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Abstract

Range Tree is a geometrical data structure used to store data in d-dimensions. In order to store
larger amount of data in external memory, we need an I/O efficient algorithm. There are many
I/O efficient algorithms designed like buffer trees but we need to implement these algorithm
designs and evaluate its performance.According to our study, there is no implementation of 2-
dimensional I/O efficient range trees available. In this work, we have implemented range trees
using buffer technique in 1-dimension and 2-dimensions. Range Tree data structure is used to
answer range search queries in an I/O efficient manner.
We have evaluated I/O Efficient Buffer Range Trees with different set of parameters like buffer
size, number of input elements and block size. We did our experiments and evaluation with a
randomly generated data set and geographical latitude-longitude data of Open Street Maps.
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Chapter 1

Introduction

Modern computational problems in many domains require processing of larger and larger volume
of data. The data required to be processed far outstrips the capacity of the RAM on most
machines. This requires us to store the data in external memory and retrieve small amounts
at a time and store into RAM for processing. A major drawback is that EM is extremely slow
compared to RAM. So the right measure is number of I/Os and not amount of computation.
This suggests the need of EM algorithms that minimizes I/Os and assume computation comes
for free. Due to a massive increase in the amount of data that we need to process, analyse,
computer’s internal memory is not enough to store a sufficiently large data. Large data set
includes data in the field of telecommunication industry wherein lots of data get generated due
to the continuous phone calls which is required to be processed for generating bills, phone call
graph analysis to understand the customer behavior, geo spatial data, geometrical data , social
network data and many more. All these sufficiently large data cannot fit into the computer’s
internal memory which is required to be swap in/out from external memory(or EM). Though,
the generations of computer architecture are getting better with time but we do not want to wait
for the hardware to improve instead use currently available limited resources by understanding
and utilizing the fundamental constraints to the best of its capacity.

1.1 Motivation

The average latency growth in the design and manufacturing of EM disk hardware is 9% per year
whereas for the processor it is 55% per year. In the absence of EM algorithms, the computer’s
internal memory makes use of virtual memory which is a swap memory residing on the hard disk
making the address space look larger than its actual size but it is not efficient enough because it
will not understand the complex data and it may reduce the efficiency of the system. The cost of
disk I/O is empirically 106 times [11](approximately) than the cost of accessing the data through
internal memory. So, the I/O cost for EM becomes a major bottleneck in the computation of
data stored in EM and we need to design and implement I/O efficient algorithms that minimizes
the I/O cost.

Many EM algorithms have been designed in the past that exploits and makes the most of locality
of data in internal memory. In case of large data sets as well, there are two types of data set
viz.batched data and on-line data. Batched problems have all the data available initially to
get processed and get into the internal memory completely and On-line problems have dynamic
data set which involves continuous flow in/out of the data causing insertions and deletions.
However, these EM algorithms are supposed to be implemented so as to understand its behavior
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on different parameters of system resources.

One such area which involves massive datasets is geometrical data structures in various dimen-
sions, or the geospatial data in 2-dimensions. There are many data structures and algorithms
that efficiently store the geometrical data such as KD-Trees [5], Quad Trees [12], Range Trees [5]
which are efficient for specific purposes. Range Trees are used to do a range query on geomet-
rical data in d-dimensions. In this thesis, we have implemented and evaluated Range Search
Trees using the buffer technique which answers range queries on the given geometrical data set
of points in 1-dimension and 2-dimension in external memory which is fast and scalable.

1.2 Problem Statement

A natural question for data set of points in 1-dimension or 2-dimension, we are always interested
to know for the set of points that lies within a certain range. If we try to make range queries on
points data set which comes as an input in unsorted order, it would be a very inefficient way to
do range queries without using some data structure for it. Range Tree is one such data structure
that can be used to do range queries on data set points efficiently in computer’s internal memory
in O(log2m n) time in 2-dimension where m is maximum number of children for any internal node
in the tree. However, this running time is an asymptotic time which applies in case the range
tree data structure is stored in the computer’s internal memory for its entire life time.

In case of data set being larger than the available internal memory size, we use EM data structure
of Range Tree using a buffer technique which allows to insert data which is larger than the
available internal memory size and do range queries on the data structure efficiently such that
the I/O cost is minimized.

With this thesis work, we have tried to implement Buffer Range Tree in EM such that range
queries gets answered correctly and efficiently. Moreover, we have evaluated its performance by
setting different parameters for the tree.

1.3 Outline

In this thesis, we have briefly described about EM algorithm for range search trees along with
a substantial set of experiments to evaluate the results. Chapter 2 describes EM model and
algorithm for basic problem in external memory. Chapter 3 introduces an implementation of
EM algorithms called the STXXL library [6], elaborating on its features, architecture and de-
sign followed with a brief introduction to STXXL::vector. STXXL [6] is an external memory
implementation of C++ STL library [7] which supports parallel disk I/O, overlap of I/O, com-
putation, and pipelining of EM algorithms. Chapter 4 contains a description about buffer range
search trees which is an external memory implementation of range search trees. In this chapter,
we have described about data structure of buffer range search trees, and construction, search
procedures involved in it. Chapter 5 contains a set of experiments and results that we have
performed to evaluate the performance of our implementation of buffer range search trees. We
conclude in Chapter 6 with our findings, and experimental results followed with a future scope,
and applications of our implementation in the area of geometrical data structures in external
memory.
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Chapter 2

Preliminaries

External Memory algorithms are studied based on Input/Output(I/O) Model [13]. I/O Model
describes the parameters related to main memory, external memory, and block size along with
a relation between them. The design of EM Algorithms makes use of parameters defined in I/O
model for easier, and better understanding. With the help of I/O model, it is easy to compare,
relate between different EM algorithms for it’s running time, and space complexity.

2.1 Input Output Model

Input Output Model [13] has the parameters N, M and B as shown in Table 2.1 where M<N. In
EM algorithms, transfer of B elements in internal memory to B consecutive elements in external
memory and vice versa are considered as single I/O operation.

