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Abstract

Every Android application runs in its own virtual machine, with its own Linux user account

and corresponding permissions. Although this ensures that permissions are given as per each

application’s requirements, each permission itself is still broad enough to possible exploitation.

The heap memory can be accessed by default by all apps and can be misutilized to unimaginable

extents. Such exploitations may result in an over consumption of phone’s resources, in terms

of memory, battery, and communication bandwidth. In this work, we propose a tool called

R3, for the app developers and users to control application’s permissions at a fine granularity

thereby reducing the exploitation of permissions. We provide the developers an opportunity to

recycle the objects that are short lived and created in large numbers so that they can be reused

instead of getting garbage collected. The framework is based on static code analysis and code

instrumentation. It takes in compiled code and so does not require access to source code of

the application. As a case study, we passed publicly available applications through R3 to fine

tune their performance. We compared energy, data and memory consumed by these applications

before and after the code injection to corroborate our claims of improvement in performance. The

data consumption reduced by a factor of 12.2 after removing advertisements, energy consumption

reduced by a factor of 1.88 by optimizing the wake lock type and energy consumption reduced by

a factor of 3.7 after optimizing GPS location update frequency. The pause times due to garbage

collection reduced from 184 ms to 80 ms as the object pool size was increased from 0 to 1000.
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Chapter 1

Introduction

1.1 Background

Android has about 75% of the market share with a growth rate of 91.5% in the last year [22].

Undoubtedly, Android is the most pervasive mobile OS. Performance and security are the

dominant factors considered when gauging the quality of Android applications. According to

AppBrain [6] by the end of September 2014, there were a total of 1,376,862 applications (apps)

in the Android market store and 219,250 of theses have been declared as low quality apps. This

is a large number considering the fact that Google removes low quality applications from the

Android marketplace quarterly.

With increasing rate of cybercrime, people are more concerned about malwares and privacy issues.

However, performance issues are equally important as they might impact the end user experience,

data, memory and battery consumption of an application. Choosing Android applications from

Google Play is similar to choosing apples on an apple tree. Before plucking, nobody knows

whether there is a worm in them. Android applications could also have worms; worms which

hamper their performance by either devouring a phone’s battery or by profligately consuming

network data or memory. This motivates us to target Android applications (apps) for proposing

performance optimizations.
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Figure 1.1 depicts the Android software stack. From bottom to top it consists of a Linux

Kernel, a Middleware, Libraries, Android Runtime Environment, and Applications running on

top of the Application Framework. The application layer consists of (a) in-built applications

like Home, Contacts, Phone, and Browser and (b) user-installed applications. The Application

Framework, on top of which these applications run, consists of various Managers like Activity

manager, Telephony manager, Resource manager, Location manager, etc. Below the Application

Framework layer, are the Libraries and the Android Runtime Environment, which contains the

Dalvik Virtual Machine.

The Dalvik Virtual Machine is a process virtual machine that provides applications a platform

independent environment to run. Android uses Dalvik Virtual Machine to run dex code, which

is formed from Java bytecode. The bottom-most layer is where the Linux Kernel resides. The

underlying Linux system provides features, like user-based permission model [10], process isolation

and sandboxed environments for applications. Such features of Android make Google Play a

favorite hub for downloading applications.

Figure 1.1: Android OS Stack
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1.2 Our Contribution

Poor performance of an application directly impacts many aspects like data consumption,

battery consumption, memory consumption, cost incurred by user, etc. These concerns of

users/developers can become evident (even prominent) after long periods of application usage.

With these concerns in mind, our work entails devising strategies to tackle different problems

that hamper performance. Through R3, we want the application users and developers to be sure

that the code of the application is going to efficiently use the resources on the device.

The work R3 can be logically segragated into two components:

1. Chiromancer (Reduce paradigm)

We initially present our work Chiromancer [13], a prototype that takes Application Package

(APK) of apps and performs static analysis to uncover performance issues. The issues we consider

are -

(a) Cost incurred to users due to SMS to premium rate numbers.

(b) Data consumption due to In-app advertisements

(c) Energy consumption due to very frequent GPS location fixes

(d) Energy consumption due to inappropriate wakelocks.

After detecting these issues, the tool transforms the APK based on the inputs provided by the

user so that the app gets tuned according to the user’s needs rather than the developer’s whims.

Such modifications may not always be meaningful since the user is completely code agnostic.

However, the user is informed by our app about the implications of the modifications a priori.

Our approach relies on the fact that the user understands her needs better than the developer.

By allowing the users to tweak the input parameters, the tool offers them a better control over

the applications.

We assume that the user must have an idea about the kind of application she is going to install,

which is generally true or can be known by reading the app’s features on the store. This way,

the user can decide certain aspects of the application. For instance, let us assume that the app

3



is a game like Chess. Time is not a major factor in the game, so a user can choose to have a

PARTIAL_WAKE_LOCK [7] instead of a FULL_WAKE_LOCK [7]. This would allow the

screen to go off after a while thereby saving energy. In contrast, for a car racing game it would not

be wise to keep a PARTIAL_WAKE_LOCK. The aforementioned four optimizations fall under

the ‘Reduce’ category of our work since they reduce energy consumption, data consumption and

cost incurred by users.

2. Extension of Chiromancer (Reuse and Recycle paradigm)

In general, the Object Oriented Programming (OOP) paradigm encourages programmers to create

objects without having apprehensions about the cost that is incurred. However, such a practice

can be devastating for Android apps and can degrade the performance and scalability. Android

apps, in contrast, advocate creating objects only when it is inevitable.

Android’s Dalvik garbage collection does a good job of reclaiming memory. But the garbage

collector introduces pauses during execution of the app to recover memory. Although the

introduction of Concurrent Garbage Collection [12] has reduced the stoppage times to quite

an extent, jitters are still prevelant among apps. Jitters are usually experienced when a large

number of short lived objects are created. Garbage collection can happen at any time and as a

result the execution time becomes uncertain.

Excessive object allocation causes fragmentation in memory and leaves holes which cannot be

used by the app unless the memory gets compacted. The Random Access Memory (RAM) is a

precious and scarce resource on handheld devices. Android has a Least Recently Used cache that

stores the processes/apps that are moved to the background for quick retrieval. If an app in the

foreground needs more memory, then one of the apps in the LRU cache might get picked for

termination based on how much memory an app is holding and the LRU policy. Thus, to prevent

termination of an app a developer must strive to reduce GC invocations as much as possible by

allocating memory wisely.

Realizing the importance of memory management in the context of Android devices, we extend

Chiromancer with a memory optimization that allows objects to be recycled to object pools so

that they can be reused if they are needed again in the applicaton. This optimization emphasizes
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on object ‘Reuse’ and ‘Recycle’. By means of this optimization, we assist the developers and

the app users to transform the memory intensive code to a light-weight version by leveraging

the object pool design pattern. This optimization could have been considered as a part of the

‘Reduce’ category as we would be reducing the number of objects that are allocated, however,

to differentiate from Chiromancer we consider this optimization as a part of the ‘Reuse’ and

‘Recycle’ category.

We use an umbrella term for all these optimizations - “R3”, which stands for ‘Reduce, Reuse

and Recycle’. Please note that the tool can be used by both, the general public and the app

developers to detect and overcome performance issues. Since, both Chiromancer and R3 use the

same architecture, we use the terms interchangeably in Section 3.1 .

In essence, the contributions of this work are as follows:

1. In Chiromancer (Reduce), we identify statements in the code that cause deterioration of

performance and inform the user of the current configurations.

2. We perform transformation of code to alter configurations according to those specified by

the user.

3. We evaluate Chiromancer on third party apps from Google Play.

4. As a part of the extension (Reuse and Recycle), we analyse apps for detecting objects

that are created temporarily but multiple times in an app. These objects can then be

recycled by leveraging a melange of Points-To analysis, Escape analysis and Last Usage

Point analysis.

