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Abstract  
 

 

This Thesis focuses on combining the two well researched concepts of 

representation learning – Dictionary Learning and Deep Learning. These two 

learning paradigms have been known for long. Ever since, plethora of papers 

have been published for both the paradigms for solving inverse problems and 

for prediction problems. While dictionary learning focuses on learning “basis’’ 

and “features’’ by matrix factorization, deep learning focuses on extracting 

features via learning “weights’’ or “filter’’ in a greedy layer by layer fashion.  

While dictionary learning is shallow learning, deep learning methods are data 

hungry. This Thesis merges these two learning methodologies and proposes a 

new learning method referred to as Deep Dictionary Learning which tries to 

eliminate the disadvantages of the two. The proposed learning method learns 

multiple levels of representations using dictionary learning that correspond to 

different levels of abstraction; the levels form a hierarchy of linear/non-linear 

transformations.  

On the above described strategy, two deep dictionary learning methods have 

been proposed in this thesis. Algorithm 1 is the deep dictionary learning 

method while Algorithm 2 is the robust version of algorithm 1, referred to as 

Robust Deep Dictionary Learning. Algorithm 2 consists of an additional 

denoising layer at the top most level for the purpose of generating useful 

representations even with noisy data. 

The proposed techniques are compared with other learning approaches such as 

Stacked Auto Encoder, Deep Belief Network, LCKSVD1 and LCKSVD2 on 

benchmark datasets in the presence and absence of impulse noise of varying 

amounts. The classification performance of the proposed technique achieves 

higher or at par accuracies for both the cases. On a real world problem of 

hyperspectral image classification, it is observed that the proposed deep 

dictionary learning methods performs at par with other learning techniques 

with much less complexity and time in both, the absence and the presence of 

shot noise.  

Also, the effect of going deep in dictionary learning versus shallow learning is 

discussed and shown experimentally. 
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1│Introduction 
 

 

 
With the dramatic increase in the size of the data, the resourcefulness of such 

information is dependent on how well any knowledge can be extracted from it. 

We are moving towards the idea of extracting and organizing discriminative 

information from the data. Recently, there has been growing interest in 

learning models based on domain knowledge and applications. The 

performance of any learning algorithm nowadays depends heavily on the 

features or data representation on which they are applied on. For that reason, 

much of the actual effort in learning algorithms goes into the design of 

preprocessing pipelines and data transformations that result in a 

representation of the data that can support effective learning. This thesis is 

about representation learning, i.e., learning representations of the data that 

make it easier to extract useful information when building classifiers or other 

predictors[7]. Representation learning algorithms have been applied to many 

area such as Speech recognition, object recognition, natural language 

processing etc. 

In representation learning paradigm, dictionary learning has generated a lot of 

interest. The concept of dictionary learning has been around for much longer 

when the researchers were using the term ‘matrix factorization’. The goal was 

to learn an empirical basis from the data. It basically required decomposing the 

data matrix to a basis / dictionary matrix and a feature matrix; hence the 

name ‘matrix factorization’.  In recent years, the idea of the adaptivity has been 

exploited to design the dictionary specifically optimized for the target dataset. 

This was the alternative from the reliant, tried and tested off the shelf 

dictionaries .The data adaptive approach claims to be more efficient in 

facilitating better learning thus leading to better interpretation of the data [7]. A 
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reasonably-sized learned representation can capture a huge number of possible 

input configurations. 

Dictionary learning can be used both for unsupervised problems (mainly  

inverse problems in image processing) as well as for problems arising in 

supervised feature extraction[6]. 

Prior studies on dictionary learning (DL) are, generally, ‘shallow or surface’ 

learning models just like a restricted Boltzmann machine (RBM) [4] and 

Autoencoder (AE) [5]. In DL, the cost function is Euclidean distance between 

the data and the representation given by the learned basis and a sparse 

representation; for RBM it is Boltzmann energy; whereas for AE, the cost is the 

Euclidean reconstruction error between the input data and the decoded 

representation/features [6].   

