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Abstract

Radio Frequency (RF) High Power Amplifiers (HPAs) are one of the basic building
blocks of modern wireless communication system. But most of these broadband wire-
less communication systems such as Universal Mobile Telecommunications System
(UMTS) and Long Term Evolution -Advanced (LTE-Advanced) employ transmission
formats such as wideband code division multiple access (WCDMA) or orthogonal
frequency division multiplexing (OFDM) which have high peak-to-average power
ratio (PAPR). The HPAs generally operate close to the saturation region to attain
maximum efficiency, however when driven with signals having high PAPR and wide
bandwidth the PA might cross over to the saturation region causing out-of-band
distortions (resulting into adjacent channel interference) and in-band distortions
(increase in bit error rate of the receiver). Digital Predistortion (DPD) with its high
implementation flexibility has emerged as a low cost high performance alternative
for the linearization of power amplifiers in the past few years. DPD includes a func-
tional block element prior to the PA which has an inverse characteristic to that of
the PA such that the overall PD-PA combination is a linear one.
With the growth of wireless systems, energy usage and costs continue to increase.
As a result there is an increased focus on energy efficient green radio communica-
tions. For low transmission powers, in order to achieve a noteworthy gain in power
efficiency of the overall transmitter, the computational complexity of the utilized
predistortion algorithms has to be kept as low as possible. Consequently, the use
of fixed point arithmetic based implementation is desirable if not indispensable. In
this work, we analyze the effects of fixed point implementation on DPD system.
Unlike the floating point implementation, in fixed point implementation the digi-
tal predistorter and the coefficient estimation algorithm are implemented in fixed
point arithmetic. We quantify the impact of this fixed point implementation on the
overall performance of the digital predistorter system so that we can achieve good
linearity performance with minimum number of bits for data, coefficients and arith-
metic operations. The performance of the proposed fixed point digital predistorter
system is evaluated in terms of adjacent channel power ratio (ACPR) and error vec-
tor magnitude (EVM) at the output of PA when a Long Term Evolution-Advanced
(LTE-Advanced) signal is applied at the input.
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1 Introduction

1.1 Motivation

In the present wireless industry scenario, the increasing quest for higher data rates,
spectral efficiency and the integration of voice and data services has made the RF
spectrum invaluable. All the efforts are directed towards squeezing in as much data
as possible in a given portion of the RF spectrum. This has led to the development of
digital modulation schemes that are more bandwidth efficient and support increased
transmission rates. Consequently, most of the broadband wireless communication
systems today, such as Universal Mobile Telecommunications System (UMTS) and
Long Term Evolution-Advanced (LTE-Advanced) employ transmission formats such
as wideband code division multiple access (WCDMA) or orthogonal frequency di-
vision multiplexing (OFDM). The resulting baseband signals of these modulation
schemes, have high peak-to-average power ratio (PAPR) and non-constant enve-
lope. Since, these signals carry information in the signal amplitude, they are quite
sensitive to nonlinear amplification as it directly affects the amplitude of the signal.
Conventional RF HPA is a basic building block of all the modern wireless com-
munication systems. The HPAs generally operate close to the saturation region to
attain maximum efficiency, however when driven with signals having high PAPR and
wide bandwidth the power amplifier (PA) might cross over to the saturation region
causing out-of-band and in-band distortions [1]. Out-of-band distortions result from
adjacent channel interferance (ACI) due to widening of the spectrum whereas in-
band-distortions mainly refer to the degradation in Error Vector magnitude (EVM).
Linearity in PAs can be achieved by operating the amplifier backed off from the
saturation region so that the signal level is confined to the linear region, but this
leads to reduced power efficiency. Thus, linearity in PAs must be achieved without
sacrificing efficiency to a great extent.
This typical tradeoff between PA linearity and efficiency is illustrated in Fig. 1.1
The red curve shows the nonlinear behaviour of the PA. Initially the output power
increases in proportion with the input power but after a certain point it tends to
show nonlinearity. The desired linear response of the PA is illustrated by the linear
gain curve. When the amplifier is operating in compression, the output versus input
power curve falls below the Linear gain curve, hence, the actual output power of the
PA is not sufficient for linear operation. This can be compensated by introducing
the effect of expansion which is essentially the case of predistortion, such that the
amplitude of the input signal is increased so that the desired output power (falling
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Chapter 1 Introduction

on the linear gain curve) is achieved. The expansion effect can be observed where the
input power resulting in "Pactual" is increased to "Pin needed to achieve Pdesired"
so that the PA output power is raised to "Pdesired" which coincides with the Linear
gain curve.

Figure 1.1: PA Nonlinearity

Various techniques have been proposed in literature for the linearization of PAs.
Out of these, the three major ones include feedback [2], feedforward [3] and pre-
distortion. In the feedback method, a correcting function is generated based on
the complex input and output signal envelopes which is then applied to the input
signal enevelope to compensate for nonlinearities. In case of feedforward technique
instead of feeding the difference signal to the input of PA, it is directly subtracted
from the PA output. While Feedback technique suffered from the challenging sta-
bility issues, feedforward had its own constant analog delay problems [4]. Digital
Predistortion (DPD) with its high implementation flexibility has emerged as a low
cost high performance alternative for the linearization of PAs in the past few years.
Digital Predistortion includes a functional block element prior to the PA which has
an inverse characteristic to that of the PA such that the overall PD-PA combination
is a linear one.
In the current industry scenario, digital hardware has gained significant attention for
the efficient implementation of signal processing algorithms. Such digital hardware
use numbers which can be represented in either fixed-point (FXP) or floating point
(FLP) data types. Although, FLP processors can simplify the real time implemen-
tation of signal processing algorithms to a great extent, there is a pressing need for
FXP hardware based microcontrollers or processors because they are better than
their FLP counterparts in terms of power consumption and hardware complexity.

6



1.2 Objectives

Consequently, FXP arithmetic based implementation is essential, as such a system
can achieve better speed of computation and thus eases off hardware implementa-
tion.

The above points motivated us to dig deeper into the digital predistortion of RF PAs
in order to alleviate the nonlinearities associated with them that lead to unwanted
distortion of the signals, and propose a FXP DPD system with lesser power and
area requirements that can be easily implemented on field programmable gate array
(FPGA) or other hardware units.

