
An Efficient Timing and Clock Tree Aware

Placement Flow with Multibit Flip-Flops for

Power Reduction

by

Jasmine Kaur Gulati

MT14081

Under the Supervision of
Dr. Sumit Darak

Bhanu Prakash, ST Microelectronics

Submitted
in partial fulfillment of the requirements for the degree of
Master of Technology in Electronics & Communication

Engineering with specialization in VLSI & Embedded Systems

to

Indraprastha Institute of Information Technology Delhi
June, 2016

©Indraprastha Institute of Information Technology (IIITD), New Delhi 2016

Abstract

Power consumption has become a bottleneck for modern system-on-chip
(SoC) designs. With the advancement towards the deep sub-micron tech-
nology, the SoC design consists of components that prompt to a higher
power density. In VLSI designs, the performance of an integrated circuit
(IC) is governed by the frequency of the clock at which it operates, thus
clocking is the major source of power dissipation in a design. Designing
clock network is a critical task for high-performance circuits as it directly
impacts clock skew, jitter, chip power and area of SoC under process vari-
ations.

Multi-bit flip-flops (MBFFs) have appeared as a low-power solution for the
nanometer technology. The number of clock sinks reduces during clock tree
synthesis (CTS) with the application of MBFFs. As a result, the clock
network shows increment in core utilization, improvement in routing, re-
duction in power consumption and timing violations. The clock insertion
delay (CID) is another key metric of clock network and decreasing CID
results in shorter clock network, less impact on crosstalk, less impact of
process variation, and reduction in hold penalties.

This work introduces a novel placement strategy in integration with the
electronic design automation (EDA) tool for MBFF generation having the
prerequisite knowledge of clock tree architecture. The strategy irrespective
of traditional placement flow consists of MBFFs that are generated by re-
placing single-bit FFs iteratively during placement. FF merging and MBFF
generation algorithm have been proposed. The approach is made timing-
aware with useful skew optimization. Experiment results show improvement
in chip power by 44%, core density by 11.3% and clock power by 10.4%.

In addition to the above, another algorithm for minimizing the CID of the
design has been proposed. This algorithm splits up the clock tree sinks with
maximum CID to a separate pool, after the deep analysis of the clock tree
structure. It also takes into account the floorplan of the chip, placement
pin and the macro placement changes on the sinks. The results show that
the average CID reduces by 9.2%.

Certificate

This is to certify that the thesis titled ”An Efcient Timing and Clock Tree Aware
Placement ow with Multibit Flip-Flop Generation for Power Reduction” sub-
mitted by Jasmine Kaur Gulati to Indraprastha Institute of Information Technol-
ogy, Delhi for the award of the Master of Technology in Electronics and Communication
& Engineering is an original research work carried out by her under my guidance and
supervision.

The results enclosed in the thesis have not been submitted in any other university or
institute for the reward of any other degree.

Dr. Sumit Darak
Indraprastha Institute of Information Technology Delhi

Bhanu Prakash
Consumer Product Division, ST Microelectronics
Greater Noida

Acknowledgements

This study would not have been successful without the support and direction
of number of people who have contributed and assisted in the completion
of my thesis work in multiple ways.

I would like to express my sincere gratitude to Dr. Sumit Darak, Assi-
tant Professor, IIIT Delhi, for his valuable guidance and encouragement
throughout my thesis work.

Bhanu Prakash, CPD, ST Microelectronics, for his motivation, patience,
and concern for my research work. I am also thankful to him for all the
technical knowledge he has shared with me.

Last but not the least, I would like to thank my father, my mother and my
brother for being patient and supportive throughout my life.

Contents

List of Figures v

List of Tables vi

List of Abbreviations vii

1 Introduction 1
1.1 Overview of Physical Design Flow . 3

1.1.1 Floorplanning . 3
1.1.2 Placement . 3
1.1.3 Clock Tree Synthesis . 4
1.1.4 Routing . 4

1.2 Challenges of Clock Network in Physical Design Flow 6
1.2.1 Process Variations . 6
1.2.2 Power Supply Variations . 6
1.2.3 Temperature Variations . 7
1.2.4 Signal Integrity Issue . 7
1.2.5 Timing Violations . 8
1.2.6 Design Complexity . 9

1.3 Conceptual Overview . 9
1.3.1 Useful Skew Optimization . 9
1.3.2 Multi-Stage Clock Gating . 10
1.3.3 Clock Insertion Delay . 10
1.3.4 Multi-bit Flip-Flop . 11

1.4 Motivation . 13

2 State of the Art 15
2.1 Related Work . 15
2.2 Current Methodology . 15

3 Proposed Timing and Clock Tree Aware Placement Flow with Multi-
bit Flip-Flop Generation 17
3.1 Methodology Overview . 17
3.2 Steps of Methodology . 19

3.2.1 Timing-driven global placement 19
3.2.2 Fast CTS . 20
3.2.3 MBFF ECO generation . 21
3.2.4 Merging FF Combinations . 23
3.2.5 Timing-driven Incremental placement 25

4 Proposed Clock Insertion Delay Reduction Algorithm 27
4.1 Algorithm Overview . 27
4.2 Steps Involved in Algorithm . 29

4.2.1 Extraction of Outliers for Dominant Clock 30
4.2.2 Skew Group formation . 30
4.2.3 Full CTS with Useful Skew Optimization 31

5 Results And Discussions 32
5.1 Simulation Setup . 32
5.2 Comparison of Traditional placement flow without MBFFs and Proposed

Timing and Clock Tree aware Placement Flow with MBFFs 33
5.3 Comparison of Proposed CID Reduction Algorithm with traditional ap-

proach of CTS . 35

6 Conclusion And Future Work 39
6.1 Conclusion . 39
6.2 Future Work . 40

6.2.1 Higher-bit MBFF . 40
6.2.2 Clock Mesh Framework . 40

References 41

List of Figures

1.1 SoC Design flow . 2
1.2 Balancing during CTS . 5
1.3 Cell Delay with respect to Process-Voltage-Temperature Variations . . . 8
1.4 Crosstalk Noise due to Capacitive Coupling 9
1.5 Useful Skew Optimization . 10
1.6 2-Level Clock Gating . 11
1.7 Components of CID . 11
1.8 Merging two 1-bit FFs to one 2-bit FF 12
1.9 Clock tree structure after MBFF generation 13

3.1 Proposed Clock Tree Aware Placement Flow with MBFFs 18
3.2 Inputs to Timing-driven global placement stage 19
3.3 Clustering during CTS . 20
3.4 Example clock tree structure . 22
3.5 FF merging and MBFF generation . 26

4.1 CID Reduction Algorithm Overview . 28
4.2 Outliers in Clock Tree . 29
4.3 Skew Group Formation . 30

5.1 Comparison of Flows without and with MBFFs 35
5.2 Comparison of the number of Violating Paths 36
5.3 Comparison of the TNS of the designs 37
5.4 Distribution of Power Consumption . 38
5.5 Results for Clock Network CID of design after CTS 38

List of Tables

5.1 Setup for Experiment . 32
5.2 Specifications of Design at 28nm Technology Node 33
5.3 Comparison between the Non-MBFF Flow and the Proposed MBFF

Flow for Design I and Design II . 34
5.4 Comparison of Power Consumption of the designs 34
5.5 Experimental Results for Dominant Clock by CID Reduction Algorithm 36

List of Abbreviations

ASIC Application-Specific Integrated Circuit
CID Clock Insertion Delay
CTS Clock Tree Synthesis
DRC Design Rule Constraints
ECO Engineering Change Order
EDA Electronic Design Automation
FF Flip-Flop
HFN High Fan-Out Net
IC Integrated Circuit
IP Intellectual Property
MBFF Multi-bit Flip-Flop
OCV On-Chip Variation
PLL Phase-Locked Loop
PnR Place and Route
PPA Power, Performance and Area
PPO Post-Placement Optimization
RTL Register-Transfer Level
SDC Synopsys Design Constraint
SI Signal Integrity
SoC System on Chip
VLSI Very Large Scale Integration
WL Wire-length

Chapter 1

Introduction

Design of a System-on-chip (SoC) is becoming complicated as more functionality per-
taining to the user requirements are being integrated onto the chip [1]. The semicon-
ductor industry is moving on the path of Moores law and hence the process node is
shrinking with an increase in the complexity of the design. With the integration of
more and more components on a SoC, power density of the chip also increases. The
various blocks on the chip may have different frequency requirements and hence, the
design cycle has evolved to cater the need of high-speed implementations [2]. The
high-frequency design consumes huge amount of power, therefore, power reduction is
essential for improvement in the battery life and overheating situations.