N Number of Input elements

M Number of elements in main memory

B Number of elements in a block

Table 2.1: I/O Model parameters [13]

In this model, we define metric based on number of I/O operations and consider that internal
memory computations comes for free. There are few more parameters defined as n= N/B which
gives number of blocks containing N input elements, and m = M/B which gives number of
blocks in main memory of size M. For defining the asymptotic notations, we consider O(n) as a
linear time in terms of number of I/Os performed by a particular EM algorithm on a single disk
model [13]. In case of parallel disk model or D(at most 100) disk model, if no two blocks comes
from the same disk while performing the I/O operation then D blocks can be transferred in a
single I/O reducing the scanning of n blocks of elements from θ(n) to θ(n/D). One of the basic
paradigms is sorting algorithms in external memory which takes θ(n logmn) [11] time to sort N
input elements in single disk model, and θ(n/D logmn) [11] in D disk model. In the recent times,
researchers has designed many external memory algorithms in different areas like computational
geometry [14,16], and graph problems [15].
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Figure 2.1: Distribution Sort Technique in External Memory [11]

2.2 External Memory Sorting

In external memory algorithms, external memory sorting [11] has always been a central problem
and a paradigm in the design of efficient external memory algorithms. The asymptotic bound on
the EM sorting is given by θ(n/D logmn) [11] in a D disk I/O model. Recently developed sorting
algorithms in external memory are based upon Distribution(see Figure 2.1), and Merge(see
Figure 2.2) paradigms.

2.2.1 Distribution Sort Technique in External Memory

In Distribution sort technique [11] in external memory, we assume that the input and output
file are stored on two different disks to simplify the explanation of technique. In this technique,
input data of N elements in the input file on disk is partitioned into S different sub files or
buckets using partitioning elements defined as ∀ i=0 to (S-1), x i such that for partition i, all
elements are in the range [x i− 1, x i]. Thus, S different buckets are sorted recursively, and
independently in internal memory. Thus, S buckets stored back on the disk gives sorted N
elements in θ(n logmn) [11] number of I/Os.

2.2.2 Merge Sort Technique in External Memory

In Merge sort technique [11] in external memory, input data elements on the disk is sorted in
internal memory in N/M number of runs such that each run is sorted in internal memory, and
output is written on the disk in series of stripes (see Figure 2.2). In the merge step, R runs such
that R = θ(m) [11] are streamed through internal memory, merged, and written to disk on left
as shown in Figure 2.2. We repeat the procedure until all N elements are merged, and written
to the disk in O( logm n) number of pass [11]. Thus, merge sort paradigm in external memory
takes θ(n logmn) [11] number of I/Os to sort n blocks of input elements.
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Figure 2.2: Merge Sort Technique in External Memory [11]

2.3 Memory Hierarchy

For implementing the EM algorithms, it is important to understand the memory hierarchy
architecture. There has been always a speculation about the design, architecture, cost and
performance of various devices in the memory hierarchy. Memory architecture will let us know
about the essential need of EM algorithms. In the computer’s memory hierarchy, each of the level
has its own cost and performance such as cache memory is the fastest but costliest whereas EM
is slowest but cheapest, so there is always a trade-off in between these two, cost and performance.
The widely used and accepted architecture is Parallel Disk Model(or PDM) [1] which works on
the specific level of Memory hierarchy in between the external memory and internal memory.
However, for this reason, PDM can be ineffective or inefficient over the other levels and the
solution to this problem is Cache oblivious Algorithms [2] which is not dependent on particular
system parameter(Internal Memory Size, Block Size) and works equivalently over all memory
levels unlike PDM which knows about the system’s memory and block size beforehand and gives
good efficient performance only at a particular level in between external memory and internal
memory. However, Cache Oblivious Model have a big hidden constant in its I/O complexity
unlike PDM. So, this is why, many EM algorithm libraries or framework [6] follows and uses
PDM .

2.3.1 Parallel Disk Model

The Parallel Disk Model [1] describes memory hierarchy in an elegant way. As shown in Figure
2.3, the memory hierarchy consist of the processor(or CPU) which has its own set of registers,
caches at different levels, main memory, and external memory in the form of parallel disks. As
we see ti denote transfer rate in Figure 2.3, ti at level i is the transfer rate for that particular
level in the hierarchy. Each level i has its own cost and performance. Cache is the fastest but
costliest memory whereas external memory is slowest but cheapest memory. So, for storing larger
amount of data, today’s computers make use of external disks. However, the average access time
for registers that are within the processor(or CPU) is 1 nanosecond [11] (approximately), while
access time for cache memory is few nanoseconds [11], multiple nanoseconds [11] for internal
memory whereas access time for external memory is multiple milliseconds [11] which is almost
106 slower than the access time for internal memory. Hence, in practice, it becomes very essential
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Figure 2.3: Parallel Disk Model in Memory Hierarchy [1]

and necessary to minimize to access to the external memory which could be achieved only with
the help of design and implementation of EM data structures and algorithms. Based on the
access time across different levels in memory hierarchy, we can conclude that transfer rate across
different levels in memory hierarchy is related as :

∀i, ti > ti+1

2.4 External Memory Data Structures and Algorithms

We can observe and understand the need of efficient EM algorithms or out-of-core algorithms so
as to reduce the I/O cost. The EM algorithms that we are considering are for batched problems
wherein all the data is available at the initial stage itself, and the complete data is required to
be processed in one or multiple iterations in internal memory. There has always been a concern
that why do we really need EM algorithms if the underlying operating system(or OS) have
its own virtual memory scheme which makes the address space look larger using paging. The
virtual memory mechanism in modern OS works on the principle of locality of data by caching
and pre-fetching the more frequently visited pages or blocks in the internal memory cache and
paging out the less frequently visiting pages or blocks. However, for more complex data, virtual
memory can often turn out to be non-productive causing more swap access to the disk and as a
result, more number of I/O [11] operations.