5. We present certain heuristics to prioritize objects for optimization and thus reduce the

amount of instrumentation that needs to be done.

6. We transform the code to cache objects in an object pool and use these objects when

required rather than allocating space for new objects everytime they are needed.

7. We show benefits of the reuse on a third party application.
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We claim that a static analysis framework (like Soot [9]) is better than using AspectJ [23] because,

firstly, AspectJ cannot detect the presence of method calls in the code statically. Hence, it cannot

be used to skip some portion of the code based on whether a specific method call is present in

the rest of the code, whereas, Soot can do this easily. Secondly, it is not possible to intercept

assignment statements using AspectJ, hence it cannot be used to perform sophisticated analysis

like data flow analysis. Thirdly, using AspectJ, one can only go “around” the code that sends an

SMS and cannot remove it from the app’s binary. Moreover, AspectJ does not facilitate code

instrumentation in the bytecode. These limitations of AspectJ diverted our attention to Soot.

The purpose of our work is neither to hack the app (as the modified APK would need to be

re-signed) nor to infringe copyrights. The work is not targeted to gain monetary benefits, rather

it is aimed to show that such performance oriented optimizations are possible by leveraging code

injection, without requiring source code of apps. In this work, we also propose a framework

which can be used by developers to customize the optimizations provided by Chiromancer and

extend them in various ways.

As per our knowledge, there has not been much work done to detect and rectify performance

issues in code extracted from APKs automatically. There has been loads of work based on the

object pool design pattern [8] which requires developers to code in a way such that object reuse is

prevalant. However, in this work, we automate the process by transforming the code such that

the app recycles objects to an object pool and pulls objects from it whenever there is a need to

create more objects of the same kind. In this context, our work elicits a novel approach to detect

and deal with performance issues.

In Chapter 2, we discuss the related works. Chapter 3 explains R3’s architecuture and our

proposed framework. Chapter 5 explain the issues and our approach to tackle them. Chapter 6

deals with the evaluation of R3 on third party apps. We discuss the strengths and weaknesses of

our tool in Chapter 7. Finally, in Chapter 8, we conclude and discuss the future work.

6



Chapter 2

Related Work

2.1 Related Work

Our implementation is based on Soot [9], which is a Java analysis tool which has now been

extended to work for Android apps by addition of a component called Dexpler [18]. Dexpler is a

modification of Soot and converts Dalvik bytecode directly to Jimple representation. This direct

conversion obviates the need for Dalvik bytecode to Java bytecode conversion in order to use

Soot. The Dalvik virtual machine is register-based, which means that most of the instructions

specify a register that they manipulate. The challenge that the authors of [18] reported to face

during Dalvik code to Jimple code conversion was that unlike Dalvik which is untyped, Jimple is

typed [19]. Thus, in Dalvik the same register can hold values of different types as against Jimple

which needs the type information. The authors use Soot’s fast typing Jimple component that

implements a type inference algorithm to infer types of variables.

In [16] the authors present a tutorial on instrumenting Android apps using Soot and Aspect

Bench Compiler. This paper takes a running example of an SMS application, that simply sends

SMS by accepting a message and a receiver phone number. Using Soot and Tracematches the

authors show how SMS spams and premium rate SMSs can be detected and blocked. In our

work, similar to the example in [16], we also cater to the SMS to premium rate number problem.

We extend it by performing a Flow Insensitive Analysis to see whether the SMS that was sent
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to a premium number required an SMS in reply on the basis of which some future events are

triggered. If there is no such response awaited, we can simply skip the call to sendTextMessage(),

otherwise we choose not to skip it.

The work [17] presents a tool that instruments the app’s bytecode directly on the smartphone at

runtime (In-Vivo approach). This might cause battery to drain much faster. To demonstrate the

feasibility of their approach, the authors have provided implementation details for two use cases,

namely, AdRemover, an advertisement remover and FineGPolicy, a fine-grained user centric

permission policy system. AdRemover uses a heuristic-based static analysis approach. It checks

every try/catch block for functionalities that belong to packages used by the advertisement

libraries. If such functionalities are present then code for throwing a user defined exception is

inserted at the beginning of the try block. AdRemover assumes that developers place dangerous

code inside try/catch blocks; this might not always be true. The FineGPolicy causes invocation

of method stubs which increases the overhead. In contrast, our approach relies on conditional

skipping of method invocations.

The work [24], presents a tool that performs a very precise analysis for tracking data flows from

sources to sinks. We leverage FlowDroid’s idea of implementing a dummy main method for

Android apps so that they can have a starting point for the call graph to be built. Tracking

data is essentially a security issue as against our work, which is more focussed on improving

performance. In the work [15], researchers have argued over why static analysis techniques score

over dynamic techniques for securing Android applications. Generally speaking, runtime analysis

techniques incur undesirable time and power overhead.

In [30], the authors introduce a distributed object pool service called DOPS to efficiently manage

lifecycles of objects in distributed systems. It takes requests from middlewares, and services

these requests keeping in mind efficient utilization of memory. We in contrast use object pools in

the context of Android apps. Smartphones are very constrained when it comes to resources and

careless allocations of objects can deplete heap space quickly. Hence, the problem becomes even

more important on Android devices.
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In [11], the authors use object pools to reuse objects allocated to help real time applications

achieve predictable running times. The primitives they propose have to be used by developers

manually. We on the other hand instrument the applications so that they become self sustained.

The aforementioned works provided us useful insights to make apt design choices and motivated

us to take up this work.
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Chapter 3

R3 Architecture

3.1 R3 Architecture

Figure 3.1: R3 Architecture

The architecture of Chiromancer is shown in Figure 3.1. The user places application request

(step 1) to our server. The requested app’s APK is then fetched by our server (step 2 and 3) from

the Internet or our local repository and statically analyzed to detect probable performance issues.

The performance related configuration values originally present in the application are reported

back to the user (step 4). The user can then specify the configuration changes she wishes to

apply to the app using the GUI (step 5). Chiromancer, then modifies the requested APK based

on these inputs and re-signs the modified APK (step 6, 7 and 8 and 9). This APK can be hosted

on a server and the link to it can be sent to the person who requested the optimized version

(step 10).
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The work horse of Chiromancer is Soot’s [9] modification known as Dexpler [18], which takes

an APK as input, unpacks it, finds the Dalvik bytecode (.dex) and converts it directly into

Jimple, i.e. Java sIMPLE’ code (.jimple). Jimple is like Java but is much simpler to analyze (as

compared to Dalvik bytecode) primarily because it uses typed variable, a three address internal

representation and has only fifteen different types of statements to play with.

Soot’s phases run one by one. The Transformation phase executes first. In this phase the

application’s Jimple code is analyzed to detect method signatures of interest and the relevant

Jimple statements are inserted or parameters modified according to the input configuration.

Next, the Optimization phase optimizes the code and finally the Annotation phase performs

built-in analysis. The resultant Jimple code is now performance optimized.

Note that R3 uses the same strategy for optimizing apps with the difference that the analysis

in the Transformation phase is based on a Summary-based Interprocedural Escape analysis, a

Pointer analysis and an analysis that identifies last usage points of reference variables. Creating

an object pool in an app, recycling objects to that object pool, and fetching objects from the

pool for reuse requires significant amount of code to be instrumented. This makes the extension

to Chiromancer an interesting and challenging task.
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(a) Request Page (b) Configurations Page

Figure 3.2: GUI of the app

3.2 R3 GUI

Figure 3.2 shows the GUI of our tool. Sub-figure 3.2(a) shows the main page. This page has two

buttons - one for placing a new request for optimization and another for viewing the pending

requests. The request is placed using the URI of the app on the Google Play store and the

corresponding app APK is fetched.

