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Abstract

Software libraries and frameworks, consisting of a collection of Class and Interface definitions,
provide a mechanism for code reuse by providing methods, APIs, components (generic func-
tionality) and a support structure for developers to build applications, products and solutions.
KitKat, Jelly Bean, Ice Cream Sandwich, Honeycomb and Gingerbread are different versions
(open-source) of Android, one of the most popular mobile platforms in the world. In this thesis,
we present the results of our large-scale (consisting of 1, 120 open-source applications and 17.4
million lines of code) API usage analysis of Android applications. Our work is motivated by
the need to mine actual Android API usage, frequent API call usage patterns and trends to
understand and generate empirical data on how developers are using the mobile platform in
their applications.

Extracting popular and frequently-invoked methods, API packages and API call-usage patterns
is useful to both the API Producers and API Consumers. For example, API Producers can view
the quantitative data on API usage as a feedback from users on the relevance, usability and
applicability of the respective APIs. We conduct a series of experiments on analysing the Android
platform API usage (usage of different packages, usage of methods, usage across categories) and
present the results of our analysis using graphs such as Bubble Chart, Radar Chart, Heat-Map
for effective visualization of the results and for extraction of actionable information.
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Chapter 1

Research Motivation and Aim

1.1 Introduction

In today’s world, Android is the biggest name in the smartphone market and is expected to

remain in this position for several years to come [1]. One of the many reasons for Android’s

success has been its Play Store. Since the inception of Android, developers have been heavily

contributing to the ecosystem by coming up with new and complex applications that cater to

the various needs of the masses. Consequentially, as of August 10, 2014, the number of Android

applications on Google Play1 stands at 1, 327, 838.

Developers are greatly motivated, to build more and more applications for Android, by the huge

number of downloads that Android applications receive. For instance, between September 2012

- July 2013, the cumulative number of application downloads from the Google Play Store grew

from 25 billion to 50 billion 2. Moreover, going by the current trends, by 2015 Android would

be the most used Operating System ahead of Windows 8 [1]. Given all this information, it is

no longer feasible to continue to look at Android applications as just ‘apps’. There is a need to

look at them as untapped software repositories, which are rich sources of information that can

be used to draw actionable insights similar to those drawn from repositories of software made

for the traditional computers.

1.2 API Call Usage Patterns

An API Call Usage Pattern (ACUP) is a pattern of method calls, wherein all the methods are

invoked together in the same user-defined method. ACUPs are important since, they can help

in the identification of standard library/API usages and fault location [2] [3]. Generally, ACUPs

are quite intuitive and of common knowledge to developers, however, they are typically not

documented, which remains a big concern [4].

For instance, consider the following commonly occurring ACUP - “measure getMeasuredWidth

1http://www.appbrain.com/stats/stats-index
2http://www.statista.com/statistics/281106/number-of-android-app-downloads-from-google-play/
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getWidth getHeight getMeasuredHeight”. This ACUP is widely used to obtain the measure-

ments of a view (basic building component of user interface components that is responsible for

drawing and event handling). Based on the measurements, the application takes some decision

and adjusts itself. Our study, provides empirical evidence that adjusting the application to

support multiple screens, is an important concern for android application developers. Similarly,

“getLatitude getLongitude getSpeed getAltitude getBearing getProvider hasAltitude hasBearing

hasSpeed” is a frequent API call usage pattern because many smart phones have the function-

ality to accurately detect the location of the user. Documenting such ACUPs is important and

we address this problem as part of our work.

Moreover, at times multiple ACUPs differ only by a few method invocations. Merging such

ACUPs to get a list of closely related methods can help in identifying a broad functionality

and impacted software components. For example, the methods getMinimumHeight and getMin-

imumWidth can easily be combined with the ACUP - “measure getMeasuredWidth getWidth

getHeight getMeasuredHeight”, because they also deal with the measurements of a view. Merg-

ing similar ACUPs can enable us to identify a broad functionality with all possible variations in

usage. Since, such a study has not been previously done, we introduce the concept of Merged

ACUPs and incorporate it in our work.

1.3 Growing Android API

The Android API itself has grown enormously since the beginning of Android (as of version 20,

the API consists of 18, 881 classes). The intent of the Android API and other third party APIs

for Android, is to provide access to the features available on a device such as WiFi, Bluetooth,

GPS and graphics. With advancement in smartphone and tablet technology, the APIs are also

becoming more advanced. In order to maintain the level of growth in the Android ecosystem,

it is important for API Producers and API Consumers to be in sync with each other. The

information that we get after mining Android applications can play a crucial role, by acting as

feedback from the developers to API Producers and to other fellow developers.

Moreover, studying the adoption of changes in the API, by application developers is also im-

portant. API Producers constantly change the Android API either to improve the quality of

the API, or to correct known issues. However, they have no concrete way of knowing whether

the changes made by them are being used or not. API Producers also require feedback on the

usability, productivity and effectiveness of the changes. Analysing source code for adoption of

changes made to the API can help in addressing this issue.

1.4 General Importance for API Producers and API Consumers

Mining important ACUPs, identifying the functionality associated with them, identifying pop-

ular methods, classes, interfaces, and API packages is important for both API consumers and
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API producers for different reasons:-

• API Consumer (Developer) - From a developer’s point of view knowing how other devel-

opers use APIs in Android applications can tell them of the practices that they should

or can potentially follow in their own applications. It can help them choose between li-

braries and components that provide the same functionality, since they would know which

is more popular among their peers. Knowing such minute but important details can help

a developer to produce better applications, which would be good for the entire ecosystem.

• API Producers - API Producers can view the quantitative data on API usage as feedback

from users on the relevance, usability and applicability of the respective APIs. Knowing

how their library is being used can help them identify components of their APIs that are

not very popular. They can possibly identify the reason(s) behind the lack of popularity

and improve those components. Even for the components that are extensively used, they

can find out whether some change is required to improve the user experience.

1.5 Research Aim

The research aim of the work presented in this thesis is the following:-

1. To conduct an in-depth and focused empirical analysis for identifying popular ACUPs,

popular packages, classes, interfaces and methods in Android applications.

2. To identify the most commonly implemented functionalities/affected components in appli-

cations based on the most popular ACUPs and Merged ACUPs.

3. To investigate the effect of changes in Android APIs on applications.

4. To identify popular ACUPs across 12 different categories of applications like Games, Mul-

timedia, Navigation, System, Wallpaper etc.

5. To understand the difference between different categories of application based on the usage

of the top packages and classes across different categories.

6. To provide Advanced Visualizations for API Producers and API Consumers that com-

municate the results of our work in an effective manner and help in understanding how

developers use the Android API.

In this thesis, we present the results of our large-scale API usage analysis of Android applications.

We conduct a series of experiments on analysing Android platform API usage and present the

results of our analysis using advanced visualizations that can be used to extract actionable

information.

3



Chapter 2

Related Work and Novel Research

Contributions

2.1 Related Work

In this Section, we review work that is closely related to our study, and list the novel contributions

of our work in context to existing work. We divide the related work into the following three

lines of research:-

2.1.1 Mining API Call Usage Patterns

Xie et al. propose a method to mine frequent and succinct API usage patterns which includes

sequencing information among method calls. Their framework is based on existing code search

engines and a frequent sequence miner [5]. Zhong et al. extend their own work in [5] to create a

recommendation engine that recommends API call usage patterns and code snippets [6]. Kagdi

et al. present an approach to mine frequently-occurring ordered sets of method call usages,

taking into account their proximal control constructs (e.g., if-statements), in the source code [7].

Liu et al. propose a method to automatically extract software library usage rules [8]. Their

approach uses a model checker to check a set of software library usage rule candidates against

known good programs using that library, and identifies valid rules based on the model checking

results. These valid rules can help programmers learn about common software library usage [8].

Nguyen et al. create a system that guides developers in adapting to changes in APIs, by

learning API call usage adaptation patterns from other developers who have adopted the new

changes [9]. Zhang et al. create a system that provides API parameter recommendations based

on the learning they do from existing code samples [10].
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2.1.2 Mining API Usage Trends and Popularity

Holmes et al. propose a technique for quantitatively determining how existing APIs are used,

and demonstrate its application to Eclipse. Their technique is aimed at enabling application

developers to easily understand how others have used the APIs and API Producers to easily

understand how their APIs are being used [11].

