
Pragamana: Performance
Comparison and Programming
α-miner Algorithm in Relational
Database Query Language and
NoSQL Column-Oriented Using

Apache Phoenix

Kunal Gupta
Computer Science

Indraprastha Institute of Information Technology, Delhi (IIIT-D), India

A Thesis Report submitted in partial fulfilment for the degree of

MTech Computer Science

1 May 2015

mailto:kunal1340@iiitd.ac.in
http://www.iiitd.ac.in/
http://www.iiitd.ac.in/

1.: Prof. Ashish Sureka (Thesis Adviser)

2. Prof. Sachit Butail (Internal Examiner)

3. Dr. Satya Valluri (External Examiner)

Day of the defense: 1 May 2015

Signature from Post-Graduate Committee (PGC) Chair:

ii

Abstract

Process-Aware Information Systems (PAIS) support business processes and

generate large amounts of event logs from the execution of business pro-

cesses. An event log is represented as a tuple of CaseID, Timestamp, Ac-

tivity and Actor. Process mining is a new and emerging field that aims at

analyzing the event logs to discover, enhance and improve business processes

and check conformance between run time and design time. A large volume

of event logs that are generated are stored in the databases such as rela-

tional, NoSQL and NewSQL. While relational databases perform well for

a certain class of applications, there are a certain class of applications for

which such databases create bottlenecks (like Scalability and Sharding). To

handle such class of applications, NoSQL database systems have emerged.

A relevant application of interest is the process mining task of discovering

a process model (workflow model) from event logs. The α-miner algorithm

is one of the first and most widely used Process Discovery technique. Our

objective is to investigate which of the databases (Relational or NoSQL) per-

form better for a Process Discovery application under Process Mining. We

implement the α-miner algorithm on relational (row-oriented) and NoSQL

(column-oriented) databases in database query languages so that our algo-

rithm is tightly coupled to the database. We do a performance benchmarking

of the α-miner algorithm on a row-oriented database and a NoSQL column-

oriented database to compare which database can efficiently store massive

event logs and analyze it in seconds to discover a process model.

I dedicate my MTech Thesis to my family who has always encouraged me

in all phases of life and is my greatest source of inspiration.

Acknowledgements

I would take this wonderful opportunity to express my deepest gratitude to

my advisor Prof. Ashish Sureka for his continuous guidance, support, con-

stant motivation and patience throughout my thesis. Without his guidance

and support this thesis would not have been possible. I feel really blessed

to have him as my thesis advisor.

I would also like to thank my fellow mate Astha Sachdev for her insightful

comments, suggestions and constant support during the course of my thesis.

I would like to thank God for all his blessings.

Finally, I would like to thank my parents and brother for their constant

support, encouragement, love and trust in me.

Declaration

This is to certify that the MTech Thesis Report titledPragamana: Perfor-

mance Comparison and Programming α-miner Algorithm in Re-

lational Database Query Language and NoSQL Column-Oriented

Using Apache Phoenix submitted by Kunal Gupta for the partial ful-

fillment of the requirements for the degree of MTech in Computer Science is

a record of the bonafide work carried out by her under my guidance and su-

pervision at Indraprastha Institute of Information Technology, Delhi. This

work has not been submitted anywhere else for the reward of any other de-

gree.

Professor Ashish Sureka

Indraprastha Institute of Information Technology, New Delhi

Contents

List of Figures vi

List of Tables viii

1 Research Motivation and Aim 1

1.1 Process Mining . 3

1.2 Comparison of NoSQL Column-Oriented Database and Row-Oriented

Database . 6

1.3 SQL Interface Over NoSQL Column-Oriented Database 6

1.4 Research Aim . 8

2 Related Work and Research Contributions 9

2.1 Related Work . 9

2.1.1 Implementation of Mining Algorithms in Row-Oriented Databases 9

2.1.2 Implementation of Mining Algorithms in Column Oriented Databases 10

2.1.3 Performance Comparison of Mining Algorithms in Row-Oriented

and Column-Oriented Databases 10

2.2 Thesis Contributions . 11

3 Introduction of Apache Hadoop, Apache HBase and Apache Phoenix 12

3.1 Apache Hadoop . 12

3.1.1 HDFS: Hadoop Distributed File System 12

3.2 Apache HBase-NoSQL Column-Oriented Database 13

3.2.1 Introduction . 13

3.2.2 Architecture . 14

3.3 Apache Phoenix-SQL Skin Over HBase 15

iv

CONTENTS

4 Description of α-Miner Algorithm with an Example 16

4.1 Description of α-Miner Algorithm . 16

4.2 Example of α-miner Algorithm . 17

5 Implementation of α-Miner Algorithm in SQL on Row-Oriented Database
(MySQL) and Column-Oriented Database (HBase) 20

5.1 Implementation of α-Miner Algorithm in SQL on Row-Oriented Database

(MySQL) . 20

5.2 Implementation of α-Miner Algorithm on NoSQL Column-Oriented Database

(HBase) Using Apache Phoenix . 23

5.3 Output of α-Miner Algorithm from the Database 26

6 Experimental Dataset 27

7 Benchmarking and Performance Comparison 31

7.1 Loading Multiple Datasets . 31

7.2 Execution of α-Miner Algorithm . 33

7.3 Read Intensive Steps of α-Miner Algorithm 34

7.4 Write Intensive Steps of α-Miner Algorithm 35

7.5 Disk Usage of Tables . 37

7.6 Disk Usage of Tables Using Compression Technique 38

7.7 Execution of α-Miner Algorithm Using Compression Technique 39

7.8 Real Time Insertion of an Event Logs 41

8 Conclusion 44

9 Limitations and Future Work 45

Appendix

A Implementation of α-Miner Algorithm in SQL on Row-Oriented Database
(MySQL) 46

B Implementation of α-Miner Algorithm on NoSQL Column-Oriented
Database (HBase) Using Apache Phoenix 54

References 59

v

List of Figures

1.1 Types of Process Mining Techniques . 4

1.2 Small Process Model . 5

1.3 SQL Interface over NoSQL Column-Oriented Databases 7

3.1 HBase Architecture Adapted From [1] 14

3.2 HBase-Phoenix Architecture . 15

4.1 Example of α-miner Algorithm . 18

4.2 Continued Example of α-miner Algorithm 19

4.3 α-miner Algorithm-Input and Output Transitions 19

5.1 Small output of α-miner algorithm . 26

6.1 Event Log . 28

6.2 Activities in BPI 2014 Dataset . 28

6.3 Number of Activities Per Case in BPI 2014 Dataset 29

6.4 Matrix of Events per Case . 30

7.1 Dataset Load Time in Seconds . 32

7.2 α-miner Stepwise Execution . 33

7.3 Read Intensive Time in Seconds . 35

7.4 Write Intensive Time in Seconds . 36

7.5 Disk Usage of Tables . 37

7.6 Disk Usage of Tables With Compression 39

7.7 α-miner Stepwise Execution Time with Compression 40

7.8 Batch wise Insertion Time in Seconds 41

vi

LIST OF FIGURES

7.9 Number of Inserts per Second in Batch 42

7.10 Single Row Insertion Time in Seconds 43

vii

List of Tables

5.1 Representation of Schema Table in MySQL 21

5.2 Comparison of Apache Phoenix and MySQL Query Language 23

5.3 Representation of Schema Table in HBase 24

7.1 Dataset Load Time . 31

7.2 Stepwise Execution Time . 33

7.3 Read Intensive Time . 34

7.4 Write Intensive Time . 35

7.5 Disk Usage of Tables . 37

7.6 Disk Usage of Tables With Compression 38

7.7 Stepwise Execution Time with Compression 39

7.8 Batch wise Insertion Time . 41

7.9 Number of Inserts per Second in Batch 41

7.10 Single Row Insertion Time . 42

viii

1

Research Motivation and Aim

A Process-Aware Information System (PAIS) is an Information Technology (IT) system

that manages and supports business processes. A PAIS generates data from the exe-

cution of business processes. The data generated by a PAIS like Enterprise Resource

Planing (ERP) and Customer Relationship Management (CRM) [2] is in the form of

event logs (represented as a tuple <CaseID, Timestamp, Activity, Actor>). In an event

log, a particular CaseID, that is a process instance, has a set of activities associated

with it, ordered by timestamp. Process Mining is a domain that analyzes business

processes from event logs. Process Mining helps the organizations to improve their

business processes by extracting useful insights from event logs. There are three major

techniques of Process Mining viz. Process Discovery, Process Conformance and Process

Enhancement [3]. The classification is based on whether there is an a priori model and,

if present, how that model is used. In this thesis, we focus on Process Discovery aspect

of Process Mining. In Process Discovery, there is no a priori model. Process Discovery

aims to construct a process model, which is a computationally intensive task, from the

the information present in event logs. One of the most fundamental algorithm under

Process Discovery is the α-miner algorithm [4] which is used to generate process model

from event logs.

The event logs used in discovering a process are very large and constantly growing

in size. Before the year 2000, all the organizations used traditional relational database

management system to store event logs. Process models were discovered by analysing

event logs stored in the database with the help of programming (using a client ap-

plication). Most of the traditional relational databases focus on Online Transaction

1

Processing (OLTP) applications [5] but are not able to perform Online Analytical Pro-

cessing (OLAP) applications efficiently. Row-oriented databases are not well suited to

execute analytical functions (like Dense_Rank, Sum, Count, Rank, Top, First, Last and

Average) but work well for the retrieval of an entire row or insertion of a new record. On

the other hand, NoSQL column-oriented databases are well suited for analytical queries

but result in poor performance for insertion of individual records or retrieving all the

fields of a row. Another problem with traditional relational databases is impedance

matching [6]. Impedance matching occurs when the representation of data in memory

is different from that in the databases is different. This is because in-memory data

structures use lists, dictionaries, nested lists while relational databases store data only

in the form of tables and rows. Thus, we need to translate data objects present in the

memory to tables and rows and vice-versa. Performing the translation is complex and

costly. NoSQL databases on the other hand are schema-less. Records can be inserted

at run time without defining any rigid schema. Hence, NoSQL databases do not face

the problem of impedance matching.

Recent years have seen the introduction of a number of NoSQL column-oriented

database systems [7]. These database systems have been shown to perform more than an

order of magnitude better than the traditional relational database systems on analytical

workloads [8]. The underlying reason is that column-oriented are more I/O efficient for

read only queries since they have to read queried attributes either from disk or from

memory [8]. Our objective is to implement a process discovery algorithm α-miner

algorithm on a row-oriented database and a NoSQL column-oriented database and to

benchmark the performance of the algorithm on both the row-oriented and column-

oriented databases.

A lot of research has been done in implementing data mining algorithms in database

query languages. Previous work suggests that tight coupling of the data mining algo-

rithms to the database systems improves the performance of the algorithms significantly

[9]. We aim to implement α-miner algorithm in Structured Query Language (SQL) so

that our Process Discovery application is tightly coupled to the database.

NoSQL column-oriented databases and Apache Hadoop1 are still in research and can

handle large data with help of new file system (HDFS). Combination of both Hadoop

component and column-oriented databases allow accessing large data and storing data
1http://hadoop.apache.org/

2

1.1 Process Mining

easily as compared to single machine databases [10]. There are various NoSQL column-

oriented databases [7]. We aim to analyze event logs in real time and since HBase is used

in real time messaging system, we focus on Apache HBase1 (NoSQL column-oriented

database) for our current work and benchmark its performance against MySQL2 (row-

oriented database) which is one of the most popular row-oriented database and is in-

tegrated with most of the applications for analysing, transforming and processing the

data. To perform analytical functions, NoSQL column-oriented databases either use

MapReduce programming model or use their own simple query language that just sup-

ports create, read, update and delete (CRUD). They do not support an SQL interface.

We integrate Apache Phoenix3(SQL layer over HBase) into HBase to support SQL in-

terface in it. It converts SQL queries to HBase scans rather than MapReduce jobs.

It executes converted scans in parallel over the regions in a regionserver and targets

low latency query over HBase tables as compared to MapReduce framework and client

API’s.

1.1 Process Mining

Process Mining creates process models by analyzing the business process event logs.

These models are used for analysis in the growing business needs [3]. They help in

providing comprehensive support for flexible business processes. There are various tech-

niques such as α-miner algorithm and α+-miner algorithm which can be used to extract

useful insights from the event logs [3]. These algorithms record events in a sequential

way. An event is represented by a tuple <CaseID, Timestamp, Activity, Actor>. This

information is then used by process mining to construct process models. For exam-

ple, the α-miner algorithm [4] can construct a Petri net model describing the behavior

observed in the event logs.

Process mining focuses only on event logs which refers to discrete events that happen

in real time. They also store additional information which is related to the activities.

