
Vidushi: Parallel Implementation

of Alpha Miner Algorithm and

Performance Analysis on CPU

and GPU Architecture

Divya Kundra

Computer Science

Indraprastha Institute of Information Technology, Delhi (IIIT-D), India

A Thesis Report submitted in partial fulfilment for the degree of

MTech Computer Science

6 June 2015

mailto:divya1395@iiitd.ac.in
http://www.iiitd.ac.in/
http://www.iiitd.ac.in/

1. Prof. Ashish Sureka (Thesis Adviser)

2. Prof. Saket Anand (Internal Examiner)

3. Prof. Santonu Sarkar (External Examiner from BITS Pilani, Goa)

Day of the defense: 6 June 2015

Signature from Post-Graduate Committee (PGC) Chair:

ii

Abstract

Process Mining consists of extracting valuable information from event logs

produced by Process Aware Information Systems (PAIS) which support

business processes and generate event logs as a result of execution of the

supported business processes. Alpha Miner is a popular algorithm in Pro-

cess Mining which consists of discovering a process model from the event

logs. Discovering process models from event logs is a computationally in-

tensive and time consuming task in context to processing large volumes

of event log data. In this work, we present a parallel version of the Al-

pha Miner algorithm and apply different types of parallelisms (implicit,

explicit, GPU) provided by MATLAB (Matrix Laboratory). To improve

the program’s performance, we identify its bottleneck and apply implicit

parallelism on it through multithreading done by using arrayfun construct

which perform element wise operation. For explicit parallelism, we use the

parfor construct. We identify independent and computationally intensive

for loops in the Alpha Miner algorithm on which parfor can be applied.

We measure the extent of speedup achieved by implicit and explicit paral-

lelism with respect to serial implementation of Alpha Miner algorithm on

Central Processing Unit (CPU). We compare the performance obtained by

implicit parallelism and explicit parallelism on CPU. Further, we use Graph-

ics Processor Unit (GPU) to run computationally intensive parts of Alpha

Miner algorithm in parallel. On GPU, we do parallelism using arrayfun

construct. We measure the speedup achieved using GPU with respect to

the same program run over multi-core CPU. Alpha Miner algorithm is ac-

celerated the most by GPU with speedup reaching till 39.3×. To test the

efficiency and scalability of different types of parallelisms, we perform tests

on real world as well as synthetic datasets of varying sizes.

I dedicate my MTech Thesis to my family, father Mr Pradeep Kundra and

mother Mrs Rajni Kundra for their endless support and love, along with

my brother Mr Vikas Kundra for his immense encouragement and valuable

guidance.

Acknowledgements

First and foremost I offer my deepest gratitude to my advisor, Dr. Ashish

Sureka, who has supported me throughout my thesis. His patience, knowl-

edge and confidence in me helped in working towards my goal. I owe the

completion of my thesis and hence of my Masters degree to him. I could

not have wished for a better advisor than him.

Besides my advisor, I would like to deeply thank my esteemed committee

members Prof. Saket Anand and Prof. Santonu Sarkar for agreeing to

evaluate my thesis.

My sincere thanks also goes to Prerna Juneja for helping me and spending

her valuable time to review my thesis. I would also like to thank IIITD

IT and computing infrastructure team for granting access to the machines

used for carrying experiments. Last but not the least, I would like to thank

all my family members who encouraged and kept me motivated throughout

the thesis.

Declaration

This is to certify that the MTech Thesis Report titled Vidushi: Paral-

lel Implementation of Alpha Miner Algorithm and Performance

Analysis on CPU and GPU Architecture submitted by Divya Kun-

dra for the partial fulfillment of the requirements for the degree of MTech

in Computer Science is a record of the bonafide work carried out by her un-

der my guidance and supervision at Indraprastha Institute of Information

Technology, Delhi. This work has not been submitted anywhere else for the

reward of any other degree.

Professor Ashish Sureka

Indraprastha Institute of Information Technology, New Delhi

Contents

List of Figures vi

List of Tables viii

1 Research Motivation and Aim 1

1.1 Process Mining . 1

1.1.1 α Miner Algorithm . 4

1.2 Parallel Computing . 7

1.2.1 MATLAB . 8

1.3 Problem Motivation, Definition and Aim 9

2 Related Work and Research Contributions 11

2.1 Related Work . 11

2.1.1 Process Mining . 11

2.1.2 Multi-Core CPU for Data Mining Algorithms 12

2.1.3 Multi-Core GPU for Data Mining Algorithms 12

2.2 Novel Research Contributions . 13

3 Research Framework and Solution Approach 14

3.1 Sequential Single Threading on CPU . 16

3.2 Explicit Parallelism on CPU . 18

3.3 Multithreading Parallelism in CPU . 22

3.4 Graphics Processing Unit (GPU) . 24

4 Experimental Dataset 27

5 Experimental Settings and Results 33

iv

CONTENTS

6 Limitations and Future Work 42

7 Conclusion 43

References 44

v

List of Figures

1.1 Types of Process Mining [1] . 2

1.2 A Petri Net consisting of places and transitions. 3

3.1 Parallelization over determining Direct Succession Relation. 15

3.2 Parallelization over building Footprint Matrix. 16

3.3 Parallelization over forming Set Pairs (A,B). 16

3.4 Fragments of Alpha Miner Algorithm Implementation in MATLAB Code

showing programming constructs for Multi-Core CPU and GPU imple-

mentations. 17

(a) Single-threaded implementation. 17

(b) parfor implementation. 17

(c) Multi-threaded implementation. 17

(d) GPU implementation. 17

3.5 Process creation for each of the worker in parfor while using 4 workers. 19

3.7 arrayfun mechanism . 22

3.8 Computational Resources of CPU and GPU [2]. 25

4.1 Dataset BPI 2013. 28

4.2 Case Duration for BPI 2013. 28

4.3 Dataset BPI 2014. 29

4.4 Case Duration for BPI 2014. 29

4.5 Synthetic Dataset A. 31

4.6 Synthetic Dataset B. 31

5.1 Speedup gain by parfor and Multi-threaded Parellelism on CPU across

various datasets. 35

vi

LIST OF FIGURES

5.2 Speedup gain by parfor and Multi-threaded Parallelism on CPU with

varying dataset size. 36

5.3 CPU Utilisation with varying workers. 37

5.4 Performance of different parfor loops across datasets. 38

5.5 Speedup gain by GPU across various datasets. 39

5.6 Speedup gain by GPU with varying dataset size. 40

5.7 Time taken to perform all GPU related tasks (data transfer, gather and

arrayfun) on Dataset A and Dataset B. 40

vii

List of Tables

1.1 Event Log. 4

1.2 Sequential Event Log. 4

1.3 Direct Succession Relation. 5

1.4 Causal Relation. 5

1.5 Parallel Relation. 5

1.6 Unrelated Relation. 5

1.7 Footprint Matrix. 7

1.8 Set Pair (A,B) . 7

1.9 Maximal Set Pair (A,B). 7

4.1 Details of Experimental Datasets. 32

5.1 Machine Hardware and Software Configuration used for Experiments . . 33

5.2 Execution Time (sec) of Single-threaded, parfor and Multi-threaded

implementations of Alpha Miner Algorithm on CPU. 34

5.3 Execution Time (sec) of Multi-threaded CPU and GPU implementations

of Alpha Miner Algorithm. 38

viii

1

Research Motivation and Aim

1.1 Process Mining

Process mining is extraction of valuable insights from event logs produced by Process

Aware Information System (PAIS). PAIS are software systems managing and executing

operational processes that involves people, applications and information sources on the

basis of process models within an organisation [3]. Examples of PAIS systems includes

Workflow Management Systems (WMS) and Business Process Management Systems

(BPMS) [3]. An event log stores the detailed information about each development

represented as an event which is executed in the process. An event is stored as the

combination of 4 fields: activity (well defined step in a process), Case Id, (identifier

for which activity is recorded), actor (person starting and performing the activity)

and timestamp (the beginning time of the event) [1]. A trace/case/process-instance

is defined as the sequential representation of all the activities belonging to the same

Case Id in order of their occurrence with respect to time. A process model is a visual

representation of the process which is recorded by event log. The event logs produced

by PAIS systems are used to produce process models as shown in Figure 1.1. Process

models gives clear-cut business insights by presenting a directed graph in terms of

nodes and edges. Nodes represent the activities that are performed in the process

while edges connect the activities in order of their occurence with respect to time. If an

activity A has a earlier timestamp than activity B, then there will be an edge from node

representing activity A to node representing activity B. There are several notations to

represent the process models such as petri nets [4], causal nets [5] etc. A petri net [4] is

1

1.1 Process Mining

Figure 1.1: Types of Process Mining [1]

also known as place/tansition net. While a transition represent the activity executed in

the process, place denotes the pre or post conditions that must be followed to reach from

one transition to another. Petri net is represented by 3 tuple value (S, T, W) where

S and T are finite set of places and transitions respectively. W is a multi set of arcs.

One arc can connect one place and transition only. As seen from Figure 1.2, places are

represented with circles, transitions are activities represented inside rectangles and arcs

are denoted by directed arrows that show connection between places and transitions or

vice-versa. In our research we implement the Alpha Miner algorithm that gives petri

net model as an output. Following are the three perspectives of process mining [6]:

1. Process Perspective [6]: This perspective aims at producing process models from

the event log focusing on order of the occurrence of events. It is also known

as Control flow perspective. The aim of this perspective is to find good char-

acterisation of all the possible paths that exists between the nodes representing

activities.