1.2 Objectives

The main objectives of this thesis can be summarized as follows:

• Investigate the various behavioral models of PAs and outline their respective
mathematical input-output relationship.

• Propose a FXP based DPD system and compare it with the conventional FLP
DPD system through simulation results.

• Quantify the impact of this FXP implementation on the overall performance
of the DPD system so that we can achieve good linearity performance with
minimum number of bits for data, coefficients and arithmetic operations.

• Validate the performance of the system using nonlinearity performance metrics
such as adjacent channel power ratio (ACPR) and Error Vector Magnitude
(EVM).

• Highlight the obtained simulation results for different wordlengths, and discuss
the potential impact of such results.

• State the key lessons and challenges learned while designing the proposed FXP
DPD system.

1.3 Outline

The remainder of the thesis is organized as follows. Chapter 2 provides the necessary
background knowledge about the behavioral modeling of PAs. The various existing
behavioral models mainly Volterra series based models and two-box and three-box
models are discussed. This involves a discussion on the input-output mathematical
relationship and the number of coefficients required for estimation of each of the
models. It also gives insights on the correlation between these models.

Chapter 3 showcases a comprehensive overview of the DPD technique. It touches on
the theory related to adaptive digital baseband PD. Furthermore, it discusses the

7



Chapter 1 Introduction

background related to the two learning architectures i.e. DLA and ILA. Analytical
and simulation results for FLP ILA for DPD are also presented.
In Chapter 4, a FXP DPD system based on ILA for nonlinear HPAs is proposed. The
drawbacks of FLP based DPD approaches are highlighted and compared with the
given system. Analytical and simulation results are shown to validate the proposed
scheme.
Finally, chapter 5 provides a summary of the results obtained, draws conclusions,
and outlines possible directions for future work.

8



2 Power Amplifier Behavioral Models

2.1 Overview

Behavioral Modeling [5-7] allows us to mathematically relate the input and output
of the device under test, which in our case is the PA. In such kind of system-
level modeling, the modeled device is considered as a “black-box,” i.e., we have no
knowledge of the internal structure and the modeling information exists completely
in the external responses of the device. We can thus, estimate the parameters of
the model from measured transient responses or simulated results from detailed
reference transistor-level models. Moreover, these models capture the nonlinearity
and memory effects of PAs very effectively [6]. Predistortion can be considered as an
important behavioral modeling problem, as in predistortion it is crucial to predict
the nonlinearity of the PA. PD has inverse function to that of the PA hence, the
synthesis of the predistortion function is equivalent to the behavioral modeling of
the PA’s reverse function. This section complements previous work overviewing and
comparing various behavioral models available in theory.

Over the years various single-box, two-box and three-box models for RF HPAs
have been proposed in literature. Polynomial models are mainly based on series of
Volterra functional [8], such as the compact memory polynomial (MP) model [9],
the two-dimensional memory selective polynomial (2-D MSP) [10], the orthogonal
memory polynomial [11] and the generalized memory polynomial (GMP) model
[12]. Two box models consist of a Linear time invariant (LTI) system connected in
tandem to a static nonlinearity and vice versa. These include the Wiener model
[13], the Hammerstein model [14,15], the augmented Wiener [16], the augmented
Hammerstein [15] and the twin nonlinear two-box models [17]. Three box models,
such as Wiener-Hammerstein (WH) [18] and Hammerstein-Wiener (HW) [19] on the
other hand, comprise of the static nonlinearity cascaded between two LTI systems
or an LTI system in between two memoryless nonlinearity blocks respectively. In
case of Volterra models, the complexity of the model increases immensely with the
length of the system memory and the nonlinearity order whereas, the two-box and
three-box models effectively capture the memory effects in PA modelling and thus
overcome the requirement of large number of coefficients.
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Chapter 2 Power Amplifier Behavioral Models

2.2 Polynomial Models

Volterra model has been used extensively by the researchers to model the nonlin-
earity of PAs including memory effects. A general Volterra model consists of large
number of parameters and the complexity of determining these parameters is quite
high. A simplified Volterra model is a MP model consisting of memory polynomials
with less number of coefficients. Modeling the behavior of a PA by means of a MP
for digital predistortion, has been covered in [6]. We discuss few of these models in
this section.

2.2.1 Memory polynomial

According to Volterra series the most general form of nonlinearity with memory for
a baseband input signal x(n) can be represented in discrete time as [8]:

y(n) =
K∑
k=0

yk(n) (2.1)

where

yk(n) =
L∑

l1=0
· · ·

L∑
lk=0

hk(l1, · · · lk)×
k∏

m=1
x(n− lm)

hk(l1, · · · lk) denotes the kth order Volterra kernel, L represents the memory depth
and K is the nonlinearity order. The measurement of such Volterra kernels involves
high computational complexity (CC) which complicates the parameter identifica-
tion process. But, if we leave only the diagonal terms in (2.1) and force all other
coefficients to zero, we get a simplified structure in the form of MP model (refer to
Appendix A) also known as Parallel Hammerstein (PH) as shown in Fig. 2.1.

Figure 2.1: Memory Polynomial Model
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2.2 Polynomial Models

The output of MP model can be given as:

yMP (n) =
K−1∑
k=0

L∑
l=0

aklx(n− l)|x(n− l)|k (2.2)

The main advantage of this model is that it is able to capture the memory effects
while keeping the number of coefficients on the order of K × (L+ 1) against the full
Volterra system which restricts this number to (L+1)K , where K is the nonlinearity
order.

