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Abstract

In today’s complex environment, it is very crucial for the devices to feature low power consump-
tion at a low cost. Internet of Things is predicted to bring an era where everything will have
chips embedded in them, be it a household appliance, mobile device or industrial equipment.
To fulfill this vision, todays power-needy devices need to be replaced by less power consuming
devices. Ultra Low Power chip design has this property which increases its demand.
ReISC (Reduced energy Instruction Set Computer) is an embedded architecture meant for low
power devices with high performance applications. It provides support for secure data, parallel
operations and fast interrupt response. To leverage these features of this architecture, building
a compiler is essential.
This work describes the design and implementation of a new backend for the ReISC architecture
based on Low Level Virtual Machine (LLVM) compiler infrastructure. This thesis contains the
detailed discussion of translation of the code in LLVM intermediate representation to ReISC
assembly code. It also includes the comparison between assembly code generated by the LLVM
back-end and code generated by the ReISC toolchain.
The analysis of results implies that the LLVM backend generated code is in close proximity to
toolchain generated code.
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Chapter 1

Introduction

In today’s complex environment, it is very crucial for the devices to feature low power consump-

tion at a low cost. It is said that Internet of Things will bring an era where everything will have

chips embedded in them, be it a household appliance, mobile device or industrial equipment.

For this vision to get fulfilled, todays power-needy devices need to be replaced with devices

powered by chips that operate on low levels of power. Having this property, Ultra Low Power

chip design is in great demand. These chips are at the core of the devices that make up the

Internet of things.

Chips can be coded using machine language only but it is extremely difficult for the programmers

to write machine language programs. In order to make this task easier for the programmers,

chips are programmed using high level programming languages. But how will the chip function

when it does not understand programming languages? Compilers are a solution to this problem.

It takes as input the human readable code written by the programmer and performs the complex

task of translating it into machine readable code which can then be understood and executed

by the chip.

1.1 Goal of Thesis

The goal of this thesis was to implement a new backend that generates assembly code for

the ReISC architecture. ReISC (Reduced energy Instruction Set Computer) is an embedded

architecture meant for low power devices and high performance applications. It has support for
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secure data, parallel operations and fast interrupt response. To leverage these features of the

architecture, building a compiler is essential.

Ideally compiler should be completely customized for each target, but on the other hand, they

should share a commonality and perform similar tasks. For example values need to be assigned

to registers in each architecture, so the algorithms should be shared wherever possible. There

is need of utilizing these common features and writing things specific to an architecture only.

To avoid writing entire compiler i.e. both frontend and backend, the high level language frontend

already available should be used and backend part should be written. The goal should be to

minimize the effort in writing the backend and decrease information redundancy. Moreover the

system should be modular, reusable, maintainable and easily extensible.

1.2 Approach

The GNU Compiler Collection supports a large number of frontend and backend but extending

and retargeting it is a very complex task due to its coherent design. Reusability of pieces is not

possible and amount of sharing across different compilers is very little.

In this approach LLVM(Low-Level Virtual Machine) was chosen as it overcomes these limita-

tions. LLVM supports the feature of pluggable frontends. It provides the flexibility to write

backend by allowing the use of already present frontends.

LLVM is written as a set of libraries and therefore it allows the reusability of classes and sharing

of components across different compilers as often as possible. It automates a lot of things at

the backend by writing target descriptions in a single location called .td files. Based on this

description, plenty of code can be generated by tablegen (An LLVM tool used to generate C++

code) which takes as input .td files and generates .inc files that can be included in other LLVM

source files. For example, instruction set of architecture is described in Instrinfo.td and then

TableGen processes this file to generate the instruction selection algorithm, this would have been

difficult if written manually.

The LLVM is extremely modular, easily extensible, understandable and reliable.

These remarkable features have been the motivation for developing the backend using LLVM

framework.
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1.3 Contributions

As part of this research, I have implemented the backend for ReISC architecture based on the

LLVM framework.

The first contribution of this thesis is to implement the basic instruction set of ReISC.

The second contribution of this thesis is to generate the machine specific assembly code similar

to that generated by GCC.

1.4 Organization of Thesis

This thesis report is organized as follows:

Chapters 2 of this thesis give an overview of LLVM and the ReISC architecture.

Chapter 3 contains the description of instruction selection phase of the code generation process.

Chapter 4 describes the register allocation phase.

Chapter 5 contains the description of the call/return handling procedure.

Chapter 6 explains the code emission process, the final phase of code generation process.

Chapter 7 highlights the results generated by the LLVM backend and its comparison with ReISC

tool chain results.

Chapter 8 discusses about the conclusion.
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Chapter 2

The LLVM and the ReISC

2.1 The LLVM Compiler Infrastructure

The Low Level Virtual Machine (LLVM) is a compiler framework that was started in 2000 in

the University of Illinois by Chris Arthur Lattner. This compiler infrastructure eases out the

process of building compilers and is designed for static as well as dynamic compilation. It is a

set of libraries which is independent of both language and target. This type of representation

helps to apply common techniques at each stage of compilation. The LLVM representation is

expressive and extensible on one hand and low-level on the other hand.

The features that make LLVM stand out from other compilers are its internal architecture,

simplicity, understandability, extensibility, stability, reliability and tools like Clang. Some other

features supported by LLVM are efficient tail calls, garbage collection, zero-cost exception han-

dling, link-time optimization etc. . All the compilers that are being developed by utilizing this

framework get the benefit of all these features for free.

2.1.1 The three phase design and its implications

LLVM has a three phase design comprised of front end, optimizer and backend as shown in

Figure 2.1:
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Figure 2.1: Major components of a three-phase compiler.

Front end is responsible for parsing and analyzing the source code, transforming the parsed code

into an AST. AST being language and frontend dependent is then translated to compiler’s generic

representation known as LLVM intermediate representation. Optimization is an optional phase

that performs analysis and optimization on the intermediate representation thus improving the

code. Optimizer is language and target independent. The output from the optimizer is then fed

as input to the backend also known as code generator that converts the IR to target machine

code.

This design has the edge over traditional compilers when there is a need to support a new source

language or architecture. Had we been using the traditional compiler design, it would require a

whole new compiler to be developed from scratch for each language or architecture. Figure 2.2

shows the LLVM compiler structure.

Figure 2.2: The LLVM compiler infrastructure.

With this, to support a new source language, only front end part of the compiler needs to be

developed, while already existing optimizer and backend for a particular architecture can be

reused.
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2.1.2 LLVM’s Intermediate Representation

Intermediate Representation (IR) is a way of representing the code by LLVM. It is a Static Single

Assignment (SSA) based universal representation used in all phases of the LLVM compilation

strategy. It provides the flexibility of representing high-level languages in a clean and simple

manner.