2. Organisational Perspective [6]: This perspective focuses on determining the struc-

ture of the organisation from people involved, their roles and relationships. It

focuses on the actor field of the event log.

3. Case Perspective [6]: This perspective focuses on properties of cases. It aims

2

1.1 Process Mining

Figure 1.2: A Petri Net consisting of places and transitions.

at analysing properties of cases like the count of involved activities, represented

Case Id for particular set of activities etc.

As shown in Figure 1.1, process mining can be of the following types [1]:

1. Discovery [1]: It takes an event log as an input to produce process model for the

recovery of hidden and valuable information.

2. Conformance [1]: It checks if the process model and event log have conformance

with each other. It helps in monitoring all the deviations that occur in organisa-

tion’s process.

3. Enhancement [1]: It aims at improvement of the existing process. Generated

process models may indicate the need for improving the current standard of the

workflow.

Some of the advantages1 of process mining are understanding and identifying the

root causes behind problems, locating anomalies, finding bottlenecks by detecting the

regions (nodes or edges) where the largest delays occur, achieving compliance by quanti-

fying the amount by which the process models deviate from real-life, validating process

changes and understanding the entire process.

1http://www.bptrends.com/the-added-value-of-process-mining/

3

1.1 Process Mining

Table 1.1: Event Log.

Case Id Activity

1 Assign

1 Wait

1 In progress

1 Resolve

2 Assign

2 Close

2 Resolve

3 Assign

3 In progress

3 Wait

3 Resolve

Table 1.2: Sequential Event Log.

Activity

Assign, Wait, In progress, Resolve

Assign, Close, Resolve

Assign, In progress, Wait, Resolve

1.1.1 α Miner Algorithm

α Miner is one of the most popular process mining algorithm that was proposed by

Wil van der Aalst, Ton Weijters, and Laura Maruster in 2004. It is a fundamental

process discovery algorithm that extracts a process model from an event log consisting

of traces and represents it as a petri net [7]. It is based on analyzing immediate successor

relation between activities present in the event log. Table 1.1 shows an event log which

is converted to a sequential event log L as shown in Table 1.2 in which the activities

belonging to the same Case Id appear sequentially in increasing order of timestamp.

The algorithm scans through a sequential event log like one shown in Figure 1.2 and

establishes the following relations [7] between all the activities:

1. Direct Succession (a�Lb) if activity a directly precedes activity b in some trace

i.e. activity a having earlier timestamp value is immediately followed by activity

b which is performed just after a.

2. Causal (a→Lb) if a�Lb and b�La.

3. Parallel (a‖Lb) if a�Lb and b�La.

4. Unrelated (a]Lb) if a�Lb and b�La.

For the sequential event log L shown in Table 1.2 the pair of activities having direct

succession is shown in Table 1.3. In Table 1.4 causal relation computed from direct

4

1.1 Process Mining

Table 1.3: Direct Succession

Relation.

Activity a Activity b

Assign Wait

Wait In progress

In progress Resolve

Assign Close

Close Resolve

Assign In progress

In progress Wait

Wait Resolve

Table 1.4: Causal Relation.

Activity a Activity b

Assign Wait

Assign In progress

Assign Close

Wait Resolve

In progress Resolve

Close Resolve

Table 1.5: Parallel Relation.

Activity a Activity b

Wait In progress

In progress Wait

Table 1.6: Unrelated Relation.

Activity a Activity b

Assign Resolve

Wait Close

In progress Close

Resolve Assign

Close Wait

Close In progress

Assign Assign

Wait Wait

In progress In progress

Resolve Resolve

Close Close

succession for event log L is displayed. Table 1.5 represents the parallel relation for

event log L which is also computed with the help of direct succession. Table 1.6 reports

the unrelated relation for event log L computed with the help of direct succession.

Let the event log L shown in Table 1.2 be over T activities or transitions. The

detailed steps involved in the Alpha Miner algorithm are as follows:

1. TL = { t ∈ T | ∃σ∈ L t ∈ σ }
Determine the set of unique activities present in the event log. In event log L,

TL from T is {Assign, Wait, In progress, Resolve and Close}.

2. TI = { t ∈ T | ∃σ∈ L t = first(σ) }
From the set of all activities T, determine the set of activities which do not have

5

1.1 Process Mining

immediate predecessor anywhere in any of the trace in the log. In event log L,

TI is {Assign}.

3. TO = { t ∈ T | ∃σ∈ L t = last(σ) }
From the set of all activities T, determine the set of activities which do not have

immediate successor anywhere in any of the trace in the log. In event log L, TO

is {Resolve}.

4. Scan through the traces present in the sequential event log and determine the

above mentioned relations (�, →, ‖,]) between all activities and represent them

in the form of a matrix called footprint. Table 1.7 shows footprint matrix for L .

5. XL = { (A,B) | A ⊆ TL ∧ A 6=∅ ∧ B ⊆ TL ∧ B 6=∅ ∧ ∀a∈ A ∀b∈ B a →L b ∧
∀a1,a2∈ A a1]La2 ∧ ∀b1,b2∈ B b1]Lb2 }

Using the footprint matrix we generate XL that consists all possible pairs of sets

(A,B) such that activities within set A and within set B are unrelated to rest of

the activities of their set and each activity in set A is in causal relation with every

activity of set B. Table 1.8 reports XL for L.

6. YL = {(A,B) ∈ XL | ∀ (A’, B’) ∈ XL
A ⊆ A

′∧ B ⊆ B
′

=⇒ (A,B)=(A’,B’)}
In XL, if for a set pair (A,B), all activities in A are a subset of activities in set

A’ and all activities in set B are a subset of activities in set B’ and (A’, B’) set

pair is present in XL, then set pair (A,B) in XL is considered to be same as set

(A’,B’). Table reports 1.9 YL for L.

7. PL = { p(A,B) | (A,B) ∈ YL }
⋃

(iL,oL)

In PL, a place (discussed in Section 1.1) is generated for each distinct pair of set

(A,B). Along with it, a input place iL and output place are oL generated.

8. FL = { (a,p(A,B)) | (A,B) ∈ YL ∧ a ∈ A }
⋃
{ (p(A,B),b) | (A,B) ∈ YL ∧ b ∈ B

}
⋃
{ (iL,t) | t ∈ TI }

⋃
{ (t,oL) | t ∈ TO }

For each set pair (A,B) in YL, arcs are connected from every activity present in

set A to a place generated for the set pair (A,B) and arcs are also connected from

the place to every activity present in set B. Activities in TI are connected to the

input place iL and activities in TO are connected to the output place oL.

6

1.2 Parallel Computing

9. α(L) = (PL,TL,FL)

The generated petri net of Alpha Miner algorithm is represented by PL, TL and

FL as shown in Figure 1.2.

Table 1.7: Footprint Matrix.

Assign Wait In progress Resolve Close

Assign] → →] →
Wait ←] ‖ →]

In progress ← ‖] →]

Resolve] ← ←] ←
Close ←]] →]

Table 1.8: Set Pair (A,B)

Set A Set B

Assign Wait

Assign In progress

Assign Close

Wait Resolve

In progress Resolve

Assign {Wait, Close}
Assign {In progress, Close}
Close Resolve

{Wait, Close} Resolve

{In progress, Close } Resolve

Table 1.9: Maximal Set Pair (A,B).

Set A Set B

Assign {Wait, Close}
Assign {In progress, Close}
{Wait, Close} Resolve

{In progress, Close } Resolve

1.2 Parallel Computing

Since the advent of multiprocessors system, parallel programming languages have been

designed to make full use of parallelism. Out of many available languages, MPI1 and

OpenMP2 are the ones that are widely used and accepted3. While MPI is a distributed

memory model that works on distributed computers, OpenMP uses shared memory

1http://www.mcs.anl.gov/research/projects/mpi/
2http://openmp.org/wp/about-openmp/
3https://vlebb.leeds.ac.uk/bbcswebdav/orgs/SCHComputing/FY Proj/reports/1213/Hussain.pdf

7

1.2 Parallel Computing

model and works on multiprocessors [8]. MPI uses messages to communicate while

OpenMP is directive based. MPI is difficult to debug and communication overheads

can affect program’s performance while performance of OpenMP is limited by thread

management and cache coherancy. CUDA1 (Compute Unified Device Architecture) is

a breakthrough language in parallel processing on GPU. The capabilities of GPU have

expanded and there is a remarkable performance gain that is observed [9]. In paper

Scalable parallel programming with CUDA [10], the author has investigated how CUDA

is a revolution in parallelisation and can be adapted to accelerate any general purpose

application. Java also provides multithreading capabilities with the performance and

scalibility tested on multi-core systems [11]. Python too has libraries to use multicore

CPUs or multiple CPUs. Tools such as Parallel Virtual Machine2, allows multiple

heterogeneous computers to be used as one parallel distributed computer.

1.2.1 MATLAB

MATLAB3 is a high level programming language used for various scientific and en-

gineering calculations that is developed by MathWorks. It provides interactive en-

vironment for problem exploration and design, offers various mathematical functions

and development tools for improving code and features for integrating program with

programs written in other languages. It provides 3 different ways to do parallelism4:

1. Multi-threaded Parallelism: Some of MATLAB’s inbuilt functions5 implicitly

provide multithreading. A single MATLAB process generates multiple instruction

streams. CPU cores execute these streams while sharing the same memory.