2.2.2 Generalized Memory Polynomial

In [12] a direct way of adding cross terms i.e. the product terms with different time-
shifts to an MP model is introduced without complicating the extraction procedure,
known as the GMP model. In the GMP model the output is linearly dependent on
its coefficients and it has been shown to outperform the MP model when used as a
PD. In addition to the diagonal terms, the GMP model includes cross terms of the
form x(n− l)|x(n−m)|k where l = 0, · · · , L, m = −M, · · · , 0 · · ·M and m 6= l. The
output for the GMP model can be expressed as

yGMP (n) =
∑
kεKa

∑
lεLa

aklx(n−l)|x(n−l)|k+
∑
kεKb

∑
lεLb

∑
mεMb

bklmx(n−l)|x(n−l−m)|k

+
∑
kεKc

∑
lεLc

∑
mεMc

cklmx(n − l)|x(n − l + m)|k (2.3)

where Ka, Kb and Kc are the index arrays for nonlinearity, and La, Lb, Lc, Mb

and M c are the index arrays for memory. akl, bklm and cklm are the complex coeffi-
cients. The total number of coefficients is equal to

=
Ka

=
La +

=
Kb

=
Lb

=
Mb+

=
Kc

=
Lc

=
Mcwhere

=
Xdenotes the cardinality (number of elements) of X.

2.2.3 Two-Dimensional Memory Selective Polynomial

From the MP and the GMP models discussed above we can observe that the
terms that have a significant impact on modeling performance are of the form:
x(n−l) |x(n−m)|k , where l = 0, · · · , L, m = −M, · · · , 0, · · · ,M . In [10] a memory
selectivity has been introduced over a two-dimensional memory space, where nonlin-
earity index arrays are selected judiciously for each pair of delays (l,m), instead of
keeping same arrays of nonlinearity for all memory delays. Moreover, instead of re-
stricting the terms x(n− l) |x(n−m)|k for l = 0, · · · , L, m = −M, · · · , 0, · · · ,M as
in the case of GMP, other cross terms like x(n−l) |x(n−m)|k where l = −L, · · · ,−1,
m = −M, · · · , 0, · · · ,M were incorporated. Such memory selectivity could achieve
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Chapter 2 Power Amplifier Behavioral Models

a performance comparable to the traditional models but with number of terms re-
duced significantly. The 2-D MSP model can be expressed as given below:

y(n) =
L∑

l=−L

M∑
m = −M
A[i, j] = 1
i = l + L+ 1
j = m+M + 1

K−1∑
k = 0

B[i, j] = 1

aklmx(n− l) |x(n−m)|k (2.4)

where

A =

A3 mn A4
ln c lp
A2 mp A1

 (2.5)

Elements in A, A[i, j], take values equal to 1 to select the corresponding terms in the
two-dimensional memory space and 0 otherwise, with A1, A2, A3 and A4 as the L×M
matrices controlling the terms in the four quadrants (l 6= 0,m 6= 0). mn and mp are
1×M column vectors controlling terms with delays l = 0, m = −1 · · ·−M and l = 0,
m = 1 · · ·M , respectively. Similarly, ln and lp are L × 1 row vectors controlling
terms with delays l = −1 · · · − L, m = 0 and l = 1 · · ·L, m = 0 , respectively. The
value in c controls the terms of the form x(n) |x(n)|k, i.e., l = m = 0. Bk has the
same structure as A. However, for particular value of k it introduces the selectivity
on the elements of A. The structure of Bk can be written as

Bk =

B3 st B4
ut d uv
B2 sv B1

 (2.6)

2.3 Two-Box and Three-Box Models

A two-box model for a nonlinear PA or PD usually consists of an input filter cas-
caded with a memoryless nonlinearity or vice-versa. The filter box is the small signal
frequency response of the nonlinear device and the nonlinearity box characterizes
the amplitude to amplitude distortion (AM/AM) and amplitude to phase distortion
(AM/PM) conversion functions which operate on the instantaneous envelope of the
input signal. Important two box-models that have been mentioned the most in the-
ory include Wiener, Hammerstein, their augmented versions and the twin nonlinear
two-box models [15-17].
On the other hand, a three-box model consists of a memoryless nonlinearity in
between two filters characterising the frequency response of the nonlinear block or
vice-versa i.e. a filter in between two memoryless nonlinearity blocks. WH [18] and
HW [19] models are two of the most used three-box PA/PD models. We discuss few
of these models in this section.
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2.3 Two-Box and Three-Box Models

2.3.1 Hammerstein

Hammerstein model is a two box model that consists of a nonlinearity followed by
a linear filter as can be seen from Fig. 2.2. By imposing special conditions on the
extraction procedure of akl in (2.2) we can obtain the Hammerstein model if all
the terms (diagonal terms) are maintained as it is. Hammerstein model is related
to the MP model in the sense that, it is restricted to be the product of two other
coefficients, splitting the 2-D array {akl} in case of MP into two 1-D arrays {ak}
and {bl}, as given in (2.7) below:

yH(n) =
K−1∑
k=0

L∑
l=0

akblx(n− l)|x(n− l)|k (2.7)

Basically, the seperation of static nonlinearity from linear filtering in the PH model
results into this restriction on Hammerstein model parameters. As a result, there
is a considerable reduction in the number of coefficients to K + L+ 1 which might
affect the behavioral modeling capability.

Figure 2.2: Hammerstein Model

2.3.2 Wiener

Wiener model is another important two-box model that is composed of a linear time
invariant (LTI) system followed by a memoryless nonlinearity as shown in Fig. 2.3.
If we use a finite impulse response (FIR) filter and the nonlinearity is modeled by a
simple polynomial function, then the Wiener model output can be represented as:

yW (n) =
K−1∑
k=0

ak
L∑
l=0

blx(n− l)
∣∣∣∣∣
L∑
l=0

blx(n− l)
∣∣∣∣∣
k

(2.8)

One of the main advantages of Wiener model is that it can efficiently model the
nonlinear memory effects of the PA with lesser coefficients but, unlike the Hammer-
stein and PH models it is quite difficult to identify its parameters. This is because
the output depends nonlinearly on the coefficients, thus limiting its use.
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Chapter 2 Power Amplifier Behavioral Models

Figure 2.3: Wiener Model

2.3.3 Parallel Wiener

The outputs from several wiener models are combined to form the Parallel Wiener
model as illustrated in Fig. 2.4. It represents the behavior of a PA at different
envelope frequencies [20]. If we simply add the kernels of each subblock of the parallel
wiener model, we will get the general Volterra series representation. Moreover, if the
nonlinear functions following the linear filters are all coupled as a multiple-input,
single-output memoryless nonlinearity it will result into a general Wiener model.
The parallel wiener model can be seen as a generalization of the MP if each of the
linear filters is specified as a simple delay element and each of the nonlinearities is
specified as a polynomial with coefficients akl.