Mileva et al. mine hundreds of open-source projects for their library dependencies and determine

global trends in library usage as well as show important emerging trends in library usage [12]. In

another study, they analyse a large set of open-source projects and their external dependencies

in order to observe the popularity of their APIs and to give recommendations of the kind:-

“Projects are moving away from this API element. Consider a change.” [13].

Lammel et al. describe an approach to large-scale API-usage analysis of open-source Java

projects [14]. Roover et al. perform a multi-dimensional exploratory study of API usage using

a large corpus of Java projects. One of their dimensions of study includes API metrics like the

number of times a class is extended among others [15].

2.1.3 Mining Related to Android API

Minelli et al. perform an in-depth investigation of a corpus of Android application and find

that mobile applications are significantly smaller than traditional softwares and rely heavily

on external APIs, with two-thirds of methods invocations being API calls [16]. They state

that understanding APIs is integral to understanding Android applications, since the reliance

of applications on APIs is too much.

Wang et al. try to identify classes that give the most problems to developers by comparing the

list of frequently mentioned API classes in posts on stackoverflow.com against the list of API

usage frequency [17]. Vásquez et al. study API evolution and try to associate it with fault-

proneness and stability of applications [18]. They find out that the more used API components

are the ones that undergo less change. Similarly, Mcdonnell et al. study API adoption in the

Android ecosystem. They study correlations between API evolution rate, API usage, defect

proneness and stability of applications [19].

2.2 Novel Research Contributions

The novel research contributions of this work are:-

1. While there has been work done on mining API call usage patterns for Java, we are the

first to mine ACUPs for Android applications (as a whole and across different categories

of applications). We introduce the concept of Merged ACUPs and show that they can be

linked to specific components of Android applications.

2. While there is data on the popularity of API packages, classes, methods for Java, this
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thesis gives most popular packages, classes and methods for Android applications. We also

see the occurrence of these structural units across 12 different categories.

3. Although, Mcdonnell et al. have done a study on API adoption in the Android ecosystem

[19], we focus on identifying the most popular API changes and the extent to which the

changes have been adopted by application developers.

4. Our work is also unique in the fact that we make use of Advanced Visualizations for

effective communication of our research results. None of the works done before us, use

advanced visualizations like Radar Chart, Heat-Map, Bubble Chart etc. to graphically

present results on API usage.
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Chapter 3

Experimental Dataset

We download the source code of 1, 120 Android applications from F-Droid1 which is a software

repository of Free and Open Source applications for the Android platform. We choose F-Droid,

as it is not only a popular platform containing free and open-source software, but also each

application on F-Droid is available for download on the Google Play Store.

Figure 3.1: F-Droid Interface:- F-Droid interface showing version number, date and link to download
source code

Figure 3.1 shows the interface of F-Droid. F-Droid lists the most recent versions (max 4) of

each application, along with the version number, the date on which the version was added to

F-Droid, and the links to the apk and source tarball. Generally, we see that developers only

1https://f-droid.org/
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make the most recent version of their applications available. Nevertheless, a few developers do

make the last 3 versions available.

Table 3.1 provides details on the size of the dataset. As of July 5, 2014, there were a total of

13 categories in F-Droid and we downloaded the data for 12 categories, as there was only one

application for one of the categories (Children). We downloaded the source code of the last

available version of each application on July 5, 2014. The download was done manually from

the individual pages of the applications, using the source tarball link. The version number and

publication dates were also recorded for further use. The oldest application in our dataset is a

game called Sokoban (Version 1.11) dated January 5, 2011. The newest application is WiGLE

Wifi Wardriving (Version 2.2). It belongs to the category Internet and was added on July 5,

2014.

Table 3.1: Number of Android Applications (#APP), Java Files (#JVF), Transactions (#TRN) and
Lines of Code (#LOC) across 12 Categories in F-Droid

Category #APP #JVF #TRN #LOC

1 Office (OFF) 226 13, 518 63, 558 2, 841, 209

2 System (SYS) 217 18, 367 65, 183 3, 135, 993

3 Multimedia (MUL) 128 6, 974 33, 865 1, 428, 876

4 Games (GMS) 127 4, 994 23, 717 1, 031, 776

5 Internet (INT) 126 25, 124 96, 594 4, 879, 252

6 Navigation (NVG) 79 5, 580 27, 543 1, 154, 570

7 Science & Education (SCN) 61 3, 710 17, 374 804, 686

8 Wallpaper (WLP) 44 824 3, 417 164, 887

9 Reading (RDG) 37 3, 947 17, 409 682, 701

10 Development (DEV) 33 2, 035 9, 699 364, 351

11 Phone & SMS (PHN) 28 250 10, 486 452, 583

12 Security (SCR) 14 2, 155 11, 289 486, 592

SUM 1,120 87,478 380,134 17,427,476

As shown in Table 3.1, our dataset consists of 87, 478 Java files having 17.42 million lines of

code. The dataset also has 380, 134 transactions, where a transaction is a group of methods

(both user-defined and API methods) that are invoked together in a user-defined method. The

table is sorted in the decreasing order of the number of applications in a category. The table

reveals that the category Office has the highest number of applications then followed by System,

Multimedia and so on.

It is interesting to see that though, the category Internet has 100 applications less than category

Office (which has maximum application), it is way ahead of the other categories in terms of lines

of code and the number of transactions. On an average, an application in the category Internet

has about 38,725 lines of code, with the next best being the category Security with 34,756 lines

of code. However, if we consider only the categories with 100 or more application, the next

best is the category System with roughly 14,451 lines of code. Also, we see that the category

Wallpaper has the smallest average number of transactions per application (about 78). This

8



shows that writing an application that allows users to play around with images, requires little

code in comparison to the other categories.

Figure 3.2: Distribution of dataset across the 12 categories:- Pareto chart containing both bar and
line graph showing the number of applications downloaded in each of the 12 categories and the cumulative
total (represented by the line)

Figure 3.2 gives a graphical distribution of our dataset using a unique combination of a bar

and line graph. The Pareto Chart shows the total number of Android applications and the

distribution of the applications across 12 different categories. The bars are arranged in the

descending order of the number of applications and the line represents the cumulative total.

The left vertical axis represents the cumulative number of applications and the right vertical

axis is the cumulative percentage of applications. The graph reveals that the cumulative function

is a concave function and the distribution is skewed, as 50% of the applications in the dataset

belong to 3% categories:- Office, System and Multimedia.
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Chapter 4

Experimental Results

We conduct a series of experiments to extract useful patterns and actionable information for

the API Producers and API Consumers. Each of the following 5 sections, describes multiple

experiments consisting of the mining goal, procedure or approach, and the findings. All exper-

iments are conducted on a 64 bit Windows Server 2012 Datacenter having 64 GB RAM and 2

Intel(R) Xeon(R) CPU E5-2640 0 @ 2.50 GHz processors. The code for all the experiments is

written in Java and 15.26 GB of memory is made available to the Java Virtual Machine for each

experiment.

4.1 Finding Frequent API Call Usage Patterns

As previously mentioned, an ACUP is a pattern of method calls, wherein all the methods are

invoked together in the same user-defined method. The aim of the first experiment is to unravel

frequent ACUPs that are present in Android applications. We begin with the assumption made

by Kagdi et al. in [4] that frequently-occurring ACUPs reflect candidates for standard usages

of an API. Hence, we need not separate user-defined methods and API methods at any point of

time. The API methods would outnumber the user-defined methods and make their way into

the list of common ACUPs. As we shall see later, the results from this experiment completely

justify this assumption.

4.1.1 Standard ACUPs

For every Java file in each of the 1, 120 Android applications, we traverse the Abstract Syntax

Tree (AST) of the source code and make a note of the method declarations. We remove the

objects associated with the methods and the method parameters, and focus only on the full

method names. For every declared method, we make a note of all the invoked methods (both

user-defined and library methods). Each such group of method invocations makes a transaction,

with each individual method being an item in the transaction. The transactions are then used to
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generate frequent itemsets. We use SPMF1, which is an open-source data mining library written

in Java, for mining closed and maximal frequent itemsets. We mine frequent itemsets having

support greater than 0.001, since the entire dataset has a very large number of transactions

(380,134).