LLVM IR supports an unlimited number of registers and can be represented in three different

forms which are all equivalent: as text which is a human readable form of IR, as bit code format

and as an in memory representation. Files in the LLVM IR are known as modules which consist

of meta-data, global and local variable definitions & function definitions.

Meta-data may include some sort of special information; provide possibility to attach arbitrary

data to the code without a need of changing program behavior. Global variables are preceded

by @ whereas local ones are preceded by % symbol. Labels with a set of instructions in each

of them (collectively called a basic block) constitute the function definition with the restriction

that the last instruction of every label should either be return instruction or branch instruction.

A specific basic block known as the entry block is the place from where the execution of the

function is started. Functions consist of instructions, which take value type and variable as

arguments.

Each block may begin with a sequence of phi instructions that merge incoming values from the

blocks predecessors. The terminator unreachable instruction is used to specify that there is

function call without a return instruction.

Some features of IR are . . .

• Low level virtual instruction set

• Extensibility and effectiveness of high-level languages

• Representation based on Static Single Assignment (SSA)

• Supports instructions like addition, subtraction and branch operations

• Language independent and target-independent

• Has support for labels
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Static Single Assignment (SSA)

This is the generic code representation used by LLVM. There should be a single definition of

each variable to satisfy the validity condition of SSA form i.e. it is invalid for a variable to be

present in two control flow paths. φ- function is used to overcome this issue by returning the

value corresponding to the control-flow path being taken.

If (condition)

then a := 0

else a := 1

return a

Here the variable a is present in two control-flow paths.

SSA representation of the above example:

If (condition)

then a1 := 0

else a2 := 1

a := φ(a1, a2)

return a

If the condition evaluates to true, control flow will take the branch for true and the value

returned by the function φ(a1, a2) will be a1. On the other hand,if the condition evaluates to

false ,control flow will take the branch for false and the value returned by the function φ(a1, a2)

will be a2.

The intermediate representation is ideal for the compiler optimizer since on one hand it is both

language and target independent and on the other hand, it has to designed such that the front end

can easily generate code for it as well as is expressive enough to allow important optimizations

to be performed.

2.1.3 Type System

Unlike most RISC instruction sets, LLVM follows strict type representation with a simple type

system (e.g., i32 is a 32-bit integer, i32** is a pointer to pointer to 32-bit integer). Every virtual

register and memory location has a specified type. On the other hand, LLVM IR is a low-level,

expressive and extensible language.
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According to LLVM type representation; there is an associated type for each memory location

and SSA value as well as type rules for all operations. The high level type system is the unique

feature of LLVM, which helps LLVM optimizer and compiler in producing optimal code and

performing high-level transformation on low-level code. It eliminates the need to perform extra

analyses before the transformation.

In addition, errors in optimizations can be detected if there is a type mismatch. In LLVM instruc-

tions, there are some restrictions on the operands to preserve type correctness. For example,

both operands of the add instruction should be of arithmetic (i.e., integral or floating-point)

type, and result is also a value of same type.

The type system used in LLVM falls in two categories: the primitive types and the derived

types.

Primitive types

The primitive types are the fundamental building blocks of the LLVM system. They are inde-

pendent of the source language. Figure 2.3 shows the primitive types in LLVM system.

Figure 2.3: The LLVM type system: Primitive types.

Derived types

The derived types are complex types that are made up of primitive types and other derived

types. They provide the ability to represent arrays, vectors, pointers and functions and are

independent of the source language. Figure 2.4 shows the derived types in LLVM system.
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Figure 2.4: The LLVM type system: Derived types.

2.1.4 TableGen

TableGen is the descriptive language used by LLVM to describe several machine aspects used

in compiler stages. Had this concept not been there, the programmer would have to write code

that reflects the same target characteristics in different files. It causes information redundancy

in the code despite the extra effort. So if there is a change in any one of the aspects, programmer

would need to change various parts of the code.

The TableGen concept has reduced this complexity of writing and maintaining the backend code

to a great extent. It can describe complex entities effectively although it has a very simple syn-

tax. TableGen is a declarative programming language used to describe files that act as a central

repository of target specific information. The approach is to describe machine aspects in a single

location, for example, the machine register description in ReISCRegisterInfo.td which are then

processed by the TableGen tool with a specific goal, for example, generate the pattern-matching

instruction selection algorithm.

TableGen descriptions are stored in .td files. For every TableGen backend, certain top-level

superclasses have special pre-defined semantics (e. g., the Register class for the register descrip-

tion). The declaration of these classes is present in the file include/llvm/Target/Target.td. The

TableGen generates a C++ file as output which can then be included and compiled along with

the regular code base.
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2.2 The ReISC Architecture

ReISC (Reduced Energy Instruction Set Computer) is a 32-bit architecture developed by STMi-

croelectronics. It supports variable-length instructions (16, 32, or 48 bits), variable data size

(8/16/20/32 bits), data security, quick interrupt response and parallel operations. Variable-

length instructions are the main feature of ReISC instructions that helps to achieve high code

density. ReISC targets the next generation Ultra Low Power devices and High Performance

applications, such as digital signal processing, media processing, biomedical devices, wireless

sensors etc. Architechture ReISC is shown in Figure 2.5 .

Figure 2.5: The ReISC architecture.

ReISC core has an enhanced RISC architecture with a 3- stages pipeline. It supports concurrent

instruction fetch and memory access. The instruction and data cache both are present in this

processor architecture, however these plug-ins are optional. Around 50% of the total energy

utilization is consumed by the memory subsystem, so focusing on saving energy in memory

access cycles can help in saving substantial amount of energy.
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In case of ReISC, the small 128 bytes wide cache act as an interface to the SoCs on-chip

instruction and 128 bytes wide data SRAMs, hence minimizing the energy required for accessing

memory. The caches are not faster than the local on-chip memories and don’t contribute in

performance improvement, but in case of a cache hit, memory cycle need not to be run on the

larger memory arrays, which saves energy.

The register file and the ALU are optimized to work with different data sizes with a granularity

of a single instruction. Long and small integers, pointers, and char data types can live together

in the pipeline and in the register file, saving power while keeping low-end 32bit processors

performance. Short relative jumps are supported at no code-space expense, while optimized

Long Branch instruction can jump directly into the whole address space. The ReISC roadmap

includes multi-core SoCs and many DSP extensions to the instruction set.

Consuming a bare minimum amount of power, this type of technology will certainly enable many

new implantable devices that must operate at extremely low powers and squeeze every bit of

juice out of their batteries or energy-harvesting means.