2. Explicit Parallelism: In this type of parallelism multiple instances of MATLAB

run on separate processors often each with its own memory and simultaneously

execute the code that externally invokes these instances.

1http://www.nvidia.com/object/cudahome new.html
2http://www.csm.ornl.gov/pvm/
3http://in.mathworks.com/products/matlab/?refresh=true
4http://in.mathworks.com/company/newsletters/articles/parallel-matlab-multiple-processors-

and-multiple-cores.html
5http://www.mathworks.com/matlabcentral/answers/95958-which-matlab-functions-benefit-from-

multithreaded-computation

8

1.3 Problem Motivation, Definition and Aim

3. Distributed Computing: Multiple instances of MATLAB run independent

computations on each computer, each with its own memory.

Distributed Computing is an extension of explicit parallelism and can be easily ex-

tended to explicit parallelism using MATLAB Distributed Computing Server1 toolbox.

Multithreading is performed using inbuilt muli-threaded functions. Use of Parallel

Computing Toolbox2 is done to make use of different cores of CPU and also to ac-

cess the GPU. MATLAB provides the analysis of code performance through the Code

Analyser which checks the code while it is being written suggesting ways to improve

performance and through the Profiler which shows how much time is taken by each line

of code. We make use of both of them in determining the most computational intensive

tasks and in optimising them.

1.3 Problem Motivation, Definition and Aim

Process Mining consists of analyzing event logs generated by PAIS for the purpose of

discovering run-time process models, checking conformance between design-time and

run-time process maps, for the purpose of process improvement and enhancement.

Performance improvement of computationally intensive Process Mining algorithms is

an important issue due to the need to efficiently process the exponentially increas-

ing amount of event log data generated by PAIS. Organisation whose processes are

recorded and monitored by IT Systems have increased tremendously. More people are

involved in these organisations leading to occurrence of more events and adding more

data to the event logs. It becomes computationally intensive and time consuming for

process discovery algorithms to work on ever increasing large sized event logs. Process

discovery algorithms gives a clear cut insights of business, helping in enhancing the

current workflow practices of the organisations. To improve the current standards of

workflow, organisations make use of process discovery algorithm. Thus there is a need

to make the process discovery algorithms efficient enough to handle the rapidly growing

size of event logs. Distributed and Grid computing, parallel execution on multi-core

processors and using hardware accelerators such as Graphics Processing Unit (GPU)

1http://in.mathworks.com/products/distriben/
2http://in.mathworks.com/products/parallel-computing/

9

1.3 Problem Motivation, Definition and Aim

are well-known solution approaches for speeding-up the performance of data mining

algorithms.

Alpha Miner algorithm is one of the fundamental algorithms in Process Mining

consisting of discovering a process model from event logs. Our analysis of the Alpha

Miner algorithm reveals that the algorithm contains independent tasks which can be

split among different processors or threads and the algorithm has the ability or prop-

erty of parallelization. The work presented in this research is motivated by the need

to investigate the efficiency and scalability of Alpha Miner algorithm on multi-core

processors (multi-core parallel processing) and GPU based hardware accelerators.

We propose a parallel approach for Alpha Miner algorithm. We test the approach

by applying the implicit multi-threaded Parallelism and Explicit Parallelism on Alpha

Miner over multi-core CPU. Along with this, we also take help of GPU to perform

parallelization. The objective is to accelerate Alpha Miner with the help of different

parallelisms provided by MATLAB. We determine the parallelism model that is best

suitable for the problem under consideration.

10

2

Related Work and Research

Contributions

In this chapter we discuss previous work that is closely related to our research and list

the novel research contributions of our work in context to already existing work.

2.1 Related Work

The related work has been categorised into three lines of research.

2.1.1 Process Mining

Several process discovery algorithms have been proposed in literature of process min-

ing. Aalst et al. present Alpha Miner algorithm, the most popular and fundamental

algorithm to discover petri nets from event logs [7]. In our research we apply paral-

lelization on Alpha Miner algorithm. To mine the unstructured real life event logs,

Aalst et al. propose the Fuzzy Miner algorithm [12]. The algorithm uses abstraction

and clustering to discover models that are easy to comprehend [12]. Weijters et al. pro-

pose Heuristics Miner [13], an algorithm which deals with noise and presents the main

behavior of the event log. The algorithm includes constructing the dependency graph,

constructing the input output expression for each activity in the graph and search for

longest distance dependency relation [13]. Dongen et al. propose Multi-phase Miner

[14][15] that uses OR split/join semantics. The authors have proposed an approach

that builts the instance graph based on the information present in the event log. The

11

2.1 Related Work

results are represented as Event-driven Process Chains (EPCs). It expresses complex

behavior in relatively well structured models [14][15].

2.1.2 Multi-Core CPU for Data Mining Algorithms

Implementation of data mining algorithms on multi-core CPU is an area that has

attracted several researchers attention. Ahmadzadeh et al. [16] present a parallel

method for implementing k-NN (k-nearest neighbor) algorithm in multi-core platform

and tested their approach on five multi-core platforms demonstrating best speedup of

616 times. Matsumoto et al. [17] propose an improved parallel algorithm for outlier

detection on uncertain data using density sampling and develop an implementation run-

ning on both GPUs and multi-core CPUs. Nan et al. in [18] implement parallel version

of Global and Coarse-Grained genetic algorithms using MATLAB Parallel Computing

Toolbox and Distributed Computing Server software and achieve a higher speedup and

better performance . Stratton et al. in [19] propose a new framework MCUDA that al-

lows CUDA programs to be executed on shared memory and multi-core CPUs proving

that CUDA can be used for architectures other than GPU. Hong et al. in [20] present

a parallel implementation of the popular Breadth First Search algorithm on multi-core

CPU and also study the effects of the proposed architecture on BFS performance by

comparing multiple CPU and GPU systems as well as a quad-socket high-end CPU

system.

2.1.3 Multi-Core GPU for Data Mining Algorithms

GPU has brought a big revolution in parallelising the algorithms. Implementation of

data mining algorithms on multi-core GPU is an area that also has attracted several

researchers attention. Ligowski et al. in [21] uses CUDA programming environment on

Nvidia GPUs and ATI Stream Computing environment on ATI GPUs to speedup the

popular Smith Waterman sequence alignment algorithm. Their implementation strat-

egy achieves a 3.5 times higher per core performance than the previous implementations

of this algorithm on GPU. Arour et al. [22] present two FP-growth (Frequent Pattern)

implementations that take advantage of multi-core processors and utilize new gener-

ation GPUs. Stuart et al. in [23] present a MapReduce library that uses the power

of GPU clusters for large-scale computing and compares this library with a highly-

optimized multi-core MapReduce and another GPU-MapReduce library to show the

12

2.2 Novel Research Contributions

power of the proposed library. Lu et al. [24] develop a method which adopts the

GPU as a hardware accelerator to speedup the sequence alignment process. Paula

et al. in [25] uses the CUDA-Matlab integration to parallelise the hybrid BiCGStab

(bi-conjugate gradient stabilized) iterative method in a Graphics Processing Unit and

achieves a speedup of 76× and 6× when compared to implementations in C language

and CUDA-C integration.

2.2 Novel Research Contributions

In context to existing work and to the best of our knowledge, the study presented in

this paper makes the following novel contributions

1. A parallel implementation of Alpha Miner algorithm and an in-depth study (with

several real and synthetic dataset) on improving its execution performance by

using multi-core CPU.

2. A focused study on accelerating Alpha Miner algorithm through parallelism on

the GPU and testing the approach on various real and synthetic datasets.

13

3

Research Framework and

Solution Approach

Alpha Miner is one of the most popular process discovery algorithm in the field of pro-

cess mining. To parallelize Alpha Miner algorithm we identify discrete and independent

tasks in it which can be solved concurrently. MATLAB supports parallelization only for

independent tasks. Thus through manual analysis of the algorithm we determine which

of the steps in Alpha Miner algorithm can be parallelized. As explained in Section 1.1.1

the first step is finding the set of unique activities present in the sequential event log.