A pattern (sequence of items) is redundant if it is a subsequence of another frequent sequence or

pattern. To ensure that our results have no redundancy, we use the AprioriClose algorithm for

mining the itemsets [20]. The algorithm does not include a proper subset, if it has exactly the

same support as its superset, where support refers to the the number of transactions in which

the itemset occurs. Thus, in our case the support is the number of methods in which all the

methods of a pattern have been invoked.

Figure 4.1: Most Popular ACUPs:- Bubble Chart displaying the top 50 ACUPs found in the dataset.

We finally filter our frequent itemsets based on the size of the itemset. For an itemset to be

considered an ACUP, its minimum size must be 4. After applying the size filter, we are left with

1070 ACUPs. On our test bed, finding transactions takes just over 5 hours and 25 minutes.

It takes 24 more minutes to find the maximal frequent itemsets. Hence, the entire process of

finding ACUPs takes about 5 hours 50 minutes.

Figure 4.1 is a Bubble Chart that displays the 50 most popular ACUPs found in the dataset.

Each bubble represents an ACUP. The x-axis represents the number of applications in which the

ACUP is present, while the y-axis represents the total number of occurrences of each ACUP. The

size of the bubble denotes the value of the third dimension, that in our case is the Significance

Index which is calculated as follows:-

SI =
1

3
∗
∑
i

i

Max(i)
(4.1)

where SI is Significance Index and i ∈ {Num Occurrences,App Frequency,Num Categories}.
1http://www.philippe-fournier-viger.com/spmf/index.php
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Table 4.1: Top 3 ACUPs with No Method in Common

ACUP Significance Index Occurrences App Freq

1 [setPositiveButton setTitle setMessage set-
NegativeButton]

0.98 1, 298 426

2 [add hasNext next iterator] 0.75 1, 214 165

3 [setContentView findViewById setText se-
tOnClickListener]

0.74 662 320

In Equation 4.1, we divide the value of an attribute of the ACUP, by the maximum value of

the attribute attained in the result set. The values thus obtained, for all the attributes for a

particular ACUP, are multiplied with 0.33 and then summed to get the Significance Index. The

Significance Index incorporates the presence of an ACUP across different categories, the total

number of occurrences of an ACUP and the number of applications that use the ACUP.

We observe that a good number of popular ACUPs are present in the 200 to 300 applications

range and occur anywhere between 500 to 1, 000 times. However, the top 17 ACUPs are well

scattered and separate themselves from the rest of ACUPs on the basis of both application

frequency and total number of invocations. Moreover, we see that the top ACUPs entirely

consist of methods provided by APIs, thus, justifying the assumption that frequently-occurring

ACUPs reflect candidates for standard usages of an API.

However, we notice that there are several cases where there is only a difference of one or two

method invocations between two ACUPs. We also observe that the broad functionality between

the two ACUPs with such minor difference is always the same and hence, we decide to merge

such ACUPs. We cover the process of merging ACUPs in the next section.

Table 4.1 refers to the top 3 ACUPs having no function in common. The most popular ACUP

in Android is on AlertDialog. The functions setPositiveButton and setNegativeButton are used

to set listeners that are invoked depending on the button the user presses, while the setMes-

sage and setTitle methods are used to set the textual details on the AlertDialog. Moreover,

AlertDialog is a very important component since, the ACUP related to it is present in about

38% of all applications. Similarly, the ACUP given by “setContentView findViewById setText

setOnClickListener” also deals with a user interface (UI) component of applications.

4.1.2 Merged ACUPs

Merging the ACUPs is done by applying Jaccard Index. The Jaccard Index (also known as

the Jaccard Similarity Coefficient) is a well-known statistic or metric used for comparing the

similarity and diversity of sample sets2. The Jaccard Coefficient measures similarity between

finite sample sets and is computed as the size of the intersection of the two given sets divided by

the size of the union of the sample sets. Thus, the value of Jaccard Index always lies between 0

and 1.

2http://en.wikipedia.org/wiki/Jaccard index
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Merging ACUPs is an iterative process that takes about 2 seconds to complete on our test bed

for the entire dataset (1070 ACUPs). We iteratively keep merging similar ACUPs till the time

they satisfy the Jaccard Index criteria. We choose a Jaccard Index threshold of 0.75. The value

is chosen (after experimenting with several values) to ensure that there are absolutely no false

positives for ACUPs of any size. However, as a result of this decision choice, we observe that a

few similar ACUPs do not merge. Following is a concrete example of the application of Jaccard

Index and the impact of our threshold on the merging process. Consider the following two

ACUPs:-

1. ACUP 1 - [getPaddingBottom, max, getPaddingTop, getVisibility, getMeasuredHeight,

getPaddingLeft, getPaddingRight, getLayoutParams].

2. ACUP 2 - [getMeasuredWidth, max, getVisibility, getMeasuredHeight, getPaddingLeft,

getPaddingRight, getLayoutParams].

The size of ACUP 1 is 8 and size of ACUP 2 is 7. The intersection of the two ACUPs is:-

[max, getVisibility, getMeasuredHeight, getPaddingLeft, getPaddingRight, getLayoutParams].

Similarly, union of the two ACUPs is:- [getPaddingBottom, max, getPaddingTop, getVisibility,

getMeasuredHeight, getPaddingLeft, getPaddingRight, getLayoutParams, getMeasuredWidth].

The number of items in the intersection of the two given ACUPs is 6, while the number of items

in the union is 9. The Jaccard Index value is 6/9 = 0.667 < 0.75. In this case, we see that even

though the two ACUPs are almost similar and merging them cannot be deemed incorrect, yet

we do not merge them, since doing the same requires lowering of the Jaccard Index threshold,

which introduces false positives.

Following is an example where we are successfully able to merge ACUPs and iteratively move

from multiple small ACUPs to a large consolidated ACUP. The Merged ACUP [LT, nextTree,

setTokenBoundaries, nextNode, add, create, errorNode, recover, consume, id, LA, becomeRoot,

hasNext, reset, getTree, addChild, match, pushFollow, reportError, rulePostProcessing, nil] is

obtained from similar ACUPs, few of which are listed below:-

• LA, LT, addChild, setTokenBoundaries, add, errorNode, reportError, recover, rulePost-

Processing, nil

• becomeRoot, LA, LT, addChild, setTokenBoundaries, add, errorNode, reportError, re-

cover, rulePostProcessing, nil

• becomeRoot, LA, LT, addChild, setTokenBoundaries, nextNode, add, errorNode, reportEr-

ror, recover, rulePostProcessing, nil

• LA, LT, getTree, addChild, setTokenBoundaries, pushFollow, add, errorNode, reportError,

recover, rulePostProcessing, nil

• LT, nextTree, setTokenBoundaries, add, recover, errorNode, becomeRoot, LA, addChild,

getTree, pushFollow, reportError, nil, rulePostProcessing
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Figure 4.2: Most Popular Merged ACUPs:- Bubble Chart displaying the top 50 Merged ACUPs
found in the dataset.

A Merged ACUP represents a broad functionality, and so the number of occurrences and appli-

cation frequency of a Merged ACUP is the same as the number of occurrences and application

frequency of the broad functionality represented by the Merged ACUP. Since, all methods of

a Merged ACUP are not invoked together in some user-defined method, we make note of all

the methods invoking any constituent ACUP (an ACUP that was merged to get the Merged

ACUP). For each constituent ACUP, we also make note of the application that uses it. These

method and application details are then used to come up with an accurate count of the number

of occurrences and application frequency of the Merged ACUP.

Figure 4.2 shows the top 50 Merged ACUPs. In an ideal scenario, these 50 ACUPs would

have represented the top 50 functionalities/components. However, since our merging procedure

does not merge all similar ACUPs, these 50 Merged ACUPs represent a slightly fewer number

of functionalities. Nevertheless, the top 17 Merged ACUPs have more than 1500 occurrences,

though the number of applications in which they are found, varies from 350 to about 700. A

majority of the top 17 ACUPs are found in 350-450 applications. The last 16 of the top 50

Merged ACUPs (35-50) lie in the 150-300 applications range and occur less than 1000 times in

our dataset.

