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Abstract

Unsupervised cross-domain Person Re-Identification (Re-ID) severely suffers from the domain

gap. While different works address this issue, bridging domain gap with high-level representation

is hard as it comprises of entangled information including identity, pose, illumination, and other

domain-specific variations. In this work, we propose a disentangled reconstruction method to ad-

dress the domain-shift problem for Re-ID in an unsupervised manner. To this end, we have two

major contributions. First, we propose to disentangle identity-related and non-identity related

features from person images. We also reconstruct the disentangled features using a decoding

layer to increase the generalization capability of identity features. Second, in the target do-

main, we explicitly consider the camera style transfer images as a data augmentation to address

intra-domain discrepancy and to learn the camera invariant features from the target domain.

We demonstrate that the auxiliary tasks of disentanglement and reconstruction are helpful to

improve the generalization capability of the model and perform cross Re-ID on unlabeled tar-

get domain data. Experimental results on the challenging benchmarks of Market-1501 and

DukeMTMC-reID demonstrate that our proposed method achieves competitive performance.
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Chapter 1

Introduction

1.1 Motivation

Person Re-Identification (Re-ID) aims to match the person identities from non-overlapping multi-

camera networks [12]. Many existing Re-ID methods adopt a supervised learning approach,

which assumes the availability of a large number of manually labeled data [42]. This assump-

tion inherently limits the scalability of Re-ID models in practical deployments. Additionally,

the problem of domain shift remains a big challenge. The primary cause of insufficient cross-

domain generalization lies in the distribution discrepancy between different domains and the

unavailability of label information in the target domain.

Unsupervised Re-ID, on the other hand, has witnessed a surge in the past few years. This is

because such a system is easily scalable in a real-world scenario, unlike the supervised system.

However, unsupervised Re-ID also poses daunting challenges in terms of domain gap between

a labeled source domain and an unlabeled target domain. Unsupervised Domain Adaptation

(UDA) methods, such as [25,29], try to reduce the discrepancy between source and target domain

directly and completely ignore the camera variation of the target domain. Several Generative

Adversarial Networks (GANs) [1,6,15,28,33,37] based works translate the appearance of images

from the source domain to the target domain by preserving the annotation information of the

source domain. However, the main focus is on increasing the training samples, and it costs

more time and computation complexity with difficult convergence rates. Discriminative feature

learning for cross-dataset Re-ID has also been exploited in [26,33].

1



Training Data

DRNet

Training on Source Testing on Target Non-ID FeaturesID Features

ID = 1 

ID = 2 

ID = 3 

Figure 1.1: Motivation illustration. The domain variations can be quite diverse. Our approach
learns to decompose the identity and non-identity features and transfer it so that the target
model can only focus on identity related discriminative or generalizable features.

1.2 Contribution

In this work, we aim to utilize the discriminative identity information and transfer the learned

knowledge on the target domain for more effective cross-domain Re-ID model learning. Our

motivation to address the domain bias problem is illustrated in Figure 1.1. Our contributions

are as follows:

• We address the problem of cross-domain Re-ID by exploiting multi-task learning. We de-

sign the network with an auxiliary task of disentanglement and reconstruction to enhance the

generalization capability.

• To achieve the goal of discriminative and camera invariant features, we design two components

in our network: disentangled reconstruction on the source domain and camstyle invariance on

the target domain. The former component preserves the unique person cues specific to identity

and improves the source Re-ID model’s generalization capability. On the later component, we

apply a camstyle transfer mechanism as a data augmentation on the target domain.

• We demonstrate the effectiveness of our proposed method on challenging cross-domain Re-ID

datasets Market-1501 [46] and DukeMTMC-reID [47]. We perform an extensive ablation study

and demonstrate the effectiveness of all the components of the network.
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Chapter 2

Related Works

2.1 Supervised Person Re-ID

[2, 3, 34–36] has been widely studied in the literature. Classical supervised methods mainly

address the challenges of viewpoint variations, background clutter, or occlusion. Zhang et al. [45]

explore a feature matching method to align different body parts, and retrieval accuracy has

already surpassed the accuracy of human eyes. However, the supervised approaches cannot be

applied for cross-domain Re-ID due to the lack of generalization capability. To alleviate the

problem of domain bias, we focus on unsupervised cross-domain person Re-ID in this work.