For this step, if different threads are allowed to operate on different set of activities, they

would require communication among them to select the set of unique activities. Thus

Step 1 cannot be broken into of independent tasks. To reduce the execution time of

the overall algorithm, outputs TI and TO for Step 2 and Step 3 respectively can be find

while determining the causal relation during building of the footprint matrix instead of

examining the entire event log. Since we parallelize building the footprint matrix, Step

2 and Step 3 are in-turn parallelized. Parallelization can very well be applied while

determining relations (direct succession, causal, parallel and unrelated) in Step 4. As

shown in Figure 3.1 for sequential event log L shown in Table 1.2 parallelization can

be applied on traces, different threads can work on different traces and determine the

pair of activities having direct succession relation. Results can be gathered from all the

threads and after removing redundancies we can get unique pair of activities having

direct succession relation. Parallelization can again be applied to determine rest of the

relations (causal, parallel, unrelated) for all the activities, and footprint matrix can

14

Figure 3.1: Parallelization over determining Direct Succession Relation.

thus be build. As shown in Figure 3.2 for log L, different threads can work on different

activities and find the relations of those activities with the rest of the activities present

in the log. Different rows of the footprint can thus simultaneously be worked by dif-

ferent threads. Step 5 also involves independent tasks. As displayed in Figure 3.3 for

log L, a thread can determine all the set pairs (A,B) that can be formed by including a

particular activity in set A. Similarly, other threads can simultaneously work on differ-

ent activities and find out all the pair of sets (A,B) that can be generated by keeping

a activity in set A. Results can be collected from all the threads. While gathering the

results, redundancies can be removed and only maximal set pairs as required in Step

6 can be chosen. Step 7, Step 8 and Step 9 involves forming the petri net graph from

the maximal set pairs. Again parallelization can be make use of by different threads

connecting arcs to and from places and transitions for a pair of sets (A,B). We have

not produced the petri net graph in MATLAB, thus have not make use of paralleliza-

tions in building the petri net. We see that except for determining unique activities

and producing the graph, we make use of parallelization in rest of the steps. Thus for

Alpha Miner algorithm discussed in Section 1.1.1 we make use of parallelization on its

5 out of 9 steps. We first implement Alpha Miner in serial mode then we implement

three different types of parallelisms on it. For all the implementations, we encode the

activity names by unique integers instead of using their string representation.

15

3.1 Sequential Single Threading on CPU

Figure 3.2: Parallelization over building Footprint Matrix.

Figure 3.3: Parallelization over forming Set Pairs (A,B).

3.1 Sequential Single Threading on CPU

In sequential programming, there is an ordered relationship of execution of instruc-

tions where only a single instruction executes at a particular instance of time1. The

program is executed over a single processor only. Serial implementation done on a

single thread provides a base for evaluating comparisons from other implementations

1https://computing.llnl.gov/tutorials/parallelcomp/

16

3.1 Sequential Single Threading on CPU

(multi-threaded, parfor). To achieve serial version of Alpha Miner algorithm, we en-

sure not to use any inbuilt multi-threaded functions1 available in MATLAB. We enable

only a single thread in the program by using maxNumCompThreads(1). Use of for loop

throughout the program makes it sequential in nature. As shown in Figure 3.4(a) we

have implemented the main functionalities in Alpha Miner algorithm like determining

all the direct succession relations by scanning the entire log, building the footprint with

its help and determining the maximal set pairs through for loop. Use of for loops

makes the program slower as at each iteration conditions are checked and branching

occurs adding to more overheads and affecting the code’s performance.

for i =1: t r a c e s

%Find Direc t Success ion

end

for i =1: a c t i v i t i e s

%Bui ld Footpr in t Matrix

end

for i =1: a c t i v i t i e s

%Find Maximal Set Pairs

end

(a) Single-threaded

implementation.

pa r f o r i =1: t r a c e s

%Find Direc t Success ion

end

par f o r i =1: a c t i v i t i e s

%Bui ld Footpr in t Matrix

end

par f o r i =1: a c t i v i t i e s

%Find Maximal Set Pairs

end

(b) parfor

implementation.

[m n]= s ize (InputF i l e) ;

S h i f t e d F i l e=InputF i l e (1 :m, 2 : n) ;

D i r e c tSucc e s s i on=arrayfun (@CantorPairing , InputFi l e , S h i f t e d F i l e) ;

(c) Multi-threaded implementation.

[m n]= s ize (InputF i l e) ;

S h i f t e d F i l e=InputF i l e (1 :m, 2 : n) ;

InputF i l e=gpuArray (InputF i l e)

D i r e c tSucc e s s i on=arrayfun (@CantorPairing , InputFi l e , S h i f t e d F i l e) ;

D i r e c tSucc e s s i on=gather (D i r e c tSucc e s s i on) ;

(d) GPU implementation.

Figure 3.4: Fragments of Alpha Miner Algorithm Implementation in MATLAB Code

showing programming constructs for Multi-Core CPU and GPU implementations.

1http://www.mathworks.com/matlabcentral/answers/95958-which-matlab-functions-benefit-from-

multithreaded-computation

17

3.2 Explicit Parallelism on CPU

3.2 Explicit Parallelism on CPU

In contrast to sequential processing, parallel processing lets execution of multiple tasks

at the same time [26]. In parallel processing, the instructions are distributed to different

processors which work simultaneously in order to complete the task fast. The ease

and success of parallelism depends on how much synchronisation exists between the

divided tasks. Speedup will be maximum when tasks are independent i.e. there is no

communication between tasks executing in parallel [27]. Parallel computing is done on

multi-core computers.

MATLAB has the provision of applying external parallelism over set of independent

tasks through parfor1. parfor allows execution of the loop iterations in parallel on

labs. Labs are workers which are executed on processor cores. Syntax of parfor is

shown by Equation (3.1). ’loopvar’ is the variable for which iterations occurs, ’initval’,

’endval’ are limits of the loop which must be finite integers and ’statements’ represent

the code required to be parallel.

parfor loopvar = initval:endval, statements, end (3.1)

parfor mechanism can be summarised as follows:

1. Using parfor separate process is created for each worker having its own memory

and own CPU usage. As shown in Figure 3.5, using 4 workers creates 4 different

MATLAB processes. They are headed by a client process which manages them.

2. When parfor is executed, the MATLAB client communicates with the MATLAB

workers which form a parallel pool.

3. The code within the parfor loop is distributed to workers and it executes in

parallel in the pool.

4. The required data needed by workers to do the computations is send from client

to all the workers and the results from all the workers are collected back by client

as shown in Figure 3.6.

1http://in.mathworks.com/help/distcomp/parfor.html

18

3.2 Explicit Parallelism on CPU

Figure 3.5: Process creation for each of the worker in parfor while using 4 workers.

5. The body of the parfor is an iteration which is executed in no particular order

by the workers. Thus, the loop iterations are needed to be independent of each

other. If there is dependency between different loop iterations, an error will be

produced on using parfor and the dependency is required to be removed in order

to proceed.

6. If number of iterations equals the number of workers in the parallel loop, each

iteration is executed by one worker else a single worker may receive multiple iter-

ations at once to reduce the communication overhead. Thus parfor distributes

loop iterations in chunks to be executed by the worker.

7. parfor can be useful in situations where there are many iterations of simple

calculation loop that can distributed to a large number of workers so that each

workers completes some portion of the total iterations. It can also be used in cases

where loop iteration take long time to execute so that by simultaneous execution

by multiple workers it can be completed faster.

8. To start a pool of workers Equation (3.2) parpool is used where name of the

parallel pool forming a cluster is to be specified in the ’profilename’ and size of

the cluster in the ’poolsize’ argument.

19

3.2 Explicit Parallelism on CPU

Figure 3.6: Portion of code executing in parallel using the parfor language construct1

parpool (profilename, poolsize) (3.2)

We identify following 3 for loops (amongst several for loops within the algo-

rithm) executing the main functionalities of the algorithm and also containing

the code body that is independent at each iteration enabling us to apply parfor:

(a) Determining direct succession relation: The causal, parallel and unre-

lated relations are in-turn derived from the direct succession relation. Dis-

covering the pair of direct succession activities is an independent task and

can be distributed to different workers for e.g. first worker can calculate the

direct succession relations from one trace, second worker from some other

trace and so on. As shown in Figure 3.4(b), first parfor loop distributes

the total ’traces’ present in input file among various workers. The results

can be gathered from each thread, redundancies can be removed and unique

pair of activities having direct succession between them can be deduced.

(b) Building up the footprint: The task of creating the footprint i.e. find-

ing the relations of all the activities with one another can be broken into

1http://in.mathworks.com/help/stats/working-with-parfor.html

20

3.2 Explicit Parallelism on CPU

independent work of finding all the relations a activity (causal, parallel, un-

related) with the rest of the activities separately by a worker. In the second

parfor loop of Figure 3.4(b), each worker upon receiving a activity out

of total unique ’activities’ computes the relations of that activity with the

remaining activities present in event log.

(c) Forming maximal set pairs: The process of forming the maximal set

pairs, can also be broken into smaller unrelated processes of determining all

the maximal set pairs (A,B) by a worker that can be formed by including a

particular activity in set A. In third parfor loop of Figure 3.4(b) a worker on

receiving an activity from total unique ’activities’, computes all the possible

maximal set pairs (A,B) that can be formed by including the received activity

in set A. With each worker doing the same simultaneously, we can retain

only the maximal pair sets from the gathered results and after removing

redundancies we can get distinct maximal set pairs.

Through experiments we observe that both the footprint matrix building and

maximal set pair generation do not consume much time (less than 1% of pro-

gram’s execution time) in single-threaded implementation. Whereas calculating

direct succession incurs about 90% of program’s execution time. Direct succes-

sion relation is computed by scanning the event log thus its computational time

is dependent on count and length of traces present in the event log. Computa-

tional time for other relations (causal, parallel, unrelated) which are determined

through direct succession depend on count of activities, as more are the activities,

more will be the entries in footprint matrix. Time for calculating maximal set

pair is also dependent on total activities present in the log. More are the activ-

ities, more time will be spend in generating the sets. Majority of the program’s

execution time incurred towards computing direct succession is because in most

real world datasets the count of activities is less than number of traces to be

scanned for determining direct succession by order of thousands of magnitude.

Thus, calculating direct succession is the bottleneck for the program and bringing

the benefits of parallelization to it can help in attaining a good speedup.