Table 4.2 displays the top 5 Merged ACUPs. We see that the topmost Merged ACUP contains

the topmost ACUP from Table 4.1. In addition to the topmost ACUP, Merged ACUP 1 also

contains the methods show and create, which are used for creating and displaying the AlertDi-

alog. Hence, Merged ACUP 1 is a good proof of concept that combining a number of similar

ACUPs, can help us represent a broad functionality. With a more sophisticated procedure for

merging, it should be possible to identify almost all methods that are related to a particular

functionality. Table 4.2 also shows that the application frequency for Merged ACUP 1 is 678,

while the application frequency for ACUP 1 is 426 (Table 4.1). Now, we know that AlertDialog
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Table 4.2: Top 5 Merged ACUPs

Merged ACUP SI Occurrences App Freq

1 [setMessage, setTitle, setPositiveButton, setNegativeBut-
ton, show, create]

1.0 3302 678

2 [append, setView, getText, getResources, setPositiveBut-
ton, createAuthorsLink, fromHtml, setMovementMethod,
show, setText, getString, getInstance, create]

0.94 2974 627

3 [query, getContentResolver, moveToFirst, getString, close] 0.75 2357 373

4 [setContentView, setOnClickListener, findViewById, set-
Text]

0.55 662 320

5 [setTag, getTag, inflate, setText, findViewById] 0.53 710 269

is used in 60.5% of all applications, which is significantly higher 38%, as suggested by Table

4.1. This demonstrates that not all developers use AlertDialog in the same manner. On further

investigation, we find that depending on the type of Alert the developers wish to give to the

user, they tend to use only setPositiveButton or setNegativeButton but not both.

Our results indicate that AlertDialog is very important to developers. Comparing the constituent

ACUPs and the Merged ACUPs can tell us the different ways in which AlertDialog is used. The

different ways of using a component is very important for API Consumers, since it can enable a

developer to choose and implement an ACUP depending on the application requirement. Such

information also makes it easier for developers to identify mistakes in existing implementations

of the functionality, as they now have a reference ACUP to compare their code with.

4.2 Package, Class and Interface Popularity

The success or popularity of any marketable product is measured in terms of the number of

units sold. Going along these lines, we can use the number of times a structural unit is used,

to judge its popularity. Our goal is to explore the extent of referencing relationship between

Android platform packages and classes, and mobile applications. For our experiment, we count

the number of times a structural unit is imported across all Java files in the dataset. The number

of applications gives us an idea of the popularity of the structural unit across the dataset, while

the number of Java files allows us to understand the extent of use within individual applications.

We measure the popularity of the following three structural units:-

1. Class - In case of classes, we count the number of import <Class Name> statements for

each individual class. In addition, for each class we also count the number of times it has

been inherited by visiting the class declarations in the source code.

2. Interface - For interfaces, we follow the exact procedure as in the case of classes. Here

again, we count the number of times an interface is implemented by a class in our dataset.

3. Package - In case of packages, we simply count the import statements in the source code.
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Table 4.3: Popular Packages, Classes and Interfaces

Top 5 Packages

Package Name Import Count

1 java.util 65, 110

2 android.content 56, 425

3 android.view 49, 433

4 android.widget 43, 490

5 java.io 49, 433

Top 5 Classes

Class Name Import Count

1 android.content.Context 22, 111
2 android.view.View 15, 143
3 android.os.Bundle 13, 633
4 android.content.Intent 12, 261
5 java.io.IOException 12, 009

Top 5 Extended Classes

Class Name Extend Count

1 android.app.Activity 3, 659

2 android.os.AsyncTask 1, 513

3 org.bouncycastle.asn1.ASN1Object 1, 328

4 android.preference.PreferenceActivity 1, 220

5 android.content.BroadcastReceiver 1, 198

Top 5 Implemented Interfaces

Interface Name Implement Count

1 android.view.View.OnClickListener 705

2 com.actionbarsherlock.ActionBarSherlock.OnMenuItemSelectedListener 216

3 com.actionbarsherlock.ActionBarSherlock.OnCreatePanelMenuListener 216

4 com.actionbarsherlock.ActionBarSherlock.OnPreparePanelListener 216

5 com.actionbarsherlock.ActionBarSherlock.OnActionModeFinishedListener 215

But, we observe that in all of the 1, 120 applications the developers do not import entire

packages by using import <package name>.*. They import the specific class/interface

that they wish to use, which is a good programming practice since it reduces ambiguity

in the source code. So in order to get the popularity of a package, we simply add up the

number of imports of all the classes and interfaces that the package contains.

Table 4.3 shows the packages and classes with the highest usability. Identifying the most popular

packages and classes is important for API Producers as they can focus their resources in making

sure that such program/structural elements are well tested and reviewed, as they are high impact

elements. Similarly, identifying less popular packages is also useful as the API Producers can

then work towards fixing any issue that may be limiting the usage of the element. From the

developers’ point of view such information is important as it can help them in identifying or

preventing any issue arising due to the usage of some less popular element. In case they are

using some less popular alternative of one of the popular elements, they can switch to the better

alternative in order to improve the quality of the application.
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java.util contains the collections framework and utility classes like string tokenizer, random-

number generator etc. Since, almost all applications require some sort of collection (HashSets,

ArrayLists, HashMaps etc.) for their basic working, it is unsurprising that java.util is the

most used package. android.content contains classes for accessing and publishing data on a

device. The importance of the package is established by the fact that android.content.Context,

the most used class, belongs to this package. The case of android.view is also similar. an-

droid.view contains classes that provide the basic building blocks for UI components. Its class

android.view.View is the second most used class, which throws light on the UI centric nature of

mobile applications.

The 4th package -android.widget - contains (mostly visual) UI elements that are used on ap-

plication screens. A deeper inspection shows us that this package is mostly used for Toasts (a

floating view that contains a quick message for the user), again highlighting the importance of

the user interface in Android applications. Rounding the top 5 list is java.io, which is a standard

java package that provides classes for performing input-output operations.

In this list of top classes, we find android.os.Bundle at the third place. android.os.Bundle is

used to store a set of state variable, when the application changes state. For example, it is

used to store the state of application, when it is minimized. These stored values are used

to bring the application back to its original state, when the application is maximised. This

highlights the emphasis that developers put on maintaining application state so as to give the

users a better experience. Finally, android.content.Intent is used by the applications to hold

abstract description of any action to be performed. It allows application components to request

functionality from other Android components. For instance, phone calls are made using the

intents Intent.ACTION DIAL and Intent.ACTION CALL.

Although, the top most classes and packages are along expected lines, the list of most extended

classes and interfaces are surprising. The third most extended class does not belong to the

Android API. It belongs to the Bouncy Castle library3, which is a library that provides crypto-

graphic functions. This clearly indicates that developers have little faith in the default Android

libraries providing security functions (java.security). They rely on Bouncy Castle for most of

the security needs of applications.

Similarly in the case of interfaces, even though, the topmost interface is android.view.View.-

OnClickListener (which listens to click events), the remaining four interfaces belong to the

ActionBarSherlock library4. ActionBarSherlock is known to facilitate the use of the action bar

design pattern across all versions of Android with a single API. Therefore, it is considered

superior to its Android counterpart. This is another case, where application developers do not

find some part of the Android API up to the required standards. For third party API Producers,

these results are very encouraging. The results indicate that if the quality and usability of an

API is good, developers are willing to use third party APIs rather than the ones provided by

Android.

3https://www.bouncycastle.org/
4http://actionbarsherlock.com/
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4.3 Android Applications and Change in API Versions

4.3.1 Android API Evolution

The huge growth in the number of applications available for Android is a direct reflection of the

ease of developing applications for Android. The Android API and various third party APIs

facilitate the development of new and sophisticated applications. The Android API is a huge

collection of libraries that gives access to all features that are available in a smartphone/tablet

today. Over the years, the Android platform has grown at a great pace, in order to keep in sync

with the consistent hardware and software innovation in the smartphone/tablet industry.