In a SoC, clock distribution network synchronizes the flow of data signals across data
paths. Design of these networks is a challenging task due to technology scaling which
in turn can affect the system-wide performance and reliability [3]. Deep sub-micron
technology nodes exhibit wire delay variation, temperature inversion, crosstalk penalty
on signal and clock paths. Also, the clock networks consume a major amount of power
of the whole design. Hence, with limited power budgets, clock power consumption is
a key problem area in the modern VLSI designs as it influences the correctness, area,
speed, and reliability of the synthesized system.

In the SoC design flow [4] [5], the steps from the specification of the design to the
final tape-out of SoC are shown in Fig. 1.1. The entire flow is divided into two phases:
front-end design and the back-end (physical) design. For the front-end design, the
architecture according to the design specifications is laid out and the register-transfer
level (RTL) code is generated. After the RTL verification, logic synthesis is carried
out to map the RTL to gate-level logic. The next and the important step is the static
timing analysis (STA) to verify and optimize the timing constraints of the design. The
entire process is iteratively performed from RTL optimization to STA until the viola-
tions are controlled. After the final verification, the final gate-level netlist is handed to
the physical design stage. The physical design flow is explained in the following section.

Figure 1.1: SoC Design flow

With the emergence of new technology, design methodologies to reduce the power
consumption of the chip are required to achieve the power, performance and area (PPA)
targets. The need of the hour is to find an approach which can attain the targets with
efficient timing closure. The objective of this work is to address the PPA targets of

the real designs and provide a solution in integration with the current electronic design
tools (EDA).

1.1 Overview of Physical Design Flow

Physical design is an integral part of design planning process [6]. The gate-level netlist,
timing constraints, the technology file, the cell library file of the design are the inputs
of this stage. It begins with floorplanning and continues till the final tape-out of the
chip. The following sub-sections explain the steps involved in physical design flow in
detail.

1.1.1 Floorplanning

Floorplanning is the first and the most challenging stage in the physical design process
[7]. As a SoC consists of the various intellectual property (IP) blocks, memories, analog
blocks and multiple power domains, thereby the positioning of blocks on the die affects
the quality of the design. The process of floorplanning aims to provide a proper ar-
rangement of blocks, pins and power grids for their efficient operation in parallel. The
process includes the following integral steps:

• IO Pad Placement
In this step, the signal pad, power supply pad, and analog pads positions are
defined by a padring.

• Macro Placement
The objective here is to arrange the hard macros to optimize the remaining area
for placement of logic cells. Macro and routing blockages are designed in this step
to prevent the congestion on the chip.

• Power Grid Placement
To supply the power to all the blocks in the design, power grids are designed.
The top two metal layers are reserved for the power grids to prevent the voltage
drop [8]. If the power rails are routed in the lower metal layers, the usage of lower
routing resources will increase and hence, the congestion.

As the floorplan significantly affects the performance of the design and the timing
violations, the floorplan designers undergo various iterations to achieve the best quality
floorplan.

1.1.2 Placement

Once the optimized floorplan is ready, the next step is the placement of standard
logic cells to locations on the chip [9]. Placement tool determines the location of the
components on the die corresponding to the timing constraints, interconnect and wire

lengths and power dissipation. Another objective of placement is to optimize the timing
of the design by removing the violations due to timing. The placement algorithm used
by the tool determines the interconnect length and hence, the routability of the design.
The placement optimization is performed in four stages:

• Pre-placement optimization
In this phase, before the placement begins, design netlist is optimized. The
high fan-out nets (HFNs) such as reset, enable are synthesized during the logic
synthesis in front-end flow without the placement information. Therefore, during
placement HFNs are collapsed for re-synthesis. Since the clock latency is not
known, clocks are checked to be ideal before the synthesis of HFNs, otherwise,
the HFN synthesis will be done on clock nets.

• In-placement optimization
Further optimization of the design involves re-sizing and change in position of
cells. Timing optimization based on setup and hold requirements is performed.
Congestion analysis and optimization are a part of this phase of placement.

• Post Placement Optimization (PPO) before CTS
Before the clocks are in the propagated mode after the CTS, this phase analyses
and fixes the timing violations.

• Post Placement Optimization (PPO) after CTS
After the CTS, clocks are in the propagated mode and hence to preserve the skew
in the design, timing check is performed again [10].

1.1.3 Clock Tree Synthesis

The standard cells and the macros are placed at a fixed optimized location, but the clock
is still in the ideal mode. Since the data transfer between the various functional elements
on the chip is carried out by the clock signals, the clock enters into the propagated mode.
For a design to attain setup and hold requirements, the clock input of each sequential
element must be in synchronization. A single clock net cannot drive the huge number
of sequential elements present in the design. The clock distribution network distributes
the clock signals from common point to all the clock pins of the elements. CTS is the
process of balancing clock skew [11] and minimizing the uncertainty of arrival time. In
Fig. 1.2a, a single clock source drives n number of FFs and the clock network is not
balanced. In Fig. 1.2b, CTS balances the clock network and buffers are added to clock
nets.

1.1.4 Routing

After CTS, the next stage is to determine the precise paths for interconnections. The
tool has the netlist about the logical connectivity in the design. The aim of the routing
process is to ensure that no design rule violations exist in completing the routes as well

(a) Clock net before Balancing

(b) Clock net after CTS

Figure 1.2: Balancing during CTS

as the timing constraints and clock skew are met [5]. Routing is carried out in two
phases:

• Global Routing
The design is partitioned in various routing regions and the route is analyzed
by the number of available tracks in each region. The estimation of congestion
corresponding to the available routing tracks is done. The congestion map is
analyzed before detailed routing to evaluate routing issues.

• Detailed Routing
In this phase, the tool tries to fix all design rule violations after the global route
lays the actual interconnecting wires. The entire design is traversed by the tool
until entire routing is pass with no major violations.

1.2 Challenges of Clock Network in Physical Design Flow

The main task for the SoC designers is to ensure that the clock reaches with no skew and
almost no jitter in the entire chip. Multitude of clocks present in the modern designs has
shifted the paradigm to multiple clock domains and thus, attainment of clock balancing
and zero skew are difficult. Physical design flow starting from floorplanning make sure
that at every stage optimization is performed. The design of the chip should not have
severe setup and hold violations. There are factors which act as key issues related to
CTS during physical design flow. Following subsections address the dominant hurdles
in the design flow.

1.2.1 Process Variations

The variations due to the shrinking of devices are increasing with the newer technology
nodes [12, 13]. A single chip consists of million of transistors packed on it, the variations
arise during the manufacturing of these transistors. Wafer-to-wafer variations include
variations due to dopants, oxide-growth rates, and the variation in the gate oxide stress
levels. Due to scaling, the number of dopant atoms has decreased and concentration of
the dopants has become a pronounced factor. Width and length of the transistor are
the key factors of a device. Variability due to width and length affect the switching
speed and the amount of leakage current in a device. The direct impact of process
variations is on the yield and the performance of the design. The variations in the
standard cell result in the mismatch across the various clock trees in the clock network.

1.2.2 Power Supply Variations

Supply voltage scaling causes variations in the switching activity across the die. The
uneven power dissipation across the die is the result of fluctuations in the demand of
current over a short interval of time. Eq. 1.1 gives the self-induced electromotive force,

the amplitude of the voltage drop due to sudden current variations.