21

3.3 Multithreading Parallelism in CPU

Figure 3.7: arrayfun mechanism

3.3 Multithreading Parallelism in CPU

In MATLAB by default implicit multithreading1 is provided for expressions and

functions that are combinations of element wise operations. In this type of par-

allelism, multiple instruction streams are generated by one instance of MATLAB

session2. Multiple cores share the memory of a single computer to access these

streams. The 3 basic requirements to achieve it are:

(a) Each element wise operation should be independent of each other.

(b) Size of data should be big enough so that speed up achieved by the concurrent

execution exceeds the time required for partitioning and managing different

threads.

(c) The function in consideration should preferably be complex and challenging

enough so that higher speedups are achieved while multithreading.

To fulfil these requirements, independent and big tasks vectorization3 are essential

for implicit parallel computations. Vectorization is one of the most efficient ways

1http://www.mathworks.com/matlabcentral/answers/95958-which-matlab-functions-benefit-from-

multi-threaded-computation
2http://in.mathworks.com/company/newsletters/articles/parallel-matlab-multiple-processors-

and-multiple-cores.html
3http://in.mathworks.com/help/matlab/matlabprog/vectorization.html

22

3.3 Multithreading Parallelism in CPU

of writing the codes in MATLAB [28]. It performs operations on large matrices

through a single command at once instead of performing each operation one by

one inside the for loop. An effective way of using multithreading is replacing

for loops by vector operations. Code using vectorization uses optimised multi-

threaded linear algebra libraries and thus generally run faster than its counterpart

for loop [28].

Through experiments we determine bottleneck in finding the direct succession re-

lations. The determination of direct succession can be vectorised using arrayfun1.

MATLAB uses implicit multithreading using commands such as- arrayfun. Syn-

tax is as shown by Equation (3.3). arrayfun applies the function specified in

function handle ’func’ to each element of equal sized input arrays A1,..An. Shown

in Figure 3.7, is the working mechanism of arrayfun construct. In Figure 3.7

there are two equal sized input arrays A1 and A2. Independent threads work

simultaneously on corresponding elements of these two arrays and each thread

apply the function ’func’ passed through arrayfun to the two elements of the

arrays. The order of execution of threads is not specific, thus element wise opera-

tion should be independent of each other. The implementation of arrayfun in the

algorithm is as represented in Figure 3.4(c). ’InputFile’ is the sequential event log

input to the program. ’ShiftedFile’ is obtained by shifting the ’InputFile’ by 1 to

the left. Each cell of the ’ShiftedFile’ contains the immediate succeeding activity

of the activity present in the corresponding cell of ’InputFile’. Since ’func’ oper-

ates over each two corresponding elements of the input arrays, through ’func’ we

get the pair of activities a and b such that a �L b i.e. they hold direct succession

relation. We apply Cantor pairing function [29] [30] [31] in ’func’ by which each

activity a in the input file and its immediate successor b in the left shifted input

file are uniquely encoded. Syntax of Cantor pairing function is given in Equation

3.4 where a and b are activities having direct succession relation a�Lb. Since

we have encoded all activities as unique integers, Cantor pairing function can be

used to get a distinct output for two distinct inputs. The output of Cantor pair-

ing function is a unique natural number ’n’ which is a representation of a and b

having direct succession relation. It is invertible, we can get back value of a and

1http://in.mathworks.com/help/matlab/ref/arrayfun.html

23

3.4 Graphics Processing Unit (GPU)

b from ’n’. The output ’DirectSuccession’ in Figure 3.4(c) is of the same size as

input arrays and each cell in it stores natural number which is the representation

of two activities at the corresponding cells of input arrays having direct succession

relation.

[B1,...,Bm] = arrayfun (func, A1,..., An) (3.3)

n= 〈a, b〉=1/2(a+b)(a+b+1)+b (3.4)

3.4 Graphics Processing Unit (GPU)

While a CPU has a handful number of cores, GPU has a large number of cores

along with dedicated high speed memory [32]. Differences between CPU and

GPU architecture can be analysed from Figure 3.8 [2]. CPU has larger cache

with less number of CUs (Control Unit) and ALUs (Arithmetic Logic Unit) and

is designed for serial processing [2]. Whereas GPU has more number of ALUs

and CUs that helps in parallel computing of large computation intensive problem

[2]. For data to be computed on GPU it has to be sent to GPU and is brought

back if the results are required to be accessed by CPU.

The requirements of a program to execute and make use of GPU for better speed

performance are that it should be computationally intensive and massively par-

allel [33]. GPUs perform poor when given a piece of code that involves logical

branching. They are meant for doing simple scalar (addition, subtraction, mul-

tiplication, division) arithmetic tasks by hundreds of threads running in parallel

[33]. While working with GPU, one bottleneck can be transferring the data to and

fro from memory as there is a PCI Express (Peripheral Component Interconnect

Express) bus through which GPU is connected to CPU, thus memory access is

not fast when compared with CPU [34]. Some portions of Alpha Miner algorithm

fits the basic criteria to process them on GPU. We identify independent loops

in algorithm as discussed in Section 3.2, out of which direct succession relation

consumes major part of the running time of the algorithm and can be offloaded

to GPU. This part does not involve much of branching across its code and its

24

3.4 Graphics Processing Unit (GPU)

Figure 3.8: Computational Resources of CPU and GPU [2].

computation time far exceeds the data transfer time to and fro from GPU . For

MATLAB program’s GPU can be used in ways1 such as:

(a) Calling some of the GPU enabled MATLAB functions like fft, filter etc.

(b) By performing element wise operations through functions like arrayfun,

bsxfun etc.

(c) By creating and running the kernal of available CUDA file from MATLAB.

Among these, we apply the element wise operations to determine the direct suc-

cession relation. GPU only works with numbers (signed and unsigned integers,

single-precision and double-precision floating point) thus activities across input

file are converted to distinct integers. The data type that works with GPU is

gpuArray. In Equation 3.5 gpuArray copies numeric array B to A and returns

a gpuArray object. Similarly in Figure 3.4(d), the ’InputFile’ i.e. the sequential

event log of Alpha Miner algorithm is transferred on GPU device using gpuArray.

As shown in Figure 3.4(d), to compute the direct succession, first the ’InputFile’ is

read and shifted to left by 1 to get ’ShiftedFile’. Shifting the file to the left gives

immediate successor for each corresponding activity present in the ’InputFile’.

We make use of arrayfun which is also available for gpuArray arguments to do

1http://in.mathworks.com/discovery/matlab-gpu.html

25

3.4 Graphics Processing Unit (GPU)

element wise operations on two large arrays. arrayfun1 executes on GPU instead

of CPU when one of its arguments is already on GPU. Here, to execute arrayfun

on GPU, ’InputFile’ is already transferred to GPU before. arrayfun on GPU

executes in the same manner as it executes on CPU. The call to arrayfun on

GPU is massively parallelized [35]. Using arrayfun one call is made to parallel

GPU operation that performs the entire calculation instead of making seperate

calls for each two elements. Also the memory transfer overheads are incurred

just once instead on each individual operation. To uniquely encode the pair of

activities a, b having direct succession,a�Lb we use Cantor pairing function [29]

[30] [31] which is passed through arrayfun. We make use of Cantor pairing func-

tion instead of other functions like concatination is because GPU only support

scalar operations (addition, subtraction, multiplication, division). Cantor pairing

function itself involves addition, multiplication and division as shown in Equation

3.4 and thus is suitable for use on GPU. Thus on GPU multiple threads run in

parallel and encode activities a, b with a�Lb to a unique natural number using

Equation 3.4. The output array ’DirectSuccession’ of arrayfun is of the same

size as input arrays. Each cell of the output array stores the representation for

two activities that are in the corresponding cells in input arrays and having di-

rect succession relation. The results are brought back to CPU through gather.

Equation 3.6 shows the syntax of gather in which array A from GPU is moved to

CPU and stored as array B on CPU. Similarly as shown in Figure 3.4(d), output

’DirectSuccession’ array on GPU is brought to CPU using gather.

A = gpuArray(B) (3.5)

B = gather(A) (3.6)

1http://in.mathworks.com/help/distcomp/arrayfun.html

26

4

Experimental Dataset

For observing and comparing the performance of different types of parallelism,

we use 2 real world datasets- Business Process Intelligence 2013 (BPI 2013)1

and Business Process Intelligence 2014 (BPI 2014)2. BPI 2013 Dataset consists

of logs from Volvo IT Belgium of its incident and problem management system

called VINST. We use VINST case incidents log as shown in Figure 4.1. As

displayed in the Figure 4.1, we select ’SRNo’ column which represents the Case

Id, ’Timestamp’ column which represent beginning time of each activity and

’Substatus’ column that represents the activity executed in the process. We

create a ’SubstatusNo’ column which encodes activities to distinct integers. For

all the datasets, we generate and use the sequential representation of event log in

which activities belonging to same Case Id are arranged in accordance to their

time occurrence. Figure 4.2 shows the statistical analysis for BPI 2013 dataset,

displaying the case/trace duration vs count of cases. The log has 13 unique

activities, 7554 traces, 65533 events. The median case duration is 10.5 days and

mean case duration is 12.4 days.

1http://www.win.tue.nl/bpi/2013/challenge
2http://www.win.tue.nl/bpi/2014/challenge

27

Figure 4.1: Dataset BPI 2013.

