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Abstract

Information Systems today record the execution of activities into event logs.

Process Mining is an area of research that deals with the study and analysis

of various business processes based on these event logs. These event logs also

record the performers of each of the activities. Mining social network using

this information, understanding work-flow management and deriving rela-

tionships between actors based on different metrics viz. handover of task,

subcontract, etc. is what constitutes Organizational Mining. Metrics based

on Joint Activities and Metrics based on (possible) causality, commonly re-

ferred to as Similar-Task Algorithm and Subcontract Algorithm forms the

basis of this paper. We present Cypher Query Language(Neo4j) and SQL

(Structured Query Language) implementations of Similar-Task and Sub-

contract Algorithms. Graph Databases have shown to perform well in cases

where information follows linked structure and needs to query to depth(s)

of a hierarchical setup. We conduct an empirical study on a large real

world data set to compare the performance of Neo4j against MySQL. We

benchmark performance factors like query execution time, CPU usage and

disk/memory space usage when implementing Similar-task and Subcontract

algorithms in Cypher Query Language and SQL.
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1

Research Motivation and Aim

Relational databases handle tabular structures exceedingly well. But for many years

now, developers have faced problems in trying to handle highly connected data with

relational databases.

Relational databases handle relationships poorly, mostly due to join intensive queries

leading to JOIN BOMB. The reason is that relationships in relational databases can

be modeled by means of joins only, and an increase in connectedness of data implies

increased number of joins. Join intensive queries are an impediment to performance

and scalability in a dynamic system with ever-changing business needs. Furthermore,

complications arise when, in addition to modeling the relationships, we also need to

weigh the strength of these relationships.

Graph databases have emerged to address the issue of leveraging complex and dy-

namic relationships in highly connected data. In contrast to relational databases, where

performance deteriorates as the size of the dataset increases, performance of a graph

database is expected to remain constant, even as the dataset grows. This is because

queries would be localized to a portion of the graph and hence, the execution time for

each query would depend only on the part of the graph traversed to satisfy that query,

instead of the overall size of the graph [1].

Process Mining is young, yet a broad field of research. Organizational Mining is one

of the three perspectives of Process Mining that deals with the study of social relation-
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1.1 Graph Database

ship between individuals. It is similar to social mining. Analysing social relationship

with Relational Databases involves performing joins between multiple tables. However

Graph Databases are build to avoid these performance intensive joins.

1.1 Graph Database

1.1.1 What is a Graph?

Formally, a graph is just a collection of vertices and edgesor, in less intimidating lan-

guage, a set of nodes and the relationships that connect them. Graphs represent entities

as nodes and the ways in which those entities relate to the world as relationships. This

general-purpose, expressive structure allows us to model all kinds of scenarios, from

the construction of a space rocket, to a system of roads, and from the supply-chain or

provenance of foodstuff, to medical history for populations, and beyond.

For example, Twitters data is easily represented as a graph. In Figure 1.1, a small

network of followers is presented. The relationships are key here in establishing the

semantic context: namely, that Pooja follows Astha, and that Astha, in turn, follows

Pooja. Astha and Kunal likewise follow each other, Pooja follows Kunal, Kunal follows

Nidhi and Astha follows Nidhi, but sadly, Kunal hasn‘t (yet) reciprocated to Pooja,

Nidhi neither follows Kunal nor Astha.

1.1.2 The Property Graph Model

The Property Graph Model is an extension to the basic Graph Model wherein nodes

and edges are populated with properties to reflect the nature of that graph element.

These properties are basically key value pairs. Properties are pertinent information

that relates to nodes and relationships. Properties are intuitive and easy to under-

stand. Properties on a node may indicate its name or some characteristics, whereas

properties on edges may indicate the relationships between nodes, any strength or

weight associated with the nodes connected by that edge and so on.

Figure 1.2 informally introduces the most popular variant of graph model, the

property graph. A property graph has the following characteristics:

2



1.1 Graph Database

Figure 1.1: A small social graph

1. A property graph is made up of nodes, relationships, and properties.

2. Nodes contain properties. Think of nodes as documents that store properties in

the form of arbitrary key-value pairs. The keys are strings and the values are

arbitrary data types.

3. Relationships connect and structure nodes. A relationship always has a direction,

a label, and a start node and an end nodethere are no dangling relationships. To-

gether, a relationships direction and label add semantic clarity to the structuring

of nodes.

4. Like nodes, relationships can also have properties. The ability to add properties

to relationships is particularly useful for providing additional metadata for graph

algorithms, adding additional semantics to relationships (including quality and

weight), and for constraining queries at runtime.

1.1.3 Graph Databases

In computing, a graph database is a database that uses graph structures for semantic

queries with nodes, edges, and properties to represent and store data [1]. A graph

database is any storage system that provides index-free adjacency. This means that

3



1.1 Graph Database

Figure 1.2: Graph with properties

every element contains a direct pointer to its adjacent elements and no index lookups

are necessary. General graph databases that can store any graph are distinct from

specialized graph databases such as triplestores and network databases.

There are two properties of graph databases one should consider when investigating

graph database technologies:

1. The underlying storage: Some graph databases use native graph storage that is

optimized and designed for storing and managing graphs. Not all graph database

technologies use native graph storage, however. Some serialize the graph data into

a relational database, an object oriented database, or some other general-purpose

data store.

2. The processing engine: Some definitions require that a graph database use index-

free adjacency, meaning that connected nodes physically point to each other in

the database.

4



1.1 Graph Database

1.1.4 Neo4j

Neo4j is an ”embedded, disk-based, fully transactional Java persistence engine that

stores data structured in graphs rather than in tables”. Neo4j is a native graph pro-

cessing and a native graph storage model. Neo4j is the most popular graph database.

Neo4j is an open-source graph database, implemented in Java.

1.1.4.1 Internals of Neo4j

Nodes and relationships in Graph Databases can have processing capability using either

a global index lookup or index-free adjacency. A graph databases is called native if it

employs index-free adjacency.

1. Architecture of Neo4j

The general architecture of Neo4j is shown in the Figure 1.3. Traversal API con-

tains functionalities for graph traversal. Traversal happens from node to node via

edges (relationships). Core API provides functionalities for initiating embedded

graph databases that receives client connections. It also provides capabilities to

create nodes, relationships and properties [1].

Figure 1.3: Architecture of Neo4j (Figure adapted from [1])
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1.1 Graph Database

CYPHER is a query language used to query elements in Neo4j. Cache in Neo4j

are just part of the system memory used when Neo4j instances are created and

queries are being performed on those instances. Transaction Management and

Transaction log keep tracks of transactional consistency and atomicity, while their

record being maintained in the log. Record Files or Store Files are those where

Neo4j stores the graph data. Each store file contains data for specific part of the

graph (e.g nodes, relationships,properties, etc.). Some of the store files commonly

seen are

• neostore.nodestore.db

• neostore.relationshipstore.db

• neostore.propertystore.db

• neostore.propertystore.db.index

• neostore.propertystore.db.strings

• neostore.propertystore.db.arrays

2. Native Graph Processing

A database engine that utilizes index-free adjacency is one in which each node

maintains direct references to its adjacent nodes; each node, therefore acts as a

micro-index of other nearby nodes. It means that query times are independent

of the total size of the graph, and are instead simply proportional to the amount

of the graph searched.

A non-native graph database engine, in contrast, uses (global) indexes to link

nodes together, as shown in Figure 1.4. These indexes add a layer of indirection

to each traversal, thereby incurring greater computational cost.

Index lookups are fine for small networks, such as the one in Figure 1.4, but too

costly for complex queries over larger graphs. Instead of using index lookups

6



1.1 Graph Database

Figure 1.4: Non-native Graph Processing using Global lookup index

to make relationships concrete and navigable at query time, Neo4j with na-

tive graph processing capabilities use index-free adjacency to ensure high per-

formance traversals. Figure 1.5 shows how relationships eliminate the need for

index lookups.

Figure 1.5: Native Graph Processing using index-free adjacency

3. Native Graph Storage

Neo4j stores graph data in a number of different store files. Each store file contains

the data for a specific part of the graph (e.g., nodes, relationships, properties).

7



1.1 Graph Database

The division of storage responsibilities, particularly the separation of graph struc-

ture from property data, facilitates performant graph traversals, even though it

means the users view of their graph and the actual records on disk are structurally

dissimilar. The storage pattern for nodes, relationships and properties is shown

in Figure 1.6.

Figure 1.6: Storage Pattern for nodes, relationships and properties (Figure adapted from

[1])

The node store file stores node records [1]. Every node created in the user-level

graph ends up in the node store, the physical file for which is neostore.nodestore.db.

Like most of the Neo4j store files, the node store is a fixed-size record store, where

each record is nine bytes in length. Fixed-size records enable fast lookups for

nodes in the store file: if we have a node with id 100, then we know its record

begins 900 bytes into the file. Based on this format, the database can directly

compute a records location, at cost O(1), rather than performing a search, which

would be cost O(log n).

The first byte of a node record is the in-use flag. This tells the database whether

the record is currently being used to store a node, or whether it can be reclaimed

8



1.2 Process Mining and Organizational Perspective

on behalf of a new node (Neo4js .id files keep track of unused records). The next

four bytes represent the ID of the first relationship connected to the node, and

the last four bytes represent the ID of the first property for the node. The node

record is pretty lightweight: its really just a couple of pointers to lists of relation-

ships and properties.

Correspondingly, relationships are stored in the relationship store file,

neostore.relationshipstore.db Like the node store, the relationship store consists

of fixed-sized recordsin this case each record is 33 bytes long. Each relationship

record contains the IDs of the nodes at the start and end of the relationship, a

pointer to the relationship type (which is stored in the relationship type store),

and pointers for the next and previous relationship records for each of the start

and end nodes. These last pointers are part of what is often called the relation-

ship chain[1].

1.2 Process Mining and Organizational Perspective

1.2.1 Process Mining

Process Mining basically focuses on the analysis of processes using event data. The var-

ious data mining techniques such as classification, association, clustering are generally

used to analyze a particular step in the overall business process but cannot be applied

to understand and analyze a process as a whole. Process mining extracts knowledge

from event logs. It helps to discover, analyze and improve a process model [2].