For example, Resources (i.e., the person or device), Timestamp of the event, or Data

elements recorded with the event (e.g. size of an order).
1www.hbase.apache.org
2http://www.mysql.com/
3http://www.phoenix.apache.org

3

1.1 Process Mining

Process mining will work even if there is a case of data explosion. Thus it’s an

opportunity that has emerged out of Big Data. The volume of data in organizations is

increasing exponentially. Therefore, it is important to be able to process the massive

event logs in order to make critical business decisions and satisfy user demands.

Figure 1.1: Types of Process Mining Techniques

There are three types of process mining techniques:

1. Process Discovery: It takes input as event log and produces a process model.

2. Process Conformance: This technique takes an existing process model as a ref-

erence and compares it with the given event log, to check if the given event log

conforms to the process model and vice-versa.

3. Process Enhancement: This technique takes an existing process model as input

extract new information from it as well as rephrase it.

We consider three different perspectives of process mining [4]:

1. Process Perspective: It focuses on the control flow of a process and order the

activities from event logs.

2. Organizational Perspective: It focuses on how the originators (actor) of activities

communicate with each other.

3. Case Perspective: It focuses on the property of a particular process instance. For

example, property can be identified by the path instance takes in a process model.

4

1.1 Process Mining

Figure 1.2: Small Process Model

Fig. 1.2, depicts the process model. Fig. 1.2, has a starting point and an ending

point. All the activities lie between these two points. In the event log, set of activities

correspond to a particular process instance (case). In all cases, there is an initial and

a final activity. All initial activities are connected to the starting point and all the

final activities are connected to the ending point. "Open" is an initial activity and

"Closed" is a final activity. Arrow shows transitions from one state to another and

rectangular box represents a state. Frequencies specified on arrows represent count of

transitions and activities inside rectangular box represent a state. It basically shows how

many times one state (activity) goes to another state (activity) like "Open" activity

goes 8501 times to "Status Change" activity.

In process mining, logs are an essential part of any computing system, supporting

error management, like to identify key problems within a business process. As logs

grow and their number of sources increases, a scalable system is necessary to efficiently

process these logs.

5

1.2 Comparison of NoSQL Column-Oriented Database and Row-Oriented
Database

1.2 Comparison of NoSQL Column-Oriented Database and
Row-Oriented Database

Row-oriented databases and column-oriented databases support OLAP. They are capa-

ble of supporting analytical process mining but have some key differences in performing

operations.

1. In a column-oriented database, information about an entity is stored in multiple

locations on a disk (e.g. name, e-mail address and phone number are all stored in

separate columns) whereas in a row-oriented database, such information is usually

located contiguously in a single row of a table.

2. Row-oriented databases are primarily used for transactional processing in com-

parison to analytical processing while NoSQL column-oriented databases does not

support OLTP and focus on OLAP.

3. Compression algorithms perform better on data with low information entropy

(high data value locality). Using compression algorithms over column-oriented

database has shown significant improvement in query performance [11].

1.3 SQL Interface Over NoSQL Column-Oriented Database

NoSQL column-oriented databases do not support OLTP and focuses on OLAP. To

process analytical queries these database use Create/Read/Update/Delete operations,

MapReduce job or Client API’s but they do not have any SQL like capabilities to

perform any analytical queries. The challenges of using client API against SQL over

NoSQL databases are:

1. To write an application using MapReduce and Client API’s requires expertise.

2. Writing code may not be as straightforward as SQL (Refer Figure 1.3 adapted

from1).

3. Applications are tied closely to specified data model.
1http://phoenix.apache.org/presentations/OC-HUG-2014-10-4x3.pdf

6

1.3 SQL Interface Over NoSQL Column-Oriented Database

To perform aggregation functions such as min, max, average and count in NoSQL

column-oriented database there is a need to run MapReduce jobs. MapReduce is a

programming model for processing large datasets in a cluster of machines. This model

is based on key-value pair and consists of a Map procedure and Reduce procedure. The

Map procedure performs filtering and sorting of all the keys while a Reduce procedure

combines all the similar keys. It slows down if a cluster of machines contain distinct

large set of keys. Processing these MapReduce jobs will take from minutes to hours.

Figure 1.3: SQL Interface over NoSQL Column-Oriented Databases

Accessing data stored in tables using SQL interface can be much easier in compari-

son to using client API’s or MapReduce jobs. SQL 2003 supports window functions (like

RANK, DENSE_RANK, FIRST_VALUE and LAST_VALUE) for analytical applica-

tions. Window functions allow us to remove self-joins and explicit cursors. These func-

tions help in processing analytical applications in lesser time as compared to MapReduce

framework. Business intelligence tools can be integrated with SQL interface by using

JDBC and ODBC connector. These tools help to retrieve, analyze, process and trans-

form the data in order to improve business performance. Lately, developers are working

on a NoSQL column-oriented database to support Atomicity, Consistency, Isolation

and Durability (ACID) properties. Many companies like Cloudera1, Hortonworks2 and

Apache3 are working to provide SQL layer over NoSQL column-oriented databases.
1http://www.cloudera.com
2http://www.hortonworks.com
3http://www.apache.org

7

1.4 Research Aim

1.4 Research Aim

The research aims of this study are-

1. To implement α-miner algorithm in SQL. The underlying row-oriented database

for implementation is MySQL using InnoDB1 engine.

2. To implement α-miner algorithm on column-oriented database HBase using Phoenix

and HDFS.

3. To conduct series of experiment on publicly available real world dataset, to com-

pare the performance of α-miner algorithm on both the databases. The experi-

ment considers multiple aspects such as α-miner stepwise execution, bulk loading

across various datasets, write intensive time, read intensive time, disk space of ta-

bles, disk space of tables using compression technique, α-miner stepwise execution

using compression technique, real time batch wise insertion and real time single

record insertion.

1http://dev.mysql.com/doc/refman/5.5/en/innodb-storage-engine.html

8

2

Related Work and Research
Contributions

The description of related work is taken from our work done in collaboration with Astha

Sachdev [12]. In this Section, we review closely related work to the study presented in

this thesis and list the novel contributions of our work in context to existing work.

2.1 Related Work

2.1.1 Implementation of Mining Algorithms in Row-Oriented Databases

Ordonez et al. presents an efficient SQL implementation of the EM algorithm [13]. Their

approach is to perform clustering in very large databases. It can effectively handle high

dimensional data, a high number of clusters and more importantly, a very large number

of data records. Sattler et al. present a study of applying data mining primitives on

decision tree classifier [9]. Their framework provides a tight coupling of data mining and

database systems and links the essential data mining primitives that supports several

classes of algorithms to database systems.

Xuequn Shang et al. presents an efficient frequent pattern mining in relational

databases [14]. They proposed, called Propad (PROjection PAttern Discovery). Propad

fundamentally differs from an Apriori like candidate set generation-and-test approach.

This approach successively projects the transaction table into frequent itemsets to avoid

making multiple passes over the large original transaction table and generating a huge

sets of candidates. Ordonez et al. present a method to implement k-means clustering

9

2.1 Related Work

algorithm in SQL. They cluster in large datasets in RDBMS [15]. Their work con-

centrates on defining suitable tables, indexing them and writing suitable queries for

clustering purposes.

2.1.2 Implementation of Mining Algorithms in Column Oriented Databases

Mehta et al. conducted a study on the impact of data mining algorithms on column

oriented database systems [16]. They study the architecture of various open source

column oriented database systems and implement simple tree based classification algo-

rithm on MonetDB and discretization algorithm on MonetDB and Infobright. Suresh L

et al. implemented k-means clustering algorithm on column store databases [17]. They

introduce a Novel Seeding Algorithm to implement k-means in column store databases.

This algorithm identifies the median gaps in the data in each of the columns and using

these median gaps it identifies other clusters by identifying the difference in the median

gaps.

2.1.3 Performance Comparison of Mining Algorithms in Row-Oriented
and Column-Oriented Databases

Hasso conducted common database approach for OLTP and OLAP using an in-memory

column database [5]. He presented a comparison of OLAP and OLTP considering row

oriented database and column oriented database. Pungila et al. conduct an experiment

to test collection speed and aggregation speed for reasonable data streams of sensor

data on relational databases and column stores and perform benchmarking on them

[18].

Rana et al. implement Apriori algorithm on MonetDB and Oracle database and

compare their performance in terms of execution time [19]. Bazar et al. present a study

on the reasons for the transition from relational to column oriented databases [20].

They conduct experiments to perform benchmarking on three column store databases

Cassandra, MongoDB and CouchBase. Andreas et al. presents workload representation

across different storage architectures for relational DBMS [21]. For relational database

management systems, two storage architectures have been introduced: the row-oriented

and the column-oriented architecture. To select the optimal architecture for a certain

application, we need workload information and statistics. In this paper, we present an

10

2.2 Thesis Contributions

approach that enables us to represent workloads across different DBMSs and architec-

tures.

2.2 Thesis Contributions

In context of existing work, this study makes the following novel contributions:

1. A first implementation of the Process Mining α-miner algorithm on row-oriented

databases using MySQL and InnoDB storage engine.

2. A first implementation of the Process Mining α-miner algorithm in HBase using

Phoenix and HDFS file system.

3. We present a performance benchmarking of α-miner algorithm in MySQL and

HBase on multiple aspects such as α-miner stepwise execution, bulk loading across

various datasets, write intensive time, read intensive time disk space of tables, disk

space of tables using compression technique, α-miner stepwise execution using

compression technique, real time batch wise insertion and real time single record

insertion.

11

3

Introduction of Apache Hadoop,
Apache HBase and Apache Phoenix

3.1 Apache Hadoop

1 The Apache Hadoop framework is composed of the following basic components-

1. Hadoop Distributed File System (HDFS): It is a distributed file system that

stores data in a cluster of machines.

2. Hadoop MapReduce: It is a programming model that process large volume of

data in parallel stored on commodity machines.

3.1.1 HDFS: Hadoop Distributed File System

HDFS is a distributed, scalable and portable file system for the Hadoop framework [22].

Hadoop clusters consist of one namenode and multiple datanodes. The file content is

split into large blocks (64 megabytes), and each block of the file is replicated at multiple

datanodes [22]. The namenode monitors the number of replicas of a block in multiple

datanodes. When a replica of a block is lost due to a datanode failure (dead datanode),

the namenode creates another replica of the block and store it in live datanode.

For this study, HDFS default block size is configured to 64 MB and the overall real

dataset size is 40 MB. As mentioned above, HDFS splits the file into default block size

and puts it in different datanodes. For example, a 128 MB source file will split into two
1http://opensource.com/life/14/8/intro-apache-hadoop-big-data

12

3.2 Apache HBase-NoSQL Column-Oriented Database

64 MB blocks and these 64 MB blocks will reside in datanode. In this case, we have a

40 MB dataset file and the default block size of HDFS is 64 MB. Hence, the file is not

split. All operation are being performed on a single machine. There is no downside for

storing smaller files with larger block size in HDFS. For example, we have a system with

300 MB HDFS block size. To store a 1100 MB file, HDFS will break that file into 300

MB blocks and store it on datanodes. Note that last split file is not exactly divisible

by 300. Therefore, final block of the file is sized as modulo of the file by block size, i.e

a 200 MB block size. There will be no waste of space because it is not equivalent to

traditional file systems.

The differences between HDFS and a generic file system are-

1. Data on HDFS block is key-value (support sequence file format).

2. Data on HDFS blocks is immutable (cannot be modified) but can be appended.

3. The default block size of HDFS is 64 MB while generic file system has 4 KB.

4. HDFS built on top of POSIX.

5. Suppose if we want to store file size of 2 KB in HDFS, then all the remaining

space of block (64 MB) can be reused by other files. Vice-versa for generic file

system.

3.2 Apache HBase-NoSQL Column-Oriented Database

3.2.1 Introduction

Apache HBase is similar to the Google Bigtable [23] and has extended various features

of it. HBase is a NoSQL column-oriented store. The characterstics of HBase are Sparse,

Consistent, Distributed, Multidimensional and Sorted map

HBase provides random and real time read/write access to the stored data but

mostly it is important to know, how to retrieve data stored in HBase tables efficiently.

Naive users will try to do it by using a MapReduce job or Client API’s. These are not ef-

ficient depending upon application requirements. SQL interface with advanced features

over HBase are more efficient than MapReduce job and easy for naive users. However,

HBase has real time processing which can help the process discoveries algorithms to

discover process models in a real time.

13

3.2 Apache HBase-NoSQL Column-Oriented Database

3.2.2 Architecture

1

Figure 3.1, is an architecture of HBase and consists of:

1. Master node: Master node is similar to the namenode of Hadoop framework.

2. Slave node: Each datanode is slave node and has one regionserver.

3. Zookeeper: Zookeeper is a distributed coordinator management of clusters. Mas-

ter and regionservers will be linked to Zookeeper by registering themselves.

4. Region: Storing table in HBase requires regions. One table can have multiple

regions and within each region there is one memstore and multiple stores. Multiple

regions are stored in a regionserver.

5. WAL (Write Ahead Log): Before writing the data to region, first it is stored in

WAL and then it goes to a particular region of a regionserver. There is one WAL

for every corresponding regionserver.