2.2.1 Addressing Modes

ReISC Core belongs to memory/register architecture, rather than the prevailing register/register

architecture adopted by most of the commercial RISC microprocessors. This allows reducing

the energy for inter-instruction data transfer, and to obtain a more compact instruction size.

The ReISC architecture supports multiple addressing modes, including the following . . .

• Immediate addressing mode

• Register addressing mode

• Absolute addressing mode

• Displacement addressing mode

• Indirect addressing mode

• Auto-increment addressing mode

• Self-update addressing mode

11



• Index addressing mode

2.2.2 Code Generation

The code generation process is comprised of various passes that analyze and transform the LLVM

intermediate representation (IR) into assembly code. The IR changes after each pass and gets

more similar to the target instructions. The following diagram illustrates the steps of transfor-

mation of intermediate representation to assembly code. Figure 2.6 shows the transformation

steps of code generation process.

Figure 2.6: Transformation steps of code generation process.

Each step of the code generation process is explained in detail in the upcoming chapters.
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Chapter 3

Instruction Selection

In this chapter of thesis work, we describe the process of instruction selection in which the

instructions in LLVMs intermediate representation are mapped to the corresponding target

specific instructions.

The transformation of the LLVM code into a set of DAGs is the first step of the instruction

selection phase. DAG refers to a directed acyclic graph representation where nodes denote

instructions and the edges denote definitionuse relationship among them. Target architecture

do not support all operations on all types, hence the DAG needs to be transformed so that it

contains supported data types and operations only. This transformation process is called Dag

legalization.

The DAG nodes are then transformed into nodes that represent the target specific instructions.

By the end of instruction selection phase, all the nodes in the DAG will be target specific.

3.1 DAG Lowering

The code generation process starts with intermediate representation. This language and target

independent intermediate representation needs to be converted into a representation that can

run on some certain architecture. DAG lowering performs this conversion and lowers the code in

intermediate representation to a DAG representation whose nodes represent target independent

instructions that can be worked upon by the target specific instruction selector.

DAG lowering converts intermediate representation to DAG with nodes having target indepen-
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dent instructions, however during this transformation process, DAG nodes representing a few

special operations such as in ReISC architecture call and ret i.e. how to pass arguments during

a function call and how to return once the function call is over, already need to be handled

according to the specifications of ReISC. These DAG nodes are converted into target specific

nodes at this stage. The matching and replacement of all other remaining nodes is performed

at the time of instruction selection. Instruction selection process is shown in Figure 3.1 .

Figure 3.1: Instruction selection process.

As a result of this phase, the DAG may contain both target specific and target independent

nodes.

3.2 DAG Legalization

DAG Legalization phase of code generation process transforms the DAG to eliminate any in-

structions that are unsupported by the target architecture and are not prepared for instruction

selection. There are two phases in DAG legalization: DAGs Type Legalization and DAGs Le-

galization.

3.2.1 Type Legalization

The purpose of type legalization phase is to make sure that instruction selection only needs to

operate on legal types i.e. the types that are supported by the target natively. For example,

an operation with boolean operands is illegal in target that supports i32 types only. Targets

contain the explicit declaration of the supported types by defining the register classes associated

14



with each type. So, the illegal types are must to be identified and handled.

The illegal types can be transformed into legal ones by following techniques:

Promote: This technique converts small type to larger type supported by the target.

LLVM intermediate representation supports all i1, i8, i16 and i32 data types whereas ReISC

architecture does not support i1 (Boolean) data type, so this is promoted.

Expand: This technique splits larger type hence converting it into smaller one.

ReISC architecture does not support long long data type which is 64 bit. To handle this long

long type is expanded.

All these transformations should be made in such a way that the final code retains its behaviors.

3.2.2 DAG Legalization

There are some operations which are not supported by the target for a given type. So, the

purpose of DAG legalization phase is to convert such operations into operations that are natively

supported by the target by changing the data type of operands, by using a set of other supported

operations having similar effect or by using a specialized function.

The unsupported operations can be transformed into supported ones by following techniques:

Promote: This technique converts an operation that is not supported by the target natively

for a given type to a larger type that is supported.

Expand: This technique splits an operation that is not supported by the target natively into a

set of operations that are supported and have the similar effect.

In ReISC, expansion operation is used to handle the conditional instructions.

Custom: This technique is used for the operations that are not supported by the target natively

and for which promotion and expansion does not work. For such operations, a special function

is written that simulates its behavior.

In ReISC, custom is used to handle the branch conditions. A specialized function is written and

called in this case.

15



3.3 ReISC Base Instructions

There are three categories of instructions in the instruction set of ReISC architecture: BASE

instructions, LONG instructions and DSP instructions out of which the base instruction set falls

within the scope of this thesis.

The BASE instructions consist of the following groups of operations . . .

• Move operations

• Arithmetic operations

• Shift operations

• Logic operations

• Branch operations

• Special operations

In ReISC, instructions follow two-address format, i.e., src1 (dest) src1 OP src2, where one of

the source operands works as destination as well in order to improve the code density. The

destination operand is always a register. Source operands can either be registers or immediate

values embedded in the instruction word.

Immediate operands take 4, 16 or 32 bits of the instruction word depending on the instruction

word size and immediate operand value.
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Move operations

Move operations consist of five instructions: load, store, mov, mpush, mpop. Figure 3.2 shows

Move operations of the ReISC base instruction set.

Figure 3.2: The ReISC base instruction set: Move operations.

Arithmetic operations

Arithmetic operations consist of six instructions: uext, sext, add, sub, div, and mul. Figure 3.3

lists Arithmetic operations of the ReISC base instruction set.

Figure 3.3: The ReISC base instruction set: Arithmetic operations.
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In add, sub, div, and mul instructions, one operand is a register and the other could be a register,

immediate or memory location.

Shift operations

Shift operations consist of five instructions: srl, sra, sla, rot, and rotc. In Figure 3.4 Shift

operations of the ReISC base instruction set are shown.

Figure 3.4: The ReISC base instruction set: Shift operations.

Rot instruction performs logical left-rotation of one operand by an amount specified by the

immediate field or register value if the immediate or register value is negative. In case of rotc

instruction, the dir field of instruction encoding specifies direction of rotation.

Logic operations

Logic operations consist of four instructions: and, or, xor, and cmp.

One of the operands in and, or and xor instruction can be a register, immediate or memory

location. Figure 3.5 shows Logic operations of the ReISC base instruction set.
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Figure 3.5: The ReISC base instruction set: Logic operations.

Branch operations

Branch operations consist of six instructions: jpd, jpi, jpr, jlr, jli, and rfe. Branch operations of

the ReISC base instruction set are shown in Figure 3.6 .

