

 Deep Dictionary Learning

 by

 Snigdha Tariyal

 Under the Supervision of Dr. Angshul Majumdar

Indraprastha Institute of Information Technology, Delhi

July, 2016

©Indraprastha Institute of Information Technologyy (IIITD),New Delhi 2016

 Deep Dictionary Learning

 By

 Snigdha Tariyal

 Submitted

in partial fulfillment of the requirements for the degree of

Master of Technology

to

Indraprastha Institute of Information Technology Delhi

July, 2016

i

Certificate

This is to certify that the thesis titled “ Deep Dictionary Learning ” being

submitted by Snigdha Tariyal to the Indraprastha Institute of Information

Technology Delhi, for the award of the Master of Technology, is an original

research work carried out by him under my supervision. In my opinion, the

thesis has reached the standards fulfilling the requirements of the regulations

relating to the degree.

The results contained in this thesis have not been submitted in part or full to

any other university or institute for the award of any degree/diploma.

July, 2016 Dr. Angshul Majumdar

Department of Electronics and Communication

 Indraprastha Institute of Information Technology Delhi

New Delhi 110 020

ii

Contents

Certificate ………………………………………………………………………………… i

Acknowledgements……………………………………………………………………….iii

Abstract……………………………………………………………………………………..iv

List of Figures……………………………………………………………………………...v

List of Tables……………………………………………………………………………….vi

1. Introduction…………………………………………………………………………..1

1.1. Thesis Roadmap…………………………………………………………..3

2. Dictionary Learning and Deep Learning – an Overview…………………5

2.1 Dictionary Learning………………………………………………………...5

2.1.1. K-SVD………………………………………………………………………8

2.1.2. Sparse Representation based Classification (SRC)………………10

2.1.3. Label Consistent KSVD (LCKSVD)…………………………………..11

2.2 Deep Learning………………………………………………………………..13

2.2.1 Motivation…………………………………………………………………13

2.2.2 Deep Architectures……………………………………………………..14

2.2.2.1 Deep Boltzmann Machines……………………………………14

2.2.2.2 Stacked Autoencoders………………………………………….17

3. Deep Dictionary Learning…………………………………………………………20

3.1 Overview…………………………………………………………………………..20

3.2 Initialization of Dictionary…………………………………………………….23

3.3 Activation Function……………………………………………………………..25

3.4 Algorithm 1 : Deep Dictionary Learning…………………………………...26

 3.4.1 Algorithm for Training and Testing…………………………………...28

3.5 Algorithm 2 : Robust Deep Dictionary Learning………………………....29

 3.5.1 Split-Bregman Algorithm………………………………………………..30

iii

 3.5.2 Algorithm for Training and Testing…………………………………31

3.6 Going Deep in Dictionary Learning……………………………………….33

4. Deep Dictionary Learning on Images………………………………………..35

4.1 Data Description……………………………………………………………….35

4.1.1 MNIST……………………………………………………………………..35

4.1.1.1 Experimental Results on MNIST and its variations……….37

 4.1.2 USPS……………………………………………………………………….40

 4.1.2.1 Experimental Results ……………………………………………40

4.2 Effect of Deep Learning……………………………………………………….43

5. Deep Dictionary Learning on Hyperspectral Images…………………..45

 5.1 Hyperspectral Data…………………………………………………………….46

 5.2 Data Description……………………………………………………………….47

 5.2.1 Indian Pines…………………………………………………………..47

 5.2.2 Pavia University………………………………………………………49

 5.3 Input Features………………………………………………………………….50

 5.4 Experimental Results…………………………………………………………52

 5.5 Effect of Deep Learning……………………………………………………….59

Bibliography……………………………………………………………………………63

iv

Acknowledgement

I would like to thank many people who helped me along my path to writing this

thesis.

I would like to express my deepest gratitude to my thesis advisor , Dr Angshul

Majumdar, for taking me under his wings, encouraging me and running a lab

where all the students are free to explore creative ideas.

I sincerely thank all my professors in IIITD for the courses they taught, and to

IIITD ,in general, for providing best facilities , quality education and a fun and

intellectual atmosphere.

Several members of the SALSA Lab provided me with invaluable suggestions

time to time. I would especially like to thank Protim Bhattacharjee , Hemant

Aggarwal and Anupriya Gogna for their insightful comments and critical

reviews.

A special thanks to all my friends for their patience and support when I

doubted myself.

Above all, I would like to thank my family for being the pillar of my life. I thank

my parents and brother for guiding me through life, filling me with positive

energy and encouraging me to pursue my dreams.

v

Abstract

This Thesis focuses on combining the two well researched concepts of

representation learning – Dictionary Learning and Deep Learning. These two

learning paradigms have been known for long. Ever since, plethora of papers

have been published for both the paradigms for solving inverse problems and

for prediction problems. While dictionary learning focuses on learning “basis’’

and “features’’ by matrix factorization, deep learning focuses on extracting

features via learning “weights’’ or “filter’’ in a greedy layer by layer fashion.

While dictionary learning is shallow learning, deep learning methods are data

hungry. This Thesis merges these two learning methodologies and proposes a

new learning method referred to as Deep Dictionary Learning which tries to

eliminate the disadvantages of the two. The proposed learning method learns

multiple levels of representations using dictionary learning that correspond to

different levels of abstraction; the levels form a hierarchy of linear/non-linear

transformations.

On the above described strategy, two deep dictionary learning methods have

been proposed in this thesis. Algorithm 1 is the deep dictionary learning

method while Algorithm 2 is the robust version of algorithm 1, referred to as

Robust Deep Dictionary Learning. Algorithm 2 consists of an additional

denoising layer at the top most level for the purpose of generating useful

representations even with noisy data.

The proposed techniques are compared with other learning approaches such as

Stacked Auto Encoder, Deep Belief Network, LCKSVD1 and LCKSVD2 on

benchmark datasets in the presence and absence of impulse noise of varying

amounts. The classification performance of the proposed technique achieves

higher or at par accuracies for both the cases. On a real world problem of

hyperspectral image classification, it is observed that the proposed deep

dictionary learning methods performs at par with other learning techniques

with much less complexity and time in both, the absence and the presence of

shot noise.

Also, the effect of going deep in dictionary learning versus shallow learning is

discussed and shown experimentally.

vi

List of Figures

Figure 1 : Synthesis Dictionary Learning…………………………………………..9

Figure 2: Restricted Boltzman Machine…………………………………………...15

Figure 3 : Deep Boltzman Machine…………………………………………………16

Figure 4: Single layer Autoencoder………………………………………………….17

Figure 5 : Stacked Autoencoder……………………………………………………..18

Figure 6 : Schematic Diagram for Dictionary Learning………………………...21

Figure 7: Schematic Diagram for Deep Dictionary Learning for two layers..21

Figure 8: Greedy Layer-wise Dictionary Learning………………………………..23

Figure 9 : sigmoid function & tanh function ……………………………………..25

Figure 10 : MNIST dataset……………………………………………………………..35

Figure 11 : USPS dataset………………………………………………………………40

Figure 12: Hyperspectral Datacube………………………………………………….47

Figure 13 : a) False color image of Indian Pines (band 50,27,17)…………….49

 b) Ground truth representing 16 crop cases

 Figure 14: a) False-color image of Pavia, Italy (Band 10, 27, 46) ……………49

 b) Ground truth representing 9 land-cover classes.

Figure 15: Spectral vector of Hyperspectral Features……………………….…..50

Figure 16: Spatial Vector of Hyperspectral Features………………………….…51

Figure 17: Spectral Spatial Vector of Hyperspectral Features…………….......52

Figure 18,19,20,21: Graph for Classification Accuracy for Case 2(A).…….…61

Figure 22,23,24,25: Graph for Classification Accuracy for Case 2(B)…….….62

vii

List of Tables

Table 3.1: Training Algorithm for Deep Dictionary Learning…………………..28

Table 3.2: Testing Algorithm for Deep Dictionary Learning…………………….29

Table 3.3: Training Algorithm for Robust Deep Dictionary Learning…………31

Table 3.4: Testing Algorithm for Robust Deep Dictionary Learning…………..32

Table 4.1: Classification accuracy on MNIST and its variants
for proposed methods…………………………………………………………………....37

Table 4.2: Classification accuracy on MNIST and its variants
for proposed methods with added impulse noise of 10% to

training and testing sets…………………………………………………………………38

Table 4.3: Classification accuracy on MNIST and its variants

for proposed methods with added impulse noise of 20%
 to both training and testing sets………………………………………………………39

.
Table 4.4: Classification accuracy on MNIST and its variants
for proposed methods with added impulse noise of 30%

to both training and testing sets……………………………………………………….39

Table 4.5: Classification accuracy on USPS for proposed methods

 with SVM as classifier……………………………………………………………………..40

Table 4.6: Classification accuracy with added 50% impulse noise
to training samples and testing samples for proposed methods
 using KNN as classifier……..41

Table 4.7: Classification accuracy with added 60% impulse noise

to training samples and testing samples for proposed methods using KNN
classifier……………………………………………………………………………………. 42

Table 4.8: Classification accuracy with added 70% impulse noise
to training samples and testing samples for proposed methods
using KNN as classifier…………………………………………………………………. 42

Table 4.9: Classification accuracy with added 50% impulse noise

to testing samples for proposed methods using KNN as classifier……………. 42

Table 4.10: Classification accuracy with added 60% impulse noise

viii

 to testing samples for proposed methods using KNN as classifier…………… 43

Table 4.11: Classification accuracy with added 70% impulse noise

to testing samples for proposed methods using KNN as classifier…………….. 42

Table 4.12: Classification accuracy on USPS and MNIST and

 its variations for Shallow vs Deep learning for proposed methods……………..44

Table 5.1: Groundtruth classes of Indian Pines along with

the sample number of each class……………………………………………………….48

Table 5.2: Groundtruth classes of Pavia University along
with the sample number of each class…………………………………………………50

Table 5.3: Classification accuracy with 10% training samples and
90% testing samples for proposed methods using KNN as classifier……………53

Table 5.4: Classification accuracy with 20% training samples and
80% testing samples for proposed methods using KNN as classifier……………54

Table 5.5: Classification accuracy with added noise to 10% training
samples and 90% testing samples for proposed methods using KNN

 as classifier…………………………………………………………………………………..55

Table 5.6: Classification accuracy with added noise
to 20% training samples and 80% testing samples for
proposed methods using KNN as classifier……………………………………………55

Table 5.7: Classification accuracy with added noise to
 10% training samples and 90% testing samples for

proposed methods using KNN as classifier……………………………………………56

Table 5.8: Classification accuracy with added noise to
 20% training samples and 80% testing samples for
 proposed methods using KNN as classifier…………………………………………..56

Table 5.9: Classification accuracy with added noise to
 10% training samples and 90% testing samples for

 proposed methods using KNN as classifier…………………………………………..56

Table 5.10: Classification accuracy with added noise to
20% training samples and 80% testing samples for
proposed methods using KNN as classifier………………………………………......57

Table 5.11: Classification accuracy with 10% training samples

and added noise to 90% testing samples for proposed methods

ix

using KNN as classifier………………………………………...................................57

Table 5.12: Classification accuracy with 20% training samples

and added noise to 80% testing samples for proposed methods
using KNN as classifier……………………………………….................................57

Table 5.13: Classification accuracy with 10% training samples
and added noise to 90% testing samples for proposed methods

using KNN as classifier……………………………………….................................58

Table 5.14: Classification accuracy with 20% training samples

 and added noise to 80% testing samples for proposed methods
using KNN as classifier……………………………………….................................58

Table 5.15: Classification accuracy with 10% training samples
and added noise to 90% testing samples for proposed methods

using KNN as classifier……………………………………….................................58

Table 5.16: Classification accuracy with 20% training samples

and added noise to 80% testing samples for proposed methods
using KNN as classifier……………………………………….................................59

Table 5.17: Classification accuracy on Indian Pines for
Shallow vs Deep learning for proposed methods………………………………….59

Table 5.18: Classification accuracy on Pavia University for
Shallow vs Deep learning for proposed methods………………………………….60

Page | 1

1│Introduction

With the dramatic increase in the size of the data, the resourcefulness of such

information is dependent on how well any knowledge can be extracted from it.

