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ABSTRACT

KEYWORDS: Disentanglement; Fine-grained; Near-OoD; Gradient Reversal

Out-of-Distribution (OoD) detection has emerged as a crucial aspect in machine learn-

ing, essential for ensuring the resilience and reliability of models deployed in real-world

scenarios. Traditional methods excel at identifying far-OoDs, but struggle with near-

OoDs since the differences between in-distribution and near-OoD samples are subtle.

Conventional techniques of OoD detection such as confidence scores or likelihood mea-

sures often fail in the context of detecting near-OoDs. This discrepancy highlights the

necessity for novel approaches for detecting near-OoDs, particularly for classification

tasks in fine-grained datasets, where limited discriminative features alongside intra-

class variability is a critical issue.

We explore disentangled representation learning (DRL), where we seek to extract rel-

evant features essential for accurate classification, while disentangling irrelevant fea-

tures. In this work, we assume that the OoD samples occur during inference, and hence,

model is unaware of OoDs during training. Hence, there is an evident shift between the

training and test distributions. An important question to pose in this context is the fol-

lowing: Can near-OoD detection in such a context be expressed as a problem of domain

adaptation?.

Domain adaptation methods build the mappings between the source (training-time) and

the target (test-time) domains, so that the classifier learned for the source domain can

be used on the target domain during inference. In this work, we employ domain adap-

tation based gradient reversal layer for vector-wise disentanglement of feature vectors

into class-specific and class-invariant features. We propose the novel NORD-F frame-

work, which consists of a classifier branch, a encoder-decoder based DRL branch and a

variation branch.

Using experiments on fine-grained datasets such as Stanford Dogs, FGVC-Aircraft,

etc, we demonstrate that the proposed method outperforms OoD-aware baselines in
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terms of several OoD metrics. Further, using TSNE visualization, we illustrate that our

approach disentangles the feature representation as class-invariant and class-specific

features. Hence, by leveraging disentangled representation learning and insights from

domain adaptation, our approach identifies near-OoDs ensuring the model’s awareness

towards OoD samples. This research contributes to the advancement of OoD detection

methodologies, offering an efficient framework suited to address the challenges of fine-

grained datasets.
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CHAPTER 1

INTRODUCTION

Out-of-Distribution (OoD) detection is crucial in ML models used in safety critical

domains such as healthcare, automobile industry, finance, etc. OoD detection helps

identify when the data deviates from the in distribution samples, and identifying adver-

sarial attacks where inputs are designed to mislead the model. Furthermore, regulatory

standards or ethical considerations may require that models operate within well-defined

conditions and reject data outside of those conditions, and OoD detection plays a cru-

cial role here. Most of the literature on OoD detection handle far-OoDs, which focuses

on identifying data that is significantly different from the training distribution. For in-

stance, the ML models are trained on the MNIST dataset, while a sample from the

Fashion-MNIST dataset is used as an OoD Ren et al. (2019) or synthetic OoD samples

are generated using GANs Mukhoti et al. (2023). Such techniques handle substantial

deviations of far-OoDs in feature space as compared to in-distribution (ID) samples, but

falter when confronted with near-OoD instances which semantically look very similar

to the ID data but have a different label Mukhoti et al. (2023). The importance of near-

OoD detection is underscored by its implications across various domains. For instance,

in medical imaging, distinguishing between different types of skin lesions requires a

model not only to identify common classes but also to recognize rare anomalies that

may signal critical conditions Mehta et al. (2022). Similarly, in autonomous vehicles,

accurately identifying pedestrians under various lighting and environmental conditions

is crucial for ensuring safety.

In this work, we propose a novel NORD-F framework, for discerning near-OOD sam-

ples from ID samples. In this chapter, we introduce the different modules that have

been incorporated in this work.



1.1 Out-of-Distribution Detection

There are several approaches to handling OoD samples. Furthermore, one may choose

to obtain OoD generalization Liu et al. (2021a) or perform OoD detection Yang et al.

(2024). Both are two related but distinct challenges in machine learning, although

both deal with handling data that deviates from the distribution on which a model was

trained.

OoD generalization Liu et al. (2021a) methods aim to enhance the model’s ability to

generalize to unseen environments or dataset shifts. These methods focus on improv-

ing model performance on OoD samples by incorporating training strategies that foster

model adaptability and robustness. Techniques such as data augmentation Hendrycks

et al. (2019), ensemble methods Segu et al. (2023), and domain generalization tech-

nique Wang et al. (2022a) are commonly utilized to achieve this objective.

In contrast, OoD detection methods Yang et al. (2024, 2022) serve the objective of de-

tecting instances that deviate significantly from the training distribution. These methods

are primarily concerned with scenarios where OoDs occur during inference, and hence,

models’ outputs or intermediate representations are analyzed to determine if a given

unseen sample is OoD. Various techniques such as confidence scores Hendrycks and

Gimpel (2016), distance-based metrics like Mahalanobis distance Lee et al. (2018), ad-

versarial training based Bitterwolf et al. (2020) and reconstruction loss Zhou (2022);

Jiang et al. (2023) are employed for OoD detection. These techniques helps the model

to avoid incorrect predictions and enhance model reliability Yang et al. (2022). In this

work, we assume that an unseen sample is OoD and hence, we focus on OoD detection

rather than generalization.

1.1.1 Understanding Far and Near OoDs

When exploring the concept of OoD instances, distinguishing between near and far

variations provides valuable insights into data representation complexities.

Far-OoD: Far-OoD instances represent samples that are perceptually and semantically

dissimilar to the training data. These instances exhibit entirely different features and

labels compared to the training distribution.
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Near-OoD: Near out-of-distribution (OoD) instances present a scenario where the sam-

ples exhibit perceptual similarities to the training data but possess semantic differences.

These instances are characterized by subtle deviations that closely resemble the train-

ing distribution, making them challenging to identify using traditional OoD detection

methods. They may share overlapping features with the training data, yet exhibit dis-

similar labels Mukhoti et al. (2023), necessitating a fine-grained analysis to discern

their out-of-distribution nature.

Unlike near-OoD instances, far-OoD instances can be readily identified due to their

stark dissimilarity to the training data, resulting in a relatively simple decision bound-

ary between ID and OoD samples. Consequently, detecting far-OoD instances may

require less complex algorithms compared to near-OoD detection, as their distinctive

features facilitate straightforward discrimination. Due to the complex decision bound-

ary between near-OoD and ID samples, detecting and accurately classifying these in-

stances requires sophisticated OoD detection algorithms Zhang et al. (2023b) capable

of nuanced discrimination.