Figure 3.6: The ReISC base instruction set: Branch operations.

3.4 Pattern Matching

Pattern Matching is the most important phase of the code generation process. It aims at

converting the legalized DAG to a new DAG whose nodes contain ReISC specific instructions

by matching the abstract, target-independent nodes to concrete, ReISC specific nodes.

All the special cases such as the operations and types that are not supported by our architecture

have already been handled in the previous steps and we are left with the simple cases to be
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pattern matched.

Pattern matching is performed with the help of a table which contains all the patterns generated

from instruction definitions written in the instruction description table of the ReISC architecture.

Now, a one to one matching is performed using this table where for each target independent

pattern of legalized DAG, an appropriate ReISC specific pattern is selected. After this step, the

DAGs that are generated contain nodes with reisc specific instructions in each of them.
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Chapter 4

Register Allocation

In this chapter of thesis work, we describe the process of deconstruction of static single assign-

ment form of intermediate representation in which virtual registers are eliminated by mapping

them to physical registers.

The instruction selector generates code which is in static single assignment form according to

which there is infinite number of registers available. The code generator invokes a register al-

locator, which performs the task of replacing infinite number of virtual registers by physical

registers. Since targets register bank have a limited number of physical registers, spill code is

produced if the number of available physical registers is less than those of live virtual registers,

wherein some virtual registers are assigned to memory locations known as the spill slots.

In some cases, physical registers might already be used in code fragments even before the process

of register allocation. This happens because in some architectures there are instructions that

require a specific register like register used to return value. In such cases, register allocator

handles all other virtual registers and maps them to physical registers.

The static single assignment representation of instructions may contain phi instructions (ex-

plained in previous section). While deconstructing this representation, the phi instructions need

to be replaced with general instructions and to achieve this copy instruction is used in place of

phi instructions.
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4.1 ReISC Registers

The ReISC’s register bank contains sixteen standard registers of 32 bit each, a program counter

register and four instruction result flags Carry, Zero, Negative and Overflow. Only standard

register set is used for implementing the base instruction set of the reisc architecture.

The standard register set

There are 16 registers, R0 to R15 in the standard register set of ReISC target. The width of each

register is 32-bit and can hold 8-bit, 16-bit, 20-bit and 32-bit values. If the width of operands

is less than that of the registers like 8 bit or 16 bit, only the lower bits of the 32 bit destination

register are altered whereas the higher bits remain unaffected.

In case of operands having width 20-bit, which is also less than the width of the registers,

destination register is updated in a manner different from the previous one. Here after execution,

the result having 20-bit value is padded with 12 bit zeros in the higher bits and then this 32

bit value is copied to the destination register. Other than being used as source or destination

operands, some of the standard registers have special functionality as indicated in the Figure

4.1:

Figure 4.1: Standard Registers with special functionality.

The standard register R14 is referred by the name Link Register which is used to store the

value of program counter during a procedure call, such as jump and link instruction and to

jump again to the caller function by retrieving the value of program counter stored in it. The

standard register R15 is referred by the name Stack Pointer, which is the stack pointer used for

the MPUSH and MPOP instruction.

When the special functionality of these registers is not being used, they serve as normal 32 bit

registers for example, standard register R14 (link register) is used as a normal register in case
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of non-leaf functions since it does not require any jump or return to be made.

4.2 Handling ReISC architecture constraints

4.2.1 Calling Convention Constraints

The ReISC architecture has 16 standard registers out of which two registers R14 and r15 are

reserved to perform the dedicated functionality as a link register and stack pointer register.

Other remaining 14 registers are freely available for normal use, even reserved registers R14 and

R15 can be used as normal standard registers when the special functionality of these registers

is not in use.

Out of 14 standard registers available freely, the ReISC instruction set has some constraints on

their use. The registers in which the arguments should be passed and the register which holds

the return value is fixed. Standard Registers R0, R1, R2 and R3 are used to pass arguments

and the return value is held in register R0. These registers will be preassigned and due to this

there are code fragments in which physical registers are used even before the process of register

allocation. In such cases, register allocator handles the remaining virtual registers.

4.2.2 Handling two address instructions

The LLVM machine code instructions follow three address format. However, ReISC architecture

follow two address format i.e. one of the source registers acts as destination register as well.

So to produce correct code, the three address instructions must be converted into two address

instructions. To achieve this conversion, the operand could have been deleted from the machine

instruction but this will be problematic. So, the operand is not deleted. Instead the two operands

hold the very same register after the register allocation phase.

4.2.3 Handling Memory/Register Instructions

ReISC architecture belongs to memory/register architecture where one of the operands needs to

be in the register and the other one is read directly from a memory location.

To achieve this all the instructions from the beginning of basic block are scanned and a list of
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occupied registers is created along with the information of register being dirty or not. Then a

load or move instruction is generated to put the value of one operand into a free register.

Now if the register is freely available, it can be easily allocated to the operand. If the register

is not available, the value of a used register will be spilled wherein the value will be written to

the stack if the register is live and dirty. After the basic block ends, dirty and live registers are

written back so that the value previously present in the register doesnt get lost.

4.3 Register Allocation in ReISC

The register allocation process follows the concept of live variable analysis in which the variables

which are present in move instructions and which are live at same time instance are determined.

An interference graph is constructed based on this information whose vertices represent a unique

variable. The vertices which are live at the same time instance are connected by interference

edges and vertices which are present in move instructions are connected by preference edges.

Now we have to color the nodes of the interference graph and this problem can be reduced

to K-coloring graph problem where K represents the number of available physical registers of

ReISC architecture. To handle the calling convention constraint, some vertices are colored at

the beginning. Two vertices connected via an interference edge are never assigned the same

color whereas the vertices connected via a preference edge are assigned the same color whenever

possible.

If the interference graph cannot be colored following the above mentioned technique, some

variables are assigned to memory locations (spilled). After this, K-coloring technique is applied

again on the remaining variables. This process of coloring and spilling goes on recursively till

the graph is colored completely i.e. remaining variables in the graph are colored and registers

are allocated to them.
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Chapter 5

CALL/RETURN HANDLING

This chapter of thesis work describes a special handling mechanism that is required for the

function call and return to happen smoothly and efficiently.

Whenever a function call is encountered, the actual arguments are copied before calling the

function. The function call starts with function prologue which performs the reservation of

callee saved registers and stack frame by decrementing the stack pointer. When the scope of

a function is entered, the location of each formal argument is determined, they are moved into

the virtual registers and a sequence of move and/or load instructions is inserted into the DAG.

While returning from the function, the return value is copied into a virtual register.