We are moving towards the idea of extracting and organizing discriminative

information from the data. Recently, there has been growing interest in

learning models based on domain knowledge and applications. The

performance of any learning algorithm nowadays depends heavily on the

features or data representation on which they are applied on. For that reason,

much of the actual effort in learning algorithms goes into the design of

preprocessing pipelines and data transformations that result in a

representation of the data that can support effective learning. This thesis is

about representation learning, i.e., learning representations of the data that

make it easier to extract useful information when building classifiers or other

predictors[7]. Representation learning algorithms have been applied to many

area such as Speech recognition, object recognition, natural language

processing etc.

In representation learning paradigm, dictionary learning has generated a lot of

interest. The concept of dictionary learning has been around for much longer

when the researchers were using the term ‘matrix factorization’. The goal was

to learn an empirical basis from the data. It basically required decomposing the

data matrix to a basis / dictionary matrix and a feature matrix; hence the

name ‘matrix factorization’. In recent years, the idea of the adaptivity has been

exploited to design the dictionary specifically optimized for the target dataset.

This was the alternative from the reliant, tried and tested off the shelf

dictionaries .The data adaptive approach claims to be more efficient in

facilitating better learning thus leading to better interpretation of the data [7]. A

Page | 2

reasonably-sized learned representation can capture a huge number of possible

input configurations.

Dictionary learning can be used both for unsupervised problems (mainly

inverse problems in image processing) as well as for problems arising in

supervised feature extraction[6].

Prior studies on dictionary learning (DL) are, generally, ‘shallow or surface’

learning models just like a restricted Boltzmann machine (RBM) [4] and

Autoencoder (AE) [5]. In DL, the cost function is Euclidean distance between

the data and the representation given by the learned basis and a sparse

representation; for RBM it is Boltzmann energy; whereas for AE, the cost is the

Euclidean reconstruction error between the input data and the decoded

representation/features [6].

Almost at the same time, one new parameter in learning paradigm gained

popularity. The parameter was ‘Depth’ . It paved way for another representation

learning paradigm- Deep Learning. Deep Learning means constructing multiple

levels of representation or learning a hierarchy of features. The depth of the

architecture is the length of the longest path from an input node to an output

node[7]. Deep Belief Network (DBN) is formed by stacking one RBM after the

other [8,9]. Similarly, Stacked Autoencoder (SAE) are created by one AE

followed by the other [10,11].

The advantages of Deep learning are [7] :

(1) promotion of re-use of features,

(2) a sufficiently deep architecture can potentially lead to more abstract

features at higher layers of representations .

 Deep architectures are often challenging to train effectively and this has been

the subject of much recent research and progress [7].

 Inspired from both the feature learning strategies, in this thesis, we propose to

learn multi-level deep dictionaries. Our objective here is to learn the better

representation of the data which then is used in forming deep architectures.

Page | 3

The learning of deep representations can be divided into two aspects:

unsupervised feature learning and supervised deep learning. The thesis

proposes the unsupervised deep learning which generates features at the

output. A hierarchy of features is learnt one level at a time, using unsupervised

dictionary learning to learn a new linear/non-linear transformation at each

level composed with the previously learned representations. Finally, the

representations from the last layer can be given as input to any classifier for

the task of classification or simply used for other purposes such as denoising

and likes.

It is many times argued that multiple levels of dictionaries can be collapsed to

a single level dictionary. However such a collapsed shallow dictionary will not

be the same as the proposed deep dictionary learning. This is because

dictionary learning is a bi-linear problem. Had it been linear the architecture

would have been collapsible; since it is not, the shallow and the deep

architectures will not be equivalent [6]. There are few results in the Thesis that

will prove so.

1.1 Thesis Roadmap

Chapter 2 - Dictionary Learning and Deep Learning –an Overview

The motivation and overview of the existing approaches for Dictionary Learning

and Deep Learning.

Chapter 3 – Deep Dictionary Learning

The proposed deep Dictionary Learning Algorithms inspired from dictionary

learning and deep learning strategy are explained and explored by

mathematical formulations

Chapter 4 – Deep Dictionary learning on Images

Experimental evaluation of benchmark dataset MNIST and handwritten dataset

USPS for classification and few results for denoising. The results are compared

with State-of-the-art techniques such as SAE and DBN.

Page | 4

Chapter 5 – Deep Dictionary learning on Hyperspectral Images

Experimental evaluation of Hyperspectral dataset Indian Pines and Pavia

University for classification and few results for denoising with realistic scenario

of ratio of training and testing being 10:90 and 20:80 .The results are

compared with State-of-the-art techniques such as SAE and DBN.

Page | 5

2│Dictionary Learning and Deep

 Learning – an Overview

The surging interest in various ‘Learning’ techniques due to explosive growth in

volumes and varieties of available data, cheaper and more powerful

computational processing , and affordable data storage has led to the

popularity of Dictionary Learning. The technique is especially evolving for

numerous low-level tasks such as denoising [12], texture synthesis [13], and

audio processing [14] as well as higher-level tasks such as Classification [15].

Recent Dictionary Learning techniques allow flexibility of basis vectors to adapt

the representation to the data rather than fixed basis. Advancement in learning

procedures has led to unsupervised as well as supervised Dictionary Learning

algorithms.

2.1 Dictionary Learning

Dictionary Learning is essentially the technique to learn the (often linear)

combination of basis elements, the so-called atoms, to adapt it to specific data.

The collection of these atoms is called a dictionary .Early studies in Dictionary

learning focused on learning only basis for representation. Usually the

dictionary is initialized using randomly selected elements from data itself.

The approximation of the data can be written as :

 X DZ … (1)

where X = [x1 , x2 , x3 ,…… xn] , xi ϵ Rm , set of data vectors

 Z = [z1 , z2 , z3………zn] ϵ RpXn , representation coefficients

 D = [d1 , d2 , d3……..dp] ϵ RmXp , set of basis vectors called Dictionary

Page | 6

The learning problem was formulated as unconstrained Euclidean cost

function measuring the quality of representation of the data. The Method of

Optimal Directions [16] was used to learn the Dictionary :

2

,
min

FD Z
X DZ … (2)

where ,

1 1

* *
m n

i j

i j 

 , also called the Frobenius Norm of the Matrix.

Equation (2) is easily solved using alternating minimization [20]. In every

iteration, the first step is to update the coefficients through least squares

assuming D is fixed and the next step is to update the dictionary through least

squares assuming the coefficients are fixed. This alternating update of

dictionary and coefficients continues till the algorithm converges to some local

minima.

Before the data driven dictionaries were widely accepted , the general practice

was to use off-the shelf fixed dictionaries, e.g. local Discrete Cosine Transform

(DCT) [1], Wavelets [2,3] , Curvelets [17,18], and Wedgelets [19]. The advantage

of such basis from a computational point of view is that they compute the

representation coefficients by calculating a scalar product between the input

data and the dictionary atoms i.e faster transforms, though their main

disadvantage is limiting the choice of atoms and thus sometimes not enough

representation of the data.

Equation (2) is also known as Matrix Factorization. There are no constraints on

the loading coefficients. The dictionary, D defined above can be

"undercomplete" if m > p or "overcomplete" if m < p. With the Overcomplete

dictionaries the condition for the atoms to be orthogonal is relaxed thus

allowing for more flexible dictionaries and richer data representations.

Page | 7

More recent works have focused on representing data vectors as linear

combinations of few elements from dictionary, introducing the concept of

sparsity (solutions having a minimum number of nonzero elements) [21,22].The

focus is now shifted on how to sparsely encode a signal given the dictionary i.e.

Z needs to be sparse. If the dictionary is large and rich enough in

representational power, data can be matched to a very few (perhaps even just

one) dictionary atom(s).

 Figure 2: Synthesis Dictionary Learning

The framework can be written as :

2

0,
min .

FD Z
X DZ s t Z   ….(3)

Here Z is τ sparse and
0

Z is the l0- norm of a vector which counts the no. of

non-zero elements in it. l0- minimization is regarded by computer scientist as an

NP-hard problem [24], simply says that it’s too complex and almost impossible

to solve. Greedy techniques are available for solving such problems. Popular

among them are Orthogonal Matching Pursuit (OMP) [23] and its variants [25-

27]. However, In many cases, l0 -minimisation problem is relaxed to be a

higher-order norm problem such as l1 – minimization. For a ‘n’ dimensional

vector X ,the l1 – norm is defined as
1

n

ii
x

 .

Now the problem becomes convex and thus the optimization is of the following

form :

2

1,
min .

FD Z
X DZ s t Z   ….(4)

Page | 8

We solve Equation (4) by relaxing the constraint via the Lagrangian method

and thus can be re-written as:

2

1,
min

FD Z
X DZ Z   ….(5)

Where λ is the Langrangian multiplier. We then solve for sparse representation

(Z) and Dictionary (D) iteratively. Given D, estimating Z reduces to the sparse

coding problem. For sparse coding, Equation (5) is known as LASSO (Least

Angle Shrinkage and Selection Operator) [28]. The literature is vast for l1

minimization techniques like soft-thresholding based methods [29,30],

reweighted-l2 methods [31] etc. Given Z, estimating D is a least squares

problem.

There has been significant interest in finding sparse solutions to the signal

representation problem.Experiments have shown that such a model with

sparse decompositions (sparse coding) is very eff ective in many applications.

Dictionary Learning and Sparse coding are used interchangeably now.

Over the years many Algorithms for data-driven learning of dictionaries have

been proposed. Following is a brief review of a few of them:

2.1.1 K-SVD

One of the pioneering work in Dictionary Learning is the K-SVD method [22].

The Algorithm learns an over-complete dictionary as well as the sparse

representations of the patches under that dictionary in an alternating

minimization framework.

 Fundamentally, it solves a problem of the form:

2

1,
min .

FD Z
X DZ s t Z   …(6)

Page | 9

In Equation (6), X is the matrix of vectored training data and D is the learnt

dictionary and matrix Z represents the coefficients and column sparse. If n is

the number of training samples, then X has the dimension of mxn, dictionary

has a dimension of m x p, with m << p and Z has a dimension of m x n.

Equation (6) is solved in two steps. The update of the dictionary columns is

combined with an update of the sparse representations, thereby accelerating

convergence[22]. The K-SVD algorithm is flexible and can work with any

pursuit method (e.g., basis pursuit, FOCUSS, or other matching pursuits)[31-

34].

In the first stage it learns the dictionary and in the next stage it uses the

learned dictionary to sparsely represent the data. Solving the l0-norm

minimization problem is NP hard [24]. K-SVD employs the greedy (sub-optimal)

orthogonal matching pursuit (OMP) [23] to solve the l0 -norm minimization

problem approximately with predetermined sparsity. In the dictionary learning

stage or codebook update stage, K-SVD proposes an efficient technique to

estimate the atoms one at a time using a rank one SVD update with sparsity

constraints[22]. Such dictionary learning methods have achieved state of the

art performances both synthetic and real images in applications such as filling

in missing pixels and compression and outperforms alternatives such as the

Stationary wavelet transform and overcomplete or unitary DCT. [35-38]

The major disadvantage of K-SVD is that it is a relatively slow technique owing

to its requirement computing the SVD (singular value decomposition) in every

iteration.