(a) Example of Far-OoD (b) Example of Near-OoD

Figure 1.1: In Fig a) both the images are both semantically and perceptually differ-
ent but in Fig b) peach and sun look perceptually similar which can affect
model’s detection capability

1.2 Disentanglement Representation Learning

Disentanglement representation learning fundamentally revolves around the idea of ex-

tracting underlying factors of variation within data leading to improved interpretability

and separability. By disentangling factors of variation, such as object identity, pose,

or lighting conditions in images, models can learn more robust and transferable rep-

resentations, leading to more efficient learning algorithms and better performance in

downstream tasks.
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Based on the structure of disentangled representations, DRL methods are categorized

into two groups, dimension-wise and vector-wise methods Wang et al. (2022b). Dimension-

wise disentanglement incorporates generative models to ensure that individual dimen-

sions within the latent space represents one specific attribute or factor. This leads to

obtaining the degree to which different dimensions in the latent space can be mapped

to separate and meaningful factors of variation in the data Xiao et al. (2017). Despite

its potential benefits, dimension-wise disentanglement is challenging as it requires la-

bels for interpretable dimensions alongside relevant evaluation metrics Locatello et al.

(2019). Among different vector-wise disentanglement techniques Lee et al. (2021), we

are interested in techniques that explicitly model the intra-class variance and disentan-

gle the intra-class invariance Lin et al. (2018).

Figure 1.2: Disentanglement feature vector of a bird’s image

1.3 Domain Adaptation and OoD detection

Domain adaptation is a crucial technique in machine learning that aims to address the

challenge of applying models trained on one domain (source domain) to a different but

related domain (target domain). One of the notable approaches in domain adaptation is

the use of GRL, which plays a significant role in adversarial domain adaptation. GRL

functions by reversing the gradients during back-propagation, encouraging the model

to learn domain-invariant features by simultaneously minimizing the task-specific loss

and maximizing the domain classification loss Ganin and Lempitsky (2015). This tech-

nique effectively bridges the gap between the source and target domains, enhancing the
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model’s generalization capabilities. The principles of GRL are particularly relevant in

the context of OoD detection. By promoting domain-invariant feature learning, models

become more robust to variations in the input data, improving their ability to identify

and handle OoD samples. This connection underscores the importance of domain adap-

tation approaches like application of GRL in developing reliable and adaptable machine

learning systems that perform well even when faced with data from different distribu-

tions.

1.3.1 Significance of GRL In Our Work

GRL has emerged as a pivotal component in domain adaptation and domain generaliza-

tion tasks Zhang et al. (2022), serving to mitigate domain shift and promote domain-

invariant representations.

In the context of OoD detection, GRL has been integrated into frameworks to enhance

model robustness against distribution shifts and improve OoD detection performance.

Understanding the role of GRL in domain adaptation and its implications for OoD de-

tection methodologies is essential for designing effective and adaptable models capable

of handling real-world data distributions.

By synthesizing diverse strands of knowledge, we developed a novel framework NORD-

F for near-OoD detection. Our approach leverages DRL combined with domain adap-

tation techniques to effectively identify near-OoDs. GRL, which reverses the gradient

direction during the backward pass. This counteracts the typical deep neural network’s

tendency to learn clustered and relevant features for the downstream task. Instead, due

to the GRL, the network begins to learn irrelevant features of the image and ultimately

we segregate the most relevant and irrelevant features for our task.

In the context of out-of-distribution (OoD) detection, the Gradient Reversal Layer (GRL)

has been successfully integrated into various frameworks to enhance model robustness

against distribution shifts and enhance OoD detection capabilities. Grasping the signif-

icance of GRL in domain adaptation and its impact on OoD detection methodologies is

crucial for designing models that can effectively manage real-world data distributions.

By synthesizing different areas of research, we have developed an innovative pipeline

for near-OoD detection. Our approach combines disentangled representation learning

5



with domain adaptation techniques to proficiently identify near-OoDs. GRL, by revers-

ing the gradient direction during backpropagation, counteracts the natural tendency of

deep neural networks to focus on clustered and task-relevant features. Instead, this pro-

cess enables the network to learn a broader range of features, including those that are

typically deemed irrelevant. This allows us to distinguish between the most pertinent

and extraneous features for our specific task, enhancing the model’s ability to detect

near-OoD instances.

1.4 Contributions

We propose the NORD-F framework which is a novel architecture for near-OoD detec-

tion in fine-grained datasets. The architecture consists of the following:

• Variation branch: This branch encodes the class-irrelevant information that com-
plements the image representation. This branch employs domain adaptation based
principles using GRL.

• Reconstruction branch: This branch ensures that disentangled features together
lead to input image reconstruction, and hence, image information is preserved.

• Classification branch: This branch extracts the discriminative features of the im-
age sample.

Broadly, the contributions of this thesis are as follows:

• Addressed the challenge of detecting near-OoD samples through disentanglement
representation learning where we extract the most relevant features and abstain
the features which does not contribute to the classification task.

• Introduced a novel approach for OoD detection in fine-grained environment using
GRL application inspired from domain adaptation methods.

• We evaluate the proposed framework on fine-grained datasets such as Stanford
Dogs, FGVC-Aircraft.

1.4.1 Notations

Small letters denote scalars, boldface small letters denote vectors. I denotes an identity

matrix whose size is as per context. The ℓ2-norm of a vector x is denoted as ||x||. P

represents sets and |P| represents size of the set.
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CHAPTER 2

RELATED WORKS AND PRELIMINARIES

In this chapter, we delve into the existing literature surrounding the key topics pertinent

to our research. We explored various aspects such as DRL and the sub-types, fine-

grained analysis for OoD detection, GRL technique for disentanglement purpose, etc.

By reviewing prior research, we aim to establish a comprehensive understanding of the

theoretical foundations, methodological approaches that can help to address the gaps in

the recent developments.

2.1 Existing Out-of-Ditribution Detection Methods

We broadly classify the relevant OoD detection methods as post-hoc, training-based,

ViT-based, training with outlier exposure strategy, OoD data generation technique and

Bayesian methods.

Post-Hoc Methods: Post hoc methods for OoD detection are techniques applied after

model training to identify out-of-distribution samples. These methods modify model

outputs or decision thresholds to improve the detection of OoD samples without re-

training the model.

MSP: The first originated baseline for OoD detection is Maximum Softmax Probability

(MSP) which uses the highest softmax score from a classifier as a confidence measure.

If this maximum probability is below a certain threshold, the input is considered as

OoD.Hendrycks and Gimpel (2016).

Energy-based: involve using the energy score of a sample, derived from the model’s

output logits, to determine the likelihood of being in-distribution. Lower energy scores

typically indicate in-distribution samples, while higher scores suggest OoD samples.

Liu et al. (2020)



Temperature Scaling: adjusts the confidence scores by scaling the logits and improves

the calibration of the model’s predictions Guo et al. (2017).

Training-Based Method: These methods involve incorporating OOD detection mech-

anisms directly into the training process of the model.