Figure 3.1: HBase Architecture Adapted From [1]

1http://www.cyanny.com/2014/03/13/hbase-architecture-analysis-part2-process-architecture/

14

3.3 Apache Phoenix-SQL Skin Over HBase

3.3 Apache Phoenix-SQL Skin Over HBase

Apache Phoenix1 is a relational database layer over HBase. It work as a client JDBC

driver over HBase and targets low latency queries over HBase data. It increases perfor-

mance by

1. Converting queries into HBase scans.

2. Automating arrangement of parallel execution for scans in a table.

3. Using push down predicates that bring the computation near to the data (datan-

odes).

4. Executing aggregate queries through co-processors.

Figure 3.2, shows Phoenix integration in HBase architecture. Adapted from2

Figure 3.2: HBase-Phoenix Architecture

1http://phoenix.apache.org/
2http://www.slideshare.net/Hadoop_Summit

15

4

Description of α-Miner Algorithm
with an Example

4.1 Description of α-Miner Algorithm

The description of α-miner algorithm is taken from our work done in collaboration with

Astha Sachdev1. The α-miner algorithm is an algorithm used in discovering process

mining, [4]. It was first put forward by van der Aalst,Weijter and Maruster [4]. Input

for the α-miner algorithm is an event log L. The α-miner algorithm scans the event log

for particular patterns. It computes ordering relations of the events contained in the

log and deals with concurrency of activities. The basic ordering relations determined

by α-miner algorithm are the following:

1. a �Lb iff a directly precedes b in some trace.

2. a →Lb iff a�Lb ∧ b�La (b does not precedes a).

3. a‖b iff a�Lb and b�La in some trace.

4. a]b iff a�Lb ∧ b�La.

Let L be an event log over T ⊆ A. α(L) is defined as follows [4].

1. TL = { t ∈ T | ∃ σ ∈ L t ∈ σ }

2. TI = { t ∈ T | ∃ σ ∈ L t = first(σ) }
1https://repository.iiitd.edu.in/jspui/bitstream/123456789/220/1/MT2013034.pdf

16

4.2 Example of α-miner Algorithm

3. TO = { t ∈ T | ∃ σ ∈ L t = last(σ) }

4. XL = { (A,B) | {A ⊆ TL ∧ A = ∅ } ∧ {B ⊆ TL ∧ B = ∅ } ∧ { ∀ a ∈ A ∀ b ∈ B
a → Lb } }

5. YL = { (A,B) ∈ XL | (A,B)∈ XL A ⊆ A ∧ B ⊆ B −→ (A,B)=(A,B)}

6. PL = { P(A,B) | (A,B) ∈ YL }
⋃

(iL,oL)

7. FL = { (a,P(A,B)) | (A,B) ∈ YL ∧ a ∈ A }
⋃
{ (P(A,B),b) | (A,B) ∈ YL ∧ b ∈

B }
⋃
{ (iL,t) | t ∈ TI }

⋃
{ (t,oL) | t ∈ TO }

8. α(L) = (PL,TL,FL)

The stepwise description of the α-miner algorithm can be given as :

1. The Step 1 computes TL (Total Events) which represents the set of distinct ac-
tivities present in the event log L.

2. The Step 2 computes TI (Initial Events) which computes the set of all the initial
activities of corresponding trace.

3. Step 3 computes TO (Final Events) which represents the set of distinct activities
which appear at the end of some trace in the event log.

4. In order to compute Step 4, we compute the relationships between all the activities
in TL. This computation is presented in the form of a footprint matrix and is called
pre-processing in α-miner algorithm. Using the footprint matrix we compute pairs
of sets of activities such that all activities in the same set are not connected to
each other while every activity in first set has causality relationship to every other
activity in the second set.

5. Step 5 keeps only the maximal pairs of sets generated in the fourth step, elimi-
nating the non-maximal ones.

6. Step 6 adds the input place which is the source place and the output place which
is the sink place in addition to all the places generated in the fifth step.

7. Step 7 is the final step of the α-miner algorithm that presents all the places
including the input and output places and all the input and output transitions
from the places.

4.2 Example of α-miner Algorithm

Figure 4.1, shows a trace coming from an event stream. Trace contains {abd, ac,
acd } so footprint (table) will be defined over all events in trace. Considering all the
events in a trace, we will get initial events and final events. Fig. 4.1, shows the trace
representing relations like Causality, Parallel, NotConnected and Precedes. From this

17

4.2 Example of α-miner Algorithm

Figure 4.1: Example of α-miner Algorithm

table, we conclude which activity follows which type of relation and can build a directed
graph shown in Fig. 4.1. After creating graph, we need to find out maximal event set.
Maximal event set can be defined by looking causality relation in a graph like a → b,
a→c, b→d, c→d and need to follow rule describe below. Recall in Figure 4.1, A and B
column in last table.

1. ∀ a1, a2 ∈ A: a1] a2

2. ∀ b1, b2 ∈ B: b1] b2

3. ∀ a ∈ A, b ∈ B: a → b

According to the above specified rules we can generate maximal set like {a} → {b,c}
and {b,c} → {d} and from this maximal set we can generate process model as shown
in Figure 4.2.

We use the experimental dataset (Refer Chapter 7). The input to the α-miner
algorithm is the event log (Refer Fig. 7.1). We obtain the output in the form of a table
that shows the input and the output transitions. Fig. 4.3, shows a part of the output
we obtain in α-miner algorithm. The column activityin represents the set of input
activities and the another column activityout represents the set of output activities. All
the activities in the set represented by activityin are not connected to each other and
all the activities in the set represented by activityout are not connected to each other.
All the activities in the set represented by activityin have causality relationship with
all other activities represented by the set in activityout. This figure is a snapshot of the
FW table that we obtain in Apache Phoenix.

18

4.2 Example of α-miner Algorithm

Figure 4.2: Continued Example of α-miner Algorithm

Figure 4.3: α-miner Algorithm-Input and Output Transitions

19

5

Implementation of α-Miner
Algorithm in SQL on Row-Oriented
Database (MySQL) and
Column-Oriented Database
(HBase)

5.1 Implementation of α-Miner Algorithm in SQL on Row-
Oriented Database (MySQL)

Earlier in our joint work we have implemented α-miner algorithm in SQL (MySQL)1 [12]
and Cassandra-NoSQL column oriented database but it need some optimization. For our
current work, MySQL code has been taken from Khanan: Performance Comparison and
Programming Alpha Algorithm in Column-Oriented and Relational Database Query
Languages [12] and we have optimized it. Therefore, it can perform efficiently on large
datasets. For generating power set for activities in MySQL code is taking days so we
have optimized it for our study. Finding initialEvent in MySQL code for large dataset
is taking lot of time so we have optimized SQL query of generating initialEvent too.
Before implementing α-miner algorithm, we do pre-processing in JAVA to create the
following two tables viz. causality table (consist of two column eventA and eventB)
and NotConnected table (consist of two column eventA and eventB). For more detailed
information of an implementation refer to Appendix A. The below table describe about
schema representation of table in MySQL where input table consist of four columns
(CaseID, Timestamp, Status, Activity) where we consider Primary Key a combination
of CaseID, Timestamp and Status. The reason of choosing three column for primary
key because there is a case where one CaseID with same Timestamp is redundant in

1Link is https://repository.iiitd.edu.in/jspui/bitstream/123456789/220/1/MT2013034.pdf

20

5.1 Implementation of α-Miner Algorithm in SQL on Row-Oriented
Database (MySQL)

CaseID Timestamp Status Activity

1 2014-09-12 12:43:06 001A3689763 InProgress
1 2014-12-19 01:23:06 001A9085723 Closed
2 2014-09-22 02:14:09 001B3645873 Cancelled
2 2014-11-23 13:04:09 001B3641275 Closed

Table 5.1: Representation of Schema Table in MySQL

CSV file that why we consider Status as another column for primary key. For each
column we have column Family so that HBase has different storefile with in region of
regionserver for each column.

1. We create a table eventlog using create table1 keyword consisting of 5 columns (Ca-
seID, Timestamp, Status, Activity and Actor) each of which are varchar datatype
except Timestamp which is of timestamp datatype. The primary key is a com-
posite primary key consisting of CaseID, Timestamp and Status.

2. We load the data into table eventlog using LOAD DATA INFILE2 command.

3. For Step 1, we create a table totalEvent that contains a single column (event)
which is of varchar datatype. To populate the table we select distinct activities
from the table eventlog.

4. For Step 2, we create a table initialEvent that contains a single column (initial)
which is of varchar datatype. To populate the table

(a) We first select the minimum value of Timestamp from table eventlog by
grouping CaseID.

(b) Then we select distinct activities from table eventlog for every distinct value
of CaseID where Timestamp is the minimum Timestamp.

5. For Step 3, we create a table finalEvent that contains a single column (final) which
is of varchar datatype. To populate the table

(a) We first select maximum Timestamp from a table eventlog by grouping Ca-
seID.

(b) Then we select distinct activities from a table eventlog for every distinct
value of CaseID where Timestamp is the maximum Timestamp.

6. For Step 4, we create five tables viz. SafeEventA, SafeEventB, EventA, EventB
and XL. All the five tables contain two columns (setA and setB) which are of
varchar datatype.

1http://dev.mysql.com/doc/refman/5.1/en/create-table.html
2http://dev.mysql.com/doc/refman/5.1/en/load-data.html

21

5.1 Implementation of α-Miner Algorithm in SQL on Row-Oriented
Database (MySQL)

(a) In table causality we use group_concat1 to combine the values of column
eventB of corresponding value of a column eventA and insert the results in
a table EventA.

(b) In table causality we use group_concat to combine the values of column
eventA of corresponding value of a column eventB and insert the results in
the table EventB.

(c) To populate tables SafeEventA and SafeEventB-

i. Select setA and setB from tables EventA and EventB
ii. For every value of setB in table EventA, if value is present in table

notconnected, insert the corresponding value of setA and setB in table
SafeEventA. Repeat the same step for populating table SafeEventB.

(d) To populate table XL, we insert all the rows from the three tables SafeEventA,
SafeEventB and causality.

7. For Step 5, we create three tables viz. eventASafe, eventBSafe and YL. All the
three tables contain two columns (setA and setB) which are of varchar datatype.

(a) We create a stored procedure to split the values of column setB of table
SafeEventA on comma separator. Insert the results in safeA table.

(b) We create a stored procedure to split the values of column setA of table
SafeEventB on comma separator. Insert the results in safeB table.

(c) To populate table eventASafe, insert all the rows from table safeA.

(d) To populate table eventBSafe, insert all the rows from table safeB.

(e) To populate table YL, insert all the rows from tables SafeEventA, SafeEventB,
eventASafe, eventBSafe and causality.

8. For Step 6, we create two tables viz. terminalPlace that contains a single column
(event) which is of varchar datatype and PL which also contains a single column
(Place) which is of varchar datatype.

(a) To populate table terminalPlace, insert ’i’ and ’o’ in the table.

(b) To populate table PL, we use concat_ws 2 to combine the values of column
setA and column setB of a table YL using & separator and insert the results
in table PL. Furthermore, we insert all the rows of table terminalPlace into
table PL.

9. For Step 7, we create 3 tables viz. Place1 and Place2 which consist of two columns
(id and value) which are of varchar datatype and FL which consists of two columns
(firstplace and secondplace) which are of varchar datatype.

1http://dev.mysql.com/doc/refman/5.0/en/group-by-functions.html#function_group-concat
2http://dev.mysql.com/doc/refman/5.0/en/string-functions.html#function_concat-ws

22

5.2 Implementation of α-Miner Algorithm on NoSQL Column-Oriented
Database (HBase) Using Apache Phoenix

(a) To populate table Place1, we use concat_ws to combine the values of column
setA and column setB of table YL using & separator. Insert the results in
column setB of table Place1. Insert all the values of column setA of table
YL into column setA of table Place1.

(b) To populate table Place2, we use concat_ws to combine the values of column
setA and column setB of table YL using & separator. Insert the results in
column setA of table Place2. Insert all the values of column setB of table
YL in column setB of table Place2.

(c) We create a stored procedure to split column setB of table Place1 on comma
separator. In stored procedure we create table temp_place2 to insert the
results.

(d) We create a stored procedure to split column setA of a table Place2 on comma
separator. In stored procedure we create table temp_place2 to insert the
results.

(e) To populate table FL, insert all the rows from tables temp_place1 and
temp_place2. Insert the results of cross join of two tables viz. terminalPlace
and intialEvent and of table finalEvent and table terminalPlace.