Table 4.4: Recent Android API Versions

Version Packages Classes Methods NCSS

14 416 11, 660 85, 625 42, 924

15 438 11, 901 87, 270 680, 821

16 501 13, 050 95, 717 744, 528

17 527 14, 016 101, 948 796, 979

18 566 15, 145 110, 183 855, 942

19 628 16, 659 120, 059 944, 080

20 667 18, 881 133, 607 1, 066, 601

Table 4.4 gives the number of structural elements present in the last 7 versions of the Android

API. Android API level 14 was released in October 2011. At that time, the number of Non

Commenting Source Statements (NCSS) was 42, 924. As of Android Level 20, the number of

source code statements stands at 1, 066, 601 which is nearly 25 times of Level 14. Even the

number of packages in Level 20 is 60% more than the number of packages in Level 14.

With each release, the Android API undergoes a lot of modifications, that are recorded in

the specification difference sheet5 for each version. In each new version, a few new elements

(packages, classes, interfaces, methods, fields) are added or deleted due to refactoring, feature

addition or deprecation of existing functionality (API evolution). Apart from this, a lot of

existing elements also undergo modifications. Our objective is to measure the extent to which

the framework changes (in terms of addition and deletion of packages, classes and methods only)

over various released versions of Android.

Table 4.5 indicates the exact number of additions/removals made in the Android API over the

past few versions. We observe a heavy modification between API versions 13 and 14 with 5

packages, 90 classes and 237 new methods being added and 22 methods being removed. In total

354 additions/deletions were made in terms of classes, packages and methods. A similarly large

change is observed between API Levels 15 and 16 with a total of 424 changes being made. With

each new release, the median number of packages, classes and methods added are 3, 57, 145

respectively. The median number of deletions for packages and classes is 0 and for methods it

is 5. We use median instead of average, to mitigate the impact of outliers.

5https://developer.android.com/sdk/api diff/<x>/changes.html, where x is the current version
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Table 4.5: Android API Modification History with Number of Components Added or Removed

Version Packages
Added

Classes
Added

Classes
Removed

Methods
Added

Methods
Removed

Total Num
Changes

11 3 109 0 373 24 509

12 3 5 6 64 2 80

13 0 2 0 18 0 20

14 5 90 0 237 22 354

15 4 12 0 25 0 41

16 0 57 0 349 18 424

17 2 41 2 109 19 173

18 2 61 36 145 4 248

19 6 78 0 223 5 312

Sum 25 455 44 1,543 94 2,161

Such information is very useful to API Consumers as it helps them understand how much

adaptation they need to do in their applications to utilize the changes made in the framework.

It also allows them to understand the kind of API changes taking place:- methods or fields moving

around classes, renaming or changing method signatures, addition and deletion of elements like

packages, classes, interfaces and methods (covered in our analysis). Analysing the extent of

change is also particularly useful to API Producers, for frameworks like the Android platform,

as millions of Android applications (a huge customer base) are dependent on the platform, which

might have to be migrated or updated as a result of the API change. API Producers try to

reduce the burden of reuse by developing migration tools and by providing solutions to API

change problems that break compatibility with older applications.

4.3.2 Most Popular API Changes

In this experiment, we mine the dataset to identify the most popular API changes made after

API Level 10. For this purpose, we mine the specification difference sheet for the APIs and

make a note of the added/deprecated structural elements in each version. For each API level

version, we mine those applications in the dataset whose version date is greater than the release

date of the new API, by at least 1 day. So for API Level 19, we use 540 applications, while

for API Level 11 we mine 1, 114 applications. For the sub-dataset that we create for each API

version, we compute the most frequent ACUPs and identify the most used packages and most

used classes.

We do not observe any effect of the release of APIs on frequent ACUPs. The list of frequent

ACUPs almost remains the same as we work our way backwards from API Level 19. The only

difference that we note is in the support count of the ACUPs. Moreover, we do not notice any

major change in the most popular structural elements as well. However, we do observe some

interesting results that we report below.
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Response to Addition of Packages

Table 4.6: Top 6 Recently Introduced Packages

Package Name Num Apps
Using Package

Num Files
Importing
Package

Introduced in
Version

1 android.mtp 15 70 API 12

2 android.graphics.pdf 13 62 API 19

3 android.hardware.input 7 43 API 16

4 android.hardware.display 7 7 API 17

5 android.animation 6 34 API 11

6 android.print.pdf 5 10 API 19

Table 4.6 lists the 6 most popular packages that were introduced in the recent versions of the

API. We discover that the package android.mtp that implements functionality which lets users

interact directly with connected cameras and other devices using the PTP (Picture Transfer

Protocol) subset of the MTP (Media Transfer Protocol) specification is the most used package

among the packages that were introduced after API Level 11. It was introduced in API Level 12

and has been a part of 15 applications since (15 applications in about 30 months). The package

android.graphics.pdf containing classes for manipulation of PDF content is the second most used

package. It was introduced only in API Level 19, and is already being used 13 applications (13

applications in about 6 months). The android.hardware package provides support for hardware

features, such as the camera and other sensors. Its usage in applications, clearly underlines that

developers have started giving more importance to sensor-based advanced applications.

Figure 4.3: Top 6 Packages Introduced in Recent History:- Rose Plot displaying the most well
received 6 packages introduced in different versions of Android API.

Figure 4.3 shows a Rose plot which is a circular histogram, that allows us to compare data

across multiple variables. In this diagram, the 6 bins P1 - P6 are the top 6 packages introduced

in recent times. The angle of each bin from the origin is determined by the number of elements

we wish to compare. We compare the data on two frequencies denoting the strength of refer-
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Table 4.7: Top 6 Recently Introduced Classes/Interfaces

Class/Interface Name Num Apps
Using

Class /
Interface

Num Files
Importing

Class /
Interface

Introduced
in Version

1 android.support.v7.widget.SearchView. 21 21 API 11

OnCloseListener

2 android.text.style.SuggestionSpan 18 28 API 14

3 android.provider.ContactsContract. - 15 28 API 14

DataUsageFeedback

4 android.widget.ShareActionProvider 14 121 API 14

5 android.content.ComponentCallbacks2 12 53 API 14

6 android.speech.tts.TextToSpeech.EngineInfo 11 21 API 14

encing relationship between the API packages and the applications. The first is the number of

applications using the package (red wedges), while the other is the number of files importing the

package (blue wedges). The length of each bin reflects the number of elements that fall within

a group, which ranges from 0 (at origin) to the highest number of elements in the bin.

Response to Addition of Classes/Interfaces

Table 4.7 lists the 6 most popular classes/interfaces that were introduced in the recent versions

of the API. We find that the interface android.support.v7.widget.SearchView.OnCloseListener,

that listens to a user’s attempt to close a SearchView is used in 21 applications. The other 5

popular classes/interfaces were introduced in API Level 14. Thus, signifying the importance

of API Level 14. android.widget.ShareActionProvider is responsible for creating views that

enable data sharing, android.text.style.SuggestionSpan is used to display a pop-up dialog listing

suggestion replacement for text, while android.speech.tts.TextToSpeech.EngineInfo is used to

gather information about the text-to-speech engines installed on a device. All these elements

Figure 4.4: Top 6 Classes Introduced in Recent History:- Rose Plot displaying the most well
received 6 classes/interfaces introduced in different versions of Android API.
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allow a diverse set of functions and have been incorporated in more than 10 applications.

Figure 4.4 shows the 6 bins C1 - C6, which represent the top 6 classes/interfaces introduced in

recent times. The red wedges represent the number of files importing the element, while the blue

wedges represent the number of applications using the package. The class android.widget.Share-

ActionProvider has the largest bin because of the huge number of files it is imported in, even

though it is fourth in terms of number of applications. Thus, a Rose Plot allows us to measure

two variables together and draw insightful information.

However, the most interesting point that comes out from this experiment is that there is no rela-

tion between the most used recently introduced packages and the most used recently introduced

classes/interfaces. This means that the packages that were recently introduced (Table 4.6) are

generally used for different purposes and not for the same functionality, else the classes/interfaces

provided by them would have made it to the list in Table 4.7.

Response to Deprecation of Classes

Another noteworthy result that we obtain from our analysis is that developers are either re-

luctant or slow to modify the code of their applications, once a class is removed from an API.

We find 51 applications are still using android.renderscript.Mesh a class that was targeted at

applications working in a high-performance setting across heterogeneous processors. This is a

really important take away for API Producers, since, despite them deprecating the class an year

ago, we still find it being used in 4.5% of the applications in our dataset.