LogitNorm: This method modifies the standard cross-entropy loss by enforcing a con-

stant vector norm on the logits during training. As a result, networks trained with

LogitNorm produce confidence scores that are distinguishable between in-distribution

(ID) and out-of-distribution (OoD) data, improving the accuracy of OoD detection.Wei

et al. (2022)

ODIN: It is a post-hoc plus training based approach that utilizes temperature scaling

and input perturbation to enhance the separability between in-distribution (ID) and out-

of-distribution (OoD) samples. A sufficiently large temperature smooths the softmax

scores, effectively transforming them back to the logit space, which improves the dis-

tinction between ID and OoD samples.Liang et al. (2018) This differs from Temperature

Scaling Guo et al. (2017) method that uses a much milder temperature.

Bayesian Methods: For OoD detection, variational autoencoders (VAEs) based Feng

et al. (2021); Ran et al. (2022); Daxberger and Hernández-Lobato (2019) and other

Bayesian methods like Choi et al. (2021) provide a robust framework for addressing

OoD detection. The paper Ramakrishna et al. (2022) highlights the effectiveness of

utilizing the latent space of β-VAEs for OoD detection in cyber-physical systems. By

leveraging disentangled representations, this approach ensures that the model can ef-

fectively differentiate between ID and OoD samples, enhancing system robustness. In

Zhou (2022); Osada et al. (2023) the authors propose using reconstruction error as a

metric for OoD detection. The underlying hypothesis is that ID data is reconstructed

accurately by the autoencoder, whereas OoD data will exhibit higher reconstruction er-

rors, making it distinguishable. The Tilted VAE Floto et al. (2023) approach introduces

a tilted Gaussian prior by adding a penalty term to the VAE loss function. This method

has been tested for adversarial samples and distributional shifts, showing that the tilted

prior helps in effectively separating OoD samples from ID data. The paper Nguyen

et al. (2022) uses dropout neural networks leverages the inherent uncertainty estimation

capabilities of dropout. During training, dropout randomly deactivates neurons, which

effectively creates an ensemble of models. By analyzing the variability (uncertainty)
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of these predictions at inference, the model can identify samples with high uncertainty

as potential OoD samples, as ID tend to produce more confident and consistent predic-

tions.

Vision-transformer based Approaches: In Sim et al. (2023), the authors explore the

use of Vision Transformers (ViTs) for the task of OOD detection. The self-attention

mechanism in ViTs enables the model to focus on relevant regions of the image, which

is crucial for identifying OOD samples that may differ subtly from in-distribution sam-

ples. They finally Used the learned representations to distinguish between in-distribution

and OOD samples based on metrics Mahalanobis distance. Similarly, the study by Fort

et al. Fort et al. (2021) explores the capabilities of ViTs for OOD detection across

different modalities.

Training with Outlier Exposure: In Zhang et al. (2023a), the authors introduce

Mixture Outlier Exposure (MixOE), which combines ID data with training outliers to

broaden the range of OoD granularities. This approach trains the model to ensure that

prediction confidence decreases linearly as the input shifts from ID to OoD which is

achieved by incorporating the following objective:

E(x,y)∼Din [L(f(x), y)] + βE(x̃,ỹ)∼Dvirtual out [L(f(x̃), ỹ)] .

Here, L(f(x), y) is the cross-entropy loss between the DNN’s predicted distribution

f(x) and the ground truth distribution y, and β is a weighting term. After training,

the detection will be performed by thresholding the prediction confidence. Chen et al.

(2021) demonstrate that by mining informative auxiliary OOD data, it is possible to sig-

nificantly enhance OOD detection performance. Additionally, this approach improves

the model’s ability to generalize to previously unseen adversarial attacks.

OoD Data Generation: The paper Mukhoti et al. (2023) proposes the criterias for a

sample to be near-OoD and far-OoD and thereby generate OoD samples through GAN

network. Through this paper we got better understanding of far and near OoDs in a

comprehensive manner which was defined as follows:

To classify near and far OoD sets, they utilize the Learned Perceptual Image Patch

Similarity (LPIPS) metric, which correlates well with human judgment. Let ( fθ )

represent a pre-trained convolutional network. Given two images, x1 and x2, LPIPS
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computes the cosine distance between feature space activations across different layers

of the network fθ as follows:

LLPIPS(x1,x2) =
∑
l

1

HlWl

∥∥f lθ(x1)
− f lθ(x2)

∥∥2

2

where f lθ(x1)
and f lθ(x2)

∈ RHl×Wl×Cl are the feature space representations from inputs

x1 and x2 in layer l. They used LPIPS with a VGG network. For semantic similarity,

they used mutual information (MI) I[y,θ|D,x] to quantify the information gain about

the posterior distribution p(θ|D) upon seeing a sample x ∈ D. For computational

feasibility, a pre-trained deep ensemble approximates MI as:

LMI(x) = Î[y,θ|D,x] ≈ H[p(y|x,θ)]− 1

T

T∑
t=1

H[p(y|x,θt)]

where p(y|x,θt) is the softmax distribution of the t-th network in an ensemble of T

networks. H[·] denotes the entropy of a distribution. We use LMI to measure semantic

similarity to the training distribution, with low LMI indicating similarity and high LMI

indicating dissimilarity. This inspired us to explore more about Mutual information in

a VAE like set-up. In the context of VAEs, mutual information can be leveraged to en-

hance disentanglement by enforcing a semantic similarity loss. This concept is explored

in the paper Rodriguez (2021). The objective is to maximize the mutual information be-

tween the latent variables and the observed data while ensuring that the latent variables

capture distinct factors of variation. Also in the paper Liu et al. (2021b), it discusses

enhancements to the Evidence Lower Bound (ELBO) in semi-supervised settings to im-

prove classification accuracy. The approach involves modifying the ELBO to include

a classification term, ensuring that the learned representations are both generative and

discriminative. Vernekar et al. (2019) generates boundary samples in the low-density

region. Du et al. (2022) proposed generating synthetic outliers from the regions of the

feature space that have low likelihood.

In general, these papers gave a clear understanding about OoDs and various method-

ologies involved for OoD detction.
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2.2 Disentanglement Representation Learning

Disentanglement representation learning, a fundamentally revolves around the idea of

extracting underlying factors of variation within data in a way that makes them inter-

pretable and separable. With reference to the paper Wang et al. (2022b) we analysed

the following classifications of DRL:

Based on the structure of representations, DRL can be classified into two categories:

• Dimension-wise DRL: It focuses on disentangling each dimension independently,
potentially leading to more granular control over the learned representations.
Such representations provide insights into the specific aspects of the data that
contribute to variations in the output Chen et al. (2016). Training for dimension-
wise DRL often requires labels of these dimensions, and these may not be known.