Over the years Dictionary learning has been extensively used in the field of

Image denoising[38] , Additive noise removal (low light), Multiplicative noise

removal, Video denoising , Image restoration , Image inpainting [39] , image

half-toning , Block Artifact removal and likes. The expanding learning scenario

introduced Dictionary learning to Classification tasks as well. The Dictionary

learning for classification can be supervised , unsupervised or semi-supervised.

Page | 10

The dictionary learning formulation in equation (6) is unsupervised. There is a

large volume of work on supervised dictionary learning problems like Sparse

Representation Classifier (SRC), Discriminative KSVD (DKSVD) and Label

Consistent KSVD (LC-KSVD).

2.1.2 Sparse Representation based Classification (SRC)

Sparse Representation based Classification (SRC) [40] is not much of a

“dictionary learning technique”, but a simple dictionary design problem where

all the training samples are concatenated in a large dictionary.

Among all the atoms in an over complete dictionary, the sparse representation

selects the subset of the atoms which most compactly expresses the input

signal and rejects all other less compact representation. Therefore, the sparsest

representation of a signal is naturally discriminative and can be developed for

signal classification purpose. Sparse representation classifier is a

nonparametric learning method which can directly predict or assign a class

label to a test sample based on dictionary composed of training samples[6].

In sparse representation classifier, the dictionary is constructed from training

samples from various classes. The jth class training samples are arranged as

column of a matrix Dj as shown :

 ,1 ,2 ,.......... jmxn

j j j j nD d d d R    …(7)

where dj,i denotes the training sample belonging to the jth class and nj is

number of training samples belonging to jth class. The dictionary, D is form

using all the dictionary from each class as shown:

  1 2 mxn

cD D D D R 
 …(8)

Where
1

c

jj
n n


 and c is the number of classes.

Page | 11

The entries of Z that corresponds to the class which the test sample D belongs

to is expected to be nonzero while the entries of that corresponding to other

classes is expected to be zero. The minimization problem is then casted as :

2

1,
min .

FD Z
X DZ s t Z  

 …(9)

And solved by relaxing the constraint by Langrangian multiplier method :

2

1,
min

FD Z
X DZ Z  

 …(10)

Equation 10 is a LASSO problem and can be solved using spectral projected

gradient method, SPGL1 toolbox or other available methods. The minimum of

the representation error or the residual error of class c is calculated by keeping

the coefficients associated with that class and while setting the other entries to

zero. This is done by introducing a characteristic function,  as :

2

() ()c j jr x x D z   …(11)

where rc(x) denotes the residual error. The vector  has value one at locations

associated to the class j and zero for other entries. The class, d, of the test

signal, D is computed as the one that produces smallest residual error.

 min ()j
j

d r x

Sparse representation for classification was first introduced in 2009 in face

recognition research and since then been quite popular.

2.1.3 Label Consistent KSVD (LC-KSVD)

The label consistent KSVD is one of the more recent techniques for learning

discriminative sparse representation. It is simple to understand and

implement; it showed good results for face recognition [41,42].

The first technique is termed as Discriminative K-SVD [41] or LC-KSVD1 [42];

it proposes an optimization problem of the following form:

2 2 2

1 2 31, ,
min

F F FD Z A
X DZ D Z Q AZ     …(12)

Page | 12

Here, Q is the label of the training samples; it is a canonical basis with a one

for the correct class and zeroes elsewhere. A is a parameter of the linear

classifier. It forces the signals from the same class to have very similar sparse

representations (i.e., encouraging label consistency in the resulting sparse

codes), which results in good classification performance even using a simple

linear classifier.

A second formulation is proposed that adds another term to penalize the

classification error. Classification error is introduced as a term in the cost

function for dictionary learning to make the dictionary optimal for

classification.The LC-KSVD2 [42] formulation is as follows:

2 2 2 2

1 2 3 41, ,
min

F F F FD Z A
X DZ D Z Q AZ H WZ       …(13)

Here Hi is a ‘discriminative’ sparse code corresponding to an input signal

sample, if the nonzero values of Hi occur at those indices where the training

sample Xi and the dictionary item dk share the same label. W denotes the

classifier parameters. Basically this formulation imposes labels not only on the

sparse coefficient vectors Zi’s but also on the dictionary atoms[6].

The dictionary learned in this way is adaptive to the underlying structure of the

training data (leading to a good representation for each member in the set with

strict sparsity constraints), and generates discriminative sparse codes Z and

addresses the desirable property of the discriminability of classifier

construction regardless of the size of the dictionary. These sparse codes can be

utilized directly by a classifier. The discriminative property of sparse code Z is

very important for the performance of a linear classifier [6].

Prior studies on dictionary learning (DL) are, generally, ‘shallow’ or ‘surface’

learning models . Almost at the same time, when dictionary learning started

gaining popularity, researchers in machine learning observed that better (more

abstract and compact) representation can be achieved by going deeper in a

Page | 13

neural network architecture. Deep Belief Network (DBN) is formed by stacking

one RBM after the other [8,9]. Similarly, stacked autoencoder (SAE) are created

by one AE followed by the other [10,11].

2.2 Deep Learning

Deep learning is a recently popular research topic in the machine learning

research community. The successful applications in the direction of many

fields such as Automatic Speech recognition, Image recognition,

Bioinformatics, Natural language processing, Recommender system are all to

do with the advantage of deep learning acting as a good feature representation

method.

2.2.1 Motivation

Most of the conventional data representations are all in the form of handcrafted

features, which are too heuristic to be adaptive to the various input data. Many

feature learning methods try to use human prior knowledge to improve the

performance. However, these features have limited performance in terms of

obtaining discriminative information from the input data. In deep

architectures, according to the target in the output layer, this deep learning

process can help to learn a more representative model. For instance, the model

could have edge detectors in the first layer, more abstract feature in the second

layer, and then succeeding layers with more abstract features. Thus high-level

abstractions in data is modeled by using a deep architecture with multiple

processing layers, composed of multiple linear and non-linear transformations.

Owing to the commercial profits foreseen, technology giants, such as Google,

Chinese search company, Baidu ,Facebook and Apple, have started actively

pursuing research in this area.

Page | 14

2.2.2 Deep Architectures

Deep Learning uses a cascade of many layers of linear/nonlinear

processing units for feature extraction and transformation. Each successive

layer uses the output from the previous layer as input. The algorithms may

be supervised or unsupervised .The foundation is based on the (unsupervised)

learning of multiple levels of features or representations of the data. Higher

level features are derived from lower level features to form a hierarchical

representation.It learns multiple levels of representations that correspond to

different levels of abstraction; the levels form a hierarchy of concepts. It also

appears sensible to learn simple representations first and higher-level

abstractions on top of existing lower level ones. In place of randomly initialized

parameters, this representation forms the initialization – a catalyst to learn

meaningful representations – for the subsequent learning phase[6].

2.2.2.1 Deep Boltzmann Machines

Restricted Boltzmann Machines [8,9] are undirected models that use stochastic

hidden units to model the distribution over the stochastic visible units. The

hidden layer is symmetrically connected with the visible unit and the

architecture is restricted” as there are no connections between units of the

same layer. Traditionally, RBMs are used to model the distribution of the input

data p(x).

Consider a binary RBM with a visible input layer X and a latent/hidden layer

H. The input layer contains I dimensions corresponding to the size of the input

vector. The latent layer has J latent variables. Additionally, there are offset (or

bias) units, x0 and z0, that are permanently set to one. The layers are

associated by an undirected weight matrix W, such that every input unit i is

connected to every latent variable j via wij.

Page | 15

The schematic diagram of RBM is shown in Fig. 2

 Figure 2: Restricted Boltzman Machine

The objective is to learn the network weights (W) and the representation (H).

This is achieved by optimizing the Boltzmann cost function given by:

(,)(,) E W Hp W H e

 …(14)

Where  , TE W H H WX  including the bias terms. Assuming independence,

the conditional distributions are given by :

 () ()p X H p x h

 () ()p H X p h x

Given an input vector, the activation probabilities of the latent units can be

sampled:

0

1
(1 ;)

1 exp()
i I

ij ii

p h x W
w x



 
 

 = ()sigm Wx

While the input units can be sampled from the latent/hidden vector with a

symmetric decoder:

0

1
(1 ;)

1 exp()
i J

ij jj

p x h W
w h



 
 

 = ()Tsigm W h

Page | 16

Computing the exact gradient of this loss function is almost intractable.

However, there is a stochastic approximation to approximate the gradient

termed as contrastive divergence gradient. A sequence of Gibbs sampling based

reconstruction, produces an approximation of the expectation of joint energy

distribution, using which the gradient can be computed.

Usually RBM is unsupervised, but there are studies where discriminative

RBMs are trained by utilizing the class labels [43]. There are also RBMs which

are sparse [44]; the sparsity is controlled by firing the hidden units only if they

are over some threshold. Supervision can also be achieved using sparse RBMs

by extending it to have similar sparsity structure within the group / class [45].

Deep Boltzmann Machines (DBM) [46] is an extension of RBM created by

stacking multiple hidden layers on top of each other (Fig. 2). DBM is an

undirected learning model and thus it is different from the other stacked

network architectures in which each layer receives feedback from both the top-

down and bottom-up layer signals. This feedback mechanism helps in

managing uncertainty in learning models.

 Figure 3 : Deep Boltzmann Machine

Page | 17

2.2.2.2 Stacked AutoEncoder (SAE)

The quintessential example of a representation learning algorithm is the

Autoencoder[10,11]. The network is trained to reconstruct its inputs, which

forces the hidden layer to try to learn good representations of the inputs. They

are trained to reconstruct their own inputs. An autoencoder consists of three

layers: i) an input layer , ii) an encoding layer (hidden layer) that maps the

input data into a latent representation, and iii) a decoding layer that maps the

learnt representation back into the original data.

For a given input vector (including the bias term) x, the latent code or variable

is expressed as:

 h Wx

Here, the rows of W are the link weights from all the input nodes to the

corresponding latent node. Usually the mapping function(Ф) is non-linear at

the output of the hidden nodes leading to:

 Figure 4: Single layer Autoencoder

 ()h W x b  …(15)

W is the weight matrix and b is the offset vector. Although a non-linear

function is popularly used, a linear activation functions is also used sometimes

depending on input x [10].

Page | 18

The decoder reverse maps the latent variables to the data space.

 x W h b  

 Or,)x W W x b b     …(16)

During training, the problem is to learn the encoding and decoding weights – W

and W’. These are learnt by minimizing the Euclidean cost:

2

,
min ())

FW W
X W W X b b


     …(17)

The problem in Equation (17) is clearly non-convex, but as the activation

function is generally smooth and continuously differentiable, it can be solved

by gradient descent techniques.

The idea of autoencoders was extended to deep and thus Stacked autoencoders

were introduced. Stacked/Deep autoencoders have multiple hidden layers –

one inside the other (see Fig. 4). The corresponding cost function is expressed

as follows in Equation 18:

 Figure 5 : Stacked Autoencoder

1 1

2

.. , ...

min ()
n n

F
W W W W

X g f X
 

 …(18)

Where
1 2

1 1

(.... (())

((..... ()))

n

n n

g W W W f X and

f W W W X

   

   
 …(19)

Page | 19

Solving the complete problem (17) is computationally challenging. Also learning

so many parameters (network weights) lead to over-fitting. To address both

these issues, the weights are usually learned in a greedy layer by layer fashion.

The process of finding these initial weights is often referred to as pre-training.

After finding the deviation of input from the output, error is backpropagated

through the network and weights are updated. As errors are backpropagated to

through the layers, they are minimized. Thus the network almost always learns

to reconstruct the average of all the training data.

There are several variations to the basic autoencoder architecture like

Denoising Autoencoder[11], Sparse Autoencoder[61,62] and Variational

Autoencoder.

Stacked denoising autoencoder [11] is a variant of the basic autoencoder where

the input consists of noisy samples and the encoder and decoder are learnt to

reconstruct the original input.