Almost at the same time, one new parameter in learning paradigm gained 

popularity. The parameter was ‘Depth’ . It paved way for another representation 

learning paradigm- Deep Learning. Deep Learning means constructing multiple 

levels of representation or learning a hierarchy of features. The depth of the 

architecture is the length of the longest path from an input node to an output 

node[7]. Deep Belief Network (DBN) is formed by stacking one RBM after the 

other [8,9]. Similarly, Stacked Autoencoder (SAE) are created by one AE 

followed by the other [10,11].   

The advantages of Deep learning are [7] :  

(1) promotion of re-use of features, 

(2) a sufficiently deep architecture can potentially lead to more abstract 

features at higher layers of representations . 

 

 Deep architectures are often challenging to train effectively and this has been 

the subject of much recent research and progress [7]. 

 Inspired from both the feature learning strategies, in this thesis, we propose to 

learn multi-level deep dictionaries. Our objective here is to learn the better 

representation of the data which then is used in forming deep architectures.  
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The learning of deep representations can be divided into two aspects: 

unsupervised feature learning and supervised deep learning. The thesis 

proposes the unsupervised deep learning which generates features at the 

output. A hierarchy of features is learnt one level at a time, using unsupervised 

dictionary learning to learn a new linear/non-linear transformation at each 

level composed with the previously learned representations. Finally, the 

representations from the last layer can be given as input to any classifier for 

the task of classification or simply used for other purposes such as denoising 

and likes. 

It is many times argued that multiple levels of dictionaries can be collapsed to 

a single level dictionary. However such a collapsed shallow dictionary will not 

be the same as the proposed deep dictionary learning. This is because 

dictionary learning is a bi-linear problem. Had it been linear the architecture 

would have been collapsible; since it is not, the shallow and the deep 

architectures will not be equivalent [6]. There are few results in the Thesis that 

will prove so. 

 

1.1 Thesis Roadmap 

Chapter 2 - Dictionary Learning and Deep Learning –an Overview  

The motivation and overview of the existing approaches for Dictionary Learning 

and Deep Learning.  

Chapter 3 – Deep Dictionary Learning 

The proposed deep Dictionary Learning Algorithms inspired from dictionary 

learning and deep learning strategy are explained and explored by 

mathematical formulations 

Chapter 4 – Deep Dictionary learning on Images  

Experimental evaluation of benchmark dataset MNIST and handwritten dataset 

USPS for classification and few results for denoising. The results are compared 

with State-of-the-art techniques such as SAE and DBN. 
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Chapter 5 – Deep Dictionary learning on Hyperspectral Images 

Experimental evaluation of Hyperspectral dataset Indian Pines and Pavia 

University for classification and few results for denoising with realistic scenario 

of ratio of training and testing being 10:90 and 20:80 .The results are 

compared with State-of-the-art techniques such as SAE and DBN. 
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2│Dictionary Learning and Deep      

    Learning – an Overview  
 
 

 
The surging interest in various ‘Learning’ techniques due to explosive growth in 

volumes and varieties of available data, cheaper and more powerful 

computational processing , and affordable data storage has led to the 

popularity of Dictionary Learning. The technique is especially evolving for 

numerous low-level tasks such as denoising [12], texture synthesis [13], and 

audio processing [14]  as well as higher-level tasks such as Classification [15]. 

Recent Dictionary Learning techniques allow flexibility of basis vectors to adapt 

the representation to the data rather than fixed basis. Advancement in learning 

procedures has led to unsupervised as well as supervised Dictionary Learning 

algorithms.  

  

2.1 Dictionary Learning 
 
Dictionary Learning is essentially the technique to learn the (often linear) 

combination of basis elements, the so-called atoms, to adapt it to specific data. 

The collection of these atoms is called a dictionary .Early studies in Dictionary 

learning focused on learning only basis for representation. Usually the 

dictionary is initialized using randomly selected elements from data itself.  