• Vector-wise DRL: It focuses on capturing more complex relationships between
features. This method of DRL is capable of considering interactions among mul-
tiple dimensions simultaneously, allowing for the extraction of higher-level con-
cepts. It particularly emphasizes on the holistic structure of the data, enabling
the learning of more abstract and generalized representations. For instance, the
disentanglement is possible as coarse-grained and fine-grained generative factors,
time invariant (content) and a time-varying (pose) Denton et al. (2017); Lee et al.
(2021).

Figure 2.1: DRL classification based on the structure of representations of feature vec-
tor (Wang et al. (2022b))

Variational Autoencoders (VAEs) have been extensively utilized for disentanglement

representation learning due to their ability to learn probabilistic latent variable models.

The key idea behind VAE-based disentanglement methods is to enforce the latent space

to be disentangled, meaning that different dimensions of the latent space correspond

to independent and meaningful factors of variation in the data. An important variant

of VAE for dimension-wise disentanglement is the β-VAE Higgins et al. (2017), which
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extends the traditional VAE by introducing a hyperparameter β to the loss function. The

objective of β-VAE is to balance reconstruction accuracy and disentanglement of latent

factors. The loss function for β-VAE is given by:

Lβ-VAE = Eqϕ(z|x)[log pθ(x|z)]− βDKL[qϕ(z|x)∥p(z)]

where qϕ(z|x) is the approximate posterior, pθ(x|z) is the likelihood, DKL denotes the

KL divergence, and p(z) is the prior on latent variables.

Another approach is FactorVAE Kim et al. (2019), which enhances disentanglement by

introducing an additional independence constraint on the latent variables through a total

correlation penalty term. The objective of FactorVAE is:

LFactorVAE = Lrec + γTC[z]− αDKL[qϕ(z|x)∥p(z)]

where Lrec is the reconstruction loss, TC[z] measures total correlation, and γ and α are

hyperparameters controlling the balance between these terms.

Another popular approach of categorizing DRL methods is based on the learning method

namely, supervised, unsupervised and weakly-supervised methods. VAE based meth-

ods are unsupervised methods. Well-known supervised and weakly-supervised methods

are as follows:

• Supervised Methods: Bouchacourt et al. (2018) introduces the Multi-Level Vari-
ational Autoencoder (ML-VAE) that partitions samples into groups based on a
selected factor fs, where each group contains samples that share the same value
of fs. This approach is particularly useful in applications like image-to-image
translation, where images within a group not only share the same label but also
have the same posterior distribution of latent variables concerning fs. This dis-
tribution depends on all samples in the group. Conversely, for factors other than
fs, the posterior distribution may vary for each individual sample. Eastwood and
Williams (2018) demonstrate a structured approach to quantitatively assess the
quality of disentangled representations when the ground-truth latent structure is
known. They propose a method to objectively evaluate disentangled represen-
tations in machine learning models through three key criteria: disentanglement,
completeness, and informativeness. The framework uses regression metrics to
quantify how well each latent dimension captures a single ground-truth factor,
how comprehensively all factors are represented, and the overall information pre-
served about the data.

• Unsupervised Methods: One notable approach in unsupervised disentanglement
is based on VAEs. Traditional VAEs encode input data x into latent variables z,
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with the objective to maximize the evidence lower bound (ELBO):

LVAE = Eqϕ(z|x)[log pθ(x|z)]−DKL[qϕ(z|x)∥p(z)],

where pθ(x|z) and qϕ(z|x) are the encoder and decoder distributions respectively,
and DKL denotes the KL divergence between the approximate posterior qϕ(z|x)
and the prior p(z). While traditional VAEs aim for reconstruction and regulariza-
tion, achieving disentanglement requires additional constraints or modifications.
Recent advancements include β-VAE Ramakrishna et al. (2022), which intro-
duces a hyperparameter β to balance between reconstruction accuracy and disen-
tanglement of latent variables, as given earlier. In β-VAE the hyperparameter β
controls the strength of the disentanglement regularization. Another approach is
based on GANs, such as InfoGAN Chen et al. (2016), which extends the stan-
dard GAN framework to learn interpretable and disentangled representations by
maximizing mutual information between latent variables and generated outputs.
InfoGAN introduces an additional term to the GAN objective to explicitly en-
courage the learning of independent and interpretable factors.

• Weakly Supervised Methods: Weakly supervised disentanglement representa-
tion learning leverages limited and imprecise supervision to guide the learning
of interpretable latent variables, balancing between the extremes of fully super-
vised and unsupervised methods. This approach is particularly valuable when
full supervision is impractical or expensive to obtain. One critical insight into the
challenges of unsupervised disentanglement is provided by Locatello et al. (2019)
where they demonstrated that without inductive biases in the data or model, learn-
ing disentangled latent spaces in a purely unsupervised manner is theoretically
impossible. Their work highlighted the necessity of some form of supervision,
even if weak, to achieve meaningful disentanglement. In the work Chen and
Batmanghelich (2020), the authors propose using pairwise similarities as a weak
supervision signal. By leveraging pairs of data points that share some common
factors of variation, the model is encouraged to learn latent representations where
these shared factors are explicitly disentangled. In the work Rahiminasab et al.
(2022), the authors tackle OoD reasoning by using weak supervision to disen-
tangle latent factors that explain OoD behavior. For example, a model trained
in urban environments with no precipitation will consider rural roads and rainy
weather as OoD. Their approach involves logic-based variational autoencoders
to reason about the sources of OoD. In SW-VAE Zhu et al. (2022), authors pro-
pose a novel approach where latent factor swapping is used as a weak supervision
signal. If the latent representations are perfectly disentangled, swapping factors
between data points should result in consistent reconstructions.

Training Strategy:There are two primary schemes for incorporating disentangled rep-

resentations into downstream tasks: In joint optimization, the disentangled module and

the task objective are optimized simultaneously. The task loss can guide the disentan-

glement process, resulting in representations that are both disentangled and informative

for the task at hand. In the two-stage scheme, the disentangled module is trained in-

dependently, followed by applying the disentangled features in downstream tasks. In
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this case, the task loss cannot directly guide the disentanglement process, which might

result in less optimal representations for specific tasks.

2.2.1 Loss Functions for Disentanglement

The design of loss functions is crucial for enforcing disentanglement and informative-

ness. Typically, the loss functions is designed as Wang et al. (2022b):

L = λ1Lre + λ2Ldisen + λ3Ltask,

where Lre denotes reconstruction loss, Ldisen denotes disentanglement loss, and Ltask

denotes specific task loss.

1. Reconstruction Loss (Lre): Ensures that the disentangled representation is se-
mantically meaningful and can recover the original data.

2. Disentanglement Loss (Ldisen): Enforces the separation of different factors of
variation within the representation.

3. Task Loss (Ltask): Directly related to the specific objective of the model, such as
classification accuracy or regression error.