Sub-figure 3.2(b) shows the page where initial configurations for an app are reported back by our

tool. Using this page, the user or developer can change the configurations and then send a request

for applying the changes. The request is forwarded to our server, where the instrumentation

happens and the optimized APK is made available for download.
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Chapter 4

Chiromancer Framework

4.1 Chiromancer Framework

We have built a custom framework on top of Soot that provides three levels of abstraction and

thus provides an easy way to develop new performance optimizations or extend the existing ones.

Figure 4.1 shows these levels of abstraction.

The outermost level provides an interactive GUI-based functionality which enables users to

register themselves and get their desired APKs optimized without requiring any knowledge about

the internal code. The next two levels modularize the framework and allow the developers to build

custom optimizations on top of our API. The multiple abstraction levels relieve the developer

from worrying about the complicated code structures that are required to be constructed while

instrumenting using Soot.

The middle level of the framework captures high level functionalities that aim to improve domain

specific performance. This level comprises of four domain specific modules - GPS Update

Frequency Optimizer (GUFO), Wake Lock Optimizer (WLO), Advertisement Remover (AR), and

SMS to Premium Number Eliminator (SPNE). These modules correspond to the performance

issues which are discussed later in Section 5.1. Together these modules assist the app users and
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developers to make effective changes to the apps. For instance, the GUFO module has one of the

methods declared as -

void modifyT imeDist(long minT ime, float minDist)

Here, minTime and minDist refer to the minimum time interval (in milli seconds) and the

minimum distance interval (in meters) respectively at which the location updates are requested.

One can set the desired location update frequency by just passing desired values as arguments to

the function call. Likewise, other modules also have several other relevant method declarations.

This middle layer would expand accommodating support for more optimizations in the future.

The innermost level of abstraction is typically meant for the developers who wish to develop

new performance-oriented optimization modules on top of our API and Soot’s API. This level

contains the generic core functionalities which can be used across several optimization modules

residing at the middle level of the framework. One such functionality used by the GUFO and

WLO is -

void mod_Param(Unit unit, int param_idx,< T > param_val)

where the first argument unit of type Unit [9] is the method whose parameter value at index

param_idx will be replaced by the value passed in param_val having type T.

14



Figure 4.1: Chiromancer Framework - Levels of abstraction
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Chapter 5

Our Approach

In this chapter, we describe various performance issues circumscribing energy consumption, data

consumption, cost to user, and memory consumption and the techniques we propose to tackle

them. The issues have been categorized under two divisions, namely ‘Reduce’ and ‘Reuse and

Recycle’.

5.1 Reduce

5.1.1 Advertisements in applications

Most apps these days have advertisement (ad) banners. According to AppBrain [6], Admobs [1]

is the most famous API for in-app advertising. These banners fetch ads from the Internet and

consume a significant portion of the total network data consumed by the app. This way, the per-

mission to access the Internet can be misused by the developers. Moreover, advertisement libraries

also dramatically affect mobile phone’s battery backup. Indeed, third-party advertisements can

be held responsible for up to 65%-75% of energy spent in free applications [28].

Solution: In order to avoid consumption of data by advertisements we instrument appropriate

code in the app for skipping the call to the loadAd(AdRequest new AdRequest()) method. Figure

5.1 shows the Jimple code after injection of code to skip an advertisement load call. The

alpha-numeric identifiers that begin with a ’$’ symbol are local variables generated by Jimple for
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Figure 5.1: Advertisement application Jimple code after injection

adhering to its three address code representation. The users, prior to installation, can decide

whether they wish to see any advertisements and can then proceed to install the application.

In contrast, the authors of [17] propose two use cases - AdRemover and FineGPolicy. As

mentioned in section 2.1, AdRemover assumes that developers place potentially dangerous code

in try/catch blocks, however, this might not always be true. FineGPolicy causes invocation of

method stubs instead of actual methods for those methods for which permission has not been

granted. This increases the overhead because the method’s local variables and other context

related information has to be encapsulated in a stack frame and stored on the call stack.

Furthermore, in [17] the authors instrument the app’s bytecode directly on the smartphone. This

could drain the battery very quickly and hence is not advisable. Our technique can be extended

to work for other advertisement libraries also by adding their respective load advertisement

method signatures.

5.1.2 SMS to premium rate numbers

A very common issue that incurs cost is sending SMSs to premium rate numbers. Many

applications ask the permission for sending SMSs. Unfortunately, there is no restriction built in

the security model of Android that checks whether the target number is a premium rate number

or not.

Solution: To avoid exorbitant expenditure we inject application code to skip execution of

the sendTextMessage(String destinationAddress, String scAddress, String text, PendingIntent
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sentIntent, PendingIntent deliveryIntent) method if the recipient’s number is a premium rate

number, just like the authors have shown in [16]. Figure 5.2 shows the code after injection of an

if clause in the Jimple file to check whether the number is a premium rate number. The code is

injected irrespective of whether the application will send SMS to a premium rate number or not.

Then, during runtime depending on the recipient’s phone number entered by the user, the SMS

is either sent or blocked, i.e., the control would skip over the code that sends the message, only

if the target number begins with “0900”, and resume execution from a nop statement identified

by label 0.

We further extend this implementation to take care of a situation where an SMS to a premium

number is sent and a response is awaited as a reply. This might happen when some other task

depends on the content that is sent back as a response. In such a case we cannot skip the execution

of sendTextMessage() method because then it would break the app. This entails implementing a

Flow Insensitive Analysis that checks whether the code has a createFromPdu(byte[] pdu) method

which converts a Protocol Data Unit (PDU) to an SmsMessage [7] object. This confirms that

the message contents will be used further.

We use Flow Insensitive Analysis because in Android apps, Activties and Services can be directly

called from any other activity even if it belongs to a different app. This results in Android apps to

have multiple entry points. Hence, it is difficult to accurately predict whether the createFromPdu

() method comes before or after the sendTextMessage() method call. It is evident that such

conditional skipping of method calls would not have been possible by using AspectJ because of

its inability to discover a call to createFromPdu() when it detects a sendSms() Join Point [23].

Figure 5.2: Premium rate SMS application Jimple code after injection
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5.1.3 GPS location update frequency is too high

Global Positioning System, now common in smartphones, used to accurately locate a user, is

an accomplice in draining battery. GPS requires communication with three to four satellites to

accurately locate a device. There is no time division during the communication and therefore

the antenna needs to be powered all the time during the communication period. This prevents

the phone from going into a sleep state. Matters get even worse when the location updates are

required very frequently with short time gap and short difference in distance. Short location

update intervals are often unnecessary and cause significant battery drain.

Figure 5.3: GPS Location application Jimple code before injection

Figure 5.4: GPS Location application Jimple code after injection

Solution: We let the users decide the parameters to be passed to the requestLocationUp-

dates(String provider, long minTime, float minDistance, LocationListener listener)

method. Users know better whether they will be travelling on foot, by train, or by car. Therefore

it becomes necessary to give the users the freedom to decide the location update intervals. The

users can input the frequency at which they want the application to make location updates. This

value is replaced in the parameter of the requestLocationUpdate(). Figure 5.4 shows the Jimple

code after parameter replacements. The parameters were 0 milli second and 20 meters initially

and were changed to 10,000 milli seconds and 200 meters respectively after optimization.
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Table 5.1: Wake lock levels and component On/Off information

C.V. Flag Value CPU Screen K.B.
1 PARTIAL_WAKE_LOCK On* Off Off
6 SCREEN_DIM_WAKE_LOCK On Dim Off
10 SCREEN_BRIGHT_WAKE_LOCK On Bright Off
26 FULL_WAKE_LOCK On Bright Bright

Here:

C.V. - Constant value representing different wake locks
K.B. - Keyboard
*Note that if you hold a partial wake lock, the CPU will continue to run, regardless of any display timeouts or the state of
the screen and even after the user presses the power button. In all other wake locks, the CPU will run, but the user can
still put the device to sleep using the power button.