The approximation of the data can be written as : 

             

                                                X DZ                                        … (1) 
 
where  X  = [x1 , x2 , x3 ,…… xn ]   , xi ϵ Rm       , set of data  vectors 

      Z  =  [z1 , z2 , z3………zn ]  ϵ RpXn            , representation coefficients  

      D =  [d1 , d2 , d3……..dp ]  ϵ RmXp           , set of basis vectors called Dictionary                                   
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The learning problem was formulated as unconstrained Euclidean cost 

function measuring the quality of representation of the data. The Method of 

Optimal Directions [16] was used to learn the Dictionary : 

 

                                                     

2

,
min

FD Z
X DZ                                 … (2) 

 

where  ,

1 1

* *
m n

i j

i j 

   , also called the Frobenius Norm of the Matrix. 

Equation (2) is easily solved using alternating minimization [20]. In every 

iteration, the first step is to update the coefficients through least squares 

assuming D is fixed and the next step is to update the dictionary through least 

squares assuming the coefficients are fixed. This alternating update of 

dictionary and coefficients continues till the algorithm converges to some local 

minima.  

 

Before the data driven dictionaries were widely accepted , the general practice 

was to use off-the shelf fixed dictionaries, e.g. local Discrete Cosine Transform 

(DCT) [1], Wavelets [2,3] , Curvelets [17,18], and Wedgelets [19]. The advantage 

of such basis from a computational point of view is that they compute the 

representation coefficients by calculating a scalar product between the input 

data and the dictionary atoms i.e faster transforms, though their main 

disadvantage is limiting the choice of atoms and thus sometimes not enough 

representation of the data. 

 

Equation (2) is also known as Matrix Factorization. There are no constraints on 

the loading coefficients. The dictionary, D  defined above can be 

"undercomplete" if m > p  or "overcomplete" if m < p. With the Overcomplete 

dictionaries the condition for the atoms to be orthogonal is relaxed thus 

allowing for more flexible dictionaries and richer data representations.  
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More recent works have focused on representing data vectors as linear 

combinations of few elements from dictionary, introducing the concept of 

sparsity (solutions having a minimum number of nonzero elements) [21,22].The 

focus is now shifted on how to sparsely encode a signal given the dictionary i.e. 

Z needs to be sparse. If the dictionary is large and rich enough in 

representational power, data can be matched to a very few (perhaps even just 

one) dictionary atom(s).  

           
                                         Figure 2: Synthesis Dictionary Learning 

 

The framework can be written as : 
 

                                       
2

0,
min .

FD Z
X DZ s t Z                                     ….(3) 

 

Here Z is τ sparse and 
0

Z is the l0- norm of a vector which counts the no. of 

non-zero elements in it. l0- minimization is regarded by computer scientist as an 

NP-hard problem [24], simply says that it’s too complex and almost impossible 

to solve. Greedy techniques are available for solving such problems. Popular 

among them are Orthogonal Matching Pursuit (OMP) [23] and its variants [25-

27]. However, In many cases, l0 -minimisation problem is relaxed to be a 

higher-order norm problem such as l1 – minimization. For a ‘n’ dimensional 

vector X ,the l1 – norm is defined as 
1

n

ii
x

 . 

Now the problem becomes convex and thus the optimization is of the following 

form : 

 

                               
2

1,
min .

FD Z
X DZ s t Z                           ….(4) 
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We solve Equation (4) by relaxing the constraint via the Lagrangian method 

and thus can be re-written as: 

                                          
2

1,
min

FD Z
X DZ Z                              ….(5) 

Where λ is the Langrangian multiplier. We then solve for sparse representation 

(Z) and Dictionary (D) iteratively. Given D, estimating Z reduces to the sparse 

coding problem. For sparse coding, Equation (5) is known as LASSO (Least 

Angle Shrinkage and Selection Operator) [28]. The literature is vast for l1 

minimization techniques like soft-thresholding based methods [29,30], 

reweighted-l2 methods [31] etc. Given Z, estimating D is a least squares 

problem. 

 

There has been significant interest in finding sparse solutions to the signal 

representation problem.Experiments have shown that such a model with 

sparse decompositions (sparse coding) is very eff ective in many applications. 