When the scope of a function is left, the return value which is present in a virtual register is copied

in the corresponding physical register and during the instruction selection phase, matching with

the return instruction is performed. The function call ends with function epilogue which destroys

the reserved stack frame and restores all saved registers before returning from a function.

5.1 Call/Return mechanism of ReISC

In ReISC architecture standard registers are of fixed size of 32 bit each whereas variables sizes

vary from 1 byte for character data type to 4 bytes for integer data type and varying size for

structure and union depending on their data members. So, the registers are assigned to the

variables according to their size. The variable with size less than or equal to the size of standard

registers is assigned one register and the variables with size greater than standard registers size
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are assigned more than one registers in little endian order.

Out of the 14 standard registers available freely, they have been divided into two sections based

on their usage: callee changed registers and callee saved registers as shown in Figure 5.1 .

Figure 5.1: Division of standard registers based on their usage.

Callee changed registers can be clobbered by the called function so the value already present in

these registers must be saved before they are used. After the function call finishes the original

value that was present in these registers before the function call is restored and then the control

returns to the caller.

Callee saved registers cannot be clobbered by the called function. The value already present

in these registers must be saved before their use and restored to its original state by the called

function.

For a function with fixed argument list, all the arguments are allocated on callee changed reg-

isters. If the number of arguments is less than the callee changed registers available, allocation

26



becomes very easy and registers are allocated to these arguments in left to right order in in-

creasing manner i.e. from R0 to R3. If the number of arguments increases the number of callee

changed registers, arguments are allocated on these registers in increasing order until their avail-

ability and the remaining arguments are pushed on the stack.

The result of the function call is also allocated in callee changed registers.

5.2 Prologue/ epilogue code insertion in ReISC

When a function is called, function prologue comes into picture. It creates an area in the stack

which holds the values of all the registers that are clobbered by the called function known as

saved register area as shown in Figure 5.2 . Link register R14 is pushed onto the stack if function

is a non-leaf function. Value of frame pointer is computed from the value of stack pointer and

saved in register R4. Another area called function frame area is created whose size is determined

by decrementing the stack pointer by the size of frame. This area contains all the automatic

variables of the called function.

Figure 5.2: Stack layout.

When a function call finishes, function epilogue comes into picture. It restores the stack pointer
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to its original value by incrementing it by the size of function frame. If the function is a non-leaf

function, the link register R14 must have been saved into the stack during prologue insertion.

Now, the link register is popped out of the stack. Callee saved registers that are stored in the

saved register area of stack are popped out of the stack.
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Chapter 6

CODE EMISSION

This chapter of thesis work describes the final phase of the code generation process which

performs the emission of completed assembly code.

In this phase, for each function first the function header is emitted and then the basic blocks are

processed where each machine instruction is processed and the corresponding assembly string is

printed out. There are respective appointed print methods which handle the printing of different

operands such as immediate and memory operands.

6.1 Assembly printing in ReISC

6.1.1 Handling operand specifications

The ReISC architecture has a particular specification for each kind of operands described below:

Register Specification: All the 16 standard registers are denoted by integer numbers that

range from 0 to 15 and registers are preceded by % sign.

Immediate operand specification: Immediate operands are represented in hexadecimal no-

tation and are preceded by # sign.

Memory operand specification: In case of memory operands, [] is used as the addressing

mode bracket.
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6.1.2 Handling instruction mnemonics

Different architectures have different instruction assembler mnemonic for same instruction. So,

the instruction printer should have the information of how each instruction is represented in

architecture. To handle this issue, all the assembly strings for a target are defined by adding

them to the instruction definitions and this string is then used by the assembly printer to emit

corresponding target specific instruction mnemonic.

While emitting the assembly code, first of all the initialization are done. The constant values

that have been spilled to memory are printed out next after which the jump tables that the

current function uses are printed out. Then the current functions label is emitted.

Next is the code for the function where label of each basic block is emitted, each instruction

of basic block is processed and its assembly code is generated with the help of dedicated print

methods for the target architecture.

At last when the assembly printer has finished processing each function, global variables and

constants are emitted.
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Chapter 7

Results

In this chapter of thesis work, we are generating the assembly code using the LLVM backend

developed and GCC. Assembly code generated by both the methods is then compared to find

out the amount of similarity between them.

Test Case 1

int foo()

{

return 4;

}

LLVM Output

foo:

.frame %sp,0,%r14

.mask 0x00000000,0

.set noreorder

.set nomacro

# BB#0:

movw %r0, #0x4

jpra %r14

.set macro

.set reorder
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.end foo

$tmp0:

.size foo, ($tmp0)-foo

Toolchain Output

00000000 <foo>:

0: 04 af movv %r0, #4

2: 0e ed jpra %r14

In this test case, the only operation performed in the fuction foo() is to return an interger value

4. In LLVM output, value 4 is moved to register R0 since R0 is the return register.Toolchain

produces the similar assembly code.

Test Case 2

int foo()

{

int a=5;

return a;

}

LLVM Output

foo:

.frame %sp,8,%r14

.mask 0x00000000,0

.set noreorder

.set nomacro

# BB#0:

addw %sp, #0xfffffffffffffff8

movw %r0, #0x5

stw 4[%sp], %r0

addw %sp, #0x8
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jpra %r14

.set macro

.set reorder

.end foo

$tmp0:

.size foo, ($tmp0)-foo

Toolchain Output

00000000 <foo>:

0: 08 af 05 00 movv %r0, #0x5

4: 00 00

6: 0e ed jpra %r14

In this test case, in fuction foo() first value 5 is assigned to integer variable a and then same

value is returned. In LLVM output, value 5 is moved to register R0 (movw %r0, #0x5)since R0

is the return register and then the value of register R0 which is 5 is stored at apposition respec-

tive to stack pointer(stw 4[%sp],%r0) for int a=5. Toolchain produces the similar assembly code.

Test Case 3

int main()

{

int a ;

int b ;

int c = a + b;

return (c);

}

LLVM Output

main:

.frame %sp,16,%r14

.mask 0x00000000,0
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.set noreorder

.set nomacro

# BB#0:

addw %sp, #0xfffffffffffffff0

movw %r0, #0x0

stw 12[%sp],%r0

ldw %r1, 4[%sp]

ldw %r0, 8[%sp]

addw %r0, %r1

stw 0[%sp],%r0

addw %sp, #0x10

jpra %r14

.set macro

.set reorder

.end main

$tmp0:

.size main, ($tmp0)-main

Toolchain Output

00000000 <main>:

0: 44 f3 mpushw %r4, %r4

2: 4f ab movw %r4, %r15

4: f8 27 0c 00 subw %r15, #0xC

8: 00 00

a: 14 87 fc ff ldw %r1, -4[%r4]

e: 0c af movw %r0, #-8

10: 04 13 addw %r0, %r4

12: 00 8b ldw %r0, [%r0]

14: 01 13 addw %r0, %r1

16: 04 97 f4 ff stw -12[%r4], %r0

1a: 04 87 f4 ff ldw %r0, -12[%r4]
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1e: f8 17 0c 00 addw %r15, #0xC

22: 00 00

24: 44 f7 mpopw %r4, %r4

26: 0e ed jpra %r14

In LLVM output for this test case, the value of a is copied in register R1 and value of b is

copied in register R0 (ldw %r1, 4[%sp] and ldw %r0, 8[%sp]).