For having an explicit control over the number of disk I/O, we need EM algorithms. There has
been a lot of work done in the area of EM algorithms.Many algorithms in the field of graph
algorithms, string processing algorithms and computation geometry [3,4] have been designed in
the past. The implementation of these EM algorithms will have a long lasting tangible effect in
the field of computer science because these EM algorithms have many pratical applications.

Implementation of EM algorithms hence, need libraries and frameworks that are capable of
operating and working at system’s low level, handling the I/O details efficiently and in an
abstract manner. In next subsection, we briefly describe I/O efficient buffer tree technique [10]
in external memory.

2.4.1 Buffer Tree Technique

The migration of internal memory tree data structures to external memory can be done using
the buffer tree technique [10]. It involves grouping of internal nodes( nodes which do not have
leaves as their children) and leaf nodes(parent nodes of leaves) such that maximum fanout of
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nodes is θ(m) [10]. Hence, a buffer tree with n blocks of input elements has O(logmn) height
with n blocks of data elements stored in the leaves of the tree. Internal nodes has a buffer of
size θ(m) [10] and buffer tree technique operates in a lazy update manner.
In lazy update technique, we do not update the leaves of the tree for each input element unlike
internal memory tree data structures but we insert ’m’ blocks(M elements) of input data into
the buffer of root node in buffer tree. Once, the buffer of root node is full, we apply buffer
emptying process [10] which involves sorting and inserting buffer elements from root node into
the buffers of corresponding internal nodes one level down the tree followed with a recursive
buffer emptying process for a child node with full buffer. The total cost of an arbitrary sequence
of N insert or delete operations in an initially empty buffer tree takes O(n logmn) [10] number
of I/O operations with an amortized cost of O(logmn /B) I/O operations. Since, data elements
are stored in the leaves in buffer tree, internal node stores an array of ’m’ elements storing the
largest element in its corresponding child node one level down the tree. Buffer tree stores the
data in sorted manner in its leaves and a query to report the elements takes O(n) [10] I/O
operations. We have used this buffer tree technique of lazy updates in our implementation of
buffer range trees which is illustrated in Chapter 4.
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Chapter 3

Standard Template Library For
Extra Large Data Sets- STXXL

The implementation of Input/Output(or I/O) algorithms need a platform, framework which will
be able to handle the I/O explicitly, and a library which offers the implementation of the basic
data structures in EM in I/O efficient manner.

One such library that has been used by many people in the field of I/O algorithms is Stan-
dard Template Library For Extra Large Data Sets(or STXXL) [6]. It is a framework library
implemented over the low level details of the system’s external memory and explicitly using the
operating system details. The data structures defined in STXXL are analogous to C++ STL [7]
such that data structures and algorithms in C++ STL directly applies and are implemented in
STXXL. It consist of many basic data structures like std::vectors, std::priority queue, std::set,
std::multiset, std::deque . So, STXXL has the implementation of all these basic data structures

which can be used to build and develop other complex data structures like trees, graph on top
by using these basic data structures as the basic entity. The major advantage of using STXXL
algorithms is that they are not container bound which means that STXXL algorithms can be
used with the data in any type of container viz. stxxl::vectors, stxxl::priority queue, stxxl::set,
stxxl::deque. Moreover, it is a generic kind of library which has been widely used throughout

the community and well accepted for the framework it has followed similar to C++ STL.

3.1 Design of STXXL

STXXL has been designed and implemented with an aim to bridge the gap between theoretical
and practical implementation of the EM algorithms. Previously implemented library for out-
of-core computations are LEDA [8] and TPIE [9] which have an implementation of basic data
structures for EM algorithms so that the user need not worry and look into the details of
how the system I/O are performed. However, STXXL provides support of parallel disk I/O
and algorithm implementation unlike other libraries LEDA and TPIE. STXXL even supports
overlapping of I/O and computation which makes it stand way ahead of other libraries in terms
of I/O computation and efficiency.

STXXL library operates at low level between the operating system and applications running on
the system(see Figure 3.1). As shown in Figure 3.1, STXXL has four major layers viz. STL-user
layer, Streaming layer, Block management(BM) layer, and Asynchronous I/O primitives(AIO)
layer. STXXL design depends on uncontrolled operating system I/O caching and buffering which
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Figure 3.1: Structure of STXXL [6]

allows it to overlap I/O and computation. In Streaming layer, it uses the concept of Pipelining [6]
which involves the coupling of the input and output of various algorithm components such that
output from one component of the algorithm is passed as an input to another component without
writing it back to the external memory and thus, saving the I/O cost. STL-user layer consist of
containers like vector, set, stack, map, priority queue and algorithms like sort, and merge. These
containers and algorithms in STL-user layer has an implementation in STXXL which can be
used in implementation of external memory data structures and algorithms. Block Management
layer provides an interface imitating PDM. Block management(BM) layer manages the block
of elements in every aspect. It controls the block allocation/deallocation in internal memory,
writing block to external memory strategies. Thus, taking an explicit control over the I/O hap-
pening in the swap in/out of the data between internal memory and external memory. BM layer
support overlapping of I/O and computation. The lower layer of Asynchronous I/O primitives
handles the I/O requests, and communication of STXXL with the underlying operating system.
Other EM libraries like TPIE [9], and LEDA [8] has a synchronous I/O API layer which makes
the porting of the library difficult on different operating systems. However, unlike TPIE [9], and
LEDA [8], STXXL’s Asynchronous I/O layer makes the porting easy which requires only reim-
plementation of this layer on different platforms like windows, and linux. STXXL has been used
in implementation of various data structures and algorithm problems in external memory like
minimum spanning tree, connected components, breadth first search, suffix arrays, and social
analysis matrices [6].
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Figure 3.2: stxxl::vector Architecture [6]

3.2 STXXL Vector

One of the basic data structures implemented in STXXL is stxxl::vector which is an unbounded
array with dynamic size. The architecture of stxxl::vector is as depicted in Figure 3.2.

