Here, the altered nucleotide is shown in black bold in the unaltered fasta sequence (top)
and red bold in the altered fasta sequence (bottom)
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The comparison of the change in the protein structure for the KRAS gene protein in both
altered and unaltered states is shown below (Figure-4.14).

Unaltered KRAS 
Protein Structure

Altered KRAS 
Protein Structure

Figure 4.14: Comparison of unaltered and altered KRAS protein (L7RSL8) structure:
Due to nonsynonymous mutations, there is an alteration in the protein sequence at
location 146 where the nucleotide A is changed to V (p.A146V). This alteration causes a
change in the binding sites at location 146.

2. Alterations in TP53 Genes Protein Structure:

We identified a total of 27 nonsynonymous and deleterious SNVs in the TP53 gene,
as jointly reported by all variant callers and declared deleterious by four different
deleteriousness scoring methods. To understand the impact of nonsynonymous SNVs
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on TP53 protein (S4R334) structure, first, we identified the associated protein, which is
affected by the TP53 gene nonsynonymous SNV, with the help of ANNOVAR, which
was the S4R334 protein. Next, we fetched the sequence of S4R334 protein from NCBI
and compared the change in protein structure in both unaltered and altered states. The
fasta sequence of unaltered and altered S4R334 protein are as follows (with highlighted
nucleotide, black bold represents the actual nucleotide, and red bold represents the
altered nucleotide) is shown in Figure-4.15.

Unaltered Sequence of S4R334:

>tr|S4R334|S4R334_HUMAN Cellular tumor antigen p53 OS=Homo sapiens OX=9606 GN=TP53 PE=1 
SV=2
MEEPQSDPSVEPPLSQETFSDLWKLLPENNVLSPLPSQAMDDLMLSPDDIEQWFTEDPGPDEAPRMPE
AAPPVAPAPAAPTPAAPAPAPSWPLSSSVPSQKTYQGSYGFRLGFLHSGTAKSVTCTMFCQLAKTCPVQ
LWVDSTPPPGTRVRAMAIYKQSQHMTEVVRRCPHHERCSDSDGLAPPQHLIRVEGNLRVEYLDDRNT
FRHSVVVPYEPPEVGSDCTTIHYNYMCNSSCMGGMNRRPILTIITLEDSSGNLLGRNSFEVRVCACPGR
DRRTEEENLRKKGEPHHELPPGSTKRALPNNTSSSPQPKKKPLDGEYFTLQIRGRERFEMFRELNEALE
LKDAQAGKEPGGSRAHSSHLKSKKGQSTSRHKKLMFKTEGPDSD

Altered Sequence of S4R334 (chr17:7578538:A>C):

>tr|S4R334|S4R334_HUMAN Cellular tumor antigen p53 OS=Homo sapiens OX=9606 GN=TP53 PE=1 
SV=2|p.Asn131Thr
MEEPQSDPSVEPPLSQETFSDLWKLLPENNVLSPLPSQAMDDLMLSPDDIEQWFTEDPGPDEAPRMPE
AAPPVAPAPAAPTPAAPAPAPSWPLSSSVPSQKTYQGSYGFRLGFLHSGTAKSVTCTMFCQLCKTCPVQ
LWVDSTPPPGTRVRAMAIYKQSQHMTEVVRRCPHHERCSDSDGLAPPQHLIRVEGNLRVEYLDDRNT
FRHSVVVPYEPPEVGSDCTTIHYNYMCNSSCMGGMNRRPILTIITLEDSSGNLLGRNSFEVRVCACPGR
DRRTEEENLRKKGEPHHELPPGSTKRALPNNTSSSPQPKKKPLDGEYFTLQIRGRERFEMFRELNEALE
LKDAQAGKEPGGSRAHSSHLKSKKGQSTSRHKKLMFKTEGPDSD

Figure 4.15: Altered and unaltered fasta sequence of TP53 protein structure (S4R334).
Here, the altered nucleotide is shown in black bold in the unaltered fasta sequence (top)
and red bold in the altered fasta sequence (bottom)

The protein structure of the TP53 protein (S4R334) obtained with the help of SWISS-
MODEL is shown below (Figure-4.16).
It is evident from the preceding examples that nonsynonymous and deleterious SNVs
have the potential to affect protein function and alter its structure profoundly. Similar
analyses can be extended to other MM-relevant genes to gain deeper insights into the
impact of such variants on protein function and structure. This broader examination holds
promise for identifying effective therapeutic targets for targeted drug therapy. However,
it’s essential to note that understanding protein structure stability in altered states involves
considering various criteria, including differences in free energy between folded and
unfolded states, the impact of hydrogen bonding, and several thermodynamic stability
parameters [47,48]. While these factors are crucial, delving into their complexities
lies beyond the scope of this thesis. A researcher could explore these aspects further,
leveraging intensive genomic analysis to pinpoint genes of interest and pave the way for
enhanced therapeutic interventions.
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Unaltered TP53 Protein Altered TP53 Protein 
Figure 4.16: TP53 gene protein (S4R334) Structure (Left) before any nonsynonymous
mutation, and (Right) after nonsynonymous mutation at chr17:7578538 : A>C.
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4.4 Discussions
It is well established that MM evolves through premalignant stages driven by the acqui-
sition of multiple genomic aberrations [229]. Though a few studies have analyzed the
progression from MGUS to MM [90, 93], a limited amount of information is available
on the notable biomarkers responsible for this transformation. However, if known apriori,
appropriate treatment at the MGUS stage can help control the progression of MGUS
to MM, thereby preventing the complications associated with MM, reducing morbidity,
and increasing the overall survival of these patients. Thus, it is crucial to unravel the
genomic features responsible for the malignant transformation of MGUS to MM.

In this work, we addressed the challenge of extracting relevant MM and MGUS dif-
ferentiating genomic attributes from the large pool of mutational information available
for each patient. Our proposed BDL-SP-based workflow has been successful in accom-
plishing this task. In the preprocessing of the data, we identified significantly mutated
genes for each variant caller and then took their union so that we did not miss any
important gene. Thus, large cohort size and an ensemble of four variant callers enabled
us to obtain generalizable mutational information, driver genes, and altered pathway
information. Recently, graph-based learning has been extensively explored in genomics
for deciphering crucial information such as disease progression and identifying novel
biomarkers for targeted drug therapy, etc. For instance, the graph-based model was used
to learn the temporal graphs of diagnosis (Dx), procedure (Px) and prescription (Rx) of
MM patients from the sequential electronic health records (EHR) and predict a patient’s
response to treatment [230]. Till now, graph-based learning approaches have not yet
been explored to identify the underlying difference between MM and its precursor stage
(MGUS). In our BDL-SP model, we have used the connectionist model of graph-based
learning to learn genomic mutational profiles (as node features) that were extracted from
the WES datasets of AIIMS, EGA, and MMRF. We additionally utilized the gene-gene
interaction information from the PPI network to identify the pivotal biomarkers that can
differentiate MM from MGUS.

Our proposed AI-based BDL-SP workflow is innovative in multiple ways, as explained
below:

1. The identification of pivotal biomarkers using WES datasets of MM of three
populations (American, European, and Indian) increases the robustness of the
workflow by enhancing its ability to assess the granular-level insights of mutational
profiles from multiple datasets of different geographic locations/ethnicities.

2. Because of the pathogenic nature of deleterious SNVs, only deleterious SNVs
were considered for identifying the significantly altered genes in the proposed
workflow. We observed that the total number of SNVs was reduced considerably
after variant filtration of benign SNVs using the FATHMM-XF method.

3. An analysis of the genomic mutational profile and the gene-gene interaction
information enables this workflow to look at interdependencies between genes,
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making it a complete bio-inspired workflow.
4. The proposed workflow includes quantitative (using performance metrics) as

well as an exhaustive qualitative (post-hoc interpretability analysis of the trained
models) benchmarking. It also shows that multiple ML models behaving closely
on the quantitative metrics may differ hugely in the qualitative analysis. Thus,
application-aware interpretability analysis, as carried out in this workflow (ShAP
on genes and genomic features), can help choose the right model and increase the
confidence of doctors in the trained AI model.

4.4.1 Comparison of variant calling across four variant callers

We compared the number of pathogenic SNVs identified by each variant caller for the
MM cohort (Figure-4.17). Also, the number of SNVs identified by each variant caller,
the number of common SNVs reported by at least two variant callers, at least three
variant callers and common to all variant callers are shown in Table-4.7. It is evident
that the number of pathogenic SNVs identified in consensus by multiple variant callers
decreases noticeably with an increase in the number of variant callers employed. This
observation underscores the methodological disparities among these variant callers.

Table 4.7: Number of SNVs identified by four variant callers either individually or jointly
in MM and MGUS cohort.

Categories of Pathogenic SNVs identified by four
variant callers (either jointly or individually)

Number of pathogenic SNVs
in MM cohort

Total number of pathogenic SNVs reported by all
four variant callers 7100816

Number of pathogenic SNVs identified by
four variant callers individually

Muse: 407813
Mutect2: 3220606

SomaticSniper: 4815051
Varscan2:440833

Number of pathogenic SNVs reported by at least two
variant callers 1278846

Number of pathogenic SNVs reported by at least
three variant callers 294603

Number of pathogenic SNVs reported by all four
variant callers 210038

To evaluate the presence of inherent bias in any variant caller, we initially assess the num-
ber of pathogenic mutations identified by all four variant callers across each chromosome
in the MM cohort (Figure-4.18). We observed that, in the MM cohort, SomaticSniper
identified more pathogenic SNVs than any other variant caller. Additionally, chromo-
somes 1, 2, and 6 were the most altered chromosomes in the MM cohort. Subsequently,
to delve deeper into the nature of SNVs identified by the variant callers, we conducted a
comparative analysis based on the types of SNVs identified by each caller.
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Figure 4.17: Venn diagram highlighting the pathogenic SNVs identified by four variant
callers (MuSE, Mutect2, SomaticSniper and Varacsn2) in MM cohort.

0e+00

1e+05

2e+05

3e+05

4e+05

ch
r1

ch
r2

ch
r3

ch
r4

ch
r5

ch
r6

ch
r7

ch
r8

ch
r9

ch
r1

0

ch
r1

1

ch
r1

2

ch
r1

3

ch
r1

4

ch
r1

5

ch
r1

6

ch
r1

7

ch
r1

8

ch
r1

9

ch
r2

0

ch
r2

1

ch
r2

2

ch
rX

ch
rY

ch
rM

Chromosome

N
um

be
r o

f S
N

Vs

Variant Caller
MuSE
Mutect2
Somatic−Sniper
Varscan2

Figure 4.18: Distribution of the total number of pathogenic SNVs reported by four
variant callers (MuSE, Mutect2, SomaticSniper, and Varscan2) at each chromosome in
the MM cohort.

107



Table 4.8: Comparison of different types of SNVs identified by four variant callers
(MuSE, Mutect2, SomaticSniper, and Varscan2) in the MM cohort.

SNV Category SNV Type

Number of
pathogenic

SNVs of this
type identified

by MuSE
variant caller in

MM cohort

Number of
pathogenic

SNVs of this
type identified

by Mutect2
variant caller in

MM cohort

Number of
pathogenic

SNVs of this
type identified

by
SomaticSniper
variant caller in

MM cohort

Number of
pathogenic

SNVs of this
type identified
by Varscan2

variant caller in
MM cohort

Nonsynonymous
SNV group

Nonsynonymous
SNVs 77603 225041 92916 67099

ncRNA-exonic 8772 35621 32243 9573
Stop gain 4704 15842 4688 3771
Stop loss 125 403 168 127
Start loss 142 381 162 121

Exonic-splicing 42 193 92 63
Splicing 1963 7826 2408 1836

Frameshift insertion 0 5516 0 897
Frameshift deletion 0 7315 0 1683

Synonymous
SNV group

Synonymous SNVs 4308 12640 6071 3793
UTR3 501210 192588 98954 64281
UTR5 12353 47510 34215 11271

Others
SNV group

Non-frameshift
insertion 0 2527 0 208

Non-frameshift
deletion 0 6611 0 1286

Non-frameshift
substitution 0 1591 0 0

Intronic 132121 826927 750167 142281
Intergenic 85267 1610407 3486371 100025

ncRNA-intronic 11741 104032 134386 14899
Upstream 10587 64130 91062 9998

Downstream 6778 49604 79060 6397
ncRNA-Splicing 57 270 259 72
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Table-4.8 compares four variant callers (MuSE, Mutect2, SomaticSniper, and Varscan2)
based on the three SNV categories in the MM cohort. The SNV categories include
nonsynonymous SNVs, synonymous SNVs, and other SNVs. Each category is further
divided into specific SNV types based on their functional impact, as mentioned in
Data pre-processing (Section 4.2.2). For each SNV type, we analyzed the number of
pathogenic SNVs identified by each variant caller in the MM cohort.

Mutect2 identified the largest number of pathogenic nonsynonymous SNVs in the
MM cohort, followed by SomaticSniper, Varscan2, and MuSE. Similarly, Mutect2 also
performs well in identifying pathogenic in Synonymous and Other SNV groups compared
to other callers. Other than Mutect2, SomaticSniper reported the most pathogenic SNVs
but showed an inherent bias in identifying the frameshift and non-frameshift SNV
types. Varscan2 identified all types of SNVS except non-frameshift SNVs. Lastly,
MuSE, similar to SomaticSniper variant callers, showed inherent bias in identifying the
frameshift and non-frameshift SNVs. These observations underscore the inherent bias
due to methodological disparities among variant callers as there is a notable focus on
nonsynonymous SNVs and SNVs in the splicing region. In contrast, other crucial SNVs
types such as frameshift SNVs, non-frameshift SNVs, Start loss, and Stop loss are less
focused by the variant callers.

It has been observed that a considerable portion of clinically actionable variants exhibits
low VAFs, often attributed to factors like low tumour purity and treatment-induced
mutations [231]. Ensuring accurate identification of SNVs requires variant callers with
robust sensitivity, particularly in detecting SNVs with low VAFs found in impure tumors
[232]. Notably, both SomaticSniper and Varscan2 demonstrate suboptimal sensitivity in
recognizing variants with low allelic frequencies [233]. Although SomaticSniper exhibits
the highest sensitivity for 100% pure tumor samples, Varscan2 can achieve enhanced
sensitivity (up to 0.5) by lowering its minimum allele fraction threshold to 0.05, at the
cost of much higher false positive rate (300 false positives per Mb) [233]. Additionally,
Varscan2 often reports a high number of germline polymorphisms with relatively low
confidence [234]. Conversely, both MuSE and Mutect2 exhibit comparable performance
in low allelic variant calling, yet Mutect2 demonstrates superior sensitivity in detecting
true positives while effectively managing false positives [235, 232].

Given the absence of a single somatic variant caller offering optimal performance across
all scenarios, an ensemble approach combining results from multiple complementary
callers may present the most balanced trade-off between sensitivity and specificity
[236, 237]. Finally, considering the methodological disparities among variant callers, we
adopted a comprehensive strategy by aggregating all pathogenic SNVs detected by each
of the four variant callers. This approach serves to alleviate potential methodological
and inherent biases. Subsequently, we subjected all SNVs identified by the variant
callers to statistical analysis using the dndscv tool to pinpoint significantly altered genes.
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Following the identification of these genes, we employed the BDL-SP model to further
refine our selection, focusing on genes and their associated SNVs that serve as pivotal
biomarkers for distinguishing MM from MGUS.

4.4.2 Basis for selecting six ML models and training strategy

For comprehensive benchmarking of the BDL-SP model, first, we listed the existing
classical ML supervised algorithms in scikit-sklearn of all categories, such as the Sup-
port Vector Classifier (SVC) model and its variants, decision models and its variants
(decision tree and random forest), boosting models (XGBoost, CatBoost, AdaBoost etc.),
regression models (logistic regression, linear regression, etc.), etc. Next, we trained these
ML models and selected the six models using the following basis:

1. We selected the model from each algorithm category based on their quantitative
and qualitative performance to ensure methodological diversity in our analysis.
The methodological diversity in ML algorithms is crucial in benchmarking the
newly developed model as the method used in the newly developed model should
perform better than all different ML algorithms. With this approach, we selected
logistic regression from regression models, decision tree and random forest from
decision models, XGBoost and CatBoost from boosting models and SVC model
with RBF kernel in scikit-learn.