 Another variation for the basic autoencoder is to regularize it, i.e.

1 1

2

.. , ...

min () (,)
n n

F
W W W W

X g f X R W X
 

  …(20)

The regularization in Equation (20) can be a sparsity promoting term [61, 62].

The regularization term is usually chosen so that they are differentiable and

hence minimizable using gradient descent techniques.

Diff erent kinds of autoencoders aim to achieve diff erent kinds of properties.

Page | 20

3│Deep Dictionary Learning

In this Chapter, we describe the main contribution of this Thesis. A single /

shallow level of dictionary learning yields a latent representation of data and

the dictionary atoms. Here, it is proposed to learn latent representation of data

by learning multi-level dictionaries[6]. The idea of learning deeper levels of

dictionaries stems from the success of deep learning. Based on this, we build a

deep architecture by cascading one dictionary after the other. The learning

proceeds in a greedy fashion, therefore for each level only a single layer of

dictionary is needed to learn. There are time tested tools to solve this problem.

Both deep learning and dictionary learning fall under the broader category of

representation learning. Representation learning means automated feature

extraction. Classical feature extraction techniques were either based on

statistical models (Principal Component Analysis[47], Linear Discriminant

Analysis[48] etc.) or were hand-crafted (Scale Invariant Feature

Transform(SIFT) [49], Local Binary Pattern[50] etc.). Classical feature extraction

techniques were ‘designed’ in the sense that it is based on some assumption /

model made by the researcher / engineer regarding the nature of the data. On

the other hand representation learning, ‘learns’ the model by itself, given the

training data. As Deep Dictionary learning is the combination of deep learning

and dictionary learning, it also falls in the category of Representation Learning.

3.1 Overview

In this section, for ease of understanding, the concept with two-layer deep

dictionary learning is explained and then extended to multi-level dictionary.

The schematic diagram for dictionary learning is shown in Fig.5 . Let X be the

set of data vectors, D be the data-adaptive dictionary and Z be the

Page | 21

feature/representation of X in D. Dictionary learning follows a synthesis

framework (Equation 21), i.e. the dictionary is learnt such that the features

synthesize the data along with the dictionary.

 X DZ …(21)

 Figure 6 : Schematic Diagram for Dictionary Learning

The thesis proposes to extend the shallow dictionary (Fig. 5) learning into

multiple layers – leading to deep dictionary learning (Fig. 6). For the first layer,

a dictionary is learnt to represent the data. In the second layer, the

representation from the first layer acts as input; it learns a second dictionary to

represent the features from first level. This concept can be extended to deeper

layers. Mathematically, the representation at the second layer can be written

as:

 1 2 2X D D Z
 …(22)

 Figure 7: Schematic Diagram for Deep Dictionary Learning for two layers

Page | 22

It must be noted that learning two-levels of dictionaries along with the

coefficients (Equation 22) is not the same as learning a single (collapsed)

dictionary and its corresponding features. Problem (Equation 21) (single level)

is a bi-linear problem and (Equation 22) is a tri-linear problem; they are not the

same. Hence one cannot expect to get the same features from a single level

dictionary learning and a collapsed two level dictionary learning.

The challenges of learning multiple levels of dictionaries in one go are the

following:

1) Recent studies have proven convergence guarantees for single level

dictionary learning [51-53]. These proofs would be very hard to replicate for

multiple layers.

2) Moreover, the number of parameters required to be solved increases when

multiple layers of dictionaries are learnt simultaneously. With limited training

data, this could lead to over-fitting.

Here we propose to learn the dictionaries in a greedy manner which is in sync

with other deep learning techniques [8-11]. Moreover, layer-wise learning will

guarantee the convergence at each layer. The idea applies to deep in the sense

that in the second layer, the representation from the first layer acts as input; it

learns a second dictionary to represent the features from first level. Similarly

representation from second layer acts as input to the third layer to learn third

dictionary to find the features. This concept can be extended to deeper layers.

Extending this idea, a multi-level dictionary learning problem with non-linear

activation (Φ) can be expressed as in Equation [23]

 1 2 3(....... ()))(NX D D D D Z     …(23)

Here Ф can be a linear or non -linear activation function.

Page | 23

 1 2 3(....... ()))(NX D D D D Z     ...(23)

 Figure 8: Greedy Layer-wise Dictionary Learning .

In deep learning, instead of learning the full deep architecture in one go, the

parts are usually learnt in a greedy fashion [12]. There are two advantages of

greedy learning.

1. Learning layer wise dictionary and features are relatively simple and easy

to implement.

2. Deep architectures, having a large number of variables, are difficult to

learn from limited training data. Breaking the problem into smaller unit

erases the issue of over-fitting.

This Thesis has introduced two Algorithms merging two learning paradigms –

Dictionary Learning and Deep Learning – as Deep Dictionary Learning - For

primarily unsupervised Classification task.

3.2 Initialization of Dictionary

A variety of dictionaries have been developed in response to the rising need.

These dictionaries emerge from one of two sources: either a mathematical

model of the data, or a set of realizations of the data. Dictionaries of the first

type are characterized by an analytic formulation and a fast implicit

implementation, while dictionaries of the second type deliver increased

flexibility and the ability to adapt to specific signal data. Most recently, there is

a growing interest in dictionaries which can mediate between the two types,

Page | 24

and offer the advantages of both worlds. Such structures are just beginning to

emerge, and research is still ongoing.

One of the interesting concept here is, as the idea of data driven dictionary is

adapted for the algorithm, the dictionary D for any layer is initialized either

from the input data (in the case of first layer) or from the features acting as

input (in the case of successive layers). Depending on the size of dictionary ,

data vectors are chosen randomly to initialize the dictionary.

Another option is to initialize the dictionary from the samples of the Q matrix

from the QR Decomposition of the input data. By input, it means the respective

input to a layer. QR decomposition/factorization of a matrix ,is the

factorization into a product, namely, Q x R where Q is an orthogonal matrix

and R is an upper triangular matrix. QR decomposition is Gram–Schmidt

orthogonalization of columns of A, starting from the first column. The property

of Q is of great importance in the algorithm. If A has n linearly

independent columns, the first k columns of Q form an orthonormal basis for

the span of the first k columns of A for any 1 ≤ k ≤ n .Thus the initial dictionary

is orthogonal to the input data and the representation coefficients can be

computed as inner products of the signal and the atoms.

However, any one the initializations can be used to generate features and

classify. Dictionaries of each layer can be initialized in either way. Dictionary

initialization of each layer is independent of the dictionary initialization of its

preceding or succeeding layer.

The discussion on dictionary initialization develops another compelling idea :

whether to go for overcomplete (or fat) or undercomplete (or tall) dictionary.

With the idea of initialization from the columns of Q matrix, the dictionary is,

in majority of the cases , undercomplete as number of features are less than

number of data vectors which are stacked as columns to make the input

matrix. For example if: X = m x n , m < n then Q = m x m .To initialize the

dictionary with columns of Q, the maximum number is ‘m’ with a square

dictionary which makes no sense. Thus the only choice is to go for an

Page | 25

undercomplete dictionary. However if m > n, then either of the choice is open.

Similarly, for dictionary initialization with the input data m < n , dictionary can

be undercomplete or overcomplete. But with the reverse case, dictionary can

only be undercomplete.

3.3 Activation Function (Ф)

It is essentially a function used to transform the input into an output signal.

Activation functions are usually a non-linear function like sigmoid, tanh etc.

However sometimes linear activation function works equally well. In Deep

Learning context, the purpose of an activation function is to map the

representation in the input space to a different space in the output. The input

to each layer has an activation function , thus while learning the dictionary

and the features of that layer, the updating of the features depends on the

steepness (slope) of the activation function. In general it is also referred to as

projection followed by selection. This introduces non-linearities that are

desriable in multi-layer networks in order to detect non-linear features in the

data. Typically, activation functions have a "squashing" effect.

In this thesis, The activation function used is either sigmoid or tanh for non-

linear transformations .Sigmoid function maps the output between the range of

[0,1] and tanh h maps the output between [-1,1]. However for few results linear

tranformations worked better and were thus used.

 Figure 9: Sigmoid function Tanh function

Page | 26

3.4 Algorithm 1 : Deep Dictionary Learning

Equation (23) can be solved as the following Optimization Problem:

1 2

2

1 2 3 1, .. ,
min (....... ()))(

N
n

FD D D Z
X D D D D Z Z      …(24)

However, Equation (24) is highly non-convex and requires solving huge number

of parameters. With limited amount of data, it will lead to over-fitting. To

address these issues, as mentioned before, we propose a greedy approach

where, we learn one layer at a time – similar to deep learning paradigm.

With the substitution,
1 2 3(....... ()))(NZ D D D Z    . Equation (24) can be written

as: 1 1X D Z

Now this problem can be solved as single layer dictionary learning. Kindly note

that the representation, Z1, is not sparse. Hence it can be solved using

alternating minimization:

2

1 1
,

min
FD Z

X D Z …(25)

Optimality of solving Equation (24) by alternating minimization has been

proven in [56]. Therefore we follow the same approach:
2

1 1 1

2

1 1 1

min

min

FZ

FD

Z X D Z

D X D Z

 

 
 … 25(a) & 25(b)

This is the method of optimal directions [36] and both Equation (25a) and (25b)

are simple least square problems having closed form solutions.

For the second layer we substitute
2 3 4(....... ()))(NZ D D D Z    , which leads to

1 2 2()Z D Z or alternatively, 1

1 2 2()Z D Z  ; this too is a single layer dictionary

learning. Since the representation is dense, it can be solved using :

2 2

2
1

1 2 2
,

min ()
FD Z

Z D Z  …(26)

Page | 27

Equation (26) is can be solved by alternating minimization as in the case of

first layer , Equation(25). Continuing in this fashion till the penultimate layer,

in the final layer we have, 1 ()N NZ D Z  or alternatively 1

1()N NZ D Z

  .In the

last level the sparse coding of the input to the layer can be performed, that is

the coefficient, Z can be sparse. For learning sparse features, one needs to

regularize by applying l1-norm on the features. This is given by:

2

1

1 1,
min ()

N
N N FD Z

Z D Z Z

   …(27)

This too is solved using alternating minimization:

2
1

1 2 1
min ()N FZ

Z Z D Z Z

    …(28(a))

2
1

1min ()
N

N N N FD
D Z D Z

   …(28(b))

As before, (28b) is a least square problem having a closed form solution. The

solution to (28a) is although not analytic; it can be solved using the Iterative

Soft Thresholding Algorithm (ISTA) [29]. The ISTA solution for (28a) is given by:

Initialize:
2

1

1 2min ()N FZ
Z Z D Z

  

Iterate till convergence :
1

1

1
(())T

N N NB Z D Z D Z

   


 () max(0,)
2

Z signum B B


 


Page | 28

3.4.1 Algorithm

The training algorithm [6] is as shown in Table 3.1. Note that Activation
function can be linear as well as non linear.

 Table 3.1

 TRAINING ALGORITHM (for any activation function Ф)

Initialize D

For 1st level : iterate till convergence

2

1 1 1

2

1 1 1

min

min

FZ

FD

Z X D Z

D X D Z

 

 

For 2nd to penultimate level : repeat until convergence
2

1

1 2min ()
i

i i i FZ
Z Z D Z

  

2
1

1 2min ()
i

i i i FD
D Z D Z

  

For last level : repeat until convergence
2

1

1 2 1
min ()N FZ

Z Z D Z Z

   

2
1

1min ()
N

N N N FD
D Z D Z

  

The testing algorithm is as shown in Table 3.2. Note that the algorithms are

different for linear and non-linear Activation function. It is important to note

that learning multiple dictionaries cannot be collapsed into a single one even if

the activation function is linear. This is because dictionary learning is bilinear.