stxxl::vector holds a fixed size of cache in internal memory. One random access causes O(1) I/O
in worst case. stxxl::vector is a container that is stored in the external memory in a collection
of blocks. The cache in the internal memory follows a full associative strategy. As shown in the
Figure 3.2, Page2 and Page5 are in the vector’s cache in internal memory from total 6 pages
which are stored in external memory. The page replacement strategy followed by default is
Least Recently Visited(or LRU) . Whenever, any element in the stxxl::vector is accessed using
at() function or operator[] then it first checks for that element amongst the pages available in
the cache, if not available in the cache in internal memory then the element is required to be
accessed through external memory where its corresponding page is bought into internal memory
using the LRU (default strategy) or any other page replacement strategy specified. Each page
in internal memory’s stxxl::vector cache is associated with a dirty bit flag which is by default
set to ’0’. The dirty bit flag for any page is set to ’1’ only when a non-constant reference is
made to that particular page and any element in that page is modified. The dirty bit flag set
to ’1’ indicates that this particular page is supposed to be written back to disk when chosen for
replacement by page replacement strategy because replaced page contains modified and updated
data. Hence, a typical random access to any element takes 2*Blocks per page number of I/Os
in the architecture of stxxl::vector.

As per the architecture of stxxl::vector, it is very much visible that it takes allocation size of
BlockSize*CacheSize*PageSize size in the internal memory for each vector cache. While using
stxxl::vector, a proper care is supposed to be taken such that we do not make any references
to the elements in it because the pages in the vector swaps in/out from the external memory,
the reference made previously will be invalid and it will throw a memory reference error or an
invalid access error causing memory leak.
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Chapter 4

Buffer Range Trees

In this chapter, we describe construction and query on buffer range trees. Range tree [5] is a data
structure which can store data points in one or more dimensions and answer range queries. The
range tree data structure is defined such that it can answer rectangular or box range queries in
d-dimension. Range queries has applications in the area of geometrical points data, geographical
data based on latitude-longitude in maps.
Consider a dataset of employees in a certain organization, each employee’s details contains name,
age, salary, and years of work experience. We have a query to report list of employees with their
age in range [a1, a2], salary in range [s1, s2], and years of work experience in range [y1, y2].
A naive solution to answer such a range query would be to sort the dataset on the basis of
age, salary and years of work experience respectively and answer the intersection of the result
obtained in each of the three range searches. This technique do not gives us a data structure to
answer queries in two or more dimensions. Range trees can answer such query giving employees
list with their age in a range [a1, a2], salary in a range [s1, s2] , and years of work experience in
a range [y1, y2] in O( log3 n) [5] running time in 3-dimensions. This is one of the examples for
which range trees can be used to answer range queries in one or more dimensions. Geographical
dataset points based on latitude-longitude can be stored in range trees and range queries to find
a particular label like hospitals, restaurants in a given range can be answered by buffer range
trees in O(n) [10] number of I/O operations.

4.1 2-Dimensional Range Trees

The range trees in 1-dimension is constructed with data points stored in its leaves. The internal
nodes in the range tree stores an array(size of array is equal to number of children for current
internal node) of values which contains largest value in its corresponding child nodes. Thus,
for a given range query, we can traverse down the tree, starting at root to find split node and
answer range queries in O(logp n+k) [5] running time in 1-dimension where p is fanout in range
tree and k is number of elements reported in range search. If we use range trees in two or more
dimensions, a range query is answered in O(logdp n+k) [5] running time in 1-dimension where d
is number of dimensions, p is fanout in range tree and k is number of elements reported in range
search. However, for a range search in further dimension, we search in the associate tree at
split node [5] which has less than N number of elements in the tree unlike naive implementation
which would involve sort and range search for each dimension of N elements.
The construction of range trees is also based on the same principle of balanced binary search
trees like AVL trees or Red-Black trees but in range trees, data is stored in the leaves unlike
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Figure 4.1: Range Tree in 1-Dimension [5]

other balanced binary search trees wherein internal/non-leaf nodes also contains the data. In
range trees, thus, data being at the leaves, sub trees at each of the internal node in the tree stores
the information about its corresponding leaves, like it can store the smallest and greatest value
in that particular sub tree or only a maximum value in its left sub tree for all of its children.
Range Tree in 1-dimension is as shown in Figure 4.1.

1-dimensional range tree as shown in Figure 4.1, once we get to the split node where search for
’a’ and ’b’ in [a,b] splits into left and right sub tree of the split node. While searching in the left
sub tree for ’a’, all the elements in the right sub tree along the path down the tree starting to
the left of split node belongs to the given query range of [a,b] whereas the elements in left sub
tree along the path down the tree starting to the left of split node do not belong the given range
of [a,b]. And an exact mirror image of it is applicable for right sub tree of ’b’ starting at the
split node in which all the elements in the left sub trees along the path down the tree starting
to the right of split node belongs to the range in the query whereas elements in right sub tree
along the path down the tree starting to the right of split node do not belong to the given range
in the query of [a,b].

In Figure 4.1, we have shown a 1-dimensional range tree with a fan out that can range from 2
to p where p is some positive integer. In case, it is greater than 2, at each internal node, we can
store maximum value in its p children in an array of p elements. Thus, range tree can also be
used to find number of elements in a particular sub tree by storing the count at each internal
node when data elements pass through that node down the tree. One of the greatest advantage
of using range trees is that it can be easily generalized to d-dimensions and n-fan out unlike
balanced binary search tree which is used in 1-dimension.Thus, range trees can answer the range
query in O(logpn + k) [5] where k is the number of elements in the output in 1-dimension.

As mentioned, range trees can be further expanded to d-dimensions. For that purpose, we will
define and study the case of 2-dimensional range trees.

In Figure 4.2, data points are in 2-dimension and a query range is defined in [ (x1,y1) , (x2,y2) ]
and we need to report all the points in this range as an answer to the query. In such a scenario,
range tree can be used to answer such queries. For the construction of range tree, first the data
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Figure 4.2: Data Points in 2-Dimension

Figure 4.3: Range Tree in 2-Dimension [5]

points are stored in the range based on their x-coordinates.