V = L× dI

dt
(1.1)

where I is the current and L is the self-inductance through the supply line.
Ripples or noise voltage is induced in the supply lines due to the presence of par-

asitic inductance. The current flows in the chip via interconnect which has a finite
resistance. The variation in the resistance leads to IR drop. Referring to Fig. 1.3b, the
propagation delay improves at high voltage and the cell becomes fast.

1.2.3 Temperature Variations

Temperature varies continuously on the chip while it is operating due to the power
dissipation on the chip. Eq. 1.2 gives the dynamic power dissipation, where α is the
activity factor, C is the load capacitance and V is the supply voltage. With the increase
in temperature the drain current decreases. Both device and interconnect depend on
the temperature and hence, are affected by the variations in the temperature. As shown
in Fig. 1.3c, the propagation delay of the cell increases with the increase in temperature
as mobility of electrons decreases. The threshold voltage of a transistor also depends
on temperature. With the increase in temperature, the threshold voltage increases.

P = α× C × V × (f)2 (1.2)

1.2.4 Signal Integrity Issue

Signal integrity (SI) issues include crosstalk, IR drop, and electromigration. Referring
to fig 1.4, relative switching of wires on account of the capacitive coupling results in
crosstalk noise. Depending on the amplitude of the crosstalk noise, a delay uncertainty
is superimposed on the victim net. With the increase in the clock frequency rates, the
capacitive coupling dominates and results in significant delay in data paths.

IR drop in the wires is caused by the current from the supply voltage and the
finite resistance of the wire. In case the wire resistance is very high or the current
through the transistor is higher than estimated, there is an unwanted voltage drop.
This unpredicted drop causes timing degradation in the signal and clock nets. It pro-
duces unwanted clock skew in the design and hampers the signal integrity of the design.

Electromigration depends on the current density and for high current density wires,
it causes wear out of metal interconnects [14]. The metal ions migrate with the ”elec-
tron wind” induced by the high current density.

(a) Cell Delay vs Process

(b) Cell Delay vs Voltage

(c) Cell Delay vs Voltage

Figure 1.3: Cell Delay with respect to Process-Voltage-Temperature Variations

In the SoC design flow Fig. 1.1, signal integrity analysis is performed after routing
during the post-layout. But it can lead to costly iterations and many designs fail to
close due to SI effects.

1.2.5 Timing Violations

A design consists of millions of gate and multiple clocks. There is multitude of timing
paths for analysis and without the proper definition of clocks, the complete timing path
becomes invisible to the timing analysis tool. Timing violations due to setup and hold,
clock skew and due to the signal integrity issue cause hindrance towards the timing
closure for a design.

Figure 1.4: Crosstalk Noise due to Capacitive Coupling

1.2.6 Design Complexity

Modern designs have millions of cells and the single chip is broken down into a hierarchy
of modules. The timing budgets are created for the whole design, which permits the
engineers to use hierarchical design methodology and work on their modules for the
timing closure. To ease the CTS for designs with multi-million flip-flops (FFs), multi-
stage clock gating structures are incorporated. Complex clock structures due to the
multitude of clocks present in the design impose a challenge for setting up the optimistic
environment for the designers. Multi-mode and multi-corner scenarios increase with the
technology proceeding towards few nanometers. Hence, the timing closure, as well as
the clock network, have become a challenge to the SoC designers.

1.3 Conceptual Overview

It is imperative to understand few concepts for the problem statement of this thesis
work. In this section, to develop the background for the proposed work useful skew
methodology, multi-stage clock gating, clock insertion delay (CID) and multi-bit flip-
flop (MBFF) are explained .

1.3.1 Useful Skew Optimization

In order to achieve target skew, useful skew optimization [15, 16] is incorporated. The
violating path can be fixed not only with the data path changes but also with the
clock path changes as shown in Fig. 1.5. In Fig. 1.5a, violating path exists between
launch FF and the capture FF due to negative skew. Clock buffers are added to the
capture clock path as show in Fig. 1.5b to balance the skew. The clock latencies of
FFs are skewed intentionally to achieve the target skew. Further, in this manner the
benefits are increased clock frequency and the timing margins of the design. Hence,

the skew transforms into a manageable resource and is useful to improvise the timing
performance of the design.

(a) Negative Slack

(b) Useful Skew to achieve Target timing

Figure 1.5: Useful Skew Optimization

1.3.2 Multi-Stage Clock Gating

Multi-level Clock Gating [17], is implemented for dynamic power reduction of the in-
active blocks or the sub-blocks. In this method of clock gating, the clock of first-level
clock-gating is gated by the next-level clock gating as shown in Fig. 1.6. Similarly,
multiple levels of clock gating can be employed in a design. In this manner, the power
can be switched off for any module or modules, to save power. The modern VLSI
designs consist of multiple levels of clock gating.

1.3.3 Clock Insertion Delay

The time taken by the clock signal to reach the clock tree sink from the clock source
such as the phase-locked loop (PLL) is termed as the CID. It is classified into two
categories:

• Clock Source Latency
It is defined as the time interval the clock signal takes to reach from the clock
generator source to clock root pins of the design.

Figure 1.6: 2-Level Clock Gating

• Clock Network Latency
The delay of the clock signal from the clock root pins of the design to clock tree
sink pins of FFs in the design.

Fig. 4.1 shows the two components of CID in an example design. CID is the sum of
clock source and clock network latency.

Figure 1.7: Components of CID

1.3.4 Multi-bit Flip-Flop

FFs are prominently used in the synchronous designs and for the storage of n-bit data,
n independent single-bit FFs are incorporated. Referring to Fig. 1.8, each single-bit
FF consists of two inverters to generate the clock signals which are opposite in phase,
one master and a slave latch. With the advancement in technology nodes, multiple FFs
can be driven by a minimum-sized clock driver. As a consequence, several redundant
inverters are eliminated and power dissipation is reduced. Therefore, MBFFs have
evolved as a solution to save power and area of a chip [18, 19].

Figure 1.8: Merging two 1-bit FFs to one 2-bit FF

Application of MBFFs results in the following benefits:

• Improvement in core utilization
Due to fewer sequential cells in the design and the reduction of clock buffers and
clock nets, core utilization improves.

• Power Reduction
Due to fewer clock tree sinks, the power of the clock network reduces.

• Easy Timing Closure
As the number of FF reduces and the MBFFs share the common clock signal,
the depth of clock tree reduces and hence, the timing violation due to skew an
insertion delay also decrease.

• Reduction in FF area
Due to the shared clock drivers and the reduction in the hold buffers due to

internal scan chains, total FF area reduces.

Fig. 1.9a shows an example of a simple clock tree network with 1-bit FFs and Fig 1.9b
with 2-bit FFs, after replacement the clock tree has fewer sinks.

(a) Clock tree with 1-bit FFs

(b) Same Clock tree with 2-bit MBFFs

Figure 1.9: Clock tree structure after MBFF generation

1.4 Motivation

For the nanometer technology nodes, the yield of the high-performance designs is of
prime importance to achieve the major objectives of timing, SI, power, and area. With
the growing complexity of the design, the designers look for alternate techniques to
enhance the performance of the design with no extra burden for the designer. To re-
duce the design effort and to cope up with the shorter product cycles, ASIC design
incorporates reuse of IP components. This integration of the various components in-
creases the product complexity and hence, affects the PPA targets. In order to stabilize
the cost function of a chip which is dependent on the PPA, the focus has shifted for
improvement in current design methodologies and the SoC design flow. The physical

design flow used in the industry incorporates single-bit FFs using EDA tools. In order
to reduce the power consumption and improve the timing closure of the design, there
is a need for an efficient methodology during physical design flow. The power saving
methods and components can be incorporated in the modern VLSI designs. Since, the
clock is considered as the major power-dissipating component of the chip, thus CTS
becomes the target of optimization for the semiconductor industry.

Chapter 2

State of the Art

This chapter highlights the work related to this study, in use by the industry and
the academia, followed by explaining the details of the issues existing in the current
methodology.