2.3 Vector-wise Disentanglement: Intra-class variance

and invariance

The paper Lin et al. (2018) proposes a method to enhance fine-grained few-shot clas-

sification by disentangling and modeling intra-class variance and invariance. Given a

dataset X consisting of N i.i.d images from M classes given as x(1), · · · ,x(n)), the data

generation process involves an unobserved continuous random variable z = zV + zIk,

representing the embedding features of the samples. The process includes three steps:

1. A value z
(i)
V is generated from some conditional distribution p∗θ(z), which repre-

sents the intra-class variance of sample i from class k.

2. z
(i)
Ik is the intra-class invariance of sample i from class k, and z(i) is the sum of

z
(i)
V and z

(i)
Ik .

3. An image x(i) is generated from some conditional distribution p∗θ(x|z).
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Assuming that the prior p∗θ(z) and the likelihood p∗θ(x|z) are from parametric families

pθ(z) and pθ(x|z), the loss for modeling intra-class variance using a Monte Carlo esti-

mator similar to VAE can be approximated as:

L(θ,ϕ;x(i)) ≈ −KL(qϕ(zV |x(i))∥pθ(zV )) +
1

L

L∑
l=1

log pθ(x
(i)|z(i,l)V )

Here, the prior distribution of zV is assumed to be a centered isotropic multivariate

Gaussian pθ(zV ) = N (zV ; 0, I), and the approximate posterior is a multivariate Gaus-

sian with a diagonal covariance:

qϕ(zV |x(i)) = N (zV ;µ
(i), σ2(i)I)

The mean µ(i) and standard deviation σ(i) of the posterior are approximated using the

outputs of fully-connected layers. Using the re-parameterization trick, the objective

function can be formulated as:

L(θ,ϕ;XB) ≈
1

2B

B∑
i=1

J∑
j=1

(
1 + log((σ

(i)
j )2)− (µ

(i)
j )2 − (σ

(i)
j )2

)
+

1

TB

B∑
i=1

L∑
t=1

log pθ(x
(i)|z(i,t)V ) (2.1)

This can be denoted as L1 + L2, where L1 enforces the distribution of intra-class vari-

ance to be isotropic centered Gaussian, and L2 ensures that intra-class variance pre-

serves sample-specific information.

Figure 2.2: Deep Variational Metric Learning Framework (Lin et al. (2018)
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Another paper Xu et al. (2021) focuses on disentangling class-specific features and

handling intra-class variance to improve classification performance in few-shot learning

scenarios where data is limited. The authors propose a framework that separates class-

specific features from intra-class variations. This approach involves modeling the intra-

class variations using a variational autoencoder (VAE), where the encoder learns to

map input images to a latent space, capturing both inter-class and intra-class variations.

These additional features are extracted and perform data augmentation with these new

set of images, thereby imporoving the classification performance.

2.4 Domain Adaptation Methods for OoD Detection

Domain adaptation methods for OOD detection aim to bridge the gap between train-

ing and test distributions, making models more robust to unseen data. These methods

include feature alignment Chen et al. (2019), domain-invariant representation learn-

ing Ganin and Lempitsky (2015), data augmentation Volpi et al. (2018) and transfer

learning Kamath et al. (2019) based methods. By adapting the model to handle diverse

and shifting data distributions, these techniques improve its ability to generalize and

accurately detect OOD examples. In this work, we are particularly interested in disen-

tangling into class-variant and class-invariant features, which we achieve using domain

adaptation principle using the Gradient Reversal Layer (GRL).

2.4.1 GRL based Domain Adaptation

GRL has emerged as a pivotal component in domain adaptation and domain general-

ization tasks, serving to mitigate domain shift and promote domain-invariant represen-

tations. Introduced by Ganin and Lempitsky (2015), GRL operates by reversing the

gradient flow during backpropagation, thereby encouraging the model to learn features

that are insensitive to domain differences.

The GRL operates by multiplying the gradient of the domain classifier’s loss with re-

spect to the feature extractor’s parameters by −λ, effectively reversing the direction of
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gradients during backpropagation:

Ltotal = Ltask − λLdomain, (2.2)

where Ltotal is the total loss function, and λ is a hyperparameter controlling the im-

portance of domain alignment.The architecture consists of three main components: a

feature extractor Gf , a label predictor Gy, and a domain discriminator Gd. We consider

the functional:

E(θf ,θy,θd) =
N∑
i=1

1di=0Ly(Gy(Gf (xi;θf );θy), yi)− λ

N∑
i=1

Ld(Gd(Gf (xi;θf );θd), yi)

(2.3)

E(θf ,θy,θd) =
N∑
i=1
di=0

Ly(Gy(Gf (xi;θf );θy), yi)− λ
N∑
i=1

Ld(Gd(Gf (xi;θf );θd), yi)

=
N∑
i=1
di=0

Liy(θf ,θy)− λ
N∑
i=1

Lid(θf ,θd) (2.4)

Here, Ly(·, ·) is the loss for label prediction, Ld(·, ·) is the loss for the domain classi-

fication, while Liy and Lid denote the corresponding loss functions evaluated at the i-th

training example. GRL seeks the parameters θ̂f , θ̂y, θ̂d that deliver a saddle point of the

functional (2.4) is given as

(θ̂f , θ̂y) = arg min
θf ,θy

E(θf ,θy, θ̂d) (2.5)

θ̂d = argmax
θd

E(θ̂f , θ̂y,θd) (2.6)

At the saddle point, the parameters θd of the domain classifier minimize the domain

classification loss (since it enters into (2.4) with the minus sign) while the parameters

θy of the label predictor minimize the label prediction loss. The feature mapping param-

eters θf minimize the label prediction loss (i.e., the features are discriminative), while

maximizing the domain classification loss (i.e., the features are domain-invariant). The
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parameter λ controls the trade-off between the two objectives that shape the features

during learning. Below, we demonstrate that standard stochastic gradient solvers (SGD)

can be adapted for the search of the saddle point (2.5),(2.6).

Optimization with Backpropagation

A saddle point of (2.5),(2.6) can be found as a stationary point of the following stochas-

tic updates:

θf ← θf − µ

(
∂Lyi
∂θf
− λ

∂Ldi
∂θf

)
(2.7)

θy ← θy − µ
∂Lyi
∂θy

(2.8)

θd ← θd − µ
∂Ldi
∂θd

(2.9)

where µ is the learning rate (which can vary over time). The updates in (2.7),(2.8),(2.9)

are very similar to stochastic gradient descent (SGD) updates for a feed-forward deep

model that comprises feature extractor fed into the label predictor and into the domain

classifier. The difference is the −λ factor in (2.7): the difference is important, as with-

out such factor, stochastic gradient descent would try to make features dissimilar across

domains in order to minimize the domain classification loss. Although direct imple-

mentation of (2.7)-(2.9) as SGD is not possible, it is highly desirable to reduce them to

some form of SGD.