Figure 2.4: Parallel Wiener Model

2.3.4 Wiener-Hammerstein

WH model is a three-box model that consists of an LTI system connected in tandem
with a memoryless nonlinearity which in turn is followed by another LTI system as
illustrated in Fig. 2.5. It can be considered as a simple Wiener model with an
additional filter at the output of static nonlinearity block. The output for the WH
model can be written as:

yWH(n) =
M−1∑
m=0

cm
K∑
k=1

ak ×
[
L−1∑
l=0

blx(n− l −m)
]k

(2.9)
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2.4 Conclusion

where ak are the polynomial coefficients of nonlinearity and bl and cm are the filter
coefficients. As it can be seen from (2.9), WH model is nonlinear in the parameters
bl even though it is more general than either Wiener or Hammerstein model.

Figure 2.5: Wiener-Hammerstein Model

2.3.5 Hammerstein-Wiener

HW is another box oriented model with three boxes wherein a single LTI system
is surrounded by two memoryless nonlinearities at its input and output. It can be
considered as a Hammerstein model with an additional nonlinearity block at the
output of LTI system. The equation representing the HW model as given in Fig.
2.6 is as follows:

yHW (n) =
M−1∑
m=0

K−1∑
k=0

L−1∑
l=0

cmakblx(n−k)|x(n−k)|l
∣∣∣∣∣
K−1∑
k=0

ak
L−1∑
l=0

blx(n− k)|x(n− k)|l
∣∣∣∣∣
m

(2.10)

where blare the polynomial coefficients of the input nonlinearity and cm are the
output nonlinearity polynomial coefficients, whereas ak are the coefficients of the
LTI system cascaded in between the two nonlinear systems.

Figure 2.6: Hammerstein-Wiener Model

2.4 Conclusion

The presented chapter discusses the need for behavioral modeling of PAs for digital
predistortion. PAs need to be modeled so that we can effectively calculate and
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Chapter 2 Power Amplifier Behavioral Models

simulate the reverse function of the PA to be used in the PD. Another noteworthy
point is that, behavioral modeling has the ability to capture nonlinearity as well as
the memory effects which the transistor level modeling can not. Various such models
that take into account the memory of PA were discussed. Volterra series forms the
basis for most of the polynomial model PAs. But the major drawback associated
with the Volterra models is that the number of parameters increases drastically with
the nonlinearity order and memory depth. This led the researchers towards two-box
and three-box models that could model the memory effects of the PAs with lesser
number of parameters and thus, reduced CC. The mathematical system analysis of
several such models is presented. One of the major findings during the study came
out to be that, behavioral model quality is nowadays more based on the adopted
parameter extraction algorithm that determines the CC, than by the model topology
itself.
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3 Indirect Learning Architecture
(ILA) for DPD

3.1 Overview

The basic principle of predistortion is illustrated in Fig. 3.1. A PD block having
transfer characteristics inverse to that of the PA is inserted prior to the PA in the
transmit path. The PD has expanding characteristics which expands the input
signal and when this "pre-expanded" signal is fed to the PA having compressive
characteristics, it is rendered back to its original envelope without much distortion.
As a result, the cascade of PD-PA ideally provides the desired linear gain and thus
forms a linear system. The linearization function of the PD-PA system for an input
signal x(t) and an output signal y(t) can be represented in the form of an equation
as given below:

y(t) = ax(t) (3.1)

where a is a real valued constant representing the desired linear gain of the PD-PA
system. Mathematically, it can be stated that the PD described by the mapping

Figure 3.1: DPD-PA cascade combines two nonlinear systems into one linear result

P{.} has to precisely invert the behaviour N{.} of the PA upto a constant linear
gain a as shown:

y(t) = N{P{x(t)}} = ax(t) (3.2)
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Chapter 3 Indirect Learning Architecture (ILA) for DPD

3.1.1 Adaptive Digital Baseband Predistortion

An adaptive digital baseband PD is shown in Fig. 3.2. When deployed signals
are band-pass, which is the case of most of the wireless communication signals,
we can determine an equivalent baseband system where the PD with an equivalent
baseband model of the PA forms a linear system overall . Thus predistortion may be
performed in the base band and block diagram of the linearization can be represented
as in the following Fig. 3.2. There are two paths in the DPD system: feedback
or the identification path and implementation or the observation path. The RF
transmission signal at the output of the PA is downconverted to baseband i.e. the
inphase and quadrature components in the feedback path which are then digitized by
an analog-to-digital converter (ADC). The baseband samples are then processed in a
digital signal processor (DSP) with an identification algorithm which compares them
with the corresponding samples of the reference input signal. The PD parameter
identification process is performed digitally, seeking to minimize the error between
the input and the output, or another appropriate cost function. After a short time
of convergence, the algorithm identifier characterizing the PD can operate as the
pre-inverse of the PA. There are several approaches for the implementation of PD
if PA has low memory effects where PD can be implemented by a lookup table or
a non-parametric memory model. If memory effects are important, more complex
model structures are to be used as discussed in chapter 2.

Figure 3.2: Adaptive Digital Baseband Predistortion

3.2 Learning Architectures

There are two main aspects in adaptive predistortion that need to be considered for
finding the coefficients of the PD : Learning architecture and Adaptation Algorithm.
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3.2 Learning Architectures

On the basis of learning architectures, DPD can be classified into Indirect learning
architectures (ILA) [12], [21] and Direct learning architectures (DLA) [9], [22]. In
the DLA approach, a model for the PA is first identified. The PD is then obtained
based on the extracted PA model and a reference error between the input to the PD
and output of the PA. Depending upon the extracted PA model and the reference
error, various algorithms have been proposed to identify a PD in DLA. Prominent
among them are the Analytical Method proposed by Kim et al. [9] and nonlinear
filtered algorithms proposed in [22], [23]. In the ILA approach, a post-inverse of
the PA is first identified and then just used as a PD [21]. The post-inverse can be
identified by using either least mean square (LMS), recursive least square (RLS) or
least squares (LS) approach.