Figure 4.2: Case Duration for BPI 2013.

BPI 2014 contains Rabobank Group ICT data. The data contain events of Infor-

mation Technology Infrastructure Library that aligns IT services with business

needs. Detail Incident Activity log is used. As shown in the Figure 4.3, we

select ’IncidentID’ column which represents the Case Id, ’Datestamp’ column

which represents the starting time of each activity and ’IncidentActivity Type’

column that represents the activity executed in the process. We create a ’Inciden-

28

tActivity Type Number’ column which encodes activities to distinct integers. It

consists of 39 unique activities, 46616 traces and 466737 events. Shown in Figure

4.4 is the statistical analysis of BPI 2013 dataset. We conduct experiments on

publicly available dataset so that our experiments can be replicated and used for

benchmarking or comparisons.

Figure 4.3: Dataset BPI 2014.

Figure 4.4: Case Duration for BPI 2014.

We create synthetic dataset due to lack of availability of very large real world

data for research purposes (much larger and diverse than the BPI 2013 and BPI

2014 dataset). The algorithm of generation of the synthetic data is shown in

29

Algorithm 1. To imitate the real world event logs, the algorithm first defines direct

succession relations between randomly chosen activities leading to formation of

causal, parallel or unrelated between all the activities. Then using a half normal

distribution with a given mean and standard deviation it randomly generates the

length of each trace. A random activity is chosen to be placed at the beginning

of the trace. Next activity in the trace is chosen randomly from the set of the

direct successors of the current activity.

Algorithm 1: Synthetic Data Generation

Data: Standard deviation s, mean m, trace count c, activity count a

Result: Synthetic data in form of sequential event log

1 l=1

2 for i=1 : a do

3 x=l+rand(1,1)*(a-l)

4 x=round(x)

5 for j=1: x do

6 r=l+rand(1,1)*(a-l)

7 r=round(r)

8 Successor(i,j)=r

9 for i=1 : c do

10 x=round(randn(1,1) * s + m)

11 if x < 0 then

12 x=abs(x)

13 r = l+(a-l).*rand(1,1)

14 r=round(r)

15 for j=2: x do

16 n= Successor(r,find(Successor(r,:)))

17 n=datasample(n,1)

18 arr=[arr,n]

19 r=n

20 append arr to output file.

Using Algorithm 1, 2 datasets are prepared, dataset A with standard deviation

10, mean 20, activity count 20, shown in Figure 4.5 while dataset B with standard

30

deviation of 25, mean 50 and activity count 50 as shown in Figure 4.6.

Figure 4.5: Synthetic Dataset A.

Figure 4.6: Synthetic Dataset B.

31

To get insights into performances of different implementations with variation of

datasize, each dataset is recorded for 5 increasing trace count values. For CPU,

datasets A and dataset B are generated with trace counts 500, 2000, 8000, 32000

and 128000. Since GPUs are designed to work with large data [33], we generate

bigger datasets for it. For GPU, datasets A and dataset B are generated with

trace counts 10000, 50000, 250000, 1250000 and 6250000. Table 4.1 describes the

details of experimental datasets.

Table 4.1: Details of Experimental Datasets.

Datasets No. of Events
Trace

Count

Activity

Count

BPI 2013 65533 7554 13

BPI 2014 466737 46616 39

Dataset A

9991 500 20

38374 2000 20

155296 8000 20

192464 10000 20

614781 32000 20

956213 50000 20

2452823 128000 20

4788140 250000 20

23969927 1250000 20

119841817 6250000 20

Dataset B

24777 500 50

97589 2000 50

395925 8000 50

495522 10000 50

1587454 32000 50

2472278 50000 50

6351629 128000 50

12375747 250000 50

61848409 1250000 50

308921230 6250000 50

32

5

Experimental Settings and

Results

Table 5.1: Machine Hardware and Software Configuration used for Experiments

Parameter Value

CPU Intel (R) Xeon(R) CPU E5-2670v2 @

2.50GHz

Physical Cores 10

Logical Cores 20

Available Memory 96 GB

Operating System Linux, 64 bit

Graphics Card NVIDIA Tesla K40c

GPU Cores 2880

GPU Memory 12 GB

MATLAB Version R2014b

The parameters of computer and GPU used for testing are shown in Table 5.1. To

get the accurate execution timings of programs, we perform the experiments in

isolation. We measure timings using two MATLAB functions, namely tic which

starts stopwatch timer and toc that displays the elapsed time. We calculate the

speedup (S) using the Equation 5.1 where Told is old execution time and Tnew

is the new execution time with improvement [36]. We set the speedup value to

1× for implementations whose execution time is considered as Told . For all the

33

implementations, we record time that includes both the computations involved

and data transfers to and fro from workers or GPU. Implicit multithreading in

MATLAB uses threads equal to number of logical processor with hyperthreading1

enabled or uses threads equal to number of physical cores when there is no hyper-

threading. The CPU that we use for performing experiments has hyperthreading

enabled leading to access of 20 threads by MATLAB. parfor construct by default

access only physical cores. Thus, in the experiments we access upto 10 workers.

Each worker is a thread on a CPU core. To see the performance results with

varying number of workers (cores), we carry the parfor implementation on 2, 4,

6, 8 and 10 physical cores. We run the program using parfor after it is connected

to specific number of workers, not recording the time to start the parallel pool.

S = Told/Tnew (5.1)

Table 5.2: Execution Time (sec) of Single-threaded, parfor and Multi-threaded

implementations of Alpha Miner Algorithm on CPU.

Datasets
Trace

Count

Activity

Count

Single-

threaded

CPU

parfor

CPU

Multi-

threaded

CPU

BPI 2013 7554 13 27.93 17.93 8.26

BPI 2014 46616 39 423.15 149.4 69.6

Dataset A

500 20 1.87 2.88 1.05

2000 20 4.08 3.92 1.85

8000 20 14.53 10.51 4.93

32000 20 75.25 36.71 18.49

128000 20 825.5 154.6 74.32

Dataset B

500 50 9.48 9.03 7.21

2000 50 14.08 11.78 9.313

8000 50 41.7 29.38 13.38

32000 50 195.31 87.55 46.09

128000 50 2247.5 371.9 212.87

1http://www.intel.in/content/www/in/en/architecture-and-technology/hyper-threading/hyper-

threading-technology.html

34

Table 5.2 reports the end to end timing observed on CPU for 3 implementations

of the Alpha Miner algorithm, namely Single-threaded, parfor (2 workers) and

Multi-threaded.

Figure 5.1: Speedup gain by parfor and Multi-threaded Parellelism on CPU across

various datasets.

Figure 5.1 and Figure 5.2 shows the speedup achieved due to parfor and multi-

threaded parallelism on Alpha Miner algorithm over CPU with Told being time

taken by single-threaded implementation. In Figure 5.1 speedup is shown at

highest trace count 128000 for dataset A and B. As shown in Figure 5.1, using 2

workers we obtain good speedup values which increase with increase in datasize,

ranging from 1.55× in the smallest dataset (BPI 2013) to 6.04× in the largest

dataset (dataset B). We expect the performance to double using 4 workers but it

ranges from minimum value of 2.19× (BPI 2013) to maximum of 8.60× (dataset

B). Similar effect is observed with further increase in workers with speedup values

increasing marginally. Marginal increase happens in performance as adding more

workers leads to more communication overheads eventually reducing the gains

of parallelism1. In fact, over the largest dataset B, performance degrades with

increase in number of workers. Although due to larger size dataset B involves

1http://in.mathworks.com/company/newsletters/articles/improving-optimization-performance-

with-parallel-computing.html

35

more computations, overheads of calling workers, distributing work and data

transfers will also be maximum in dataset B. We observe constant drop in speedup

values after adding more than 4 workers on dataset B due to large communication

overheads associated with workers.

Figure 5.2: Speedup gain by parfor and Multi-threaded Parallelism on CPU with

varying dataset size.

Communication overheads also outweighs the benefits of parallelism when com-

putations are too less i.e. while working with smaller dataset. Figure 5.2 reveals

that speedup value comes to be less than 1× of 500 trace count in dataset A for 10

workers. In Figure 5.2, speedup values continue to increase with increase in both

trace count and worker within dataset A and dataset B till the time computation

time outweighs communication overheads with workers. As observed from Figure

5.1 and Figure 5.2, highest speedup is always achieved through multi-threaded

parallelism. This can be attributed to the fact that mulithreading does not incur

the cost of creating separate processes for each worker. Use of shared memory by

multi-cores saves the communication and data transfer costs. While parfor of-

fers data level parallelism, multithreading does instruction level parallelism. We

observe that in MATLAB multithreading parallelism is triggered only by per-

forming element wise operation on large matrices, whereas inside parfor loop

we can write any type of code. We ensure not to send too much data inside the

parfor loop to the workers to keep data transfer costs minimum. Multithreading

parallelism is initiated by just a single line of code like done through arrayfun

thus no problem of data transfers is involved. We see that in multithreading

36

parallelism with larger data resulting in more computations, better performance

is achieved, the same trend is observed in parfor but not with every count of

workers. Multithreading parallelism itself creates threads in the program, unlike

in parfor where a user has to set up a parallel pool and specify the worker count.

parfor does utilises number of cores of the CPU as specified by the user. As

shown in Figure 5.3, with 20 logical cores available on machine, CPU utilisation

grows approximately by 10 % with increase in 2 workers. Use of multithreading,

does not guarantee that all cores will be optimally used. It is upto operating

system (OS) as how to partition the work load to different cores. OS may make

efficient use of the idle time of a CPU core to run multiple threads in same core,

instead of distributing to different cores1.