4.4 Most Popular Methods and ACUPs

In this experiment, we do two things:- we first find out the the most invoked methods in the

dataset and then we try to see if some relationship exists between the most invoked methods

and the most popular ACUPs.

4.4.1 Most Popular Methods

Similar to the analysis described in Section 4.2, we consider the number of invocations of a

method to be a measure of its popularity. In order to identify the most invoked methods, we

traverse the AST of all the Java files in the dataset and count the number of invocations of each

method. Again, we are not required to filter out the user-defined methods, since, the library

methods out-number the user-defined methods quite easily. This time as well, we compute the

Significance Index using Equation 4.1. The ‘number of occurrences’ component in the equation is

replaced by the number of invocations for the method. Figure 4.5 is a bubble chart representing

the top 20 methods. The top 5 bubbles in Figure 4.5, refer to the top 5 methods shown in Table

4.8.
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Figure 4.5: Most Popular Methods:- Bubble Chart displaying the top 20 methods in the dataset.

Figure 4.5 reveals some interesting points. From the top 20 methods, only 7 cross 24, 000

invocations, while the rest are way below 20, 000. Also, these topmost methods generally perform

trivial operations. For instance:- getString is always used to retrieve the text content from a

resource, while, toString is used to get the String representation of a Java object. It is important

to mention that for this experiment, we do not differentiate between the add method of an

ArrayList and the add method of a HashSet. Since, these methods perform a similar operation

i.e. adding an element to a collection, we take them to be the same here. Same is the case for

the other methods.

Table 4.8: Top 10 Methods in the Dataset

Method Name Significance Index Number of Invocations App Frequency

1 getString 0.97 42, 847 968

2 get 0.77 37, 198 892

3 toString 0.70 30, 627 978

4 add 0.70 32, 519 919

5 equals 0.68 31, 256 927

6 size 0.53 27, 289 831

7 findViewById 0.39 16, 964 987

8 getInstance 0.38 24, 231 672

9 setText 0.34 15, 737 939

10 show 0.32 15, 302 928
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4.4.2 Relationship among Top Methods & Top ACUPs

We check for the presence of the top 20 methods in the top 10 ACUPs (sorted by Significance

Index ). Figure 4.6 is a bar chart where each bar represents one of the top 10 ACUPs. The colours

of the bars represent the number of popular methods that are found in the particular ACUP.

To our surprise, we find that the 10 top ACUPs mostly contain only 1 of the topmost methods -

findViewById. This reflects that the topmost methods generally provide a functionality that is

standalone, which to some extent corroborates the result represented in Table 4.8. Also, most

of the methods of an ACUP may not be among the most popular methods, but when combined

with other methods in an ACUP, they perform an indispensable function.

Figure 4.6: Presence of Most Popular Methods in the Most Popular ACUPs:- Bar Chart
depicting the presence of most popular 20 methods in the top 10 ACUPs (sorted by Significance Index )

4.5 Category Focused Mining

The objective behind the following experiment is to analyse applications based on categories.

Applications on F-Droid are categorised based on a general theme. This information can help

API Producers to understand how their APIs are used across different categories of applications.

This can help them fine tune their applications to cater to the needs of a particular kind of

applications. API Consumers will also become more aware of the most popular elements in the

category of their interest and can incorporate those elements into their applications.

4.5.1 ACUP Popularity across Categories

We mine ACUPs from the dataset based on their occurrences across various categories. We sort

the ACUPs based on the number of categories. Table 4.9 shows the top 5 ACUPs with number
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Table 4.9: Top 5 ACUPs Extracted from the Dataset based on Occurrences across 12 Categories

1
getPaddingLeft getPaddingRight getPaddingTop getPaddingBottom

A View (rectangular area on the screen) takes into account its padding to measure its dimensions. The
padding is expressed in pixels and the given ACUP is used to offset the content of the view by a specific
amount of pixels

2
query moveToFirst getString close

The given ACUP queries a given URI, moves the returned cursor to the first row, returns the value of the
requested column as a String and closes the cursor, releasing all of its resources

3
setMessage setPositiveButton getString show

The given ACUP displays a message on an AlertDialog, sets the listener to be invoked when the positive
button is pressed, retrieves the text to be displayed in the positive button and shows the alert

4
query moveToFirst getInt close

The given ACUP queries a given URI, moves the returned cursor to the first row, returns the value of the
requested column as an Integer and closes the cursor, releasing all of its resources

5
setMessage setPositiveButton getString setTitle

The given ACUP displays a message on an AlertDialog, sets the listener to be invoked when positive button
is pressed, retrieves the text to be displayed in the positive button and sets the title of the dialog box

of categories as 9, 6, 6, 5 and 5 respectively. We also compute the total number occurrences of

the ACUP in the dataset and the application frequency. The occurrence count and application

frequency for the top 5 ACUPs of Table 4.9 are:- (408, 96), (805, 146), (481, 172), (318, 115)

and (374, 128). The topmost ACUP in Table 4.9 appears in 9 out of 12 categories. It is based

on size, padding and margin of views in an Android application.6.

Table 4.9 also mentions the functionality or task performed by the extracted ACUPs. The

topmost ACUP is related to View in Android. A View occupies a rectangular area on the

screen and is responsible for drawing and event handling. To measure its dimensions, a view

takes into account its padding, that is expressed in pixels for the left, right, top and bottom

parts of the view. The padding can also be used to offset the content of the view by a specific

amount of pixels. Such information is relevant to both the API Producers and Consumers as it

informs them that the API on size, padding and margin is used quite frequently across almost

all categories of applications and not just within one category.

Figure 4.7 displays a Radar Chart (also referred to as a Spider Chart) consisting of a sequence

of 12 equi-angular spokes (or radii) with each spoke representing one of the 12 categories. We

plot 5 data series (multivariate data) on the radar chart representing the ACUPs of Table 4.9.

Each data series representing a vector of wa,c values is drawn as one complete circuit of the

chart which means that a line is drawn connecting the data values for each spoke for a data

series (a represents ACUP and c represents category). Weight wa,c is the value of a point on

the Radar Chart and represents the distance from the center of the chart. The center represents

the minimum value of wa,c which is 0 and the chart edge represents the maximum value of wa,c

across all 5 series which is coming out to be 3.33 in our example (the axes are normalized). The

weight wa,c is computed as shown in Equation 4.2.

6http://developer.android.com/reference/android/view/View.html
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Figure 4.7: Top 5 ACUPs across Categories:- Radar Chart showing 5 data series representing top 5
ACUPs mined from the dataset (refer to Equation 4.2 and Table 4.9)

(
SUPc

SUP

)
∗
(
NAP

NAPc

)
(4.2)

where SUPc represents support of an ACUP in a particular category. SUP denotes the total

support of an ACUP. NAP denotes the total number of applications and NAPc represents

the number of applications in a category. The maximum wa,c of 3.33 is for ACUP 1 and the

category is Security (SCR). It is calculated as [(4/96)*(1120/14)]. The wa,c for ACUP 1 across

12 categories are [1.030, 1.182, 1.137, 1.004, 0.000, 1.474, 1.707, 1.018, 0.000, 0.000, 1.240, 3.328]

(starting from OFF till SCR). Experimental results reveal that ACUP 1 has wa,c > 0 for 9

categories. The number of categories for which ACUP 2, 3, 4 and 5 have wa,c > 0 are 6, 6, 5, 5

respectively.

4.5.2 Merged ACUPs across Categories

Table 4.10 reveals the top 7 Merged ACUPs in terms of application frequencies across all the

categories. It also explains the functioning of each Merged ACUP in detail. The most surprising

outcome of this experiment is that after merging ACUPs across different categories, AlertDialog

again comes out to be the most used feature that is present in all 12 categories, while one of the

ACUPs representing it, was individually present in only 5 categories. This means that different

categories of applications use AlertDialog differently.