Next addw instruction performs the addition of these two variables a and b. The final result

is in register R0 which is then moved to a position respective to stack pointer. After this the

control returns.

Test Case 4

int test()

{

int a = 5;

int b = 2;

int e, f;

e = a * b;

f = (a � 2);

return (e+f);

}

LLVM Output

test:

.frame %sp,16,%r14

.mask 0x00000000,0

.set noreorder

.set nomacro

# BB#0:

addw %sp, #0xfffffffffffffff0

movw %r0, #0x5
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stw 12[%sp], %r0

movw %r0, #0x2

stw 8[%sp], %r0

ldw %r0, 12[%sp]

slaw %r0, #0x1

stw 4[%sp], %r0

ldw %r1, 12[%sp]

slaw %r1, #0x2

stw 0[%sp], %r1

ldw %r0, 4[%sp]

addw %r0, %r1

addw %sp, #0x10

jpra %r14

.set macro

.set reorder

.end

$tmp0:

.size test, ($tmp0)-test

Toolchain Output

00000000 <test>:

0: 44 f3 mpushw %r4, %r4

2: 4f ab movw %r4, %r15

4: f2 27 subw %r15, #16

6: 08 af 05 00 movw %r0, #0x5

a: 00 00

c: 04 97 fc ff stw -4[%r4], %r0

10: 05 af movw %r0, #2

12: 04 97 f8 ff stw -8[%r4], %r0

16: 14 87 fc ff ldw %r1, -4[%r4]

1a: 0c af movw %r0, #-8
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1c: 04 13 addw %r0, %r4

1e: 00 8b ldw %r0, [%r0]

20: 01 43 mulw %r0, %r1

22: 04 97 f4 ff stw -12[%r4], %r0

26: 04 87 fc ff ldw %r0, -4[%r4]

2a: 01 c7 slaw %r0, #2

2c: 04 97 f0 ff stw -16[%r4], %r0

30: 14 87 f4 ff ldw %r1, -12[%r4]

34: 0d af movw %r0, #-16

36: 04 13 addw %r0, %r4

38: 00 8b ldw %r0, [%r0]

3a: 01 13 addw %r0, %r1

3c: f2 17 addw %r15, #16

3e: 44 f7 mpopw %r4, %r4

40: 0e ed jpra %r14

In LLVM outputs basic block BB0 0, first four movw and stw instructions are used to ini-

tialize the varaibles a and b with values 5 and 2 respectively. The value of a is loaded in R0 (ldw

%r0, 12[%sp]) and then multiplied by 2 using slaw instruction since left shift by 1 is equivalent to

multiplication by 2.This value is stored at a position respective to stack pointer which is variable

e. Again the value of a is loaded in R1 (ldw %r1, 12[%sp]) and then left shift by 2 is performed

using slaw instruction (slaw %r1, #0x2) and this result is stored at a position respective to stack

pointer which is variable f.

Next the value of e is loaded in R0 and added with the value in register R1 i.e. f after which

control returns from the function.

Test Case 5

int test()

{

int b = 11;

b = (b+1)*12;
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return b;

}

LLVM Output

test:

.frame %sp,8,%r14

.mask 0x00000000,0

.set noreorder

.set nomacro

# BB#0:

addw %sp, #0xfffffffffffffff8

movw %r0, #0xb

stw 4[%sp], %r0

movw %r0, #0x90

stw 4[%sp], %r0

addw %sp, #0x8

jpra %r14

.set macro

.set reorder

.end test

$tmp0:

.size test, ($tmp0)-test

Toolchain Output

00000000 <test>:

0: 44 f3 mpushw %r4, %r4

2: 4f ab movw %r4, %r15

4: f4 27 subw %r15, #4

6: 08 af 0b 00 movw %r0, #0xB

a: 00 00

c: 04 97 fc ff stw -4[%r4], %r0
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10: 04 87 fc ff ldw %r0, -4[%r4]

14: 06 17 addw %r0, #1

16: 08 47 0c 00 mulw %r0, #0xC

1a: 00 00

1c: 04 97 fc ff stw -4[%r4], %r0

20: 04 87 fc ff ldw %r0, -4[%r4]

24: f4 17 addw %r15, #4

26: 44 f7 mpopw %r4, %r4

28: 0e ed jpra %r14

In LLVM output for this test case, first two instructions movw and stw are used to initial-

ize the variable b with value 11 which is 0xb in hexadecimal representation. Next the arithmetic

expression ((b+1)*12) is evaluated which is equal to 144 in decimal representation and 0x90 in

hexadecimal representation.

The next move instruction copies the final result (0x90) to register R0 after which control re-

turns from the function.

Test Case 6

int test()

{

unsigned int a = 0;

int b = 1;

if (a == 0)

{

a++;

}

return (a);

}

LLVM Output

test:
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.frame %sp,8,%r14

.mask 0x00000000,0

.set noreorder

.set nomacro

# BB#0:

addw %sp, #0xfffffffffffffff8

movw %r0, #0x0

stw 4[%sp], %r0

movw %r0, #0x1

stw 0[%sp], %r0

ldw %r0, 4[%sp]

cmpw %r0, #0x0

jpdne $BB0 2

jpda $BB0 1

$BB0 1:

ldw %r0, 4[%sp]

addw %r0, #0x1

stw 4[%sp], %r0

$BB0 2:

ldw %r0, 4[%sp]

addw %sp, #0x8

jpra %r14

.set macro

.set reorder

.end test

$tmp0:

.size test, ($tmp0)-test

Toolchain Output

00000000 <test>:

0: 44 f3 mpushw %r4, %r4
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2: 4f ab movw %r4, %r15

4: f3 27 subw %r15, #8

6: 07 af movw %r0, #0

8: 04 97 fc ff stw -4[%r4], %r0

c: 06 af movw %r0, #1

e: 04 97 f8 ff stw -8[%r4], %r0

12: 04 87 fc ff ldw %r0, -4[%r4]

16: 07 a7 cmpw %r0, #0

18: 06 d2 jpdne 24<test+0x24>

1a: 04 87 fc ff ldw %r0, -4[%r4]

1e: 06 17 addw %r0, #1

20: 04 97 fc ff stw -4[%r4], %r0

24: 04 87 fc ff ldw %r0, 4[%r4]

28: f3 17 addw %r15, #8

2a: 44 f7 mpopw %r4, %r4

2c: 0e ed jpra %r14

In the LLVM outputs basic block BB0 0, first four movw and stw instructions are used to

initialize the varaibles a and b. The value of a is loaded in R0 (ldw %r0, 4[%sp]). Then the

value of R0 (i.e a)is compared with 0. If this condition is not satisfied (i.e. a!=0), control goes

to basic block $BB0 2 as indicated by instruction jpdne $BB0 2 where value of a is loaded in

register R0 (by ldw instruction) and then control returns.