2.2 Unsupervised Person Re-ID

Prior unsupervised Re-ID works address the problem of the domain gap by reducing the discrep-

ancy between the source domain and target domain. They project the source and target data

in shared space to learn domain invariant representation, or purely in an unsupervised manner

without using any labels. There are three major categories for existing methods: Pseudo-label

based methods, domain-translation methods, and unsupervised methods.

2.3 Pseudo-label based method

Pseudo-label based methods [8–10,43,44] propose to learn target-domain features with generated

pseudo labels. Fan et al . [8] assign hard clustering labels for unlabelled data to learn target-

domain features by self-training. However, they ignore the inevitable label noise caused by the

3



clustering. Ge et al . [10] explores such clustering-based methods by introducing local features

and mutual mean-teaching scheme to learn better target domain features. Yu et al . [43] focuses

on learning the target domain features with soft labels. In [17], Kumar et al . observe that single

domain-based adaptation does not take care of the heterogeneity of the environment and is

insufficient for domain adaptation. They propose multi-source based domain adaptation using

k -reciprocal tracklet clustering. However, this method assumes that intra-camera labels are

available for tracklet generation. Ren et al . [28] perform style adaptation using StarGAN [5] and

then assign soft labels to the translated images using KNN. Qi et al . [27] present a camera aware

domain adaptation approach using re-ranking [48], online triplets and cross camera adaptation.

PAUL [41] proposes PatchNet to learn the similarity between patches of similar images in the

same domain. In order to obtain positive samples in the unlabeled target domain, a random

transformation is applied.

2.4 Domain-translation based method

Domain-translation based methods [4, 6, 16, 37] adopt image-to-image translation models, and

the translated images are utilized for training Re-ID model in a supervised way. Chen et al .

[4] introduces CR-GAN to synthesize images by augmentation approach where each source

pedestrian is augmented with various contextual images from the target domain. PTGAN [37]

employs CycleGAN and maintain color consistency during the domain translation by pixel-level

constraints. SPGAN [6] minimizes the feature-level similarities between translated images and

the original ones. Huang et al . [16] observes that drastic background changes across domains

introduce difficulty in extracting robust features. They propose SBSGAN to suppress such a

background shift. However, such methods deeply rely on image generation quality.

2.5 Unsupervised methods

Since pseudo-label based methods require a large annotated dataset as the source, unsupervised

methods overcome such requirement by completely learning without any labels. Wang and Zhang

[32] propose an iterative memory-based positive label prediction and multi-classification loss.

TSSL [39] learns similarity between tracklets using triplet loss [14] while applying neighborhood

compactness and cluster structure.
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2.6 Disentanglement methods

Disentangling approaches have been widely used in many computer vision tasks. Prior face

tasks based work propose to disentangle the representations in pose-invariant recognition [31]

and identity-preserving image editing [18]. Liu et al . [23] propose to learn disentangled face

identification in addition to face features. Researchers have also explored disentanglement ap-

proaches for the person Re-ID task. Eom et al . [7] introduces a GAN based network, IS-GAN,

to disentangle identity and non-identity related features for supervised Re-ID. Li et al . [19]

introduces PDA-Net to learn deep image representation with disentangled pose and domain

information for cross-domain Re-ID.

Inspired from the above methods, we choose to disentangle useful person cues and learn discrimi-

native identity features for unsupervised cross-domain Re-ID. We demonstrate that domain bias

in Re-ID can be successfully addressed via a disentanglement approach, even with unlabelled

target-domain data.

2.7 Camstyle Invariance Learning

Zhong et al . [52] introduces a data augmentation approach to smooth camstyle disparities and

avoid overfitting for supervised Re-ID models. HHL [49] introduces a Hetero-Homogeneous

Learning method to learn camera-invariant features with camera style transferred images to

improve the generalization ability of Re-ID models. Zhong et al . [51] proposes a camstyle adap-

tation model to smooth style disparities across the cameras. [50] explores camstyle invariance

through an exemplar memory for domain adaptive person Re-ID. Inspired by the promising

performance, we apply it to the target domain as a data augmentation approach.