Figure 4.8 displays a Heat-Map which is a graphical representation of the ACUP application

frequency data across categories where the individual values contained in the matrix are rep-

resented as colours. The more negative values are represented by relatively darker colours in

comparison to positive values which are represented by lighter colours. The three dimensional

data displayed by the Heat-Map in Figure 4.8 reveals the top 7 Merged ACUPs (Table 4.10) in
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Table 4.10: Top 7 Merged ACUPs Extracted from the Dataset based on Occurrences across 12 Categories

1
setMessage, getString, toString, setTitle, create, show

Displays a message on the AlertDialog, retrieves the text to display in the positive button, converts some
integer to string for the purpose of displaying, sets the title of the dialog box, creates the alert and shows
the alert

2
getLayoutInflater, inflate, findViewById, setTag, setText

Instantiates a layout XML file into view objects, inflates a new view hierarchy from the specified XML
resource, looks for a child View with the given id, sets a tag associated with this view and sets the text on
a text view

3
getMeasuredWidth, getPaddingBottom, getPaddingTop, getMeasuredHeight, getPaddin-
gLeft, getPaddingRight

To measure its dimensions, a View takes into account its padding. The padding is expressed in pixels for
the left, top, right and bottom parts of the view. Padding can be used to offset the content of the view by
a specific amount of pixels. These functions return the respective padding of the given view.

4
setMessage, getResources, setTitle, setPositiveButton, show

Displays a message on the AlertDialog, returns Resource instance for application’s package (The resource is
generally used to get the message displayed in getMessage), sets the title of the dialog box, sets the action
to be taken on pressing positive button, shows the alert

5
parse, select, size, first, child, text, trim, equals, contains, attr, add, get, put

Parses HTML into a document, selects the relevant elements, calculates their size, chooses the first element,
gets the given child of the node, retrieves and trims the text of the child and compares it with a given String,
checks for a substring and performs some action based on the returned value, retrieves the attributes of the
nodes, retrieves elements from java collections using get and add and adds some value to a hash-map

6
iterator, hasNext, next, remove, size, isEmpty

Gets an iterator over a collection, returns true if item has more elements and moves to next element, removes
last element returned by next, checks for the size of an arraylist, checks if some string in question is empty
(using TextUtils.isEmpty)

7
getActivity, findViewById, setOnClickListener, setText, getString

Returns the Activity for the given fragment, looks for a child view with the given id, registers a callback to
be invoked when this view is clicked, sets text on a text view, retrieves the text to be displayed from some
component of the view

terms of application frequencies across all the categories. The formula for computing the indi-

vidual values contained in the matrix, represented as colours is [(Support of ACUP in particular

Category/Total Support Of ACUP in all categories)*(Total number of Applications / Number

of Applications in that Category)]. The API Producers and Consumers can use the Heat-Map

as a handy tool (as an immediate visual summary of information) to analyse and visualize the

multi-dimensional dataset on ACUP popularity across various categories. The highest value is

2.37 for ACUP 2 and category Security [(4/135) * (1120/14)] followed by value 2.24 for ACUP

2 and category Reading and then value 1.93 for ACUP 7 and category Internet.

4.5.3 Presence of Most Popular Packages, Classes across Different Categories

In this Section, we investigate the distribution of the top 10 packages and top 10 classes (from

the entire dataset), across different categories. The idea behind this experiment is to see the

contribution of each category in pushing the respective packages and classes to the top 10. Such

information, helps in identifying the importance of a particular package or class for a particular

kind of applications. This can help API Producers to target their product better and fine tune

their product to match the expectations of the API Consumers. Moreover, if a library is crucial
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Figure 4.8: Top 7 Merged ACUPs across Categories:- Heat-Map showing the most popular ACUPs
sorted by category

to all kinds of applications then it is possible that the library provides a commonly required

crucial functionality and that there is sufficient available help and documentation regarding that

library.

Distribution of Most Popular Packages across Categories

Table 4.11 lists the top 10 packages in our dataset and gives the Significance Index of the packages

across the different categories. Higher the Significance Index for a particular category, higher

is the rank of the package amongst the most referenced packages in the category. For instance,

java.util has a high Significance Index for all categories and therefore, we can conclude that

it is used widely across all categories and is important to every kind of application. However,

org.spongycastle.asn1 is used only in the categories System and Internet. Hence, we know that

the Bouncy Castle library is private to two categories, where security is of vital importance. In no

Table 4.11: Top 10 Packages Across 12 Categories sorted by Significance Index

Package OFF SYS MUL GMS INT NVG SCN WLP RDG DEV PHN SCR

java.util 1.00 0.83 0.86 0.84 1.00 1.00 0.91 0.67 1.00 0.91 0.77 1.00

android.content 0.87 1.00 0.95 0.85 0.61 0.68 0.82 1.00 0.69 0.96 1.00 0.29

android.view 0.81 0.49 1.00 1.00 0.57 0.67 1.00 0.64 0.89 1.00 0.80 0.43

android.widget 0.77 0.44 0.82 0.78 0.50 0.66 0.96 0.41 0.74 0.86 0.66 0.31

java.io 0.50 0.57 0.58 0.59 0.83 0.48 0.57 0.38 0.63 0.52 0.42 0.74

android.os 0.49 0.46 0.60 0.48 0.37 0.42 0.53 0.53 0.47 0.65 0.53 0.24

android.app 0.42 0.32 0.39 0.37 0.24 0.30 0.36 0.33 0.30 0.38 0.34 0.10

android.util 0.25 0.19 0.35 0.29 0.21 0.23 0.34 0.38 0.29 0.39 0.29 0.12

android.graphics 0.15 0.14 0.35 0.43 0.12 0.29 0.28 0.75 0.33 0.24 0.10 0.05

org.spongycastle.asn1 0.00 0.33 0.00 0.00 0.49 0.00 0.00 0.00 0.00 0.00 0.00 0.00
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Figure 4.9: Top 10 Packages sorted by Significance Index:- Stack Bar Chart showing the top 10
packages in the dataset sorted by Significance Index

other category is security as big a concern as it is in System and Internet. However, surprisingly

Bouncy Castle is not referenced in any application in the category Security. Although, this

might be the result of our dataset having a very less number of Security applications.

Figure 4.9 is a Stack Bar Chart that shows the top 10 packages in the datset and the Significance

Index across the different categories. The y-axis shows the cumulative Significance Index, while

each number on the x-axis represents a package (1 being Package 1 in Table 4.11). Taller the bar,

more significant the package is in the dataset. The different coloured stacks in a bar represent

the Significance Index for a category. The broader the stack for a category, the more significant

the package is in the category. The figure shows a steady decline in the cumulative Significance

Index, as we move from java.util to org.spongycastle.asn1.

Table 4.12: Number of Occurrences of Top 10 Packages Across 12 Categories

Package OFF SYS MUL GMS INT NVG SCn WLP RDG DEV PHN SCR TOC

java.util 11,494 12,343 5,091 3,371 16,090 5,540 2,700 533 2,784 1,488 1,295 2,381 65,110

android.content 9,996 14,828 5,588 3,385 9,801 3,752 2,427 796 1,919 1,568 1,686 679 56,425

android.view 9,322 7,274 5,897 4,005 9,225 3,730 2,967 506 2,489 1,638 1,356 1,024 49,433

android.widget 8,856 6,537 4,833 3,136 7,975 3,649 2,853 328 2,062 1,414 1,114 733 43,490

java.io 5,798 8,406 3,434 2,374 13,291 2,674 1,688 299 1,751 850 713 1,754 43,032

android.os 5,580 6,884 3,510 1,905 5,982 2,320 1,574 425 1,322 1,066 899 562 32,029

android.app 4,807 4,755 2,276 1,491 3,786 1,673 1,082 264 826 624 567 237 22,388

android.util 2,868 2,792 2,077 1,164 3,366 1,267 1,006 303 809 633 497 289 17,071

android.graphics 1,779 2,108 2,064 1,733 1,970 1,634 833 598 926 391 163 126 14,325

org.spongycastle.asn1 4 4,929 2 0 7,918 0 0 0 0 0 0 0 12,853

Table 4.12 shows the number of occurrences of the top 10 packages in the entire dataset and

the distribution across the 12 categories. The data is plotted in Figure 4.10. The idea behind a

second Stack Bar Chart is to demonstrate the impact of the Significance Index. As previously
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Figure 4.10: Top 10 Packages sorted by Number of Imports:- Stack Bar Chart showing the top
10 packages in the dataset sorted by Number of Imports/Occurrences

mentioned, the Significance Index combines the number of occurrences of a component (irre-

spective of the application), the number of applications using the component and the number

of categories the component is found in. In short, it covers the all-round spread of a component

and tries to provide a more normalised measure of popularity.