2.1 Related Work

A robust tool such as Cadence Innovus [20] is capable of timing driven placement
and routing. The latest version incorporates clock concurrent optimization for timing
optimization. It merges the clock tree synthesis with the physical optimization and si-
multaneously achieves timing convergence. Several design methodologies such as clock
gating [21], [22], power gating [23], buffer sizing [24], and MBFFs [18, 25, 26] have been
introduced to minimize the power consumption of the design due to clocking. MBFFs
proved as the promising solution for low-power designs. MBFFs have been introduced
at different stages of the design flow i.e. during RTL Mapping, during physical synthe-
sis [27] and post-placement [28].

However, it is complicated to introduce MBFFs without floorplan and placement
information as it can degrade the timing and congestion budgets. The practical indus-
trial flow infers to MBFFs at the synthesis stage with the floorplan information added
to it. This methodology benefits the designer as it reduces the chances of congestion
and timing violations in the backend ow. For more accurate timing analysis, recent
work [29, 30] applies MBFFs during the backend flow after the placement stage. How-
ever, due to the fixed combination logic cells in the design after their placement, the
number of mergeable FFs is less. Also, as the size of MBFF is more, it may cause
difficulty in placement legalization and hence congestion in the design.

2.2 Current Methodology

In the recent work [31, 32], placement optimization with clock tree aware MBFF genera-
tion has been introduced to minimize power consumption and latency of clock network.

The merging of 1-bit FFs is performed according to the clock tree topology. Through
the placement iterations, the FFs are progressively merged by referring to the origi-
nal clock tree topology. This approach offers power reduction without degrading the
performance of the design but it has limitations to address in the real designs for the
merging of the FFs. This include:

• A design can have millions of instances due to its complex functionality. If the
merging of the FFs is improper, then the complete design may suffer from con-
gestion and timing violations. As the number of FFs increases dramatically, the
need for full scenario exploration coupled with fast turn-around time is a must.

• As the designs today are vast and complex, the single chip is broken down into
a hierarchy of modules. The timing budgets are created for the whole design,
which permits the engineers to use hierarchical design methodology and work on
their modules for the timing closure. The merging algorithm has to follow the
hierarchical approach to target the FFs at the same hierarchy level.

• With gated clocks widely used in the design for dynamic power reduction, the
grouping of FFs should combine similar toggling of the clock pulse. If the merging
of a gated and non-gated driven FF takes place due to any reason, then the logic
will get affected.

• Complex clock structures due to the multitude of clocks present in the design
impose a challenge for setting up the optimistic environment for grouping the
FFs. This limits the number of FFs for merging.

• Further, SoC designers use benchmark CAD tools for the physical design flow
which target for the minimization of cost function PPA (power, performance, and
area). The integration of the algorithm with these benchmark tools will result in
huge benefits, especially when the technology is advancing to the nanometer.

To achieve proper and reliable flop merging, it is important to consider all the above-
mentioned points and modify the merging algorithms for the real designs. In this work,
MBFF generation algorithm is formulated to tackle the above-mentioned challenges of
real designs.

Chapter 3

Proposed Timing and Clock Tree
Aware Placement Flow with
Multibit Flip-Flop Generation

This chapter introduces a novel placement methodology with clock-tree aware MBFF
generation for power optimization and the corresponding proposed algorithm for FF
merging. The methodology offers an additional feature to the EDA tools to integrate
MBFFs during placement iterations with the knowledge of the clock-tree structure of
the design. Timing is considered as a strict constraint, therefore at each stage timing
is checked and hence the methodology is also timing-aware. Merging of the FFs results
in the reduction in power consumption of the design and improved routability of the
design. The proposed methodology consists of four major steps: 1) timing-driven global
placement; 2) fast CTS; 3) MBFF ECO generation and 4) timing-driven incremental
placement.

3.1 Methodology Overview

Referring to Fig. 3.1, the first step of the methodology is timing-driven global place-
ment. It generates the locations of the cells based on the minimum placement density
and minimum interconnecting wire-length (WL) criteria. Further, CTS is performed
with the initial cell locations and clock tree is generated. In order to minimize the
run-time, it is performed in the fast mode without the trial route. The merging of FFs
is done after this step when MBFF ECO is generated based on the merging conditions.
FFs are progressively merged and are replaced with MBFFs; they are placed during
timing-driven incremental placement. The process of merging is iterative and repetitive
so as to avoid congestion and timing violations. Until the largest bit number of MBFF
is achieved and no more MBFF can be applied, merging is repeated. Timing violations
are checked after the MBFF are generated, if the timing is worse than the initial global

placement timing then the MBFF corresponding to the timing violations are iteratively
disintegrated into smaller bit number FFs. At the final stage, legalized placement is
obtained with the MBFFs in the design. It is to be noted that, Cadence Innovus does
not automatically merge the FFs. Hence, the FF merging algorithm has been proposed
to find the best candidates of FFs to be merged and replaced with MBFF. Hence, the
MBFF ECO generation is integrated with the FF merging algorithm. Also, various
reports are generated at every step for the understanding of the user.

Figure 3.1: Proposed Clock Tree Aware Placement Flow with MBFFs

3.2 Steps of Methodology

In this section, the steps involved in the placement flow are explained. The placement
and CTS optimizations are done by EDA tool. However, the mode of operation of the
integrated steps such as placement and CTS is varied according to the proposed work.
The following sections elaborate the steps involved in the proposed placement flow.

3.2.1 Timing-driven global placement

In the first stage, timing-aware global placement is performed with the design netlist,
MBFF library, floorplan and timing constraints as inputs as shown in Fig. 3.2. Place-
ment is done in the timing-driven mode so that the timing violations can be tested at
an early stage. Tool efficiently fulfills the objective of minimized WL and placement
density during the placement of logic cells. The placement is done with the EDA tool
to find the best locations of the cell and to consider the two objectives of general global
placement for best trade-off.

minW (x, y) (3.1)

minD(x, y) (3.2)

where W(x,y) is the WL function of all the signal nets and D(x,y) is the placement
density function for each bin in the core.

Figure 3.2: Inputs to Timing-driven global placement stage

These are the two basic objectives, but the EDA tools use complex algorithms to
minimize the total collaborative function of these two equations, Eq. 3.1 and Eq. 3.2
so as to obtain the optimum placement with millions of cells in the real design.

3.2.2 Fast CTS

After the cells are placed and the timing is satisfied, CTS is performed. In order to
ensure that it does not incur huge run-times, it is done without trial routing. CTS
involve the following three steps:

1. Clustering
In this stage, the logic elements operated in the same clock domain or with similar
input timing registers are grouped into clusters. In the cluster based clock tree
approach, the clusters are optimized individually to meet the DRC constraints
such as maximum capacitance, maximum fan-out and maximum transition are
checked. Fig. 3.3 depicts an example of cluster formation.

(a) FFs Before Clustering (b) Formation of clusters after Clustering

Figure 3.3: Clustering during CTS

The major advantage of clustering is that the insertion delay and skew can be
planned by designers to achieve the minimum timing requirements. The register
clustering algorithms combine the logic elements after the placement is done and
continuously shrink it with respect to the target skew and the target insertion
delay. As the chip consists of both clock and the signal nets, there could be a
negative impact of clustering on the signal nets due to the movement of the reg-
isters. Moreover, it may lead to congestion or routing failure in the design.

Henceforth, due to the process variations and the requirement of timing closure,
new design methodologies are being incorporated by the EDA companies. The
algorithm for clustering is a customized cluster-based CTS for Cadence Innovus
and hence, it utilizes the best solution to improve the performance of the design
and meet the timing margins.

2. Constraint Analysis
After the clusters are formed, the timing constraints included in the SDC are

identified and their inter-relation is modeled. The skew and insertion delay tar-
gets are mapped with an additional amount of delay to satisfy these constraints.
In this step, the amount of delay to be added for balancing the clock tree nodes
is calculated under all possible scenarios.