5.2 Implementation of α-Miner Algorithm on NoSQL Column-
Oriented Database (HBase) Using Apache Phoenix

Table 5.2: Comparison of Apache Phoenix and MySQL Query Language

SQL Commands Comparison of HBase and MySQL
MySQL HBase

Creating and altering Database Yes No
Creating and calling Stored Procedures Yes No
Creating and calling user functions Yes No
Defining Block Size on table creation Yes Yes

Defining different Compression technique on table creation No Yes
Creating Triggers Yes No

Multiple Insert SQL statments like Insert Ignore Yes No
Support Array and Array functions No Yes
Update Statistic of running queries No Yes

Multi-tenant Table No Yes
Salting on created table No Yes

Geospatial Yes No
Support Window Function Yes Yes (Less in number)
Dynamic column addition No Yes

The below table describe about schema representation of table in HBase where input
table consist of three columns (CaseID, Timestamp, Activity) where we consider row
key of HBase a combination of CaseID, Timestamp and Status. The reason of choosing
three column for row key because there is a case where one CaseID with same Timestamp
is redundant in CSV file that why we consider Status as another column for row key.

23

5.2 Implementation of α-Miner Algorithm on NoSQL Column-Oriented
Database (HBase) Using Apache Phoenix

For each column we have column Family so that HBase has different storefile with in
region of regionserver for each column.

Table 5.3: Representation of Schema Table in HBase

RowKey ColumnFamily:Timestamp: ColumnFamily:Activity:
CaseIdTimestampStatus Column:Timestamp Column:Activity

1-2014-09-22 23:21:45-001A368 2014-09-22 23:21:45 InProgress
1-2014-10-12 23:21:45-001A3653 2014-10-12 23:21:45 Resolved
2-2014-11-02 13:21:45-001B3662 2014-11-02 13:21:45 Change
2-2014-11-02 13:21:45-001B3914 2014-11-02 13:21:45 Cancelled

To implement α-miner algorithm in HBase. First of all we need Apache Hadoop
that act as distributed file system for storing large dataset, Apache HBase is column
oriented database that will work as datastore over Hadoop and Apache Phoenix act
as SQL layer over Apache HBase. Before implementing α-miner algorithm, we do pre-
processing in JAVA to create the following two tables viz. causality table (consist of
two column eventA and eventB) and NotConnected table (consist of two column eventA
and eventB). For more detailed information of an implementation refer to Appendix B.

1. To create table eventlog (Refer section 5 point 1). To load the data in table
eventlog, we use MapReduce framework1.

2. For Step 1, 2 and 3 (Refer section 5 point 3, point 4 and point 5)

3. For Step 4, we create three tables viz. SafeEventA, SafeEventB and XL. All the
three tables consist of two columns (setA and setB) which are of varchar datatype.

(a) Select values of column eventA and eventB from the table causality.

(b) Select values of column setA and setB from the table notconnected.

(c) Compare Function that compares whether set of activities is notconnected.

(d) Loop over values of column eventA in the table causality. Form single group
say grp of all activity present in column eventB. Pass grp to Compare func-
tion. For any such combination returning true, insert eventA in setA and
that combination into setB of table SafeEventA.

(e) Loop over values of column eventB in the table causality. Form single group
say grp of all activity present in column eventA. Pass grp to Compare func-
tion. For any such combination returning true, insert that combination into
setA and eventB in setB of table SafeEventA.

(f) To populate table XL, we insert all the rows from three tables SafeEventA,
SafeEventB and causality.

4. For Step 5, we create three tables viz. EventA, EventB and YL. All the three
tables consist of two columns (setA and setB) which are of varchar datatype.

1http://phoenix.apache.org/bulk_dataload.html

24

5.2 Implementation of α-Miner Algorithm on NoSQL Column-Oriented
Database (HBase) Using Apache Phoenix

(a) Select values of column setA and setB from the table SafeEventA.

(b) Select values of column setA and setB from the table SafeEventB.

(c) Loop over values of column setA and setB present in the table SafeEventA.
Delimit value of setB. For all such value setBi, insert setA and setBi in table
EventA.

(d) Loop over values of columns setA and setB present in the table SafeEventB.
Delimit value of setA. For all such value setAi, insert setAi and setB in table
EventB.

(e) To populate table YL, we insert all the rows from three tables EventA,
EventB and causality.

5. For Step 6 (Refer section 5 point 8).

6. For Step 7, we create table FL that consists of two columns (Place1 and Place2)
which are of varchar datatype.

(a) Select values of column setA and setB from the table YL.

(b) Select values of column final from the table FinalEvents.

(c) Select values of column initial from the table InitialEvents.

(d) Loop over values of column final in the table FinalEvents. Insert values of
column final in column Place1 and ’o’ in column Place2 of table FL.

(e) Loop over values of column initial in the table InitialEvents. Insert ’i’ in
column Place1 and values of column initial in column Place2 of table FL.

(f) Loop over values of column setA and setB in the table YL. If value of column
setA has set of activities instead of single activity then delimit. Each split
value will be stored in column Place1 and combination of values of columns
setA and setB in column Place2 of table FL else choose column setB and
delimit. Each split value will be stored in column Place2 and combination
of values of columns setA and setB in column Place1 of table FL.

25

5.3 Output of α-Miner Algorithm from the Database

5.3 Output of α-Miner Algorithm from the Database

The Fig. 5.1 shown below is small output of α-miner algorithm. It depicts the output
of implemented α-miner algorithm in both the databases (MySQL and HBase).

Figure 5.1: Small output of α-miner algorithm

26

6

Experimental Dataset

We conduct our study on a publicly available large real world dataset downloaded from
Business Process Intelligence 2014 (BPI 2014)1. The dataset is provided by Robobank
Information and Communication and Technology (ICT) organization. The data is re-
lated to Information Technology Infrastructure Library (ITIL) process implemented
in the bank. ITIL is a process which starts when a client reports an issue regarding
disruption of ICT service to Service Desk Agent (SDA). SDA records the complete in-
formation about the problem in an Interaction record. If the issue does not get resolved
on first contact then an Incident record is created for the corresponding Interaction else
the issue is closed. If an issue appears frequently then a request for change is initiated.
Robobank provides 4 files in CSV format viz. Change records, Incident records, Interac-
tion records and Incident activity records. We imported Incident activity records CSV
file in MySQL and HBase for benchmarking and performance comparison of α-miner
algorithm. Incident activity records file contains 4, 66, 738 number of records and con-
tains the following fields viz. Incident ID, DateTimeStamp, IncidentActivity_number,
IncidentActivity_Type, Interatcion ID, Assignment Group and KM Number. Out of
these we use the following fields:

1. Incident ID: The unique ID of a record in the Service Management tool. It is
represented as CaseID in our data model.

2. DateTimeStamp: Date and time when a specific activity starts. It is represented
as timestamp in our data model.

3. IncidentActivity_Type: Identifies which type of an activity takes place.

4. Assignment Group: It represent the team responsible for an activity.
1http://www.win.tue.nl/bpi/2014/start

27

Figure 6.1: Event Log

Fig. 6.1, shows the dataset that is used in our experimentation. Since α-miner
algorithm is concerned only with the sequence of events, and we need to find all transi-
tions that a problem can go through and compute causality between the activities, we
consider only three fields in our dataset that have been highlighted in red- caseid which
is unique for a particular problem, timestamp which is the timestamp value giving the
sequence order of activities for a particular caseid and activity which represents the
activities in our data model. Thus, we load only these three fields in our event log
table, and corresponding to each caseid we obtain the sequence of events as the events
are ordered according to the timestamp values.

Figure 6.2: Activities in BPI 2014 Dataset

28

Fig. 6.2, shows activities of BPI 2014 dataset. It shows number of activities in an
event log with frequency. On right side of image-

1. we can see number of distinct activities is 39 in an event log.

2. Minimum frequency of one activity is 2.

3. Mean, median and standard deviation of frequency of an activities.

4. One activity is an event log, whose frequency is maximum.

Figure 6.3: Number of Activities Per Case in BPI 2014 Dataset

Fig. 6.3, shows activities of BPI 2014 dataset. It shows number of activities in an
event log per cases. On right side of image-

1. we can see number events in an event log that is 4,66,738.

2. Number of cases in an event log is 46,616.

3. Mean, median of case duration is also shown.

4. Start and end time describes only starting time of event in an event log and end
time of an event log.

Fig. 6.4, shows frequency of events in cases of BPI 2014 dataset. Fig. 6.4, shows
top 13 cases arranged in descending order of frequency of events.

29

Figure 6.4: Matrix of Events per Case

30

7

Benchmarking and Performance
Comparison

Our benchmarking system consists of Intel Core i3 2.20 GHz processor, 4 GB Random
Access Memory (RAM), 500 GB Hard Disk Drive (HDD), Operating System (OS)
is Linux Ubuntu 14.04 LTS and Cache of 3 MB. The experiments were conducted
on MySQL 5.6 (row-oriented database) and HBase 0.96.1 (NoSQL column-oriented
database) with HDFS 2.3.0 as the file system below it and a layer of Phoenix 4.2.1
above it. We conduct series of experiments on a single machine.

The α-miner algorithm interacts with the database. The underlying data model for
implementing α-miner algorithm consists of 5 columns (CaseID, Timestamp, Status,
Activity and Actor) each of which are of datatype varchar except Timestamp which
is of timestamp datatype. The primary key is a composite primary key consisting of
CaseID, Timestamp and Status. We use the same data model while performing bulk
loading of datasets through the database loader. We take each reading five times for
all the experiments and the average of each reading is reported in the thesis. Output
of the α-miner algorithm is same in both the databases (MySQL and HBase).

7.1 Loading Multiple Datasets

Table 7.1: Dataset Load Time

Dataset Size Load Time in Seconds
MySQL HBase

1,00,000 12.98 12.03
4,00,000 46.79 42.94
8,00,000 156.79 64.48
12,00,000 3654.14 89.55
16,00,000 8408.20 123.85
20,00,000 13536.42 145.53

31

7.1 Loading Multiple Datasets

Figure 7.1: Dataset Load Time in Seconds

Our first experiment consists of investigating the time taken to perform bulk loading in
both the databases across various dataset sizes. Table 7.1 shows that the average time
taken to load data in HBase is 29 times lower as compared to MySQL.

This is likely because bulk loading in HBase is done using the MapReduce framework.
The Phoenix database layer has an inbuilt script of MapReduce using which we conduct
our experiment. We use two mappers and two reducers for running MapReduce jobs.
The script requires two parameters before running MapReduce viz. input file and output
file. Input file must be present in HDFS and script creates empty output file in HDFS
after executing it. Due to parallelism, all the key-values of the input file are mapped
to two mappers and the output of each mapper is passed to two reducers. MapReduce
converts all the data of the input file into the format of HFiles (HBase file format)
before it handovers to HBase. HFile stores data in key-value pairs and reducers also
generate output in key-value pairs. The output of reducers can be stored on multiple
HFiles directly without interacting with HBase. At the end all the created HFiles will
be handovered to HBase to store on HDFS. In contrast, bulk loading in MySQL is done
using LOAD DATA INFILE command which is designed for mass loading of records in
a single operation as it overcomes the overhead of parsing and flushing batch of inserts
stored in a buffer to MySQL server. The LOAD DATA INFILE command also creates
an index and checks uniqueness while inserting records in a table. Therefore, in case of
MySQL, while inserting large datasets, most of the time is spent in checking uniqueness
and creating indexes. Fig. 7.1 reveal that when the dataset size increases then the
difference between the time taken in loading data in MySQL and HBase also increases.
The performance of HBase is better as compared to MySQL because the percentage
increase of time in MySQL is 3.5 times more as compared to HBase.

32

7.2 Execution of α-Miner Algorithm

7.2 Execution of α-Miner Algorithm

Table 7.2: Stepwise Execution
Time

Steps Execution Time in Seconds
MySQL HBase

1 4.19 2.89
2 6.29 5.82
3 6.71 5.74
4 4.09 3.89
5 8.23 5.64
6 2.04 1.00
7 9.18 3.09

Figure 7.2: α-miner Stepwise Execution

α-miner algorithm is a seven step algorithm (Refer to Section 3). We perform
an experiment to compute the α-miner algorithm execution time of each step in both
MySQL and HBase to examine which database performs better for each step. In MySQL
default size of innodb_buffer_pool_size is 8 MB that is used to Cache data and indexes
of its tables. The larger we set this value, the lesser is the disk I/O needed to access the
data in tables. Table 7.2 and Fig. 7.2 reveal that the the stepwise time taken in HBase
is always lower as compared to MySQL for all the Steps. We conjecture the reason for
HBase performing better than MySQL can be the difference in the internal architecture
of MYSQL and HBase. For the first three steps, both MySQL and HBase perform
full table scans. In case of MySQL, the entire row is first retrieved sequentially and
then the specific attributes are retrieved. However, in case of HBase, table is stored on
multiple regions and Phoenix performs parallelism on multiple regions of a table leading
to better performance of HBase in comparison to MySQL. Furthermore, in HBase, only
the specific attributes specified in the query are retrieved. The overhead of retrieving

33

7.3 Read Intensive Steps of α-Miner Algorithm

the entire row is not present in HBase. Hence, HBase gives a better performance for
the first three steps.