5



Chapter 3

Proposed Algorithm

In this section, we describe our proposed network. The overall network architecture is illus-

trated in Figure 3.1. Our model comprises of a baseline network to learn the representations

corresponding to inputs. The model has three components – baseline, identity-preserving and

disentangled reconstruction module. The identity-preserving and disentanglement components

preserve useful Re-ID cues of person. We apply reconstruction along with disentanglement to

learn the generalizable identity features. While training on target, we perform fine-tuning and

camstyle-transfer. The goal of the camstyle-transfer component is to learn the camera invari-

ant features due to domain shift. We discuss the proposed approach in detail in the following

subsections.

3.1 Notations

We first define basic notations followed in this work. The source dataset is defined as S =

{IS, ySid}NS with NS number of images, identity labels YS = {ySid}NS . The target dataset is

defined as T = {IT}NT with NT number of total images. The target dataset do not have ground

truth identity labels.
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3.2 Source Representation Model

3.2.1 Baseline network

The baseline network, denoted as B(.; θ), consists of a deep convolutional neural network based

on ResNet-152 [13] which is pretrained on ImageNet. θ denotes the network parameters. We

learn θ through identification loss [30] represented as LB,

LB = − 1

N

N∑
j=1

log p(ŷSidj |B(ISj ; θ) , (3.1)

where N is the number of images, ISj denotes a sample, B(ISj ; θ) denotes encoded representation

and p(.) denotes the predicted probability.

3.2.2 Disentangled-Reconstruction module

To learn the discriminative features and generalize the Re-ID model to the unlabeled target

domain, we propose a disentangled reconstruction module on source domain S where learned

representations can be disentangled into identity and non-identity related features. Further, the

disentangled features can undergo reconstruction using a decoding layer.

Disentanglement: We augment the baseline network B with the disentanglement network,

denoted as D(.;φ). Here φ = {φID, φNID} where φID are the parameters of the network which

extracts identity related features, and φNID denotes parameters of the network which extracts

non-identity related features. The output features, X = B(IS; θ), extracted from the backbone

are fed to disentanglement model D. Here, X ∈ Rd×N , where d is the feature dimensionality.

It has two branches: identity (ID) branch and non-identity (NID) branch, which performs

the disentanglement between identity and non-identity information such as pose and camera,

respectively. The non-identity related features are denoted by U = D(X;φNID) and the identity

related features are denoted by V = D(X;φID). Both U, V ∈ Rd×N . The disentanglement loss

is defined as,

Ldis =
1

N

N∑
j=1

‖Xj − (Uj � Vj)‖22 (3.2)

where ‖.‖22 denotes L2 norm, Xj denotes the jth column of X and � represents Hadamard

product.

7



Reconstruction: We apply Mean-Squared Error (MSE) reconstruction loss between X and its

reconstructed version X̂. Let the trainable parameters used to obtain X̂ be ψ. The reconstruc-

tion loss on the source representation model can be given as,

Lrec =
1

N

N∑
j=1

||Xj − X̂j ||22 (3.3)

where X is the baseline features and X̂ is the reconstructed features.

3.2.3 Identity-preserving module

The goal of this module is to improve the identity discriminative features (V ) and enhance the

generalization capability on the source domain. Under the disentanglement decomposition, we

take additional benefit from the identification loss, Lvid given in eq. 3.4. Since D(.;φID) must

capture information relevant to person identity, we use the identification loss to supervise the

training process on source domain. The identification loss is given by,

Lvid = − 1

N

N∑
j=1

log p(ŷSidj |D(Xj ;φID)) , (3.4)

We explain the target representation model in the next section.

3.3 Target Representation Model

Once source domain training is completed, the learned knowledge is transferred to the target

domain via fine-tuning.