Event Log are the logs recorded by any Process Aware Information System (PAIS).

Each event in an event log refers to an activity which is a well defined step in some

process. Each of this activity is associated with a particular caseid i.e., a process in-

stance. The events belonging to a particular caseid are ordered. An event log may also

contain additional information such as timestamp associated with each event and the

actor performing the action.

9



1.2 Process Mining and Organizational Perspective

Figure 1.7: Types of Process Mining Techniques

As can be seen from Fig. 1.7, there are basically three types of process mining

techniques

1. Process Discovery: This technique takes an event log as an input and produces

a process model without using the information stored in the event log only.

2. Process Conformance: This technique takes an existing process model as a

reference and compares it with the given event log to check if the given event log

conforms to the process model and vice versa.

3. Process Enhancement: This technique extends or improves the existing pro-

cess model. It takes the existing process model as input and tries to extract new

information from it.

An activity or task in an event log refers to a well defined step in some process. Event

Log usually records the activity that is performed either by using a full decsription of

the act or an equivalent identfier for that activity. These activities form an integral

part in various Process Mining analysis alogorithms like α-miner algorithm or various

10



1.2 Process Mining and Organizational Perspective

organizational mining algorithms like Similar-Task or Sub-Contract algorithm. We

consider three different perspectives in process mining [3]:

1. Process Perspective: This perspective focuses on the control flow of a process i.e.

the ordering of the tasks in an event log. It aims to generate a process model

from the event log.

2. Organizational Perspective: This perspective focuses on how the originators of

various activities interact with each other.

3. Case Perspective: This perspective focuses on the property of a particular process

instance. There are different ways in which a process instance can be identified,

for example, it can be identified by the path it takes in a process model or by the

originators working on it.

1.2.2 Organizational Perspective

Existing Process Aware Information System (PAIS) record information of human ac-

tivity. This information can be structured in the form of a sociogram that forms the

basis of Social Network Analysis. Therefore, it is both interesting and feasible to use

this as a starting point for investigating the social context of work processes. A better

understanding of this social context may reveal a mis-alignment between the informa-

tion system and its users and may provide insights that can be used to increase the

efficiency and effectively of processes and organizations.

1.2.2.1 Metrics for Organizational Perspectives

Various metrics are defined in [4] for measuring the strength of relationship between

performers/actors of activity. These metrics are

1. metrics based on possible causality.

2. metrics based on joint cases.

3. metrics based on joint activities.

4. metrics based on special event types.

11



1.3 Research Aim

Metrics based on possible causality monitor for individual cases how work moves

among performers. One of the examples of such a metric is handover of work. Within

a case (i.e., process instance) there is a handover of work from individual i to individ-

ual j if there are two subsequent activities where the first is completed by i and the

second by j. A related metric is subcontracting where the main idea is to count the

number of times individual j executed an activity in-between two activities executed

by individual i. This may indicate that work was subcontracted from i to j.

Metrics based on joint cases ignore causal dependencies but simply count how fre-

quently two individuals are performing activities for the same case. If individuals work

together on cases, they will have a stronger relation than individuals rarely working

together.

Metrics based on joint activities do not consider how individuals work together on

shared cases but focus on the activities they perform. The assumption here is that

people doing similar things have stronger relations than people doing completely differ-

ent things. Each individual has a profile based on how frequent they conduct specific

activities. Similar-Task algorithm is an algorithm based on this metric.

Metrics based on special event types consider the type of event. Thus far we assumed

that events correspond to the execution of activities. However, there are also events

like reassigning an activity from one individual to another. For example, if i frequently

delegates work to j but not vice-versa it is likely that i is in a hierarchical relation with

j. From an SNA point of view these observations are particularly interesting since they

represent explicit power relations.

1.3 Research Aim

Relational databases are very good at solving certain data storage problems but they

can create problems when it is time to scale. When the size of the dataset increases the

time taken to compute joins heavily increases. In such cases we need to find a way to get

rid of the joins and avoid compute intensive joins. On the other hand, graph databases
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came into existence with the aim of overcoming these shortcomings. Relationships are

first-class citizens of the graph data model, unlike other database management systems,

which require us to infer connections between entities using contrived properties such

as foreign keys, or out-of-band processing like map-reduce. By assembling the sim-

ple abstractions of nodes and relationships into connected structures, graph databases

enable us to build arbitrarily sophisticated models that map closely to our problem

domain. The resulting models are simpler and at the same time more expressive than

those produced using traditional relational databases and the other NOSQL stores.

The volume of data in an organization is increasing at a very fast rate. With this,

the need to store this data to in order to make critical business decisions and satisfy

user demands becomes very important. Both users and decision makers need a faster

and more convenient way to access the data as quickly as possible. Analytical appli-

cations need to read only a few attributes of a large number of records. Thus, if row

oriented approach is used for storing and querying data in analytical applications, then

a large amount of unimportant data needs to be read in the memory and the overhead

of deriving relations between the data is quite high.

Process mining focuses on the analysis of processes using event data. One of the

key aspects of process mining is to generate process models that can be used for anal-

ysis purposes in the growing business needs [2]. Thus process mining is basically an

analytical application. Other broad aspect of process mining is Organizational Mining.

Organizational Mining also focuses on inferring relationships between actors and they

use various metrics to bind actors under one hood or the other. Thus graph database

proves to be an able fit to model and study organizational sociogram.

Query language like SQL (Structured Query Language) has been growing tremen-

dously over the years and have become a standard way of interacting with the database.

Unlike SQL, CYPHER query language is quite new but focuses on area where SQL

doesn’t perform well, particularly joins. This paper attempts to model organizational

mining algorithms in these database languages to the extent possible.

The specific research aim of this work can be summed up as follows:

13



1.3 Research Aim

1. To investigate the intersection of Process Mining and Graph Database(s) for

detecting social, hierarchical structures.

2. To understand applications needs that can be modelled into this new domain.

3. To implement organizational mining algorithms viz. Similar-Task algorithm and

Sub-Contract algorithm in row oriented data store MySQL.

4. To implement Similar-Task algorithm and Sub-Contract algorithm in graph ori-

ented database Neo4j.

5. To compare the performance of Similar-Task algorithm in MySQL and Neo4j.

6. To compare the performance of Sub-Contract algorithm in MySQL and Neo4j.
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2

Related Work

This section reviews closely the related work that are presented in this paper. It lists

the novel contributions that this paper puts forward.

2.1 Implementation of Mining Algorithms in Relational

Databases

Ordonez et al. did an extensive work on implementing k-means clustering algorithm

in SQL [5]. They came up three different SQL implementations of k-means algorithm

to integrate it with RDBMS. Experiments were performed on large clusters, efficient

indexing and with queries optimized and re-written. Ordonez et al. also presented

SQL implementations of EM Algorithm that worked with high dimensional data, high

number of clusters and very large datasets [6]. They came up with three different

strategies viz. Horizontal, Vertical and Hybrid. Ordonez et al. came up with another

SQL implementation of clustering algorithm which merges Markov Chain Monte Carlo

with EM algorithm [7]. Sattler et al. described primitives for applying and building

decision tree classifiers which were directly coupled on commercial databases used in

various classification problems [8].

2.2 Implementation of Mining Algorithms in Graph Databases

Wang et al. presented papers that studied structural pattern mining for large disk based

graph databases. They presented a novel ADI index structure and efficient algorithms

for mining frequent patterns [9]. Wang et al again came up with novel techniques

to obtain scalable mining on large disk based graph databases[10]. Huan et al. also
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2.3 Performance comparison between Relational Databases and Graph
Databases.

presented techniques to find maximal frequent sub-graphs from Graph Databases [11].

Ozaki came up with the concept of hyperclique pattern in graph databases to detect

highly correlated sub-graph in graph structured databases. It considers general ordering

of sub-graphs and employed techniques like breadth-first search/ depth-first search with

powerful pruning techniques based on various measures [12].

2.3 Performance comparison between Relational Databases

and Graph Databases.

Vicknair et al. performed comparisons between Relational Databases and Graph Databases.

Their work included recording and querying data provenance information [13]. McColl

et al. evaluated peformance for a series of open-source graph databases. They used four

different graph algorithms to evaluate performance for graph setup consisting upto 256

million nodes [14]. Ciglan et al. came up with benchmarking of graph databases over

graph traversal algorithms [15]. Macko et al. presented a performance introspection

framework for graph databases, PIG. PIG provided techniques and tools to understand

performance of graph databases [16].

In context to existing work, the study presented in this paper makes the following

novel contributions:

1. While there has been work done on implementing data mining algorithms in row

oriented databases, we are the the first to study organizational mining algorithms

in relational databases.

2. While graph databases have been used to implement data mining algorithms,

they have never been used to harvest the power of process mining perspective

like organizational mining. We present, in this paper, the implementation of two

different organizational mining algorithms which belongs to different categories

of social analytic metrics.

3. We present a performance benchmarking of organizational mining algorithms on

both relational and graph database.

16



3

Algorithm Description

Process mining is a process management technique that allows for the analysis of busi-

ness processes based on event logs. The basic idea is to extract knowledge from event

logs recorded by an information system. Process mining aims at improving this by

providing techniques and tools for discovering process, control, data, organizational,

and social structures from event logs.

Organizational Mining is a field of Process Mining that helps in mining the organi-

zational model for the event logs. Its enables one to understand the information flow

in an organization , the hierarchy in-place at the workplace. It also provides enough

information to understand the social interaction in an organization and group the ac-

tors in one way or the other.

Organizational Mining can be best studied using different metrics. Some of these

metrics consider events on case basis, whereas some are irrespective of such cases. Four

broad categories of metrics [4] are

1. metrics based on possible causality. It monitors how work moves among actors.

Handover and Sub-contract are example of this case.

2. metrics based on joint cases. It gives an idea of actors working together for a

particular case.

3. metrics based on joint activities. It focuses on actors working together irrespective

of case. Similar-Task algorithm is an example of this case.