The remaining steps read data from the tables obtained in the first three steps and
write it to the tables created during their execution. In MySQL, in order to read the
data from a table we need to scan the B-Tree index to find the location of block where
data is stored. In case of HBase data is read from the memstore. If values are not in
memstore they are read from HDFS. Thus, the read performance of HBase is better as
compared to MySQL. Similarly, in MySQL, in order to write data, the entire B-Tree
index needs to be scanned to locate the block where we need to write data. HBase
follows log structure merge tree index. In case of HBase, values are written in append
only mode. The writes in HBase are sequential because first it writes to Write Ahead
Log (WAL) of regionserver and then to memstore of corresponding region. HBase lags
in persisting data to disk. Hence, HBase gives better write performance as compared
to MySQL. Therefore, the total execution time of α-miner algorithm in HBase is 1.44
times lower than that of MySQL.

7.3 Read Intensive Steps of α-Miner Algorithm

Table 7.3: Read Intensive
Time

Steps Read Time in Seconds
MySQL HBase

1 2.06 1.60
2 4.78 4.48
3 4.95 4.70
4 1.36 1.29
5 0.37 0.37
6 0.12 0.11
7 1.06 0.19

Few Steps of α-miner algorithm are read intensive while few steps are write intensive.
We conduct an experiment to investigate which of the steps of α-miner algorithm are
read intensive as well as we compare which of the database performs better for read
operations. As can be seen from Fig. 7.3 and Table 7.3, the first three steps are read
intensive as compared to other steps of α-miner algorithm. From the experimental
results, we conclude that HBase gives better read performance as compared to MySQL
for all the Steps. According to us, the reason for HBase giving better read performance
can be the difference in the data structure of both the databases. In MySQL, B-Tree
index needs to be scanned to find the location of block where the data is stored. In case
of HBase data is read as described below-

1. To find the data, HBase client will hit the memstore first.

2. When the memstore fails, HBase client will hit the BlockCache [24].

34

7.4 Write Intensive Steps of α-Miner Algorithm

Figure 7.3: Read Intensive Time in Seconds

3. If both the memtsore and BlockCache fail, HBase client will locate the target
HFiles in HDFS (contains target data) using log structure merge tree and load it
into the memory.

The total time taken to read the data in each of the Step of α-miner algorithm is 1.16
times lower in HBase as compared to MySQL.

7.4 Write Intensive Steps of α-Miner Algorithm

Table 7.4: Write Intensive
Time

Steps Write Time in Seconds
MySQL HBase

1 2.12 1.29
2 1.50 1.33
3 1.76 1.04
4 2.73 2.59
5 7.85 5.27
6 1.92 0.89
7 8.12 2.90

We conduct an experiment to investigate which of the Steps of α-miner algorithm are
write intensive as well as we compare which of the database performs better for write
operations. Fig. 7.4 depicts Step 5 and Step 7 are more write intensive as compared
to the other Steps of α-miner algorithm. Fig. 7.4 and Table 7.4 show that the write
performance of HBase is better as compared to MySQL. We believe the reason for
HBase giving better write performance can be the difference in the way writes are
performed in both the databases. In MySQL, the B-Tree index needs to be scanned

35

7.4 Write Intensive Steps of α-Miner Algorithm

Figure 7.4: Write Intensive Time in Seconds

to find the location of block where the data needs to be written. Almost all the leaf
blocks of B-Tree are stored on the disk. Hence, at least one I/O operation is required
to retrieve the target block in memory. Fig. 7.4 illustrates that Step 5 and Step 7 of
α-miner algorithm in MySQL are more write intensive than the other steps. We believe
the reason can be the generation of maximal sets and places by stored procedures in
MySQL. A large number of insert operations are executed in the stored procedure to
generate the maximal sets. In HBase we perform the same steps using Java because
SQL interface over HBase does not support advanced features of SQL. Writes in HBase
are performed by first locating regionserver from zookeeper1, then regionserver writes to
WAL and finally to memstore of the corresponding region. Phoenix allows to perform
parallelism in reading and writing the data on multiple regions of a table stored in
HBase regionserver in comparison to sequential reads and writes of MySQL. The total
time taken in writing the data in each of the Step of α-miner algorithm is 1.70 times
lower in HBase as compared to MySQL. Thus, writes in HBase are more optimized as
compared to that in MySQL.

1http://www.zookeeper.apache.org

36

7.5 Disk Usage of Tables

7.5 Disk Usage of Tables

Table 7.5: Disk Usage of Tables

No. of Tables Disk Usage in Bytes
MySQL HBase

1 16384 2048
2 16384 1945
3 16384 1945
4 16384 6348
5 16384 3481
6 16384 4505
7 49152 13414

Figure 7.5: Disk Usage of Tables

We perform an experiment to investigate which database can efficiently store results
of each Step of α-miner algorithm in tables with minimum disk space. Table 7.5 and Fig.
7.5 reveal the disk space occupied by tables created in each step of α-miner algorithm.
We include only data length (excluding the size of index tables) in disk space of table
because we did not create index for any of the tables. Experimental results show that
HBase on an average uses disk space 6 times lower than MySQL for tables created
at each step of the algorithm. Hence, cumulative disk space for storing all the tables
in MySQL is 147456 bytes while for HBase is 33722 bytes. We believe the underlying
reason for MySQL occupying more space is the difference in the way memory is allocated
to tables in both the databases. In MySQL, the operating system allocates fixed size
blocks of size 16 KB for the data to be stored in a table. Number of blocks assigned to
a table is computed by dividing the dataset size by the block size. In MySQL if set of
blocks or one block has been allocated for a table then that set of blocks or block can
be used only by that table. Either data in a table completely utilizes the space of all
blocks or the space of the last block is unutilized. Storing smaller size file (< 16 KB)

37

7.6 Disk Usage of Tables Using Compression Technique

in 16 KB block leads to under utilization of space and the remaining space cannot be
utilized by other files.

HFile is a file format of HBase which is stored over HDFS block (default size is 64
MB). Maximum size of a HFile is 64 KB after which a new HFile needs to be created.
HFiles are created when memstore reaches its threshold value (default value is 64 MB)
or commit occurs. When memstore reaches its threshold value it flushes 64 MB data of
key-value pairs and creates 1024 numbers of HFiles. If commit occurs before it reaches
the threshold value then it flushes only that amount of data present in a memstore.
HFile size will be equivalent to flushed amount of data from memstore. HDFS allocates
blocks for incoming files by dividing the file size with the block size. For example, we
have a system with 300 MB HDFS block size. To store a 1100 MB file, HDFS will
break that file into three 300 MB blocks and one 200 MB block size and store it on
the datanodes. The 200 MB file is not exactly divisible by 300. Therefore, the final
block of the file is sized as modulo of the file size by block size, i.e a 200 MB block
size. Similarly, the same process is applied to the HFiles of HBase for storing in HDFS.
We conclude that the disk space for each table created in each step is more efficiently
utilized in HBase as compared to MySQL.

7.6 Disk Usage of Tables Using Compression Technique

Table 7.6: Disk Usage of Tables
With Compression

No. of Tables Disk Usage in Bytes
MySQL HBase

1 8192 1536
2 8192 1433
3 8192 1433
4 8192 2355
5 8192 1843
6 8192 1945
7 8192 3584

A way to utilize disk space efficiently is by using the well known compression technique.
Data compression enables smaller database size, reduced I/O and improved throughput.
We conduct an experiment to compute the disk space occupied by tables at each Step of
the α-miner algorithm using compression technique. When we compare the disk space
occupied by each table without compression and with compression technique we observe
that the compression ratio (Actual size of table/Compressed size of table) is better in
MySQL as compared to HBase. As can be seen from Table 7.5 and Table 7.6, the
compression ratio in MySQL for Step 7 is equal to 6 (49152/8192) while the compression
ratio in HBase for Step 7 is equal to 3.7. Minimum and maximum compression ratio in
HBase is 1.3 and 3.7 respectively while in MySQL is 2 and 6 respectively. We believe
the reason for MySQL having a higher compression ratio can be the difference in the
compression techniques used by both the databases. MySQL uses the zlib compression

38

7.7 Execution of α-Miner Algorithm Using Compression Technique

Figure 7.6: Disk Usage of Tables With Compression

technique which provides a better compaction using only six bytes of header and trailer
of compressed block. HBase uses gzip compression technique and gzip wrapper uses a
minimum of eighteen bytes of header and trailer for compressed block. The maximum
compression ratio provided by MySQL is 2 times more as compared to HBase. In the
context of α-miner algorithm, MySQL performs better than HBase in utilizing the disk
space when compression technique is applied.

7.7 Execution of α-Miner Algorithm Using Compression
Technique

Table 7.7: Stepwise Execution
Time with Compression

Steps Execution Time in Seconds
MySQL HBase

1 9.95 3.02
2 12.96 6.87
3 12.35 6.92
4 5.15 4.12
5 9.82 6.04
6 2.62 2.01
7 12.42 3.43

We conduct an experiment to examine the time taken by each Step of α-miner algorithm
with compression technique. In α-miner algorithm we create tables in each Step with
the compression keyword. Table 7.7 and Fig. 7.7 illustrate that the performance of
HBase is better as compared to that of MySQL for each Step of α-miner algorithm. We
believe the reason for HBase giving better step wise execution time, with compression

39

7.7 Execution of α-Miner Algorithm Using Compression Technique

Figure 7.7: α-miner Stepwise Execution Time with Compression

enabled can be the difference in the way compression is performed in both the databases.
MySQL uses a block size of 1 KB, 2 KB, 4 KB, 8 KB, 16 KB. The default block size
after compression in MySQL is 8 KB. Suppose the size of the compressed block is 5 KB.
The block will then be uncompressed, split into two blocks and then recompressed into
blocks of size 4 KB and 1 KB. All the data in a table is stored in blocks comprising a
B-Tree index. The compression of B-Tree blocks is handled differently because they are
frequently updated. It is important to minimize the number of times B-Tree blocks are
split, uncompressed and recompressed. MySQL maintains system information in B-Tree
block in uncompressed form for certain in-place updates. MySQL avoids unnecessary
uncompression and recompression of blocks when they are changed because it causes
latency and degrades the performance. HBase does not have fixed block size constraint
after compressing the block. We conjecture that another reason for HBase giving a
better stepwise execution time, with compression enabled can be the difference in the
internal architecture of both the databases that was explained in experiment (Refer
to Table 7.2 and Fig. 7.2). From Table 7.2 and Table 7.7, we infer that the total
execution time of α-miner algorithm in MySQL is 2 times more as compared to HBase
using compression technique. We compare the total time taken in executing α-miner
algorithm without compression and with compression technique in MySQL and HBase.
We observe that total time taken in executing α-miner algorithm by HBase without
compression technique is 1.33 times lower than HBase with compression technique.
Similarly, MySQL without compression technique is 1.60 times lower than MySQL with
compression technique.

40

7.8 Real Time Insertion of an Event Logs

7.8 Real Time Insertion of an Event Logs

Table 7.8: Batch wise Insertion
Time

Batch Size
for 500 Thousand

Records

Batch
wise Insertion

Time in seconds
MySQL HBase

30,000 522 25
60,000 529 28
90,000 523 30
1,30,000 527 32
2,00,000 519 32
2,50,000 527 32
5,00,000 527 34

Table 7.9: Number of Inserts per
Second in Batch

Batch wise
for 500 Thousand

Records

Number of Inserts
per Second

MySQL HBase
30,000 957 19614
60,000 944 17498
90,000 955 15340
1,30,000 947 15134
2,00,000 962 15090
2,50,000 948 15065
5,00,000 947 14613

Figure 7.8: Batch wise Insertion Time in Seconds

In all the experiments described above the event logs generated from business pro-
cesses is stored in a CSV file and then loaded in the database. In the context of Process
Mining, PAIS are getting continuously updated with event logs. We setup our experi-
ment to import the event logs directly into the database server from a client application,
that is real time data (event logs) loading. The real time loading experiment can be
conducted in two ways viz. batch insertion and single row insertion. In the batch inser-
tion, the client application inserts 5, 00, 000 records in different batch sizes. The results
of batch insertion are shown in Fig. 7.8 and Table 7.8. We believe that batch insertion
might be faster than single record insertion because when we execute a batch, then
multiple records in a batch are inserted in a table in a single round trip.

Within the batch insertion experiment we find the number of inserts per second for
different batch sizes. We calculated inserts per second by dividing total inserts with the
total time taken in seconds. Fig. 7.9 illustrates that the number of inserts per second

41

7.8 Real Time Insertion of an Event Logs

Figure 7.9: Number of Inserts per Second in Batch

decreases as batch size increases in HBase while in MySQL it remains constant. On
an average, number of inserts per second in HBase is 17 times more in comparison to
MySQL. The results are shown in Fig. 7.9 and Table 7.9. As can be seen from Fig. 7.8
and Fig. 7.9, the performance of HBase is better as compared to MySQL. For batch
insertion MySQL uses InnoDB default buffer size of 8 MB to add batch records in it
until buffer reaches a threshold value or commit occurs. On the other hand, HBase
stores all its batch records in HBase write client buffer which is configured as 20 MB
in HBase configuration file. We perform an experiment with the same configuration.
Thus, we change InnoDB buffer size from 8 MB to 20 MB.