3. Virtual Delay Balancing & Implementation
Virtual delay balancing is the methodology by which the additional delay is an-
notated on the clock nodes to achieve the solution found by constraints analysis.
The clock enters the propagated mode and thus virtual delay is the extra delay to
match the ideal mode timing and the timing due to its propagation. The virtual
delay is implemented through real physical cells loaded in the input library files.

Further, the refinement is done to achieve the best possible solution through the
real physical cells. Thus, this is the timing optimization step where the objective
is the target propagated clock timing. It maps the gap be the ideal and propagated
timing of clocks. The complete clock architecture is ready at this stage and is
passed as an input to the next stage to find the merge-able flops in the clock tree.

Fig. 3.4, shows an example of the clock tree built after CTS. In Fig. 3.4a, balanced
clock routing tree is shown and in Fig. 3.4b, corresponding levels in the clock tree are
shown. The clock tree level helps in determining the insertion delay for the particular
FF present in the level. The next step works on the synthesized clock tree generated
during this step to find the set of merge-able FFs.

3.2.3 MBFF ECO generation

Before the MBFF generation, a look-up table is generated for FF merging with the
consideration of timing, insertion delay, signal net and clock net Wl. Thus, to merge
the FFs of a particular clock tree, merge-able conditions are defined. These conditions
cater the design complexity for FF merging. Each clock tree is then checked for its
capacity to merge the FFs into MBFF. The merge-able conditions between two flops
f(i) and f(j), are derived to ensure the correct and efficient replacement of FFs to
MBFF. These are defined as:

• The merging of FFs far from each other affects the placement quality and hence, it
is required to merge FFs placed near to each other. The distance, in terms of co-
ordinates, between fi and fj should be less than a maximum set value, dist(max).
Based on Eq. 3.3, the violations due to timing and routing are constrained as the
resultant MBFF will not be very far away from its parent single-bit FFs.

dist(fi, fj) ≤ dist(max) (3.3)

(a) Clock tree structure

(b) Corresponding tree with levels

Figure 3.4: Example clock tree structure

• The two FFs are merge-able if the difference between their respective levels,
level(fi,fj), from the root is equal or less than a constant, k. In order to pre-
serve the latency of the clock-tree, FFs with close tree levels are considered to
be merge-able. The value of k cannot be too small or too large as the number of
FFs reduces after the MBFF generation. Also, the clock tree levels and the clock
net WL decreases dramatically.

Henceforth, the value of the constant k is set to be 1, to ensure maximum merging
and FF power optimization.

|level(fi)− level(fj)| ≤ k (3.4)

• As the single chip is broken down into a hierarchy of modules. The timing budgets
are created for the whole design, which permits the engineers to use hierarchi-
cal design methodology and work on their modules for the timing closure. The
merging algorithm has to follow the hierarchical approach to target the FFs at
the same hierarchy level. The candidates FFs, fi and fj, should be in the same
hierarchy level, Hi and have same pin configuration. As the clock architecture of
modern SoC designs is hierarchical, this checkpoint is compulsory to ensure the
correct merging of FFs.

• With gated clocks widely used in the design for dynamic power reduction, the
grouping of FFs should combine similar toggling of the clock pulse. If the merging
of a gated and non-gated driven FF takes place due to any reason, then the logic
will get affected. Either both or none of the candidates FFs should be gated in
the same clock-path. This condition is of utmost importance because it is difficult
to infer during placement if the resultant MBFF should be gated or not. This
decision is critical since it tends to affect the logical functionality of the module.

The algorithm 1 depicts the procedure for FF merging. At first, a particular clock
tree is selected and all its sinks are included in the database. On these sinks, the con-
ditions for merging are applied. To save the memory and to prevent extra run-time,
distance is given the first priority. Inside the circular area, of radius, dist(max), around
fi, all the clock tree sinks are taken for further analysis of merge-able conditions and are
added to a list, mergeflops. Rest all clock tree sinks are eliminated for merging with fi.
With the elimination, the analysis of the other merge-able conditions is broken down
into a smaller number of sinks. The other conditions are applied on the mergeflops. If
more than one FF satisfies all the merge-able conditions, the one with the minimum
distance from fi is the best candidate for merging.

Similarly, the method is repeated for all the sinks of the clock tree. The same
algorithm is replicated on other clock trees as well. After performing the merging algo-
rithm, the optimum solution for all FFs is obtained in the look-up table. On the basis
of the results, the merging of FFs to MBFFs is performed and the netlist with MBFFs
is generated.

3.2.4 Merging FF Combinations

Once the look-up table is generated, the weight of each FF with its candidates is
calculated and it is denoted by wfij . In the FF look-up table, the weight function from

Algorithm 1 FF Merging

1: clock trees← get clock trees()
2: for tree in clock trees do
3: clock tree sinks← collection of all sinks of clock tree
4: for sink in clock tree sinks do

calculate position of sink or fi, x and y co-ordinates
5: sink pos← calculate position()
6: sink x pos← extract x coordinate from sink pos
7: sink y pos← extract y coordinate from sink pos

calculate level of sink in clock tree
8: level(sink)← level clock tree()

create a circle of radii, dist (max) around sink with
center as (sink x pos, sink y pos)

9: candidate merge list← collection of all sinks in that region
Apply conditions one by one on list of candidates

10: for candidate in candidate merge list do
11: level(candidate)← level clock tree()
12: if (|level(fi)− level(fj)| ≤ k) && hierarchy && clock gating then

add the candidate to the look-up table
13: mergeflops← candidate
14: end if
15: end for

calculate weight of all candidates in look-up table
16: for mergeableflops in mergeflops do
17: weight sink ← calculate weight(mergeableflops)

weight is proportional to distance of the candidate from fi
18: end for

the less weight one is put in the combination table with fi
19: best to merge← min(weight sink)

fi can merge with best to merge
20: end for
21: end for

Eq. 3.5 finds the best match such that the resultant signal net WL, clock latency, and
the power consumption is minimum during MBFF generation.

wfij ∝ dist(fi, fj) (3.5)

Fig. 3.5 gives an example to illustrate the formation of MBFF based on the FF merging
algorithm. Fig. 3.5a, corresponds to the initial clock routing tree after initial timing-
driven global placement. After performing the merging algorithm, the resultant 1-bit
FF pairs are merged and are replaced by 2-bit FFs. Fig. 3.5b shows newly generated
updated clock routing tree with 2-bit FFs. The 1-bit FFs are not merged to largest
bit number FF available in the library but progressively to elude sudden change in
placement profile.

3.2.5 Timing-driven Incremental placement

After the netlist consisting of MBFFs is generated, incremental placement is done to
find the legal location of the MBFF. As the size of MBFF is larger than the single bit
FF, congestion and timing constraints can be violated hence timing-driven incremen-
tal placement performed. To ensure that the placement is legalizable and the timing
constraints are met, timing-driven incremental placement refines the locations of com-
binational cells, sequential logic cells, and the newly generated MBFFs.

It is difficult to locate a legal location for a MBFF, and could be hazardous for
the placement density constraints. Hence, to ensure a legalizable placement, Innovus
implementation system incorporates new GigaPlace which accounts for slack and skew
optimization.

In case after the MBFF generation, the timing results obtained from the incre-
mental placement are worse than those in the initial placement stage, the MBFFs are
iteratively disassembled to single-bit FFs. Once the timing slacks are improves, legal-
ized placement with MBFFs is obtained after placement legalization. Further, CTS
is performed with MBFFs and the clock routing tree is obtained. Later, the entire
physical design with MBFFs is accomplished upto route stage.

In this section, an overview of MBFF generation based on the clock tree during the
placement iterations has been described. The intent of using MBFF instead of single-
bit FF is to reduce the overall power and the net WL of the design. As explained in
the previous sections, the candidates for the merging are picked from all the scenarios
and then filtering based on the weight function as given in Eq. 3.5 takes place with the
iterative placement. The iterations in placement continue until no more MBFFs can
be generated in the clock routing tree. Clock tree is built after every MBFF forma-
tion as it lowers the risk in skew due to the movement of FFs during iterative placement.