4. metrics based on special event types. It focuses on events like reassignment, trans-

fer, etc. that is not a regular happening at a workplace.
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3.1 Similar-Task Algorithm

Case identifier Activity Identifier Actor

1 A Matt

2 A Matt

1 B Britney

1 E Matt

2 E Matt

2 B Britney

3 A Brad

3 E Matt

4 A Brad

5 A Brad

3 B Brad

4 B Britney

4 E Brad

6 A Brad

5 B Joan

6 C Joan

5 E Brad

1 D George

6 D George

Table 3.1: Event Log

In this paper, we implement Similar-Task algorithm and Sub-Contract Algorithm

that are representative of two different metrics.

3.1 Similar-Task Algorithm

3.1.1 Description

Similar-Task is sociogram metric based on joint activities. The idea is that individuals

performing similar tasks are more closely related to each other than individuals perform-

ing different tasks. Similarity calculation could be achieved using Cosine-Similarity,

Pearson Correlation Coefficient, Hamming Distance, etc. [4].

In this paper, we use Cosine-Similarity as a metric of measuring similarity of tasks

between actors. The input to the algorithm is an Actor-Activity Matrix. Each row in
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3.1 Similar-Task Algorithm

the actor-activity matrix represents an actor and each column indicates the frequency

of each task performed by the actor. Table-3.2 shows an Actor-Activity Matrix for the

event log shown in Table 3.1.

A B C D E

Matt 2 0 0 0 3

Britney 0 3 0 0 1

Brad 4 1 0 0 1

Joan 0 1 1 0 0

George 0 0 0 2 0

Table 3.2: Actor-Activity Matrix

3.1.2 Algorithm

The Similar-Task algorithm is given in Algorithm 1. Here each actor is compared with

every other actor to compute the extent of similarity between them. The similarity

values is collected in a 2-dimensional matrix. Table 3.3 gives similarity values between

actors based on Algorithm-1.

Algorithm 1: Similar-Task Algorithm (Matrix M)

Data: Actor-Activity Matrix (M)

Result: Matrix-Similarity Values between Actors

1 Get the number of rows of M into m.

2 Get the number of columns of M into n.

3 D[m][m] = Declare square matrix to store results.

4 foreach i = 1 to m− 1 do

5 P=Vector corresponding to ith row.

6 foreach j = i+ 1 to m do

7 Q=Vector corresponding to jth row.

8 Apply Cosine Similarity between ith and jth row

cos(P,Q) =
P ·Q

‖ P ‖‖ Q ‖
(3.1)

9 Set D[i][j]=similarity value obtained in the step above.
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3.2 Subcontract Algorithm

Description of some important steps of Similar-Task Algorithm is as follows:

1. The first step is to collect the number of Actors in the log. This is equal to

number of rows in the Actor-Activity Matrix. Call it m.

2. The second step collects the number of distinct activities in the log. This is equal

to number of columns in the Actor-Activity Matrix. Call it n.

3. The third step declares a 2D Matrix of size m*m to store the similarity result.

4. The eighth step calculates cosine-similarity between actors depicted by P and Q

in Step-6 and Step-7 respectively.

5. The ninth step stores the similarity value between actor P and Q.

Matt Britney Brad Joan George

Matt – 0.263 0.719 0.00 0.00

Britney – – 0.298 0.671 0.00

Brad – – – 0.167 0.00

Joan – – – – 0.00

George – – – – –

Table 3.3: Cosine-Similarity Values

3.2 Subcontract Algorithm

3.2.1 Description

Sub-Contract Algorithms tries to find out the number of times individual j executes

it’s task in between two activities performed by individual i. Considering causality(β),

direct/indirect succession(depth) and multiplicity within cases can result upto eight

different types of sub-contraction [4].

Each ProcessInstance refers to a CaseID; AuditTrailEntryList constitutes all the

events pertaining to a particular CaseID; an AuditTrailEntry refers to an individual

event [17]. An example of event log is shown in the Figure 3.1.

The algorithm for Sub-Contract is presented in Algorithm 2. Here for each Case

identifiers, sub-contraction is detected if any.
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3.2 Subcontract Algorithm

Algorithm 2: Subcontract Algorithm (β,depth,Len,Log)

Data: β, depth, Len, Log

Result: Normalized 2D Matrix D with subcontract values between Actors

1 Declare Square Matrix D of size Len*Len. Initialize all elements to 0

2 Declare and initialize variable normal to 0

3 foreach ProcessInstance pi in the log do

4 Get AuditTrailEntryList ates for pi.

5 if sizeates < 3 then

6 continue to the next ProcessInstance, pi

7 Declare and intialize minK to 0.

8 if sizeates < depth then

9 set minK= sizeates

10 else

11 set minK=depth + 1.

12 if minK < 3 then

13 set minK=3.

14 foreach k:=2 to minK do

15 Update normal by βk-2.

16 m= Square matrix of Len*Len.

17 foreach i:=0 to sizeates − k do

18 atei = get AuditTrailEntry at position i.

19 ateik = get AuditTrailEntry at position i+ k

20 if Actoratei = Actorateik then

21 foreach j:=i+ 1 to i+ k do

22 atej = get AuditTrailEntry at position j.

23 row = get row-position for Actoratei
24 col = get column-position for Actoratej
25 For valid (row , col ) set m[row][col]=1.

26 foreach i:=0 to Len do

27 foreach j:=0 to Len do

28 set D[i][j] = D[i][j] + m[i][j]*βk-2.

29 Return NormalizedMatrixD. //divide each value by normal.
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3.2 Subcontract Algorithm

Figure 3.1: An example of MXML event log

β is the causality factor that explains dependency of tasks which can be obtained

using Process Model. depth denotes the level of indirect succession between activities

performed by same actor. minK is the minimum distance between two activities per-

formed by same actor. The number of distinct actors in the Log is denoted by Len.

The stepwise description of the algorithm is as follows:

1. In the first step, declare a 2-dimensional matrix of Len * Len to store the results.

2. Step two initializes a variable normal which is used to normalize the subcontrac-

tion result. It is so because, direct succession between actors would always have

higher contribution to the sub-contraction values than between actors involving

indirect succession.
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3.2 Subcontract Algorithm

Matt Britney George Brad Joan
Matt 0 0.22 0 0 0
Britney 0 0 0 0 0
George 0.22 0 0 0 0
Brad 0 0.22 0 0 0.22
Joan 0 0 0 0 0

Table 3.4: Sub-contraction Values

3. Step three iterates over the process instances, pi in the event log.

4. Step four gets all the AuditTrailEntry for the process instance, pi.

5. Step five checks if the number of entries is valid or not. For a pi to be valid (or for

chances of suncontraction existing in a pi), there has to be atleast three activities

in the pi.

6. Step eight to thirteen determines the minimum number of hops, minK between

two subcontracting actors.

7. Step fourteenth to twenty-fifth checks if there is/are any Actor(s) who execute

their task in between same Actor performing different task. If such Actor is found,

then corresponding entry in the temporary matrix is set to 1.

8. Step twenty-sixth to twenty-eigth updates the resultant matrix D after each it-

eration of valid pi.

9. Step twenty-ninth normalizes the resultant matrix D by normal.

We consider indirect succession and multiple occurrences within a case, while ignor-

ing causality. For example, considering events pertaining to Case1 in Table 3.1 (shaded

rows), we have a sub-contraction between Matt and Britney. Matrix entry correspond-

ing to Matt and Britney is updated in m followed by an update in D. Final result

shown in Table 3.4 is obtained after all such sub-contractions are identified from all

cases in the event log.
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4

Implementation of Algorithms on

RDBMS

4.1 Similar-Task Algorithm

4.1.1 Pre-Processing

1. Create Table for importing data. dataset is the default table which if exists, has

been dropped.

DROP TABLE IF EXISTS dataset;

CREATE TABLE dataset (ID int auto_increment PRIMARY KEY, Task

varchar(50),Team varchar(20));

2. Load data from files into dataset table. Values not required in the current context

are ignored using session variables.

LOAD DATA LOCAL INFILE ’Dataset.csv’ INTO TABLE dataset

FIELDS TERMINATED BY ’;’

IGNORE 1 lines

(@id1,@id2,@id3,Task,Team,@id4,@id5);

3. The imported data is to be converted into an Actor-Activity Matrix (referred

in the SQL code as AAMatrix). This step is embedded in the stored procedure

createTable used to calculate initial similarity measure between the Originators.
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4.1 Similar-Task Algorithm

4.1.2 Initial Similarity Calculation

1. CALL stored procedure createTable.

1 CREATE DEFINER=‘root‘@‘localhost‘ PROCEDURE ‘createTable‘(IN tblName

varchar(20), IN tblName2 varchar(20))

2 BEGIN

3 DECLARE taskname varchar(50) DEFAULT "";

4 DECLARE exit_loop BOOLEAN;

5 DECLARE qry LONGTEXT;

6 DECLARE task_curs CURSOR FOR SELECT DISTINCT task FROM dataset;

7 DECLARE CONTINUE HANDLER FOR NOT FOUND SET exit_loop = TRUE;

8 SET @dropqry=CONCAT("DROP TABLE IF exists ",tblName);

9 PREPARE stmt from @dropqry;

10 EXECUTE stmt;

11 SET qry = CONCAT("CREATE TABLE ",tblname," ( TEAM varchar(20) PRIMARY

KEY ," );

12 SET @insertqry=CONCAT("INSERT INTO ",tblName," SELECT team");

13 SET @insertSim=CONCAT("INSERT INTO ",tblName2," SELECT T1.TEAM, T2.

TEAM,");

14 SET @numerator="(";

15 SET @denominator1="SQRT(";

16 SET @denominator2="SQRT(";

17 OPEN task_curs;

18 my_loop: loop

19 FETCH task_curs into taskname;

20 IF exit_loop THEN

21 CLOSE task_curs;

22 LEAVE my_loop;

23 END IF;

24 SET qry=CONCAT(qry,’‘’,taskname, ’‘ INT DEFAULT 0, ’);

25 SET @insertqry=CONCAT(@insertqry, ", COUNT(IF(Task = ’",taskname,"

’, 1, NULL))");