2. Including ML algorithms from decision models, regression models, boosting
models, and SVC models ensures generalization and robustness as each algorithm
handles the complexity of data structure differently.

In addition to these six ML models, we included deep learning models to enrich the
quantitative and qualitative benchmarking process. This comprehensive approach ensures
a thorough assessment of model performance and generalizability.

For the training of baseline ML models, our aim was to ensure that the ML model learns
from all available features of the data, avoiding the potential bias that could arise from
selecting only a subset of features. Therefore, instead of using feature selection before
model training, we opted for PCA to extract the most informative components from
the data. By using PCA, we transformed the original features into a set of orthogonal
principal components (PCs) that capture the maximum variance in the data. These
PCs were then utilized as the input features for training the machine learning model,
enabling us to leverage the most relevant information while minimizing the risk of
overfitting or bias. In our study, we included 1174 MM and 61 MGUS subjects with
WES data from three global repositories (MMRF, EGA, and AIIMS). Due to the very
low number of MGUS samples, it was not feasible to split the datasets into train, test and
external validation datasets. We addressed this challenge by incorporating a five-fold
cross-validation strategy for all ML model training. In this strategy, we divided the whole
dataset into five stratified folds. Next, we trained the classifier using samples in 4 folds
and evaluated the performance matrices using the one remaining fold. We repeated the
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above step five times to ensure the model was validated for all five folds as a validation
dataset. Once we had five trained classifiers, we averaged the performance matrices
(balanced accuracy and AUPRC) for all five classifiers to get the overall performance
assessment. This strategy ensured that every data sample became an unseen test sample
once. This allowed all the variability of the limited available dataset to be tested and
harnessed fully. All metrics are eventually reported on the test samples.

4.4.3 Qualitative analysis of BDL-SP model

The complete list of top significantly altered genes identified by the best three performing
models (BDL-SP, CSRF, and CS-Cat) is provided in Table-4.5.
Of all, our proposed BDL-SP model identified the largest number of previously reported
OGs, TSGs, ODGs, and AGs compared to the other standard ML methods. This shows
that our GCN-based BDL-SP workflow is indeed capable of robustly extracting the
differentiating genomic features that are otherwise difficult to obtain. Many of the
top-ranking genes in the present study included known cancer drivers (HLA-A, IGLL5,
KRAS, LTB, etc.), OGs (BRAF, FGFR3, KRAS, NRAS , etc.), TSGs (ARID2, CYLD,
DIS3, EGR1, HLA-A, LTB, TRAF3, SAMHD1, SP140, etc.) and AGs (ARID2, NF1,
NFKBIA, KRAS, TP53, etc.) having high relevance in MM. Interestingly, some TSGs
(APC, ARID1B, CMTR2, FANCD2, HLA-B/C, KMT2D, MITF, NOTCH1, SDHA and
AMER1) and OGs (CARD11, NOTCH1, VAV1, IRS1, MGAM, ABL2, TCL1A, PGR, MITF,
RPTOR, TERT, BRD4, MECOM, and TAL1) that are so far not reported as drivers in MM,
were also listed in the top ranking genes of BDL-SP. Further focused studies are required
to validate the above finding and to check the functional status and other characteristics
of these genes before classifying them as MM drivers.

Pathway analysis on MM and MGUS genes revealed that the MM-related pathways,
such as MAPK, cGMP-PKG, B-cell receptor, etc., were not significantly altered in
MGUS (adjusted p-value > 0.05) and became significant in MM (adjusted p-value
 0.05). We observed that several OGs, TSGs, ODGs, and AGs associated with the
significantly altered pathways were found significantly altered only in the MM cohort
and not in the MGUS cohort (See Figure-4.19). Here, the additional alterations in several
previously reported genes, such as BRAF, FGFR3, IRS1, MAX, KRAS, etc., assisted the
malignant progression of MGUS to MM. Our pathway analysis also demonstrated that
some pathways that lost their statistical significance from MGUS to MM were actually
related to the other cancer types.

Further, to identify the novel therapeutic targets and biomarkers, we have excluded the
pathways that are already reported in MM or reported to any other non-cancer disease
(for example, Alzheimer, obesity, diabetes, etc.). Using this criterion, we identified seven
significantly altered MM-relevant pathways contributing to various biological processes.
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Figure 4.19: GOChord plot reveals the association of driver/TSG/Onco/Actionable genes
associated with important pathways. The gene KMT2C was observed to be significantly
mutated in MGUS and MM, while the gene APC was mutated only in MGUS. All other
genes were observed to be significantly mutated in MM only.
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The detailed examination of these seven significantly altered pathways is shown below:

1. Gap junction Pathway: Gap junctions (GJs) serve as vital intercellular channels
facilitating molecular communication between adjacent cells. When the functional-
ity of GJs is compromised, it can lead to pathological conditions, including cancer.
In cancer, GJs play diverse roles, such as promoting cell invasion, facilitating
dormancy of metastatic cells, enhancing nutrient exchange within tumors, and
aiding immune evasion [238]. In the context of MM progression from MGUS,
perturbations in the GJ pathway may disrupt normal cellular interactions, thus
contributing to disease pathogenesis. Depending on the specific type of GJs and
the tumor microenvironment, these junctions can exhibit both tumor-suppressive
and tumor-promoting properties [239]. Notably, studies have implicated inositol
1,4,5-trisphosphate receptor type 1 (ITPR1) autoimmunity in various cancer types
[240, 241]. However, the autoimmune aspect of MM remains poorly understood,
and its pathogenesis is still elusive [242]. Therefore, further exploration into the
impact of ITPR1 alterations on MM autoimmune status is suggested. Investigating
the dysregulation of the GJ pathway in MM could provide valuable insights into
its supportive role within the tumor microenvironment, thus shedding light on its
significance in MM progression and pathogenesis.

2. Graft-versus-host disease (GVHD) pathway: The graft-versus-host disease
(GVHD) pathway represents an amplified response of normal inflammatory mech-
anisms, where donor lymphocytes encounter foreign antigens in an environment
conducive to inflammation [243]. Despite its significance, the role of the GVHD
pathway in the progression of multiple myeloma (MM) remains understudied.
Comprising several HLA family genes (HLA-A, HLA-B, HLA-C, HLA-DQA1,
HLA-DQA2, HLA-DRB1, HLA-DRB5, etc.), this pathway is integral to T cell
immune responses. Notably, HLA-A, HLA-B, and HLA-C genes serve as ligands
for natural killer (NK) cell immunoglobulin (Ig)-like receptors, crucial components
of innate immunity [244]. Functional investigations have revealed that NK cells
retain their cytotoxic potential in MGUS but may exhibit diminished cytotoxicity
as the disease progresses to MM [245]. Conversely, down-regulation of the HLA
family gene HLA-DPA1 expression has been associated with poor outcomes in
MM patients [246]. Moreover, studies across various populations have linked
HLA class I and II genes to MM susceptibility and its pathogenesis [247]. Addi-
tionally, within the GVHD pathway, the killer cell immunoglobulin-like receptor
(KIR) family genes play pivotal roles in regulating NK cell function and immune
responses. Promising NK-cell-based immunotherapies, such as expanded and
activated KIR-mismatched therapies, underscore the therapeutic potential of genes
within this pathway [248]. Thus, the GVHD pathway harbors numerous genes with
pivotal roles that can significantly influence MM pathogenesis and progression.

3. Human T-cell leukemia virus 1 (HTLV-1) infection pathway: Human T-cell
leukemia virus type 1 (HTLV-1) is a retrovirus known for its association with adult
T-cell leukemia/lymphoma (ATL) [249]. Within the HTLV-1 infection pathway lie
several key driver genes of MM, including KRAS, NRAS, TP53, and RB1. Among
these, TP53 stands out for its pivotal role in safeguarding cells against DNA dam-
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age and transformation. Deregulation within the HTLV-1 infection pathway can
lead to TP53 activation, potentially resulting in the overexpression of c-MYC, as
TP53 serves as a downstream target of c-MYC [250, 251]. Interestingly, while
c-MYC expression has been linked to MM but not MGUS [252], the deregulation
of the HTLV-1 infection pathway has been associated with the Tax protein, capable
of activating transcription factors such as NF-kB and AP-1. These factors, in
turn, regulate the expression of genes involved in inflammation and cell growth.
Additionally, the deregulation of NF-kB and AKT pathways, pivotal for cellular
survival, proliferation, and DNA damage response, further underscores the signifi-
cance of the HTLV-1 infection pathway in various cellular processes potentially
contributing to MM progression and pathogenesis [253, 254].

4. Kaposi sarcoma-associated herpesvirus (KSHV) pathway: Kaposi sarcoma her-
pesvirus (KSHV) is a human virus with a long evolutionary history that has
co-evolved with human populations. While once widespread, it is now predomi-
nantly found in specific regions such as sub-Saharan Africa, the Mediterranean Sea
area, parts of South America, and ethnic communities, where its seroprevalence
exceeds 10% [255]. The role of the KSHV pathway in MM progression remains
largely unexplored. Studies have indicated that KSHV has the capability to infect
a wide range of cell types, including epithelial cells, monocytes, macrophages,
dendritic cells, T cells, and fibroblasts [256, 257]. In a study examining a dataset
comprising 8 MM and 2 MGUS samples, KSHV was detected in the bone marrow
dendritic cells of MM patients, while no evidence of its presence was found in
malignant plasma cells or bone marrow dendritic cells from normal individuals
or patients with other malignancies. This finding suggests a potential association
between the KSHV pathway and MM progression [258].

5. Natural killer (NK) cell-mediated cytotoxicity pathway: NK cells, a type of innate
lymphoid cells, play a pivotal role in immune surveillance by identifying and elim-
inating aberrant cells, including tumor cells, through mechanisms like cytotoxic
granule release and death receptor signaling. The NK cell-mediated cytotoxicity
pathway is essential for immune surveillance against tumor cells, including those
implicated in MM progression from MGUS. Frequent mutations in genes like
NRAS, KRAS, and BRAF are observed in MM, disrupting intracellular signaling
pathways crucial for cell proliferation and survival [83]. HLA class I genes (HLA-
A, HLA-B, and HLA-C) are vital for presenting antigenic peptides to NK cells
and cytotoxic T lymphocytes (CTLs), modulating their activation and cytotoxic
activity. Polymorphisms in these genes can influence the recognition of MM cells
by NK cells and impact NK cell-mediated cytotoxicity effectiveness [259]. Addi-
tionally, VAV1 gene regulation has been linked to NK cell-mediated cytotoxicity
enhancement [260]. Consequently, dysregulation of the NK cell-mediated cyto-
toxicity pathway due to gene alterations may disrupt various biological processes,
including cell proliferation, survival, and apoptosis. These findings underscore
the importance of further investigating the roles of genes such as VAV1 and HLA
class I genes, not traditionally considered MM driver genes, in MM progression
and pathogenesis.

6. Viral carcinogenesis pathway: The Viral Carcinogenesis pathway encompasses
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several key driver genes in MM, such as KRAS, NRAS, and TRAF3, alongside TSG
like RB1, TP53, and NFKBIA. These genes can potentially influence MM pro-
gression from MGUS by modulating cellular signaling pathways and promoting
oncogenic processes. For example, the RB1 gene governs cell cycle progression
and apoptosis. Dysregulation of RB1, whether through mutation or inactivation,
can trigger uncontrolled cell proliferation, thereby contributing to MM patho-
genesis. Similarly, TP53, acting as both an MM driver gene and a TSG, plays a
critical role in safeguarding cells against DNA damage and inducing apoptosis
in response to cellular stress. Mutations in TP53 are frequently observed in MM
and are linked to poorer survival outcomes [84]. Furthermore, alterations in HLA
ligands can impact immune cell surveillance against pathogens [259, 261]. Thus,
the cumulative effect of these gene alterations within the Viral Carcinogenesis
pathway may fuel MM progression by fostering cell proliferation, enhancing cell
survival, and facilitating immune evasion in the context of viral infections.

7. Allograft rejection pathway: The allograft rejection pathway orchestrates a com-
plex interplay between the innate and adaptive immune systems, triggered when
recipient T cells recognize antigens from the donor, a process known as allorecog-
nition [262, 263]. This pathway assumes a pivotal role in mounting immune
responses against foreign tissues or cells, ultimately leading to their rejection.
Central to this mechanism is the HLA molecules, which serve as key players
in antigen presentation to T cells, thus initiating immune responses. HLA class
I molecules (HLA-A, HLA-B, and HLA-C) are responsible for presenting anti-
gens derived from intracellular pathogens to CD8+ cytotoxic T cells, while HLA
class II molecules (HLA-DQA1, HLA-DQA2) present antigens from extracellular
pathogens to CD4+ helper T cells [264, 265]. Any alterations in the HLA family
genes may compromise their ability to effectively present antigens to immune cells
(CD4+/CD8+), thereby facilitating mechanisms of immune evasion that promote
tumor growth and confer immune resistance [266]. It has been observed that the
HLA class 1 and class II genes have susceptibility effects on MM. Studies of
different populations have reported different HLA class I and II alleles that affect
MM [247].

However, the results in our study are unique because we have demonstrated that these
pathways are selectively and significantly dysregulated in MM compared to its precursor
stage of MGUS due to a distinct set of genes that are differentially mutated in the
two diseased stages. These observations warrant further investigations to decipher
if any of these differentiating genes associated with these pathways could become
druggable targets, especially during the early phase of MGUS. Some of the key genes
and pathways that are selectively altered at the MM stage, such as FGFR3, BRAF and
MAP kinase pathways, are actionable and hence, targeted therapy for them is under
evaluation in clinical trials [267]. FGFR3 is a partner gene in t(4;14) that has been
observed as a significantly altered gene in all datasets of MM and MGUS. However,
the poor prognostic impact of FGFR3 has been linked to activating mutations in the
FGFR3 gene rather than the fusion event, which exerts its influence via activation of
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WHSC/MMSET genes and is responsive to proteasome inhibitors [268, 269]. Besides
single case reports demonstrating the efficacy of BRAF inhibitors in relapsed refractory
MM with BRAF mutations, a recent report on NCI-Match trial shows promising results
for BRAF inhibitors, Dabrafenib and Trametinib in patients harboring tumors with
BRAF V600E mutations including MM [270]. Many SVs observed in MM, such as IgH
translocations, 1q gain, and 1p del, are also observed at the MGUS stage. However,
C-MYC alterations, which are predominantly structural variations, are secondary events
and are seen in nearly 40% of MM patients [271]. The lack of analysis of SVs is one
of the limitations of this study. However, we did observe mutations in MAX at the
MM stage, which is known to dimerize with C-MYC and influence the transcription of
multiple genes and, thus, the pathogenesis of MM [272].

The frequently observed complex genomic traits that can drive the disease progression
from MGUS to MM can be 3’UTR/5’UTR mutations [92], CNVs, SVs [229, 81], and
loss of the ability of the dysfunctional immune environment to control virulent cell
clones [273]. Akin to higher levels of disease load in MM compared to its precursor
states, measurable disease load, increased number of nonsynonymous mutations in MM
compared with MGUS [89, 90, 91] and increased levels of deregulated cytokines in
relapsed refractory MM compared to treatment naïve MM has been reported [274]. In
addition, in MGUS, a positive correlation between the increasing chromosome changes
and the somatic gene mutations, and the absence of MYC translocation and TP53
deletions or mutations has been observed [91]. From the genomic profile analysis of
paired MGUS-MM and SMM-MM samples, it has been observed that as the disease
progressed, the number of nonsynonymous mutations actually decreased in 70% samples.
This observation is in contrast to reports on unpaired samples, where an increase in the
nonsynonymous mutations has been reported from MGUS to MM [89, 90, 91]. Further,
the comparisons of unpaired MGUS/ SMM and MM samples have shown the mutational
similarity of MGUS/SMM with MM [93]. Based on this observation, we hypothesize
that the progression is associated with an altered landscape of acquired mutations rather
than an increased total mutational burden.