(a) Mergeable Conditions applied to clock tree with single-bit FFs

(b) Final clock tree with newly generated MBFFs

Figure 3.5: FF merging and MBFF generation

Chapter 4

Proposed Clock Insertion Delay
Reduction Algorithm

To overcome the wire delay variations, crosstalk penalty on signal and clock nets, extra
pessimism to model the on-chip variations, a specific method to mitigate such challenges
has been identified. CID reduction is pointed out as a solution for all the above-listed
challenges. The current flow used in the industry does not target the violating inser-
tion delay clock tree sinks. However, performing the check on the violating clock nets
and the clock tree sinks can significantly improve the performance in terms of insertion
delay of the clock tree structure.

This chapter introduces a novel way to reduce CID of all or selected clocks using
intuitive and step by step approach. The methodology works on extracting the dom-
inant clock for a design and the violating clock tree sinks at the early CTS stage. It
also explains the significance of the proposed algorithm.

4.1 Algorithm Overview

Referring to the Fig. 4.1a, the flow of the proposed algorithm is illustrated and as
shown, the CID reduction algorithm is integrated with the CTS stage. Fig. 4.1b shows
the integral steps of the algorithm. The first step is to find the dominant clock in the
design after the cluster CTS. The clock termed as the dominant clock is the one with
either or all of the characteristics, which are, the one with maximum frequency or the
one with maximum number of sinks spread in the clock tree structure or the one with
the most critical path. After the analysis of clock tree and its balancing requirements,
dominant clock is identified.
The next step involves the extraction of the sinks of the dominant clock which pull the

CID to a maximum. The clock tree sinks which constrain the balancing requirements
during CTS and increase the CID to the maximum are considered as outliers in this
algorithm. After the placement is completed, a clock tree specification file is generated
that captures all the design constraints. As the clock is in the propagated mode during

(a) Physical Design Flow with CID Reduction Algorithm

(b) Integrated Steps of Algorithm

Figure 4.1: CID Reduction Algorithm Overview

CTS, thus the constraints can be infeasible. In the Fig. 4.2, it can be seen that to bal-
ance the CID of FFs with the hard macro (memory), the CID of the FFs is increased.
In Fig. 4.2a, the insertion delay of FF1-FF4 is less than that of macro blocks and in
Fig. 4.2b, the insertion delay of entire block is maximum after CTS.

(a) Before CTS Balancing cid ¡ CID of FF1-FF4

(b) After CTS balancing

Figure 4.2: Outliers in Clock Tree

Innovus does not automatically perform the analysis for the reduction of insertion
delay for clock nets. Hence, the algorithm filters the outliers from the clock routing
tree and fixes the outliers clock tree sinks for improvement in average CID.

4.2 Steps Involved in Algorithm

In this section, the integral steps of the algorithm are explained. The sub-sections
describe the method of extraction of outliers and the formation of dedicated skew-
groups of outliers.

4.2.1 Extraction of Outliers for Dominant Clock

After the Timing driven placement, the next step is the clock tree prototyping using
transition fixing only. This is similar to the cluster CTS as explained in the previous
chapter. The purpose of transition fixing in CTS is to theoretically extract the lowest
CID and to understand which clock tree sink is pulling it to maximum.

Next step is to analyze the clock tree structure and identify the dominant clock.
The approach is therefore, to find the outliers that are the root cause of increment in
CID. By the what-if analysis of the placement pin and the macro placement changes
on the sinks with maximum CID, a group of outliers can be filtered out. In the later
stage, the chip is divided into four quadrants and the outliers present in each quadrant
are extracted and grouped separately. This process is the filtration process wherein,
firstly a database of outliers is maintained and later on the basis of their positions and
the architecture of clock tree, groups are created.

4.2.2 Skew Group formation

Once the outliers groups are determined, the outliers are grouped in separate skew
groups based on their grouping in the last step. In this way, parent clock skew group’s
insertion delay targets are unblocked. With the help of a handful of outliers, each
and every clock tree sink is satisfied with the ease of its timing targets. The previously
generated clock specification file is modified automatically with the added skew groups.
The modified specification file is the input for the next stage of the algorithm. Referring
to the Fig. 4.2a, the new skew grouping is shown in the Fig. 4.3.

Figure 4.3: Skew Group Formation

4.2.3 Full CTS with Useful Skew Optimization

Outlier grouping leads to change in the timing paths of the outlier sinks to the other
sinks. One suspected result of path grouping is the timing violations either setup or
hold violations. To fix the timing violations, useful skew with CTS is conducted. This
includes violating path fixing not only by the data path changes but also with launch
or capture path or both clock path and the data path changes. This clock path change
can happen across multiple clock paths. Hence, the CTS in this stage is with useful
skew optimization.

The CTS is followed by the post-CTS optimization to further improve the setup
and hold violating paths. Post-CTS fix the remaining violations of design such as DRVs
and optimizes the timing paths as now the clocks are in propagated mode. The timing
constraints vary for post-CTS, it includes the clock uncertainty to model jitter. Fur-
ther, the routing is performed after removing the critical timing violations.

In this section, the process of filtering out the insertion delay increasing clock tree
sinks is shown. The objective of outlier filtering process is to reduce the clock insertion
delay for a design. As explained in the sections above the outliers are extracted from
all possible cases, and then the clock tree specification file is modified. The complete
CTS with useful skew optimization is performed with the updated specification file.
The run-time for picking the outliers and re-run of CTS is a rewarding trade-off. Thus,
it does not affect the run-time to a greater extent and improves the performance of
clock tree in terms of the insertion delay.

Chapter 5

Results And Discussions

In this chapter, the results obtained in the experiment have been presented and dis-
cussed. Firstly, it provides the experimental setup of the system on which the trials
have been performed. Next, specifications of design under study during the experiment
are depicted. This is followed by results obtained for the proposed placement flow and
the CID reduction algorithm at each step of the methodology.

5.1 Simulation Setup

The placement flow algorithm has been implemented on Red Hat Enterprise Linux v5.9
operating system using Cadence Innovus 15.2. Table 5.1 illustrates the specifications
of the simulation setup and Table 5.2 design specifications on which the tests are
performed.

Table 5.1: Setup for Experiment

Operating System
Red Hat Enterprise Linux Server
release 6.7 (Santiago)

Number of Processing
Cores

14

Vendor ID Intel(R) Xeon(R) CPU E5-2697

Processor Speed (GHz) 2.6

Tool Cadence Innovus(TM) v15.20-p005 1

Scripting Language TCL

Table 5.2: Specifications of Design at 28nm Technology Node

Design I Design II

Total Standard Cell
Number

186920 990416

Total Hard Macros 18 33

Total Chip Area 0.65 mmˆ2 2.07 mmˆ2

5.2 Comparison of Traditional placement flow without MBFFs
and Proposed Timing and Clock Tree aware Place-
ment Flow with MBFFs

The baseline flow and the proposed placement flow are shown in Fig. 5.1a and Fig.
5.1b respectively. All the inputs are provided at the beginning of the backend design
flow.

Table 5.3 shows the results of the comparative analysis of various attributes per-
formed on the two designs. Due to the applied merging algorithm and the MBFFs in
the design, the number of clock tree sinks decreases in both designs by 1.5%. The
number of merge-able flops for a design depends on its complexity, logic and size. As
the undertaken designs are that of secured IP and complex, the merge-ability is limited.

According to the Table 5.3 for the design I and II, the number of timing violating
paths reduces by 17.6% and 68% respectively which enables the designer for easy tim-
ing closure. Fig. 5.2 shows the improvement in the violating paths for design I and
design II. Core density improves by 9.8% and clock power reduces by 11.8% for design
I. Due to the fewer clock tree sinks, reduction in clock inverters and clock nets, the
chip utilization improves. For design II, core utilization increases by 12.8% and clock
power optimize by 9%.