Such reduction can be accomplished by introducing a special GRL defined as follows.

The GRL has no parameters associated with it (apart from the meta-parameter λ, which

is not updated by backpropagation). During the forward propagation, GRL acts as an

identity transform. During the backpropagation though, GRL takes the gradient from

the subsequent level, multiplies it by −λ and passes it to the preceding layer. As the

backpropagation process passes through the GRL, the partial derivatives of the loss that

is downstream of the GRL (i.e., Ld) w.r.t. the layer parameters that are upstream of the

GRL (i.e., θf ) get multiplied by −λ, i.e., ∂Ld

∂θf
is effectively replaced with −λ∂Ld

∂θf
.

Therefore, running SGD in the resulting model implements the updates (2.7)-(2.9) and
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converges to a saddle point of (2.4). Mathematically, we can formally treat the gradient

reversal layer as a "pseudo-function" Rλ(x) defined by two (incompatible) equations

describing its forward- and back propagation behavior:

Rλ(x) = x,
dRλ

dx
= −λI (2.10)

where I is an identity matrix. We can then define the objective "pseudo-function" of

(θf ,θy,θd) that is being optimized by the stochastic gradient descent:

Ẽ(θf ,θy,θd) =
N∑
i=1

1di=0Ly(Gy(Gf (xi;θf );θy), yi)

+
N∑
i=1

Ld(Gd(Rλ(Gf (xi;θf ));θd), yi) (2.11)

Running updates (2.7)-(2.9)can then be implemented as doing SGD for (2.11) and leads

to the emergence of features that are domain-invariant and discriminative at the same

time. After the learning, the label predictor y(x) = Gy(Gf (x;θf );θy) can be used to

predict labels for samples from the target domain (as well as from the source domain).

19



CHAPTER 3

Proposed Method: NORD-F

In this work, we address the challenge of detecting near-OOD samples through disen-

tanglement representation learning where we extract class variant and class invariant

features in fine-grained datasets with a goal to improve near OoD detection. Towards

this, we introduce a novel approach which we refer to as NORD-F, for near-OOD detec-

tion in fine-grained environment. The method is based on vector-wise disentanglement

and domain-adaptation based GRL application. We provide an overview of the pro-

posed NORD-F framework in Fig. 3.1.

Figure 3.1: The figure depicts the three branches, namely the variation, classifier, and
reconstruction branches. The loss functions used are given as Lsim, Lrec,
and Lcls. The variation branch focuses on the class-invariant features, and
the classifier branch focuses on the class-specific features, as depicted in the
TSNE. The reconstructed images are obtained at the output of the decoder
as shown.

3.0.1 Branch-Wise Description

Variation Branch: The role of the variation branch is to encode the class-irrelevant

information of image samples. This is achieved by incorporating a GRL in such a way

that the effective features Fvar emphasize the differences.



Consider a pair of images {xi,xj}. The variation branch is characterized by the GRL

alongside the similarity block which, together measure the variation feature similarity

between any two samples. The GRL acts as an identity transform in forward pass,

and it multiples the gradient from the subsequent level by a constant −λ during back-

propagation. During training, we construct positive and negative pairs from the sample

batch using the labels. The similarity module outputs a score si,j ∈ [0, 1] indicating the

probability that the pair {xi,xj} are from the same class as si,j = cψ(Fvar(xi), Fvar(xj)),

where cψ is the cosine distance between Fvar(xi) and Fvar(xj).

Classifier Branch: In this branch, we focus on extracting features that are discrim-

inative in nature, such that it helps classifying between classes. Given an image xi,

we extract their class-specific feature representations Fcls using a neural network en-

coder f(· · · ) and classifier module C(· · · ) Hence the predicted output for this sample

is obtained as

ŷi = C(f(Fcls(xi))). (3.1)

Reconstruction Branch: To preserve the image information and achieve feature disen-

tanglement, a decoder module with a MLP module and a decoder network g(·) is used,

which combines the classification and variation branches for image reconstruction. The

features isolated by the variation and the classification branch are together input into

the decoder, which leads to the image reconstruction given as

x̂i = g(Fcls, Fvar). (3.2)

3.0.2 Loss Functions

The objective function consists of the the similarity loss Lsim for the variation branch,

cross-entropy loss Lcls for the classification task, and a reconstruction loss Lrec.

To remove the class-specific information in the variation branch, binary cross entropy

loss is used to optimize the variation feature maps. The similarity loss is the binary

cross-entropy loss between the similarity score si,j ∈ [0, 1] and a label l ∈ {0, 1},

indicating whether the two images are from the same class:
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Lsim = −
∑
i,j∈P

(li,j log(si,j) + (1− li,j) log(1− si,j)) , (3.3)

where (i, j) ∈ P training pairs represents the pairs for which the similarity is calculated

using cosine distance and li,j = 0 or 1 indicates the ground truth whether the two

images are same or different. We minimize Lsim in training, and apply GRL to reverse

the gradient during back-propagation to achieve feature disentangling and minimize the

class-specific information captured by the variation branch.

To preserve class-related features, we minimize the cross-entropy loss Lcls for the clas-

sification branch. Simultaneously, the features Fcls(x) are fed into a classifier to predict

their classes. The classification loss is given by the cross-entropy loss:

Lcls = −
∑
i

(yi log(ŷi) + (1− yi) log(1− ŷi)), (3.4)

where yi are the ground truth label for xi.

To ensure that the disentangled discriminative and variation features can jointly restore

the original input image, perceptual loss is applied after decoding for reconstruction.

For an input xi, the reconstructed image is represented as x̂i. The decoder is represented

as decoder (g(·)). We use a perceptual loss based on feature maps ϕ from a pre-trained

VGG network to compare the reconstructed and original images:

Lperc =
∑
i

∥ϕ(x̂i)− ϕ(xi)∥22 . (3.5)

Gradients of loss components due to GRL The gradients of the total loss with respect

to the model parameters θ is computed as follows:

∂Ltotal

∂θ
= −λsim

∂Lsim

∂θ
, λcls

∂Lcls

∂θ
, λperc

∂Lperc

∂θ
, (3.6)

Only the Similarity branch loss component will be reversed due to GRL with the strength

of λ.
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CHAPTER 4

EXPERIMENTS AND RESULTS

In this chapter, we evaluate the effectiveness of the proposed NORD-F framework in

detecting near OoD samples in fine-grained datasets. The focus is to illustrate its ca-

pability in enhancing classification robustness and identifying near-ood samples. By

disentangling relevant features from irrelevant ones, our method aims to improve the

model’s ability to distinguish subtle visual differences crucial for fine-grained classifi-

cation tasks. In particular, we demonstrate the following (a) as compared to OOD-aware

baselines, NORD-F performs better in terms of the OOD metrics, (b) TSNE visualiza-

tion clearly illustrates that the proposed technique disentangles the feature representa-

tion as class-invariant and class-specific features. In the sequel, we describe the datasets,

architecture, baselines and the metrics used in this work, followed by the experimental

results.