For example, if the dimensionality of the sample is m and the first dictionary is

of size m x n1 and the second one is n1 x n2, it is not possible to learn a single

dictionary of size m x n2 and expect the same results as a two-stage dictionary.

In general, for non-linear activation functions it is not possible to collapse the

multiple levels of dictionaries into a single level for testing. However, for the

linear activation function, the multiple levels of dictionaries can be collapsed

into a single stage by matrix multiplication of the different dictionaries and the

Page | 29

sparse code / features computed from the thus formed single level dictionary

by standard l1 minimization.

 Table 3.2

 TESTING ALGORITHM (for any linear function Ф)

Collapse D =D1D2….DN

Compute ztest ,Sparse representation of test sample vector xtest

2

2 1
min

test
test test test test

z
z x Dz z  

 TESTING ALGORITHM (for Non-linear activation function Ф)

For 1st level : Generate representation/features

1,

2

1, 1 1, 2
min

test
test test test

z
z x D z 

For 2nd to penultimate level

,

2
1

, 1, , 2
min ()

i test
i test i test i i test

z
z z D z

  

For last level :
2

1

1, 1
z min ()

test
test N test N test testFz

z D z z

   

3.5 Algorithm 2 : Robust Deep Dictionary Learning

We propose to add a denoising layer at the top most layer i.e layer 1 wherein

the dataset is the input. The denoising layer has been added to remove impulse

noise, if any, before the representations are solved for. Impulse noise is present

in images as well as in Hyperspectral images in the form of Shot noise. For

other noise such as Gaussian noise , the previous Algorithm works well too.

However in the case of impulse noise the Root Mean Square/Euclidean(l2) cost

function does not work as well as the Absolute Deviation (l1) cost function.

The l1 - norm is robust to measurement errors such as noise and outliers as

compare to l2 - norm . It comes in more useful when one considers the

robustness of the learning model. Model robustness refers to how robustly any

Page | 30

learning model can handle data corruptions in prediction. Hence we try to

remove the impulse noise affecting the dataset before we learn the dictionary

and the coefficients. Combining l1 and l2 loss functions in different layers tends

to give a result with fewer regression coefficients shrunk exactly to zero than in

a pure L1 setting, and more shrinkage of the other coefficients.

The denoising layer is followed by the usual deep dictionary learning layers to

generate features. The top most Denoising Layer can be represented as :

 1 1X D Z

Where 0 X X N 

 0X : Dataset

 N : impulse Noise or shot noise

This can be solved using Absolute Deviation cost function as:

 1 1 1,
min
D Z

X D Z …(29)

Where ,1
1 1

* *
n m

i j

i j 



Many methods have been proposed to solve Equation(29). Here we solve it

using Split-Bregman Algorithm[54].

3.5.1 Split-Bregman Algorithm :

Assuming : 1 1Q X D Z B  

The problem statement gets converted to:

  
1 1

2

1 1
, 1,

|m |in ||F
Q D Z

Q µ Q X D Z B   

Split the Minimization Function:

  2

1 1 1||1 min | | F
Q

P Q µ Q X D Z B    

 
1

1

2

12 min || ||F
D

P Q X D Z B   

 
1

1

2

13 min || ||F
Z

P Q X D Z B   

Page | 31

Iterate till convergence : P1

 P2

 P3

 Update Bregman variable B.

For second layer we substitute : 1 2 2()Z D Z or alternatively, 1

1 2 2()Z D Z 

The second layer is also a single layer dictionary learning . But this layer is

solved using Euclidean cost function :

2 2

2
1

1 2 2
,

min ()
FD Z

Z D Z  …(30)

Then continuing in this fashion till the penultimate layer, we impose sparsity

constraint on loading coeffiecients at the last layer.

Experimental Results have shown that Algorithm 2 performs equally well as

Algorithm 1 in the absence of impulse noise, but better than latter in the

presence of impulse noise.

3.5.2 Algorithm

The training algorithm is as shown in Table 3.3. Note that Activation function
can be linear as well as non linear.

 Table 3.3

 TRAINING ALGORITHM (for any activation function Ф)

Initialize D

For 1st level : Assuming : 1 1Q X D Z B  

 iterate till convergence

  2

1 1 1min | | | |F
Q

Q Q µ Q X D Z B    

 
1

1 1 1

2min || ||F
D

D Q X D Z B   

 
1

1 1 1

2min || ||F
Z

Z Q X D Z B   

Page | 32

For 2nd to penultimate level : repeat until convergence
2

1

1 2min ()
i

i i i FZ
Z Z D Z

  

2
1

1 2min ()
i

i i i FD
D Z D Z

  

For last level : repeat until convergence
2

1

1 2 1
min ()N FZ

Z Z D Z Z

   

2
1

1min ()
N

N N N FD
D Z D Z

  

The testing algorithm is as shown in Table 3.4. Note that the algorithms are
different for linear and non linear Activation function.

 Table 3.4

 TESTING ALGORITHM (for linear activation function Ф)

For 1st level : Assuming : 1 1,test testR x D z b  

 Generate representation/features

1,

2

1, 1 1, 2
min ()

test
test test test

z
z R x D z b   

  2

21 1 1,R min || ||test test
R

bRµ x DR z    

Collapse D = D2D3….DN-1

Generate features for Penultimate level :

,

2

, 1, , 2
min

i test
i test i test i i test

z
z z D z 

For last level :
2

1, 1
z min

test
test N test N test testFz

z D z z  

 TESTING ALGORITHM (for non-linear activation function Ф)

For 1st level : Assuming : 1 1,test testR x D z b  

 Generate representation/features

1,

2

1, 1 1, 2
min ()

test
test test test

z
z R x D z b   

  2

21 1 1,R min || ||test test
R

bRµ x DR z    

Page | 33

For 2nd to penultimate level

,

2
1

, 1, , 2
min ()

i test
i test i test i i test

z
z z D z

  

For last level :
2

1

1, 1
z min ()

test
test N test N test testFz

z D z z

   

3.6 Going Deep in Dictionary Learning

Depth has emerged as the one of the key aspects of the learning strategies. The

argument in the favour of depth is that it promotes feature re-use. We learn

hierarchy of features by constructing multi level dictionaries. The pivotal idea,

referred to as greedy layerwise unsupervised learning [7-10] , is to learn a

hierarchy of features one level at a time, using unsupervised feature learning to

learn a new transformation at each level to be composed with the previously

learned transformations[7]. After greedy layerwise unsuperivised training, the

resulting deep features can be used either as input to a standard machine

learning predictor (such as an SVM or KNN) or as initialization for a deep

supervised neural network. It was empirically observed that layerwise stacking

of feature extraction often yielded better representations, e.g., in terms of

classification accuracy.

Another advantage of depth is that more abstract features can be generated

from less abstract features at deeper levels. The idea comes from the fact that

the inputs are transformed to highly non-linear transformations at the deeper

levels thus representing more variations.

The succeeding chapters containing experimental results show that sufficient

depth gives better representation which is shown in terms of classification

accuracy. The results show that classification performance is better when

features are learnt from multi-level than single level dictionary.

Page | 34

The effectiveness of the proposed deep dictionary learning is evaluated on

multiple benchmark databases from different areas such as images and

HyperSpectral Image Classification. The results are compared with related

state-of-the-art algorithms. In this work we use a linear as well as non-linear

activation function depending upon whichever gives the best accuracy

The Features generated using Algorithm 1 and Algorithm 2 are sent as input to

various Classifiers such as KNN , Neural Net Classifier and SVM. The Results

are compared with Stats-of-the-art Machine Learning strategies such as Deep

Belief Networks and Stacked Autoencoders, and also with well-known

Dictionary learning algorithms such as LC-KSVD1 and LC-KSVD2.

Page | 35

4│Deep Dictionary Learning on

 Images

We have evaluated the performance on several benchmarks datasets. They are

described below :

4.1 Data Description :

4.1.1 MNIST

The MNIST dataset that consists of 28x28 images of handwritten digits ranging

from 0 to 9. It is a subset of a larger set available from NIST. The dataset has

60,000 images for training and 10,000 images for testing. It should be noted

that we have not performed any preprocessing on this dataset.

 Figure 10 : MNIST dataset

Page | 36

 Related to MNIST database, MNIST variations datasets are also used. These

are more challenging databases, primarily due to fewer training samples

(10,000) and larger number of test samples (50,000). The validation set of 2000

samples are not used in this work since our method does not require tuning

and SAE as well as DBN are already optimized for MNIST. These were

preprocessed by thresholding the pixels to 0.9.

Here is the listing of these variation databases:

1. basic (smaller subset of MNIST)

2. mnist-rot: the digits are rotated by an angle between 0 and 2π radians.

Thus the factors of variation are the rotation angle and the factors of

variation already contained in MNIST, such as handwriting style.

3. mnist-back-rand: a random background was inserted in the digit image.

Each pixel value of the background was generated uniformly between 0

and 255.

4. mnist-back-image: a patch from a black and white image was used as

the background for the digit image.

Page | 37

5. mnist-rot-back-image: the perturbations used in mnist-rot and mnist-

back-image were combined

4.1.1.1 Experimental Results on MNIST and its variations:

Case 1 : Classification accuracies

Table 4.1 : Classification accuracy on MNIST and its variants for proposed

methods

Dataset
DBN-3

[11]

SDAE

[11]

LC

KSVD1

LC

KSVD2

Proposed
Algorithm 1

+ SVM

Proposed
Algorithm 2

+KNN

MNIST 60K 98.54 98.72 93.30 93.65 98.60 98.53

MNIST Back+
Rand

93.05 89.70 87.70 87.70 92.37 92.96

MNIST Back
Img

83.37 83.32 80.65 81.20 86.17 85.47

MNIST Back+
Rot

52.17 56.24 48.70 50.18 63.85 63.72

MNIST Rot

digits
89.43 90.47 75.40 75.40 90.34 90.83

MNIST Basic 96.74 97.16 91.90 92.10 97.28 97.63

Page | 38

Case 2 : Classification accuracies in the presence of impulse noise

In this section, impulse noise was introduced in MNIST and its variations.

Varying amount of pixels were made off in the entire set. This replicates the

scenario where there are missing pixels in an image. The impulse noise was

added randomly to individual images. Case 2 considers the case where the

testing and training sets are corrupted.

It was observed that while proposed algorithms performed decently with

respect to state-of-the-art methods , given that the complexity and running

time is very less. Also the main aim of introducing Algorithm 2 to work with the

noisy data is achieved with its performance being better than Algorithm 1.

Table 4.2 : Classification accuracy on MNIST and its variants for proposed

methods with added impulse noise of 10% to training and testing sets.

Dataset DBN
LC

KSVD1

LC

KSVD2

Algorith
m 1 +

SVM

Algorithm

2 + SVM

MNIST 60K 97.14 93.00 92.6 97.23 97.17

MNIST Back+

Rand
91.32 86.63 86.72 88.24 88.62

MNIST Back

Img
79.41 79.90 78.85 80.30 80.95

MNIST Back+
Rot

50.30 47.87 46.26 55.67 57.03

MNIST Rot

digits
85.95 73.92 73.47 85.74 86.13

MNIST Basic 94.72 91.8 91.32 95.25 95.47

Page | 39

Table 4.3 : Classification accuracy on MNIST and its variants for proposed

methods with added impulse noise of 20% to both training and testing sets.

Dataset DBN-3
LC

KSVD1
LC

KSVD2
Algorithm
1 + SVM

Algorithm
2 + SVM

MNIST 60K 96.48 92.52 92.73 96.79 96.87

MNIST Back+
Rand

88.20 86.00 85.77 87.29 87.50

MNIST Back

Img
77.39 77.50 76.89 78.39 80.32

MNIST Back+

Rot
48.03 45.78 44.58 53.72 54.83

MNIST Rot

digits
83.04 72.18 71.64 84.02 84.25

MNIST Basic 92.63 90.90 90.72 94.60 94.56

Table 4.4 : Classification accuracy on MNIST and its variants for proposed

methods with added impulse noise of 30% to both training and testing sets.