3.2.1 Direct Learning Architecture (DLA)

The basic block diagram of DLA approach is illustrated in Fig. 3.3. As mentioned
before, the identification of the PD based on DLA is done in two steps. First, the
parameters of a predefined nonlinear model for the PA are extracted, and then in
the second step, the identified model of the PA is used for the estimation of the PD.
PA inverse may not exist analytically and which must then be approximated. In [9],
an analytical method is used to compute the output of the PD using the extracted
MP model of the PA.

Figure 3.3: Direct Learning Architecture - DLA

Often the parameters of PA are usually extracted from one particular set of input
and output data. However, after the 1st PD identification the characteristics of the
input signal will change substantially. In fact the PD itself being a nonlinear system,
after the 1st system level identification the spectrum of the PD output signal i.e. the
input of PA will have wider bandwidth. Therefore, the behavior of the PA will likely
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Chapter 3 Indirect Learning Architecture (ILA) for DPD

change and a new model should be “re-extracted” and used for the identification of
the PD. This process should be repeated until the complete PD-PA system converges
to the best possible solution.

3.2.2 Indirect Learning Architecture (ILA)

The PD identification in ILA is done in a single step as shown in Fig. 3.4. A post-
inverse of the PA is identified and used as a PD. If the post-inverse is modeled as
an MP, then its output can be written as [12]

zp(n) =
∑
kεK

∑
lεL

cpmφkl[z(n)] (3.3)

z(n) = y(n)/g is the input to the post-inverse block as shown in Fig. 3.4, g is the
gain of the linearized PA, K is the index array for nonlinearity and L is the index
array for memory. ckl , kεK and lεL are the complex coefficients and φkl[z(n)] =
z(n− l)|z(n− l)|k. The total number of coefficients is J =

=
K

=
L with

=
X denoting the

cardinality (number of elements) of X.

Figure 3.4: Indirect Learning Architecture - ILA

After convergence, we should have zp(n) = x(n) and hence z(n) = u(n). For a total
number of samples equal to N , we can write

zp = Zc (3.4)

where zp = [zp(1),...,zp(N)]T , c is J x 1 vector containing the set of coefficients ckl,
Z is N x J matrix containing φkl[z] where z = [z(1), ..., z(N)T . The LS solution for
(3.4) will be

ĉ = (ZHZ)−1ZHzp (3.5)

The following briefly illustrates the steps in computation of ĉ
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3.2 Learning Architectures

• Step 1: Define a new compound matrix

[ZHZ|ZHzp] = QR = Q[U |w] (3.6)

• Step 2: Compute the QR decomposition of the compound matrix by Gram
Schmidt process [24] as illustrated in the flowchart in Fig. 3.5. rii are the
nonzero diagonal entries of R obtained by normalization of [ZHZ|ZHzp] and
q1, q2, ..., qi are the orthonormal vector columns of Q . ai is the ith column
vector of the matrix that should be inverted, i.e., Z. and n is the number of
system level iterations [25].
• Step 3: Substitute the result of Step 2 into Step 1 to obtain

w = Uĉ (3.7)

which could be solved using back substitution [26].

Figure 3.5: Flowchart for QR decomposition based on Modified Gram Schmidt
algorithm

Table 3.1 summarizes roughly the CC needed in the computation of ĉ . The CC is
measured by computing the number of multiplication needed for each step. Hence,
total CC needed for computation of ĉ would be N(J +J2) +J3 +J2 where J = P ×
(M+1). However, since ĉ and Z are complex, the total number of real multiplication
operations needed will be [24]:

CC = 4(N(J + J2) + J3 + J2) (3.8)
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Table 3.1: COMPUTATIONAL COMPLEXITY

Step number CC
Step 1 N(J + J2)
Step 2 J3

Step 3 J2

In comparison to ILA, the CC needed for computation of ĉ for DLA is

CC = N(J + J2) + J3 + J2 +N(5J2 + 3J +D + JL) (3.9)

where D = K × (L+ 1) and L is the memory depth [26].

3.3 Simulation results

In our study, we are going to focus only on ILA as it is computationally less complex
than DLA. Thus, in this section, we present and discuss the simulation results for
DPD based on ILA. For this purpose, we use Wiener model as the reference PAmodel
as given in [13]. The PA is driven by an LTE-Advanced signal with bandwidth 10
MHz, sampling frequency 122.88 MHz and PAPR of approximately 11dB. We have
simulated with nonlinearity array K = [0 2 4] and memory array L = [0 2 4]. An MP
model is used for the PD. Please note that, the PD-PA system requires more than
one system level iteration to converge to the best possible solution. Depending upon
the model of PA, the number of system level iterations needed for the convergence
of ILA might vary as will be seen in the simulation results for ACPR and EVM [25].

3.3.1 AM/AM and AM/PM Characteristics

Fig. 3.6 shows the simulated AM/AM curve.

Figure 3.6: AM/AM Characteristic
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3.3 Simulation results

It can be seen that the PA tends to show nonlinear behaviour after around 0.155
dB input amplitude.
Fig. 3.7 shows the AM/PM curve wherein the changes in output phase as a result
of the changes in input amplitude are illustrated. The cloud like response for the
non-linear PA for lower input levels is mostly due to the presence of memory effects.

Figure 3.7: AM/PM Characteristic

3.3.2 Spectral Density

The power spectral density performance of the PA input and output signals before
and after predistortion is shown in Fig. 3.8. The PD seems to fairly compensate
for the spectral regrowth caused by the PA non-linearity . This corresponds to
approximately 30 dB improvement in ACI. This improvement can be effectively
used to enhance the PA efficiency for a given Federal Communications Commission
(FCC) spectral mask.

Figure 3.8: Power Spectral Density Plot
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3.3.3 ACPR and EVM

Fig. 3.9 shows the ACPR performance of ILA for DPD for different system level
iterations [25] for a Wiener PA model. ACPR measures the ratio of power in ad-
jacent channel with respect to the amount of power in the main channel and thus,
indicates the out-of-band distortions. For ACPR measurements we have considered
10 MHz bandwidth on both sides of the main channel. As can be observed, the iden-
tification algorithm converges after 2-3 system level iterations to achieve an ACPR
of approximately -93 dBc.