4.1 Datasets

Fine-grained image classification datasets often contain images from categories that

are visually very similar, such as different species of birds, breeds of dogs, or models

of aircraft. Such datasets are used to evaluate the capability of models to learn and

generalize fine-grained visual distinctions. The following fine-grained datasets were

used for our experiments:

• CUB-200-2011 (Caltech-UCSD Birds-200-2011): A widely used dataset con-
taining images of 200 bird species. It includes 11,788 images, with each species
having roughly 30 training and 20 testing images. The dataset also provides an-
notations for bounding boxes, part locations, and attributes, which can be useful
for various fine-grained classification tasks Wah et al. (2011).

• Stanford Dogs: A dataset containing images of 120 breeds of dogs from around
the world. It has a total of 20,580 images, with each class having approximately
150 images. This dataset is useful for fine-grained classification due to the sig-
nificant visual similarity between different breeds Khosla et al. (2011).



• FGVC-Aircraft (Aircraft Variant Recognition): A dataset designed for fine-
grained aircraft classification. It includes 10,000 images of aircraft, divided into
100 different variants. The images in this dataset are annotated with detailed
information about aircraft models, making it a challenging fine-grained classifi-
cation task Maji et al. (2013).

Table 4.1: Details of Fine-Grained Datasets Used in Experiments

Dataset Total Images Number of Classes Annotations

CUB-200-2011 11,788 200 Bounding boxes, part locations, attributes
Stanford Dogs 20,580 120 Bounding boxes
FGVC-Aircraft 10,000 100 Variant annotations

4.1.1 Dataset Splits for Experiments

For the purpose of our experiments, we created specific splits of the datasets to evaluate

our model’s performance on in-distribution (ID) and near out-of-distribution (OOD)

data. The splits were defined as follows:

• In-Distribution (ID) Dataset:With total number of N classes, we selected the
top k classes with the most number of images as the ID dataset. These classes
were used for training, validation, and testing.

• Near Out-of-Distribution (OOD) Dataset: The remaining other N-k classes
were considered as the near OOD dataset. This setup ensures that the model
encounters categories that are similar but not identical to the training classes,
making the task more challenging.

• Far Out-of-Distribution (OOD) Dataset: A completely different dataset was
used as the far OOD dataset. For example, if the CUB-200-2011 bird dataset was
used for training, the Oxford Flowers dataset Nilsback and Zisserman (2008) was
used as the far OOD dataset. This setup evaluates the model’s ability to handle
entirely different categories .

• Training, Validation, and Testing Splits: The training set consisted of images
from the top k classes used for training. The validation and testing sets were
created from the unseen images of the same k classes to ensure that the model
was evaluated on new, unseen data within the same distribution (Train-Test-VAl :
80% - 10% - 10%).

In our experiments, we compared the performance of the model on the ID dataset

(training, validation, and testing splits) with its performance on the near and far OOD

datasets. This comparison allowed us to evaluate the model’s ability to generalize to

new, unseen categories that are visually similar (near OOD) and completely different

(far OOD) from the training classes.
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4.2 Architecture Description

Our model architecture comprises three main branches designed to handle fine-grained

classification tasks and disentanglement of image features. The model architecture con-

sists of multiple components including a backbone network, which takes two images as

input along with their corresponding targets. Additionally, a variable l is provided as

input, indicating whether the two images share the same targets (l = 0) or have different

targets (l = 1)). The architecture also consists of GRL, convolutional blocks, classi-

fier, similarity block (cψ), and a decoder (g(·)) in the reconstruction branch. Below is a

detailed description of each component:

• Backbone Network
– Uses a pre-trained DenseNet-121 model.

– The final fully connected layer is removed.

– Features extracted from this network are used as input for other parts of the
model.

• Gradient Reversal Layer
– Custom function implemention of GRL.

– Multiplies the gradient by a negative scalar during the backward pass, effec-
tively reversing the gradient with the weight λ.

• Convolutional Block
– Consists of a convolutional layer, batch normalization, and ReLU activation.

• Classifier
– Consists of three fully connected layers.

– Uses ReLU activations and dropout for regularization.

• Variation Branch
– Includes a convolutional block.

– Computes the cosine similarity between feature vectors.

– Uses gradient reversal on the input features before applying the convolu-
tional block.

• Classifier Branch
– Includes a convolutional block followed by a classifier.

• Reconstruction Branch
– Includes a decoder that reconstructs the input image from concatenated fea-

ture maps.

– The decoder is composed of several upsample blocks, each containing a
ConvTranspose2d layer, batch normalization, ReLU activation, and two resid-
ual blocks.
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4.2.1 Evaluation Metrics

To evaluate the performance of our model, we employ several metrics commonly used

in Out-of-Distribution (OoD) detection tasks. These metrics provide a comprehensive

assessment of the model’s ability to distinguish between in-distribution (ID) and out-

of-distribution (OOD) samples.

• Area Under the Receiver Operating Characteristic Curve (AUROC)
– Measures the model’s ability to discriminate between positive and negative

classes.4.2

• Area Under the Precision-Recall Curve (AUPR)4.2
– AUPR-in: Evaluates the precision and recall for ID samples.

– AUPR-out: Assesses the precision and recall for OoD samples.

• Entropy Curves 4.5
– Graphically assess the entropy values of the model’s predictions for ID and

OoD samples.

• Entropy Receiver Operating Characteristic Curves (Entropy ROCs) 4.7
– Evaluate the ROC curves based on entropy values to distinguish ID from

OoD samples. This is a novel metric introduced in this thesis for better
evaluation of OoD detection methodologies.

• Confidence Curves 4.6
– Analyze the confidence scores of the model for ID and OoD samples to

differentiate between them.

4.2.2 Baselines for Comparison

To evaluate the effectiveness of our proposed method, we compare it against several es-

tablished baselines in the field of OoD detection. These baselines provide a benchmark

for assessing the performance improvements achieved by our approach. Described in

2.1

• Energy-Based OoD Detection: Leverages the energy score derived from the
model’s output logits.

• Temperature Scaling: A post-processing technique that adjusts the confidence
scores by scaling the logits.

• Logit Norm: Normalizes the logits to enhance the discriminative power of the
model.
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4.3 Ablation Study With Experimental Results

Variation branch’s GRL values: For GRL branch, we experimented with multiple

values of λ along with different GRL annealing techniques. Typically, the annealing

strategy involves a schedule where the magnitude of the gradient reversal starts small

and increases over time. This can be done linearly or with a more complex schedule

depending on the specific requirements of the task. Through our experiments we dis-

covered that applying small amount of constant λ values after certain epochs is more

beneficial than constantly increasing it. As demonstrated in 4.1.