If the above condition is satisfied (i.e. a==0) control goes to basic block $BB0 1. In BB0 1,

value of a is loaded in register R0 (by ldw instruction), increment by 1 is performed by addw

instruction and incremented value is stored(by stw)instruction.

Next, control goes to BB0 2 where value of a is loaded in register R0 (by ldw instruction) and

then control returns.

Test Case 7

int test()

{
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int h = 7;

int i = 8;

if (i <h)

{

i++;

}

return (i);

}

LLVM Output

test:

.frame %sp,8,%r14

.mask 0x00000000,0

.set noreorder

.set nomacro

# BB#0:

addw %sp, #0xfffffffffffffff8

movw %r0, #0x7

stw 4[%sp], %r0

movw %r0, #0x8

stw 0[%sp], %r0

ldw %r1, 0[%sp]

ldw %r0, 4[%sp]

cmpw %r1, %r0

jpdge $BB0 2

jpda $BB0 1

$BB0 1:

ldw %r0, 0[%sp]

addw %r0, #0x1

stw 0[%sp], %r0

$BB0 2:
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ldw %r0, 0[%sp]

addw %sp, #0x8

jpra %r14

.set macro

.set reorder

.end test

$tmp0:

.size test, ($tmp0)-test

Toolchain Output

00000000 <test>:

0: 44 f3 mpushw %r4, %r4

2: 4f ab movw %r4, %r15

4: f3 27 subw %r15, #8

6: 08 af 07 00 movw %r0, #0x7

a: 00 00

c: 04 97 f8 ff stw -8[%r4], %r0

10: 03 af movw %r0, #8

12: 04 97 fc ff stw -4[%r4], %r0

16: 14 87 fc ff ldw %r1, -4[%r4]

1a: 04 87 f8 ff ldw %r0, -8[%r4]

1e: 10 a3 cmpw %r1, %r0

20: 06 d8 jpdge 2c<test+0x2c>

22: 04 87 fc ff ldw %r0, -4[%r4]

26: 06 17 addw %r0, #1

28: 04 97 fc ff stw -4[%r4], %r0

2c: 04 87 fc ff ldw %r0, -4[%r4]

30: f3 17 addw %r15, #8

32: 44 f7 mpopw %r4, %r4

34: 0e ed jpra %r14
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In the LLVM outputs basic block BB0 0, first four movw and stw instructions are used to

initialize the varaibles h and i. The value of i is copied in R1 and value if h in R0( ldw %r1,

0[%sp] and ldw %r0, 4[%sp]). Then the value of R1 and R0 (i.e i and h)is compared (cmpw

%r1,%r0). If this condition is satisfied (i.e. i≥h), control goes to basic block $BB0 2 as indicated

by instruction jpdge $BB0 2.

In basic block BB0 2, value of i is loaded in register R0 (by ldw instruction) and then control

returns. If the above condition is not satisfied (i.e. i<h) control goes to basic block $BB0 1. In

BB0 1, value of i is loaded in register R0 (by ldw instruction), increment by 1 is performed by

addw instruction and incremented value is stored(by stw)instruction.

Next, control goes to BB0 2 where value of i is loaded in register R0 (by ldw instruction) and

then control returns.

Test Case 8

int test()

{

int a=0;

int i = 0;

while (i <7)

{

a++;

}

return a;

}

LLVM Output

test:

.frame %sp,8,%r14

.mask 0x00000000,0

.set noreorder

.set nomacro

# BB#0:
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addw %sp, #0xfffffffffffffff8

movw %r0, #0x0

stw 4[%sp], %r0

stw 0[%sp], %r0

$BB0 1:

ldw %r0, 0[%sp]

cmpw %r0, #0x7

jpdge $BB0 3

jpda $BB0 2

$BB0 2:

ldw %r0, 4[%sp]

addw %r0, #0x1

stw 4[%sp], %r0

jpda $BB0 1

$BB0 3:

ldw %r0, 4[%sp]

addw %sp, #0x8

jpra %r14

.set macro

.set reorder

.end test

$tmp0:

.size test, ($tmp0)-test

Toolchain Output

00000000 <test>:

0: 44 f3 mpushw %r4, %r4

2: 4f ab movw %r4, %r15

4: f3 27 subw %r15, #8

6: 07 af movw %r0, #0

8: 04 97 fc ff stw -4[%r4], %r0
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c: 07 af movw %r0, #0

e: 04 97 f8 ff stw -8[%r4], %r0

12: 06 dc jpda 1e <test+0x1e>

14: 04 87 fc ff ldw %r0, -4[%r4]

18: 06 17 addw %r0, #1

1a: 04 97 fc ff stw -4[%r4], %r0

1e: 04 87 f8 ff ldw %r0, -8[%r4]

22: 08 a7 07 00 cmpw %r0, #0x7

26: 00 00

28: f6 db jpdlt 14 <test+0x14>

2a: 04 87 fc ff ldw %r0, -4[%r4]

2e: f3 17 addw %r15, #8

30: 44 f7 mpopw %r4, %r4

32: 0e ed jpra %r14

In the LLVM outputs basic block BB0 0, value 0 is moved in register R0. The value of R0

is then stored at 2 respective positions to stack pointer (first two stw instructions) which ini-

tializes the variables a and i to 0.

In basic block BB0 1, value of R0 is compared with 6 since in the while loop condition is i<7. If

this condition is satisfied (i.e. i>6), control goes to basic block BB3 as indicated by instruction

jpdlt $BB0 3. In basic block BB0 3, value of a is loaded in register R0 (by ldw instruction) and

then control returns.

If the above condition is not satisfied (i.e. i ≤6) control goes to basic block $BB0 2. In BB0 2,

value of a is loaded in register R0 (by ldw instruction), increment by 1 is performed by addw

instruction and incremented value is stored(by stw)instruction.