5.1.4 Inappropriate wake lock acquired

The wake lock mechanism informs an application about the duration for which the device

should keep its screen, CPU or keyboard active. The screen consumes maximum battery in

Android phones. Careless use of this API can drain the battery quickly. Various wake lock

levels along with their corresponding constant values that are taken as the first parameter by

the PowerManager.WakeLock newWakeLock(int levelAndFlags, String tag) method are shown in

Table 5.1. The table also shows the corresponding components that remain on or are allowed to

switch off when one acquires a particular wake lock.

Figure 5.5: Wake lock application Jimple code before injection

Figure 5.6: Wake lock application Jimple code after injection

Solution: We allow the users to decide which wake lock they want the application to acquire.

Then we replace the parameter of the PowerManager.WakeLock newWakeLock() by the one

supplied by the user. For instance, a user can replace a FULL_WAKE_LOCK by PAR-
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TIAL_WAKE_LOCK [7] to save energy. Figure 5.5 and Figure 5.6 respectively show Jimple

code before and after replacing the original wake lock level parameter by the one supplied by the

user. Here, “1” denotes PARTIAL_WAKE_LOCK and “6” denotes FULL_WAKE_LOCK.

5.2 Reuse and Recycle

5.2.1 Inefficient Heap space utilization

When a large number of short-lived objects are created and left at the discretion of garbage

collector to be collected, memory and as a result end users suffer. The allocated memory is

held until garbage collection spins into action. When it does get invoked, the garbage collector

introduces pauses which result in jitters. This commonly happens when generating animation

graphics, sounds, or performing some repetitive tasks. Figure 5.7 shows a screenshot from a

famous game called ‘Hill Climb Racing’, which shows multiple stone-like objects that get created

whenever the tyres of the vehicle rub against the surface of the road. These are short-lived objects

that get created and discarded quickly in large numbers and thus impose a heavy overhead on

the Dalvik garabage collector.

Figure 5.7: Hill Climb Racing: Short-lived objects

Large number of object allocations also cause fragmentation and might require frequent com-

paction. If such objects encapsulate a resource like a database or network connection, which is

expensive to acquire, there will be a greater performance hit. As a result the user experience

suffers. We propose that these short-lived objects must be shared with other apps so that they
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can be reused. We advocate recycling objects to fixed size object pools specific to every class.

This is also referred to as the Object Pool design pattern [8] in literature.

The pool size should ideally be adjusted based on the app. However, it should remain constant

for an app otherwise increasing/decreasing the pool data structure size requires data to be copied

and as a result the idea of predictable execution time goes for a toss. We use fixed size arraylists

as object pools and create separate arraylists for every class of objects except Java library classes
1.

If we do not use separate arraylists for every class and store different sized objects in the same

pool then this would cause space to be wasted because each slot in the arraylist would have to be

of the size of the largest sized object. Furthermore, if we use a common arraylist for all classes of

objects then a large number of allocation of one kind of object will fill up the arraylist and leave

no room for pooling other objects.

From the pool of recycled objects, the objects are picked according to the last in first out policy

and an index variable helps to mark the current size of the pool. All objects in the arraylist

pool from index 0 to the integer value of the index variable are free to be reused. However,

before being picked from the pool for reuse the field of the objects would have to be re-initialized

appropriately. The pool size should not be too large nor too small. Big pools will hold too many

objects all of which might not be reused and small pools will hold too less and the app might

have to fall back on the usual way of allocating objects using the new statement.

Evidently, there is a space-time tradeoff involved, i.e. to save time for re-allocation of these

objects, we are preventing them from getting garbage collected by caching them in an object

pool created in the RAM. Note that we cannot store the object pool in the storage (secondary

memory) of the device because the access time required to a pool in the storage of the device

would increase the jitters instead of reducing them.

In order to identify shareable objects we target loop constructs since loops can cause objects to

be created in bulk. We leverage Escape analysis [3] to figure out if these objects are short lived.

If these objects escape the scope of the method then there is a high possibility that they will be
1Java library class objects are not pooled because the resetting of their fields requires prior knowledge of the

default field values. If such default values are available we can add support for Java library class objects as well.
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used ahead, in such a case we do not add them to a pool or create a pool for them if it does not

exist. If they do not escape, then we can recycle them to a pool specific to that class of objects

or create a fixed size pool if the pool does not exist. We use a Context Sensitive Interprocedural

Summary based Escape analysis for the purpose of identifying whether a particular variable

escapes or not.

After identification of the poolable objects (those that do not escape the scope of the loop), we

perform an analysis, which we call ‘LUP Analysis’, to identify the ‘Last Usage Point’ of these

objects. The last point of usage is precisely where we instrument the code to release the objects

to the object pool.

Please note that there is also a need for performing a Points-to analysis [33] before the Escape

and LUP analysis. This is because two or more different reference variables (forming an alias set)

can refer to the same object. In the case of Escape analysis, even if one of the variables in the

alias set escapes then the object would have escaped. In the case of LUP analysis, the last usage

of all the variables in the alias set needs to be identified. The variable that is used last among

them will indicate the target intrumentation site. Hence, the use of all reference variables in the

set would have to be tracked. We use Soot’s built-in component called Soot Pointer Analysis

Research Kit (SPARK) framework [14] for performing a subset based Points-to analysis based on

the Anderson’s algorithm [29].

5.2.2 Heuristics

We also apply certain heuristics to prune the set of objects we would like to reuse. This feature

is optional and can be used for large apps so that focus of the optimization remains on objects

that are created in large numbers. The heuristics we use are as follows:

1. We determine whether objects of a specific type actually need to be stored a pool. If new

objects of the same type are never created again in the app, then there is no need for

storing them in a pool of their own. Infact, there is no need for creating a pool for them at

all. 2

2In Android, due to the event driven nature of apps, certain callback methods like onClick(), onLongClick(),
onFocusChange(), etc. can be called multiple times based on appropriate user events. Hence, even if object
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2. Objects created directly within loops are given priority.

3. Objects created inside methods which are called from within a loop are given priority.

4. Method that has one or more allocation statements and has a large betweenness centrality [31]
3 in the call graph is given priority.

5.2.3 Modules

The overall process for enabling object reuse comprises of four modules, namely Interprocedural

Escape Analysis Module, Poolable Sites Identifier Module, Last Usage Point Identifier Module

and Bytecode Instrumentation Module.

To illustrate the working of the first two modules we consider the following code snippet from

our custom made app known as SlideShow. The app is available at [5] for reference. This app

presents a slide show of 9 images by picking the images one at a time and displaying them in

an ImageView [25] based on the iterations of the loop. If the number of iterations is greater

than 9, then we take a modulo 9 to stay in the range of available images. We could have added

more images to avoid repetition, but, the aim here is to illustrate reuse of objects and a few

images were enough for the purpose. For every new image, a new class A object is created and

the image is encapsulated inside it in the img field. arr_i and arr_f are instance fields that

make class A objects heavier. The code excerpt given below has a few methods omitted from the

MainActivity class, so as to emphasize on the relevant portions of the app only.

1 class A{

2 int arr_i[] = new int[100000];

3 float arr_f[] = new float[100000];

4 int num; Bitmap img;

5 public A(){

6 num=10;

7 }

allocation happens once in such callback methods, they might be called multiple times during the lifetime of the
app. For optimizing such allocations one should not use this heuristic.