Figure 5.3: CPU Utilisation with varying workers.

As mentioned in Section 3.2, that parfor is applied on 3 different independent

parts of the program. From Figure 5.4 (dataset A and dataset B taken at 32000

trace count) we observe that both the footprint building and maximal set pairs

generation do not contribute significantly in single-threaded program’s execution

time and thus in overall speedup. Direct succession holds major percentage in

the program’s running time in every dataset and thus reduction in its execution

1http://cache-www.intel.com/cd/00/00/01/77/17705httuserguide.pdf

37

time using parfor leads to gain in speedup. Thus, countering the bottleneck only

helps in attaining a good speedup.

Figure 5.4: Performance of different parfor loops across datasets.

Table 5.3: Execution Time (sec) of Multi-threaded CPU and GPU implementations of

Alpha Miner Algorithm.

Datasets
Trace

Count

Activity

Count

Multi-

threaded

CPU

GPU

BPI 2013 7554 13 8.26 0.96

BPI 2014 46616 39 69.6 4.64

Dataset A

10000 20 6 1.32

50000 20 24.23 1.87

250000 20 134.6 4.39

1250000 20 672.9 18.58

6250000 20 3791 96.42

Dataset B

10000 50 18.11 7.55

50000 50 76.94 11.87

250000 50 330.15 16.00

1250000 50 1722.6 53.68

6250000 50 9137.6 266.14

38

We further accelerate the algorithm on GPU after optimising it on multi-core

CPU. We choose the CPU multi-threaded implementation that is implemented

in the same manner as the GPU implementation for making comparisons to GPU.

The end to end execution time recorded for multi-threaded CPU and GPU im-

plementation is given in Table 5.3. Displayed in Figure 5.5 is the multi-threaded

Alpha Miner CPU code on GPU leading to a speedup as high as 39.3×. As can be

seen from Figure 5.5 significant speedups are achieved across datasets. In Figure

5.5 for datasets A and B, speedup is calculated at highest data point 6250000 to

observe the performance at the peak.

Figure 5.5: Speedup gain by GPU across various datasets.

Figure 5.6 reveals that within a given dataset with increase in trace count, GPU

performance improves. We see that with increase in datasize, the penalty of over-

heads of data transfers to and from GPU becomes smaller in context of larger

computations hence speedup value improves with increase in trace count. There-

fore, we obtain highest speedup at the largest trace count value for both the

datasets. Hence, we believe that the performance will further increase with in-

crease in trace count. At trace count 6250000 in dataset B, the size of array

transferred on GPU exceeds the memory limit of GPU. Thus the array is broken

into two parts and computed separately to get the results. Hence we infer that

GPU memory limits should be taken into account while working with GPU. The

39

line chart in Figure 5.6 reveals that performance on dataset B grows relatively

slower than on dataset A. Alpha Miner on dataset B containing larger number of

activities (50) will have more of its time spend on doing activity intensive tasks

like building footprint matrix, maximal set pairs generation etc than on dataset

A (20 activities). Thus on dataset A there will be larger part for doing direct

succession than on dataset B. Also dataset B spends more time in transfer of

data to and fro from GPU than dataset A due to bigger data size. Thus for every

trace count point speedup on dataset B comes to be lower than on dataset A.

Figure 5.6: Speedup gain by GPU with varying dataset size.

Figure 5.7: Time taken to perform all GPU related tasks (data transfer, gather and

arrayfun) on Dataset A and Dataset B.

40

The time required for performing GPU related tasks like transfer and gather of

data to and fro from GPU and doing computations on it is almost same for lower

trace count points for both the datasets as shown in Figure 5.7. At higher dataset

size (1250000) only we see some differences between the time taken by the two.

The total time taken to perform GPU related tasks as shown in Figure 5.7 is

in very small percentage ranging to maximum ≈ 2% in dataset A and ≈ 1%in

dataset B, with respect to end to end time reported in Table 5.3 to run the entire

program using GPU. Thus, with GPU operations not taking too significant time,

we are encouraged to test even bigger datasets on GPU. With small amount of

timings required to do GPU intensive operations by bigger datasets and in return

getting parallelism over hundreds of cores, we can expect higher speedup gains

on GPU for Alpha Miner algorithm for any other dataset also.

41

6

Limitations and Future Work

Parallelization of Alpha Miner has been done on MATLAB which is a high level

language and has an expensive license. Using proposed parallel approach for Al-

pha Miner algorithm, work can implemented on low level languages also. Apart

from taking into account certain limitations and rules of different parallelism tech-

niques, achieving good speedup through parallelization in MATLAB is a simple

task. But we see that MATLAB provides just a black box for doing paralleliza-

tion. It internally calls the subroutines written in C, C++ etc. hiding from

programmer all details about data parallelism exploration. Writing directly into

C, C++ can let user to have a better control over the parallelization and ob-

tain better speedup. Also for multithreading and GPU parallelism MATLAB

is suitable for providing speedups only for numerical problems working on large

matrices. Partitioning of data for performing parallelization on Alpha Miner can

be done by other ways also and parallelized code can be tested for more optimisa-

tions example multi-threaded function bsxfun can be used in place of arrayfun

and performances can be compared to find out the better function. We can test

our models on more diverse real life datasets. Performance of parallelism models

can also be be tested and compared on different machines. Alpha Miner can be

tested for better performance by the use of more powerful GPU cards. Due to

expensive license problem of MATLAB Distributed Computing Server, we are not

able to extend the research to a grid of computers.

42

7

Conclusion

We conduct a series of experiments on synthetic and real-world datasets to ob-

serve the performance of Alpha Miner algorithm on parallelization. We make

use of MATLAB Parallel Computing Toolbox for constructs such as parfor to

distribute computations across multi-cores of CPU and also for accessing GPU.

We find multi-threaded functions to be more efficient than the explicit paral-

lelism done through parfor construct. The speedup achieved using implicit mul-

tithreading is always higher than using parfor. Thus, use of shared memory in

case of implicit parallelism proves to be more beneficial than creating separate

processes in parfor. The performance of parfor keeps improving with increase

in number of workers till the time communication overheads associated with the

workers are not significant. We achieve the highest performance while doing par-

allelization of Alpha Miner over GPU with speedup as high as 39.3× is obtained.

Within a given dataset, the parallelization performance over GPU improves with

increase in datasize. Thus, we accelerate Alpha Miner algorithm using different

parallelism techniques and achieve the maximum speedup by utilising the poten-

tial of GPU computing. Due to our proposed parallelization of computing the

direct succession relation, Alpha Miner algorithm can now be worked on larger

size event logs. The proposed approach of parallelization of building footprint

matrix and finding maximal set pairs can enable to work on higher count of

activities.

43

References

[1] Wil van der Aalst. Process Mining: Overview and Opportunities.

ACM Trans. Manage. Inf. Syst., 3(2):7:1–7:17, July 2012. vi, 1, 2, 3

[2] V.H. Naik and C.S. Kusur. Analysis of performance enhancement

on graphic processor based heterogeneous architecture: A CUDA

and MATLAB experiment. In Parallel Computing Technologies (PAR-

COMPTECH), 2015 National Conference on, pages 1–5, Feb 2015. vi, 24,

25

[3] Wil M. Aalst. Transactions on Petri Nets and Other Models of

Concurrency II. chapter Process-Aware Information Systems: Lessons

to Be Learned from Process Mining, pages 1–26. Springer-Verlag, Berlin,

Heidelberg, 2009. 1

[4] James L. Peterson. Petri Nets. ACM Comput. Surv., 9(3):223–252,

September 1977. 1

[5] Wil Van Der Aalst, Arya Adriansyah, and Boudewijn Van Don-

gen. Causal Nets: A Modeling Language Tailored Towards Pro-

cess Discovery. In Proceedings of the 22Nd International Conference on

Concurrency Theory, CONCUR’11, pages 28–42, Berlin, Heidelberg, 2011.

Springer-Verlag. 1

[6] W. M. P. van der Aalst, H. A. Reijers, A. J. M. M. Weijters, B. F.

van Dongen, A. K. Alves de Medeiros, M. Song, and H. M. W.

Verbeek. Business Process Mining: An Industrial Application.

Inf. Syst., 32(5):713–732, July 2007. 2

44

http://doi.acm.org/10.1145/2229156.2229157
http://dx.doi.org/10.1007/978-3-642-00899-3_1
http://dx.doi.org/10.1007/978-3-642-00899-3_1
http://doi.acm.org/10.1145/356698.356702
http://dl.acm.org/citation.cfm?id=2040235.2040239
http://dl.acm.org/citation.cfm?id=2040235.2040239
http://dx.doi.org/10.1016/j.is.2006.05.003

REFERENCES

[7] Wil Van der Aalst, Ton Weijters, and Laura Maruster. Work-

flow mining: Discovering process models from event logs. Knowledge

and Data Engineering, IEEE Transactions on, 16(9):1128–1142, 2004. 4, 11

[8] Gabriele Jost, Hao-Qiang Jin, Dieter anMey, and Ferhat F

Hatay. Comparing the openmp, mpi, and hybrid programming

paradigm on an smp cluster. 2003. 8

[9] John D Owens, Mike Houston, David Luebke, Simon Green, John E

Stone, and James C Phillips. GPU Computing. Proceedings of the

IEEE, 96(5):879–899, 2008. 8

[10] John Nickolls, Ian Buck, Michael Garland, and Kevin Skadron.