Dataset DBN
LC

KSVD1
LC

KSVD2
Algorithm
1 + SVM

Algorithm 2
+ KNN

MNIST 60K 95.37 91.69 91.27 96.02 95.89

MNIST Back+
Rand

86.01 84.28 84.14 85.06 85.49

MNIST Back
Img

75.97 76.52 76.02 76.66 78.64

MNIST Back+
Rot

43.25 43.80 43.59 50.27 51.02

MNIST Rot
digits

80.48 70.96 70.51 81.54 81.75

MNIST Basic 89.64 90.04 90.28 93.42 93.28

Page | 40

4.1.2 USPS:

The dataset contains the numeric data obtained from the scanning of

handwritten digits from envelopes by the U.S. Postal Service. The original

scanned digits are binary and of different sizes and orientations; the images

here have been de-slanted and size normalized, resulting in 16 x 16 grayscale

images of 10 classes. There are 7291 training observations and 2007 test

observations. The test set is considered to be notoriously "difficult”.

 Figure 11 : USPS dataset

4.1.2.1 Experimental Results on USPS:

Case 1 : Classification accuracies

Table 4.5 : Classification accuracy on USPS for proposed methods with SVM as

classifier

DKSVD LCKSVD2 DBN SAE

Proposed

Algorithm

1

Proposed

Algorithm

2

USPS 95.05 93.91 94.42 95.26 95.67 95.42

Page | 41

Case 2 : Classification accuracies in the presence of impulse noise

In this section, impulse noise was introduced in MNIST and its variations.

Varying amount of pixels were made off in the entire set. This replicates the

scenario where there are missing pixels in an image. The impulse noise was

added randomly to individual images. Case 2 considers the case where the

testing and training sets are corrupted. The noise was added in the range of

50-70% as with lower percentage of impulse noise there was not appreciable

difference. Case 2(A) considered the case where the testing and training sets

are corrupted. Case 2(B) considered that training set was noise free while the

testing set was corrupted.

It was observed that while proposed algorithms performed decently with

respect to state-of-the-art methods. The results for denoising case are less

than LCKSVD as they were majorly designed for denoising. Also the main aim

of introducing Algorithm 2 to work with the noisy data is achieved with its

performance being better than Algorithm 1.

Case 2(A) : Noisy Training set & Noisy Testing set

Table 4.6 : Classification accuracy with added 50% impulse noise to training

samples and testing samples for proposed methods using KNN as classifier

50%

impulse

noise LCKSVD1 LCKSVD2 DBN SAE

Proposed

Algorithm

1

Proposed

Algorithm

2

USPS 93.42 93.03 86.15 90.98 87.19 89.74

Page | 42

Table 4.7 : Classification accuracy with added 60% impulse noise to training

samples and testing samples for proposed methods using KNN as classifier

60%

impulse

noise DKSVD LCKSVD DBN SAE

Proposed

Algorithm

1

Proposed

Algorithm

2

USPS 92.69 92.04 81.37 88.89 84.55 86.00

Table 4.8 : Classification accuracy with added 70% impulse noise to training

samples and testing samples for proposed methods using KNN as classifier

70%

impulse

noise DKSVD LCKSVD DBN SAE

Proposed

Algorithm

1

Proposed

Algorithm

2

USPS 92.42 91.64 75.93 85.2 82.12 83.01

Case 2(A) : Clean Training set & Noisy Testing set

Table 4.9 : Classification accuracy with added 50% impulse noise to testing

samples for proposed methods using KNN as classifier

50%

impulse

noise DKSVD LCKSVD DBN SAE

Proposed

Algorithm

1

Proposed

Algorithm

2

USPS 93.37 92.93 78.03 90.33 85.091 88.17

Page | 43

Table 4.10 : Classification accuracy with added 60% impulse noise to testing

samples for proposed methods using KNN as classifier

60%

impulse

noise DKSVD LCKSVD DBN SAE

Proposed

Algorithm

1

Proposed

Algorithm

2

USPS 92.80 92.73 65.57 86.21 83.11 85.00

Table 4.11 : Classification accuracy with added 70% impulse noise to testing

samples for proposed methods using KNN as classifier

70%

impulse

noise DKSVD LCKSVD DBN SAE

Proposed

Algorithm

1

Proposed

Algorithm

2

USPS 91.34 90.26 48.88 74.74 75.08 76.36

4.2 Effect of Deep Learning

This section analyzes the results of the proposed deep dictionary learning and

the effect of increasing the number of layers. The features obtained via shallow

dictionary learning are used for classification . The classification performance

is then compared with the same number of features generated via deep

dictionary learning. For MNIST shallow dictionary 50 atoms were learnt while

deep dictionary learnt 300-150-50 atoms. For USPS shallow dictionary 30

atoms were learnt while deep dictionary learnt 160-60-30 atoms.

Page | 44

Table 4.12: Classification accuracy on USPS and MNIST and its variations for

Shallow vs Deep learning for proposed methods

Proposed Algorithm 1 Proposed Algorithm 2

Shallow

[50]

Deep

[300-150-50]

Shallow

[50]

Deep

[50]

MNIST 60K
93.75 98.67 93.75 98.53

MNIST Back+ Rand
87.19 92.38 87.19 92.96

MNIST Back Img
78.86 86.17 78.86 85.47

MNIST Back+ Rot
54.40 63.85 54.40 63.72

MNIST Rot digits
84.19 90.344 84.19 90.83

MNIST Basic
95.02 97.28 95.02 97.63

Shallow

[30]

Deep

[160-60-30]

Shallow

[30]

Deep

[150-70-30]

USPS 92.64 95.017 92.64 95.017

Page | 45

5│Deep Dictionary Learning on

 HyperSpectral Images

Hyperspectral data classification is a hot topic in remote sensing community.

In recent years, significant effort has been focused on this issue. However,

most of the methods extract the features of original data either in a shallow

manner or uses Convolutional Neural Net (CNN), Deep Belief Network(DBN)

and Stacked Autoencoder (SAE) for deep learning. SAE was introduced for this

problem in [55] by Chen et al; the same researchers applied DBN to the

problem to publish another paper [56]. There are a two papers that use CNN

for the said problem [57,58]; the main problem of using CNN for this problem is

that it is data hungry and yields poor results when the training data is limited.

In this chapter, we introduce our deep dictionary learning approach into

hyperspectral image classification. The proposed approaches are used on the

raw hyperspectral datasets as well as their pre-processed versions.

Experimental results with hyperspectral data indicate that the proposed

algorithms using raw data performed more or less at par with the State-of-the-

art methods using preprocessed data especially for limited amount of training

data(practical scenario). The complexity and time taken is also way less. The

proposed algorithm learns representation of the well-known hyperspectral

scenes in an unsupervised manner. Few experiments were also conducted in

the presence of shot noise and it was observed that while the classification

accuracies were little short of the State-of-the-art methods, Algorithm 2

outperforms Algorithm 1. In addition, this reveals that deep learning system

has huge potential for hyperspectral data classification.

Page | 46

5.1 HyperSpectral Data

Hyperspectral data, also known as hyperspectral datacube, is a 3 dimensional

data, produced by instruments called imaging spectrometers. This technology

combines the power of digital imaging and spectroscopy. For each pixel in an

image, a hyperspectral camera acquires the light intensity (radiance) for a large

number (typically a few tens to several hundred) of contiguous spectral bands.

Every pixel in the image thus contains a continuous spectrum (in radiance or

reflectance) and can be used to characterize the objects in the scene with great

precision and detail.

Hyperspectral imaging divides the spectrum into numerous bands. This

technique of dividing images into bands can be extended beyond the visible

providing much more detailed information about a scene than a normal color

camera which captures a scene in three bands (red, green, and blue), In

hyperspectral imaging, the recorded spectra have fine wavelength resolution

and cover a wide range of wavelengths. Hence, hyperspectral imaging leads to

a vastly improved ability to classify the objects in the scene based on their

spectral properties.

Hyperspectral sensors look at objects using a vast portion of the

electromagnetic spectrum. Certain objects leave unique 'fingerprints' in the

electromagnetic spectrum. Known as spectral signatures, these 'fingerprints'

enable identification of the materials that make up a scanned object.

Figuratively speaking, hyperspectral sensors collect information as a set of

'images'. Each image represents a narrow wavelength range of the

electromagnetic spectrum, also known as a spectral band. These 'images' are

combined to form a three-dimensional (x,y,λ) hyperspectral data cube for

processing and analysis, where x and y represent two spatial dimensions of the

scene, and λ represents the spectral dimension (comprising a range of

wavelengths).

Page | 47

 Figure 12: Hyperspectral Datacube

Hyperspectral cubes are generated from airborne sensors like the

NASA's Airborne Visible/Infrared Imaging Spectrometer(AVIRIS), or from

satellites like NASA's EO-1 with its hyperspectral instrument Hyperion.

Recent advances in sensor design and processing speed has cleared the path

for a wide range of applications employing hyperspectral imaging, ranging from

satellite based/airborne remote sensing and military target detection to

industrial quality control and lab applications in medicine and biophysics. Due

to the rich information content in hyperspectral images, they are uniquely well

suited for automated image processing, whether it is for online industrial

monitoring or for remote sensing.

5.2 Dataset Description

5.2.1 Indian Pines

The dataset consists of a scene of 145X145 pixels and 224 spectral reflectance

bands in the wavelength range 0.4–2.5 micro meters. It was gathered

by AVIRIS sensor over the Indian Pines test site in North-western Indiana .The

Indian Pines scene contains two-thirds agriculture, and one-third forest or

other natural perennial vegetation.. Since the scene is taken in June some of

Page | 48

the crops present, corn, soybeans, are in early stages of growth with less than

5% coverage. The ground truth available is designated into sixteen classes and

is not all mutually exclusive. Class zero represents the background and

accounts for almost 50% of the data. Rest 50% pixels are composed of

remaining 16 classes. The number of bands were reduced to 200 by removing

bands number: [104-108], [150-163], 220 covering the region of water

absorption. Hence the final dataset used is of 145X145 pixels with 200 spectral

bands[59]. The dataset and detailed description is given in [59].

Table 5.1 provides with the groundtruth classes along with the sample number

of each class.

 Table 5.1

 # Class Samples

1 Alfalfa 46

2 Corn-notill 1428

3 Corn-mintill 830

4 Corn 237

5 Grass- Pasture 483

6 Grass- trees 730

7 Grass- Pasture - mowed 28

8 Hay- windrowed 478

9 Oats 20

10 Soyabean-notill 972

11 Soyabean-mintill 2455

12 Soyabean-clean 593

13 Wheat 205

14 Woods 1265

15 Buildings-Grass-Trees-Drives 386

16 Stone-Steel-Towers 93

Page | 49

 Figure 13 : a) False color image of Indian Pines (band 50,27,17)

 b) Ground truth representing 16 crop cases

5.2.2 Pavia University

This scene was acquired by the Reflective Optics System Imaging

Spectrometer (ROSIS) during a flight campaign over Pavia, nothern Italy. Pavia

University is 610*610 pixels, but some of the samples in image contain no

information and have to be discarded before the analysis. Thus the final scene

is of 340*610 pixels. 115 bands were collected over 0.43 - 0.86 µm range of the

electromagnetic spectrum. In the experiment, some bands were removed due to

noise; the remaining 103 bands were used for the classification The spatial

resolution is 1.3 m. Image groundtruth consists of 9 classes. Class zero

represents background and accounts for almost 50% of the data. Rest 50%

pixels are composed of remaining 9 classes. The dataset and detailed

description is given in [59].

 Figure 14: a) Pavia, Italy. False-color composite (Band 10, 27, 46)

 b) Groundtruth representing 9 land-cover classes.