The post-hoc explainability of the BDL-SP model using the ShAP algorithm revealed
the top genomic attributes (genomic features and significantly altered genes) at both
the group- and sample-levels. At group-level, all the 824 significantly altered genes
were ranked according to their ShAP score using the algorithm shown in Figure-4.4
(Table S6 of supplementary material) and top 500 genes were further compared with
the literature (Table S7 of supplementary material). Several significantly altered genes
found in our analysis were previously reported as driver genes in [87, 222, 223], OGs
and TSGs in [53], and AGs in [51, 224]. In contrast, some genes such as KIR3DL2,
FCGR2A, LILRB1/2, KIR2DL1/4 etc. were novel that contributed significantly in disease
classification (See Table S6 of supplementary material). The KIR framework genes
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(KIR3DL2/2DL4) were among the top significantly altered genes with the largest ShAP
scores. The KIR gene complex on chromosome 19 encodes a series of inhibitory or
activatory KIR genes expressed on NK cells [275, 276, 277]. These receptors serve
as HLA ligands and modulate NK cell immune function against tumors [275]. A few
activating genes in the KIR family (KIR2DS4 and KIR2DS5) have been shown to have
a higher prevalence in MM patients than healthy people [275]. The KIRs have also
been reported to influence the efficacy of therapies such as that of isatuximab [276].
The second topmost gene with the largest ShAP score was IGLL5. Again, the IGLL5
gene undergoes point mutations and IGLL5/IGH translocations in MM [122]. Point
mutations are largely mutually exclusive of RAS mutations and associated with a greater
risk of disease progression. Similarly, other genes such as HLA-A/B/C, FCGR2A and
LILRB1/2 reported in previous studies are also shown to have a significant role in MM
[278, 279, 280, 281]. The crucial role of these top immune-related genes highlighted by
the ShAP ranking in our study suggests their potential role as drivers of progression and
disease-stratifying biomarkers.

We have also highlighted the impact of ethnicity (Figure-4.11) among three groups of
American (MMRF), European (EGA), and Indian (AIIMS) populations. The number of
OGs, ODGs, and AGs significantly differed in the MM samples of the American and
Indian populations and MGUS samples of the European and Indian populations (Figure-
4.11A). Also, the median of the number of OGs and AGs increased with the disease
progression from MGUS to MM. This increase could be due to the increasingly active
participation of OGs and AGs in disease progression from MGUS to MM. Similarly, the
number of OGs, ODGs, and AGs are significantly different in the MGUS samples of
the Indian population and MGUS samples of the European population (Figure-4.11B).
Here, we also observed the increasingly active participation of OGs, ODGs, and AGs
in MGUS samples of the Indian and European populations. On the other hand, the
number of previously reported genes (OGs, ODGs, TSGs, and AGs) present in the
MM samples of the American and Indian population was not found to be statically
different (Figure-4.11C). These observations indicate that the impact of ethnicity on
disease biology can not be overlooked and might be an important factor during the initial
phase or development phase of MM. Further analysis of ethnicity-specific information
to infer the responsible prognostic factor for disease development and progression is
strongly suggested.

The sample-wise gene ranking highlighted their contribution at the individual sample-
level. The study in [91] showed that the transition from MGUS to MM is due to the
acquisition of mutations in critical driver genes and OGs. Interestingly, we have ob-
served that not only driver genes and OGs but several TSGs and AGs were also altered
significantly in MGUS (Figure-4.11). Further, the role of OGs increased as the disease
progressed from MGUS to MM. On comparing the top contributing genomic features
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in MGUS and MM samples, we observed that the genomic features related to the Syn-
onymous SNVs group (a group of UTR3, synonymous, and UTR5 type SNVs) and the
Other SNVs group (a group of Non-frameshift insertion/ deletion/ substitution, intronic,
intergenic, ncRNA_intronic, upstream, downstream, unknown, and ncRNA_splicing
SNVs) contributed largely in disease classification as compared to the genomic features
of the nonsynonymous SNVs group (Figure-4.11).
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Figure 4.20: Important pathways significantly altered in MM. Drugs used for pathway-
directed therapies associated with mutations in genes are also shown with red-colored
text boxes and arrows.

Although the role of synonymous SNVs is unclear in MM, recent studies have
observed these synonymous SNVs as significant contributors in multiple cancer types
[282, 283, 284, 285, 286]. Further exploration of differentially affected biological
pathways may provide the pathogenic link between MM, its precursor (MGUS or
SMM), and overt disease stages so as to find appropriate targeted therapy to halt the
progression from precursor to stage to MM (Figure-4.20). We have shown in the current
study that the incremental accumulation of key mutations tilts the balance of biological
pathways in favor of progression from the state of MGUS to MM in a large cohort of
unpaired MGUS-MM samples. Some of these pathways are actionable, and targeting
them may enable us to reverse the balance in favor of a controlled and relatively indolent
clinical course. Further, AI-based workflow has successfully differentiated MGUS
from MM. We have shown in our study that our trained ML classifiers are able to
identify pivotal genomic biomarkers helpful in distinguishing MM and MGUS, thereby
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leading to a better understanding of the malignant transformation of MGUS to MM and
prognostication.

4.4.4 Impact of nonsynonymous SNVs on protein function and pro-
tein structure

We analyzed the impact of nonsynonymous and deleterious SNVs on KRAS and TP53
gene protein function and protein structure. We observed that all of the nonsynonymous
and deleterious SNVs present in the KRAS gene protein (LZRSL8) were associated with
the PF00071, PF08477, PF00025, and PF00009 Pfam domains. The Interpro-domain
of these Pfam domains corresponds to Small GTP-Binding Proteins [287]. This
superfamily comprises over 100 members and is structurally classified into five families:
Ras, Rho, Rab, Sar1/Arf, and Ran. These families play crucial roles as biological
timers, initiating and terminating specific cell functions [288]. Within the PF00071
Ras family are several sub-families, such as Ras, Rab, Rac, Ral, Ran, Rap, and Ypt1.
The Rab GTPases are important regulators of vesicle formation, motility and fusion.
PF08477, also known as the Ras of Complex (Roc) domain of DAPkinase, is implicated
in mitochondrial homeostasis and apoptosis. These observations imply the key role
of altered Pfam domains in the key cellular processes that may contribute to MM
progression.

Similarly, all the nonsynonymous and deleterious SNVs in the TP53 gene protein ()
were found associated with the PF00870 Pfam domain, which is commonly found in
p53 transcription factors and plays a crucial role in DNA binding. The DNA-binding
domain functions by securely clamping onto the DNA target, thereby stabilizing the
protein-DNA complex [289]. Additionally, protein interactions within this domain can
further contribute to stabilizing the complex [290]. The nonsynonymous and deleterious
SNVs may impact the protein’s structure and its ability to bind to DNA effectively.

4.5 Limitations of the study
Our study aimed to identify the pivotal distinguishing biomarkers between MM and
MGUS using WES mutational profiles and protein-protein interactions between signifi-
cantly altered genes. However, one potential limitation of our study is the absence of
normal samples. To address this limitation and enable the identification of normal vs
MGUS samples, researchers can leverage the same BDL-SP model for the analysis. In
this scenario, researchers would need to re-train the BDL-SP model from scratch. Once
properly re-trained and benchmarked against baseline models, both quantitatively and
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qualitatively, post-hoc analysis can facilitate the identification of pivotal biomarkers
(genes and genomic features) distinguishing normal from MGUS samples.

4.6 Conclusion
MGUS and MM share many common features, such as genomic biomarkers and struc-
tural variants, although MGUS has a relatively less complex genomic profile than MM.
Therefore, it is a challenging task to distinguish MM from MGUS. In our proposed
work, we have presented an innovative, bio-inspired AI-based workflow BDL-SP to
identify pivotal genomic biomarkers to distinguish MGUS from MM. The proposed
graph convolutional network-based BDL-SP model is able to extract discriminative
genomic biomarkers to identify MM and MGUS samples. BDL-SP outperformed all the
baseline ML-based models. Further, using the application-aware interpretability analysis
of the trained AI model, we have demonstrated a way to identify the best AI model from
among the multiple machine learning or deep learning models that may have performed
similarly on the quantitative metrics on the available data. In the post-hoc interpretability
benchmarking, BDL-SP outperformed all the baseline models by identifying the largest
number of previously reported genes such as KRAS, BRAF, LTB, NRAS, FGFR3, NF1,
NFKBIA, ARID2, RB1, HLA- A, TP53, SP140, TRAF3, EGR1, IRF1, SAMHD1, DIS3,
CYLD, KMT2B/C, MAX, ZFHX3 and NCOR1, that are of high relevance in MM. Further,
some of the genes that acted as differentiable biomarkers included TSGs (HLA- B/C,
NOTCH1, SDHA, MITF, ARID1B, FANCD2, KMT2D, APC, CMTR2, and AMER1) and
OGs (CARD11, NOTCH1, VAV1, IRS1, MGAM, ABL2, TCL1A, PGR, MITF, RPTOR,
TERT, BRD4, MECOM, and TAL1) that have not yet been identified as MM drivers.
These require validation by future studies before being declared as MM drivers. We
further validated our findings by performing pathway analysis on the top mutated genes.
It was inferred from the pathway analysis that several signaling pathways, such as the
Calcium signaling pathway, B-cell receptor signaling pathway, PI3K-Akt signaling path-
way, MAPK signaling pathway, etc., are selectively and more significantly dysregulated
with disease progression. Additional mutations in driver genes, critical OGs, TSGs,
and AGs fostered the transformation of benign MGUS to MM. Similarly, the genomic
mutation associated with the Synonymous SNV group (synonymous SNVs, UTR3, and
UTR5) was found to be the most significantly contributing biomarker differentiating
MM from MGUS. These observations may hold great significance from a therapeutic
point of view. We observed that the number of OGs, driver genes, and AGs in the MGUS
samples of European and Indian populations was statistically different. Although no
population-specific differences were observed in our analysis of the MM data, which
consists of the American and Indian populations, the results of the MGUS data indicate
that the impact of ethnicity on the disease biology of MM should be further explored.
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Intriguingly, as we delved deeper into the post-hoc analysis of the BDL-SP model, a
compelling observation emerged – gene-gene interactions appeared to play a pivotal
role in the pathogenesis of MM. We noted that several of the top-ranked key distinguish-
ing biomarkers were intricately interconnected with many known drivers or previously
reported genes within the PPI network. Motivated by these findings, we extended our
post-hoc analysis by incorporating gene-gene interactions, leading to the development
of an enhanced version of the BDL-SP model, which we have aptly named Biological
Network for Directed Gene-Gene Interaction Learning (BIO-DGI). This novel model
is tailored to identify crucial distinguishing biomarkers based on directed gene-gene
interactions, offering a more comprehensive perspective on MM pathogenesis. The
details of the model’s design, methodology, and post-hoc interpretability analysis are
comprehensively elaborated in the upcoming chapter, shedding further light on our
innovative approach and its implications.
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Chapter 5

Directed Gene-Gene Interactions in Multiple Myeloma

5.1 Introduction
Multiple Myeloma is a haematological cancer marked by clonal plasma cell proliferation
in the bone marrow. MGUS and MM represent different stages, with MGUS being
a precursor condition. Around 1% of MGUS cases progress to MM yearly [291].
Advanced techniques like WES and WGS unveil genomic aberrations in MM and
MGUS. Genomic studies reveal critical events like CNVs and SVs, such as del(1p),
gain(1q), del(13q), t(4;14), and others, impacting MM prognosis and shedding light on
their association with MM prognosis [292, 293, 294, 295, 296, 81, 83, 87, 128, 297].
Minor genomic changes also influence clinical outcomes. Recent findings highlight the
significance of bi-allelic alterations in TP53 and DIS3 genes as high-risk markers in MM
[298].

In this study, we designed a targeted sequencing panel for comprehensive genomic
profiling of MM. To craft the sequencing panel, we designed a novel AI-based Biological
Network for Directed Gene-Gene Interaction Learning (BIO-DGI) model employing the
gene-gene interactions from nine PPI databases and exonic mutational profiles. Further,
we delved deeper into gene-gene interactions by studying the learned adjacency matrices
from trained BIO-DGI classifiers. On meticulous analysis of SNVs, CNVs, SVs and
LOFs profiles of top-ranked genes obtained from post-hoc interpretability analysis of the
BIO-DGI model, we introduced a clinically tailored 282-genes panel, aiming to capture
the unique characteristics of MM and MGUS. Our study firmly establishes this panel as
a promising novel strategy, particularly in identifying MGUS samples likely to progress
to MM and pinpointing high-risk MM samples.

5.2 Materials & Methods

5.2.1 Whole-exome sequencing datasets of MM and MGUS patients

In this study, we included tumor-normal pairs of BM samples from a MM cohort of
1154 samples and an MGUS cohort of 61 samples sourced from three global repositories
of WES data. For the MM cohort, 1072 samples were acquired through authorized
access to the MMRF dbGaP study (phs000748; phs000348), predominantly comprising
American population samples [134]. We also downloaded processed MMRF datasets



(version IA12) containing copy number variations (CNVs), structural variations (SVs),
and clinical data from the MMRF Research Gateway. Additionally, we included 82 MM
samples from an AIIMS dataset representing the Indian population [5]. In the MGUS
cohort, we incorporated 28 MGUS samples from the AIIMS dataset and 33 samples
from the EGA data.

5.2.2 Methods

Whole exome sequencing data pre-processing for SNV identification

The WES data obtained from AIIMS and EGA contained the raw fastq files, and the
MMRF dataset contained the processed VCF files. The computational workflow for the
SNV identification, genomic annotation of SNVs, SNVs filtration, SNVs grouping, and
the identification of significantly altered genes was taken from our previous related study
[5]. Briefly, raw fastq files from AIIMS and EGA datasets were processed using the stan-
dard exome sequencing pipeline [219]. Similar to the MMRF data, the SNVs in AIIMS
and EGA WES data were extracted using MuSE, Mutect2, VarScan2, and SomaticSniper
variant callers. The SNVs in AIIMS, EGA and MMRF datasets were annotated using the
ANNOVAR database. The annotated SNVs were categorized into three categories based
on their functional significance, i.e. synonymous SNVs, nonsynonymous SNVs and other
SNVs. The benign SNVs were filtered out using FATHMM-XF. Lastly, annotated SNVs
were pooled for MM and MGUS separately and analyzed for identifying significantly
altered genes using the ’dndscv’ tool. The union of significantly altered genes from all
four variant callers for the MM cohort of 1154 samples and the MGUS cohort of 61
samples led to 617 and 362 genes, respectively. The further union of the significantly
altered genes in MM and MGUS mentioned above yielded a total of 824 genes.

For each significantly altered gene, their corresponding PPI were extracted from 9 PPI
databases (BioGrid [299], BioPlex [300], FunCoup [301], HIPPIE [302], HumanNet
[303], IntegratedAssociationCorrNet [304], ProteomHD [305], Reactome [306], and
STRING [307]). Out of 824 genes, we filtered out 26 genes that had no interaction with
any other significantly altered gene and merged all the interactions for the remaining
798 genes from all nine PPI databases to get the merged adjacency matrix (Table-S1,
Supplementary File-1). Besides the PPI interactions, we extracted 26 genomic features
that include distributive statistics (median and standard deviation) of VAF, AD, and four
variant conservation scores (GERP [308], PhyloP [309], PhastCons [310], and Mutation
Assessor [311]).
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5.2.3 Proposed directed gene-gene interaction learning in biological
network (BIO-DGI)

In this study, our objective was to pinpoint candidate driver genes and elucidate crucial
gene-gene interactions responsible for the progression from MGUS to MM. We intro-
duced an innovative GCN-based bio-inspired model named "Biological Network for
Directed Gene-Gene Interaction Learning" (BIO-DGI). The BIO-DGI model, depicted
in Figure-5.1, harnesses the power of GCN to grasp pivotal gene-gene interactions and
forecast potential driver genes.