Scalable parallel programming with CUDA. Queue, 6(2):40–53, 2008.

8

[11] Kuo-Yi Chen, J Morris Chang, and Ting-Wei Hou. Multithread-

ing in Java: Performance and scalability on multicore systems.

Computers, IEEE Transactions on, 60(11):1521–1534, 2011. 8

[12] Wil M. P. van der Aalst and Christian W. Günther. Finding

Structure in Unstructured Processes: The Case for Process Min-

ing. In Seventh International Conference on Application of Concurrency to

System Design (ACSD 2007), 10-13 July 2007, Bratislava, Slovak Republic,

pages 3–12, 2007. 11

[13] AJMM Weijters, Wil MP van Der Aalst, and AK Alves

De Medeiros. Process mining with the heuristics miner-algorithm.

Technische Universiteit Eindhoven, Tech. Rep. WP, 166:1–34, 2006. 11

[14] Boudewijn F van Dongen and Wil MP Van der Aalst. Multi-phase

process mining: Building instance graphs. In Conceptual Modeling–ER

2004, pages 362–376. Springer, 2004. 11, 12

[15] Boudewijn F van Dongen and Wil MP Van der Aalst. Multi-phase

process mining: Aggregating instance graphs into EPCs and Petri

nets. In PNCWB 2005 workshop, pages 35–58. Citeseer, 2005. 11, 12

45

http://doi.ieeecomputersociety.org/10.1109/ACSD.2007.50
http://doi.ieeecomputersociety.org/10.1109/ACSD.2007.50
http://doi.ieeecomputersociety.org/10.1109/ACSD.2007.50

REFERENCES

[16] Armin Ahmadzadeh, Reza Mirzaei, Hatef Madani, Mohammad

Shobeiri, Mahsa Sadeghi, Mohsen Gavahi, Kianoush Jafari,

Mohsen Mahmoudi Aznaveh, and Saeid Gorgin. Cost-efficient

implementation of k-NN algorithm on multi-core processors. In

Formal Methods and Models for Codesign (MEMOCODE), 2014 Twelfth

ACM/IEEE International Conference on, pages 205–208. IEEE, 2014. 12

[17] Takazumi Matsumoto, Edward Hung, and ManLung Yiu. Parallel

outlier detection on uncertain data for GPUs. Distributed and Parallel

Databases, pages 1–31, 2014. 12

[18] Li Nan, Gao Pengdong, Lu Yongquan, and Yu Wenhua. The Im-

plementation and Comparison of Two Kinds of Parallel Genetic

Algorithm Using Matlab. In Distributed Computing and Applications

to Business Engineering and Science (DCABES), 2010 Ninth International

Symposium on, pages 13–17, Aug 2010. 12

[19] JohnA. Stratton, SamS. Stone, and Wen-meiW. Hwu. MCUDA:

An Efficient Implementation of CUDA Kernels for Multi-core

CPUs. In JosNelson Amaral, editor, Languages and Compilers for Par-

allel Computing, 5335 of Lecture Notes in Computer Science, pages 16–30.

Springer Berlin Heidelberg, 2008. 12

[20] Sungpack Hong, T. Oguntebi, and K. Olukotun. Efficient Par-

allel Graph Exploration on Multi-Core CPU and GPU. In Parallel

Architectures and Compilation Techniques (PACT), 2011 International Con-

ference on, pages 78–88, Oct 2011. 12

[21] Lukasz Ligowski and Witold Rudnicki. An efficient implemen-

tation of Smith Waterman algorithm on GPU using CUDA, for

massively parallel scanning of sequence databases. In Parallel & Dis-

tributed Processing, 2009. IPDPS 2009. IEEE International Symposium on,

pages 1–8. IEEE, 2009. 12

46

http://dx.doi.org/10.1007/s10619-014-7155-9
http://dx.doi.org/10.1007/s10619-014-7155-9
http://dx.doi.org/10.1007/978-3-540-89740-8_2
http://dx.doi.org/10.1007/978-3-540-89740-8_2
http://dx.doi.org/10.1007/978-3-540-89740-8_2

REFERENCES

[22] Khedija Arour and Amani Belkahla. Frequent Pattern-growth

Algorithm on Multi-core CPU and GPU Processors. CIT, 22(3):159–

169, 2014. 12

[23] J.A. Stuart and J.D. Owens. Multi-GPU MapReduce on GPU

Clusters. In Parallel Distributed Processing Symposium (IPDPS), 2011

IEEE International, pages 1068–1079, May 2011. 12

[24] Mian Lu, Yuwei Tan, Ge Bai, and Qiong Luo. High-performance

Short Sequence Alignment with GPU Acceleration. Distrib. Parallel

Databases, 30(5-6):385–399, October 2012. 13

[25] LCM Paula and Anderson da Silva Soares. Parallel implementa-

tion of the BiCGStab (2) method in GPU using cuda and Matlab

for solution of linear systems. Journal of Communication and Computer,

11:339–346, 2014. 13

[26] Vipin Kumar. Introduction to Parallel Computing. Addison-Wesley Long-

man Publishing Co., Inc., Boston, MA, USA, 2nd edition, 2002. 18

[27] G. S. Almasi and A. Gottlieb. Highly Parallel Computing. Benjamin-

Cummings Publishing Co., Inc., Redwood City, CA, USA, 1989. 18

[28] Desmond J. Higham and Nicholas J. Higham. Matlab Guide. Society

for Industrial and Applied Mathematics, Philadelphia, PA, USA, 2005. 23

[29] Georg Cantor. Contributions to the Founding of the Theory of Transfinite

Numbers. Dover, New York, 1955. Original year was 1915. 23, 26

[30] G. Cantor. Ein Beitrag zur Mannigfaltigkeitslehre. Journal fr die

reine und angewandte Mathematik, 84:242–258, 1877. 23, 26

[31] Meri Lisi. Some remarks on the Cantor pairing function. Le Matem-

atiche, 62(1), 2007. 23, 26

[32] Wen-mei W. Hwu. GPU Computing Gems Emerald Edition. Morgan

Kaufmann Publishers Inc., San Francisco, CA, USA, 1st edition, 2011. 24

47

http://cit.srce.unizg.hr/index.php/CIT/article/view/2361
http://cit.srce.unizg.hr/index.php/CIT/article/view/2361
http://dx.doi.org/10.1007/s10619-012-7099-x
http://dx.doi.org/10.1007/s10619-012-7099-x
http://www.archive.org/details/contributionstot003626mbp
http://www.archive.org/details/contributionstot003626mbp
http://eudml.org/doc/148353
http://www.dmi.unict.it/ojs/index.php/lematematiche/article/view/14

REFERENCES

[33] Jung W. Suh and Youngmin Kim. Accelerating MATLAB with GPU

Computing: A Primer with Examples. Morgan Kaufmann Publishers Inc.,

San Francisco, CA, USA, 1st edition, 2013. 24, 32

[34] Ravi Budruk, Don Anderson, and Ed Solari. PCI Express System

Architecture. Pearson Education, 2003. 24

[35] J.W. Suh and Y. Kim. Accelerating MATLAB with GPU Computing: A

Primer with Examples. Morgan Kaufmann. Elsevier/Morgan Kaufmann,

2013. 26

[36] John L. Hennessy and David A. Patterson. Computer Architecture: A

Quantitative Approach. Morgan Kaufmann Publishers Inc., San Francisco,

CA, USA, 3 edition, 2003. 33

[37] Nathan L Parrish. Accelerating Lamberts problem on the gpu in Matlab.

PhD thesis, California Polytechnic State University, San Luis Obispo, 2012.

[38] A. J. M. M. Weijters and A. K. Alves De Medeiros. Process Min-

ing with the HeuristicsMiner Algorithm.

[39] Wil van der Aalst. Process Mining: Making Knowledge Discovery

Process Centric. SIGKDD Explor. Newsl., 13(2):45–49, May 2012.

48

https://books.google.co.in/books?id=tn2MngEACAAJ
https://books.google.co.in/books?id=tn2MngEACAAJ
http://doi.acm.org/10.1145/2207243.2207251
http://doi.acm.org/10.1145/2207243.2207251

	List of Figures
	List of Tables
	1 Research Motivation and Aim
	1.1 Process Mining
	1.1.1 Miner Algorithm

	1.2 Parallel Computing
	1.2.1 MATLAB

	1.3 Problem Motivation, Definition and Aim

	2 Related Work and Research Contributions
	2.1 Related Work
	2.1.1 Process Mining
	2.1.2 Multi-Core CPU for Data Mining Algorithms
	2.1.3 Multi-Core GPU for Data Mining Algorithms

	2.2 Novel Research Contributions

	3 Research Framework and Solution Approach
	3.1 Sequential Single Threading on CPU
	3.2 Explicit Parallelism on CPU
	3.3 Multithreading Parallelism in CPU
	3.4 Graphics Processing Unit (GPU)

	4 Experimental Dataset
	5 Experimental Settings and Results
	6 Limitations and Future Work
	7 Conclusion
	References