Once, range tree is constructed in 1-dimension based on x-coordinates, we can look up at each
and every internal node in the tree, and at each internal node in the tree, construct a range tree
in 1-dimension based on y-coordinates for the data elements in sub tree of x-coordinate based
tree and link the new y-tree’s (or y-associate tree) root node to the corresponding internal node
in the x-tree. Thus, given an internal node, it will have a linked y-associate tree containing all
the data points stored based on y-coordinates in sub tree of the given internal node in x-tree.
The structure of 2-dimensional range tree is depicted and visualized in the figure 4.3. However,
range tree being stored in further dimensions consumes lots of space and it takes θ(n logp n) [5]
space in 2-dimension because each point is stored in (logpn) number of y-trees where p is the
fan out of the range tree. Further, searching in a particular x-tree’s internal node’s y-associate
tree takes O(logpn) time and thus, total search time in 2-dimension for basic range search tree
is O(log2pn+ k) [5] where k is the number of data points in the result set. The dimension can be
extended further such that constructing third dimension associate trees on each internal node
in y-trees and it goes on till d-dimension. But for now, we are interested in and will look into
2-dimensional range search trees.
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Figure 4.4: 2-Dimensional Buffer Range Tree [5, 10]

Theorem [5] 4.1.1 For a set of points in d-dimensions and fanout p, range trees can answer
range queries in O(logdp n+k) time with a space of θ(n logd−1

p n) where d >1 and k is the number
of data points reported in range search.

4.2 2-Dimensional Buffer Range Trees

2-Dimensional Buffer Range Trees involves the use of lazy update buffer technique to implement
the tree in external memory. Since, we have now learnt about the range tree data structure
in internal memory, if we want to pull in more data which cannot fit into internal memory
then we need external memory data structures. In external memory data structure techniques,
buffer tree technique [10] is a widely used technique for various I/O algorithms. In case of
range trees, we have tried to incorporate this technique for the update of data in the leaves
of the range tree such that buffer range tree will be able to hold out-of-memory data and do
out-of-core computations. The buffer tree technique includes buffer of size M (size that can fit
in internal memory) attached with each of the internal node in the tree. In case of external
memory algorithms where I/O cost is the bottleneck, we are interested in storing larger size of
data which cannot fit into usable internal memory.In our implementation of buffer range search
tree, we basically have a set of operations involved in the construction of a tree. The basic
operations includes SplitRootNode, SplitInternalNode, EmptyInternalBuffer, Search in a range
of [ x1 , x2 ] and the construction of y-associate trees for each of the internal node in x-tree. In
case of our implementation, it should be noted that internal nodes along with empty buffers are
stored in internal memory pointing to caches of data in leaves. These caches of data in internal
memory are part of the larger set of data in external memory which is accessed through disk
I/Os.

In construction of the tree, we do not flow down the path of the tree to the leaf for each and
every single element in an input unlike internal memory version of range trees, however, we wait
till we have collected M number of elements in buffer of root node in our tree, once buffer is full
then we call Empty Internal Buffer procedure to empty the buffer and move its block elements
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into their corresponding child buffers one level down the tree. And we recursively repeat the
process till we reach the leaves of the tree and empty the buffer into its corresponding leaves
at the leaf node. Using this technique, we are able to avoid access to leaves for each and every
single input element. It takes O(n log n) number of I/O operations [10] in one buffer for ’n’
blocks of input data in 1-dimension. Our implementation includes the use of this technique. So,
once we construct the buffer range tree, range search queries can be made to the tree which
theoretically takes running time of O(log2n + k) [5] in its search operation where ’k’ is number
of elements in the result set. And in case of external memory implementation, it takes O(n)
number of I/O operations [10] to report sorted elements in a certain range and in our case of
2-dimensional implementation, we need to run this operation twice, one for x-tree and another
for y-associate tree respectively.

The basic operations in our implementation can be mentioned in brief. These operations are
involved and part of construction of buffer range search tree [5] [10] that we have used. First
operation of Split Root Node involves an increase in level of the tree by one if non of its child
is empty. The procedure for the same is given in Algorithm 1.

Algorithm 1 Procedure : Split Root Node

SplitRootNode()
1. If non of the child of Root node is empty

then request a new node and make that new node as the parent of current
root node.
Since, we have a new Root node, split the old root node such that half
of its child nodes are passed to its sibling.
Return

2. Else
Return

Now, in case of Split Internal Node, unlike Split Root Node, here we do not need a new root
node or a new parent node but it includes passing half of the child nodes of current node to its
new empty sibling. Procedure for Split Internal Node is as given in Algorithm 2.

Algorithm 2 Procedure : Split Internal Node

SplitInternalNode(n)
1. If node n’s child pointers are full then

Add an empty node as a sibling of current node n by shifting
its old siblings to the right by one position.
Pass half of the child nodes of current node n to new empty node
Update current node n and new node’s details.
Return

2. Else
Return
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We need Split Internal Node only when the corresponding child node in which buffer is going to
insert data is full. One of the major steps in the construction of buffer range tree is an empty
internal buffer process which involves emptying the buffer elements to its corresponding buffer
once it is full. The procedure for Empty Internal Buffer is given in Algorithm 3. The procedure
defined in Algorithm 3 describes the steps involved in emptying the internal buffer when it
becomes full. With these set of procedures we can construct a buffer range tree in 1-dimension.