26 SET @numerator=CONCAT(@numerator," T1.‘",taskname,"‘ * T2.‘",

taskname,"‘ +");

27 SET @denominator1=CONCAT(@denominator1," T1.‘",taskname,"‘ * T1.‘"

,taskname,"‘ +");

28 SET @denominator2=CONCAT(@denominator2," T2.‘",taskname,"‘ * T2.‘"

,taskname,"‘ +");

29 END LOOP my_loop;

30 SET qry=TRIM(TRAILING ’, ’ FROM qry);

31 SET @insertqry=TRIM(TRAILING ’, ’ FROM @insertqry);
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4.1 Similar-Task Algorithm

32 SET @numerator=TRIM(TRAILING ’ +’ FROM @numerator);

33 SET @denominator1=TRIM(TRAILING ’ +’ FROM @denominator1);

34 SET @denominator2=TRIM(TRAILING ’ +’ FROM @denominator2);

35 SET @qry1=CONCAT(qry, ’)’);

36 SET @insertqry=CONCAT(@insertqry, " FROM dataset GROUP BY team;");

37 SET @numerator=CONCAT(@numerator,")");

38 SET @denominator1=CONCAT(@denominator1,")");

39 SET @denominator2=CONCAT(@denominator2,")");

40 SELECT @qry1;

41 prepare stmt2 from @qry1;

42 EXECUTE stmt2;

43 PREPARE stmt3 from @insertqry;

44 EXECUTE stmt3;

45 SET @createSimTable = CONCAT("create table ",tblName2,"(‘Source‘

varchar(20), ‘Target‘ varchar(20), Similarity double(10,8));");

46 PREPARE stmt4 from @createSimTable;

47 EXECUTE stmt4;

48 SET @insertSim=CONCAT(@insertSim," (",@numerator,"/(",@denominator1,"

* ",@denominator2,"))");

49 SET @insertSim=CONCAT(@insertSim, " FROM ",tblName," T1 JOIN ",tblName

," T2 where T1.Team<>T2.Team ORDER BY T1.Team,T2.Team");

50 PREPARE stmt5 from @insertSim;

51 Execute stmt5;

52 DEALLOCATE PREPARE stmt;

53 DEALLOCATE PREPARE stmt2;

54 DEALLOCATE PREPARE stmt3;

55 DEALLOCATE PREPARE stmt4;

56 DEALLOCATE PREPARE stmt5;

57 END

The procedure createTable fetches distinct Tasks from dataset table and uses it

to define a new table that acts as Actor-Activity Matrix (AAMatrix). Also ap-

plied herein is the Cosine-Similarity measure between the rows of the AAMatrix

where each row corresponds to a different actor.

Joins are a way to find relationships in MySQL. Similarly in this case too, joins

were required to find similar actors. Self-joins were imposed on the table dataset

to find similarity values between the actors. The self-join is implemented in the

stored procedure createTable as part of insertSim query.
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4.1 Similar-Task Algorithm

4.1.3 Final Similarity Calculation

1. CALL stored procedure insertData.

58 CREATE DEFINER=‘root‘@‘localhost‘ PROCEDURE ‘insertData‘(IN tblName

varchar(20), IN tblName2 varchar(20))

59 BEGIN

60 DECLARE teamname varchar(20) DEFAULT "";

61 DECLARE teamexit_loop BOOLEAN;

62 DECLARE qrys LONGTEXT;

63 DECLARE team_curs CURSOR FOR SELECT DISTINCT Team FROM dataset;

64 DECLARE CONTINUE HANDLER FOR NOT FOUND SET teamexit_loop = TRUE;

65 SET @dropqrys=CONCAT("DROP TABLE IF exists ",tblName);

66 PREPARE stmt from @dropqrys;

67 EXECUTE stmt;

68 SET qrys = CONCAT("CREATE TABLE ",tblname," ( SOURCE_TEAM varchar(20)

PRIMARY KEY ,");

69 SET @finalinsert=CONCAT("INSERT INTO ",tblname," SELECT Source, ");

70 OPEN team_curs;

71 team_loop: loop

72 FETCH team_curs into teamname;

73 IF teamexit_loop THEN

74 CLOSE team_curs;

75 LEAVE team_loop;

76 END IF;

77 SET qrys=CONCAT(qrys,teamname, ’ DOUBLE(10,8) DEFAULT 0.00, ’);

78 SET @finalinsert=CONCAT(@finalinsert," GROUP_CONCAT(if(Target = ’"

,teamname,"’, Similarity, NULL)),");

79 END LOOP team_loop;

80 SET qrys=TRIM(TRAILING ’, ’ FROM qrys);

81 SET @finalinsert=TRIM(TRAILING ’,’ from @finalinsert);

82 SET @qrys1=CONCAT(qrys, ’)’);

83 SET @finalinsert=CONCAT(@finalinsert," FROM ",tblName2," GROUP BY

Source;");

84 PREPARE stmt2 from @qrys1;

85 EXECUTE stmt2;

86 PREPARE stmt3 from @finalinsert;

87 EXECUTE stmt3;

88 DEALLOCATE PREPARE stmt;

89 DEALLOCATE PREPARE stmt2;

90 DEALLOCATE PREPARE stmt3;

91 END
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The stored procedure insertData takes values from the table that stores initial

similarity in the procedure createTable. It populates the final table with the

similarity values and stores it in the form of a matrix.

The procedure insertData thus brings an end to the Similar-Task Algorithm

implementation in SQL. The code is a generic implementation provided the initial

table where the records are imported is dataset and does not exists in the current

database. It is dropped if present.

4.2 Subcontract Algorithm

4.2.1 Native SQL Implementation

4.2.1.1 Pre-Processing

1. Create Table for importing data. dataset is the default table which if exists, has

been dropped.

DROP TABLE IF EXISTS dataset;

CREATE TABLE dataset (ID INT AUTO_INCREMENT PRIMARY KEY, CaseID

VARCHAR(20), Activity VARCHAR(100),Actor VARCHAR(20));

2. Load data from files into dataset table. Values not required in the current context

are ignored using session variables.

LOAD DATA LOCAL INFILE ’Dataset.csv’ INTO TABLE dataset

FIELDS TERMINATED BY ’;’

IGNORE 1 lines

(CaseID,@id2,@id3,Activity,Actor,@id4,@id5);

The imported data has to be processed such that events corresponding to a par-

ticular caseID are together and in the same order as they were imported. The

auto incrementing key ID for the table dataset is used for ordering the record-

s/events in the said fashion. The data is inserted into a newly created table

organiseddata which has the same structure as the original dataset. Also a sec-

ondary index caseindex is created on columns CaseID, Actor, Activity and ID

for better efficiency.
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4.2 Subcontract Algorithm

3. Create table organiseddata with same structure as dataset

CREATE TABLE organiseddata LIKE dataset;

4. Populate organiseddata with records from dataset.

INSERT INTO organiseddata(CaseID,Activity,Actor) SELECT CaseID,

Activity, Actor FROM dataset ORDER BY ID, CaseID;

5. Create secondary index on columns of organiseddata

CREATE INDEX caseindex ON organiseddata(CaseID, Actor, Activity,ID);

6. Define a global variable normal. This variable would be used to normalize the

sub-contraction values obtained after the complete execution of the stored proce-

dure ExecuteCase.

SET @normal = 0.0;

7. Define β. β is used to take into consideration the dependency on activities that

the sub-contracting actors performs. This dependency can be obtained from

the process model obtained by applying any Process Mining algorithm like α -

Algorithm.

SET @beta = 0.5;

Since causality or dependency on activities is not considered here, the value of

β has been set to default value of 0.5. However, more appropriate values can be

used for β as and when some process mining algorithm is implemented.

4.2.1.2 Create Intial Matrix

1. CALL stored procedure createMarix.

93 CREATE DEFINER=‘root‘@‘localhost‘ PROCEDURE ‘createMatrix‘(IN matrixName

varchar(20))

94 BEGIN

95 DECLARE distinctActor varchar() DEFAULT "";

96 DECLARE distinctActorExit_Loop BOOLEAN;

29



4.2 Subcontract Algorithm

97 DECLARE distinctActor_curs CURSOR FOR SELECT DISTINCT Actor FROM

organiseddata;

98 DECLARE CONTINUE HANDLER FOR NOT FOUND SET distinctActorExit_Loop =

TRUE;

99 SET @dropqry=CONCAT("DROP TABLE IF exists ",matrixName);

100 PREPARE drop_stmt from @dropqry;

101 EXECUTE drop_stmt;

102 SET @createTable=CONCAT("CREATE TABLE ",matrixName," ( PERFORMER

VARCHAR(20) NOT NULL PRIMARY KEY");

103 OPEN distinctActor_curs;

104 distinctActor_Loop: LOOP

105 FETCH distinctActor_curs INTO distinctActor;

106 IF distinctActorExit_Loop THEN

107 CLOSE distinctActor_curs;

108 LEAVE distinctActor_Loop;

109 END IF;

110 SET @createTable=CONCAT(@createTable,", ",distinctActor," DOUBLE

(8,2) NOT NULL DEFAULT 0");

111 END LOOP distinctActor_Loop;

112 SET @createTable=CONCAT(@createTable,");");

113 PREPARE createTable_stmt FROM @createTable;

114 SELECT @createTable;

115 EXECUTE createTable_stmt;

116 DEALLOCATE PREPARE drop_stmt;

117 DEALLOCATE PREPARE createTable_stmt;

118 END

The procedure createMatrix takes in all distinct actors and build a table (ma-

trix). This matrix tracks progress of the sub-contraction values between origina-

tors.