Figure 3.9: ACPR Performance

Fig. 3.10 shows the EVM performance of our DPD algorithm for different system
level iterations for Wiener PA. EVM is a metric used for measuring the in-band
distortion. We are able to achieve an EVM of approximately 0.05%.

Figure 3.10: EVM Performance
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4 Fixed Point DPD System based on
ILA

4.1 Overview

Signal processing algorithms can be implemented in any of the two arithmetic for-
mats available i.e. either FLP or FXP. These formats are used to store and ma-
nipulate numeric representations of data. FXP DSPs are designed to represent and
manipulate integers – positive and negative whole numbers. On the other hand, FLP
DSPs are designed to represent and manipulate rational numbers where a number
is represented with a mantissa and an exponent. It is called ’Fixed-Point’ because
the numbers are represented with a fixed number of digits after, and sometimes be-
fore, the decimal point. In case of FLP representation, the decimal point can ‘float’
relative to the significant digits of the number.

FLP arithmetic offers a large dynamic range as it is determined by the size of the
exponent, whereas in case of FXP the dynamic range is the range of numbers that
can be represented in the available word length. If we consider the precision with
which numbers can be represented, it is determined by the word length in the FXP
format, and by the number of bits in the mantissa in the FLP format. For instance,
in a 32 bit FLP DSP the mantissa is usually 24 bits, so the precision of such a
DSP is the same as that of a 24 bit FXP processor. However, FLP has one further
advantage over FXP that is, each number is scaled by the hardware automatically
to use the full word length of the mantissa. As a result, full precision is maintained
even for small numbers. Despite of all these advantages that the FLP offers, FXP
data type is used widely in DSP applications, where performance is more important
than precision because of the reasons discussed henceforth.

The FXP chip size is smaller with less power consumption in comparison to FLP
as the logic circuits of FXP hardware are much less complicated than those of FLP
hardware [28]. Calculations in FXP require less memory and less processor time to
perform. Hence, when considering performance metrics such as cost, ease of use and
area requirements FXP processors are a favourable choice for high-volume general
purpose applications. In [28] the authors have shown an extensive comparison of
the FXP and FLP units for a wordlength of 32 and 64. We can see that as we move
from 64 bit FLP to 32 bit FXP addition units, we are able to achieve savings of
approximately upto 90 percent in both area and power. It is also shown that 64 bit
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FLP multiplier takes up almost four times more embedded multipliers than 32 bit
FXP and consumes approximately three times more power.

Although much research has been done to investigate the performance of FLP digital
predistortion systems[10,25,27,30], to the best of our knowledge not enough litera-
ture is publicly available to demonstrate the performance of FXP DPD systems. In
[31], different numerical methods for the parameters extraction from the Volterra
series PA are used to analyze the performance of a DPD, and the corresponding
FXP numerical format implementation for only those numerical methods has been
studied. Although, significant results have been achieved but the authors have re-
stricted themselves only to the Volterra pruned series PA model for the analysis of
their study [31], [32]. Also, the comparison results have been demonstrated only in
terms of AM/AM and spectral density. In none of the work on FXP DPD that is
available, ACPR and EVM performance metrics which are critical for the study of
spectral regrowth and bit error rate have been considered.

In this section, we analyze the effects of FXP implementation of DPD system based
on ILA. Both the digital PD and the parameter identification block have been im-
plemented in FXP. The performance of the given algorithm is evaluated in terms of
ACPR and EVM improvements using an LTE-Advanced signal. Simulation results
show that the FXP implementation can achieve comparable performance to that of
FLP reference model in terms of both ACPR and EVM.

4.2 FXP DPD System

This section deals with the detailed description of the proposed FXP implementation
with respect to the overall DPD system design. A block diagram of DPD system for
a PA along with technology mapping for the same is shown in Fig. 4.1. There are two
computation paths for the implementation of digital PD, namely the predistorter
path and the identification path. The PD lies in the digital domain before the digital
to analog converter (DAC). It targets Field Programmable Gate Array (FPGA) or
Application Specific Standard product (ASSP) for digital processing of the signal
as the dynamic range or the resolution sizing of this block may affect the power
consumption of the related hardware function. A sample by sample processing is
required for the PD path to feed the DAC. Roughly speaking the sample rate of this
path is constrained by the highest non linearity order taken into account. The only
hardware that is able to run at such system rate is FXP processing hardware.

The output from the PD is converted to analog domain, passed through small signal
RF upconversion blocks and then finally fed into the PA. PA can be a Gallium Nitride
(GaN) or Laterally diffused Metal oxide semiconductor (LDMOS) PA. Similarly,
the passband signal is converted back to baseband via down conversion blocks. The
parameter identification algorithm is run only from time to time when new parameter
identification is triggered by some system measurement [26,33]. The identification
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4.2 FXP DPD System

path, in contrast to the PD path, handles block computation so the only constraint
is that it is able to handle the computation at a rate equal to (Sample Rate)/N ,
where, N is the block size of the data taken into account for the identification
algorithm. The hardware target for such processing is typically a microcontroller
like Advanced RISC (Reduced Instruction Set Computing) Machines (ARM) core
that is able to provide fast FXP computation and could be embedded for instance
in an FPGA [34]. In such hardware the resolution of the data that is processed is
based on a quantum which is the native data resolution of the processor, classically
32 bits. Based on this quantum, data format can range from simple resolution
FXP to double precision FLP. The latter choice has a strong impact on the power
consumption and the time required to process the algorithm and thus the PD and
the identification block have been implemented in FXP.

Figure 4.1: DPD system for PA linearization

4.2.1 Coefficient Extraction Procedure

The following steps describe the procedure to extract coefficients of a FXP DPD
system using ILA algorithm:

1. Define the FXP Logic that determines the FXP data types to be used, their
global and local settings for performing FXP arithmetic, data logging, data-
type override etc.