Algorithm 3 Procedure : Empty Internal Buffer

EmptyInternalBuffer(Node n)
1. Base Case: Empty Leaf Buffer if n is Leaf Node or its buffer is full
2. If n is an internal node then for each block in its full buffer of size M

2.1] Search corresponding child of node n to which block elements should be inserted
2.2] If corresponding child not found

2.2.1] If Node n’s last child is full then call Split Internal Node
We can insert block data in last child of Node n

2.3] Else if child found
Repeat step 2.2.1 for correct Node child’s buffer

2.4] If the corresponding child’s buffer is full now
then call recursively Empty Internal Node(n.Node Child)

2.5] Else
Delete last block from n’s buffer and move to next block

3. Return

For, extending it to another dimension we need to construct the associate tree for each internal
node in currently constructed x-tree. Traversing of each node in x-tree can be done using
preorder traversal and constructing associate y-tree for each internal node that comes across in
traversing the path.

Algorithm 4 Procedure: Search in range[ (x1,y1) , (x2,y2) ]

Search(x1, x2, y1, y2)
1. Find Split Node V for [ x1, x2 ]

1.1] Traverse Sub tree at V using Postorder traversal
and report all the elements which are in range [x1, x2 ]

2. Find Split Node U for [ y1 , y2 ] in y-associate tree at V
2.1] Traverse Sub tree at U using Postorder traversal
and report all the elements which are in range [y1, y2 ]

3. Report intersection of elements reported in step 1.1 and 2.1
which are the elements in the range query in 2-dimension

4. Return

If our buffer range tree is constructed in 2-dimension, we are interested in making a range
query to the tree which includes the search procedure for the correct split node and then all the
elements in that sub tree are reported to be in range of [ x1, x2 ]. And as shown in Algorithm
4, for the search in y-dimension, we call y-associate tree at split node.
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Chapter 5

Experiments and Results

We have done a set of experiments and evaluation to understand and interpret the behavior of
an implemented buffer range tree. We did 68 different iterations of experiments in 1-dimension
and 2-dimension. In our implementation, since, tree nodes except the leaves which contains the
data are stored in internal memory, we need an internal memory to store these internal nodes. In
worst case, it may happen that for a particular node ’t’ , all its children’s buffer of size ’M’ are one
block short for getting full and thus, being recursively called for emptying that buffer, In such a
scenario, we need O(Number Of Child of t * M) size of internal memory. And for the leaves which
have its data in external memory, contains a small block sized cache in internal memory. We have
observed through our experiments that there is always a trade-off in between the leaf cache block
size and the number of I/Os which are inversely proportional to each other. However, we have a
limitation for setting the leaf cache block size as well because it needs space in internal memory
and as number of leaves increases in the tree, it occupies more space in internal memory though
it can store much more data in its external memory. We have used std::random device random
number generator function in C++ in our implementation to generate random numbers in a
defined range of 1:107 for both 1-dimensional and 2-dimensional tree experiments. This random
generator uses std::uniform int distribution<> to generate a random number in a defined range.
For 2-dimension, since we call the random generator function independently, the value generated
for x,y in a pair of [x , y] are also independent. We did our experiments on the dataset of open
street map(or OSM) where we have used the latitude-longitude details in the dataset of OSM
input files to construct EM data structure.

The statistics that we have mentioned in construction time of both 1-dimension and 2-dimension
also includes the stack in external memory that we used in our implementation, external memory
sort for buffer elements but since all these are part of preprocessing in constructing the tree,
we have not ignored them . For each input of y-associate tree, we are storing the input data
for next y-associate tree in a file and file I/O itself is very much time consuming. So, our
statistics includes the time for writing a file as well. We did our experiments for M=4*106 and
different block sizes of 512KB, 768KB and 1MB. The configuration of the system on which we
did all our experiments is with an usable(or available) internal memory of size 768MB and an
Intel(R) Core(TM) i3-4030U CPU@1.9 GHz. processor.

5.1 1-Dimensional Buffer Range Tree

For 1-dimensional buffer range tree , we ran iterations to find the break point here the data
cannot fit in internal memory which is shown in Figure 5.1 . It shows that internal memory

xxiii



Figure 5.1: 1-Dimension: Internal Memory Thrashing point

cannot store data elements beyond 32 million and we did our external memory experiments
up to 104 million input data elements on same system configuration. It can be observed in
Figure 5.1 that running time for tree construction in internal memory is less than running time
in external memory which have a valid reason of the disk I/O occurring in external memory
implementation. In next two sections, we will evaluate the construction and search in range
search tree in 1-dimension.

5.1.1 Preprocessing and Construction

For preprocessing and construction of buffer range tree in 1-dimension, we did 32 iterations of
experiments for different number of input elements with different block sizes of 512KB, 768KB
and 1 MB with buffer size M(# elements in the buffer) 4*106. Figure 5.2 shows the number of
I/Os comparison for range tree construction in 1-dimension with different block sizes of 512KB,
768KB, 1MB and 2MB (we recorded only number of I/Os with 2MB of block size). As we can
observe in the figure that the # of I/Os is inversely proportional to block size because larger
block can transfer more number of elements between internal memory and external memory in
one I/O cost. Table 5.1 and 5.2 shows the statistics for tree construction with different block
sizes of 512KB, 768KB and 1MB.

#Data Points Total I/O Time(sec) Rate Of I/O(MBps)

(Millions) 512KB 768KB 1MB 512KB 768KB 1MB

8 3.74 3.55 5.81 106.92 1133.4 68.14
16 12.701 14.41 15.13 133.77 103.17 96.88
24 38.62 28.76 32.78 79.49 107.63 93.2
32 38.72 40.03 42.73 110.22 107.5 99.45
40 108.3 53.05 75.85 59 110.94 76.64
48 84.55 106.63 86.64 93.03 74.38 90.44
56 100.7 86.24 86.22 91.2 102.75 101.57
64 239.8 128.39 118.26 46.52 90.73 97.33
72 192.6 118.11 143.05 66.6 109.6 89.43

Table 5.1: Construction Statistics 1: 1-Dimension
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#Data Points Total Time(sec) Dirty Writes(Dirty Bit=1)