4.2.1.3 Get Distinct Cases.

1. CALL stored procedure to getDistinctCaseIDs.

119 CREATE DEFINER=‘root‘@‘localhost‘ PROCEDURE ‘getDistinctCaseIDs‘(IN

matrixName varchar(20))

120 BEGIN

121 DECLARE distinctCaseName varchar(20) DEFAULT "";

122 DECLARE totalCases INT DEFAULT 0;

123 DECLARE distinctcaseexit_loop BOOLEAN;
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124 DECLARE distinctcase_curs CURSOR FOR SELECT DISTINCT CaseID, COUNT(*)

FROM organiseddata GROUP BY CaseID HAVING COUNT(CaseID)>=3;

125 DECLARE CONTINUE HANDLER FOR NOT FOUND SET distinctcaseexit_loop =

TRUE;

126 OPEN distinctcase_curs;

127 distinctcase_loop: loop

128 FETCH distinctcase_curs into distinctCaseName, totalCases;

129 IF distinctcaseexit_loop THEN

130 CLOSE distinctcase_curs;

131 LEAVE distinctcase_loop;

132 END IF;

133 CALL ExecuteCase(distinctCaseName,totalCases,matrixName);

134 END LOOP distinctcase_loop;

135 END

Distinct Cases are collected in this procedure. For each such case, another pro-

cedure ExecuteCase is called which detects sub-contraction.

4.2.1.4 Find Subcontraction.

1. CALL stored procedure ExecuteCase.

136 CREATE DEFINER=‘root‘@‘localhost‘ PROCEDURE ‘ExecuteCase‘(INOUT currCase

varchar(20),IN caseCount INT,IN matrixName varchar(20))

137 BEGIN

138 DECLARE CommActor_ID1 INT DEFAULT 0;

139 DECLARE CommActor_ID2 INT DEFAULT 0;

140 DECLARE Diff INT DEFAULT 0;

141 DECLARE CommActor_Name varchar(20) DEFAULT "";

142 DECLARE CommActorExit_Loop BOOLEAN;

143 DECLARE CASE_FLAG INT;

144 DECLARE K INT;

145

146 DECLARE CommActor_curs CURSOR FOR SELECT T1.ID, T2.ID, (T2.ID-T1.ID),

T1.Actor

147 FROM organiseddata as T1

148 JOIN organiseddata as T2

149 ON T2.ID>=T1.ID+2

150 AND T1.Actor=T2.Actor

151 AND T1.Activity <> T2.Activity

152 AND T1.CaseID = currCase
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153 AND T2.CaseID = currCase

154 WHERE T1.CaseID=currCase ORDER BY Diff ASC;

155

156 DECLARE CONTINUE HANDLER FOR NOT FOUND SET CommActorExit_Loop = TRUE;

157 OPEN CommActor_curs;

158 SET CASE_FLAG=0;

159 SET K=2;

160 CommActor_Loop: LOOP

161 FETCH CommActor_curs INTO CommActor_ID1,CommActor_ID2,Diff,

CommActor_Name;

162

163 IF CommActorExit_Loop THEN

164 CLOSE CommActor_curs;

165 LEAVE CommActor_Loop;

166 END IF;

167 WHILE(K<caseCount) DO

168 SET @normal=@normal+POW(@beta,K-2);

169 SET K=K+1;

170 END WHILE;

171

172 IF(CASE_FLAG<>Diff) THEN

173 END IF;

174

175 BLOCK2: BEGIN

176 DECLARE InBetweenActors_ID INT DEFAULT 0;

177 DECLARE InBetweenActors_Name varchar(15) DEFAULT "";

178 DECLARE InBetweenActorExit_Loop BOOLEAN;

179 DECLARE InBetweenActor_curs CURSOR FOR SELECT ID, Actor FROM

organiseddata WHERE ID> CommActor_ID1 AND ID < CommActor_ID2;

180 DECLARE CONTINUE HANDLER FOR NOT FOUND SET

InBetweenActorExit_Loop = TRUE;

181 OPEN InBetweenActor_curs;

182 InBetweenActor_Loop: LOOP

183 FETCH InBetweenActor_curs INTO InBetweenActors_ID,

InbetweenActors_Name;

184

185 IF InBetweenActorExit_Loop THEN

186 CLOSE InBetweenActor_curs;

187 LEAVE InBetweenActor_Loop;

188 END IF;

189 SET @tempQuery = "INSERT INTO";
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190 SET @tempQuery = CONCAT(@tempQuery," ",matrixName," (‘

ACTOR‘, ‘",InBetweenActors_Name,"‘) VALUES");

191 SET @tempQuery=CONCAT(@tempQuery,"( ’",CommActor_Name,"’,

1) ON DUPLICATE KEY UPDATE ‘",InBetweenActors_Name,"‘ =

‘",InBetweenActors_Name,"‘ + POW(@beta,",Diff,"-2);");

192 PREPARE createTM from @tempQuery;

193 EXECUTE createTM;

194 DEALLOCATE PREPARE createTM;

195 END LOOP InBetweenActor_Loop;

196 END BLOCK2;

197 END LOOP CommActor_Loop;

198 END

This is the heart of Sub-Contract Algorithm. For each case, all sub-contraction

are detected. normal is updated for each case and final values are updated in the

table.

Alike Similar-Task algorithm, joins were also necessary to find sub-contracting ac-

tors. For each case in the event log, joins were applied to find any sub-contracting

actors, if any. A prior join would have required to store the huge result. But join-

ing on case basis did although not require storing the results, but is compute

intensive task. It is so because, results had to fetched segregated for each case

and then join be applied with the required condition(s).

4.2.1.5 Normalize the Final Matrix

1. CALL stored procedure normalizedMatrix.

199 CREATE DEFINER=‘root‘@‘localhost‘ PROCEDURE ‘normalizedMatrix‘(in

finalMatrixName VARCHAR(25))

200 BEGIN

201 DECLARE normalizedCols varchar(20) DEFAULT "";

202 DECLARE normalizedColsExit_Loop BOOLEAN;

203 DECLARE normalizedCols_curs CURSOR FOR SELECT DISTINCT Actor FROM

organiseddata;

204 DECLARE CONTINUE HANDLER FOR NOT FOUND SET normalizedColsExit_Loop =

TRUE;

205 SET @normalizedMainTableQuery="UPDATE ";

206 SET @normalizedMainTableQuery=CONCAT(@normalizedMainTableQuery,

finalMatrixName, " SET ");
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207 normalizedCols_Loop: LOOP

208 FETCH normalizedCols_curs INTO normalizedCols;

209 IF normalizedColsExit_Loop THEN

210 CLOSE normalizedCols_curs;

211 LEAVE normalizedCols_Loop;

212 END IF;

213 SET @normalizedMainTableQuery=CONCAT(@normalizedMainTableQuery,

normalizedCols," = ",normalizedCols,"/",@normal,", ");

214 END LOOP normalizedCols_Loop;

215 SET @normalizedMainTableQuery =TRIM(TRAILING ’, ’ FROM

@normalizedMainTableQuery);

216 SET @normalizedMainTableQuery=CONCAT(@normalizedMainTableQuery,");

");

217 PREPARE normalizedMainTableQuery_Stmt from

@normalizedMainTableQuery;

218 EXECUTE normalizedMainTableQuery_Stmt;

219 DEALLOCATE PREPARE normalizedMainTableQuery_Stmt;

220 END

normalizedMatrix is the final step in the algorithm. Here the final table obtained

at the end of ExecuteCase is normalized by normal.

4.2.2 Memoization

Memoization is an optimisation technique in computer programming where results are

cached to avoid any sort of functions calls happening again. The approach involves stor-

ing intermediate results that can be used for other following calculations. Memoization

is commonly a used approach in Dynamic Programming Paradigm.

4.2.2.1 Bottleneck

Here, though not used in the same context as memoization is generally used, it has

been found that storing intermediate results rather than pushing them immediately

to databases tables caused a bottleneck in disk I/O. It was observed that even in the

execution of the sub-contract SQL implementation on a dataset of 65000 records, there

were over ninety lacs (and counting) number of intermediate transactions.

1. Joins. Joins are usually considered to be an expensive operations in databases.

The below code which forms an integral part of the the stored procedure ExecuteCase

achieves the required join.
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SELECT T1.ID, T2.ID, (T2.ID-T1.ID), T1.Actor

FROM organiseddata as T1

JOIN organiseddata as T2

ON T2.ID>=T1.ID+2

AND T1.Actor=T2.Actor

AND T1.Activity <> T2.Activity

AND T1.CaseID = currCase

AND T2.CaseID = currCase

WHERE T1.CaseID=currCase ORDER BY Diff ASC;

Here joins are performed for each CaseID to detect sub-contraction between ac-

tors, if any. However the join was called for for each CaseID present in the dataset

and that increased the number of procedural calls to a large extent. Another ap-

proach to calculate join only once and then get results for each CaseID was not

considered because of the amount of memory that would be required to store the

join result of a dataset would be massive.

2. Update Database Tables. The major contributing factor for the bottleneck

was not join though. It was the amount of writes to the tables that needed to

be performed. The following code in the stored procedure ExecuteCase was the

main reason for sloppy performance.

INSERT INTO matrixName(Actor,InBetweenActors_Name) VALUES (?,?) ON

DUPLICATE KEY UPDATE InBetweenActors_Name = InBetweenActors_Name

+POW(@beta,",Diff,"-2);

4.2.2.2 Improved alternative approach

The alternative approach comprised of achieving the same task but by caching

the intermediate results.
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Algorithm 3: Outline of Similar-Task Algorithm

1 Get distinct CaseID from organiseddata.

2 Get distinct Actors from organiseddata.

3 Assign unique indentifier to each Actor.

4 m = Get number of distinct actors.

5 Declare ResultMatrix of size m*m to store the sub-contraction result.

6 foreach CaseID ci do

7 ResultSet rs = Declare a ResultSet to collect results.

8 rs = Get join result for ci.

9 foreach record r in rs do

10 Identify sub-contracting actors. Let the sub-contraction be from Actor

with unique identifier i to Actor with unique identifier j.

11 Set ResultMatrix[i][j] = ResultMatrix[i][j] + βn-2. // The caching

happens here

12 foreach row ResultMatrix do

13 Create and insert the entire row back to the database table.

Rather than updating tables after every iteration, the values were updated once

and only once. All intermediate results were cached in the ResultMatrix ma-

trix. The implementation was bridged through java programming interface. The

procedure of the improved implementation is given in Algorithm 3. However this

may not be taken as a an alternative to original sub-contract concept defined in

[17].