Page | 50

Table 5.2 provides with the groundtruth classes along with the sample number

of each class.

 Table 5.2

 # Class Samples

1 Asphalt 6631

2 Meadows 18649

3 Gravel 2099

4 Trees 3064

5 Painted metal sheets 1345

6 Bare soil 5029

7 Bitumen 1330

8 Self-Blocking bricks 3682

9 Shadows 947

5.3 Input Features

A) Spectral Features

Input X is, generally, the raw spectral data collected as a one dimensional

(1-D) vector for each pixel. That is we take the responses of all the spectral

channels into the input space.

 Figure 15: Spectral vector of Hyperspectral Features

Page | 51

Then, proposed DDL algorithms are applied to learn the representative and

robust features from the inputs via several layers of linear/nonlinear feature

transformation. Finally, the learned features are input to a classifier to produce

the class labels in the absence of any noise for Case 1 or in the presence of

varying amount of shot noise for Case 2.

B) Spectral –Spatial Features

For this we integrate the spectral and spatial features together to construct a

spectral–spatial-based classification framework. Pure spectral features and

spatial features both provide a discriminating power for the pixel-wise

classification. The spectral feature of a pixel contains important information for

discriminating different kinds of ground categories.

The Spatial vector with the spatial information of neighbourhood of a pixel ,

decreases the intra-class variance.

 Figure 16: Spatial Vector of Hyperspectral Features

Page | 52

Forming a hybrid set of spectral–spatial features can present more reliable

classification. The integration of multiple features is addressed by using a

vector stacking (VS) approach. That is to say, for each pixel, spatial vector is

added to the end of the spectral vector.

 Figure 17 : Spectral-Spatial Vector of Hyperspectral Features

Then, proposed DDL algorithms are applied to learn the representative and

robust features from the inputs via several layers of linear/nonlinear feature

transformation. Finally, the learned features are input to a classifier to produce

the class labels in the absence of any noise for Case 1 or in the presence of

varying amount of shot noise for Case 2.

5.4 Experimental Results

Prior studies on deep learning based classification assumed an overtly

optimistic scenario [55,56] – they assumed 50% (30% training + 20%

validation) labelled data is available; and only 50% need to be predicted. In

Page | 53

this work we consider a more realistic scenario; we assume only 10% or 20% of

the each of the labelled class available. No validation set was used.

The results were compared with Stacked Autoencoder (SAE) and Deep Belief

Network(DBN). The implementation for the SAE has been obtained from [56] for

Case 1 with the [training: validation: testing] set being [1:1:8] , for rest of the

cases i.e Case 1(b) and Case 2 with varying ratios of testing and training set

and for DBN ,the results were generated from the

rasmusbergpalm/DeepLearnToolbox [60]. Overall Accuracy (OA) is used to

indicate the classification accuracy.

In this section, we evaluate our proposed DDL-based framework .The feature

selection architecture used for input to proposed algorithms are the spectral

features.

Case 1 : Classification accuracies in the absence of noise

Case 1(a) : The accuracies for DBN and SAE were calculated from [60] as the

code released for SAE[55] does not include the case for validation set being zero

for [training: testing] cases being [1:9] respectively. The case for validation and

training being 5% each could not be considered as well, because the set ratio

were to be in integers.

Table 5.3 : Classification accuracy with 10% training samples and 90% testing

samples for proposed methods using Neural Net as classifier

10% Training

samples DBN SAE

Proposed

Algorithm 1

Proposed

Algorithm 2

Indian Pines 79.48 83.00 81.76 82.07

Pavia University 90.37 92.16 93.52 93.15

Page | 54

Case 1(b) : For the below result, the accuracies for SAE were generated from

the code released online by authors of paper [55].

Table 5.4 :Classification accuracy with 20% training samples and 80% testing

samples for proposed methods using Neural Net as classifier

20% Training

samples DBN SAE [55]

Proposed

Algorithm 1

Proposed

Algorithm 2

Indian Pines 80.32 85.86 87.19 86.82

Pavia University 94.94 96.32 96.30 97.68

Case 2 : Classification accuracies in the presence of shot noise

For this section, Shot noise was introduced in the Hyperspectral images.

Varying amount of pixels were made off throughout their respective

wavelengths. This replicates the scenario where one or more sensors are not

working while capturing the image, thus having no information throughout

their respective wavelength bands. 10%,20% and 30% of shot noise was

introduced for below explained two cases. Case 2(A) considered the case where

the testing and training sets are corrupted. Case 2(B) considered that training

set was noise free while the testing set was corrupted.

It was observed that while proposed algorithms performed decently with

respect to state-of-the-art methods , the main aim of introducing Algorithm 2 to

work with the noisy data is achieved with its performance being better than

Algorithm 1.

Page | 55

Case 2(A) : Noisy Training set & Noisy Testing set

i) 10% shot noise

Table 5.5 :Classification accuracy with added noise to 10% training samples

and 90% testing samples for proposed methods using Neural Net as classifier

10% Training

samples DBN SAE

Proposed

Algorithm 1

Proposed

Algorithm 2

Indian Pines 74.83 77.22 78.62 78.93

Pavia University 85.89 75.36 85.84 86.00

Table 5.6 : Classification accuracy with added noise to 20% training samples

and 80% testing samples for proposed methods using Neural Net as classifier

20% Training

samples DBN SAE

Proposed

Algorithm 1

Proposed

Algorithm 2

Indian Pines 79.64 82.24 81.45 82.69

Pavia University 86.06 83.72 88.21 88.67

Page | 56

ii) 20% shot noise

Table 5.7 : Classification accuracy with added noise to 10% training samples

and 90% testing samples for proposed methods using Neural Net as classifier

10% Training

samples DBN SAE

Proposed

Algorithm 1

Proposed

Algorithm 2

Indian Pines 72.81 73.57 74.70 76.28

Pavia University 80.62 74.54 81.09 82.73

Table 5.8 : Classification accuracy with added noise to 20% training samples

and 80% testing samples for proposed methods using Neural Net as classifier

20% Training

samples DBN SAE

Proposed

Algorithm 1

Proposed

Algorithm 2

Indian Pines 75.96 78.41 77.63 79.01

Pavia University 80.502 81.33 83.50 84.65

iii) 30% shot noise

Table 5.9 : Classification accuracy with added noise to 10% training samples

and 90% testing samples for proposed methods using Neural Net as classifier

10% Training

samples DBN SAE

Proposed

Algorithm 1

Proposed

Algorithm 2

Indian Pines 65.42 60.82 71.48 73.09

Pavia University 74.71 72.93 75.35 76.60

Page | 57

Table 5.10 : Classification accuracy with added noise to 20% training samples

and 80% testing samples for proposed methods using Neural Net as classifier

20% Training

samples DBN SAE

Proposed

Algorithm 1

Proposed

Algorithm 2

Indian Pines 71.08 74.66 75.82 77.35

Pavia University 75.38 77.31 78.25 79.16

Case 2(B) : Clean Training set & Noisy Testing set

i) 10% shot noise

Table 5.11 : Classification accuracy with 10% training samples and

added noise to 90% testing samples for proposed methods using Neural

Net as classifier

10% Training

samples DBN SAE

Proposed

Algorithm 1

Proposed

Algorithm 2

Indian Pines 78.00 79.35 79.78 78.84

Pavia University 80.91 75.66 81.91 81.08

Table 5.12 : Classification accuracy with 20% training samples and added

noise to 80% testing samples for proposed methods using KNN as classifier

20% Training

samples DBN SAE

Proposed

Algorithm 1

Proposed

Algorithm 2

Indian Pines 76.95 83.92 83.43 84.01

Pavia University 83.30 82.96 85.37 86.93

Page | 58

ii) 20% shot noise

Table 5.13 : Classification accuracy with 10% training samples and added

noise to 90% testing samples for proposed methods using KNN as classifier

10% Training

samples DBN SAE

Proposed

Algorithm 1

Proposed

Algorithm 2

Indian Pines 73.26 75.27 78.32 78.57

Pavia University 72.64 70.69 73.07 74.10

Table 5.14 : Classification accuracy with 20% training samples and added

noise to 80% testing samples for proposed methods using KNN as classifier

20% Training

samples DBN SAE

Proposed

Algorithm 1

Proposed

Algorithm 2

Indian Pines 73.33 80.00 80.19 82.26

Pavia University 74.45 77.15 75.26 76.88

iii) 30% shot noise

Table 5.15 : Classification accuracy with 10% training samples and added

noise to 90% testing samples for proposed methods using KNN as classifier

10% Training

samples DBN SAE

Proposed

Algorithm 1

Proposed

Algorithm 2

Indian Pines 62.19 66.38 74.74 76.84

Pavia University 65.16 63.67 64.17 70.16

Page | 59

30% shot noise ….(cont.)

Table 5.16 : Classification accuracy with 20% training samples and added

noise to 80% testing samples for proposed methods using KNN as classifier

20% Training

samples + 30%

shot noise DBN SAE

Proposed

Algorithm 1

Proposed

Algorithm 2

Indian Pines 67.61 75.48 81.45 82.01

Pavia University 68.72 73.34 69.98 72.29

5.5 Effect of Deep Learning

This section analyzes the results of the proposed deep dictionary learning and

the effect of increasing the number of layers. The features obtained via shallow

dictionary learning are used for classification . The classification performance

is then compared with the same number of features generated via deep

dictionary learning.

Table 5.17: Classification accuracy on Indian Pines for Shallow vs Deep

learning for proposed methods

Indian Pines

10% training

data

 Shallow (41)

10% training data

Deep (163-82-41)

20% training

data

Shallow (41)

20% training data

Deep(163-82-41)

Proposed

Algorithm1 71.76 81.75 81.67 87.19

Proposed

Algorithm 2 71.76 82.07 81.67 86.82

Page | 60

Table 5.18: Classification accuracy on Pavia University for Shallow vs Deep

learning for proposed methods

Pavia

University

10% training

data

 Shallow (20)

10% training data

Deep (210-50-20)

20% training

data

Shallow (35)

20% training data

Deep (300-150-35)

Proposed

Algorithm1 86.88 93.52 92.52 96.30

Proposed

Algorithm 2 86.88 93.15 92.52 97.68

Page | 61

Graphs for Classification Accuracies for Case 2(A)

Figure 18: Classification accuracy for Figure 19: Classification Accuracy for

 Indian Pines (10% Test set) Indian Pines (20% Test set)

Figure 20: Classification accuracy for Figure 21 : Classification Accuracy for

 Pavia U (10% Test set) Pavia U (20% Test set)

Page | 62

 Graphs for Classification Accuracies for Case 2(B)

Figure 22 : Classification Acuracy for Figure 23: Classification Acuracy for

 Indian Pines (10% Test Set) Indian Pines (20% Test set)

Figure 24: Classification Accuracy for Figure 25 : Classification Accuracy for

 Pavia U (10% Test set) Pavia U (20% Test set)

Page | 63

Bibliography

1. K. Rao and P. Yip. Discrete Cosine Transform: Algorithms, Advantages

and Applications. Academic Press, 1990.

2. S. Mallat. A Wavelet Tour of Signal Processing: The Sparse Way.

Academic Press, third edition, 2008.

3. I. Daubechies. Ten Lectures on Wavelets. SIAM, 1992.

4. G. E. Hinton and R. R. Salakhutdinov, "Reducing the Dimensionality of

Data with Neural Networks", Science, Vol. 313 (5786), pp. 504-507,

2006.

5. H. Bourlard and Y. Kamp, "Auto-association by multilayer perceptrons

and singular value decomposition". Biologic Cybernetics, Vol. 59 (4–5),

pp. 291–294, 1989.

6. S. Tariyal, A. Majumdar, R. Singh, M. Vatsa, “Greedy Deep Dictionary

Learning”, arXiv:1602.00203.