Table 5.4 depicts the analysis of power consumption by the two approaches. Fig.
5.4 shows the power distribution and it is observed that reduction in power is by 50.46%
and 37.7% respectively for two designs. The results for worst negative slack (WNS) is
almost similar from the both the flows. From Fig. 5.3, the total negative slack (TNS)
for setup has improved by a considerable amount for both the designs. The perfor-
mance of the design is not degraded after the application of MBFFs because the CTS
is performed with useful skew optimization. Similarly is for the TNS for hold mode.

Consequently, the proposed timing and clock tree aware placement flow with MBFF
generation leads to improved performance of the designs in terms of chip power by 44%,
core density by 11.3% and clock power by 10.4%. Also, the corresponding FF merging
algorithm proves effective by considering the real-time design scenarios.

Table 5.3: Comparison between the Non-MBFF Flow and the Proposed MBFF Flow for
Design I and Design II

Design I Design II
Baseline

Flow
Proposed

Flow
Baseline

Flow
Proposed

Flow

of 1-bit
FFs

135623 72682 23586 17333

of 2-bit
FFs

0 1714 0 3125

of Clock
Tree Sinks

135623 133548 23586 20458

WNS (Setup)
(ns)

-0.018 -0.02 -9.637 -9.548

WNS (Hold)
(ns)

-0.001 0 -0.706 -0.447

TNS (Setup)
(ns)

-0.278 -0.183 -1007.2 -566.438

TNS (Hold)
(ns)

-0.001 0 -73.863 -22.183

Violating
Paths

91 75 1701 546

of Standard
Cell

990416 990383 186920 182342

Total Standard Cell
Area (mmˆ2)

0.854 0.853 0.17 0.16

Core Density
(%)

71.415 78.402 73.314 82.702

Total WL
(m)

26.22 26.23 4.2 4.1

Clock Power
(mW)

37.56 33.21 7.45 6.78

Table 5.4: Comparison of Power Consumption of the designs

Power
(mW)

Design I Design II
Baseline

Flow
Proposed

Flow
Baseline

Flow
Proposed

Flow

Internal 130.11 119.2 31.53 26.62

Switching 342.13 114.88 54.475 31.23

Leakage 0.024 0.023 0.0126 0.0114

Total 472.27 234.108 86.0165 57.88

(a) Baseline Flow without MBFFs (b) Placement Flow with MBFFs

Figure 5.1: Comparison of Flows without and with MBFFs

5.3 Comparison of Proposed CID Reduction Algorithm
with traditional approach of CTS

According to Table 5.5, the results of the CID reduction algorithm, average CID cuts
by 19.5.%. It can be attributed to the outlier group which was excluded from the
dominant clock group. It translates effectively into less CID of parent clock and all
associated benefits such as controlled clock tree structure and reduced WL. Thus, with
a handful of outliers, we are able to improve the rest of clock tree sinks in terms of
CID. Fig. 5.5, which shows that the for the entire design after applying the proposed
algorithm, the average CID reduces by 9.2%.

(a) Violating paths for Design I

(b) Violating paths for Design II

Figure 5.2: Comparison of the number of Violating Paths

Table 5.5: Experimental Results for Dominant Clock by CID Reduction Algorithm

Dominant Clock
Attributes

Base
Algorithm

Proposed CID
Algorithm

Minimum CID (ns) 0.954 0.740

Maximum CID (ns) 1.116 0.902

Average CID (ns) 1.078 0.868

of Inverters 1125 1078

WL after CTS (um) 201323.3 198488.836

(a) TNS for Design I

(b) TNS for Design II

Figure 5.3: Comparison of the TNS of the designs

(a) Power distribution for Design I

(b) Power distribution for Design II

Figure 5.4: Distribution of Power Consumption

Figure 5.5: Results for Clock Network CID of design after CTS

Chapter 6

Conclusion And Future Work

6.1 Conclusion

This thesis presents an effective timing and clock tree aware placement strategy with
MBFF generation and the corresponding algorithm for FF merging. It is focused on
the analysis of real-time designs and tackles all complex scenarios efciently. The pro-
posed strategy is unified with the industry EDA tool, Cadence Innovus, as a result,
it allows the designer to use benchmark platform for the physical design flow. It also
accelerates the timing closure of the design with the useful skew optimization technique
incorporated during CTS. The thesis demonstrates the impact of MBFFs on the power,
performance and area (PPA) on a SoC design.

Experimental results for the presented placement ow prove its efficiency from the
non-MBFFs traditional placement flow. This approach shows the reduction in power,
improvement in the utilization of the core for two designs without the degradation in
the design performance. For the design I, core density increases by 9.8%, clock power
decreases by 11.8% and overall total power reduces by 50.46%. For design II, core
utilization increases by 12.8%, clock power optimizes by 9% and total power for de-
sign reduces by 37.7%. In the end, the algorithm for the optimization of CID is also
presented which results in minimization of average insertion delay of the design. The
results show 9.2% reduction in the average CID of entire design after applying the
proposed algorithm. Reduction in CID infers to controlled clock structure due to the
reduction in the amount of buffer or inverter in the clock path. Controlled clock tree
architecture implies less crosstalk penalty and hence, the CRPR is in control.

Hence, this placement strategy seamlessly integrates with the EDA tools for the
physical design process and significantly optimizes the PPA.

6.2 Future Work

6.2.1 Higher-bit MBFF

The MBFF cell library in this work includes 2-bit FFs only. With the higher bit MBFFs
such as 4-bit in the MBFF library, further merging of the 2-bit FFs can be done. In-
tegrating 4-bit FFs in the library would make the power consumption even less. The
number of clock tree sinks will eventually reduce and hence the power utilization of the
chip. With higher bit MBFFs than 4-bit MBFF there could be an issue with congestion
in the design.

So the analysis of the proposed algorithms with higher bit MBFFs will lead to
improved core density and reduced power.

6.2.2 Clock Mesh Framework

Clock meshes are robust to the process variations and hence, are used by the designers
for tighter skew control, lower insertion delay and high tolerance towards OCV [33, 34].
Due to their resistance towards the variations, many EDA tools incorporated clock
mesh synthesis with the physical design flow. In some designs, mesh architectures con-
sume less power than the clock trees but in general, they can consume more power. It
is preferred for high fanout clock networks as they reduce the adverse effects of OCV
and improve the performance of the chip.

In this work, placement flow involves CTS methodology, but the physical design
flow and the proposed FF merging algorithm can also be performed with clock mesh
synthesis. The work can be extended to clock mesh framework and their power con-
sumption can also be reduced by the proposed methodology.

The clock meshes provide lower insertion delay, and it can be further reduced with
the application of the CID reduction algorithm. The results and the analysis can be
done in future for the performance of design with clock meshes.

References

[1] B. H. Lorincz, Y. , X. Li, K. Mai, L. T. Pileggi, R. A. Rutenbar, and K. L. Shep-
ard, “Digital circuit design challenges and opportunities in the era of nanoscale
cmos,” Proceedings of the IEEE, pp. 343365, Feb. 2008.

[2] H. -L. Roh, “Driving forces the technological challenges for soc development of
tomorrow,” IEEE Workshop on Signal Processing Systems, pp. 2-, Aug. 2003.

[3] S. Roy, P. M. Mattheakis, L. Masse-Navette, and D. Z. Pan, “Evolving challenges
and techniques for nanometer soc clock network synthesis,” 12th IEEE International
Conference on Solid-State and Integrated Circuit Technology (ICSICT), pp. 1-4,
Oct. 2014.

[4] R. A. Bergamaschi and J. Cohn, “The a to z of socs,” IEEE/ACM International
Conference on Computer Aided Design, pp. 791798, Nov. 2002.

[5] L. Xiu, “VLSI Circuit Design Methodology Demystified:A Conceptual Taxonomy,
Springer, 2008.

[6] J. Lu and B. Taskin, “From RTL to GDSII: An ASIC design course development
using Synopsys #x00AE University Program,” IEEE International Conference on
Microelectronic Systems Education (MSE), pp. 7275, June 2009.