To empower the BIO-DGI model, we supplied two essential inputs: 1) an undirected
PPI network adjacency matrix sourced from PPI interaction databases and 2) a sample
feature matrix. Two versions of the PPI network adjacency matrix were considered
in this study. The first version involved extracting PPI interactions solely from the
STRING database, serving as the basis for training the BIO-DGI model, denoted as
BIO-DGI (PPI-STRING). In the second version, we merged the PPI network adjacency
matrix from nine distinct PPI databases. This merged adjacency matrix, referred to
as BIO-DGI (PPI9), was then utilized for training purposes. In both versions of the
adjacency matrix, each node corresponded to a significantly altered gene, while the links
represented interactions between these genes. Additionally, each node was equipped
with a feature vector of length 26, as illustrated in Figure-5.1. Consequently, the PPI
network comprising 798 significantly altered genes, each associated with a feature vector
of length 26, was integrated into the input layer of the BIO-DGI model.

The BIO-DGI model architecture contains two modules: 1. Multi-head attention module
and 2. GCN Module. The multi-head attention modules contain three attention units
to learn gene-gene interactions, which are followed by an attention consensus module
for taking the consensus of all three attention unit weights to get the updated learned
adjacency matrix. The purpose of the multi-head attention module was to learn and
update the adjacency matrix to get a weighted PPI adjacency matrix. Similarly, in the
GCN module, the input layer is followed by one hidden layer of GCN that is further
followed by one fully connected layer of 798 neurons to 2 neurons, giving output through
log-softmax activation function for sample class classification (MM vs MGUS).

In our study, there were 95% MM samples and 5% MGUS samples which made the
data highly imbalanced. Hence, the BIO-DGI model was trained using a cost-sensitive
negative log loss (NLL) function to account for the data imbalance. The BIO-DGI model
was trained using a five-fold cross-validation technique that led to the training of five
best-performing classifiers. All five classifiers with learned adjacency matrices were
saved for further post-hoc analysis. We used the ShAP algorithm for post-hoc analysis
of BIO-DGI model classifiers to get top-performing genes and genomic features that
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Figure 5.1: Infographic representation of proposed AI-based bio-inspired BIO-DGI
model and post-hoc analysis for identifying pivotal genomic biomarkers that can dis-
tinguish MM from MGUS. In the proposed AI-based workflow, the BAM files sourced
from EGA and AIIMS datasets, along with VCF files from the MMRF dataset, undergo
processing to identify 798 notably altered genes utilizing the dndscv tool (as illustrated in
the WES Data pre-processing block). Subsequently, interactions among these 798 genes
are elucidated employing a PPI network from nine PPI databases (BioGRID, BioPlex,
FunCoup, HIPPIE, IAS network, HumanNet, ProteomHD, Reactome, and STRING).
A network is constructed with nodes representing the significantly altered genes and
edges denoting interactions obtained after merging interactions from nine PPI databases.
Each node is equipped with 26 genomic features specific to its corresponding gene. The
architecture of the BIO-DGI model contains a multi-head attention unit and a GCN
layer followed by a fully connected layer. The feature matrix and adjacency matrix are
provided as input to the BIO-DGI model. The multi-head attention unit in the BIO-DGI
model updates the weights of gene interactions in the adjacency matrix, which are then
integrated with the sample feature matrix to gain insights on distinguishing biomark-
ers that can differentiate MM from MGUS. The output of the fully connected layer
is converted into the classification probabilities using the softmax activation function.
Consequently, the WES data of each subject is analyzed, and feature vectors for all 798
genes are derived. These feature vectors, in conjunction with the subjectś MM/MGUS
target class label, constitute the input for supervised training of the GCN. Following the
learning of the BIO-DGI model for distinguishing MGUS from MM, the top genomic
features and significantly altered signaling pathways are extracted utilizing the ShAP
algorithm and cross-referencing with the Enrichr pathway database.
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were further used for pathway enrichment analysis, gene-community identification and
candidate driver gene panel. The setting of layers, hyperparameters used to train the
BIO-DGI model and mathematical description of the BIO-DGI model are available in
Supplementary File-2.

5.2.4 Quantitative benchmarking of BIO-DGI model with tradi-
tional machine learning classifiers

In our quantitative benchmarking analysis, we conducted a comprehensive comparison of
the BIO-DGI (PPI9) model involving three key performance metrics: balanced accuracy,
area under the curve (AUC), and area under the precision and recall curve (AUPRC).
This evaluation encompassed the five-fold cross-validation of six established baseline
cost-sensitive machine learning models: random forest, decision tree, logistic regression,
XGBoost, CatBoost, and SVM from the scikit-learn library [221]. Further, we also
included two const-sensitive DL models: BDL-SP and BIO-DGI (PPI-STRING) model
for quantitative benchmarking. To enhance the models’ sensitivity to class imbalance, we
incorporated a tailored cost-sensitive loss function. This function implements weighted
penalization for sample misclassifications, with the weighting being directly proportional
to the class imbalance ratio. This strategic implementation of weighted penalization
ensures unbiased learning outcomes for major and minor classes, fostering a more
equitable predictive capability.

5.2.5 Qualitative application-aware post-hoc benchmarking of BIO-
DGI model using ShAP

The ShAP (SHapley Additive exPlanations) algorithm is a powerful tool for gauging the
significance of attributes in a model’s predictions. It achieves this by assigning scores
to attributes based on their individual contributions. In this context, ShAP played a
pivotal role in enhancing the post-hoc explainability of the BIO-DGI (PPI9) model. This
process unearthed the most influential genomic features and the genes that experienced
significant alterations, both at the group level (MGUS or MM) and at the level of
individual samples. Since a rigorous five-fold validation process was executed during
the model’s training phase, the ShAP algorithm was subsequently applied to each trained
classifier. This enabled the identification of significant genomic attributes (genes and
features) for every individual sample. It’s important to note that the ShAP score can
encompass both positive and negative values. In this context, a positive ShAP score for a
specific attribute highlights its contribution to the model’s prediction for the MM class
(positive class). Conversely, a negative score indicates its role in the model’s prediction
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for the MGUS class (negative class). Consequently, the magnitude of the ShAP score
directly correlates with the attribute’s impact on the model’s positive class outcome.
Furthermore, the extraction of ShAP interpretability was limited to those samples that
were correctly predicted by at least one of the five classifiers. This approach ensured a
robust basis for deriving insights through ShAP analysis.

We employed the algorithm, as outlined in our previous study [5] (Figure 4A, Figure 4B,
and Table 2A, Table 2B within [5]), to compute the best ShAP scores. The algorithm
encompassed two key aspects: deriving the best ShAP scores: 1) for all 798 significantly
altered genes and 2) for all 26 genomic features, both on a per-sample basis. For each
sample in the MM and MGUS cohort, the five trained classifiers of the BIO-DGI (PPI9)
model predicted the corresponding class, with the ShAP algorithm applied only by
classifiers that made correct predictions. ShAP scores for all genomic attributes were
collected at the classifier and sample levels. The best ShAP score for each attribute
was initially computed at the classifier level and subsequently across all classifiers at
the sample level. Regarding significantly altered genes, the ShAP scores of the 26
genomic features were grouped by their positive and negative signs. The best ShAP
score for each gene was determined by comparing the absolute values of these grouped
scores, considering the largest absolute value among all classifiers as the optimal score.
Similarly, for each genomic feature, the ShAP scores of all 798 genes were grouped and
assessed in a similar manner, resulting in the best ShAP score. Following this process,
the most highly ranked genes and genomic attributes were identified at the group and
sample levels.

We extended our analysis by comparing the BIO-DGI (PPI9) model’s top-ranked signifi-
cantly altered genes with those reported in previous studies, aiming to identify genes
previously associated with disease progression or suppression. We validated and ana-
lyzed our model using information from multiple databases such as OncoKB, IntoGen,
COSMIC, and TargetDB at the gene level. For model validation, we extracted 1064 can-
cer genes from the OncoKB database for OGs and TSGs. From the COSMIC database,
we utilized 318 OGs and 320 TSGs.

We utilized the IntoGen database (https://www.intogen.org/) and MM-related studies
[87, 222] to compile a catalogue of MM driver genes. Additionally, 180 AGs from
COSMIC and 135 from TargetDB helped infer AGs. We systematically categorized
the top-ranked significantly altered genes into distinct groups based on their biological
characteristics, including OGs, TSGs, ODGs, and AGs. We meticulously compiled the
top-ranking genes, both at the group level (MM/MGUS) and the sample level. This
comprehensive approach facilitated a thorough exploration of genomic features in the
post-hoc interpretability analysis of the BIO-DGI (PPI9) model, providing valuable
insights into their roles in disease contexts. Additionally, we introduced a second layer
of classification by assessing whether each gene exhibited significant alterations in MM
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or MGUS. Genes exclusively displaying significant changes in MM were designated as
"Transformative" (or disease-progressing genes), while those altered in both MM and
MGUS were labeled as "disease initiating". This dual categorization strategy deepened
our understanding of these genes, shedding light on their biological functions and their
specific relevance to MM and MGUS. We meticulously compiled the top-ranking genes
within each category, both at the group level (MM/MGUS) and the sample level. This
comprehensive approach facilitated a thorough exploration of genomic features in the
post-hoc interpretability analysis of the BIO-DGI (PPI9) model, providing valuable
insights into their roles in disease contexts.

5.2.6 Identification of CNVs, SVs and LOFs for top 500 significantly
altered genes

Our exploration into significantly altered genes underwent expansion to encompass a
broader array of genomic profiles, including copy number variants, structural variants,
and loss-of-function events. This extended analysis allowed us to delve into the impact of
these variants at the gene level, shedding light on their influence on disease progression.
For the MMRF dataset, we leveraged the segment data obtained from MMRF CoMMpass
to identify copy number variants (CNVs) using the CNVkit [312] tool. To ensure
consistency in our CNV identification workflow, we applied CNVkit to detect CNVs
in the WES samples of both AIIMS and EGA datasets. Within this framework, we
filtered out genes with a copy number value of 2 across all samples, focusing on genes
with copy number values that deviated from 2. Turning to SVs, we utilized the SVs
identified through the in-house SV identification workflow developed by the Translational
Genomics Research Institute (TGen) and Delly tool [40] to pinpoint SVs in WGS samples
from the MMRF dataset. Our analysis centred on significantly altered genes ranked in the
top 500 whose genomic regions were affected by SVs, spanning insertions, inversions,
deletions, duplications, and translocations.

Furthermore, our investigation extended to encompass genes marked by LOF aberrations.
The LOF denotes a disruption in the normal functioning of a gene, impeding the genera-
tion of the usual gene product or rendering it ineffectual. To identify the genes having
LOF, we assessed all transcripts against the criteria as follows: deletion of over half of
the coding sequence, deletion of the start codon, deletion of the first exon, deletion of a
splice signal, or deletion causing a frameshift, it was considered to exhibit LOF [313].
This evaluation was conducted across all samples within the MM and MGUS cohorts to
pinpoint genes featuring LOF anomalies.
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5.2.7 Identification of Haploinsufficient genes

To assess the likelihood of genes exhibiting haploinsufficiency, we draw upon two
previously published haploinsufficiency prediction scores: the genome-wide haploinsuf-
ficiency score (GHIS) [314] and the DECIPHER score [313]. The DECIPHER score
amalgamates patient genomic data, evolutionary profiles, and functional and network
properties to predict the likelihood of haploinsufficiency. Meanwhile, the GHIS score
draws from diverse large-scale datasets, encompassing gene co-expression and genetic
variation in over 6000 human exomes. These comprehensive methods enhance identi-
fying haploinsufficient genes, revealing their crucial role in diseases. This deepens our
understanding of genes that lack proper function when only one copy is present.

5.2.8 Identification of significantly altered pathways and pathway
ranking

The noteworthy genes highlighted by the BIO-DGI (PPI9) model, instrumental in distin-
guishing between MM and MGUS, were cross-referenced with the significant gene lists
derived separately for MM and MGUS. This mapping was facilitated by the dndscv tool.
The outcomes revealed genes shared between both groups, as well as genes significantly
mutated either exclusively in MGUS or solely in MM. Moving forward, a pathway anal-
ysis was executed on the top 500 genes identified by the BIO-DGI model. To uncover
insights, we turned to the Enrichr gene set enrichment analysis web server, which aided
in identifying significantly altered KEGG and Reactome pathways associated with the
gene set. Subsequently, we proceeded to rank the significantly altered pathways in either
the MM cohort, MGUS cohort, or both cohorts, employing their adjusted p-values as a
metric. This pathway ranking mechanism provided us with a clear view of the foremost
pathways that underwent the most significant alterations due to genomic aberrations in
the significantly altered genes.

5.2.9 Identification of gene communities using learned adjacency
matrices

We employed a five-fold cross-validation training strategy for our proposed BIO-DGI
(PPI9) model. Subsequent to training the model, we retained the learned adjacency matrix
from each classifier, yielding five distinct learned adjacency matrices. We proceeded to
individually identify gene communities within each of these matrices using the Leiden
algorithm. This process yielded 5, 5, 6, 5, and 6 gene communities across the respective
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learned adjacency matrices. These communities were meticulously curated, and from
each fold, the top 3 sub-communities were selected based on the number of OGs, TSGs,
ODGs, and AGs. Consequently, we generated a learned adjacency matrix for each fold,
encompassing genes from these top 3 sub-communities. To achieve integration across the
folds, we merged the learned adjacency matrices derived from genes within the top 3 sub-
communities. This amalgamation was accomplished by calculating the mean weight of a
gene across all folds. In cases where a gene wasn’t present in the top 3 sub-community,
its weight was treated as zero within that particular fold. Subsequent to merging the
learned adjacency matrices across all five folds, we embarked on another round of
community detection. This phase, again utilizing the Leiden algorithm, culminated in
the final configuration of five gene communities.

5.2.10 Geo2R validation of top 500 significantly altered genes

We conducted a thorough validation using the Geo2R tool [315] to validate significantly
altered genes that were ranked in top 500 in relation to multiple previously published
studies focused on MM. In total, we utilized micro-array and miRNA data from 11
distinct MM-related studies for this validation process [99, 316, 317, 318, 319, 320, 321,
322, 323, 324, 325, 326, 327]. To ensure rigorous assessment, we exclusively considered
genes that displayed significant dysregulation and maintained an adjusted p-value 
0.05 in at least one MM-related dataset.

5.2.11 Workflow for targeted sequencing gene panel

We devised an innovative workflow to pinpoint potential driver genes within the top-
ranked significantly altered genes. This comprehensive process incorporated all available
genomic profiles, including gene SNVs, CNVs, SVs, LOF, and the count of validated
datasets from Geo2R validation. For each of the genes within the top 500, we meticu-
lously collected data from all these profiles. We applied individualized filtering criteria
tailored to each variant profile to ensure precision. For instance, when filtering based
on the gene SNV profile, criteria included the number of nonsynonymous mutations in
the MM cohort, the presence of nonsynonymous or other category mutations in MM
cohort samples, and the ratio of nonsynonymous mutations to the total mutations within
a sample in the MM cohort. Similarly, for the CNV profile, we considered the presence
of CNVs in the gene across MM cohort samples. Analogous criteria were applied for the
SV and LOF profiles, focusing on the presence of structural variants and loss-of-function
events within MM cohort genes.
Next, we retained genes that met the criteria in at least one variant profile. Finally, we
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selected genes that satisfied the aforementioned gene prioritization workflow and had at
least one dataset validation in Geo2R analysis for further in-depth investigation. The
genes that were either disease-transformative or disease-initiating were retained. Detailed
workflow for the gene prioritization process is available in Figure-5.6(A), providing a
comprehensive view of our approach to identifying potential driver genes. We checked
the major molecular aberration for each gene in the 282 genes panel. Further, we checked
the coding regions and their genomic locations for the altered regions of all the genes in
the 282 genes panel using the UCSC Genome database [328].