3.3.1 Fine-tuning

In case of target representation model, we first initialize the model with trained weights of source

model. Then, we apply the following identification loss to fine-tune the model,

Lid = − 1

C

C∑
j=1

log p(ŷTidj |D(B(ITj ; θ);φID)) , (3.5)

where C is the number of classes and p is the predicted probability. Here we assume that each

image has a unique label and there are as many classes as images. Though such assumption

8
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Figure 3.1: Proposed Architecture. On the source domain, labeled source data is given as an
input to the baseline network and trained using LB. The baseline features are decomposed into
U and V using disentanglement loss Ldis and classification loss Lvid. Batch-normalized U and
V are concatenated for reconstruction of X using reconstruction loss Lrec. On target domain,
unlabelled target data and cam-style transferred images are fed as an input to ResNet-152, whose
weight initialization is done through the trained source model. The model is further fine-tuned
through Lid.

provides weak supervision, [50] shows that it helps the network to learn the representation of a

person.

3.3.2 Camstyle Invariance Learning

One of the most challenging problems during domain transfer in Re-ID is the variation between

source cameras and target cameras. The model trained on the source domain suffers because of

the variance in the target cameras. To overcome this problem, we use [50] to learn the camera

invariance property. For each target image, the camera style transferred image for each camera

in the target dataset is generated while preserving the identity information. The generated

images capture the camera invariance by transferring the appearance and illumination related

information. Further, original and camera-style images form the augmented training set can

be fed to the target representation model. Once the domain-invariant feature is learned via a

fine-tuned model, we can perform cross-domain Re-ID by matching the query image against

gallery images.

9



3.4 Training strategy

We train the model in three steps: fine-tune the backbone network followed by source represen-

tation model training and fine-tuning on target.

Fine-tuning the backbone: We first fine-tune the backbone network of ResNet-152 using the

baseline loss (LB) as given in Section 3.2.1.

Source representation model training: Here, we apply identification (Lvid), disentangle-

ment (Ldis) and reconstruction (Lrec) loss to optimize the source network. The losses are given

in eq. 3.2, 3.3 and 3.4, respectively.

Target fine-tuning: On target representation model, we apply identification loss (Lid) which

is given in eq. 3.5.

ALGORITHM 1: Optimization of the Model
Input: S, T, B(.; θ)
Output: Network parameters {θ}
repeat

for each epoch do
Randomly sample PK images from S;
θ ← θ − ∂LB

∂θ
;

{θ, φID} ← {θ, φID} − ∂Lvid
∂{θ,φID} ;

{θ, φ} ← {θ, φ} − ∂Ldis
∂{θ,φ} ;

{θ, φ, ψ} ← {θ, φ, ψ} − ∂Lrec
∂{θ,φ,ψ} ;

end

until Convergence;
Return {θ, φ}
Initialize target network with {θ, φID};
repeat

for each epoch do
Randomly sample N images from T and cam-style transferred images;

{θ, φID} ← {θ, φID} − ∂Lid
∂{θ,φID} ;

end

until Convergence;
Return {θ}

3.5 Testing

Once the source model is trained, we test on the target dataset to perform cross-domain Re-ID.

We first extract the features of the probe and gallery image using B(.; θ). We then compute the

Euclidean distance between the query and gallery features to measure the similarity.

10



Chapter 4

Experiments

In this section, we describe the datasets and the evaluation protocol. Further, we discuss the

ablation study to evaluate the contribution of each component of the proposed method. Fur-

thermore, we compare our proposed method with state-of-the-art methods.

4.1 Datasets

4.1.1 Market-1501

Market-1501 [46] is composed of 32,668 labeled images of 1,501 identities collected from 6 cam-

era views. The dataset is split into two non-overlapping fixed parts: 12,936 images from 751

identities for training and 19,732 images from 750 identities for testing. In testing, 3368 query

images from 750 identities are used to retrieve the matching persons in the gallery.

4.1.2 DukeMTMC-reID

The DukeMTMC-reID [47] is also a large-scale Re-ID dataset. It is collected from 8 cameras and

contains 36,411 labeled images belonging to 1,404 identities. It also consists of 16,522 training

images from 702 identities, 2,228 query images from the other 702 identities, and 17,661 gallery

images.
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4.2 Evaluation Protocol

We employ the standard metrics, namely the Cumulative Matching Curve (CMC) used for

generating rank accuracy, and the mean Average Precision (mAP). We report CMC-1, CMC-5,

CMC-10 accuracy, and mAP for evaluation on both datasets.