The implementation of the above algorithm was found to perform extensively

better than the native SQL code. It was so because of the memoization of inter-

mediate results at Step 11 of the algorithm. The remaining steps were performed

in the same manner as the native SQL implementation.
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5

Implementations of Algorithms

on Neo4j- NoSQL

5.1 Similar-Task Algorithm

5.1.1 Schema Definition

Defining Schema is an important task in Neo4j. Although they are basically ver-

tices and edges but maintaining proper attributes for proper and quick execution

of the algorithm is a challenging aspect. Figure 5.1 below depicts the schema

used for Similar-Task algorithm. All nodes are unique and each store the count

of their occurrences. [: PERFORMS] connects ACTOR to ACTIVITY. It also

has a property times that stores the frequency of the ACTIVITY performed by

that ACTOR.

5.1.2 Native CYPHER Implementation

(a) Load data from file.

222 LOAD CSV with HEADERS FROM ’Dataset.csv’ AS line

223 FIELDTERMINATOR ’;’

224 MERGE (a:Actor {name: line.Team, count: 0})

225 MERGE (b:Activity {work: line.Task, count: 0})

226 CREATE UNIQUE a-[rel:performs{times: 0}]-b

227 SET rel.times=rel.times+1

228 SET a.count=a.count+1
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5.1 Similar-Task Algorithm

Figure 5.1: Schema-Definition for Similar-Task

229 SET b.count=b.count+1;

Importing the data was a crucial task as it had to make sure that no dupli-

cates nodes were found. But if they are found, then their count be incre-

mented accordingly rather than adding new nodes and further relationship.

This was accomplished using MERGE function.

(b) Find Intersection of common task and calculate Cosine-Similarity.

230 MATCH (p1:Actor)-[x:PERFORMS]->(m:Activity)<-[y:PERFORMS]-(p2:Actor)

231 WITH SUM(x.times * y.times) AS xyDotProduct,

232 SQRT(REDUCE(xDot = 0.0, a IN COLLECT(x.times) | xDot + a^2)) AS

xLength,

233 SQRT(REDUCE(yDot = 0.0, b IN COLLECT(y.times) | yDot + b^2)) AS

yLength,

234 p1, p2

235 MERGE (p1)-[s:SIMILARITY]-(p2)

236 SET s.similarity = xyDotProduct / (xLength * yLength)

This step does the purpose of for loops in the algorithm. Accomplishing the

for loop for finding intersecting tasks between originators was a matter or

selecting MATCH query. These intersected list were then used for calculating

the similarity based on their property values.
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5.2 Subcontract Algorithm

5.2 Subcontract Algorithm

5.2.1 Schema Definition

Like Similar-Task algorithm, defining schema for Sub− Contract algorithm was

equally important. Here each CASE had to be taken care of and within each

case, various ACTOR performing various activities played an important role. As

such, the ACTOR nodes were redundant whereas the CASE nodes were main-

tained unique. CASE node only contained a Name property whereas ACTOR

node contained properties like Name , OccID and Activity. It denotes that an

ACTOR with Name has occurred at position OccID within that Case and per-

forms an activity. The CASE node is connected to the ACTOR node via the

[: CONTAINS] relationship. The organization of nodes is shown in the Figure

5.2

Once such a setup of nodes is traversed, sub-contraction is identified within each

Figure 5.2: Schema-Definition for Sub-Contract

case. The contributing ACTOR nodes are then connected by [:RELATED_TO] re-

lationship with properties ’value’ always set to 1 and another property ’length’

set to the distance between the actor whose occurrence was repeated.

In the final step, the start and endACTOR nodes of each and every [:RELATED_TO]

relationship are found out and sub-contraction values are determined and as-
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5.2 Subcontract Algorithm

signed between the UNIQUEACTOR nodes corressponding to the start and

end ACTOR node found above. The UNIQUEACTOR nodes are connected by

[: SUBCONTRACT ] relationship with a property ’strength’ denoting the sub-

contraction value between them. The ’strength’ property are finally normalised

by normal to remove any bias that may have crept up because of direct and

indirect succession.

5.2.2 Native CYPHER Implementation

5.2.2.1 Identify Sub-contracting Actors

237 MATCH (n:CASE)

238 MATCH commActorPath=(Actor1)<--(n)-->(Actor2)

239 WHERE Actor1.name = Actor2.name

240 AND Actor1.OccID - Actor2.OccID >= 2

241 AND Actor1.activity <> Actor2.activity

242 WITH commActorPath,n, (Actor2.OccID - Actor1.OccID) as sepDist

243 WITH RANGE(head(nodes(commActorPath)).OccID+1, last(nodes(commActorPath))

.OccID-1) as intermediateIDs,

244 n,

245 head(nodes(commActorPath)).OccID as startID,

246 sepDist

247 UNWIND intermediateIDs as endID

248 MATCH (person1:PERSON {OccID:startID})<--(n)-->(person2:PERSON {OccID:

endID})

249 MERGE (person1)-[:RELATED_TO {value:1, length:sepDist}]->(person2)

The code iterates case-wise and within each case, sub-contraction between ac-

tors are detected according according to the criteria. For each such pair, their

sub-contraction value is set to 1 and length is used to specify the distance be-

tween actor nodes (same actor performing different tasks) responsible for that

sub-contraction.

5.2.2.2 Collect distinct Actors

250 MATCH (n:ACTOR)

251 WITH collect(DISTINCT (n.name)) AS distinctNames
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252 UNWIND distinctNames AS currName

253 MERGE (newNode:UNIQUEACTOR {name: currName})

It creates a new set of distinct nodes UNIQUEACTOR from the existing graph.

Their uniqueness is identified by their names.

5.2.2.3 Set Sub-contraction values

254 MATCH (n:CASE)

255 MATCH (n)-[:CONTAINS]->()-[r:RELATED_TO]->()<-[:CONTAINS]-(n)

256 WITH collect(DISTINCT (r.length)) AS lengths,r

257 UNWIND lengths AS l

258 MATCH (newNode1:UNIQUEACTOR {name:startNode(r).name})

259 MATCH (newNode2:UNIQUEACTOR {name:endNode(r).name})

260 MERGE (newNode1)-[rf:SUBCONTRACT]->(newNode2)

261 SET rf.strength = CASE WHEN rf.strength IS NULL THEN r.value ELSE rf.

strength + (0.5^(l-2))*r.value END

It takes values between actors from relation :RELATED_TO identified in step 5.2.2.1

to calculate sub-contraction values between distinct users found in step 5.2.2.2.

5.2.2.4 Calculate normal

262 MATCH (n:CASE), (nor:Normal)

263 MATCH (n)-[r:CONTAINS]->(b)

264 WITH n, RANGE(0,count(r)-3)as len, nor

265 UNWIND len as l

266 SET nor.value=nor.value+(0.5^(l))

It calculates the value of normal. The same is required for normalization of sub-

contraction values obtained.

5.2.2.5 Normalize the result
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267 MATCH (n)-[r:SUBCONTRACT]->(b), (nor:Normal)

268 SET r.strength=r.strength / nor.value

The code normalizes the sub-contraction values between actors.

5.2.3 Memoization

Yet again, the native CYPHER implementation of sub-contract algorithm suffered

from having to match large graphs and making them available in the memory at

runtime. So, memoization was used yet again to store the references of nodes and

storing the intermediate properties.

5.2.3.1 Bottleneck

Neo4j requires nodes, relationships and properties to be present in memory during

query execution. Thus, this can be a bottleneck in system where memory config-

uration is limited. Also Neo4j nodes take 14 bytes, relationships take 33 bytes,

properties take 41 bytes besides other memory requirements like index creation,

etc. So for considerably larger dataset, the amount of memory may become a

bottleneck.

(a) MATCH Query. MATCH are usually used when a reference of a node is to

be obtained. It can also be used to map to a set of relationships or properties,

which may be quite large. In the native CYPHER implementation, the

following MATCH queries forms a bottleneck.

• MATCH query in procedure Identify Sub-contracting actors.

269 MATCH (n:CASE)

270 MATCH commActorPath=(Actor1)<--(n)-->(Actor2)

The above code is equivalent to finding each CASE node in the graph

and then for each CASE nodes, identify the sub-contracting ACTOR

nodes. So, the entire graph is loaded into the memory at any point of

time which results in bottleneck.

• MATCH query in procedure Set Sub-Contraction values.
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271 MATCH (n:CASE)

272 MATCH (n)-[:CONTAINS]->()-[r:RELATED_TO]->()<-[:CONTAINS]-(n)

It identifies all subcontracting actors within each case. So in the worst

case, the entire graph may again be loaded into the memory. This again

is another factor for bottleneck besides the one found above in the code

above.

(b) Properties Properties are means of storing information. Properties can be

found on nodes and relationships. The properties which contributes heavily

to higher memory usage are:

• Set Properties in procedure Identify Sub-contracting actors.

273 MERGE (person1)-[:RELATED_TO {value:1, length:sepDist}]->(

person2)

The properties value and length are updated for every sub-contraction

found in the graph. This can be equivalent to setting properties for

a complete graph of all unique actors and for each case. So setting

properties can result in O(n3) computation time and a space complexity

of loading the entire graph into the memory.

• Set Properties in procedure Set Sub-Contraction values.

274 SET rf.strength = CASE WHEN rf.strength IS NULL THEN r.value

ELSE rf.strength + (0.5^(l-2))*r.value END

This again has the effect of loading a major part of the graph in the

memory.

5.2.3.2 Improved alternative approach

Having found the bottlenecks, the improved implementation stores the reference

of each nodes on creation. Also instead of setting properties after each iteration,

the results are again stored in a matrix and then the final properties are set using

references of the nodes. The algorithmic procedure uses Neo4j API and caches

the intermediate results. The procedure is shown below.
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Algorithm 4: Outline of Sub-Contract Algorithm

1 Create distinct CASE nodes and store their reference.

2 foreach CASE node do

3 Create ACTOR node with occurrence ID (OccID) of the node, name and

activity as properties.

4 Store reference of ACTOR node along with reference of CASE node.

5 Create UNIQUEACTOR node for the above ACTOR (if not already

created) and store its reference.

6 m = Get number of UNIQUEACTOR nodes.