Dictionary Learning and Sparse coding are used interchangeably now. 

 

Over the years many Algorithms for data-driven learning of dictionaries have 

been proposed. Following is a brief review of a few of them: 

 

2.1.1  K-SVD  

 

One of the pioneering work in Dictionary Learning is the  K-SVD method [22]. 

The Algorithm learns an over-complete dictionary as well as the sparse 

representations of the patches under that dictionary in an alternating 

minimization framework. 

 

 Fundamentally, it solves a problem of the form: 

  

                                  
2

1,
min .

FD Z
X DZ s t Z                          …(6) 
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In Equation (6), X is the matrix of vectored training data and D is the learnt 

dictionary and matrix Z  represents the coefficients and column sparse. If n is 

the number of training samples, then X has the dimension of mxn, dictionary 

has a dimension of m x p, with m << p and Z has a dimension of m x n.  

Equation (6) is solved in two steps. The update of the dictionary columns is 

combined with an update of the sparse representations, thereby accelerating 

convergence[22]. The K-SVD algorithm is flexible and can work with any 

pursuit method (e.g., basis pursuit, FOCUSS, or other matching pursuits )[31-

34].  

In the first stage it learns the dictionary and in the next stage it uses the 

learned dictionary to sparsely represent the data. Solving the l0-norm 

minimization problem is NP hard [24]. K-SVD employs the greedy (sub-optimal) 

orthogonal matching pursuit (OMP) [23] to solve the l0 -norm minimization 

problem approximately with predetermined sparsity. In the dictionary learning 

stage or codebook update stage, K-SVD proposes an efficient technique to 

estimate the atoms one at a time using a rank one SVD update with sparsity 

constraints[22]. Such dictionary learning methods have achieved state of the 

art performances both synthetic and real images in applications such as filling 

in missing pixels and compression and outperforms alternatives such as the 

Stationary wavelet transform and overcomplete or unitary DCT. [35-38] 

The major disadvantage of K-SVD is that it is a relatively slow technique owing 

to its requirement computing the SVD (singular value decomposition) in every 

iteration.  

 

Over the years Dictionary learning has been extensively used in the  field of  

Image denoising[38] , Additive noise removal (low light), Multiplicative noise 

removal, Video denoising , Image restoration , Image inpainting [39] , image 

half-toning , Block Artifact removal and likes.  The expanding learning scenario  

introduced Dictionary learning to Classification tasks as well. The Dictionary 

learning for classification can be supervised , unsupervised or semi-supervised. 
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The dictionary learning formulation in equation (6) is unsupervised. There is a 

large volume of work on supervised dictionary learning problems like Sparse 

Representation Classifier (SRC), Discriminative KSVD (DKSVD) and Label 

Consistent KSVD (LC-KSVD).  

 

2.1.2   Sparse Representation based Classification (SRC) 

 

Sparse Representation based Classification (SRC) [40] is not much of a 

“dictionary learning technique”, but a simple dictionary design problem where 

all the training samples are concatenated in a large dictionary. 

Among all the atoms in an over complete dictionary, the sparse representation 

selects the subset of the atoms which most compactly expresses the input 

signal and rejects all other less compact representation. Therefore, the sparsest 

representation of a signal is naturally discriminative and can be developed for 

signal classification purpose. Sparse representation classifier is a 

nonparametric learning method which can directly predict or assign a class 

label to a test sample based on dictionary composed of training samples[6]. 

 

In sparse representation classifier, the dictionary is constructed from training 

samples from various classes. The jth class training samples are arranged as 

column of a matrix Dj as shown : 

                                    ,1 ,2 ,.......... jmxn

j j j j nD d d d R               …(7)                              

where dj,i denotes the training sample belonging to the jth class and nj is 

number of training samples belonging to jth class. The dictionary, D is form 

using all the dictionary from each class as shown: 

 

                                                             1 2 .......... mxn

cD D D D R 
       …(8)

 

Where 
1

c

jj
n n


  and c is the number of classes. 
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The entries of Z that corresponds to the class which the test sample D belongs 

to is expected to be nonzero while the entries of that corresponding to other 

classes is expected to be zero. The minimization problem is then casted as : 

                                 
2

1,
min .