4.3 Implementation details

The model is implemented on PyTorch with NVIDIA GeForce RTX 2080Ti. Data augmentation

includes random cropping, horizontal flipping, pixel value normalization, and random erasing.

We randomly sample P classes (person identities) and sample K images of each class (person),

resulting in a batch of PK input images.

4.3.1 Backbone

: We use the ResNet-152 [13] architecture as backbone network. We fine-tune the baseline

network using identification loss on the source Re-ID dataset. We discard the last fully connected

layer and add two fully connected layers. The output of the last fully connected layer has 512

units. The number of epochs is set to 60, and the mini-batch size is 64. Dropout is set to 0.5.

We use Adam optimizer for optimizing the overall objective function. The initial learning rate

is set to 5 × 10−3 for the ResNet-152 and 5 × 10−2 for the other layers in the baseline. It is

decreased to 0.1 of its previous value every 40 epochs. The best model is saved and used as the

backbone for all further experiments.

4.3.2 Source representation model training:

It is trained with three different loss functions. The number of epochs is set to 1000 and mini-

batch size is 64 (PK style sampling is used with P = 16 and K = 4). The initial learning rate

for updating the backbone weights is set to 5 × 10−4, whereas other layers of the DRNet are

updated at a learning rate of 5 × 10−2. The learning rate is decreased to 10% of its previous

value after every 200 epoch. We use Stochastic Gradient Descent (SGD) optimizer.
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4.3.3 Fine-tuning on target

: The model is then trained for 10 epochs with a mini-batch size of 64. We use the SGD

optimizer for model optimization of the network. The learning rate of the backbone is reduced

to 1 × 10−4, and other components learn at a rate of 1 × 10−2. The learning rate is reduced

to 0.1 of its previous value after every epoch. After the fine-tuning, the best model is used for

Re-ID evaluation.

4.4 Ablation Study

Table 4.1: Ablation Study on Market-1501-to-DukeMTMC-reID dataset. CMC-1, CMC-5,
CMC-10 (%) and mAP (%) are reported. × refers to the loss function is not used. Xrepresents
the applied loss function.

Source Target
Variant LB Lvid Lrec Ldis Lid Cam-style CMC-1 CMC-5 CMC-10 mAP

À X × × × × × 38.50 54.80 61.08 21.01
Á X × × × X × 42.41 58.79 64.76 24.12
Â X × × × X X 60.45 73.24 77.87 38.54
Ã X X × × X X 60.59 73.47 78.05 38.63
Ä X X X × X X 62.00 75.25 79.82 39.52
Å X X X X X X 63.01 76.21 81.04 40.84

In this subsection, we evaluate the proposed network under different variants. We use Market-

1501 [46] as source dataset and DukeMTMC-reID [47] as target dataset to do the ablation study.

We compare all the different variants in Table 4.1.

Variant À: We first experiment with the pre-trained network of ResNet-152 [13] as the backbone

to train on source dataset of Market-1501 and test it on target dataset of DukeMTMC-reID.

The network is trained via loss LB. We observe a CMC-1 accuracy of 38.50%. The poor

generalization capability of the baseline model leads to poor performance.

Variant Á: Here we keep the Variant À setting at source dataset and fine-tune the target model

using identification loss Lid. We see a boost of 3.91% in the CMC-1 accuracy.

Variant Â: In this variant, we keep the the Variant Á setting. Additionally, we generate

camera-style images from each camera and use them for data augmentation. We fine-tune the

target model with original and camera-generated images on the target dataset. Here, we achieve

60.45% in the CMC-1 accuracy.

Variant Ã: We add another identification loss Lvid. By keeping the Variant Â setting of target
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representation model, we observe a boost of 0.14% in the CMC-1 accuracy.

Variant Ä: We add reconstruction loss Lrec in this variant. We observe a CMC-1 accuracy

of 62.00%. This shows that the generalization capability of the model leads to better identity

discriminative representation learning.