3Betweenness centrality of a node (in a graph) quantifies the number of times that particular node appears as a
bridge along the shortest path between other two nodes. While calculating betweenness centrality, we also include
paths which have the node in question as their terminal or initial node.
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8 public String printNum(){

9 return ""+num;

10 }

11 }

12 class B{

13 private A a;

14 public String doSomething(A a, A aa){

15 this.a = a;

16 System.out.println(aa.num);

17 return a.printNum();

18 }

19 }

20 public class MainActivity extends Activity{

21 TextView tv ; ImageView iv;

22 protected void onCreate(Bundle savedInstanceState){

23 super.onCreate(savedInstanceState);

24 setContentView(R.layout.activity_main);

25 iv = (ImageView) findViewById(R.id.imageView1);

26 tv = (TextView) findViewById(R.id.textView1);

27 final Button button = (Button) findViewById(R.id.btn_heap);

28 button.setOnClickListener(new View.OnClickListener(){

29 public void onClick(View v){

30 createObjects();

31 }

32 });

33 }

34 public void createObjects(){

35 A aObj;

36 B bObj = new B();

37 TypedArray imgs = getResources().obtainTypedArray( R.array.image_ids);

38 int i = 0;

39 while(i<10){

40 aObj = new A();
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41 A aa = new A();

42 int resid = imgs.getResourceId(i%9, -1);

43 aa.img = decodeSampledBitmapFromResource( getResources(), resid, 100,100);

44 tv.setText(bObj.doSomething(aObj, aa));

45 new UpdateImages().execute(aa.img);

46 i++;}

47 }

48 //Remaining method/inner class definitions

49 }

Listing 5.1: Code snippet from SlideShow app

A detailed description about the functions of each of these modules is as follows:

5.2.3.1 Interprocedural Escape Analysis Module (IEAM)

The process kicks off by generating a precise call graph of the target Android app by leveraging

the capabilities of FlowDroid [24]. FlowDroid models the complete lifecycle of Android and its

callback methods very precisely. Since Android apps do not have a single entry point (and focus

more on callbacks), FlowDroid generates a special dummy main method which emulates all the

possible flows and thus acts as an entry point for an app’s call graph.

Figure 5.8 shows a part (relevant for further discussion) of the generated call graph overlaid on a

CFG for SlideShow app. The dotted arrows represent the inter-procedural method invocations,

while the solid ones mark the order of execution within a method. The numbers mentioned

at the right end of each rectangular enclosure denote the order in which the corresponding

statement is encountered in the control flow. The dummyMainMethod() (not shown) generated

by FlowDroid calls the onCreate() method (not shown) of MainActivity which in turn invokes

the createObjects() method of the same class when the user clicks on the button having ID

btn_heap. The method createObject(), as evident from the figure, makes an interprocedural call

to doSomething() method of class B which further calls printNum() method of class A.
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Figure 5.8: Call graph overlaid on a CFG and Escape Analysis for SlideShow app

After the call graph generation, we perform a Summary-based Inter-procedural Escape Analysis

(SIEA) in order to identify those objects that escape the scope of a method. An object is said

to “escape” a method if the lifetime of that object is not restricted to the method in which

it is defined. In other words, if that object can be accessed from other methods within the

application, then it is said to have “escaped” the method where it is defined. SIEA is implemented

by extending the abstract class AbstractInterProceduralAnalysis defined in Soot API [9]. The

analysis requires that every method in a call graph be associated with a “summary”. A summary,

in our context, refers to a set of objects that escape the scope of a given method.
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The summary of a method can be computed using solely the summaries of the callee methods. The

intra-procedural escape analysis (IEA) is responsible for computing the summary of a particular

method, given the summary of all the methods invoked by it. Thus it becomes mandatory for

the SIEA to call the IEA in a reverse topological order of method dependencies so that the

summaries of callee methods is known at the time of performing IEA for the concerned method.

IEA itself is implemented as a backward flow analysis [26] which marks an object as “escaped”

if it is assigned to a static or an instance field of any class. The variables that are directly or

transitively assigned to already deemed escaped variables are also considered as to have escaped.

For every method call encountered during analysis, we fetch the summary for the callee method.

The formal arguments that escape from the callee method are mapped to the corresponding

actual arguments. The identified arguments thus form the set of escaped variables and are added

to the In set for the call site.

For each program point inside a method, IEA determines the variables that may have escaped

on some path from that point. We describe the set of escaped variables at entry and exit of

every statement Si in a method as a pair denoted by Ini and Outi respectively. These sets are

initialized and then propagated through the unit graph [9] in a backward manner until a fixed

point [26] is reached.

The flow functions for IEA are expressed as

Outi =

 φ if Si is exit node in CFG⋃
{Inj | Sj∈ succs(Si) otherwise

Ini = Outi ∪ Esci; where

Esci =



{y} | Si: x = y if x is static/instance field

{y} | Si: x = y if x has already escaped

{y} | Si: x.func(y) if x is a (or alias of) field and x ∈ java.util.Collection

{pi} | Si: x = f(p1,pi) if pi∈ summaryf

φ otherwise
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Here, Esci corresponds to the set of variables that have escaped due to the presence of code

statement Si in a method. The Esci acts as the Gen set and there is no Kill set required for our

analysis. If f is a method, then “summaryf” denotes the summary of method f. Those variables

which are added to a field that belongs to the java.util.Collection package (such as Set, List,

Map, Vector etc.) using the add(), addAll(), put(), putAll(), etc. methods are also added in the

Esci set. The method func() used in the definiton of Esci set, thus may refer to any java library

method which is responsible for adding an object to a collection object. Figure 5.8 shows the

corresponding Ini and Outi sets for each statement Si in the call graph where i is the number at

the extreme right of the rectangular enclosures.

5.2.3.2 Poolable Sites Identifier Module (PSIM)

This module runs in parallel with the IEAM. At the time of identifying the set of escaped objects

for a method; we also detect the presence of loop constructs, if any, in that method. LoopFinder

of Soot API [9] was used to detect loops and extract the loop body. After identification of loop

constructs in the method, we find those objects which are allocated memory using new operator

within the loops. All these newly allocated objects are then checked for containment in the In

set of the method’s first statement. The absence of the object in the In set indicates that it does

not escape the scope of the method and hence the objects generated at such an allocation site

can be safely pooled for reuse. We mark all such identified objects as “poolable objects” and

refer to such allocation sites as “poolable sites”.

Please note that the objects escaping the method will be a superset of the objects escaping any

loop in that method. Hence, instead of checking containment in the loop’s first statement’s In

set, it suffices to check for containment in the In set of the first statement of the method.

The createObjects() method in Figure 5.8 contains a while loop within which two objects of

class A, namely, aObj and aa are allocated memory. The set of objects that escape from this

method, as revealed by SIEA, contains aObj but not aa because aObj gets assigned to a field in

doSomething() method and hence escapes, however, aa does not. Thus, only the object allocation

A aa = new A() is marked as poolable.
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5.2.3.3 Last Usage Point Identifier Module (LUPIM)

After getting the poolable sites from the PSIM, we track the object reference variables that

refer to the poolable objects using our LUP analysis. This analysis uses Points-to analysis to

figure out which set of reference variables can possibly point to the same object. Leveraging this

information it tracks program points where these variables are used and finds the last point of

use for a particular poolable object. We refer to such a point in the program as “recyclable site”.

The strategy works by creating “alias sets” containing reference variables that point to the same

poolable object. Thus, we get a cluster of such sets; one set for every poolable object. Now, we

apply a modification of Live Variable analysis [32], which we call LUP analysis. For each program

point inside a method, LUP analysis determines the variables that must have a subsequent use

on some path from that point.

The analysis uses the following flow functions.

Outi =

 φ if Si is exit node in CFG⋃
{Inj | Sj∈ succs(Si) otherwise

Ini = Outi ∪Geni; where

Geni =



{var(y)} if Si: x=y

{var(y)} if Si: x=if(y)

{var(y)} if Si: x=while(y)

{p} if Si: x=f(p)

φ otherwise

Here, y is an expression and var(y) means variables evaluated in the expression y. Using the

aforementioned flow functions we find the first program point in the control flow where all

variables in a particular alias set of an object become dead. This will be the point where we can

insert code to recycle that object (recyclable site). The technique to do this is as follows.

In the control flow graph, we search for statements which have none of the variables belonging to

a particular alias set in their In sets and Out sets. We collect all such statements in a set A.
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Now we find successors of each of these statements and store them in another set B. Now the

set difference between set A and set B gives the first such statement whose In and Out sets are

devoid of any variables present in a particular object’s alias set. We instrument code before this

statement and call this program point as the “recyclable site”.