5.2.12 Workflow for comprehensive survival analysis

In the end, we performed the survival analysis of 282 genes filtered out using the
workflow shown above (Section-5.2.11). We devised a novel workflow for survival
analysis to have a better understanding of the impact of gene variant profiles on MM
patient survival. In order to identify the genes affecting the patients’ survival outcomes
significantly, we employed two distinct approaches, as shown below:

In the first approach, we performed the univariate survival analysis for all 282 genes for
each variant profile individually (SNV, CNV, SV, and LOF). In this step, we considered
one variant profile as a prognostic factor at once. For the SNV profile, we used the total
number of (nonsynonymous + other) SNVs as a prognostic factor for univariate survival
analysis. Similarly, for the CNV, SV, and LOF profiles, we generated a categorical
vector (yes/no) representing whether the gene has CNV, SV, and LOF present in the MM
sample or not and then performed univariate survival analysis individually. Finally, for
each variant profile, we retained the genes having adjusted p-value  0.05 in univariate
survival analysis of individual variant profiles for further analysis. Similarly, in the
second approach, we combined the effect of all four variant profiles for each gene in
order to get the overall effect of gene variant profiles on clinical outcomes. For this,
we employed Factor Analysis of mixed data (FAMD) [329] approach for dimension
reduction. Next, we performed the univariate survival analysis using the first FAMD
component of all 282 genes as a prognostic factor. Lastly, we retained the genes having
adjusted p-value <= 0.05 in univariate survival analysis of FAMD first component for
further analysis.

5.2.13 Computational framework used for WES data analysis and
survival analysis

We utilized the Python computational framework (version 3.9.13) for WES data analysis
and visualization. For training all deep learning models in this study, we employed
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PyTorch (version 1.12.0+cu113) [330]. Additionally, survival analysis was conducted
using the statistical programming language R (version 4.3.1) with the "survival" package
[331] (version 3.5.5).

5.3 Results

5.3.1 Cohort description

In this comprehensive study, we analyzed two distinct cohorts related to MM and MGUS,
encompassing a total of 1154 MM samples and 61 MGUS samples sourced from three
globally recognized datasets: AIIMS, EGA, and MMRF. Specifically, within the MM
cohort, we examined 1072 samples from the MMRF dataset and 82 samples from the
AIIMS dataset. Additionally, in the MGUS cohort, we examined 28 samples from the
AIIMS repository and 33 samples from the EGA repository. Augmenting our analysis, we
incorporated crucial clinical data, including OS time and OS event data for MM samples
retrieved from the MMRF and AIIMS datasets. This enabled a thorough exploration
of the clinical relevance of the proposed targeted sequencing panel, underlining the
significance of our findings.

5.3.2 Identification of significantly altered genes

We utilized the dndscv tool (depicted in the pre-processing block of Figure-5.1) to
identify significantly altered genes within the MM and MGUS cohorts. A total of 598
and 351 significantly altered genes were pinpointed in the MM and MGUS cohorts,
respectively. Among these, 151 genes were found to be common to both MM and MGUS.
Subsequently, we proceeded to infer the crucial genes and gene-gene interactions vital for
distinguishing between MM and MGUS leveraging our innovative graph-based BIO-DGI
(PPI9) model.

132



(a)

(b)

Figure 5.2: Quantitative benchmarking of proposed BIO-DGI model. (a) Comparison of
balanced accuracy and AUPRC score of BIO-DGI (PPI9) model with other baseline ML
and DL models, and (b) Confusion matrix of top-performing models including BIO-DGI
(PPI-STRING) model.
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Figure 5.3: Precision-recall curves (PRC) for all five folds of (i) CSDT, (ii) CS-SVC,
(iii) BIO-DGI (PPI-STRING), (iv) CSRF, (v) CS-XGB, (vi) CSLR, (vii) CS-Cat, (viii)
BDL-SP, and (ix) BIO-DGI (PPI9).

5.3.3 Benchmarking of proposed BIO-DGI (PPI9) model

Employing our AI-driven BIO-DGI workflow (depicted in Figure-5.1), we trained the
BIO-DGI (PPI9) models using 5-fold cross-validation and compared its performance with
six standard cost-sensitive machine learning and two deep learning models. Remarkably,
the proposed BIO-DGI (PPI9) model showcased superior performance in terms of
balanced accuracy and AUPRC. Specifically, the BIO-DGI (PPI9) model achieved the
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largest balanced accuracy at 96.7%. Following closely, the BDL-SP model attained a
balanced accuracy of 96.26%, and the cost-sensitive Catboost (CS-Cat) model achieved
the third-best performance with a balanced accuracy of 96.09%. The BIO-DGI (PPI9)
model also outperformed other models in AUPRC, securing the largest AUPRC score
of 0.93, while the AUPRC score for BDL-SP and CS-Cat models stood at 0.92 and 0.9,
respectively. Notably, the BIO-DGI (PPI9) model correctly identified 1099 out of 1154
MM samples and 60 out of 61 MGUS samples, showcasing its quantitative superiority.

Similarly, the second-best performing model, BDL-SP, identified 1087 out of 1154 MM
samples and 60 out of 61 MGUS samples. Lastly, the third-best performing model, CS-
Cat, identified 1120 out of 1154 MM samples and 58 out of 61 MGUS samples. These
results affirm that, quantitatively, the BIO-DGI (PPI9) model demonstrated superior
performance, with the BDL-SP model being the second best. For a comprehensive
understanding of performance metrics (balanced accuracy and AUPRC scores), confusion
matrices, and AUPRC curves, refer to Figure-5.2(A), (B), and Figure-5.3 respectively.
Given the marginal difference in the balanced accuracy and AUPRC performance metrics
among the top three models (BIO-DGI (PPI9), BDL-SP, and CS-Cat), we conducted
post-hoc interpretability benchmarking. We applied the ShAP algorithm to identify
the top-ranked genes for each of the top three performing models. Subsequently, we
analyzed these genes to pinpoint previously reported OGs, TSG, ODG, and AG. Out of
the total 798 genes, we identified 31 OGs (e.g., ABL2, BIRC6, FUBP1, IRS1), 43 TSGs
(e.g., APC, ARID1B, CYLD, PABPC1, ZFHX3), 10 ODGs (e.g., BRAF, FGFR3, TP53,
TRRAP), and 19 AGs (e.g., ARID2, BRD4, MITF, NF1, TYRO3) (Table-5.1).

Our analysis revealed that the proposed BIO-DGI (PPI9) model exhibited the largest
count of identified OG, TSG, ODG, and AG in both the top 250 and top 500 gene lists
(Table-5.2). Specifically, the BIO-DGI (PPI9) model detected 23 and 28 OGs in the
top 250 and top 500 gene lists, respectively. Additionally, out of 43 known TSGs, the
BIO-DGI (PPI9) model identified 26 in the top 250 and 41 in the top 500 gene lists.
Similarly, out of the 10 known ODGs, the BIO-DGI (PPI9) model identified 8 and 9
in the top 250 and top 500 gene lists, respectively. Lastly, out of the 19 known AGs,
the BIO-DGI (PPI9) model identified 14 and 19 in the top 250 and top 500 gene lists.
The number of previously reported genes identified by other top-performing models
(BDL-SP, CS-Cat, BIO-DGI (PPI-STRING)) is presented in Table-5.2. Furthermore,
the lists of previously reported genes within the 798 significantly altered genes, ranked
within the top 250 and top 500 by the top-performing models, are outlined in Table-5.3.
Given the BIO-DGI (PPI9) model’s superior identification of previously reported OGs,
TSGs, ODGs, and AGs, it stands as the best-performing model and was subsequently
used to infer the top significantly altered genes, gene-gene interactions, genomic features,
and altered signaling pathways critical for distinguishing MM and MGUS. This analysis
underscores the importance of model interpretability within the application domain, even
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when obtaining similar quantitative results with different machine learning models.

Table 5.1: Types of four different gene categories (OG, TSG, ODG, and AG) and their
counts in 798 significantly altered genes

Gene type based on functionality
Total number of previously

reported genes present in our list
of 824 significantly altered genes

Oncogenes 31

Tumor-suppressor genes 43

Both oncogene and driver gene 10

Actionable genes 19

Table 5.2: Counts of previously reported 4 categories of genes as found in the post-hoc
analysis based top 250 and top 500 genes of the top 3 models (BIO-DGI (PPI9), BDL-SP,
CS-Cat, and BIO-DGI (PPI-STRING))

Top Genes
BIO-DGI (PPI9)

(Top-performing model)
BDL-SP

(Second best model)
CS-Cat

(Third best model)
BIO-DGI (PPI-STRING)

(Baseline version of BIO-DGI)
OG TSG ODG AG OG TSG ODG AG OG TSG ODG AG OG TSG ODG AG

top 250 23 26 8 14 20 21 7 11 0 0 0 0 18 24 7 13
top 500 28 41 9 19 27 37 8 17 0 0 0 0 28 41 9 19

The number of previously reported genes (OG/TSG/ODG/AG) obtained in each category (top 250/top
500) using the best performing model is highlighted in bold.

models, we have considered only those genes in the top 250 or top 500 gene list that
have a non-zero ShAP score in the post-hoc explainability analysis. The total counts of
previously reported genes as found in the top 250 and top 500 genes of the top-three
models is shown in Table-5.2.

5.3.4 Identification of significantly altered pathways and ranking of
pathway

In comparing the top 500 significantly altered genes identified by the BIO-DGI (PPI9)
model, crucial for distinguishing MM from MGUS, with the significant gene list ob-
tained for MM and MGUS using the dndscv tool, 397 genes were significantly altered
exclusively in the MM cohort, 197 genes were exclusively altered in the MGUS cohort,
and 94 were found to be significantly altered in both MM and MGUS cohorts, as outlined
in Table-S2 (Supplementary File-3).
Within the MM cohort, notable previously reported significantly altered genes were
present, encompassing ASH1L, BRAF, HLA-A/B/C, IGLL5, KMT2B/C/D/E, KRAS, TP53,
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TRAF2/3, among others. Similarly, the MGUS cohort exhibited previously reported
genes like HLA-B, NOTCH1, PRSS3, TRRAP, among others. Furthermore, several
previously reported genes were found in both MM and MGUS cohorts, including HLA-B,
PRSS3, KMT2C, TRRAP, among others, illustrating their potential role as shared genomic
features in the progression from MGUS to MM. We utilized the Enrichr database to
identify significantly altered KEGG and Reactome signaling pathways associated with
397 MM and 197 MGUS genes. In the MGUS group, 7 KEGG pathways and 10
Reactome pathways exhibited significant alterations (refer to Table-S7 in Supplementary
File-4). Conversely, the MM group displayed more pronounced pathway alterations, with
105 KEGG and 84 Reactome pathways being significantly affected (refer to Table-S8 in
Supplementary File-3). To categorize these alterations based on changing significance
levels during the MGUS to MM transition, we employed a similar strategy to our
previous study [5]. Specifically, we categorized the significantly altered pathways into
four distinct groups according to their significance level changes during the MGUS to
MM transition:

1. Category-1: Pathways increasingly significant during MM progression from
MGUS.

2. Category-2: Pathways decreasing in significance during the MGUS to MM transi-
tion.

3. Category-3: Pathways significantly altered specifically in MM but not in MGUS.
4. Category-4: Pathways significantly altered specifically in MGUS but not in MM.

The complete list of significantly altered pathways for these categories is provided in
Tables S9 and S10 of Supplementary File-4. In Category-1, 7 KEGG and 8 Reactome
pathways became more significant as the disease progressed from MGUS to MM. In
Category-2, no KEGG pathways but 1 Reactome pathway displayed reduced significance
with disease progression from MGUS to MM. In Category-3, 98 KEGG pathways
and 75 Reactome pathways were significantly altered only in MM and not in MGUS.
Notably, 13 out of 98 KEGG pathways and 11 out of 75 Reactome pathways showed
no overlapping genes with the set of 197 significantly altered genes in MGUS. Lastly,
Category-4 revealed no significantly altered KEGG pathways, while 1 Reactome pathway
was observed as significantly altered only in MGUS and not in MM.

To determine the top-ranked pathways, we conducted a ranking of significantly altered
pathways in MM based on their adjusted p-values (refer to Table-S11, Supplementary
File-4). This analysis revealed a selection of MM-related signaling pathways, notably
encompassing the PI3K-AKT signaling pathways, antigen processing and presentation,
and MAPK signaling pathways, prominently featured among the top-ranking pathways.
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5.3.5 Interpretability of BIO-DGI (PPI9) model using ShAP algo-
rithm

We utilized the ShAP algorithm for post-hoc model explainability and ranked genomic
attributes based on their influence on the model prediction. Each genomic attribute
received a ShAP score, representing its contribution to each class (MM/MGUS). Subse-
quently, the attributes were ranked at the group-level (MM versus MGUS) accordingly.
This ShAP analysis served to provide post-hoc explainability of the trained model, fol-
lowing a methodology akin to that outlined in [5], enabling the ranking of genes and
genomic features at both group and sample levels.

By evaluating the ShAP scores assigned to each gene, we identified MUC6, LILRA1, and
LILRB1 as the top three genes in MM and MGUS samples among the 798 significantly
altered genes (Table-S2 in Supplementary File-3). Furthermore, several previously
reported OGs (e.g., MUC16, USP6, BIRC6, VAV1), TSGs (e.g., EP400, HLA-B/C, SDHA,
MYH11), ODGs (e.g., PABPC1, KRAS, TRRAP, TP53, FGFR3, BRAF), and AGs (e.g.,
NOTCH1, FANCD2, TYRO3, ARID1B) were highlighted as top-ranked genes.

Similarly, we ranked genomic features based on their impact on the model’s prediction
using their ShAP scores. In our model training for BIO-DGI (PPI9), a set of 26 genomic
features was employed. Notably, the PhyloP score of nonsynonymous SNVs, allele
depth of synonymous SNVs, and the total number of other SNVs emerged as the top
three genomic features. Figure-5.7 presents the beeswarm plot illustrating the genomic
feature ranking from BIO-DGI (PPI9) model post-hoc analysis using ShAP.

5.3.6 Identification of gene communities and most influencing com-
munity members

We employed a five-fold cross-validation training strategy to obtain five distinct learned
adjacency matrices for five classifiers, each with a dimension of 798x798. We applied
the Leiden algorithm to the respective learned adjacency matrix for each classifier to
identify gene communities. Consequently, we derived 5, 5, 6, 5, and 6 gene communities
using the learned adjacency matrices from the first, second, third, fourth, and fifth
classifiers, respectively. Within each classifier, we ranked the communities based on the
number of previously reported genes present within them and selected the top three gene
communities for each. Subsequently, we merged these top three gene communities for
each classifier, resulting in five new distinct learned adjacency matrices with dimensions
of 500x500, 500x500, 539x539, 500x500, and 422x422.

In the following step, we merged these five distinct new learned adjacency matrices by
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computing the mean of gene-gene interactions across the five classifiers. In cases where
a specific gene-gene interaction was absent in any fold, we assigned a weight of zero
for the corresponding interaction in that fold. This process yielded a final adjacency
matrix with dimensions of 690 x 690. Finally, we identified five gene communities from
the final learned adjacency matrix using the Leiden algorithm, yielding communities
having 202, 125, 122, 104, and 21 genes. The pseudo codes for community detection
are provided in Supplementary File-5.
The first gene community, comprising 202 genes, contained 11 OGs, 21 TSGs, 3 ODGs,
and 8 AGs. Similarly, the second gene community, with 125 genes, contained 14 OGs,
8 TSGs, 6 ODGs, and 10 AGs. The third gene community, comprising 122 genes, did
not include any OGs, TSGs, ODGs, or AGs. The fourth gene community, with 104
genes, contained 4 OGs, 11 TSGs, 1 ODG, and 1 AG. Lastly, the fifth gene community,
comprising 21 genes, contained 2 OGs and no TSGs, ODGs, or AGs. The list of genes
present in all five gene communities and previously reported genes within each are
provided in Table-S12 and Table-S13 of Supplementary File-6. Visualization of all five
gene communities, including the top 250 genes and previously reported genes (regardless
of their rank), is presented in Figure-5.4(A)-(E).