(Millions) 512KB 768KB 1MB 512KB 768KB 1MB

8 61.406 63.5 70.64 220 180 84
16 199.63 205.34 218.95 1100 600 280
24 420.8 405.09 435.24 2400 1200 560
32 552.47 593.26 565.84 3240 1620 756
40 867.56 797.4 799.38 4800 2160 1008
48 1099.2 1141.9 1041.4 5760 2880 1344
56 1180.3 1175.6 1137.3 6600 3120 1456
64 1607.6 1540 1488.8 8040 4200 1960
72 1721.1 1629.7 1696.2 9120 4560 2138

Table 5.2: Construction Statistics 2: 1-Dimension

Figure 5.2: Buffer Range Tree Construction in 1-Dimension

We have observed that though # of I/Os reduces and shows a visible change with the change
in block size with exactly same parameters, the I/O time depends on the rate of I/O between
external and internal memory which we are not controlling through our EM algorithm. Another
table 5.2 shows the dirty writes which is writing back of modified data block back to external
memory if we are reading a new block from external memory. And design of stxxl::vector is such
that in worst case it requires 2*I/Os [6] for each and every single access to the elements for this
reason. The total time for all block sizes can be observed as almost same which is because of
file I/Os that we are performing and it is a major contributor to the total running time.

5.1.2 Range Search in 1-Dimension

After construction of buffer range trees, we made range search queries on the constructed tree.
Figure 5.3 shows the # of I/Os for search in 1-dimension. It takes O(n) [10] # of I/Os for
reporting elements in constructed buffer range tree in a given range. In Figure 5.3, maximum
I/Os represent the upper bound on # of I/Os allowed for particular number of elements and it
can be observed that we have achieved to get the # of I/Os within the upper bound. The steep
rise and fall in the curve is because of the range of query or we can conclude that higher the
level of split node, higher will be the number of I/Os because we will access more number of
leaves.
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Figure 5.3: Search in 1-Dimension: Block Size: 1MB

Figure 5.4: 2-dimension: Internal Memory Thrashing Point

5.2 2-Dimensional Buffer Range Tree

Construction statistics of 2-dimensional buffer range trees is going to vary than statistics of
1-dimensional buffer range search tree. The thrashing point in internal memory is as shown in
Figure 5.4 which shows that internal memory cannot store data points beyond 16 million.

Further, we did 30 iterations of experiments in 2-dimension with different block sizes to evaluate
the behavior and performance of the 2-dimensional buffer range tree.

5.2.1 Preprocessing and Construction

Figure 5.5 shows the # of I/O comparison for range tree construction in 2-dimension with
different block sizes.As we can observe in the figure that the # of I/Os is inversely proportioanal
to block size because larger block can transfer more number of elements between internal memory
and external memory in one I/O cost.

We can also observe that there is an abrupt increase in # of I/Os at some points for all block
sizes which occurs whenever the level(or height) of the tree increases because with increase in
number of level, number of y-associate trees also increases. Table 5.3 and 5.4 shows the statistics
for tree construction with different block sizes.The statistics in tables 5.3 and 5.4 shows that the
I/O time is dependent on the rate of I/O and the parallel I/O architecture of stxxl::vector that
has been used. Total time for the construction of buffer range tree has a major contribution of
file I/O that we do to collect the input data for y-associate tree construction.
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Figure 5.5: Buffer Range Tree construction in 2-Dimension

#Data Points I/O Time(sec) I/O Rate(MBps)

(Millions) 512KB 768KB 1MB 512KB 768KB 1MB

4 2.1 1.73 1.84 87.49 106.17 97.7
8 11.12 16.47 12.12 99.6 67.85 90.76
12 32.53 23.8 23.96 67.08 92.41 90.55
16 38.41 34.86 43.06 92.7 103.14 83.39
20 121.02 98 83.74 64.5 80.4 92.95
24 120.08 102.49 104.78 83.15 98.43 95.03
28 167.95 129.56 134.82 72.47 94.87 90.04
32 175.44 130.88 135.62 75.32 101.94 97.16
36 193.18 197.47 190.19 89.07 87.99 90.22
40 328.83 304.46 295.03 78.15 92.28 83.18

Table 5.3: Construction Statistics 1: 2-Dimension

5.2.2 Range Search in 2-Dimension

Range search [ (x1,y1) , (x2,y2) ] in 2-dimension involves the search for data elements in the
range of [x1, x2] first in buffer range tree constructed on x-coordinate of the data elements.
Once, we have data elements in x-range, we can now search for data elements in y-range [y1,
y2] on the y-associate tree at split node in x-tree. The intersection of reported points in the
range [x1, x2] and [y1, y2] gives us the result of all the data elements in range [(x1,y1), (x2,y2)]
. The range search needs O(n) number of I/O [10] in 1-dimension where n is number of blocks
required to hold all N input elements and since, we do a range search in 2-dimension, we still
need O(n) number of I/Os with a constant factor of 2.

We did range search in 2-dimension experiments with different block size of 512 KB, 768 KB and
1 MB. The number of I/Os to do range search in 2-dimension with an upper bound of O(n) is
given in Figure 5.6, 5.7 and 5.8 . The number of I/Os in range search fluctuates which is because
of the range of query data elements. If the search range is large enough then it will access more
number of leaves thus causing more number of I/Os. However, we are more interested to see
that the number of I/O remains within the upper bound defined [10].
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#Data Points Total Time(sec) Dirty Writes(Dirty Bit=1)

(Millions) 512KB 768KB 1MB 512KB 768KB 1MB

4 152.34 134.69 131.43 242 120 56
8 578.55 594.06 572.34 960 480 224
12 936.56 953.6 922.13 1800 900 420
16 1303.42 1304.31 1314.17 2880 1440 672
20 2887.58 2864.9 2844.84 6000 3000 1400
24 3494 3355.09 3371.34 7560 3780 1764
28 4223.38 3956.3 4063.25 9120 5560 2128
32 4373.9 4430.7 4455.36 9840 4920 2296
36 5747.19 5762.6 5701.09 12960 6480 3024
40 8477.36 8638.2 8116.61 18730 10140 4144

Table 5.4: Construction Statistics 2: 2-Dimension

Figure 5.6: 2-Dimension Range Search: Block Size: 512 KB

Figure 5.7: 2-Dimension Range Search: Block Size: 768KB
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Figure 5.8: 2-Dimension Range Search: Block Size: 1MB

Figure 5.9: Elements in Range Search [ (750,4500) , (325000,250500) ] with 40 Million data elements

As a proof of concept, for range search in [ (750,4500) , (325000,250500) ] with 40 Million number
of Data elements in 2-dimension, the range search result that we obtained are as shown in Figure
5.9 .