Note that unlike Live Variable analysis, the Kill set is not present in the flow functions. This is

because the Points-To analysis performed by Spark is a flow insensitive analysis and if a reference

variable is re-defined in the code to refer to a new object then the points-to set of the reference

variable will have both the objects. Hence, even if one of them escapes then the variable will be

present in the summary for that method and as a result both the objects will not be recycled

back to the pool. Thus, we will miss an opportunity to optimize, which is due to a weakness

(flow-insensitivity) of Spark.

If present, the Kill set for a particular statement would have contained the variables that are

re-defined to refer to some newly allocated object on that statement. If Kill set is added to the

flow sets with this weakness unresolved, then the instrumentation point detected by LUP could

be wrong and the reason is the flow-insensitivity of Spark. Hence, we hope that Spark developers

would make it flow-sensitive in the future and then we would be able to catch more cases for

optimization and the correct instrumentation points in case the same reference variable is used

to refer to multiple newly allocated objects.

In order to show the working of LUP analysis in conjunction with a Points-to analysis to identify

“recyclable sites” we consider a third party app available at [21]. Figure 5.9 illustrates the process

of identification of recyclable sites. The In and Out sets, in accordance to the flow functions

mentioned above, are shown for every statement of the testPool() method. The Points-to analysis

will create the alias set {point, points[i]}. Now both the elements of this alias set are not present

in the In and Out sets of statements 8, 9, 10, 11, and 12. The set of these statements is the set

A. The set formed by taking successors of each of these statements is {9, 10, 11, 12}. Taking

the set difference (A - B), we get 8 which is the first statement which has no element from a

particular alias set in its In and Out sets. This will be our “recycle site” and we instrument

statements for recycling the object just before this statement.
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Figure 5.9: CFG of testPool() method and LUP analysis on SlideShow app

5.2.3.4 Bytecode Instrumentation Module (BIM)

Once the recyclable sites have been identified, we move into the instrumentation phase. We

leverage the template, available at [21], suggested by Andrea Bresolin for implementing the

Object Pool design pattern. However, we have made significant changes to this template for

making it fit for our purpose. The app at [21] was originally developed for manifesting object

reuse by leaving the ownness of detecting opportunities for object reuse on the developer and the

developer would have to manipulate code to reuse objects. However, in our work we automate

the entire process and relieve the developer from this arduous task. This automation necessitated

changes to the template suggested at [21]. The instrumentation is done according to the following

template.

We instrument the original class’s definition to add initialization functionality for initializing

the objects that will be reused. The initializePoolObject() method is invoked when an object is

retrieved from the pool. This method resets the field of the object using values from the object’s

constructor. Multiple initializePoolObject() methods get created if there are multiple constructors
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defined in the class. We simulate the code of the constructor by copying statements from it.

However, we do not copy the java.lang.object’s init() method call because this is responsible for

allocating space to the object. Some additional features of the reset functionality are as follows:

(a) Those fields that are of primitive data type and are not initialized in the constructor are

assigned default values as per the Java compiler.

(b) StringBuilder fields are emptied so that they become empty strings.

(c) Arrays of primitive types are filled with their default values.

(d) Collections are cleared.

(e) Those fields which are not initialized in the constructor and are of a user defined type are

initialized with null if and only if they are not allocated space in the constructor using

the new statement. However, if they are allocated space, then we call their respective

initializePoolObject() methods.

(f) We do not reset values of static and final instance fields because static fields retain their

values as their scope is the scope of the entire class and final fields cannot be re-initialized.

(g) We initialize the variables that are inherited from a parent class which is one level higher in

the inheritance hierarchy using the constructor of the parent class. Those variables that are

inherited from Android library classes are not initialized because of the unavailablity of the

constructor’s implementation. The implementation of Android library class constructors is

not present in the android.jar, rather the methods/constructors are only defined as stubs.

Hence, we try to synthesize initializePoolObject() method on a best effort basis since a precise

resetting of the fields of an object would require the source code of the Android API, which

currently resides on the devices only and is not a part of the android.jar.

We also instrument an ObjectPool class which has one parameterized constructor - ObjectPool(int

maxSize) this constructor takes as parameter the maximum size of an object pool for a particular

class that one wants to use. Note that the size will remain fixed throughout the life of the app.

The ObjectPool class has three other methods, namely:
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1. hasObject() - which checks whether there is any object left in the pool so that it can be

reused

2. getObject() - which fetches an object from the object pool

3. freeObject(Object obj) - which stores the object obj in a pool if the maximum limit of the

pool is not exceeded

In case the object pool is empty, then objects are created using the new statement. Hence, our

approach falls back on the regular way of allocating objects in case none is available in the pool.

We instrument a BufferPool class which has a constructor that instantiates a HashMap<String,

ObjectPool>. There will be one object pool for every class. Hence, we create a hashmap for

storing a pool corresponding to every class. The BufferPool class has three other methods,

namely

1. isObjInPool(String c) - which returns true if a pool exists for a particular class and it has

atleast one object. It calls hasObject() on the pool object internally to accomplish this.

2. getObject(String c) - which fetches the pool corresponding to class ‘c’ and calls getObject()

on it

3. saveObject(String c, Object o) - which checks whether a pool exists corresponding to

class ‘c’ and creates a pool if it does not exist and adds the object ‘o’ to it by calling

freeObject(o), otherwise it only adds an object to the pool corresponding to class ‘c’ by

calling freeObject(o)

Thus, if the object pool already exists it is not created again and the objects are released to the

pool straight away after the recyclable site. Moreover, both the getObject() and freeObject(Object

obj) methods are synchronized so that consistency is maintained when multiple threads try to

access the pool.

The app at [20] is a minor modification of the app available at [21]. The difference is that the

PointPoolObject has been made heavier by the addition of an array field and the third loop in
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testPool method has been moved to a method in a separate class to show the benefits of R3

across classes. Rest of the app is the same.

The app [20] creates multiple instances of the PointPoolObject class, which extends the Point

class, in a loop. The testPool() method of the MainActivity class and useObjects() method of the

classB class from the unoptimized version of the app are shown below. In the first for loop of

testPool() method, PointPoolObject class objects are created and stored in a loop. In the second

for loop, the app iterates over the array to fetch the PointPoolObject objects from it and uses

them. Finally, there is a call to the useObjects() method of classB class in which the re-allocation

of PointPoolObject class objects takes place.

1

2 public class MainActivity extends Activity implements OnClickListener

3 {

4 //Appropriate field declarations

5 //onCreate() method definition

6

7 @Override

8 public void onClick(View v)

9 {

10 if (v == testExceedPoolBtn)

11 {

12 testPool( 1000, testExceedPoolText);

13 }

14 }

15

16 private void testPool( final int POINTS_COUNT, TextView textView)

17 {

18 PointPoolObject point;

19 PointPoolObject[] points = new PointPoolObject[POINTS_COUNT];

20 Debug.startAllocCounting();

21

22 for (int i = 0; i < POINTS_COUNT; i++)

23 {
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24 point = new PointPoolObject();

25 points[i] = point;

26 }

27

28 for (int i = 0; i < POINTS_COUNT; i++)

29 {

30 point = points[i];

31 //no pool storing happens here

32 }

33 new classB().useObjects(POINTS_COUNT);

34

35 Debug.stopAllocCounting();

36 int ac = Debug.getThreadAllocCount();

37 textView.setText(ac + " ac");

38 }

39 }

40

41 public class classB {

42 public void useObjects(int POINTS_COUNT)

43 {

44 PointPoolObject[] ps = new PointPoolObject[POINTS_COUNT];

45 PointPoolObject p;

46 for (int i = 0; i < POINTS_COUNT; i++)

47 {

48 p = new PointPoolObject();

49 ps[i] = p;

50 }

51 }

52 }

Listing 5.2: Code before optimization
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We manifest object reuse by recycling to the pool object instances (created in the first loop) after

their last usage (in the second loop) and reusing them later when required in the third loop. The

optimized version of the testPool() method and useObjects() method is shown below.