Table 7.10: Single Row Inser-
tion Time

Dataset Size
Single

Row Insertion
Time in Seconds
MySQL HBase

30,000 38 5
60,000 68 8
90,000 95 9
1,30,000 134 10
2,00,000 202 16
2,50,000 255 18
5,00,000 523 39

In HBase there is a lag in persisting the data stored on memstore to disk and it is
by default asynchronous. On the other hand, MySQL persists data on disk and it is
by default synchronous. To have the same configuration we change the durability of
HBase to FSYNC_WAL in HBase configuration file. FSYNC_WAL writes the data to
WAL synchronously and forces it to the disk. From the results it can be seen that time
taken in HBase is 25 times lower in loading 5, 00, 000 records with different batch sizes

42

7.8 Real Time Insertion of an Event Logs

as compared to MySQL. We believe the reason for this can be the difference in the way
records are inserted in MySQL and HBase. In MySQL, executing an insert statement is
a five step process. The batched insert statements in a buffer are first sent to the server,
then parsed, then values are checked for uniqueness (intent hidden query), then data is
inserted in actual table and finally data is inserted in index table. In HBase executing
an insert statement is a two step process. The first step is writing the data to WAL
then to the memstore and finally to the disk synchronously. Thus, the performance of
HBase is better as compared to MySQL for batch insertion.

Figure 7.10: Single Row Insertion Time in Seconds

We also conduct a single row insertion experiment to examine which database can
perform better for single row insertion. Fig. 7.10 and Table 7.10 reveal that the per-
formance of HBase is better as compared to MySQL for all the datasets. The reason is
same as batch insertion but here instead of sending records in a batch we are sending
a single record in a single round trip. Fig. 7.10 reveals that when the dataset size in-
creases then the difference between the time taken in loading real time data in MySQL
and HBase also increases. We examine that the difference is 14 times lower in HBase as
compared to MySQL. Hence, performance of HBase is better as compared to MySQL
in loading different datasets with single record insertion.

43

8

Conclusion

In this thesis, we present an implementation of α-miner algorithm in MySQL and HBase
using structured query language. Furthermore, we also compare the performance of α-
miner algorithm in MySQL and HBase. The α-miner implementation in MySQL is a one
tier application which uses only standard SQL queries and advanced stored procedures.
Similarly, implementation in HBase is done using Phoenix. Experimental results reveal
that HBase performs better than MySQL in terms of bulk loading large datasets. We
conclude that HBase on an average is 29 times faster than MySQL in loading large
datasets and also performs better in loading real time data through client application.
We do a real time data (event logs) loading experiment to examine which one of the
database can efficiently load the event logs from various sources of PAIS.

Our experimental results shows that HBase outperforms MySQL in loading real time
data (event logs) by having 17 times more number of inserts per second. Furthermore,
the total time taken to read the data while execution of α-miner algorithm is 1.16 times
lower in HBase as compared to MySQL. Similarly, for writing the data, time taken by
HBase is 1.70 times lower as compared to MySQL. The total execution time of α-miner
algorithm improves significantly in HBase as compared to MySQL. HBase outperforms
MySQL in terms of the disk usage of tables. The disk space occupied by tables in
HBase is 4.37 times lower as compared to MySQL. Thus, we conclude that HBase is
more efficient than MySQL in terms of storing data and performing query. Using a
well known compression technique, HBase outperforms MySQL in disk usage as well as
execution of α-miner algorithm.

44

9

Limitations and Future Work

We have used the BPI challenge 2014 dataset, consisting of only 466738 records requiring
50 MB of storage. According to the Big Data standards, this is not a large dataset.
Thus, our future work includes applying the algorithm over multiple and larger datasets
(PetaBytes and ExaBytes). We are currently using a pseudo distributed mode of HBase
for performance benchmarking and comparison. In pseudo-distributed mode, Hadoop
processing is distributed over all of the cores/processors on a single machine. Hadoop
writes all files to the Hadoop Distributed File System (HDFS), and all services and
daemons communicate over local TCP sockets for inter-process communication. Future
work includes creating a multi-node cluster and implement the algorithm on it.

We have currently implemented only one algorithm called the α-miner algorithm.
Future work includes implementing more complex and advanced process mining algo-
rithms like α+-miner algorithm, heuristic miner algorithm and genetic algorithm. SQL
interface over HBase does not support advanced features of SQL such as CONCAT_WS.
Hence, we need a client application to perform advanced functions of SQL. Support of
SQL over HBase with advanced functions can lead to better performance of HBase as
the application will then be tightly coupled to the database.

We perform all our experiments on MySQL and HBase only. Future work includes
experimenting with more relational databases like PostgreSQL and more column ori-
ented databases like Cassandra, Vertica, Teradata, and MonetDB so that we can come
to a firm conclusion as which database is better for implementing α-miner algorithm.
Future work also includes experimenting with NewSQL database systems like NuoDB,
voltDB, SpliceMachine and MemSQL.

45

Appendix A

Implementation of α-Miner
Algorithm in SQL on Row-Oriented
Database (MySQL)

1. Create Table for Storing the Event Logs.

CREATE TABLE eventlog (caseid VARCHAR(200),timestamp TIMESTAMP,status
VARCHAR(200),activity VARCHAR(200),PRIMARY KEY(caseid,timestamp,status)) ;

2. Load Data from the CSV File into Table.

Load Data Local Infile ’eventlog.csv’ INTO table eventlog fileds terminated by ’,’ ignore
1 lines (caseid,timestamp,status,activity);

3. Create table for storing all the distinct activities in the eventlog.

CREATE TABLE totalEvents(events VARCHAR(200) PRIMARY KEY) ;

INSERT INTO totalEvents(events)
(SELECT DISTINCT eventlog.activity FROM eventlog);

The above query states that: The Insert statement inserts all rows returned by
first inner subquery Select statement into the table named totalEvents. Inner
subquery will return all distinct activities from table eventlog. First step of
α-miner algorithm is completed.

4. Create table for storing all the initial activities, i.e., all activities that
appear first in some trace.

CREATE TABLE initialEvents(InitialEvents VARCHAR(200)) ;
INSERT INTO initialEvents(InitialEvents)
SELECT DISTINCT A.activity

FROM eventlog AS A
WHERE A.timestamp IN

46

(SELECT MIN(derived.timestamp) AS timestamp
FROM eventlog As derived

GROUP BY derived.caseid);

The above query states that: The Insert statement inserts all rows returned by
first outer subquery Select statement into the table named initialEvents. The
outer subquery Select statement selects distinct activities from temporary table
returned by inner subquery by comparing their timestamp with inner subquery
minimum timestamp using IN operator and the inner subquery Select statement
works on eventlog table by considering all caseid with their minimum timestamp
using Group By. Second step of α-miner algorithm is completed.

5. Create table for storing all the final activities, i.e., all activities that
appear last in some trace.

CREATE TABLE finalEvents(FinalEvents VARCHAR(200) PRIMAR KEY) ;
INSERT INTO finalEvents(FinalEvents)
SELECT DISTINCT A.activity

FROM eventlog AS A
WHERE A.timestamp IN

(SELECT MAX(derived.timestamp) AS datetime
FROM eventlog As derived

GROUP BY derived.caseid);

The above query states that: The Insert statement inserts all rows returned by
first outer subquery Select statement into the table named finalEvents. The
outer subquery Select statement selects distinct activities from temporary table
returned by inner subquery by comparing their timestamp with inner subquery
maximum timestamp using IN operator and the inner subquery Select statement
works on eventlog table by considering all caseid with their maximum timestamp
using Group By.

Third step of α-miner algorithm is completed.

6. Create table SafeEventA

CREATE TABLE SafeEventA(setA VARCHAR(200), setB VARCHAR(200)) ;

This table contains two columns setA and setB. setA consists of single events and
setB consists of single or set of events such that the relationship between every
element in setA to every element in setB is causality and relationship between
every element in setB to every other element is not-connected(]).

7. Create table SafeEventB

CREATE TABLE SafeEventB(setA VARCHAR(200), setB VARCHAR(200)) ;

This table contains two columns setA and setB. setA consists of single events
or set of events and setB consists of single events such that the relationship be-

47

tween every element in setA to every element in setB is causality and relationship
between every element in setA to every other element is not-connected(]).

8. Create Table EventA.

CREATE TABLE eventA (setA VARCHAR(200), setB VARCHAR(200)) ;

This table contains two columns setA and setB. The setA consists of single
events and setB consists of single or set of events such that the relationship
between every element in setA to every element in setB is causality.

9. Create table eventB.

CREATE TABLE eventB(setA VARCHAR(200), setB VARCHAR(200)) ;

This table contains two columns setA and setB. The setA consists of single or
set of events and setB consists of single events such that the relationship between
every element in setA to every element in setB is causality.

10. Create table XW .

CREATE TABLE xw (setA VARCHAR(200),setB VARCHAR(200)) ;

This table stores all rows from eventA, eventB, safeEventA, safeEventB.

11. Populate the table eventA.

INSERT INTO eventA(setA,setB)
SELECT eventA, GROUP_CONCAT(eventB)

FROM causality GROUP BY eventA;

The above query has two parts of statement: The Insert statement inserts
all rows returned by the inner subquery Select statement. The Select state-
ment selects column eventA from table causality and group_concat(eventB).
Therefore, we have a set of combination of activities such that each activity in
each set has causality relationship with the corresponding activity in eventA.

12. Populate Table eventB.

INSERT INTO eventB(setA, setB)
SELECT GROUP_CONCAT(eventA), eventB

FROM causality GROUP BY eventB;

The above query states that: The Insert statement inserts all rows returned
by the inner subquery Select statement. The Select statement selects column
eventB from table causality and group_concat(eventA). Therefore, we have
a set of combination of activities such that each activity in each set has causality
relationship with the corresponding activity in eventB.

48

Algorithm 1: Populating table SafeEventA and SafeEventB
1 Select setA, setB from eventA .
2 Select setA, setB from eventB .
3 Compare Function that compares whether set of activity is NotConnected.
4 foreach setB in the eventA do
5 Check whether all combination of activity from setB can occur in

NotConnected table. If any combination return true then Insert setA and
returned combination into column setA and setB of table SafeEventA.

6 end
7 foreach setA in the eventB do
8 Check whether all combination of activity from setA can occur in

NotConnected table. If any combination return true then Insert returned
combination and setB into column setA and setB of table SafeEventB.

9 end

13. Populate Table xw.

INSERT INTO xw(setA, setB)
SELECT eventA , eventB

FROM causality;

INSERT INTO xw (setA, setB)
SELECT setA , setB

FROM SafeEventA;

INSERT INTO xw (setA, setB)
SELECT setA , setB

FROM SafeEventB;

Fourth step of α-miner algorithm is completed.

14. CALL stored procedure explode_tableYW1.

18 DELIMITER $$
19 DROP PROCEDURE IF EXISTS explode_tableYW1 $$
20 CREATE PROCEDURE explode_tableYW1 (bound VARCHAR(255))
21 BEGIN
22 DECLARE A text ;
23 DECLARE B TEXT;
24 DECLARE occurance INT DEFAULT 0;
25 DECLARE i INT DEFAULT 0;
26 DECLARE splitted_value text;
27 DECLARE done INT DEFAULT 0;
28 DECLARE cur1 CURSOR FOR SELECT SafeEventB.setA, SafeEventB.setB FROM SafeEventB;
29 DECLARE CONTINUE HANDLER FOR NOT FOUND SET done = 1;
30 DROP TEMPORARY TABLE IF EXISTS safeB;
31 CREATE TEMPORARY TABLE safeB(‘setA‘ VARCHAR(255) NOT NULL,‘setB‘ VARCHAR(255) NOT

NULL);
32 OPEN cur1;
33 read_loop: LOOP
34 FETCH cur1 INTO A, B;
35 IF done THEN
36 LEAVE read_loop;

49

37 END IF;
38 SET occurance = (SELECT LENGTH(A)- LENGTH(REPLACE(A, bound, ’’))+1);
39 SET i=1;
40 WHILE i<= occurance DO
41 SET splitted_value =
42 (SELECT REPLACE(SUBSTRING(SUBSTRING_INDEX(A, bound, i),
43 LENGTH(SUBSTRING_INDEX(A, bound, i - 1)) + 1), ’,’, ’’));
44 INSERT INTO safeB VALUES (splitted_value,B);
45 SET i = i + 1;
46 END WHILE;
47 END LOOP;
48 CLOSE cur1;
49 END; $$

The above stored procedure splits the column setA of table SafeEventB on
comma separator.