2. Define the input and output data word length. Data word length has been de-
fined assuming that it will be an input to 16, 18 or 20 bit DAC. Our simulation
results showed that the overflow and underflow were minimized when the frac-
tional length is kept same as data word length, hence in this implementation
fractional length (FL) is kept same as word length (WL).
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3. Specify the size of the FXP version of the MP model of the PD. Coefficient
word length is taken as 32 assuming 32 bit processor and the coefficient frac-
tional length is taken as 27. Table 4.1 lists the parameters used in the FXP
implementation.

4. Determine the coefficients for the PD as already discussed in section II by
computing the QR decomposition of the compound matrix given in (3.6) by
modified Gram Schmidt process. The word length used for both Q and R is 32
and the fraction length used is 30 and 16 respectively. Such word lengths and
fractional lengths have been chosen so as to optimize the performance with
minimum overflows and underflows in FXP DPD algorithm.The estimated
coefficients are recursively updated according to the damped Newton method
[12].

Table 4.1: PARAMETERS FOR FXP IMPLEMENTATION

Parameters Bit-width
Data WL 16, 18, 20
Data FL 16, 18, 20

Coefficient WL 32
Coefficient FL 27

Q WL 32
Q FL 30
R WL 32
R FL 16

4.3 Simulation results

In this section, we present and discuss the simulation results for the proposed FXP
implementation. For this purpose, we use two different reference PA models, Wiener
model as given in [13] and WH model as given in [18]. The PA is driven by an LTE-
Advanced signal with bandwidth 10 MHz, sampling frequency 122.88 MHz and
PAPR of approximately 11 dB. The number of input samples for each system level
iteration is 20,000 [25]. An MP model is used for the extraction of PD parameters
for both FLP as well as FXP implementation.

4.3.1 Spectral Density

Fig. 4.2 and Fig. 4.3 show the spectral regrowth suppression performance for Wiener
and WH PA models respectively with the proposed FXP identification algorithm
for data word lengths of 16, 18 and 20 bit. As observed all the data bitwidths are
able to achieve sufficient amount of spectral regrowth reduction. As expected the
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20 bit word length PD is able to achieve the best spectral regrowth suppression
performance among all the different PD, hence proving to be more robust among
all the word lengths considered because the input dynamic range is least limited in
this case. Another point worth noting is that, as the data word length decreases
from 20 to 16 bits the irreducible error floor increases which degrades the spectral
regrowth suppression hence resulting in more ACPR.

Figure 4.2: The spectral regrowth suppression performance with 16,18 and 20 bit
data word lengths for Wiener Model

Figure 4.3: The spectral regrowth suppression performance with 16,18 and 20 bit
data word lengths for WH PA

4.3.2 ACPR

Fig. 4.4 and Fig. 4.5 show the ACPR performance of FXP PD for different sys-
tem level iterations for Wiener and WH PA respectively. These figures denote the
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performance with the given algorithm for different data word lengths. As observed
the identification algorithm for all the data word lengths converges after 2-3 sys-
tem level iterations. However, it is quite evident that 20 bit word length system
performs almost similar to its FLP counterpart. The 20 bit word length FXP MP
PD converges after 2nd system level iteration to achieve an ACPR of approximately
-90dBc for Wiener PA and -67dBc for WH PA.

Figure 4.4: ACPR Performance for Wiener PA: System level Iterations

Figure 4.5: ACPR Performance for WH PA: System level Iterations

The difference in performance of both these models might be due to the difference in
the characteristics and inherent nonlinearity behaviours of these PA models, since
we are using only the behavioral models. The choice of input and output data word
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lengths can be justified depending upon our requirement and the amount of tradeoff
we are willing to tolerate. For example, the proposed system can be highly beneficial
for a user who has a stringent ACPR requirement of approximately -80 dBc which
can be achieved efficiently with our 18 bit data word length FXP DPD system. On
the other hand if the primary user requirement is lesser area and power, we can
achieve it with the 16 bit data word length FXP DPD, though compromising a bit
on ACPR performance.

4.3.3 EVM

Fig. 4.6 and Fig. 4.7 show the EVM performance of our FXP DPD algorithm for
different system level iterations for Wiener and WH PA respectively. The 20 bit
word length FXP MP PD achieves an EVM of approximately 0.05% and 0.19%
for Wiener and WH PA respectively. It is quite obvious from the figure that the
EVM performance for almost all the cases is precisely the same for a given number
of system level iterations. This might be due to the lack of significant in-band
distortion in the PA model. Thus, if the user requirement is for comparable EVM
performance then either a 16 bit, 18 bit or 20 bit data word length can be used but
if the requirement is for robust ACPR performance then 20 bit data word length
needs to be used.

Figure 4.6: EVM Performance for Wiener PA: System level Iterations

4.3.4 Comparitive Analysis

Table 4.2 and 4.3 show the results for Wiener and WH PA models respectively. We
have compared our design with FLP simulations. The performance of FXP MP

31



Chapter 4 Fixed Point DPD System based on ILA

Figure 4.7: EVM Performance for WH PA: System level Iterations

PD has been demonstrated by considering data word lengths of 16, 18 and 20 bit.
ACPR measures the ratio of power in adjacent channel with respect to the amount
of power in the main channel. For ACPR measurements we have considered 10 MHz
bandwidth on both sides of the main channel. EVM has been calculated by dividing
the difference between the received and transmitted symbols by the average value
of the input signal as given in [34]. K and L are vectors containing k and l values
as given in (3.3). As seen from Table III and IV, all the three word lengths in FXP
and the FLP DPD are able to achieve sufficient improvement in ACPR and EVM
at the output of the PA. However, the DPD system with 20 bit data word length
outperforms all the other PDs as it is able to achieve the best ACPR and EVM
performance, hence proving to be more robust among all others.This indicates that
as the dynamic range (no. of bits) of the data word length increases the performance
of the system in terms of reducing the spectral regrowth and bit error rate improves.
Thus, we can infer that as the data word length decreases from 20 to 16 bits the
irreducible error floor increases.Also, it is worth noting that the overall performance
of FXP DPD is comparable to that of FLP DPD with respect to both ACPR and
EVM.
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Table 4.2: WIENER MODEL