1 public class MainActivity extends Activity implements OnClickListener

2 {

3 //Appropriate field declarations

4 //onCreate() method definition

5

6 @Override

7 public void onClick(View v)

8 {

9 if (v == testExceedPoolBtn)

10 {

11 testPool( 1000, testExceedPoolText);

12 }

13 }

14

15 private void testPool(final int POINTS_COUNT, TextView textView)

16 {

17 PointPoolObject point;

18 PointPoolObject[] points = new PointPoolObject[POINTS_COUNT];

19 Debug.startAllocCounting();

20 BufferPool buffer = MainActivity.buffer;

21 for (int i = 0; i < POINTS_COUNT; i++)

22 {

23 String c = "PointPoolObject";

24

25 if(buffer.isObjInPool(c))

26 {

27 point = (PointPoolObject) buffer.getObject(c);

28 point.initializePoolObject();

29 }

30 else
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31 {

32 point = new PointPoolObject();

33 }

34

35 points[i] = point;

36 }

37 for (int i = 0; i < POINTS_COUNT; i++)

38 {

39 point = points[i];

40 String c = "PointPoolObject";

41 buffer.saveObject(c, point);

42 }

43 new classB().useObjects(POINTS_COUNT);

44

45 Debug.stopAllocCounting();

46 int ac = Debug.getThreadAllocCount();

47 textView.setText(ac + " ac");

48 }

49 }

50

51 public class classB {

52 public void useObjects(int POINTS_COUNT)

53 {

54 PointPoolObject[] ps = new PointPoolObject[POINTS_COUNT];

55 PointPoolObject p;

56 for (int i = 0; i < POINTS_COUNT; i++)

57 {

58 String c = "PointPoolObject";

59 if(buffer.isObjInPool(c))

60 {

61 p = (PointPoolObject) buffer.getObject(c);

62 p.initializePoolObject();

63 }
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64 else

65 {

66 p = new PointPoolObject();

67 }

68 ps[i] = p;

69 }

70 }

Listing 5.3: Code after optimization

As can be observed from the aforementioned code, on line 41 the optimized app now recycles

objects to the object pool after their last usage. On lines 25-29 and 59-63, before creating new

objects of a specific type the pool is checked for pre-existing objects of that type. If the same

type of objects are present in the pool they are reused after appropriate re-initializion using the

initializePoolObject() method. In case there are no objects of the same type available for reuse in

the pool then the app falls back on the new allocation statement as is evident from line 32 and

66.

The initializePoolObject() method is instrumented in the class of the object. In the sample app,

the code that was instrumented for the initializePoolObject() method is as follows. It initializes

the primitive integer fields inherited from Point class to 0.

1 public void initializePoolObject()

2 {

3 x = 0;

4 y = 0;

5 }

Listing 5.4: Code after optimization
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Chapter 6

Evaluation

6.1 Evaluation Overview

In this section first we elicit the improvements that Chiromancer yields using three third party

applications. Then we elicit the benefits of the extension (memory optimization) to Chiromancer

by showing memory utilization results from another third party application.

We discuss the testbed for experimenting with Chiromancer and its extension. Then we discuss

the methodology for collecting data and manifest the results from the experiments conducted on

the third party applications.

6.2 Testbed

The applications - Accelerometer Monitor, Swing Ball, and GPShake Lite were chosen be-

cause they had advertisements, dim wake lock [7], and very frequent GPS location updates

respectively. We performed our experiments with these three applications on two Android phones-

(a) Sony Xperia P LT22i (dual-core, 1 GHz Cortex-A9 processor, 1 GB RAM, Android version

4.1.2)

(b) HTC Explorer (single-core, 600 MHz Cortex A5 processor, 512 MB RAM, Android version

2.3)
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For Accelerometer Monitor application, which has an advertisement, we are concerned only

with the network data consumption, whereas for Swing Ball and GPShake Lite, only energy

consumption is considered.

Xperia P had screen brightness set to “Adapt to lighting conditions” and the display timeout set

to 1 minute. On Explorer, the brightness was set to 50% and the timeout was set to 10 minutes.

All the readings for Swing Ball application were taken in the same light conditions.

For the memory optimization we considered the app available at [21] and performed the experi-

ments on Moto G. As mentioned earlier in Section 5.2, we illustrate the reuse of PointPoolObject

objects created by the app in a loop. The app, before instrumentation, can be downloaded

from [20] and after transformation the app looks like the one available at [27]. The code that is

instrumented during the transformation is as mentioned in Section 5.2.

6.3 Methodology of Collecting Results

We ran two versions (unoptimized and optimized) of the same application on the phones and

collected energy and data consumption readings (whichever appropriate). The optimized (OPT)

and unoptimized (U-OPT) versions of the application were both run ten times for a duration T

= 180 seconds each. The energy and data consumption were measured by using PowerTutor [4]

and Traffic Monitor [4] respectively. Table 6.1 tabulates the data and energy consumption

statistics obtained from both the phones for the three applications.

Accelerometer Monitor [2] application has an ad from Google’s AdMob [1], which forms a

significant portion of the total network data consumption. Our tool generates an optimized

version of this application by skipping the loadAd() method calls. The statistics in Table 6.1

show that data consumption for this application reduced by a factor of 12.2 for Xperia P and by

a factor of 33.94 for Explorer.

Similarly, Swing Ball application [2] was used to show improvements achieved by wakelock

manipulation. This application originally had SCREEN_DIM_WAKE_LOCK [7] which was
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Table 6.1: Chiromancer Evaluation Results

Application Version Metric Sony HTC

Accelerometer
Monitor

U-OPT
Davg 20.4 17.99
R 10 10

S.D. 2.57 0.43

OPT
Davg 1.67 0.53
R 10 10

S.D. 0.97 0

Swing Ball

U-OPT
Eavg 114.84 176.02
R 10 10

S.D. 3.31 4.01

OPT
Eavg 60.88 73.5
R 10 10

S.D. 3.13 1.6

GPShake Lite

U-OPT
Eavg 1.98 1.42
R 9 9

S.D. 0.28 0.14

OPT
Eavg 0.53 1.02
R 9 9

S.D. 0.15 0.05
Here:
U-OPT : Un-optimized and OPT : Optimized
Eavg : Average energy consumed by the application in Joule where the average is over R readings of E
E : Total energy consumed by application in Joule in time T
Davg : Average network data consumed by the application in KB where the average is over R readings of D
D : Total network data consumed by application in KB in time T
R : Number of readings over which Eavg and Davg are calculated
S.D. : Standard Deviation of the R readings

changed to PARTIAL_WAKE_LOCK [7] after optimization. The total energy consumed, E is

recorded as

E = ECP U + ELCD + E3G

where ECP U , E3G and ELCD denote the energy consumed by CPU, 3G service usage and device

screen respectively in time T. Statistics from Table 6.1 clearly show that energy consumption

for Swing Ball application reduced by a factor of 1.88 in Xperia P and by a factor of 2.39 in

Explorer.

Finally, GPShake Lite application [2] was used to show the improvement achieved after reducing

the location update frequency to 200 meters or 10 sec from 20 meters or 0 sec respectively. The

total energy consumed, E is given by

E = ECP U + E3G
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where ECP U and E3G represent the energy consumed by CPU and 3G service respectively for

time T. The results in Table 6.1 show a decrease in energy consumption by a factor of 3.7 on

Xperia P and by a factor of 1.39 on Explorer. GPS consumes considerably more time and

energy for the first location fix. Hence, the first reading, being an outlier, has been ignored

and the average has been taken over the remaining nine readings. The improvements offered by

Chiromancer are evident from these experiments.