Take android.widget and java.io for instance. In terms of the number of imports, both of them

are actually at par with each other. In terms of presence in the various categories, they are

also at par. However, if we take into account the number of applications in which they are

used android.widget has a lead. Hence, Figure 4.9 shows a taller bar for android.widget. We

also observe that java.io is used more in applications belonging to the categories:- (Internet and

Security), and it is generally imported multiple times within an application.

Distribution of Most Popular Classes across Categories

The top 10 classes are the top 10 classes in 6 out of the 12 categories. In those 6 categories,

the top 10 classes are present, but in a slightly shuffled order, as can be seen from Table

4.13. However, android.Content.Context stays the top class in all categories except Internet and

Security, where it is beaten by java.io.exception. In each of the remaining categories other than

Security (System, Internet, Wallpaper, Reading, Development, Security), there are only 2 or 3

classes that are pushed out of the top 10. In case of Security, since we have less number of

applications, an application with a very large source code (23 MB) induces false positives.

In the category System, org.projectmaxs.shared.global.util.Log (1, 743) and android.content.Sh-

aredPreferences (1, 741) come into the top 10 at the expense of android.app.Activity (1, 524) and

android.widget.TextView (1, 435), which lie at the 11th and 12th position respectively. In case of
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Table 4.13: Number of Occurrences of Top 10 Classes Across 12 Categories

Package OFF SYS MUL GMS INT NVG SCI WLP RDG DEV PHN SEC TOC

android.content.Context 3,535 5,689 2,248 1,445 4,015 1,513 949 321 667 783 636 310 22,111

android.view.View 2,804 2,454 1,547 1,109 3,036 1,087 920 152 741 570 386 337 15,143

android.os.Bundle 2,558 2,682 1,219 9,38 2,521 927 81 151 612 518 381 275 13,633

android.content.Intent 2,044 3,267 1,142 663 2,111 865 592 155 432 420 418 152 12,261

java.io.IOException 1,501 2,359 960 543 4,210 612 372 67 460 269 192 464 12,009

java.util.List 1,785 2,008 1,009 640 2,456 1,176 500 130 600 385 261 352 11,302

java.util.ArrayList 1,868 1,906 1,054 765 2,426 1,017 623 116 556 287 234 303 11,155

android.util.Log 1,698 1,808 1,339 624 1866, 729 622 169 464 399 314 117 10,149

android.widget.TextView 1,469 1,435 706 550 1,383 583 486 53 309 285 198 154 7,611

android.app.Activity 1,540 1,524 764 579 1,217 561 381 66 316 221 201 102 7,472

the category Internet, java.math.BigInteger (1, 595) and java.io.InputStream (1, 467) jump into

the top 10. android.widget.TextView (1, 383) moves to number 11, while android.app.Activity

(1, 217) moves to number 13 with android.view.ViewGroup (1, 294) separating the two. an-

droid.view.ViewGroup is the class for a special type of view that can contain other views.

Our results indicate that the category Wallpaper is unique. Its top 7 classes are from the

list in Table 4.13. However, the last of those 10 - android.widget.TextView (53) is positioned

at 19th. In between we have the following classes:- android.content.SharedPreferences (110),

android.graphics.Canvas (89), android.graphics.Bitmap (86), android.util.AttributeSet(83), an-

droid.net.Uri (82), android.graphics.Paint (70), java.io.IOException (67), android.app.Activity

(66), android.preference.Preference- Manager (65), android.graphics.Color (65) and android.os.-

Handler (64). This shows that any image or wallpaper oriented application finds image/graphics

based classes more relevant than java.io.- IOException, android.app.Activity and android.widget.-

TextView.

In the case of the category Reading, java.io.File (327) and android.view.ViewGroup (326) just

manage to topple android.app.Activity (316) and android.widget.TextView (309) from the top

10. This is not very surprising, since most of the reading applications do some sort of a file

read from the storage present on the device. In Development android.view.ViewGroup (237)

and android.view.LayoutInflater (225) keep android.app.Activity (221) out of the top 10.
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Chapter 5

Limitations and Future Work

Our dataset comprises of 1, 120 applications divided across 12 categories. However, we would like

to point out that this dataset may or may not be an accurate representation of the distribution

of applications on the Android Play Store. Although, Android is an open-source platform,

Android applications need not be open-source. In fact, a large number of applications are not

open-source. As a result, our dataset has not been chosen at random and may be biased. In our

future work, we would try to work with a larger and more randomly chosen dataset.

In our work, we introduce the idea of Merged ACUPs and use the Jaccard Index to successfully

merge a lot of ACUPs, with no false positives. However, the threshold of 0.75 does not allow us

to merge all similar ACUPs. A more sophisticated approach should be able to help in improving

the accuracy while keeping the false positives at nil. Doing so would allow for an even more

accurate representation of a functionality. In our future work, we would try to successfully

identify all methods that represent a functionality. This shall be very useful to new developers,

since, they would get a good starting point.

Also, while dealing with popular methods, we largely combine API methods having the same

name and performing similar functions irrespective of the classes they belong to. Hence, the

results for the same can again be treated as methods performing a particular operation irrespec-

tive of the class they are defined in. In spite of this, we find that most of the popular ACUPs

do not contain the most popular methods. In our future work, we would try to understand the

reasons for the same.

In our study, while analysing API evolution, we have focused only on addition and removal of

packages and classes in the Android API. We have not touched upon the changes in existing

methods and classes. In our future work, we plan to do a detailed study on how such changes

impact applications. We also intend to study the impact of addition of new methods and removal

of old ones.
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Chapter 6

Conclusion

In our work, we mine 1, 120 Android applications, belonging to 12 different categories in the

quest to draw actionable insights from their source code. We use various advanced visualisations

(Bubble Chart, Radar Chart etc.) to convey the important results. We uncover frequent ACUPs

that reveal standard usages of the API. Experimental results reveal that the top 20 popular

ACUPs are present in about 15% to 25% of the applications in the dataset. The most popular

ACUP turns out to be on AlertDialog, a UI based component. In fact, a lot of top ACUPs are

related to UI components. We then merge ACUPs which have methods in common using Jaccard

Index and find that by merging we are able to accurately identify different methods related to

a component. We observe that a popular ACUP on AlertDialog was present in 38% of the

applications, but after merging similar ACUPs we find that the actual number of applications

implementing AlertDialog is about 60%.

The most popular packages are java.util and android.content, classes are android.content.Context

and android.view.View, and interfaces are android.view.View.OnClickListerner and com.action -

barsherlock.ActionBarSherlock.OnMenuItemSelectedListener. Notably, we find that the Bouncy

Castle cryptographic library is used more than the java.security library, while ActionBarSherlock

is used extensively in Android applications. Both these APIs do not belong to the Android API,

but are still used more than their Android API counterparts, showing that if the product is

good developers are willing to adopt third party APIs.

We statistically see that the Android API is rapidly growing. The number of source code

statements has increased by 25 times from Android Level 14 to 20 and the number of pack-

ages has grown by 60%. The most popular API changes are packages android.mtp and an-

droid.graphics.pdf. Our findings reveal that often the migration to a new version of the frame-

work is slow, for example, about 5% of the applications in the dataset were found using a

class (android.renderscript.Mesh) which was deprecated one year ago. The top 3 most popular

methods getString, get and toString have more than 30, 000 invocations each. These methods

generally perform a standalone operation and are not a part of any of the top 10 ACUPs. The

only top 10 method seen in the Top 10 ACUPs is findViewById.
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The ACUP that appears in 9 out of 12 categories is related to the size, padding and margins

of a view in the UI. Unsurprisingly, the top most ACUPs across the 12 categories are related

to the UI. Also, the Top 10 classes in the dataset remain the top 10 in 6 out of 12 categories.

The category Wallpaper turns out to be the most unique category. Applications falling in

this category have the least lines of code and the least number of transactions. Wallpaper

applications also, make a lot more use of different classes like android.content.SharedPreferences

and android.graphics.Canvas, as compared to the other categories.
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