Parameters Without DPD FLP DPD FXP DPD

wl 16: -71.95
ACPR(dBc) -49.68 -95.51 wl 18: -82.44

wl 20: -91.33

wl 16: 0.106
EVM(%) 18.05 0.05 wl 18: 0.058

wl 20: 0.0511

Index array for NA K = [0 2 4] K = [0 2 4]
nonlinearity L = [0 2 4] L = [0 2 4]
and memory

Table 4.3: WIENER-HAMMERSTEIN MODEL

Parameters Without DPD FLP DPD FXP DPD

wl 16: -68.007
ACPR(dBc) -54.78 -69.72 wl 18: -69.122

wl 20: -69.196

wl 16: 0.19967
EVM(%) 19.58 0.169 wl 18: 0.19043

wl 20: 0.1901

Index array for NA K = [0 1 2] K = [0 1 2]
nonlinearity L = [0 1 2 4] L = [0 1 2 4]
and memory
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5 Conclusions and Future Work

DPD is one of the most popular methods to linearize the PA. Although it is well
established in theory and simulation, its performance with respect to the quanti-
zation effects and the relative impact on wordlength is still less known. Based on
the simulation results of our proposed FXP DPD system for two of the behavioral
PA models, it can be inferred that the given analysis can be used to optimize the
performance of the linearizer with respect to the wordlength based on the maximum
allowable ACI or other parameters like amplifier gain characteristic.

The research work done in the thesis can be categorized into three parts. In the first
part fundamentals of behavioral modeling of PAs were discussed. The understanding
of the behavioral modeling of PAs is critical for our FXP system implementation of
DPD as the knowledge of the nonlinearity of the PA is essential in the calculation
of the inverse function of the PA which is actually the predistortion function. The
various behavioral models were investigated. This included a brief overview of the
existing PA models based on Volterra series and other variants,two-box and three-
box models and a discussion on their correlation.

In the second part, DPD theory and background was explored. Adaptive digital
baseband PD functionality was discussed. The two learning architectures DLA and
ILA for learning the coefficients of PD were investigated. It was shown that how
the ILA for a FLP DPD performs in terms of AM/AM and AM/PM characteristics.
The power spectral density curve highlighted the spectral regrowth suppression per-
formance. ACPR and EVM at the ouput of the PA were also measured to analyse
the performance of FLP DPD system

In the third part, FXP system for DPD was presented. The algorithm was shown
to identify the PD by ILA with both the PD and the parameter identification block
implemented in FXP rather than FLP. The performance of the proposed algorithm
was evaluated by measuring the ACPR and EVM at the output of the PA for
different data word lengths for an LTE-Advanced input signal. Simulation results
demonstrated that FXP DPD performed closely to the FLP DPD when a 20 bit data
word length was assumed. From the power spectral density simulation we could also
conclude that as the word length increases the dynamic range increases, hence the
irreducible error floor decreases.
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5.1 Future Work

Finally we discuss some issues which need further investigations. These can be
interesting directions for future work.
• For the simulation results, only two PA behavioral models are considered. In

practice, various other models can be used to validate the performance of the
given system.
• It will be interesting to observe the performance enhancement (if any) when

signals other than LTE-Advanced are used.
• The performance of the given FXP based DPD system has been validated

by the simulation results. For future research, the next step would be the
implementation of this DPD system on hardware such as FPGA to obtain the
on chip performance assessment.
• Another important area where the current research can be extended is the

complexity study of the various behavioral models.
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Appendix A

Volterra series represents the most general form ofKth order nonlinearity with L-tap
memory for a baseband input signal x(n) as [8]:

y(n) =
K∑
k=0

yk(n) (5.1)

where

yk(n) =
L∑

l1=0
· · ·

L∑
lk=0

hk(l1, · · · lk)×
k∏

m=1
x(n− lm) (5.2)

We can expand equation (5.1) for K = 2 as follows:

y(n) =
2∑

k=0
yk(n) = y0(n) + y1(n) + y2(n) (5.3)

From (5.2) we have,

y0(n) = h0(n)

y1(n) =
L∑

l1=0
h1(l1)x(n− l1)

y2(n) =
L∑

l1=0

L∑
l2=0

h2(l1, l2)x(n− l1)x(n− l2)

where h0 is a constant and h1, h2 are the set of first and second order Volterra kernel
coefficients. For K = 2 let us take L = 2 sample memory. Equation (5.3) can then
be expressed as given below:

y(n) = h0 +
2∑

l1=0
h1(l1)x(n− l1) +

2∑
l1=0

2∑
l2=0

h2(l1, l2)x(n− l1)x(n− l2) (5.4)

Now, we can expand equation (5.4) to get the number of coefficients required for
Volterra series for K = 2 and L = 2 as:

y(n) = h0 + h1(0)x(n) + h1(1)x(n− 1) + h1(2)x(n− 2) + h2(0, 0)[x(n)]2

+ h2(0, 1)x(n)x(n− 1) + h2(1, 0)x(n− 1)x(n) + h2(1, 1)[x(n− 1)]2

+ h2(0, 2)x(n)x(n− 2) + h2(2, 0)x(n− 2)x(n) + h2(2, 2)[x(n− 2)]2

+ h2(1, 2)x(n− 1)x(n− 2) + h2(2, 1)x(n− 2)x(n− 1) (5.5)
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5.1 Future Work

For baseband applications, we are only interested in terms generating signals around
the center frequency, hence only odd order terms are considered. Looking at expres-
sion (5.5) we can clearly count the number of such unknowns to be 9. This validates
the expression for number of coefficients for a full Volterra system (considering only
odd order terms) that is (L+ 1)K .
If h2(l1, l2) = 0 except along the diagonal l1 = l2, then (5.5) becomes:

y(n) = h0 + h1(0)x(n) + h1(1)x(n− 1) + h1(2)x(n− 2) + h2(0, 0)[x(n)]2

+ h2(1, 1)[x(n − 1)]2 + h2(2, 2)[x(n − 2)]2 (5.6)

We can clearly observe that now the number of coefficients required reduces to 3 i.e.
(L+1) for odd order terms. Equation (5.6) can be generalised to give the expression
for a MP as:

y(n) =
L∑
l=0

[
h1(l)x(n− l) + h2(l, l){x(n− l)}2

]
(5.7)
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