[7] S. N. Adya and I. L. Markov, “Power distribution network design for VLSI,” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, vol. 11, no. 6, pp.
11201135, Dec. 2003.

[8] Q. K. Zhu, “Fixed-outline floorplanning: enabling hierarchical design, John Wiley
& Sons, Dec. 2003.

[9] B. Halpin and N. Sehgal and C. Y. R. Chen, “Detailed placement with net length
constraints,” The 3rd IEEE International Workshop on System-on-Chip for Real-
Time Applications, pp. 22-27, June 2003.

[10] L. N. Kannan and P. R. Suaris and Hong-Gee Fang, “A Methodology and Algo-
rithms for Post-Placement Delay Optimization,” 31st Conference on Design Au-
tomation, pp. 327-332, June 1994.

[11] A. Balboni, C. Costi, M. Pellencin, A. Quadrini, and D. Sciuto, “Clock skew
reduction in asic logic design: a methodology for clock tree management,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 17,
no. 4, pp. 344356, Apr. 1998.

[12] S. Borkar, “Design challenges of technology scaling,” IEEE Micro, vol. 19, no. 4,
pp. 2329, Jul. 1999.

[13] M. Dietrich and J. Haase, “Process Variations and Probabilistic Integrated Circuit
Design, Springer Science & Business Media, 2011.

[14] P. B. Ghate, “Electromigration-induced failures in vlsi interconnects,” 20th Annual
Reliability Physics Symposium, pp. 292299, March 1982.

[15] T. B. Chan, A. B. Kahng, and J. Li, “Nolo: A no-loop, predictive useful skew
methodology for improved timing in ic implementation,” Fifteenth International
Symposium on Quality Electronic Design, pp. 504509, March 2014.

[16] H. M. Chou, H. Yu, and S. C. Chang, “Useful-skew clock optimization for mul-
tipower mode designs,” IEEE/ACM International Conference on Computer Aided
Design (ICCAD) , pp. 647650, Nov. 2011.

[17] X. Man and S. Kimura, “Comparison of optimized multi-stage clock gating with
structural gating approach,” IEEE Region 10 Conference in TENCON, pp. 651656,
Nov. 2011.

[18] M. P. H. Lin, C. C. Hsu, and Y. T. Chang, “Recent research in clock power saving
with multi-bit flip-flops,” IEEE 54th International Midwest Symposium on Circuits
and Systems (MWSCAS), pp. 14, Aug. 2011.

[19] G. Prakash, K. Sathishkumar, B. Sakthibharathi, S. Saravanan, and R. Vijaysai,
“Achieveing reduced area by multi-bit flip flop design,” International Conference
on Computer Communication and Informatics (ICCCI), pp. 14, Jan. 2013.

[20] Innovus User Guide.

[21] S. K. Teng and N. Soin, “Low power clock gates optimization for clock tree dis-
tribution,” 11th International Symposium on Quality Electronic Design (ISQED),
pp. 488492, March 2010.

[22] M. P. Dev, D. Baghel, B. Pandey, M. Pattanaik, and A. Shukla, “Clock gated low
power sequential circuit design,” IEEE Conference on Information Communication
Technologies (ICT), pp. 440444, April 2013.

[23] S. Y. Chen, R. B. Lin, H. H. Tung, and K. W. Lin, “Power gating design for
standard-cell-like structured asics,” Design, Automation Test in Europe Conference
Exhibition (DATE), pp. 514519, March 2010.

[24] W. M. D. J. G. Xi, “Buffer insertion and sizing under process variations for
low power clock distribution,” 32nd Conference on Design Automation (DAC),
pp. 491496, 1995.

[25] J. T. Yan and Z. W. Chen, “Construction of constrained multi-bit flip-flops for
clock power reduction,” International Conference on Green Circuits and Systems
(ICGCS), pp. 675678, June 2010.

[26] Y. T. Shyu, J. M. Lin, C. P. Huang, C. W. Lin, Y. Z. Lin, and S. J. Chang, “Effec-
tive and efficient approach for power reduction by using multi-bit flip-flops,” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, vol. 21, no. 4,
pp. 624635, April 2013.

[27] C. Santos, R. Reis, G. Godoi, M. Barros, and F. Duarte, “Multi-bit flip-flop usage
impact on physical synthesis,” 25th Symposium on Integrated Circuits and Systems
Design (SBCCI), pp. 16, Aug. 2012.

[28] M. P. H. Lin, C. C. Hsu, and Y. T. Chang, “Post-placement power optimization
with multi-bit flip-flops,” IEEE Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems, vol. 30, no. 12, pp. 18701882, Dec. 2011.

[29] H. Moon and T. Kim, “Design and allocation of loosely coupled multi-bit flip-flops
for power reduction in post-placement optimization,” 21st Asia and South Pacific
Design Automation Conference (ASP-DAC), pp. 268273, Jan. 2016.

[30] W. Chen and J. T. Yan, “Routability-driven flip-flop merging process for clock
power reduction,” IEEE International Conference on Computer Design (ICCD),
pp. 203208, Oct 2010.

[31] C. C. Hsu, Y. C. Chen, and M. P. H. Lin, “In-placement clock-tree aware multibit
flip-flop generation for power optimization,” IEEE/ACM International Conference
on Computer-Aided Design (ICCAD), pp. 592598, Nov. 2013.

[32] M. P. H. Lin, C. C. Hsu, and Y. C. Chen, “Clock-tree aware multibit flip-flop
generation during placement for power optimization,” IEEE Transactions on Com-
puterAided Design of Integrated Circuits and Systems, vol. 34, no. 2, pp. 280292,
Feb. 2015.

[33] P. Chakrabarti, V. Bhatt, D. Hill, and A. Cao, “Clock mesh framework,” Thir-
teenth International Symposium on Quality Electronic Design (ISQED), pp. 424431,
March 2012.

[34] A. Rajaram and D. Z. Pan, “Meshworks: An efficient framework for planning,
synthesis and optimization of clock mesh networks,” Asia and South Pacific Design
Automation Conference, pp. 250257, March 2008.

	List of Figures
	List of Tables
	List of Abbreviations
	1 Introduction
	1.1 Overview of Physical Design Flow
	1.1.1 Floorplanning
	1.1.2 Placement
	1.1.3 Clock Tree Synthesis
	1.1.4 Routing

	1.2 Challenges of Clock Network in Physical Design Flow
	1.2.1 Process Variations
	1.2.2 Power Supply Variations
	1.2.3 Temperature Variations
	1.2.4 Signal Integrity Issue
	1.2.5 Timing Violations
	1.2.6 Design Complexity

	1.3 Conceptual Overview
	1.3.1 Useful Skew Optimization
	1.3.2 Multi-Stage Clock Gating
	1.3.3 Clock Insertion Delay
	1.3.4 Multi-bit Flip-Flop

	1.4 Motivation

	2 State of the Art
	2.1 Related Work
	2.2 Current Methodology

	3 Proposed Timing and Clock Tree Aware Placement Flow with Multibit Flip-Flop Generation
	3.1 Methodology Overview
	3.2 Steps of Methodology
	3.2.1 Timing-driven global placement
	3.2.2 Fast CTS
	3.2.3 MBFF ECO generation
	3.2.4 Merging FF Combinations
	3.2.5 Timing-driven Incremental placement

	4 Proposed Clock Insertion Delay Reduction Algorithm
	4.1 Algorithm Overview
	4.2 Steps Involved in Algorithm
	4.2.1 Extraction of Outliers for Dominant Clock
	4.2.2 Skew Group formation
	4.2.3 Full CTS with Useful Skew Optimization

	5 Results And Discussions
	5.1 Simulation Setup
	5.2 Comparison of Traditional placement flow without MBFFs and Proposed Timing and Clock Tree aware Placement Flow with MBFFs
	5.3 Comparison of Proposed CID Reduction Algorithm with traditional approach of CTS

	6 Conclusion And Future Work
	6.1 Conclusion
	6.2 Future Work
	6.2.1 Higher-bit MBFF
	6.2.2 Clock Mesh Framework

	References