FD Z
X DZ s t Z  

                     …(9)
      

         
 

And  solved by relaxing the constraint by  Langrangian multiplier method : 

                                     
2

1,
min

FD Z
X DZ Z  

                              …(10)
 

Equation 10 is a LASSO problem and can be  solved using spectral projected 

gradient method, SPGL1 toolbox or other available methods. The minimum of 

the representation error or the residual error of class c is calculated by keeping 

the coefficients associated with that class and while setting the other entries to 

zero. This is done by introducing a characteristic function,   as : 

                            
2

( ) ( )c j jr x x D z                                …(11) 

where rc(x) denotes the residual error. The vector   has value one at locations 

associated to the class j and zero for other entries. The class, d, of the test 

signal, D is computed as the one that produces smallest residual error. 

                                               min ( )j
j

d r x   

Sparse representation for classification was first introduced in 2009 in face 

recognition research and since then been quite popular. 

2.1.3   Label Consistent KSVD  (LC-KSVD)  

The label consistent KSVD is one of the more recent techniques for learning 

discriminative sparse representation. It is simple to understand and 

implement; it showed good results for face recognition [41,42].  

The first technique is termed as Discriminative K-SVD [41] or LC-KSVD1 [42]; 

it proposes an optimization problem of the following form: 

 

                 
2 2 2

1 2 31, ,
min

F F FD Z A
X DZ D Z Q AZ                    …(12) 
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Here, Q is the label of the training samples; it is a canonical basis with a one 

for the correct class and zeroes elsewhere. A is a parameter of the linear 

classifier. It forces the signals from the same class to have very similar sparse 

representations (i.e., encouraging label consistency in the resulting sparse 

codes), which results in good classification performance even using a simple 

linear classifier. 

A second formulation is proposed that adds another term to penalize the 

classification error. Classification error is introduced as a term in the cost 

function for dictionary learning to make the dictionary optimal for 

classification.The LC-KSVD2 [42] formulation is as follows: 

 

          
2 2 2 2

1 2 3 41, ,
min

F F F FD Z A
X DZ D Z Q AZ H WZ             …(13) 

Here Hi is a ‘discriminative’ sparse code corresponding to an input signal 

sample, if the nonzero values of Hi  occur at those indices where the training 

sample Xi and the dictionary item dk share the same label. W denotes the 

classifier parameters.  Basically this formulation imposes labels not only on the 

sparse coefficient vectors Zi’s but also on the dictionary atoms[6]. 

 

The dictionary learned in this way is adaptive to the underlying structure of the 

training data (leading to a good representation for each member in the set with 

strict sparsity constraints), and generates discriminative sparse codes Z and 

addresses the desirable property of the discriminability of classifier 

construction regardless of the size of the dictionary. These sparse codes can be 

utilized directly by a classifier. The discriminative property of sparse code Z is 

very important for the performance of a linear classifier [6]. 

 

Prior studies on dictionary learning (DL) are, generally, ‘shallow’ or ‘surface’ 

learning models . Almost at the same time, when dictionary learning started  

gaining popularity, researchers in machine learning observed that better (more 

abstract and compact) representation can be achieved by going deeper in a 
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neural network architecture. Deep Belief Network (DBN) is formed by stacking 

one RBM after the other [8,9]. Similarly, stacked autoencoder (SAE) are created 

by one AE followed by the other [10,11].   

 

2.2   Deep Learning  

Deep learning is a recently popular research topic in the machine learning 

research community. The successful applications in the direction of many 

fields such as Automatic Speech recognition, Image recognition, 

Bioinformatics, Natural language processing, Recommender system are all to 

do with the advantage of deep learning acting as a good feature representation 

method.  