7 Declare ResultMatrix of size m*m to store the sub-contraction result.

8 foreach CASE node cn do

9 Identify sub-contracting ACTORS.Let those two ACTORS corresspond to

UNIQUEACTOR i and UNIQUEACTOR j.

10 Set ResultMatrix[i][j] = ResultMatrix[i][j] + βn-2.

11 foreach p:= 0 to m do

12 foreach q:= 0 to m do

13 Set [rf:SUBCONTRACT] relationship between UNIQUEACTOR p and

UNIQUEACTOR q.

14 Set rf.’strength’ = ResultMatrix[p][q].

The terminologies can be best understood by studying the Schema Description

given in section 5.2.1. Meanwhile, the results drastically improved on memoizing

references of nodes. This resulted in O(1) seek time for references rather than

searching for the node in the whole graph setup. Also avoiding frequent property

writes by simply setting properties at the end lessened memory requirements and

thus gave better performance.
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6

Experimental Dataset

We use Business Process Intelligence 2014(BPI 2014) dataset to conduct our

experiments. The log contains events from an incident and problem management

system called of Rabobank Group ICT. The dataset selected for the purpose

of this study is Detail Incident Record. The data is related to the process of

managing requests from Rabobank customers.These requests may be in the form

of mail or call. The process describes how a request is handled in the Service

Department operated by Rabobank Group ICT. The dataset is provided in CSV

format. We use the Detail Incident Record which contains 466737 records to

conduct our experiments. The various fields in the dataset can be explained as:

(a) Incident ID: The unique ID of an Incident-record in the Service Manage-

ment tool.

(b) DateStamp: Date and time when this specific Incident Acivity started

(c) Incident Activity Number: Unique ID for an Incident Activity.

(d) Incident Activity Type: Short code to identify which type of Incident

Activity took place

(e) Interaction ID: The unique ID of an Interaction-record in the Service

Management tool.

(f) Assignment Group: The team responsible for this Incident Activity.

(g) KM Number: A Knowledge Document contains default attribute values

for the Interaction-record and a set of questions for a Service Desk Agent to

derive which Configuration Item is disrupted and to determine Impact and

Urgency for the customer.
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Figure 6.1: Incident Activity Record Dataset

Figure 6.1 shows the dataset that is used in our experimentation. Since Or-

ganizational Mining algorithm is concerned only with the relationships between

performer of activities, and we need find similarity between actors, so we consider

only two fields - IncidentActivity_Type which represents the activity performed

and Assignment_Group which represents the performer of the activity. Also for

sub-contraction algorithm, we consider three fields Incident_ID which represents

the identifier for various cases, IncidentActivity_Type which is the nature of

the work performed and Assignment_Group which represents the performer of

the activity. All these used columns are highlighted in Figure 6.1.

Figure 6.2: Number of Events per Case

46



Fig. 6.2 shows the graph between the total number of cases and the number of

events for each case. As can be seen from the figure, the total number of records

in the event log are 466737, the total number of cases i.e. process instances are

46616 and the total number of activities in the event log are 39. The frequency

of some of the most frequent cases is shown in Figure 6.3.

Figure 6.3: Top Cases ordered by number of Events

Also, since the algorithm had to define and find relationships between Actors

taking into consideration the activities that they perform, so presented in Figure

6.4 is a graphical representation of the number of actors and the frequency of

their occurrence. Figure 6.5 presents the same information for some of the actors

who have higher presence in the log. Figure 6.4 and 6.5 shows that there were

Figure 6.4: Frequency of Actors

actors that performed only once in the entire log. On the other hand, some actors

were as frequent as 84143.
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Figure 6.5: Highest Frequency Actors

Activities also formed a major data for both the algorithms. For Similar-Task

algorithm, these activities were stored as a node, whereas in Sub-Contract algo-

rithm, these activities were embedded into actor nodes as property. Hence, it is

important to have an insight into the number of activities in the event log. Figure

6.6 gives a relative distribution of the activities in the event log. Also included

Figure 6.6: Frequency of Activities

in Figure 6.7 are some of the activities with higher frequency.

As can be seen from Figure 6.6 and Figure 6.7 that frequency of activities varied

from 2 to 88502.

This brings forward the amount of data that needs to be available for any Neo4j

script execution. Since one node takes 14 bytes, relationships take 33 bytes and

properties take 41 bytes, so the amount of memory needed for proper execution

may increase with increase in the number of elements of property graph. Prior
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Figure 6.7: Highest Frequency Activities

analysis of the event log proved useful during program execution.
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7

Performance Comparison

The implementations were tested on our benchmarking system. The system had

64-bit Windows OS which ran on top of Intel Core-2 Duo processor. The system

had 4GB of RAM and 3MB cache and backed up by 320GB of secondary mem-

ory. The values recorded are an average of multiple runs. The experiments were

conducted on single node MySQL and single node Neo4j instance of the database.

7.1 Similar-Task Algorithm

Implementation of Similar-Task algorithm required the actor-activity matrix as

an input. The dataset was broken into different sizes. Since number of unique

actors play an important role in Similar-Task algorithm, dataset of various sizes

are compared to find the number of unique actors. The result is shown in Table

7.1.

Table 7.2 shows the time taken to load datasets of different sizes on MySQL and

Dataset Size Unique Actors
65000 150

1,01,000 158
2,19,500 220
3,00,000 229
4,66,737 242

Table 7.1: Number of Unique Actors per dataset size.

Neo4j database and for a single node setup. The time taken is directly related to

the number of unique actors present in each dataset size. For each dataset size,
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the data was initially imported and actor-activity matrix (tables in MySQL and

relationships in Neo4j) being created. It is observed that both the databases gave

similar performance. However with increase in number of unique actors, Neo4j

started giving better load time performance. Figure 7.1 shows the data load time

Unique Actors Load Time (msec)
MySQL Neo4j

150 2467 3413
158 2875 3362
220 5966 4354
229 5850 5877
242 7819 6875

Table 7.2: Data Load Time (Similar − Task)

comparison on a graph plotted for various dataset sizes whose corresponding val-

ues can be referred from Table 7.2.

Figure 7.1: Data Load Time for Similar-Task Algorithm

The reason Neo4j performs better is down to the fact that only unique Actor and

Activity nodes are imported into the graph setup. On the other hand, MySQL

had a predefined schema equivalent to the number of distinct activities in the

dataset. So even if an actor had not performed an activity, value (though zero)

had to be set at that respective column. This was easily avoided in case of Neo4j.
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The heart and soul of Similar-Task algorithm is similarity calculation (Step-8 of

the algorithm) and update the result table (Step-9 of the algorithm). Table 7.3

records the time taken to execute Step-8 and Step-9 of Similar-Task Algorithm

as a function of the number of unique actors for different dataset size as given in

Table 7.1.

Unique Actors Execution Time(msec)
Step-8 Step-9

MySQL Neo4j MySQL Neo4j
150 225 9616 2467 2403
158 372 11700 2875 2925
220 713 14655 5966 3664
229 903 29520 5850 7380
242 1403 48891 7819 12223

Table 7.3: Execution Time for Step-8 and Step-9 (Similar − Task)

It can be observed that calculation based on node properties and relationship

properties are time taking as compared to retrieving from tables. Also Step-9

comparison shows that INSERT in MySQL performs better then SET proper-

ties in Neo4j. Figure 7.2 presents execution-time comparison for cosine-similarity

calculation.

The difference in execution time for two different implementations is quite large.

This is so because, data for cosine similarity calculation in MySQL was readily

available in tables. No computation had to be performed to get data as those com-

putations were done as part of pre-processing step where Actor-Activity Matrix

was carved out of initially imported dataset. Using some sort of similar matrix

in Neo4j would have defeated the whole purpose of graph database.

Equivalent values of the form of Actor-Activity Matrix were incorporated into

relationship properties in Neo4j. So for any computation, Neo4j requires matching

intersecting activities between the two actors in concern, followed by the actual

computation. Also Figure 7.3 gives an idea of the time required to update results.

It can be observed that setting relationship properties in Neo4j is more time

consuming because existing relationships needed to be merged with the updated

properties or new ones be created if such relationship doesn’t exist.
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Figure 7.2: Cosine-Similarity calculation in Step-8

Table 7.4 and 7.5 shows the disk space taken by tables (MySQL) or nodes, prop-

erties, relationships(Neo4j). These data includes all intermediate memory con-

sumption, indexes besides initial data loading and results. Figure 7.4 and 7.5

shows the disk space usage for various elements of MySQL and Neo4j.

Tables Dataset Size
65000 101000 219500 300000 466737

Dataset 3686400 5783552 11026432 15220736 21544960
OTMatrix 65536 65536 65536 81920 81920

InitSim 1589248 1589248 1589248 3686400 3686400
FinalSim 229376 262144 278528 491520 1589248

Table 7.4: Disk Space Usage (bytes) for MySQL tables (Similar − Task)

Table 7.4 indicates the various tables sizes. The table Dataset is where the ini-

tial data is imported. From the imported data, Actor-Activity Matrix (referred

herewith as OTMatrix) is constructed. Tables InitSim and FinalSim stores the

initial similarity values and final similarity values respectively.

Table 7.5 shows disk space taken by graph elements. The results shows that Neo4j
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Figure 7.3: Time Taken to update results in Step-9

Graph Elements Dataset Size
65000 101000 219500 300000 466737

Nodes 2820 2910 3075 3990 4215
Relationships 770040 414315 479663 856809 983227

Properties 1033856 563873 651203 1155011 1323439

Table 7.5: Disk Space Usage (bytes) for Neo4j Elements (Similar − Task)

gains upperhand when it comes to disk space usage. These can be attributed to

the fact that Neo4j nodes and relationships are only created when needed unlike

MySQL which has to have a proper schema defined beforehand.

7.2 Sub Contract Algorithm

Table 7.6 shows the time taken to load datasets of different sizes on MySQL and

Neo4j database and for a single node setup, we observe that both the databases

gave similar performance. However with increase in dataset size, Neo4j started

giving better load time performance.