15. CALL stored procedure explode_tableYW.

50 DELIMITER $$
51 DROP PROCEDURE IF EXISTS explode_tableYW $$
52 CREATE PROCEDURE explode_tableYW (bound VARCHAR(255))
53 BEGIN
54 DECLARE A text ;
55 DECLARE B TEXT;
56 DECLARE occurance INT DEFAULT 0;
57 DECLARE i INT DEFAULT 0;
58 DECLARE splitted_value text;
59 DECLARE done INT DEFAULT 0;
60 DECLARE cur1 CURSOR FOR SELECT SafeEventA.setA, SafeEventA.setB FROM SafeEventA ;
61 DECLARE CONTINUE HANDLER FOR NOT FOUND SET done = 1;
62 DROP TEMPORARY TABLE IF EXISTS safeA;
63 CREATE TEMPORARY TABLE safeA(‘setA‘ VARCHAR(255) NOT NULL,‘setB‘ VARCHAR(255) NOT

NULL);
64 OPEN cur1;
65 read_loop: LOOP
66 FETCH cur1 INTO A, B;
67 IF done THEN
68 LEAVE read_loop;
69 END IF;
70 SET occurance = (SELECT LENGTH(B)- LENGTH(REPLACE(B, bound, ’’))+1);
71 SET i=1;
72 WHILE i<= occurance DO
73 SET splitted_value =
74 (SELECT REPLACE(SUBSTRING(SUBSTRING_INDEX(B, bound, i),
75 LENGTH(SUBSTRING_INDEX(B, bound, i - 1)) + 1), ’,’, ’’));
76 INSERT INTO safeA VALUES (A,splitted_value);
77 SET i = i + 1;
78 END WHILE;
79 END LOOP;
80 CLOSE cur1;
81 END; $$

The above stored procedure splits the column setB of table SafeEventA on
comma seprator.

16. Create and populate table eventASafe.

50

CREATE TABLE eventASafe(setA VARCHAR(200),setB VARCHAR(200)) ;
INSERT INTO eventASafe (setA,setB)

SELECT setA,setB from safeA;

The above query states that: The Insert statement inserts all rows of safeA
table in eventASafe table.The Select statement selects all rows of safeA table
that was created by stored procedure explode_tableYW.

17. Create and populate table eventBSafe.

CREATE TABLE eventBSafe(setA VARCHAR(200), setB VARCHAR(200)) ;
INSERT INTO eventBSafe (setA,setB)

SELECT setA,setB from safeB;

The above query states that: The Insert statement inserts all rows of safeB
table in eventBSafe table.The Select statement selects all rows of safeB table
that was created by stored procedure explode_tableYW1.

18. Create and populate table YW .

CREATE TABLE yw(setA VARCHAR(200), setB VARCHAR(200), PRIMARY KEY(setA,setB)) ;
CREATE TABLE temporary_table(setA VARCHAR(200), setB VARCHAR(200), PRIMARY

KEY(setA,setB)) ;

INSERT INTO temporary_table(setA, setB)
SELECT setA, setB FROM eventBSafe;

INSERT IGNORE INTO temporary_table(setA, setB)
SELECT setA, setB FROM eventASafe;

INSERT IGNORE INTO yw (setA, setB)
SELECT eventA, eventB
FROM causality
WHERE eventB NOT IN(SELECT distinct setB FROM temporary_table)
AND eventA NOT IN (SELECT distinct setA FROM temporary_table);

INSERT INTO yw (setA, setB)
SELECT setA, setB
FROM SafeEventA;

INSERT INTO yw (setA, setB)
SELECT setA, setB
FROM SafeEventB;

Fifth step of α-miner algorithm is completed.

19. Create and populate table that stores the input and output places.

CREATE TABLE terminalPlaces(event VARCHAR(200)) ;
INSERT INTO terminalPlaces Values (’i’);
INSERT INTO terminalPlaces Values (’o’);

20. Create and populate table PW .

51

CREATE TABLE pw(setA VARCHAR(200)) ;
INSERT INTO pw(setA)

SELECT CONCAT_WS(’ & ’,setA,SetB) AS place From yw;
INSERT INTO pw(setA)

SELECT event FROM terminalPlaces;

Sixth step of α-miner algorithm is completed.

21. Create and populate table Place1 and Place2

CREATE TABLE place1 (id VARCHAR(200),value VARCHAR(200)) ;
INSERT INTO place1

SELECT yw.setA, CONCAT_WS(’ & ’,yw.setA,yw.setB)
FROM yw;

CREATE TABLE place2(id VARCHAR(200),value VARCHAR(200)) ;
INSERT INTO place2

SELECT CONCAT_WS(’ & ’,yw.setA,yw.setB), yw.setB
FROM yw;

22. Call stored procedure explode_table_for _place2.

126 DELIMITER $$
127 DROP PROCEDURE IF EXISTS explode_table_for_place2 $$
128 CREATE PROCEDURE explode_table_for_place2(bound VARCHAR(255))
129 BEGIN
130 DECLARE A text ;
131 DECLARE B TEXT;
132 DECLARE occurance INT DEFAULT 0;
133 DECLARE i INT DEFAULT 0;
134 DECLARE splitted_value text;
135 DECLARE done INT DEFAULT 0;
136 DECLARE cur1 CURSOR FOR SELECT place2.id, place2.value FROM place2 ;
137 DECLARE CONTINUE HANDLER FOR NOT FOUND SET done = 1;
138 DROP TABLE IF EXISTS temp_place2;
139 CREATE TABLE temp_place2(
140 ‘id‘ VARCHAR(255) NOT NULL,
141 ‘value‘ VARCHAR(255) NOT NULL);
142 OPEN cur1;
143 read_loop: LOOP
144 FETCH cur1 INTO A, B;
145 IF done THEN
146 LEAVE read_loop;
147 END IF;
148 SET occurance = (SELECT LENGTH(B)- LENGTH(REPLACE(B, bound, ’’)) +1);
149 SET i=1;
150 WHILE i<= occurance DO
151 SET splitted_value =
152 (SELECT REPLACE(SUBSTRING(SUBSTRING_INDEX(B, bound, i),
153 LENGTH(SUBSTRING_INDEX(B, bound, i - 1)) + 1), ’,’, ’’));
154 INSERT INTO temp_place2 VALUES (A,splitted_value);
155 SET i = i + 1;
156 END WHILE;
157 END LOOP;
158 CLOSE cur1;
159 END; $$

23. CALL stored procedure explode_table_for_place1.

52

161 DELIMITER $$
162 DROP PROCEDURE IF EXISTS explode_table_for_place1 $$
163 CREATE PROCEDURE explode_table_for_place1(bound VARCHAR(255))
164 BEGIN
165 DECLARE A text ;
166 DECLARE B TEXT;
167 DECLARE occurance INT DEFAULT 0;
168 DECLARE i INT DEFAULT 0;
169 DECLARE splitted_value text;
170 DECLARE done INT DEFAULT 0;
171 DECLARE cur1 CURSOR FOR SELECT place1.id, place1.value FROM place1;
172 DECLARE CONTINUE HANDLER FOR NOT FOUND SET done = 1;
173 DROP TABLE IF EXISTS temp_place1;
174 CREATE TABLE temp_place1(
175 ‘id‘ VARCHAR(255) NOT NULL,
176 ‘value‘ VARCHAR(255) NOT NULL);
177 OPEN cur1;
178 read_loop: LOOP
179 FETCH cur1 INTO A, B;
180 IF done THEN
181 LEAVE read_loop;
182 END IF;
183 SET occurance = (SELECT LENGTH(A)- LENGTH(REPLACE(A, bound, ’’))+1);
184 SET i=1;
185 WHILE i<= occurance DO
186 SET splitted_value =
187 (SELECT REPLACE(SUBSTRING(SUBSTRING_INDEX(A, bound, i),
188 LENGTH(SUBSTRING_INDEX(A, bound, i - 1)) + 1), ’,’, ’’));
189 INSERT INTO temp_place1 VALUES (splitted_value,B);
190 SET i = i + 1;
191 END WHILE;
192 END LOOP;
193 CLOSE cur1;
194 END; $$

24. Create and populate table FW .

CREATE TABLE fw(setA VARCHAR(200), setB VARCHAR(200)) ;
INSERT INTO fw

SELECT * FROM temp_place2;
INSERT INTO fw

SELECT * FROM temp_place1;
INSERT INTO fw(setA, setB)

SELECT S.event, I.InitialEvents
FROM terminalPlaces AS S, initialEvents AS I
WHERE S.event=’i’;

INSERT INTO fw(setA, setB)
SELECT F.FinalEvents , S.event
FROM terminalPlaces AS S, finalEvents AS F
WHERE S.event=’o’;

Seventh step of α-miner algorithm is completed.

53

Appendix B

Implementation of α-Miner
Algorithm on NoSQL
Column-Oriented Database
(HBase) Using Apache Phoenix

1. Create Table for Storing the Event Logs.

CREATE TABLE EventLog (caseid VARCHAR(200) not null, timestamp TIMESTAMP not null, status
VARCHAR(200),activity VARCHAR(200),stlevel VARCHAR(200),area VARCHAR(200),actor
VARCHAR(200),CONSTRAINT pk PRIMARY KEY(caseid,timestamp,status)) ;

2. Load Data from the CSV File into Table by help of MapReduce code.

HADOOP_CLASSPATH=/path/to/hbase-protocol.jar:/path/to/hbase/conf hadoop jar
phoenix-4.2.1-incubating-client.jar org.apache.phoenix.mapreduce.CsvBulkLoadTool
--table eventlog --input eventlog.csv

The above command do mapreduce job by help of jobtracker and tasktraker.
Jobtracker assigns job to tasktraker and tasktacker execute job by help of mappers
and reducers.

3. Create and populate table TotalEvents.

CREATE TABLE TotalEvents(event VARCHAR(200) not null PRIMARY KEY) ;
UPSERT INTO TotalEvents(event)
SELECT DISTINCT activity FROM EventLog;

The above query states that: First of all create table TotalEvents and then insert
all distinct activities of table EventLog. First step of α-miner algorithm
is completed.

4. Create and populate table InitialEvents.

54

CREATE TABLE InitialEvents(initial VARCHAR(200) not null PRIMARY KEY) ;
UPSERT INTO InitialEvents(initial)
SELECT DISTINCT E1.activity
FROM EventLog AS E1
WHERE E1.timestamp IN(SELECT MIN(E2.timestamp)
FROM EventLog AS E2 GROUP BY E2.caseid);

The above query states: The UPSERT statement inserts all rows returned
by first outer subquery Select statement into the table named InitialEvents.
The outer subquery Select statement selects distinct activities from temporary
table returned by inner subquery by comparing their timestamp with inner sub-
query minimum timestamp using IN operator and the inner subquery Select
statement works on EventLog table by considering all caseid with their min-
imum timestamp using Group By. Second step of α-miner algorithm is
completed.

5. Create and populate table FinalEvents.

CREATE TABLE FinalEvents(final VARCHAR(200) not null PRIMARY KEY);
UPSERT INTO FinalEvents(final)
SELECT DISTINCT E1.activity
FROM EventLog AS E1
WHERE E1.timestamp IN(SELECT MAX(E2.timestamp)
FROM EventLog AS E2 GROUP BY E2.caseid);

The above query states: The UPSERT statement inserts all rows returned by
first outer subquery Select statement into the table named FinalEvents. The
outer subquery Select statement selects distinct activities from temporary table
returned by inner subquery by comparing their timestamp with inner subquery
maximum timestamp using IN operator and the inner subquery Select state-
ment works on EventLog table by considering all caseid with their maximum
timestamp using Group By.

Third step of α-miner algorithm is completed.

6. Create table SafeEventA

CREATE TABLE SafeEventA(setA VARCHAR(200),setB VARCHAR(200),CONSTRAINT PK PRIMARY
KEY(setA,setB)) ;

7. Create table SafeEventB

CREATE TABLE SafeEventB(setA VARCHAR(200),setB VARCHAR(200),CONSTRAINT PK PRIMARY
KEY(setA,setB)) ;

55

Algorithm 2: Populating table SafeEventA and SafeEventB
1 Select eventA, eventB from CAUSALITY.
2 Select setA, setB from NotConnected.
3 Compare Function that compares whether set of activity is NotConnected.
4 foreach eventA in the CAUSALITY do
5 Form single group say grp of all activity present in column eventB. Pass grp

to Compare function. For any such combination returning true, insert
eventA in setA and that combination into setB of table SafeEventA.

6 end
7 foreach eventB in the CAUSALITY do
8 Form single group say grp of all activity present in column eventA. Pass grp

to Compare function. For any such combination returning true, insert that
combination into setA and eventB in setB of table SafeEventA.

9 end

8. Create and populate table XW.

CREATE TABLE XW(setA VARCHAR(200), setB VARCHAR(200), CONSTRAINT pk PRIMARY
KEY(setA,setB)) ;

UPSERT INTO XW(setA, setB)
SELECT setA, setB FROM SafeEventA;
UPSERT INTO XW(setA, setB)
SELECT setB, setA FROM SafeEventB;
UPSERT INTO XW(setA, setB)
SELECT eventA, eventB FROM CAUSALITY;

The above query states: Upsert statement will insert all rows from table SafeEventA,
SafeEventB, CAUSALITY.