 

2.2.1   Motivation  

 

Most of the conventional data representations are all in the form of handcrafted 

features, which are too heuristic to be adaptive to the various input data. Many 

feature learning methods try to use human prior knowledge to improve the 

performance. However, these features have limited performance in terms of 

obtaining discriminative information from the input data. In deep 

architectures, according to the target in the output layer, this deep learning 

process can help to learn a more representative model. For instance, the model 

could have edge detectors in the first layer, more abstract feature in the second 

layer, and then succeeding layers with more abstract features. Thus high-level 

abstractions in data is modeled by using a deep architecture with multiple 

processing layers, composed of multiple linear and non-linear transformations. 

Owing to the commercial profits foreseen, technology giants, such as Google, 

Chinese search company, Baidu ,Facebook and Apple, have started actively 

pursuing research in this area.  
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2.2.2  Deep Architectures 

 

Deep Learning uses a cascade of many layers of  linear/nonlinear 

processing units for feature extraction and transformation. Each successive 

layer uses the output from the previous layer as input. The algorithms may 

be supervised or unsupervised .The foundation is based on the (unsupervised) 

learning of multiple levels of features or representations of the data. Higher 

level features are derived from lower level features to form a hierarchical 

representation.It learns multiple levels of representations that correspond to 

different levels of abstraction; the levels form a hierarchy of concepts. It also 

appears sensible to learn simple representations first and higher-level 

abstractions on top of existing lower level ones. In place of randomly initialized 

parameters, this representation forms the initialization – a catalyst to learn 

meaningful representations – for the subsequent learning phase[6]. 

 

2.2.2.1     Deep Boltzmann Machines 

 

Restricted Boltzmann Machines [8,9] are undirected models that use stochastic 

hidden units to model the distribution over the stochastic visible units. The 

hidden layer is symmetrically connected with the visible unit and the 

architecture is restricted” as there are no connections between units of the 

same layer. Traditionally, RBMs are used to model the distribution of the input 

data p(x).  

Consider a binary RBM with a visible input layer X and a latent/hidden layer 

H. The input layer contains I dimensions corresponding to the size of the input 

vector. The latent layer has J latent variables. Additionally, there are offset (or 

bias) units, x0 and z0, that are permanently set to one. The layers are 

associated by an undirected weight matrix W, such that every input unit i is 

connected to every latent variable j via wij. 
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The schematic diagram of RBM is shown in Fig. 2 

     

                                           
                                                               Figure 2: Restricted Boltzman Machine 

  
The objective is to learn the network weights (W) and the representation (H). 

This is achieved by optimizing the Boltzmann cost function given by:   

                                 
( , )( , ) E W Hp W H e

                             …(14) 

Where  ,   TE W H H WX   including the bias terms. Assuming independence, 

the conditional distributions are given by  : 

 

                                               ( ) ( )p X H p x h  

 ( ) ( )p H X p h x   

Given an input vector, the activation probabilities of the latent units can be 

sampled:                                                                                                   

0

1
( 1 ; )

1 exp( )
i I

ij ii

p h x W
w x



 
 

     =   ( )sigm Wx   

While the input units can be sampled from the latent/hidden vector with a 

symmetric decoder: 

0

1
( 1 ; )

1 exp( )
i J

ij jj

p x h W
w h



 
 

 = ( )Tsigm W h  
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Computing the exact gradient of this loss function is almost intractable. 

However, there is a stochastic approximation to approximate the gradient 

termed as contrastive divergence gradient. A sequence of Gibbs sampling based 

reconstruction, produces an approximation of the expectation of joint energy 

distribution, using which the gradient can be computed. 

Usually RBM is unsupervised, but there are studies where discriminative 

RBMs are trained by utilizing the class labels [43]. There are also RBMs which 

are sparse [44]; the sparsity is controlled by firing the hidden units only if they 

are over some threshold. Supervision can also be achieved using sparse RBMs 

by extending it to have similar sparsity structure within the group / class [45]. 

 

Deep Boltzmann Machines (DBM) [46] is an extension of RBM created by 

stacking multiple hidden layers on top of each other (Fig. 2). DBM is an 

undirected learning model and thus it is different from the other stacked 

network architectures in which each layer receives feedback from both the top-

down and bottom-up layer signals. This feedback mechanism helps in 

managing uncertainty in learning models.  