Variant Å: We add disentanglement loss Ldis, which attempts to decompose shared features

X into U and V . This variant is known as DRNet. We observe a CMC-1 accuracy of 63.01%.

This helps to align source domain to target domain and thus further helps to extract generalized

features.

4.5 Comparison with State-of-the-art

We compare our proposed method with the state-of-the-art unsupervised person Re-ID methods

on Market-1501 [46] and DukeMTMC-reID [47]. We report the experimental results in Table

4.2. We obtain competitive results compared with the state-of-the-art.

Table 4.2: Comparison with the state-of-the-art methods on DukeMTMC-reID-to-Market-1501
and Market-1501-to-DukeMTMC-reID. CMC-1, CMC-5, CMC-10 (%) and mAP (%) are re-
ported. ‘–’ means that the results are unavailable, ‘*’ means intra-camera labels are used and
‘†’ indicates fully unsupervised methods.

Approach Reference
DukeMTMC-reID-to-Market-1501 Market-1501-to-DukeMTMC-reID

CMC-1 CMC-5 CMC-10 mAP CMC-1 CMC-5 CMC-10 mAP

MMFA [20] BMVC 2018 56.7 75.0 81.8 27.4 45.3 59.8 66.3 24.7

PTGAN [37] CVPR 2018 38.6 – 66.1 – 27.4 – 50.7 –

SPGAN [6] CVPR 2018 57.7 – 26.2 – 57.7 – – 26.7

TJ-AIDL [33] CVPR 2018 58.2 74.8 81.1 26.5 44.3 59.6 65.0 23.0

HHL [49] ECCV 2018 62.2 78.8 84.0 31.4 46.9 61.0 66.7 27.2

UDAA [53] ICIP 2019 43.0 63.3 70.6 17.1 28.6 44.2 51.7 13.1

CCE [27] ICCV 2019 64.3 – – 34.5 55.4 – – 36.7

CASCL [38] ICCV 2019 64.7 – – 35.6 51.5 – – 30.5

EUG [40] TIP 2019 49.8 66.4 72.7 22.5 45.2 59.2 63.4 24.5

ATNet [22] CVPR 2019 55.7 73.2 79.4 25.6 45.1 59.5 64.2 24.9

PAUL CVPR 2019 66.7 – – 36.8 56.1 – – 35.7

TSSL†1001[39] AAAI 2020 71.2 – – 43.3 62.2 – – 38.5

SDA [11] Arxiv 2020 49.5 62.2 67.7 23.2 54.4 66.4 71.3 25.6

CSGLP [28] TIFS 2020 61.2 77.5 83.2 31.5 47.8 62.3 68.3 27.1

ktCUDA* [17] WACV 2020 68.6 – – 49.4 58.7 – – 40.9

SSL [21] CVPR 2020 71.7 83.8 87.4 37.8 52.5 63.5 68.9 28.6

DRNet Ours 72.0 83.9 88.6 39.8 63.0 76.2 81.0 40.8
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4.5.1 Results on DukeMTMC-reID-to-Market-1501

To verify that our method is able to extract generalized features across domains, we compare it

with recent methods like CSGLP [28], SDA [11], ATNet [22] and EUG [40]. We also compare

to the state-of-the-art pseudo-label based and domain translation based algorithms. When

tested on DukeMTMC-reID, the proposed method achieves 72.0% CMC-1 and 39.8% mAP score.

The comparison indicates the effectiveness of the proposed method to learn more generalizable

features for bridging domain gaps.

4.5.2 Results on Market-1501-to-DukeMTMC-reID

We achieve CMC-1 accuracy of 63.0% and 40.8% mAP score for this case. Our results state

that our proposed method achieves significant performance compared to the existing literature.

4.5.3 Other Results

In Table 4.3, we show the improvement of CMC-1 (%) on the source datasets for different

variants. It shows that the objective functions help to improve the generalization capability of

the source dataset.