Figure 6.1: GPShake Lite results OPT v/s U-OPT for both phones

Figure 6.2: Swing Ball results OPT v/s U-OPT for both phones

The results from our experiments on the three applications are also depicted as line charts 1

in Figures 6.1, 6.2 and 6.3. The solid lines corresponds to Sony Xperia P readings and the

dashed lines correspond to HTC Explorer. Lines in red color are for Un-optimized readings
1Note that the readings are not continuous and the lines are drawn in order to show the trends that were

observed.
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Figure 6.3: Accelerometer Monitor results OPT v/s U-OPT for both phones

and lines in green are for Optimized readings. The X axis represents the reading count and the

Y axis represents the energy or data consumed by the app. These charts clearly highlight the

improvements that Chiromancer has to offer.

Next we show the initial results from our memory optimization in Table 6.2. The application

used for evaluation is available at [20] and [27], before and after optimization respectively, and

the phone on which the experiments have been performed is Moto G. Figures 6.4(a), 6.4(b) and

6.4(c) depict the results as a graph. In Table 6.2, the record where the pool size is 0 indicates

the readings for the unoptimized case. Rest of the readings are recorded for the optimized case

by varying the pool size from 100 to 1000 at intervals of 100.

Table 6.2: Memory Optimization Evaluation Results

Pool Size # Objects Created Tavg(ms) Savg(KB) # GC invocations
0 4000 184 34023 11

100 3800 153 34016 11
200 3600 145 25953 10
300 3400 144 25318 10
400 3200 145 17945 9
500 3000 137 17930 9
600 2800 178 9891 8
700 2600 114 9874 8
800 2400 115 1842 7
900 2200 114 1836 7
1000 2000 80 59 6

Here:
Savg : Average heap space freed due to GC in KB where the average is over 10 readings
Tavg : Average pause times for GC in ms where the average is over 10 readings

44



As can be observed from Table 6.2, the number of objects that get created, time spent by Dalvik

garbage collector collecting garbage, space freed due to GC, and the number of GC invocations

all are inversely proportional to the pool size. These results indicate that the object pool design

pattern when used for Android apps can reduce the overhead on the Dalvik garbage collector

significantly.
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(a) # of Objects v/s Pool Size

(b) Average Pause Times v/s Pool Size

(c) Heap Space Freed v/s Pool Size

Figure 6.4: Results from Memory Optimization
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Chapter 7

Discussion

7.1 Strengths

The approach we have used builds on tools like Dexpler and Soot therefore it takes advantage

of their strengths. The memory based optimization presented as an extension to Chiromancer

creates an Object Pool ands shares it with other apps to promote object reuse. The properties of

our object pool are as follows:

(a) The Object Pool falls back on the new statement if it cannot cater to a request for an object.

(b) We prefer fixed size arraylists. This is because allowing expansion and contraction of the

data structure would introduce irregular store times.

(c) The object pool facilitates initialization of objects which prevents stale instance values to be

reused.

(d) The object pool can handle any type of object, however, we do not allow different kinds of

objects to get stored in the same pool due to reasons mentioned in Section 5.2

(e) The object pool can be shared between multiple threads as the newObject() and freeObject()

methods are synchronized.

Some advantages of Chiromancer and its extension are as follows:
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(a) Chiromancer provides fine grained control over the solution for the issues detected in the

application. This means that one is not bounded by the framework to handle problems in

a specific way, rather you can devise a number of techniques specific to different method

signatures. For instance, sendTextMessage() method has a number of different parameter

combinations for performing the same task of sending an SMS. But, since we detect these

methods by an exact match of their parameters we can make signature specific optimizations.

For the same reason Chiromancer’s analysis can adapt to new Android versions with changed

APIs.

(b) The use of Dexpler avoids an intermediate conversion to Java Bytecode and hence, speeds

up the overall process.

(c) The technique used in Chiromancer is bound to be accurate; accurate in terms of number of

false positives and false negatives because it relies on exact matches of method signatures.

(d) We completely rely on static analysis and avoid the extra overhead imposed by dynamic

analysis. Moreover, since the code injection happens off the shelf before the application is

installed, the resources of the phone are not used thereby saving battery.

(e) Our approach is intuitively scalable to large code bases, since it relies on Soot for most of its

functionality.

(f) The memory based optimization strikes a balance between accuracy and conservativeness.

The summary based and inter-procedural nature of the analysis makes it scalable and expands

the horizon of the analysis beyond a method.

(g) This optimization also provides a framework that lays a foundation for other optimizations

to be added. For instance, one can leverage our analysis (with some modifications) to reuse

and recycle objects between apps.

(h) The tool is designed so that all the relevant information is collected in a single pass over the

code. Moreover, the instrumentation is done carefully so that no side effects are introduced.
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7.2 Weaknesses

Despite providing the end-users with the paraphernalia to improve the performance of the

application, the tool has its drawbacks. Some of the limitations it suffers from are as mentioned

below:

(a) The current version of our tool does not allow application to interact to get parameters

during runtime. All user inputs are given prior to installation. So if the user wishes to

change a few parameters, he would have to request the server for another copy of the APK

instrumented with appropriate new parameters and would have to reinstall the application

on his phone.

(b) Android requires all applications to bear cryptographic signature. Hence, the modified APKs

need to be re-signed before porting them back on the smartphone for use. So the user would

have to trust the APKs we provide. Furthermore, if we re-sign the apps using our keys, the

updates pushed to the apps by the developer will stop coming. We can avoid the credibility

issue altogether if we provide our tool to the developers directly or to Google.

(c) Soot and FlowDroid can sometimes be slow and could need a lot of memory [17], which is

another reason we should avoid Soot based analysis to run on phone.

(d) The recycle and reuse optimization currently does not support determining size of object

pools automatically based on the app.

(e) Due to the flow-insensitive nature of Spark we are unable to correctly deal with cases where

the same reference variable (already referring to an object) is re-defined to refer to newly

allocated objects. However, this issue can be resolved once Spark developers make it more

flow-sensitive.

(f) Currently, we are creating object pools for objects allocated inside loops. However, we can

improve the efficiency of the app further by leveraging results from runtime traces which

would indicate paths that are memory intensive and should be given a higher priority.
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Chapter 8

Conclusion and Future Work

8.1 Conclusion and Future Work

We presented a tool that performs performance optimizations on Android applications using

static code analysis targetting reduction in cost to user, energy, data and memory consumption.

It offers a convenient interface that allows a user to set application parameters according to her

need. The tool provides an extensible framework that allows the developers to tune parameters

and build new optimizations. We are working on the API to add more functionality and make

applications interactive so that they can accept parameters from the user at runtime. Few more

performance issues that we wish to overcome are as follows.

(a) Allow apps to download content only in the vicinity of a Wifi zone.

(b) Prompt user to suspend the apps that make use of Internet, if the battery is low.

(c) Provide support to modify application synchronization frequency with servers that hold data.

Furthermore, we reuse heap space allocated to objects by recycling objects into a pool and

reusing them whenever required in the app. We leverage certain heuristics to prune the set of

optimizable objects. In future we would like to add support for the following.

(a) Automatically deciding size of object pool based on certain heuristics of the app.

50



(b) Selectively creating object pools based on the number of objects of a particular class. Some

objects will not be created in bulk and thus one can avoid maintaining a pool for them. We

can leverage runtime traces of the app to find this out.

(c) We would like to corroborate our claim with further evaluation on more apps.

(d) In case the object to be optimized inherits fields from an Android library class, we leave such

fields as they are. In future we would like to extend the reset functionality by incorporating

initialization of such fields using the constructors of the parent Android library class. This

would require access to the precise implementation of the Android API. Currently, ‘android.jar’

has only stub implementations of the corresponding constructors for Android library classes.

With the existing features and those that will be added in future, we hope that R3 helps users

and developers to improve their app’s performance.
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