 

                          

                                                                   Figure 3 :  Deep Boltzmann Machine 
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2.2.2.2     Stacked AutoEncoder (SAE) 

 

The quintessential example of a representation learning algorithm is the  

Autoencoder[10,11]. The network is trained to reconstruct its inputs, which 

forces the hidden layer to try to learn good representations of the inputs. They 

are trained to reconstruct their own inputs. An autoencoder consists of three 

layers: i) an input layer , ii) an encoding layer (hidden layer) that maps the 

input data into a latent representation, and iii) a decoding layer that maps the 

learnt representation back into the original data.  

For a given input vector (including the bias term) x, the latent code or variable 

is expressed as: 

  h Wx   

Here, the rows of W are the link weights from all the input  nodes to the 

corresponding latent node. Usually the mapping function(Ф) is non-linear at 

the output of the hidden nodes leading to: 

                                   

                                           Figure 4: Single layer Autoencoder 

                                                                                

                                                                                ( )h W x b                                                          …(15) 

W is the weight matrix and b is the offset vector. Although a non-linear 

function is popularly used, a linear activation functions is also used sometimes 

depending on input x [10]. 
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The decoder reverse maps the latent variables to the data space.  

 x W h b     

  

               Or,                 )x W W x b b                                     …(16) 

During training, the problem is to learn the encoding and decoding weights – W 

and W’. These are learnt by minimizing the Euclidean cost: 

                               
2

,
min ( ) )

FW W
X W W X b b


                                    …(17)                     

The problem in Equation (17) is clearly non-convex, but as the activation 

function is generally smooth and continuously differentiable, it can be solved 

by gradient descent techniques. 

The idea of autoencoders was extended to deep and thus Stacked autoencoders 

were introduced. Stacked/Deep autoencoders have multiple hidden layers – 

one inside the other (see Fig. 4). The corresponding cost function is expressed 

as follows in Equation 18: 

                       

                                                                             Figure 5 :  Stacked Autoencoder 

                                 

                             
1 1

2

.. , ...

min ( )
n n

F
W W W W

X g f X
 

                       …(18) 

Where  
1 2

1 1

( .... ( ( ))

( ( ..... ( )))

n

n n

g W W W f X and

f W W W X

   

   
                                                …(19) 
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Solving the complete problem (17) is computationally challenging. Also learning 

so many parameters (network weights) lead to over-fitting. To address both 

these issues, the weights are usually learned in a greedy layer by layer fashion. 

The process of finding these initial weights is often referred to as pre-training. 

After finding the deviation of input from the output, error is backpropagated 

through the network and weights are updated. As errors are backpropagated to 

through the layers, they are minimized. Thus the network almost always learns 

to reconstruct the average of all the training data. 

 

There are several variations to the basic autoencoder architecture like 

Denoising Autoencoder[11], Sparse Autoencoder[61,62] and Variational 

Autoencoder. 

 

Stacked denoising autoencoder [11] is a variant of the basic autoencoder where 

the input consists of noisy samples and the encoder and decoder are learnt to 

reconstruct the original input. 

 

 Another variation for the basic autoencoder is to regularize it, i.e. 

                         
1 1

2

.. , ...

min ( ) ( , )
n n

F
W W W W

X g f X R W X
 

                       …(20) 

The regularization in Equation (20) can be a sparsity promoting term [61, 62]. 

The regularization term is usually chosen so that they are differentiable and 

hence minimizable using gradient descent techniques.  

Diff erent kinds of autoencoders aim to achieve diff erent kinds of properties. 
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3│Deep Dictionary Learning                                        

 
In this Chapter, we describe the main contribution of this Thesis. A single / 

shallow level of dictionary learning yields a latent representation of data and 

the dictionary atoms. Here, it is proposed to learn latent representation of data 

by learning multi-level dictionaries[6]. The idea of learning deeper levels of 

dictionaries stems from the success of deep learning. Based on this, we build a 

deep architecture by cascading one dictionary after the other. The learning 

proceeds in a greedy fashion, therefore for each level only a single layer of 

dictionary is needed to learn. There are time tested tools to solve this problem.  