Fourth step of α-miner algorithm is completed.

9. Create table EventA

CREATE TABLE EventA(setA VARCHAR(200),setB VARCHAR(200),CONSTRAINT PK PRIMARY
KEY(setA,setB)) ;

10. Create table EventB

CREATE TABLE EventB(setA VARCHAR(200),setB VARCHAR(200),CONSTRAINT PK PRIMARY
KEY(setA,setB)) ;

56

Algorithm 3: Populate table EventA and EventB
1 Select setA, setB from SafeEventA.
2 Select setA, setB from SafeEventB.
3 foreach setA,setB in the SafeEventA do
4 Delimit value of setB. For all such value setBi, insert setA and setBi in table

EventA.
5 end
6 foreach setA,setB in the SafeEventB do
7 Delimit value of setA. For all such value setAi, insert setAi and setB in table

EventB.
8 end

11. Create and populate table YW.

CREATE TABLE YW (setA VARCHAR(200),setB VARCHAR(200),CONSTRAINT pk PRIMARY
KEY(setA,setB)) ;

CREATE TABLE TemporaryTable(setA VARCHAR(200),setB VARCHAR(200),CONSTRAINT pk PRIMARY
KEY(setA,setB));

UPSERT INTO TemporaryTable(setA,setB)
SELECT setA,setB FROM EventB;
UPSERT INTO TemporaryTable(setA,setB)
SELECT setA,setB FROM EventA;
UPSERT INTO YW (setA,setB)
SELECT eventA ,eventB
FROM CAUSALITY
WHERE eventB NOT IN

(SELECT DISTINCT setB FROM TemporaryTable)
AND eventA NOT IN

(SELECT DISTINCT setA FROM TemporaryTable);
UPSERT INTO YW(setA,setB)
SELECT setA, setB FROM SafeEventA;
UPSERT INTO YW(setB,setA)
SELECT setA,setB FROM SafeEventB;

The above query states: All rows from table EventA and EventB will store
in TemporaryTable and TemporaryTable will be used to remove all events
that present in TemporaryTable from CAUSALITY table. At last all rows from
CAUSALITY will store in YW. Fifth step of α-miner algorithm is com-
pleted .

12. Create table PW

CREATE TABLE PW(Place VARCHAR(255),CONSTRAINT PK PRIMARY KEY(Place)) ;

Algorithm 4: Populating Table PW
1 Select setA, setB from YW.
2 foreach setA,setB in the YW do
3 Combine value of setA column and setB column together and insert it into

column Place of PW table
4 end

57

13. Populate table PW.

CREATE TABLE s (event VARCHAR(200) not null PRIMARY KEY) ;
UPSERT INTO s VALUES(’O’);
UPSERT INTO s VALUES(’I’);
UPSERT INTO PW
SELECT event FROM s;

Sixth step of α-miner algorithm is completed.

14. Create and populate table FW.

CREATE TABLE FW(Place1 VARCHAR(200),Place2 VARCHAR(200),CONSTRAINT PK PRIMARY
KEY(Place1,Place2)) ;

Algorithm 5: Populating Table FW
1 Select setA, setB from YW.
2 Select final from FinalEvents.
3 Select initial from InitialEvents.
4 foreach final in the FinalEvents do
5 Insert final in column Place1 and ’o’ in column Place2 of table FW
6 end
7 foreach initial in the InitialEvents do
8 Insert ’i’ in column Place1 and initial in column Place2 of table FW
9 end

10 foreach setA,setB in the YW do
11 If value of column setA has set of activities instead of single activity then

delimit. Each split value will store in column Place1 and
combination of setA and setB in column Place2 of table FW

12 else choose column setB and delimit. Each split value will store in
column Place2 and combination of setA and setB in column Place1
of table FW

13 end

The above query states: All rows in form of places will store in table FW by help
of algorithm. Seventh step of α-miner algorithm is completed.

58

References

[1] Lars George. HBase The Definative Guide. vi, 14

[2] Nicholas Charles Russell. Foundation of Process-Aware Information
Systems. 1

[3] WIL VAN DER AALST. Process Mining: Overview and Opportunities.
ACM, 2012. 1, 3

[4] Sawitree Weerapong, Parham Porouhan, and Wichian Premchaiswadi.
Process Mining Using α-Algorithm as a Tool. IEEE, 2012. 1, 3, 4, 16

[5] Hasso Plattner. A common database approach for OLTP and OLAP
using an in-memory column database. ACM SIGMOD International Confer-
ence on Management of data, 2009. 2, 10

[6] Mary A. Finn. FIGHTING IMPEDANCE MISMATCH AT THE
DATABASE LEVEL. 2

[7] Vatika Sharma and Meenu Dave. SQL and NoSQL Database. Interna-
tional Journal of Advanced Research in Computer Science and Software Engineer-
ing, 2012. 2, 3

[8] Daniel J.Abadi, Samuel R.Madden, and Nabil Hachem. Column-Stores
vs. Row-Stores: How Different Are They Really? SIGMOID, 2008. 2

[9] K-U.Sattler and O.Dunemann. SQL Database Primitives for Decision
Tree Classifiers. Conference on Information and Knowledge Management, pages
379–386, 2001. 2, 9

[10] Raja Appuswamy, Christos Gkantsidis, Dushyanth Narayanan, Orion
Hodson, and Antony Rowstron. Scale-up vs scale-out for Hadoop: time
to rethink? 2013. 3

[11] S. R. Madden D. J. Abadi and M. Ferreira. Integrating compression
and execution in column-oriented database systems. SIGMOD. 6

59

REFERENCES

[12] Astha Sachdev. Khanan: Performance Comparison and Programming
Alpha Algorithm in Column-Oriented and Relational Database Query
Languages. 2015. 9, 20

[13] C.Ordonez and P.Cereghini. SQLEM: fast clustering in SQL using the
EM algorithm. International Conference on Management of Data, pages 559–570,
2000. 9

[14] Xuequn Shang, Kai uwe Sattler, and Ingolf Geist. Efficient Frequent
Pattern Mining in Relational Databases. 2004. 9

[15] Carlos Ordonez. Programming the K-means clustering algorithm in
SQL. (6):823–828, 2004. 10

[16] R. G. Mehta and and Dr. M. Raghuvanshi N.J. Mistry. Impact of
Column-oriented Databases on Data Mining Algorithms. International
Journal of Advanced Research in Computer and Communication Engineering, pages
2503–2507, 2013. 10

[17] L.Suresh, J.B Simha, and Rajappa Velur. Implementing k-means Al-
gorithm using Row store and Column store databases-A case study.
International Journal of Recent Trends in Engineering, 4(2), 2009. 10

[18] Ciprian Pungila, Teodor Florin Fortis, and Ovidiu Aritoni. Bench-
marking Database Systems for the Requirements of Sensor Readings.
pages 1–5, 2009. 10

[19] D. P. Rana, N. J. Mistry, and M. M. Raghuwanshi. Association Rule
Mining Analyzation Using Column Oriented Database. International Jour-
nal of Advanced Computer Research, 3(3):88–93, 2013. 10

[20] C.Bazar and C.Sebastian. The Transition from RDBMS to NoSQL.
A Comparative Analysis of Three Popular Non-Relational Solu-
tions:Cassandra, MongoDB and Couchbase. Database Systems Journal,
5(2):49–59, 2014. 10

[21] Andreas Lübcke and Gunter Saake. Workload Representation across
Different Storage Architectures for Relational DBMS. 2012. 10

[22] K. Shvachko, Hairong Kuang, and and R. Chansler S. Radia. The
Hadoop Distributed File System. Mass Storage Systems and Technologies
(MSST), 2010 IEEE 26th Symposium on, 2010. 12

[23] Sanjay Ghemawat Wilson C. Hsieh Deborah A. Wallach Mike Bur-
rows Tushar Chandra Andrew Fikes Fay Chang, Jeffrey Dean and
Robert E. Grube. Bigtable: A Distributed Storage System for Struc-
tured Data. OSDI’06: Seventh Symposium on Operating System Design and
Implementation. 13

60

REFERENCES

[24] Nick Dimiduk and Amandeep Khurana. HBase In Action. 34

[25] L. Suresh and J.B Simha. Novel and efficient clustering algorithm using
structured query language. Computing, Communication and Networking, 2008.
ICCCn 2008, pages 1–5, 2008.

[26] M.N. Vora. Hadoop-HBase for large-scale data. Computer Science and
Network Technology (ICCSNT), 2011 International Conference on, 2011.

[27] D. Carstoiu, A. Cernian, and A. Olteanu. Hadoop Hbase-0.20.2 per-
formance evaluation. New Trends in Information Science and Service Science
(NISS), 2010 4th International Conference on, 2010.

[28] Chongxin Li. Transforming relational database into HBase: A case
study. Software Engineering and Service Sciences (ICSESS), 2010 IEEE Interna-
tional Conference on, 2010.

[29] Tyler Harter, Dhruba Borthakur, Siying Dong, Amitanand Aiyer,
Liyin Tang, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau.
Analysis of HDFS Under HBase: A Facebook Messages Case Study. 12th
USENIX conference on File and Storage Technologies, 2014.

[30] Fernando Berzal, Juan-Carlos Cubero, Nicolas Marin, and
Jose Maria Serrano. TBRAR: An efficient method for association rule
mining in relational databases. elsevier, 2001.

[31] Donald D. Chamberlin, Morton M. Astrahan, Michael W. Blasgen,
James N. Gray, W. Frank King, Bruce G. Lindsay, Raymond Lorie,
James W. Mehl, Thomas G. Price, Franco Putzolu, Patricia Grif-
fiths Selinger, Mario Schkolnick, Donald R. Slutz, Irving L. Traiger,
Bradford W. Wade, and Robert A. Yost. A history and evaluation of
System R. 1973.

[32] Howard Gobioff Sanjay Ghemawat and Shun-Tak Leung. Google File
System. 19th ACM Symposium on Operating Systems Principles.

[33] J. Zhou and K. A. Ross. Buffering databse operations for enhanced
instruction cache performance. SIGMOD.

[34] Chen Zhang and Hans De Sterck. HBaseSI: Multi-row Distributed
Transactions with Global Strong Snapshot Isolation on Clouds. Scien-
tific International Journal for Parallel and Distributed Computing, 2011.

[35] Raja Appuswamy, Christos Gkantsidis, Dushyanth Narayanan, Orion
Hodson, and Antony Rowstron. Scale-up vs scale-out for Hadoop: time
to rethink? 2013.

61

	List of Figures
	List of Tables
	1 Research Motivation and Aim
	1.1 Process Mining
	1.2 Comparison of NoSQL Column-Oriented Database and Row-Oriented Database
	1.3 SQL Interface Over NoSQL Column-Oriented Database
	1.4 Research Aim

	2 Related Work and Research Contributions
	2.1 Related Work
	2.1.1 Implementation of Mining Algorithms in Row-Oriented Databases
	2.1.2 Implementation of Mining Algorithms in Column Oriented Databases
	2.1.3 Performance Comparison of Mining Algorithms in Row-Oriented and Column-Oriented Databases

	2.2 Thesis Contributions

	3 Introduction of Apache Hadoop, Apache HBase and Apache Phoenix
	3.1 Apache Hadoop
	3.1.1 HDFS: Hadoop Distributed File System

	3.2 Apache HBase-NoSQL Column-Oriented Database
	3.2.1 Introduction
	3.2.2 Architecture

	3.3 Apache Phoenix-SQL Skin Over HBase

	4 Description of -Miner Algorithm with an Example
	4.1 Description of -Miner Algorithm
	4.2 Example of -miner Algorithm

	5 Implementation of -Miner Algorithm in SQL on Row-Oriented Database (MySQL) and Column-Oriented Database (HBase)
	5.1 Implementation of -Miner Algorithm in SQL on Row-Oriented Database (MySQL)
	5.2 Implementation of -Miner Algorithm on NoSQL Column-Oriented Database (HBase) Using Apache Phoenix
	5.3 Output of -Miner Algorithm from the Database

	6 Experimental Dataset
	7 Benchmarking and Performance Comparison
	7.1 Loading Multiple Datasets
	7.2 Execution of -Miner Algorithm
	7.3 Read Intensive Steps of -Miner Algorithm
	7.4 Write Intensive Steps of -Miner Algorithm
	7.5 Disk Usage of Tables
	7.6 Disk Usage of Tables Using Compression Technique
	7.7 Execution of -Miner Algorithm Using Compression Technique
	7.8 Real Time Insertion of an Event Logs

	8 Conclusion
	9 Limitations and Future Work
	A Implementation of -Miner Algorithm in SQL on Row-Oriented Database (MySQL)
	B Implementation of -Miner Algorithm on NoSQL Column-Oriented Database (HBase) Using Apache Phoenix
	References