5.3.7 Geo2R validation of top 500 genes obtained from BIO-DGI
(PPI9) model

We validated the MM relevance of the top 500 genes obtained from the post-hoc analysis
of the BIO-DGI (PPI9) model using datasets from MM-related studies, leveraging the
Geo2R tool. We considered 11 MM-related studies for this validation, identifying
significantly expressed genes with an adjusted p-value of <= 0.05 and compared them
with our top-ranked genes. Remarkably, out of the top-ranked 500 genes, 488 genes
were validated in at least one MM-related study. Moreover, within the top 500 genes,
127 (25.4%) and 111 (22.2%) genes were found to be significantly deregulated in MM
across datasets related to four and five MM-related studies, as depicted in Figure-5.5(J).
Comprehensive details of the Geo2R validation analysis for the top 500 genes are
available in Table-S14, Supplementary File-7.
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Figure 5.4 (previous page): Gene community visualization using the learned adjacency
matrix obtained from five trained BIO-DGI (PPI9) classifiers. In this figure, (a), (b),
(c), (d), and (e) represent the top genes in the first, second, third, fourth and fifth gene
communities, respectively. Here, These figures showcase the previously reported genes
(OG, TSG, ODG, AG) regardless of their rank, alongside other non-reported genes
(in magenta color) within the top 250 ranks, respectively. Genes marked with "*" are
included in the 282-genes panel. Additionally, genes marked with "#" possess a high
likelihood of being haploinsufficient, with a GHIS score > 0.52.

5.3.8 Analysis of CNVs, SVs and LOF for identifying the key ge-
nomic events in MM

In addition to analyzing SNV profiles, we conducted a comprehensive investigation
of CNVs, SVs, and LOF in the MM cohort. CNV identification was performed using
CNVkit on AIIMS MM samples and on exome segment data from MMRF CoMMpass
for MMRF samples. Processed SV data from MMRF CoMMpass was utilized to identify
key SVs in MM and 282-genes panel designing. For identifying genes having LOF within
a sample, we employed established criteria, evaluating disruptions in gene transcripts due
to deletion of essential coding segments, exons, splice signals, or frameshift-inducing
deletions [313]. We scrutinized both CNVs and SNVs to identify genes with LOF
within each sample. Analysis of CNVs, SVs, and LOF in the top 500 genes revealed
crucial molecular aberrations in MM. Chromosome-wise distribution analysis indicated
that chr19 (19%), chr1 (17%), chr6 (8.6%), and chr14 (7.1%) were notably affected
by CNVs (Figure-5.5(A)). Similarly, chr1 (12.6%), chr6 (9.9%), chr12 (5.3%), and
chr14 (5%) showed prominent SV involvement (Figure-5.5(B)), while chr19 (20%),
chr1 (19.9%), chrX (13%), and chr14 (11.8%) were most affected by LOF (Figure-
5.5(C)). The majority of CNVs were gains (58.3%) and deletions (17%) (Figure-5.5(D)),
while inversions (65%) and translocations (13.1%) dominated the SV landscape (Figure-
5.5(E)). Notable chromosomes impacted by inversion SV included chr1, chr3, chr2,
and chr7 (Figure-5.5(F)), and translocations mainly affected chr7, chr21, chr1, and
chr14 (Figure-5.5(G)). The distribution of CNV and SV types within each chromosome
highlighted their relative abundance (Figure-5.5(H) and Figure-5.5(I)).
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(J)

Figure 5.5: Genomic Aberrations Overview (CNVs, SVs, and LOF) in MM Sam-
ples from AIIMS and MMRF Repositories. In panels (A)-(C), the figure displays the
chromosome-wise distribution of CNVs, SVs, and LOF, respectively. Panel (D) presents
the distribution of CNV types identified in MM samples from both AIIMS and MMRF
datasets. Similarly, panel (E) shows the distribution of SV types identified in MM
samples from the MMRF dataset. Notably, SV analysis was conducted exclusively for
MMRF samples due to the absence of WGS data in the AIIMS repository. Continuing
SV analysis, panels (F) and (G) exhibit the chromosome-wise distribution of inversions
and translocations found in MM samples, respectively. Panels (H) and (I) provide the
individual distribution of CNV and SV types for each chromosome. Lastly, panel (J)
portrays the distribution of genes validated through MM-related studies using the Geo2R
tool. The x-axis represents the number of MM-related studies validating the gene, while
the y-axis indicates the count of genes.
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(a)

282 gene list obtained from candidate driver gene panel 
identification algorithm

Survival Analysis using feature generated by combining 4 
features (SNV profile, CNV profile, SV profile, and LOF 

profile) using Factor Analysis for Mixed Data (FAMD) [30]. 

Collect 4 features for each genes and baseline
samples to perform the univariate survival analysis:
1. Total number of SNVs in non-synonymous and

other SNV category (continuous feature)
2. Whether the baseline sample has CNVs present in

the gene (binary feature having following values
= 1: Yes, 0: No)

3. Whether the baseline sample has SVs present in
the gene (binary feature having following values
= 1: Yes, 0: No)

4. Whether the baseline sample has LOF present in
the gene (binary feature having following values
= 1: Yes, 0: No)

Perform univariate survival analysis of 282 genes 
using the first FAMD component as prognostic 

factor obtained in the previous step.

Univariate Survival analysis of 282 genes using the following 
profiles as prognostic factor individually.

Binarized SNV Profile: For a given gene, 
whether the baseline sample has SNVs in either 
non-synonymous SNV category or other SNV 

category (1: Yes, 0: No)

Binarized CNV Profile: For a given gene, 
whether the baseline sample has CNVs present 

in the gene (1: Yes, 0: No)

Binarized SV Profile: For a given gene, whether 
the baseline sample has SVs present in the gene 

(1: Yes, 0: No)

Binarized LOF Profile: For a given gene, 
whether the baseline sample has LOF present in 

the gene (1: Yes, 0: No)

Workflow-A Workflow-B

(b)

The union of gene sets from profiling 4 variant categories (SNV, CNV, SV, and LOF) resulted 
in a 354-gene set.

Gene set-A= Genes with >=
1 median number of SNVs
are selected.

Box plot for median number
of SNVs computed for every
gene in MM cohort

Gene set-B= Genes with >=160
samples having non-
synonymous SNVs are
selected.

The interaction of geneset-A and B resulted in a 79-gene set.

Box plot for number of samples
having non-synonymous SNVs
computed for every gene in MM
cohort

Box plot for number of samples
having CNVs computed for
every gene in MM cohort

Box plot for number of samples
having LOF computed for
every gene in MM cohort

Box plot for number of
samples* having SVs
computed for every gene in
MM cohort

Select Genes with CNV 
observed in >= 35 samples.

Select Genes with SV 
observed in >= 20 samples.

Select Genes with LOF 
observed in >= 4 samples.

282-gene set that are either Transformative or 
Oncogenic.

346-gene set validated via Geo2R analysis in at least 
one MM-related dataset.

Candidate driver gene panel of 282 
genes.

The CNV profiling resulted in 
126-gene set.

The SV profiling resulted in 
191-gene set.

The LOF profiling resulted in 
147-gene set.

SNV Profiling of top-500 genes CNV Profiling of top-500 genes SV Profiling of top-500 genes LOF Profiling of top-500 genes

Median = 0
3rd quartile = 1

Median = 72

3rd quartile = 160

Median = 23

3rd quartile = 35
Median = 9

3rd quartile = 20

Median = 2
3rd quartile = 4
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(c)

Figure 5.6: (a) Workflow Design for the Proposed 282-Gene Panel. The workflow
incorporates variant profiles (SNVs, CNVs, SVs, and LOF) to identify MM-relevant
genes. Specifically, 79, 126, 191, and 147 gene lists were generated based on SNVs,
CNVs, SVs, and LOF variant profiles, respectively. The union of these lists resulted in a
gene set of 354 genes. Following Geo2R validation, 346 genes were retained. Ultimately,
disease-initiating (significantly altered in both MM and MGUS) and transformative
(exclusively significantly altered in MM) genes were selectively chosen for inclusion in
the targeted sequencing panel. (b) Venn diagram showing the overlapping of gene lists
obtained after filtering top 500 genes based on their variant profiles. Out of 282, there
were 4 genes, namely, RYR3, HLA-A, HLA-B, and HLA-DRB5, which were found heavily
mutated in all four variant profiles. Further, a total of 32 genes were found to be heavily
mutated in at least three variant profiles. (c) Workflow for two-fold survival analysis
of proposed 282-gene panel. In this workflow, we estimated the clinical relevance of
gene variant profiles on MM patient clinical outcomes using two distinct approaches.
In the first approach, We individually assessed the impact of each variant profile (SNV,
CNV, SV, and LOF) on clinical outcomes. Univariate survival analysis was performed
for each variant profile, providing insights into their respective impact. Using this
approach, 193 genes out of the 282 genes were found to significantly influence clinical
outcomes in univariate survival analysis based on at least one prognostic factor. In
the second approach, we amalgamated the four variant profiles (SNV, CNV, SV, and
LOF) for each gene using Factor Analysis for Mixed Data (FAMD), enabling us to
estimate a joint feature. Subsequently, we performed univariate survival analysis using
the FAMD 1st component as a prognostic factor. In this approach, 185 out of 282
genes demonstrated significance in univariate survival analysis based on the FAMD 1st
component (a combined feature generated by integrating the four variant profiles for
each gene). Intriguingly, 139 genes out of these 185 were also identified as significant in
univariate survival analysis. By combining both approaches, out of 282, a total of 239
genes were found to significantly influence the clinical outcomes of MM patients.
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5.3.9 Design of 282-genes targeted sequencing panel

To design an effective targeted sequencing panel, we refined the initially identified
top-ranked genes based on their significant alterations and the collective impact of their
variant profiles in MM. Firstly, we considered four critical variant profiles to pinpoint
the candidate driver gene panel: 1. SNV profile, 2. CNV profile, 3. SV profile, and 4.
LOF profile. Additionally, we integrated the Geo2R validation profile to specifically
include MM-relevant genes in the targeted sequencing panel. Finally, we excluded genes
that were neither transformative nor disease-initiating. For the SNV profiling of the
top 500 significantly altered genes, we filtered based on the median SNV count and
the number of samples with nonsynonymous SNVs, resulting in a set of 79 genes. The
features extracted for SNV profile analysis are detailed in Table-S3, Supplementary
File-3. Moving on, the variant profiling for CNV, SV, and LOF involved filtering genes
based on the number of samples exhibiting that particular variant type, yielding sets of
126, 191, and 147 genes, respectively. The features extracted for CNV, SV, and LOF
profile analysis can be found in Table-S4-S6, Supplementary File-3.
By combining genes from SNV, CNV, SV, and LOF variant profiles, we arrived at a
comprehensive set of 354 genes. To ensure relevance, we retained genes validated in
at least one MM-related study using Geo2R validation. Out of the 354 genes, 346
genes were validated through Geo2R validation analysis. In the final selection, we
focused on 212 transformative and 70 disease initiating genes, resulting in the 282-gene
panel (Table-S15, Supplementary File-8). The workflow for designing the 282-genes
panel is illustrated in Figure-5.6(A). In this panel, four genes, namely, HLA-A, HLA-B,
HLA-DRB5, and RYR3, were found to be heavily mutated in all four variant profiles.
Additionally, 120 and 32 genes were substantially mutated in at least two and three
variant profiles, respectively (as shown in Figure-5.6(B)). For each gene, we determined
the most prevalent molecular aberration, such as CNV gain, CNV loss, SV translocation,
LOF, etc. We observed that CNV gain was the most frequent molecular aberration found
in 188 out of the 282 genes, while LOF was the least common, identified in 12 out of
the 282 genes. We assessed the most affected coding regions using the UCSC Genome
database to further refine the targeted sequencing regions. The targeted sequencing panel
of 282 genes covered a total of 9,272 coding regions in the human genome, spanning
a genomic region with a total length of 2.577 Mb in the human genome (Table-S16,
Supplementary File-8).

150

https://www.biorxiv.org/content/biorxiv/early/2023/11/01/2023.10.28.564536/DC4/embed/media-4.xlsx?download=true
https://www.biorxiv.org/content/biorxiv/early/2023/11/01/2023.10.28.564536/DC4/embed/media-4.xlsx?download=true
https://www.biorxiv.org/content/biorxiv/early/2023/11/01/2023.10.28.564536/DC4/embed/media-4.xlsx?download=true
https://www.biorxiv.org/content/biorxiv/early/2023/11/01/2023.10.28.564536/DC8/embed/media-8.xlsx?download=true
https://www.biorxiv.org/content/biorxiv/early/2023/11/01/2023.10.28.564536/DC8/embed/media-8.xlsx?download=true
https://www.biorxiv.org/content/biorxiv/early/2023/11/01/2023.10.28.564536/DC8/embed/media-8.xlsx?download=true


5.3.10 Comparison of proposed 282-genes panel with previously
published MM targeted sequencing gene panel

We conducted a thorough evaluation of our proposed 282-gene panel, comparing it with
five previously published targeted sequencing panels used for MM genomic profiling.
These panels were thoughtfully crafted based on MM-related literature and underwent
validation using diverse methods such as FISH and analysis of WGS data, etc. Upon
scrutinizing the validated variant profiles, we noted that, alongside our proposed panel,
Sudha et al. [120] also validated their panel on SNVs, CNVs, and SVs, encompassing
translocations linked to IGH and MYC. However, Sudha et al.’s panel validation was
carried out on WGS cohorts of MM samples and MM cell lines. It did not account for
potentially distinguishing genomic biomarkers between MGUS and MM.
Moreover, our panel incorporated MM-relevant genes exhibiting loss-of-function (LOF),
a critical consideration lacking in previous panels. Notably, Kortum et al.’s panel lacked
validation for MM-related CNVs and translocations, Bolli et al.’s and White et al.’s
panels lacked validation for translocations involving the MYC gene, and Cutler et
al.’s panel lacked validation for any MM-related translocations. Comparing the genes
across the previously published panels, we found that 16 out of 47 (34%) genes were
common with Kortum et al.’s, 19 out of 182 (10.43%) with Bolli et al.’s, 39 out of
465 (8.38%) with White et al.’s, 15 out of 26 (57.69%) with Cutler et al.’s, and 33 out
of 228 (14.5%) with Sudha et al.’s panels, respectively. The comprehensive gene list
encompassing all genes from the five panels is provided in Table-S17, Supplementary
File-9. Additionally, a detailed comparison of these panels is presented in Table-5.4 and
Table-S18, Supplementary File-9.

5.3.11 Clinical relevance of targeted sequencing 282-genes panel

We performed a two-fold univariate survival analysis on a targeted sequencing panel
comprising 282 genes to comprehend how gene variant profiles affect clinical outcomes
in MM patients (Figure-5.6(C)). To gauge the effect of gene variant profiles on MM
sample clinical outcomes, we utilized two distinct approaches. In the first approach,
we individually assessed the impact of each variant profile (SNV, CNV, SV, and LOF)
on clinical outcomes using univariate survival analysis. Notably, 193 out of the 282
genes significantly influenced clinical outcomes based on at least one variant profile. Out
of these, 29, 137, 25, and 76 genes significantly impacted clinical outcomes based on
SNV, CNV, SV, and LOF variant profiles as prognostic factors, respectively (Table-S15,
Supplementary File-8).