5.3 Preprocessing,Construction and Query on Open Street Map
DataSet

We did our experiments with an open street map(or OSM) [17] latitude-longitude based dataset
to observe the working of our buffer range tree data structure. Open street map [17] has collected
its dataset from scratch over the years since its inception in 2004 with the help of crowd sourcing
of around 2 million users across the globe. The data is generally collected using various GPS
devices, aerial photography,etc. The software that can be used to store and edit the collected
data by OSM volunteer users is named iD written by MapBox. The major contributors in
collecting the data for OSM are cyclists, GIS professionals and many more. OSM supports
route planning using services of open street route map(or OSRM), Graph Hopper and Map
Quest. The data stored in OSM data set is in the form of topological data structures in xml files
with an extension of .osm . The data of OSM mainly consists of nodes to determine latitude and
longitude, tags to store the meta data of a particular node, ways with an ordered list of nodes
to determine the path and relations to show the relation between different nodes and ways. The

xxix



Country Size parameters

(Millions) Block Size(KB) Buffer Size(Millions) Maximum Memory used(MB)

Monaco (0.016) 0.5 0.004 50
Serbia (3.6) 32 0.4 100
India (36) 1024 4 768

Table 5.5: OSM Data Statistics:1

Country Construction Statistics

(Millions) # of I/O Total Time(I/O Time)(sec) Dirty Writes

Monaco (0.016) 1024 8.18 (4.141) 1152
Serbia (3.6) 8486 673.83 (49.775) 7792
India (36) 6160 5427.36 (168.917) 2576

Table 5.6: OSM Data Statistics:2

dump of data in OSM is available for each country in a separate OSM file and a complete dump
of global data is available in planet.osm. In all our experiments, we used different sizes of blocks,
buffer as per the amount of data we are storing and these details are explicitly mentioned for
each experiment.

We did our first and foremost experiment with a small data set of country Monaco. We con-
structed buffer range tree by extracting node data of latitude and longitude from the OSM file
of Monaco. We stored latitude-longitude and node details in our buffer range tree. Statistics
for construction of Monaco, Serbia and India are mentioned in table OSM Statistics. We chose
different block, buffer sizes as per the amount of data available in that particular country’s
dataset.

Once, we have constructed buffer range tree on the maps of Monaco, Serbia and India, we did
range queries and range search statistics are as shown in table 5.7. Since, the number of I/O
in range search depends on the depth of range, the statistics for range search are independent
for different countries. With respect to number of I/O for range search, we have observed that
higher the level of split node, more will be the number of I/Os for range search because here
we access more number of leaves. For Monaco data, we did a range query in the range of [
(43.72,7.386) , (43.75,7.43)] as shown in Figure 5.10 and red colored dots shows the hospitals
present in given range query.

In the map of Serbia, we did a range query in [ (43,19) , (44,20)] as shown in Figure 5.11 and
for India in the range of [(77 , 21.2) , (78 , 22.2)] as shown in Figure 5.12 where green colored
area shows the result of range query.

In our experiments, though our focus is on the implementation of buffer range search tree at
low level, we did few set of experiments to check correctness and evaluate its behavior with
real world dataset. This also helped us to understand that our implemented data structure

Country Range Search Statistics

(Millions) # of I/O(I/O upperbound) I/O TIme(sec)@I/O Rate(MBps) Dirty Writes

Monaco (0.016) 480 (512) 2.381 @ 0.34 454
Serbia (3.6) 650 (2048) 53.39 @ 34.42 495
India (36) 32 (576) 0.706 @ 88.3 18

Table 5.7: OSM Range Search Statistics
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Figure 5.10: Hospitals in Range Search of Monaco(Red colored dots indicates hospitals)

Figure 5.11: Range Search in Serbia(Green colored area is the result of range query)

xxxi



Figure 5.12: Range Search in India(Green colored area is the result of range query)

is applicable and scalable in such real world practical applications. In order to cover different
ranges of number of data elements we chose data set of Monaco, Serbia and India such that the
ratio in their data sizes is approximately 100.
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Chapter 6

Conclusion and Future Work

We have implemented Buffer Range Tree in 2-dimension in external memory which is capable of
storing out of memory data. We did our experiments with different parameters so as to evaluate
the performance and correctness of the data structure. Few of the key observations in terms of
number of I/O for the construction of buffer range tree is that in 2-dimension, the number of
I/O shows a steep rise with an increase in number of input data elements which occurs with an
increase in the level of the tree because with an increased level, number of y-associate trees also
increases. We have also observed through our experiments that there is always a trade-off in
between the size of block and number of I/O because larger block size can transfer more data
in 1 I/O, so the choice of block size should always be such that it utilizes computer’s internal
memory to full of its capacity. For a search in given range, higher the level of split node, more
will be the number of I/O because we need to access more number of leaves whose data is stored
in external memory.

Our thesis work can have good applications in the real world area of geometrical data sets
as we have shown through our experiments on open street map (or OSM). The implemented un-
derlying buffer range tree can be used in real time map range search. We did an implementation
of a basic range tree, more evaluation and experiments can be done by implementing Layered
Range Trees, and Fractional Cascading technique. Many other geometrical data structures like
Kd-trees [5], Quad Trees [12], etc can be implemented in external memory and evaluation of
their performance, comparison with other geometrical data structures implemented in external
memory will give a good insight on the overall performance and behavior of geometrical data
structures in external memory.
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