Next, control jumps to BB0 1 where again the condition is checked and this process continues

until condition check fails.

Test Case 9

int sum(int x1, int x2,int x3)

{
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int sum =x3-x2+x1;

return sum;

}

LLVM Output

sum:

.frame %sp,16,%r14

.mask 0x00000000,0

.set noreorder

.set nomacro

# BB#0:

addw %sp, #0xfffffffffffffff0

stw 12[%sp], %r0

stw 8[%sp], %r1

stw 4[%sp], %r2

ldw %r0, 8[%sp]

subw %r2, %r0

ldw %r0, 12[%sp]

addw %r2, %r0

stw 0[%sp], %r2

movw %r0, %r2

addw %sp, #0x10

jpra %r14

.set macro

.set reorder

.end sum

$tmp0:

.size sum, ($tmp0)-sum

Toolchain Output

00000000 <sum>:
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0: 44 f3 mpushw %r4, %r4

2: 4f ab movw %r4, %r15

4: f2 27 subw %r15, #16

6: 04 97 f8 ff stw -8[%r4], %r0

a: 14 97 f4 ff stw -12[%r4], %r1

e: 24 97 f0 ff stw -16[%r4], %r2

12: 14 87 f0 ff ldw %r1, -16[%r4]

16: 08 af f4 ff movw %r0, #0xFFFFFFF4

1a: ff ff

1c: 04 13 addw %r0, %r4

1e: 10 2b subw %r1, [%r0]

20: 0c af movw %r0, #-8

22: 04 13 addw %r0, %r4

24: 00 8b ldw %r0, [%r0]

26: 01 13 addw %r0, %r1

28: 04 97 fc ff stw -4[%r4], %r0

2c: 04 87 fc ff ldw %r0, -4[%r4]

30: f2 17 addw %r15, #16

32: 44 f7 mpopw %r4, %r4

34: 0e ed jpra %r14

In LLVM outputs basic block BB#0, the incoming arguments x1, x2, x3 which are there in

registers R0, R1 and R2 respectively are stored as indicated by the first 3 store (stw) instruc-

tions. The value of x2 is loaded in register R0 (ldw %r0, 8[%sp]) which is then subtracted from

the value of x3 present in register R2(subw %r2, %r0).

After that, value of x1 is loaded in register R0 ( ldw %r0, 12[%sp]) which is added to the value

present in register R2(result of x2-x1). The final result is in register R2 which is moved to

register R0 (movw %r0, %r2) since R0 is the return register and then control returns from the

function.

Test Case 10
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int foo(int i,int a)

{

for(i=0;i<5;i++)

a++;

return a;

}

LLVM Output

foo:

.frame %sp,8,%r14

.mask 0x00000000,0

.set noreorder

.set nomacro

# BB#0:

addw %sp, #0xfffffffffffffff8

stw 4[%sp], %r0

stw 0[%sp], %r1

movw %r0, #0x0

stw 4[%sp], %r0

$BB0 1:

ldw %r0, 4[%sp]

cmpw %r0, #0x5

jpdge $BB0 4

jpda $BB0 2

$BB0 2:

ldw %r0, 0[%sp]

addw %r0, #0x1

stw 0[%sp], %r0

# BB#3:

ldw %r0, 4[%sp]

addw %r0, #0x1

49



stw 4[%sp], %r0

jpda $BB0 1

$BB0 4:

ldw %r0, 0[%sp]

addw %sp, #0x8

jpra %r14

.set macro

.set reorder

.end foo

$tmp0:

.size foo, ($tmp0)-foo

Toolchain Output

00000000 <foo>:

0: 44 f3 mpushw %r4, %r4

2: 4f ab movw %r4, %r15

4: f8 27 0c 00 subw %r15, #0xC

8: 00 00

a: 04 97 f8 ff stw -8[%r4], %r0

e: 14 97 f4 ff stw -12[%r4], %r1

12: 07 af movw %r0, #0

14: 04 97 fc ff stw -4[%r4], %r0

18: 0b dc jpda 2e <foo+0x2e>

1a: 04 87 f4 ff ldw %r0, -12[%r4]

1e: 06 17 addw %r0, #1

20: 04 97 f4 ff stw -12[%r4], %r0

24: 04 87 fc ff ldw %r0, -4[%r4]

28: 06 17 addw %r0, #1

2a: 04 97 fc ff stw -4[%r4], %r0

2e: 04 87 fc ff ldw %r0, -4[%r4]

32: 08 a7 05 00 cmpw %r0, #0x5
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36: 00 00

38: f1 db jpdlt 1a <foo+0x1a>

3a: 04 87 f4 ff ldw %r0, -12[%r4]

3e: f8 17 0c 00 addw %r15, #0xC

42: 00 00

44: 44 f7 mpopw %r4, %r4

46: 0e ed jpra %r14

In the LLVM outputs Basic block BB0 0, the arguments i and a are stored as indicated by

the two stw operations, then value 0 is moved in register R0.Next stw instruction says to store

the value of R0 i.e. 0 at the place where I was stored first since in for loop I is initialized with

value 0.

In next basic block BB0 1, value of R0 is compared with 4 since in the for loop condition is

i<5. If this condition is satisfied (i.e. i>4), control goes to basic block 4 BB4 as indicated by

instruction jpdge $BB0 4.

In basic block BB0 4, value of a is loaded in register R0 (by ldw instruction) and then control

returns. If the above condition is not satisfied (i.e. i ≤ 4) control goes to basic block $BB0 2.

In BB0 2, value of a is loaded in register R0 (by ldw instruction), increment by 1 is performed

by addw instruction and incremented value is stored(by stw)instruction.

Next, value of I is loaded in register R0 (ldw instruction), increment by 1 is performed since in

for loop increment condition says i++. This incremented value is stored (by stw instruction)

and control jumps to BB0 1 where again the condition is checked and this process continues

until condition check fails.

On comparing the assembly code generated by LLVM backend and Reisc toolchain, we have

found that there is around 95% similarity in the results.
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Chapter 8

Conclusion

This thesis describes the design, implementation and evaluation of a new back-end, based on

Low Level Virtual Machine compiler infrastructure for the ReISC architecture.

ReISC is a 32-bit embedded architecture meant for ultra-low power devices. Having an en-

hanced RISC architecture, it’s instruction set has many extensions for digital signal processing

operations. Some of the novel concepts of LLVM have been described such as the three phase

design, LLVM intermediate representation and the type system.

The implemented backend can transform LLVM IR, generated from the source program by using

the clang front end, into ReISC assembly code. The comparative measurements have shown that

the assembly code generated by the LLVM back-end is in close proximity to the code generated

by the GCC.
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