Table 4.3: Results of proposed model on the source dataset. Variants are as described in Table
4.1

Variant
Objective Function Market-1501
LB Lvid Lrec Ldis CMC-1

À X × × × 89.99
Ã X X × × 90.26
Ä X X X × 90.43
Å X X X X 90.79

In Table 4.4, we show the results obtained by extracting features from different layers of DRNet

model on target domain. Since, we obtain better results from X layer instead of V , we have

used the features from X for all the experiments stated earlier.

In Table 4.5, we compare the results using two strategies. The DRNet model is as explained in

the previous sections. The DRNet* model uses the intra-camera labels in the target domain.

We use the camera labels to generate labels along with tracking details. Hence, each person in

a single camera can be classified into a single identity. However, the tracking details are not

available across different cameras.
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Table 4.4: Comparison of results by extracting features from different layers on Market-1501-
to-DukeMTMC-reID dataset. CMC-1 (%) is reported. × refers to the loss function is not used.
Xrepresents the applied loss function.

Source Target CMC-1
Variant LB Lvid Lrec Ldis Lid Cam-style LayerX LayerV

À X × × × × × 38.50 –
Á X × × × X × 42.41 40.20
Â X × × × X X 60.45 58.57
Ã X X × × X X 60.59 58.91
Ä X X X × X X 62.00 60.19
Å X X X X X X 63.01 61.54

Table 4.5: Proposed results using different methodologies (‘*’ refers the use of intra-camera
labels in target domain)

Approach
DukeMTMC-reID-to-Market-1501 Market-1501-to-DukeMTMC-reID
CMC-1 CMC-5 CMC-10 mAP CMC-1 CMC-5 CMC-10 mAP

DRNet 72.0 83.9 88.6 39.8 63.0 76.2 81.0 40.8
DRNet* 77.1 87.5 92.4 44.6 67.4 80.1 86.9 47.2

4.6 Visualization Results

We show visualization results from our proposed network in Figure 4.1 and 4.2 and compare it

against the baseline network to show the superiority of our model.

4.6.1 Retrieval Results

We show retrieval results in Figures 4.1 using the baseline and the proposed network on the

same query images. Here, we randomly pick images from the probe set as a query and retrieve

the corresponding images from the gallery set. The images in the first column are the query

images. The retrieved images are sorted according to the similarity scores from left to right

(from the second column till last). The green boundary indicates a positive match, and red

shows a negative match. We can see that the proposed network gets accurate shots under most

of the challenging situations, as shown in Figure 4.1.

4.6.2 Visualization of Person Features through t-SNE

We randomly select 5 identities from the testing set and visualize the features using t-SNE [24]

in Figure 4.2. We use the same color for the features corresponding to the same identity. We

show t-SNE for baseline features and features from the proposed approach in Figure 4.2.
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(a) Top-10 retrieval results from baseline

(b) Top-10 retrieval results from the proposed network

Figure 4.1: Top-10 retrieval results. The images in the first column are the query images. The
retrieved images are sorted according to the similarity scores from left to right (from second
column till last). Red boundary indicates a negative match and green shows a positive match.
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(a) Baseline (b) Proposed

Figure 4.2: 2D visualization of the features from baseline and proposed network.
Same color refers to same identity and different color represent different identity.

Baseline: In Figure 4.2 (a), we observe that the features obtained from the trained baseline

are merged into samples of another identity. Hence, the baseline features are not robust enough

to perform Re-ID.

Proposed Network: On the other hand, features from our proposed network show that the

individual identity clusters form very well, as in Figure 4.2 (b). For example, the intra-distance

between purple, green, yellow, and blue samples has reduced drastically. This shows the su-

periority of our method over the baseline. Thus, we conclude that the network has a strong

capability to extract generalizable features and perform cross-domain Re-ID to bridge the do-

main gap accurately.
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Chapter 5

Conclusion

In this work, we propose a novel method for unsupervised cross-domain person Re-ID tasks.

We first disentangle the features into ID and non-ID related features using disentangling and

reconstruction loss. Further, to adapt to the target domain, we use camstyle transferred images.

We perform extensive ablation study and demonstrate the significant improvement achieved due

to the proposed components. Experimental results show that our proposed method can learn

better features to address domain shifts in the unsupervised person Re-ID problem.
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