(a) With 0.1 constant λ value (b) With 0.5 linearly annealed

Figure 4.1: Classification branch’s feature plots at different λ values

Figure 4.8a shows more class-wise clusters with constant λ values as compared to 4.8b

which shows dispersed features.

Reconstruction Loss: For reconstruction purpose we tried with MSE loss and percep-

tual loss, results show that perceptual loss gives better reconstruction than MSE loss as

shown in 4.2

(a) Original Image (b) Perceptual loss (c) MSE loss

Figure 4.2: Reconstruction comparison with different loss functions

Training Strategy (Joint optimization V/S individual optimization of loss(es)
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During training, each branch of the model optimizes its respective loss function indi-

vidually. The variation branch minimizes the BCE loss based on cosine distance, the

classification branch minimizes CE loss, and the reconstruction branch minimizes per-

ceptual loss. We also experimented with a combined training approach where all losses

are back-propagated together using a single optimizer, aiming to optimize the overall

performance of the model across all tasks simultaneously. We used Adam optimizer

with learning rate of 0.001 for each branch. We tried with the learning rate of 0.0001 as

well but we found loss convergence issue with it during training time.

Input Image Feature Extractor

Branch 1
(Similarity Loss)

Branch 2
(Classification Loss)

Branch 3
(Perceptual Loss)

Total Loss
(Ltotal)

Figure 4.3: Joint Optimization through Total Loss

Input Image Feature Extractor

Branch 1
(Similarity Loss)

Branch 2
(Classification Loss)

Branch 3
(Perceptual Loss)

Lsim

Lcls

Lperc

Figure 4.4: Individual Loss Optimization

Vanilla Classifier V/s NORD-F Comparison: We compare confidence curve, entropy

curve and ROC curve(entropy based) obtained from vanilla classifier as well as NORD-

F (which is vanilla classifier + additonal novel branches).

Figure 4.5 depicts that there is a better separation between ID and near-OoD entropies.

With our framework, the entropy peaks get down showing lesser confidence for OoD

data.

Figure 4.7 shows that with our framework, ROC shows better results, meaning that our

framework better separates IDs and OoDs
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Vanilla Classifier

NORD-F

Dogs Aircrafts Birds

Figure 4.5: Entropy comparison for a vanilla classifier with NORD-F
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Vanilla Classifier

NORD-F

Dogs Aircrafts Birds

Figure 4.6: Confidence curve comparison for a vanilla classifier with NORD-F
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Vanilla Classifier

NORD-F

Dogs Aircrafts Birds

Figure 4.7: ROC comparison for a vanilla classifier with NORD-F
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4.3.1 Evaluations From Different Branches

Feature plots from variation branch Fvar and classifier branch Fcls 4.8

(a) Features from classifier branch (b) Features from variation branch

Figure 4.8: Feature plots from different branches (this is from Dog dataset)

Figure 4.8a shows class-wise clusters while 4.8b shows features which are more com-

mon across all the classes. It also shows that OoD class is more concentrated with

common features ( similarity branch) showing that it contains more irrelevant features.

Reconstructed images for each dataset used:4.9

(a) Dogs (b) Aircrafts (c) Birds

Figure 4.9: Reconstruction observed while training with three different datasets using
perceptual loss
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4.4 Comaprison with Baselines: Evaluation Metrics

Using the evaluation metrics provided earlier, we comprehensively evaluate the effec-

tiveness of our model in distinguishing between ID and OoD samples, ensuring robust

performance in real-world scenarios.

Below are the results obtained from the experiments (For Baseline description refer

section 2.1)

Table 4.2: Comparison with OoD Detection Baseline Methods

Din Method AUROC
(Near/Far)

AUPR-
IN(Near/Far)

AUPR-
OUT(Near/Far)

Dogs

TempScale 0.7858 / 0.7421 0.7858/ 0.7421 0.4248 / 0.3344
Energy 0.1942 / 0.2179 0.7127 / 0.7377 0.0965 / 0.0991
LogitNorm 0.5337 / 0.5487 0.9217 / 0.9238 0.3287 / 0.3691
NORD-F(ours) 0.7954 / 0.8398 0.9515 / 0.9660 0.4226 /0.4324

Aircraft

TempScale 0.8378 / 0.8708 0.9431 / 0.9610 0.5680 / 0.6082
Energy 0.1536 / 0.0903 0.5920 / 0.5700 0.1415 / 0.1364
LogitNorm 0.5403 / 0.5552 0.8868 / 0.8897 0.5279 / 0.5592
NORD-F(ours) 0.8531 / 0.7811 0.9463 / 0.9083 0.6394 / 0.5343

Birds

TempScale 0.7816 / 0.8756 0.9191 / 0.9561 0.5909 / 0.6791
Energy 0.1670 / 0.1070 0.5809 / 0.5621 0.1497 / 0.1440
LogitNorm 0.6047 / 0.5590 0.8947 / 0.8855 0.6355 / 0.5708
NORD-F(ours) 0.8072 / 0.6767 0.9243 / 0.8508 0.5122 / 0.4098

In the table 4.2, the numbers in bold represent the cases where our model works better

than other baseline methods.
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CHAPTER 5

CONCLUSION

In this thesis, we have explored various aspects of DRL and its application to OoD

detection. In this thesis, we tackled the challenging problem of near-OoD detection us-

ing fine-grained datasets. Our approach focused on disentangling features into relevant

and irrelevant parts, thereby improving the robustness of OoD detection. By evaluat-

ing various baseline methods with metrics such as AUROC, AUPR, entropy plots, and

confidence scores, we demonstrated the effectiveness of our disentanglement-based ap-

proach. Our methods turns out to be superior since we are not using toy datasets like

MNIST, SVHN, CIFAR 10, etc. for comparison of our methodology. Also, our method

make use of zero outlier exposure during training considering the real life settings since

we can never predict what sort of outliers can come up during inference time. The re-

sults show that disentangled representations significantly enhance the ability to detect

OoD samples, particularly in fine-grained settings, paving the way for more reliable and

interpretable models in critical applications.



CHAPTER 6

FUTURE WORK

While significant progress has been made in DRL and OoD detection, numerous av-

enues remain for future research. Despite the promise shown by current OoD detection

methods, their robustness against adversarial attacks remains a pressing concern. Fu-

ture efforts should focus on developing adversarially robust models that maintain high

performance even in the presence of malicious perturbations. Additionally, while this

work primarily concentrated on visual datasets, the principles of DRL and OoD de-

tection are applicable across various domains, including natural language processing,

audio signal processing, and medical imaging. Exploring these applications could re-

veal new challenges and opportunities. Furthermore, integrating ViT-based approaches

with other disentanglement methods offers a promising direction to enhance perfor-

mance and generalization capabilities. By addressing these areas, future research can

continue to advance the field and expand the applicability of these techniques.
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