In the second approach, we amalgamated all four variant profiles into a single feature
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Table 5.4: Comparison of previously published targeted sequencing panels with our
proposed 282-genes panel

S.
No.

Panel Reference,
Publication year

Total number
of genes in the
proposed gene

panel

Number of
samples used for
panel validation

Data Type Detected variant
profiles

Overlapping
with

282-genes
panel

1 Kortum et al
[119], 2015 47

22 NDMM, 3
pretreated MM

samples
WES SNVs, clonal

evolution analysis 16

2 Bolli et al [121],
2016 182 5 MM samples WGS SNVs, CNVs,

SVs(Ig)* 19

3 White et al
[122], 2018 465 110 MM

samples WGS SNVs, CNVs,
SVs(Ig)* 39

4 Cutler et al.
[123], 2021 26

76 (20 MGUS, 3
SMM, 52 MM,

and 1 PCL)
samples

WGS

SNVs, CNVs,
Clinical validation

using survival
analysis

15

5 Sudha et al
[120], 2022 228 185 MM

samples WGS SNVs, CNVs,
SVs(Ig)* 33

6 Vivek et al.
(Current study) 282

1215 (1154 MM
and 61 MGUS)
samples + 11
MM-datasets

WES,
microarray,

mRNA

SNVs, CNVs, SVs,
clinical validation

using two-fold
survival analysis

-

"*": SVs(Ig) represents the translocation structural variation involving IgH.

vector using the FAMD method, leveraging the FAMD first component as a prognostic
factor for univariate survival analysis. Subsequently, we found that 185 out of the
282 genes significantly influenced clinical outcomes based on the first component of
FAMD. Upon combining the clinically relevant genes obtained from the two approaches
mentioned above, we discovered that 239 out of the 282 genes were clinically relevant
for MM. To scrutinize the remaining 43 genes that did not show significance in any of
the mentioned approaches, we meticulously examined them. We retained these genes
in the proposed gene panel as these genes were heavily mutated in at least one variant
profile (Table-S15, Supplementary File-8).

5.4 Discussions
MM is a malignancy that typically progresses from premalignant stages, often starting
with MGUS[229]. A targeted sequencing panel is important for the precise charac-
terization of genomic alterations to understand the risk of progression, enable timely
interventions, and ultimately improve patient outcomes. Recent studies have shed light
on the genomic events that drive the transformation from premalignant stages to MM
[90, 91, 92, 93]. Moreover, a number of studies have proposed targeted sequencing pan-
els for molecular profiling of MM patients based on previously identified genomic events
in MM and MGUS [123, 120, 119, 121, 122]. However, none of these studies have taken
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into account the design of the panel using biomarkers and gene-gene interactions that
have the potential to distinguish MM from MGUS.

In this study, we addressed this challenge by designing a targeted sequencing panel of
282 genes hosting key genomic biomarkers. For designing this panel, we designed an
AI-based bio-inspired BIO-DGI (PPI9) model aimed at identifying the key genomic
biomarkers and gene interactions. The BIO-DGI (PPI9) model is biologically inspired,
learning to discern distinguishing patterns between MM and MGUS using gene-gene
interactions and their corresponding genomic features. Genes with a higher number
of interactions are deemed more biologically relevant. We specifically considered
deleterious SNVs associated with MM and MGUS, resulting in highly MM-relevant,
significantly altered genes being ranked at the top. The inclusivity of three global
repositories housing MM and MGUS cohorts with diverse ethnicities, the ability of the
AI-based workflow to comprehend gene interdependencies, extensive benchmarking
aligned with the application’s requirements, and rigorous post-hoc analysis collectively
render the BIO-DGI (PPI9) model innovative and highly efficient.
In the post-hoc analysis for model interpretability, we utilized the ShAP algorithm to
identify the top-ranked genes within the top-performing models. Table-5.1, Table-5.2,
Table-5.3 provides an overview of the total number of previously reported genes present
in the 798 significantly altered genes and those identified by top-performing models,
presenting complete gene lists under top 250 and top 500 ranks. Notably, the BIO-DGI
(PPI9) model outperformed by identifying the largest number of previously reported
genes, encompassing known OGs such as BIRC6, MUC4, NOTCH1, PGR, SETD1A,
VAV1, TSGs like DIS3, EP400, MYH11, SDHA, ODGs such as KRAS, NRAS, TP53,
TRRAP, and AGs including APC, ARID1B, MITF, NFKBIA, TYRO3. Intriguingly, most
of these genes (except ODGs) display high relevance to MM despite not being explicitly
reported as MM driver genes. Additionally, our analysis identified MUC6, LILRA1, and
LILRB1 as the top three genes contributing significantly to the classification of MM and
MGUS, none of which have been previously categorized as OGs, TSGs, ODGs, or AGs
in the literature.

Interestingly, the MUC6 gene is associated with the immune system pathway, playing
a crucial role in MM development and progression [332]. Similarly, the other two
genes, LILRA1 and LILRB1, were found to be associated with the innate immune
system pathway. Notably, LILRB1 has been associated with MM pathogenesis as an
inhibitory immune checkpoint for B-cell function in prior studies [278, 279]. We have
employed the Geo2R tool to validate the top-ranked genes obtained from post-hoc
analysis of the BIO-DGI (PPI9) model. The Geo2R tool is the most widely used tool
for identifying significantly dysregulated genes using gene expression or microarray
data from previously published studies. We have included 11 MM-related studies for
validation and observed that 488 out of 500 genes were found to be disrupted in MM.
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This finding ensures the relevance of top-ranked genes in MM.

Notably, the functional significance of nonsynonymous SNVs, as quantified by Phylop
scores, emerged as the most prominent genomic feature contributing to the classification.
Following closely, the allele depth of synonymous SNVs and the overall count of other
SNVs (encompassing non-frameshift insertions/deletions/substitutions, intronic, inter-
genic, ncRNA_intronic, upstream, downstream, unknown, and ncRNA_splicing SNVs)
ranked as the second and third most influential genomic features, respectively (Figure-
5.7). The substantial impact of synonymous SNVs across various cancer types has been
well-documented [282, 283, 284, 285, 286]. Additionally, we conducted pathway analy-
sis utilizing the Enrichr database to identify significantly altered pathways associated
with the top 500 genes. These pathways were then ranked based on their statistical
significance (adjusted p-value) to pinpoint the top significantly altered pathways. We
observed a noteworthy pattern after comparing the significance of altered pathways with
disease progression. Pathways linked to other cancer types were significantly altered
in MGUS and became statistically insignificant as the disease progressed from MGUS
to MM. In contrast, MM-related pathways, including the immune system, neurodegen-
eration, PI3K-AKT, MAPK, and NFKBIA pathways, exhibited significant alterations
as the disease advanced from MGUS to MM. These intriguing findings prompt further
investigation to ascertain if the significantly altered genes associated with these pathways
can potentially serve as valuable biomarkers during the early phases of the disease,
particularly in MGUS.

We comprehensively analysed CNVs, SVs, and LOF identified in MM samples from both
AIIMS and MMRF datasets. Our analysis highlighted chr1, chr14, and chr19 as the most
affected chromosomes, displaying various genomic alterations, including CNVs, SVs,
and LOFs. Notably, chr1 exhibited significant alterations, such as amp(1q), associated
with disease aggressiveness [128, 333], and del(1p), frequently observed in MGUS
[128, 334]. Furthermore, chr14 revealed prevalent translocations involving IGH, such as
t(4;14), t(14;16), t(14;20), established as biomarkers in MM [128]. Additionally, CNVs
linked to chr19, such as gain(19p) and gain(19q), were significantly more prevalent
in MM than in MGUS [229]. The intricate interplay between alterations in these
chromosomes and other genetic events contributes to increased genomic instability,
facilitating the acquisition of additional mutations that promote MM aggressiveness [83].

Moreover, we meticulously curated a 282-gene panel by rigorously analysing variant
profiles (SNVs, CNVs, SVs, and LOF) from the top 500 genes. Our focus was solely on
MM-relevant genes found disrupted in at least one previously published MM study. To
identify pivotal genomic events responsible for MM development and progression, we
categorized these events into two groups based on their occurrence at specific disease
stages (MGUS or MM or both). Genomic events observed in both MGUS and MM, such
as translocations associated with the IGH and MYC genes [91, 128, 335, 336, 337, 130],
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and amp(1q) [128] and exclusive to MM, including del(13q), del(16q), del(17p), etc.
[128] are shown in Table-5.5, Table-5.6.

Table 5.5: List of previously reported genomic events observed in both MM and MGUS
and the overlapping of their associated genes with our proposed 282-genes panel

S.No.
A. Genomic

Events in MM
and MGUS

B. Genes
associated

with the event
(Column-A)

C.
References

for the
genes shown
in column-B

D. Whether the
gene associated

with the genomic
event in column-A

is present in
282-genes panel

E. If yes, list
of

associated
genes from
282-genes

panel

F. If no, associated
gene-gene

interactions that are
present in 282 gene

panel

1 t(11;14) CCND1,
BCL-2

[91, 335,
336, 337] No

BRD4, IRS1,
ITPR1, KRAS,
KRT8, NRAS,

TP53, RB1,
SLC25A5, and

TAF1

2 t(4;14) FGFR3
[91, 128,
336, 337,

130]
Yes FGFR3

3 t(14;16) MAF [336, 337,
338, 91] No FLNA

4 t(14;20) MAFB [91, 337,
338] No HUWE1, USP9X

5 t(6;14) CCND3 [337, 128] No RB1

6 Amp(1q21)

MCL1,
CKS1B,

ANP32E or
BCL9

[128] No KPRP, BRD4,
PLEC, USP9X

7 Del(17p13) TP53 [129] Yes TP53

8 KRAS
mutations KRAS [91] Yes KRAS

9 NRAS
Mutations NRAS [91] Yes NRAS

10 LTB Mutations LTB [91] Yes LTB
11 DIS3 mutations DIS3 [91] Yes DIS3
12 EGR1 mutations EGR1 [91] Yes EGR1

13 MYC
Rearrangement

IGH, IGL,
IGK,

NSMCE2,
TXNDC5,
FAM46C,

FOXO3, IGJ,
PRDM1

[339] Yes FAM46C
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Table 5.6: List of previously reported genomic events in MM but not in MGUS and the
overlapping of their associated genes with our proposed 282 genes panel.

S.No.
A.

Transformative
Genomic Events

B. Genes
associated

with the event
(Column-A)

C.
References

for the
genes shown
in column-B

D. Whether the
gene associated

with the genomic
event in column-A

is present in
282-genes panel

E. If yes, list
of

associated
genes from
282-genes

panel

F. If no, the
associated
gene-gene

alterations present
in 282-genes panel

1 Del(13q14) RB1 [340, 128] Yes RB1, DIS3
3 Del(16q23) CYLD [128] Yes CYLD
4 Del(1p21) CDC14A [128, 334] Yes FAM46C

5 Del(12p13) CD27 [337] No TRAF2, TRAF3,
ATP2B3

6 TP53 Mutations TP53 [99, 341] Yes TP53

7 BRAF
Mutations BRAF [342, 343] Yes BRAF

8 Gain(9q)

ABCA1,
KCNT1,
TRAF2,
VPS13A

[344, 345] Yes

ABCA1,
KCNT1,
TRAF2,
VPS13A

9 del(14q) TRAF3 [128] Yes TRAF3
10 del(17p) TP53 [128] Yes TP53

11 del(8p) PTK2B, TP53 [346, 347] Yes PTK2B,
TP53

The inclusion of key genomic events in the 282 genes panel helps in the early diagnosis
of MM in the following ways:

1. Selection of distinguishing biomarkers: Including genes in the gene panel is solely
based on their mutational patterns (SNVs, CNVs, SVs, and LOFs) in pivotal
differentiating biomarker genes in MM and MGUS. Comparing the significantly
altered genes from the MM patient samples with the the mutations in genes
associated with the gene panel may help assess whether the sample will progress
to MM.

2. MM-associated disease-initiating genomic events: The disease-initiating genomic
events are the key genomic events observed in both the MM and MGUS stages.
Identifying disease-initiating genomic events suggests the progression of MGUS
towards MM and can pinpoint the disease development in the sample. Hence,
genes associated with these genomic events can be used as a diagnostic biomarker,
indicating the early onset of MM. For instance, the gene FGFR3 is associated
with translocation t(4;14). In addition to this, the FGFR3 gene has PPI with
several critical genes such as KRAS, NRAS, DIS3, CYLD, etc. The alterations in
FGFR3 indicate the presence of a primary genomic event (t(4;14)), which is also
associated with IGH and several key MM-driver genes that may help in triggering
this genomic event. Therefore, the presence of translocation associated with
FGFR3 in the sample at the stage of the MGUS suggests the early diagnosis of
MM. Identifying mutational patterns in the genes involved in the disease-initiating
genomic events paves the way for early detection of MM. Examples of genes
involved in disease-initiating genomic events in MM and MGUS are shown in
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Table Table-5.4.
3. MM-associated disease transformative genomic events: The disease-

transformative genomic events are observed in MM only and not in MGUS.
Including the genes associated with the disease-transformative genomic events can
help predict the progression of MM from MGUS. Hence, genes linked to these
genomic events can be used as a prognostic biomarker, reflecting the disease’s
advancement. For instance, CNV deletion in RB1, TP53, and TRAF3 genes is ob-
served in MM only and not in MGUS. The example of some disease-transformative
genomic events and their associated genes are shown in Table Table-5.5.

4. Clinical relevance of the 282 genes panel: The clinical relevance was established
through a two-fold survival analysis, ensuring that the genes included in the 282
gene panel are significant for understanding MM progression. The comparison
of the significantly altered genes representing the significant association with the
clinical parameters (for example, OS time, progression-free survival (PFS), etc.)
in a sample with the clinically relevant genes involved in the key disease-initiating
and disease-transformative genomic events can help get more insights on the
progression of MGUS into MM in that sample.

Notably, out of the 282 genes, 184 were associated with significantly altered path-
ways. Pathways such as the immune system, signal transduction, gene expression, and
RNA polymerase pathways harbored the highest number of significantly altered genes.
Additionally, neurodegeneration, immune system, calcium signaling, and antigen pro-
cessing and presentation pathways were the most significantly altered based on their
adjusted p-value. Beyond these pathways, MM-relevant pathways like MAPK signaling,
NF-kappaB, PI3K-AKT, and apoptosis pathways ranked prominently among the signifi-
cantly altered pathways. The bubble plot in Figure-5.8 showcases the top 50 pathways
linked with the proposed 282-genes panel and the number of significantly altered genes
associated with each pathway and their respective rankings.

We employed the weights acquired from the BIO-DGI (PPI9) model to delineate gene
communities. Within each BIO-DGI (PPI9) model classifier, we preserved the learned
adjacency matrix. Employing the algorithm outlined in Section-5.2.9 and Supplementary
file-5, we identified five gene communities encompassing 202, 125, 122, 104, and 21
genes, respectively. To enhance the information for each node within a gene community,
we integrated two additional aspects: node influence determined by the Katz centrality
score and likelihood of haploinsufficiency gauged through the GHIS score. We estimated
the median GHIS score and highlighted genes surpassing this threshold (= 0.52). Inter-
estingly, numerous previously reported genes exhibited high node influence and GHIS
scores. Notably, in the first gene community (Figure-5.4(A)), genes like UBC, USP6,
PRIM2, and USP34; POTEM in the third gene community (Figure-5.4(C)); LILRA1,
LILRB1 in fourth gene community (Figure-5.4(D)) acted as central genes and may play
a significant role in MM pathogenesis. We strongly recommend further analysis of these
central genes to unveil their role in disease progression.
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Furthermore, as we explored gene influences within each gene community (depicted
in Figure-5.4(A)-(E)), we meticulously examined genes associated with the proposed
targeted sequencing panel, revealing high node influence and a high likelihood of
haploinsufficiency. Out of the 282 genes, 67 displayed substantial node influence within
the gene community, encompassing various previously reported MM-relevant genes like
BRAF, HLA-A/B, FGFR, IRS1, NRAS, and SDHA. Additionally, 74 genes exhibited a
high likelihood of haploinsufficiency, including several previously reported MM-relevant
genes such as ARID1B, FGFR, NRAS, TRAF2, and ZNF717. Moreover, 32 genes
displayed both high node influence and a high likelihood of haploinsufficiency, including
FGFR, HUWE1, KRAS, KMT2C/D, TP53, and ZNF717.