Figure 7.6 shows the data load time comparison on a graph plotted for various

dataset sizes whose corresponding values can be referred from Table 7.6.
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7.2 Sub Contract Algorithm

Figure 7.4: Disk Usage in MySQL (Similar Task)

DataSet Size Load Time (msec)
MySQL Neo4j

65,000 6575 9567
1,01,000 8390 10476
2,19,500 14279 14873
3,00,000 26437 25435
4,66,738 43712 38234

Table 7.6: Data Load Time (Sub− Contract)

The data load time in MySQL is the summation of loading the dataset from the

file into initial table dataset and inserting them into second table organiseddata

with all records being ordered by their ID and CaseID. This is done to bring

uniformity in load time statistics because loading data in Neo4j, by default means

incorporating thse values on graph elements like relationships and properties.

Alike Similar-Task algorithm, data load time exhibited the same pattern in Sub-

Contract algorithm too. However it must be noted that no unique actors is of

concern here because sub-contraction can only be calculated within cases. With

increase in dataset size, Neo4j started giving better load time. This is due to
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7.2 Sub Contract Algorithm

Figure 7.5: Disk Usage in Neo4j (Similar Task)

the fact that with increase in dataset size, ordering in MySQL takes longer as

compared to creating straight forward relationships in Neo4j.

Table 7.7 shows the execution time of Sub-Contract algorithm using the impro-

vised alternative approach. As can be seen from Table 7.7, MySQL gave almost

identical performance for various dataset sizes.

Dataset Size Execution Time(msec)
Update
Normal

Sub-Contract
Detection

Update
Result

Normalize
Result

65,000 32 11712 8296 16
1,01,000 32 11782 8138 16
2,19,500 35 11713 7940 17
3,00,000 70 11736 8094 17
4,66,737 73 11747 7754 20

Table 7.7: Execution Time for Sub-Contract Algorithm in MySQL

Figure 7.7 presents the graph corresponding to Table 7.7. The execution time

has been noted over multiple iterations of the implementation.
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7.2 Sub Contract Algorithm

Figure 7.6: Data Load Time for Sub-Contract Algorithm

As seen in Figure 7.7, Sub-Contract algorithm implemented in MySQL have iden-

tical performance for various dataset sizes. It can be ascertained that not many

sub-contracting actors were detected beyond a certain dataset size. Also locality

of reference played a big part as most of the data for a larger dataset were already

accessed.

Table 7.8 puts forward the execution time noted for Sub-Contract algorithm im-

plemented in Neo4j using the improvised approach.

Dataset Size Execution Time(msec)
Update
Normal

Sub-Contract
Detection

Update
Result

Normalize
Result

65,000 118 1542 2077 5
1,01,000 140 1707 2773 5
2,19,500 202 2534 2369 6
3,00,000 336 3442 5261 9
4,66,737 560 4149 5334 9

Table 7.8: Execution Time for Sub-Contract Algorithm in Neo4j

Figure 7.8 depicts the execution time of Sub-Contract implementation in Neo4j

using a radar graph. The colored lines represents different tasks of the algorithm.

The convergence of these lines towards the vertices of the radar gives an estimate
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7.2 Sub Contract Algorithm

Figure 7.7: Execution Time in MySQL (Sub-Contract)

of the execution time of each of these tasks. Dotted points at the centre of the

radar indicates faster execution and hence smaller time value. Values farther from

the center of the graph indicates higher time duration.

Comparing Figure 7.7 and Figure 7.8, it is observed that, Neo4j has better per-

formance than MySQL in case of finding sub-contracting actors. It is so because,

joins in MySQL are high intensive tasks as compared to defining relationships in

Neo4j. Also in this case, joins were expensive because they had to be performed

repeatedly for each CaseID.

Another aspect that Table 7.7 and Table 7.8 brings forward is that write opera-

tion in MySQL is a painful task as compared to Neo4j. It is so because MySQL

needs to write values, albeit zero or some default value, for all those relations

that doesn’t even exist. This however can be avoided in Neo4j by only creating

relationship between nodes that are part of the satisfying relation. Although a

gradual increasing trend in UpdateResult (or write operation) in Neo4j is seen,

it still outperforms MySQL write operation by almost a factor of 1.5.

Table 7.9 presents the disk space taken by tables in MySQL. These statistics in-
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7.2 Sub Contract Algorithm

Figure 7.8: Execution Time in Neo4j (Sub-Contract)

clude both initial tables, intermediate tables, final tables and index if any.

Tables Dataset Size
65000 101000 219500 300000 466737

Dataset 4734976 6832128 13123584 18366464 27836416
Organised Data 4734976 6832128 13123584 18366464 27836416
Result Matrix 1589248 1589248 1589248 1589248 1589248

Table 7.9: Disk Space Usage (bytes) for MySQL tables (Sub− Contract)

Figure 7.9 shows the the variance of disk space usage in MySQL for five dif-

ferent dataset sizes. Initial table dataset and table that has the data ordered,

organiseddata are of the same size because organiseddata doesn’t add any new

data to it. It just organises data so any overhead on selecting and organising data

for each case during join computation may be avoided.

The disk usage of ResultMatrix in MySQL is quite less as compared to other ta-

bles because it only stores the sub-contraction values for all unique actors. Extra

disk space for storing Activity, CaseID are avoided in this case.

Table 7.10 shows the disk usage of graph elements for the implementation of
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7.2 Sub Contract Algorithm

Figure 7.9: Disk Usage in MySQL (Sub-Contract)

sub-contraction algorithm for different dataset sizes.

Tables Dataset Size
65000 101000 219500 300000 466737

Nodes 982212 1523732 3360798 4598454 7190330
Relationships 153477291 183955761 285778449 375437997 490033038
Result Matrix 384189475 461537287 719874720 946265404 1238579332

Table 7.10: Disk Space Usage (bytes) for Neo4j elements (Sub− Contract)

Figure 7.10 shows the the variance of disk space usage in Neo4j for graph ele-

ments like nodes, relationship and properties. The disk space for nodes is con-

tributed by three different nodes type viz. Case nodes, actor nodes and unique

actor nodes. There are three relationships that contribute to relationship disk

space viz. [: CONTAINS] relationships that connects case node to actor nodes,

[: RELATED TO] connects actor to actor who satisfy the sub-contraction criteria and

[: SUBCONTRACT ] connects unique actor nodes to unique actor nodes with the

actual sub-contraction value between the unique actors. Properties take higher

amount of disk space because there are eight properties in the implementation -

five of them are part of nodes and three of them are embedded in relationships.
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Figure 7.10: Disk Usage in Neo4j (Sub-Contract)

It can be concluded that disk space for Neo4j graph elements is comparatively

higher due to the fact that there are a lot of redundant information spread across

nodes.
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Limitations and Future Work

In our work we have used the BPI challenge 2014 dataset that consists of only

466737 records. Though five different size of this dataset was used to study scala-

bility over two algorithms, further work should include different dataset to study

the impact of dataset change in the overall evaluation.

Both implementations were done of a single node setup. Evaluating organiza-

tional mining algorithms over a distributed setup would be an interesting work

to look forward too. Such implementation would not only require careful exami-

nation of disk/memory requirements on a single node but also studying them on

distributed setup. Besides, other factor like network I/O and validation of result

would be of much importance.

Organizational Mining is a broad topic in itself. Generalizing results of two al-

gorithms for an entire community of relational database and graph database is

misleading. However with more metrics of organizational mining and social anal-

ysis and studying use case feasibilities for all other graph databases would form

an important research topic. Study of performance of these algorithms and other

organizational mining algorithms with different graph databases like OrientDB,

ArangoDB, InfiniteGraph, etc. would also be an important contribution.

Recommendation Systems are built using graph databases. And process discov-

ery, conformance and enhancement are part and parcel of process mining. So

studying the intersection of process enhancement with enhancement of graph
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database like recommendation system would be a major contribution. To study

how process mining can assist in building useful recommendation system can be

useful contribution to the field of process mining and graph database.
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Conclusion

This paper introduced the implementation of two different organizational min-

ing algorithms in Structured Query Language and Cypher Query Language. It

compares the performance of these algorithms on MySQL and Neo4j. Implemen-

tations were carried out on both native SQL client and as well as through java

api’s using memoization. The work concentrated on defining suitable tables for

MySQL and defining proper node and relationship structure in Neo4j. Writing

efficient queries, stored procedures or Neo4j scripts for two different algorithms

was an important challenge.

Implementation of Similar-Task algorithm were done on native SQL and Cypher

clients. Reading database, processing and storing results back to the database

were entirely query language specific. Implementation of Sub-Contract algorithm

was done using api’s for respective databases. Experiments for Similar-Task

and Sub-Contract algorithm showed that Neo4j performs better on when loading

dataset of larger size. Thus, we can conclude that Neo4j is optimized to be really

fast on a single node as compared to Cassandra. Also, the time taken to read from

the database is more in Cassandra as compared to MySQL for read operations.

Performance comparison of Similar-Task implementation showed that MySQL

gave better performance than Neo4j. MySQL gave better performance because

there were only two hundred and forty two unique actors and achieving join for

such smaller set was easy for MySQL. Also Neo4j needed to find intersection of

activities between two actors before computing similarity which contributed to
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greater execution time in Neo4j. However in case of Sub-Contract algorithm,

Neo4j gave better performance as compared to MySQL. This is due to the fact

that MySQL had to implement joins for all cases (CaseID) that were almost close

to fifty thousand. Whereas graph databases like Neo4j are optimized to avoid

join intensive queries by using index-free adjacency.

Write performance of relational and graph databases differ greatly. With respect

to organizational mining algorithm implemented here, it was observed that for a

smaller set of actors, MySQL performs better. But with increase in dataset size

and the size of overall data to be pushed back to the database, Neo4j approach

to writing properties only for valid relations proved to be the key difference. In

MySQL, values had to set for those pair of actors between whom the relation

didn’t even exist which increased both write overhead and disk usage.

Thus, with regards to organizational mining, it can be concluded that graph

database performs better than relational database as size of dataset increases.

Also as far as storage in concerned, Neo4j gave better performance when only

distinct values are to be stored but in case when duplicate data is to be main-

tained, disk space usage varies with requirements.
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