7. Y. Bengio, A. Courville and P. Vincent, "Representation Learning: A

Review and New Perspectives," in IEEE Transactions on Pattern Analysis

and Machine Intelligence, vol. 35, no. 8, pp. 1798-1828, Aug. 2013.

8. Y. Bengio, P. Lamblin, P. Popovici and H. Larochelle, “Greedy Layer-Wise

Training of Deep Networks”, Advances in NeuralInformation Processing

Systems, 2007.

9. G. E. Hinton, S. Osindero and Y. W. Teh, “A fast learning algorithm for

deep belief nets”, Neural Computation, Vol. 18, pp. 1527-1554,2006.

10. Y. Bengio, “Learning deep architectures for AI”, Foundations and Trends

in Machine Learning, Vol. 1(2), pp. 1-127, 2009.

11. P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio and P. A. Manzagol,

“Stacked denoising autoencoders: Learning useful representations in a

Page | 64

deep network with a local denoising criterion”, Journal of Machine

Learning Research, Vol. 11, pp. 3371-3408, 2010.

12. M. Elad and M. Aharon, "Image Denoising Via Learned Dictionaries and

Sparse representation," 2006 IEEE Computer Society Conference on

Computer Vision and Pattern Recognition (CVPR'06), 2006, pp. 895-900.

13. G. Peyre, "Texture Synthesis with Grouplets," in IEEE Transactions on

Pattern Analysis and Machine Intelligence, vol. 32, no. 4, pp. 733-746,

April 2010.

14. M. Zibulevsky and B. A. Pearlmutter, "Blind Source Separation by Sparse

Decomposition in a Signal Dictionary," in Neural Computation, vol. 13,

no. 4, pp. 863-882, April 1 2001.

15. J. Mairal, F. Bach, J. Ponce, and G. Sapiro. Online dictionary learning

for sparse coding. In Proceedings of the International Conference on

Machine Learning (ICML), 2009a.

16. K. Engan, S. Aase, and J. Hakon-Husoy, “Method of optimal directions

for frame design,” IEEE International Conference on Acoustics, Speech,

and Signal Processing, 1999.

17. E. J. Candes and D. L. Donoho, “Recovering edges in ill-posed inverse

problems: Optimality of curvelet frames,” Ann. Statist., vol. 30, no. 3, pp.

784–842, Jun. 2002.

18. E. J. Candès and D. L. Donoho, “New tight frames of curvelets and the

problem of approximating piecewise C images with piecewise C2 edges,”

Commun. Pure Appl. Math., vol. 57, pp. 219–266, Feb. 2004.

19. D. L. Donoho, “Wedgelets: Nearly minimax estimation of edges,” Ann.

Statist., vol. 27, no. 3, pp. 859–897, Jun. 1998.

20. Moritz Hardt, “Understanding Alternating Minimization for Matrix

Completion” , arXiv:1312.0925 [cs.LG]

Page | 65

21. R. Rubinstein, A. M. Bruckstein and M. Elad, "Dictionaries for Sparse

Representation Modeling", Proceedings of the IEEE, Vol. 98(6), pp. 1045-

1057, 2010.

22. M. Aharon, M. Elad and A. Bruckstein, "K-SVD: An Algorithm for

Designing Overcomplete Dictionaries for Sparse Representation", IEEE

Transactions on Signal Processing, Vol. 54 (11), pp. 43114322, 2006.

23. J. A. Tropp and A. C. Gilbert, "Signal Recovery From Random

Measurements Via Orthogonal Matching Pursuit," in IEEE Transactions

on Information Theory, vol. 53, no. 12, pp. 4655-4666, Dec. 2007.

24. B. K. Natarajan, "Sparse approximate solutions to linear systems", SIAM

Journal on computing, Vol. 24, pp. 227-234, 1995.

25. D. Needell, J.A. Tropp, “COSAMP: Iterative signal recovery from

incomplete and inaccurate samples” . Appl. Comput. Harmon. Anal., 26

(3) (2009), pp. 301–321

26. D. L. Donoho, Y. Tsaig, I. Drori, and J.-L. Starck, “Sparse solution of

underdetermined linear equations by stagewise Orthogonal Matching

Pursuit (StOMP),” IEEE Transactions on Information Theory, Volume 58

Issue 2, February 2012, pp 1094-1121.

27. R. Tibshirani , “Regression Shrinkage and selection via LASSO” , Journal

of royal statistical society, Series B (methodological), Volume 58 , Issue

1,1996 ,pp 267-288.

28. Beck, A., Teboulle, M., “ A fast iterative shrinkage-thresholding algorithm

for linear inverse problems”. SIAM Journal on Imaging Sciences 2(1),

183–202 (2009)

29. I. Daubechies, M. Defriese, and C. De Mol. “An iterative thresholding

algorithm for linear inverse problems with a sparsity constraint” .

Commun. Pure Appl. Math, LVII:1413–1457, 2004.

Page | 66

30. E. Cande`s, M. Wakin, and S. Boyd, ‘‘Enhancing sparsity by reweighted

‘1 minimization,’’ J. Fourier Anal. Appl., vol. 14, no. 5–6, pp. 877–905,

2008.

31. S. Mallat and Z. Zhang, “Matching pursuits with time-frequency

dictionaries,” IEEE Trans. Signal Process., vol. 41, no. 12, pp. 3397–

3415, 1993

32. I. F. Gorodnitsky and B. D. Rao, “Sparse signal reconstruction from

limited data using FOCUSS: A re-weighted norm minimization

algorithm,” IEEE Trans. Signal Process., vol. 45, pp. 600–616, 1997

33. Y. C. Pati, R. Rezaiifar, and P. S. Krishnaprasad, “Orthogonal matching

pursuit: Recursive function approximation with applications to wavelet

decomposition,” in Conf. Rec. 27th Asilomar Conf. Signals, Syst.

Comput., 1993, vol. 1

34. S. S. Chen, D. L. Donoho, and M. A. Saunders, “Atomic decomposition by

basis pursuit,” SIAM Rev., vol. 43, no. 1, pp. 129–159, 2001

35. D. L. Donoho and I. M. Johnstone, “Ideal denoising in an orthonormal

basis chosen from a library of bases,” Comp. Rend. Acad. Sci., ser. A, vol.

319, pp. 1317–1322, 1994.

36. R. Coifman and D. L. Donoho, “Translation invariant denoising,” in

Wavelets and Statistics. New York: Springer-Verlag, 1995, vol. 103,

Lecture Notes in Statistics, pp. 120–150.

37. J. L. Starck, M. Elad, and D. L. Donoho, “Image decomposition:

Separation of texture from piece-wise smooth content,” in SPIE Conf.

Signal Image Process.: Wavelet Applicat. Signal Image Process. X, SPIE

48th Annu. Meeting, San Diego, CA, Aug. 3–8, 2003.

38. J. L. Starck, E. J. Candes, and D. L. Donoho, “The curvelet transform for

image denoising,” IEEE Trans. Image Process., vol. 11, pp. 670–684,

2002.

Page | 67

39. M. Elad, J. L. Starck, P. Querre, and D. L. Donoho, “Simultaneous

cartoon and texture image inpainting using morphological component

analysis (MCA),” J. Appl. Comput. Harmon. Anal., submitted for

publication

40. J. Wright, A. Yang, A. Ganesh, S. Sastry, and Y. Ma. “Robust face

recognition via sparse representation”. IEEE Transactions on Pattern

Analysis and Machine Intelligence, Vol. 31, 2, pp. 210–227, 2009.

41. Q. Zhang and B. Li, "Discriminative K-SVD for dictionary learninin face

recognition". IEEE Conference of Computer Vision anPattern Recognition,

2010.

42. Z. Jiang, Z. Lin and L. S. Davis, "Learning A Discriminative Dictionary for

Sparse Coding via Label Consistent K-SVD", IEEE Transactions on

Pattern Analysis and Machine Intelligence, Vol. 35, pp. 2651-2664, 2013.

43. H. Larochelle and Y. Bengio, “Classification using Discriminative

Restricted Boltzmann Machines”, International Conference on Machine

Learning, 2008.

44. Z. Cui, S. S. Ge, Z. Cao, J. Yang and H. Ren, “Analysis of Different

Sparsity Methods in Constrained RBM for Sparse Representation in

Cognitive Robotic Perception”, Journal of Intelligent Robot and Systems,

pp. 1-12, 2015.

45. H. Luo, R. Shen and C. Niu, “Sparse Group Restricted Boltzmann

Machines”, arXiv:1008.4988v1 .

46. R. Salakhutdinov and G. Hinton, “Deep Boltzmann Machines”,

International Conference on Artificial Intelligence and Statistics,

2009.

47. L.I.Smith. (2002, February 26). A tutorial on principal components

analysis. Available:

http://csnet.otago.ac.nz/cosc453/student_tutorials/principal_compone

n ts.pdf

Page | 68

48. Ricardo Gutierrez-Osuna, datajobs.com/data-science-repo/LDA-Primer-

[Gutierrez-Osuna].pdf

49. W. Cheung and G. Hamarneh, "n-SIFT: n -Dimensional Scale Invariant

Feature Transform," in IEEE Transactions on Image Processing, vol. 18,

no. 9, pp. 2012-2021, Sept. 2009.

50. D. Huang, C. Shan, M. Ardabilian, Y. Wang and L. Chen, "Local Binary

Patterns and Its Application to Facial Image Analysis: A Survey," in IEEE

Transactions on Systems, Man, and Cybernetics, Part C (Applications

and Reviews), vol. 41, no. 6, pp. 765-781, Nov. 2011

51. P. Jain, P. Netrapalli and S. Sanghavi, “Low-rank Matrix Completion

using Alternating Minimization”, Symposium on Theory Of Computing,

2013

52. C. Hillar and F. T. Sommer, “When can dictionary learning uniquely

recover sparse data from subsamples?”, arXiv:1106.3616v3.

53. D. A. Spielman, H. Wang and J. Wright, “Exact Recovery of Sparsely-

Used Dictionaries”, International Conference On Learning Theory, 2012

54. Tom Goldstein , Stanley Osher, The Split Bregman Method for L1-

Regularized Problems, SIAM Journal on Imaging Sciences, v.2 n.2,

p.323-343, April 2009

55. Y. Chen, Z. Lin, X. Zhao, G. Wang and Y. Gu, “Deep Learning-Based

Classification of Hyperspectral Data”, in IEEE Journal of Selected Topics

in Applied Earth Observations and Remote Sensing, vol. 7, no. 6, pp.

2094-2107, June 2014.

56. Y. Chen, X. Zhao and X. Jia, "Spectral–Spatial Classification of

Hyperspectral Data Based on Deep Belief Network," in IEEE Journal of

Selected Topics in Applied Earth Observations and Remote Sensing, vol.

8, no. 6, pp. 2381-2392, June 2015.

Page | 69

57. K. Makantasis, K. Karantzalos, A. Doulamis and N. Doulamis, "Deep

supervised learning for hyperspectral data classification through

convolutional neural networks," Geoscience and Remote Sensing

Symposium (IGARSS), 2015 IEEE International, Milan, 2015, pp. 4959-

4962.

58. W. Hu, Y. Huang, L. Wei, F. Zhang and L. Hengchao, “Deep

Convolutional Neural Networks for Hyperspectral Image Classification”,

Hindawi Journal of Sensors, Vol. 2015.

59. http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_S

ensing_Scenes

60. https://github.com/rasmusbergpalm/DeepLearnToolbox

61. A. Makhzani and B. Frey, "k-Sparse Autoencoders", arXiv:1312.5663,

2013.

62. K. Cho, "Simple sparsification improves sparse denoising autoencoders

in denoising highly noisy images", International Conference on Machine

Learning, 2013

https://github.com/rasmusbergpalm/DeepLearnToolbox