In examining the gene communities and their involvement in key genomic events of
MM, we noted several genes with substantial node influence and likelihood of actively
participating in these events. For instance, in the first gene community (Figure-5.3(A)),
seven genes (BRD4, DIS3, HUWE1, RB1, SLC25A5, RB1, and USP9X) were associated
with genomic events observed in both MM and MGUS. Similarly, the second gene
community (Figure-5.3(B)) included five genes (EGR1, IRS1, KRAS, NRAS, and TP53)
involved in genomic events observed in both MM and MGUS, with one gene (BRAF)
observed in genomic events observed in MM only. In the third gene community, FLNA
was found to be associated with genomic events observed in both MM and MGUS. The
fourth community featured LTB associated with genomic events observed in both MM
and MGUS, while TRAF3 was associated with genomic events observed in MM only.
Finally, the fifth gene community had no genes linked to the key genomic events shown
in Table-5.5 and Table-5.6. The presence of genes actively participating in MM-related
key genomic events, displaying high node influence within the community, and a high
likelihood of haploinsufficiency underscores the relevance of our proposed targeted
sequencing panel in MM and MGUS.

5.5 Limitations of the study
In this study, we aimed to design the 282 gene panel hosting the key biomarkers in
MM. However, the current study has some potential limitations. Firstly, we meticulously
analyzed the multiple mutational profiles, such as SNVs, CNVs, SVs, and LOFs, of MM
and MGUS cohorts to craft the gene panel. Further clinical validation on diverse patient
cohorts is required to ensure panel reliability, accuracy and generalizability. Here, the
diverse patient cohort may include transcriptional profiles of MM and MGUS patients,
epigenomic data, and longitudinal study comprising multiple time point data of MM and
MGUS patients. Including genomic and clinical information from different populations
worldwide may uncover crucial clinical findings and support translating findings into
clinical practice. Next, our findings and panel design rely on the genomic profiles of
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MM and MGUS datasets considered in our current study. Considering the genomic
complexity and heterogeneous nature of the disease, similar studies should be continued
to account for the dynamic nature of the disease and add biomarkers significantly
contributing to the MM pathogenesis and progression. The genomic and clinical profile
analysis of newly generated cohorts may shed light on the evolving dynamics of MM.
Lastly, consideration of multi-omics analysis, environmental factors, and ethnicity may
contribute to identifying the generalized patterns of disease evolution and help design
a generalized diagnosis strategy for diverse populations. These factors are crucial
contributors to the disease process and warrant further exploration to understand MM
pathogenesis comprehensively.

5.6 Conclusion
Distinguishing MM from its precursor stage, MGUS, at the genomic level and identi-
fying those at risk of progression to overt MM presents a formidable challenge due to
overlapping genomic characteristics. Unveiling MM underlying pathogenesis necessi-
tates identifying pivotal biomarkers that set MM apart from MGUS. To address this, we
propose a clinically oriented targeted sequencing panel of 282 genes aiming for early
detection of MM. For the 282-genes panel design, we introduced the novel AI-based
bio-inspired BIO-DGI (PPI9) model, encompassing gene interactions from nine PPI
databases and exonic mutational profiles from three global MM and MGUS repositories
(AIIMS, EGA, and MMRF). The BIO-DGI (PPI9) model demonstrated quantitative and
qualitative superior performance, ensuring application-aware interpretability. Notably,
the model identified the most previously reported genes, including OGs, TSGs, ODGs,
and AGs, which are known for their high relevance in MM. Further exploration of these
genes is recommended to unveil novel driver genes. The validation of the top 500 genes
set against MM-related datasets using Geo2R confirmed disruption in 488 out of 500
genes, underscoring their pertinence to MM. Similarly, pathway analysis of top-ranked
genes further corroborated the relevance of top-ranked genes, revealing a shift in pathway
deregulation from MGUS to MM. Key pathways like PI3K-AKT, NFKBIA, and MAPK
were prominently altered, emphasizing their role in MM progression. Moreover, in
the post-hoc analysis, the functional significance of nonsynonymous mutations, allele
depth of synonymous SNVs and total number of other SNVs were found to be the most
contributing genomic biomarkers in distinguishing MM from MGUS. Subsequently, the
significant alterations on chromosomes 1, 14, and 19 in the MM cohort suggest major
inclusion of the genes associated with these chromosomes in MM progression. Notably,
CNV gain and SV inversion emerged as prevalent genomic aberrations, with CNV
deletion and SV translocation being the second most common molecular aberrations.
Through meticulous analysis of variant profiles and validation using Geo2R, we curated
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a targeted sequencing panel comprising 282 MM-relevant genes. Within this panel,
we highlighted genes exhibiting substantial node influence and prominent gene-gene
interactions from five gene communities, shed light on crucial gene biomarkers and their
interactions pivotal to MM pathogenesis. These observations hold immense potential for
informed therapeutic interventions and may facilitate early detection and interception of
disease progression in MM.
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Chapter 6

Concluding Remarks and Future Works

In this dissertation, we proposed robust and efficient solutions to address challenges in
cancer genomics. We successfully validated the significance of our proposed methods
qualitatively and quantitatively.

In Chapter 2, we aimed to gain a deeper understanding of the global transcriptional
landscape of small non-coding RNAs (sncRNAs) and their potential impact on clinical
outcomes. This exploration had the potential to enhance patient stratification, introduce
sncRNAs as additional molecular biomarkers for improved prognosis, and open doors to
future therapeutic target investigations. To achieve this, we developed a novel method
for identifying sncRNAs, encompassing known miRNAs, novel miRNAs, and piRNAs.
Our analysis revealed a distinctive pattern of eight dysregulated miRNAs and seven
novel miRNAs, which were identified as piRNAs, tRNAs, and snoRNAs using sequence
homology with ncRNAs. Subsequent multivariate survival analysis confirmed the clinical
significance of these dysregulated miRNAs. Notably, hsa-mir-4524a and hsa-mir-744
were found to be significantly associated with risk and time to first treatment. We also
observed that some of the newly identified miRNAs shared common gene targets due
to seed sequence similarity. Notably, there were no existing workflows in the literature
for this purpose. Additionally, our observation highlighted the substantial influence of
configuration parameters on the accuracy of sncRNA identification pipelines, prompting
us to further refine the workflow for more robust sncRNA identification. This work has
the following possible future directions:

1. Our workflow can be utilized for bulk-RNA Seq data analysis for other diseases
such as MM and MGUS. For instance, if bulk-RNA Seq data of MM and MGUS
are provided, it would be intriguing to explore how transcriptional patterns evolve
with disease progression. By applying our proposed workflow, the researcher
could compare the fold change of DEMs, investigate the pathway alterations, and
elucidate the regulatory networks involved in the transition from MGUS to MM.

2. In addition to examining sequence homology, several avenues can be pursued
for validating novel DEMs. This includes conducting RT-qPCR validation to
confirm the expression patterns of identified DEMs. Additionally, expanding the
analysis to include larger population-level cohorts can strengthen the identification
of novel DEMs and provide insights into their broader relevance. Furthermore,
investigating whether novel DEMs are dysregulated in multiple diseases can shed
light on their potential roles across different pathological conditions.

In Chapter 3, we continued our pursuit by enhancing the workflow introduced in the
previous chapter to more accurately identify miRNAs, including functionally similar
miRNAs, also known as paralogues, and piRNAs. Our improved workflow, named



miRPipe, offers several advantages, including parallel batch processing and availability
as a Docker image, making it faster and easier to deploy. To comprehensively benchmark
miRPipe, we created a synthetic sequence simulator called miRSim, which generates
synthetic RNA-Seq data with associated ground truth information. We conducted a
rigorous performance assessment of miRPipe at four levels: 1, using synthetic datasets
generated by miRSim, 2. using three real cancer datasets (CLL, Lung cancer, and
Breast cancer), 3. using literature validation of identified DEMs, and 4. using the
workflow ability to identify the reverse complement of known miRNA as known miRNA.
miRPipe outperformed existing state-of-the-art pipelines in terms of accuracy (95.23%)
and F1-score (94.17%) when benchmarked with synthetic RNA-Seq data. Analysis of all
three cancer datasets further demonstrated miRPipe’s superior ability to extract a higher
number of known dysregulated miRNAs and piRNAs compared to existing pipelines.
Furthermore, miRPipe identified the most literature-validated miRNAs as DEMS and
the most number of the reverse complement of miRNAs as known miRNAs.
This work has the following possible future directions:

1. We have validated miRPipe on three publicly available datasets. Meanwhile,
miRPipe applicability can be expected for other disease-related datasets.

2. Within miRPipe, we incorporated Bowtiw 1 sequence aligner. However, Bowtie
1 is deprecated now, and Bowtie 2 can be replaced in the miRPipe workflow. In
future, our focus will be on releasing the next version of the miRPipe docker,
incorporating the recent versions of the tools used within the miRPipe workflow.

3. miRPipe is a generic workflow applicable to both human and non-human datasets.
Currently optimized for the human genome, miRPipe offers default parameters
tailored to human genomic data. Nonetheless, researchers can readily extend
miRPipe’s utility to non-human genomes by providing the respective reference
genome and its index to the sequence aligner, miRDeep*, utilized in Step 3 of
the miRPipe pipeline. In the future, our aim will be to release the next version
of miRpipe docker with enhanced functionality to process non-human genome
datasets efficiently.

4. Akin to miRPipe, miRSim has been tested on generating the synthetic sncRNA
seq data for the human genome. The applicability of the miRSim simulator to
the non-human genome can be extended by providing the non-human genome
reference sequences and adjusting the seed and xseed region location within the
miRSim tool. In the future, as time permits, we aim to release the next version,
designed explicitly for non-human genomes, ensuring broader applicability and
versatility across diverse research domains.

In Chapter 4, we undertook the challenging task of identifying the pivotal biomarkers that
can distinguish MM from MGUS. To address this, we designed an AI-based workflow,
Bio-inspired Deep Learning architecture for the identification of altered Signaling Path-
ways (BDL-SP) to identify pivotal genomic biomarkers for distinguishing MGUS from
MM. The proposed graph convolutional network-based BDL-SP model can extract dis-
criminative genomic biomarkers for identifying MM and MGUS samples, outperforming

164



all baseline ML-based models. Furthermore, by applying application-aware interpretabil-
ity analysis to the trained AI model, we demonstrated a method for selecting the best AI
model from among multiple machine learning or deep learning models that may have
performed similarly in terms of quantitative metrics on the available data. In post-hoc
interpretability benchmarking, BDL-SP excelled over all baseline models by identifying
the largest number of previously reported genes, including genes not yet identified as
MM drivers. Additionally, we conducted pathway analysis on the top-ranked genes and
observed that several signaling pathways are selectively and significantly dysregulated
with disease progression. Additional mutations in driver genes, critical OGs, TSGs, and
AGs contributed to transforming benign MGUS into MM. Similarly, genomic mutations
associated with the Synonymous SNV group (synonymous SNVs, UTR3, and UTR5)
were found to be the most significantly contributing biomarker distinguishing MM from
MGUS. These observations may hold great therapeutic significance. We also noted
that the number of OGs, driver genes, and AGs in MGUS samples from European and
Indian populations differed statistically, highlighting the impact of ethnicity during the
development of MM. Although we did not observe population-specific differences in
our analysis of MM data from the American and Indian populations, the results with
MGUS data indicate that the impact of ethnicity on the disease biology of MM should
be further explored. Further exploration of gene-gene interactions among the top-ranked
genes may provide a better understanding of MM pathogenesis.
This work has the following possible future directions:

1. In our study, the BDL-SP model, initially trained on MM vs. MGUS datasets,
identifies pivotal biomarkers distinguishing MM from MGUS. While the workflow
is generic, the model can be retrained from scratch using normal and MGUS sam-
ples. This enables the same workflow to identify pivotal biomarkers distinguishing
normal and MGUS samples. Further, for three class classifications, the BDL-SP
model can be retrained for three classes, including normal, MGUS, and MM
samples, the pivotal biomarkers differentiating normal vs. MGUS samples. Post
hoc analysis, benchmarked against baseline machine learning and deep learning
models, facilitates the identification of pivotal biomarkers distinguishing normal
from MGUS, normal from MM, and MGUS from MM.

2. In this study, we highlighted the impact of nonsynonymous SNVs on protein
functions and protein structure. Analyzing protein structure stability in altered
states involves considering several structure-related criteria, such as differences in
free energy between folded and unfolded states, the impact of hydrogen bonding,
etc. In future, the work can be extended to the impact of pathogenic SNVs
identified using the BDL-SP model on protein function and protein structure
alterations to gain more insights into MM pathogenesis.

In Chapter 5, we introduced a clinically focused targeted sequencing panel consisting
of 282 genes with the goal of early detection of MM. For the crafting of this 282-gene
panel, we designed an innovative AI-driven Biological Network for Directed Gene-Gene
Interaction Learning (BIO-DGI) model. This model incorporates gene interactions from
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nine PPI databases and utilizes exonic mutational profiles from three global MM and
MGUS repositories (AIIMS, EGA, and MMRF). The BIO-DGI model demonstrated
exceptional performance both quantitatively and qualitatively, ensuring application-
specific interpretability. To validate the relevance of the top-ranked genes, we confirmed
their pertinence to MM using the Geo2R tool. Furthermore, pathway analysis of these top-
ranked genes reinforced their importance, highlighting a shift in pathway deregulation
from MGUS to MM. Through post-hoc analysis of the BIO-DGI model, we determined
that the functional significance of nonsynonymous mutations, allele depth of synonymous
SNVs, and the total number of other SNVs played significant roles in distinguishing MM
from MGUS. This comprehensive analysis allowed us to identify the top-ranked genes
and gene communities using five learned adjacency matrices. The meticulous analysis of
SNVs, CNVs, SVs, and LOFs profiles of the top-ranked genes led us to create a targeted
sequencing panel comprising 282 genes specifically relevant to MM. Within this panel,
we identified genes with substantial node influence and prominent interactions within
five gene communities, shedding light on crucial gene biomarkers and their pivotal
roles in MM pathogenesis. These findings offer great potential for informed therapeutic
interventions, as well as the possibility of early disease detection and intervention for
MM. Further exploration of the influential genes and their interactions with MM-relevant
genes may unveil additional key players in MM pathogenesis beyond well-established
driver genes. This work has the following possible future directions:

1. In this study, we designed a 282 genes panel using the gene-gene interactions
and multiple mutational profiles (SNVs, CNVs, SVs, and LOFs). To ensure the
clinical utility and generalizability of the proposed gene panel and BIO-DGI model
predictions, further clinical validation and genomic studies are necessary. These
studies should involve diverse patient cohorts representing various populations
and ethnicities. We can ensure their effectiveness in real-world clinical settings
by assessing the accuracy, reliability, and performance of the panel and model
predictions across different demographic groups. This validation step is essential
for translating research findings into clinical practice, ultimately benefiting patients
with multiple myeloma (MM) and its precursor stages.

2. Recognizing the dynamic nature of MM progression, future efforts should focus
on adapting the gene panel to accommodate these changes. The progression
from MGUS to MM involves complex genetic alterations that evolve over time.
Therefore, continuous updates to the gene panel are necessary to incorporate
new genetic discoveries and insights into disease mechanisms. By dynamically
adjusting the panel based on emerging genetic data and evolving understanding of
MM pathogenesis, we can ensure that it remains relevant and effective in capturing
the heterogeneity of the disease.

3. While the study has primarily focused on genetic interactions and SNVs, it is
important to acknowledge the significant contributions of environmental factors,
epigenetics, and non-genetic variations to MM progression. Future research
should explore the interplay between genetic and environmental factors, as well
as epigenetic modifications, in shaping MM development and progression. By
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incorporating comprehensive analyses that consider these overlooked factors, we
can gain a more holistic understanding of MM pathogenesis and identify novel
therapeutic targets and prognostic markers. This integrative approach will provide
valuable insights into the multifaceted nature of MM and inform personalized
treatment strategies.

Finally, it is important to recognize that both sncRNAs and genes can be used as
prognostic and diagnostic biomarkers depending on the study hypothesis as both the
gene and sncRNAs shed light on disease biology from distinct perspectives. Exploring
both perspectives is essential for a comprehensive understanding of disease pathogenesis
and biology, ultimately leading to more effective diagnostic and prognostic strategies.
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