 

Both deep learning and dictionary learning fall under the broader category of 

representation learning. Representation learning means automated feature 

extraction. Classical feature extraction techniques were either based on 

statistical models (Principal Component Analysis[47], Linear Discriminant 

Analysis[48] etc.) or were hand-crafted (Scale Invariant Feature 

Transform(SIFT) [49], Local Binary Pattern[50] etc.). Classical feature extraction 

techniques were ‘designed’ in the sense that it is based on some assumption / 

model made by the researcher / engineer regarding the nature of the data. On 

the other hand representation learning, ‘learns’ the model by itself, given the 

training data. As Deep Dictionary learning is the combination of deep learning 

and dictionary learning, it also falls in the category of Representation Learning. 

 

3.1  Overview 

In this section, for ease of understanding, the concept with two-layer deep 

dictionary learning is explained and then extended to multi-level dictionary.   

The schematic diagram for dictionary learning is shown in Fig.5 . Let X be the 

set of data vectors, D be the data-adaptive dictionary and Z be the 
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feature/representation of X in D. Dictionary learning follows a synthesis 

framework (Equation 21), i.e. the dictionary is learnt such that the features 

synthesize the data along with the dictionary. 

  

                                                  X DZ                                        …(21) 

                                            

                                  Figure 6 : Schematic Diagram for Dictionary Learning 

The thesis proposes to extend the shallow dictionary (Fig. 5)  learning into 

multiple layers – leading to deep dictionary learning (Fig. 6). For the first layer, 

a dictionary is learnt to represent the data. In the second layer, the 

representation from the first layer acts as input; it learns a second dictionary to 

represent the features from first level. This concept can be extended to deeper 

layers. Mathematically, the representation at the second layer can be written 

as:   

                                               1 2 2X D D Z
                                       …(22)

 

                                                              

                               Figure 7: Schematic Diagram for Deep Dictionary Learning for two layers 
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It must be noted that learning two-levels of dictionaries along with the 

coefficients (Equation 22) is not the same as learning a single (collapsed) 

dictionary and its corresponding features. Problem (Equation 21) (single level) 

is a bi-linear problem and (Equation 22) is a tri-linear problem; they are not the 

same. Hence one cannot expect to get the same features from a single level 

dictionary learning and a collapsed two level dictionary learning.   

 

The challenges of learning multiple levels of dictionaries in one go are the 

following: 

1) Recent studies have proven convergence guarantees for single level 

dictionary learning [51-53]. These proofs would be very hard to replicate for 

multiple layers.    

2) Moreover, the number of parameters required to be solved increases when 

multiple layers of dictionaries are learnt simultaneously. With limited training 

data, this could lead to over-fitting.  

 

Here we propose to learn the dictionaries in a greedy manner which is in sync 

with other deep learning techniques [8-11]. Moreover, layer-wise learning will 

guarantee the convergence at each layer. The idea applies to deep in the sense 

that in the second layer, the representation from the first layer acts as input; it 

learns a second dictionary to represent the features from first level. Similarly 

representation from second layer acts as input to the third layer to learn third 

dictionary to find the features. This concept can be extended to deeper layers. 

Extending this idea, a multi-level dictionary learning problem with non-linear 

activation (Φ) can be expressed as in Equation [23] 

 

                                                    1 2 3( ....... ( )))( NX D D D D Z                                            …(23) 

 

Here Ф can be a linear or non -linear activation function. 
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                                                1 2 3( ....... ( )))( NX D D D D Z                             ...(23)                                                                                                                                                 

  

                                        Figure 8: Greedy Layer-wise Dictionary Learning .   

In deep learning, instead of learning the full deep architecture in one go, the 

parts are usually learnt in a greedy fashion [12]. There are two advantages of 

greedy learning. 

1. Learning layer wise dictionary and features are relatively simple and easy 

to implement. 

2. Deep architectures, having a large number of variables, are difficult to 

learn from limited training data. Breaking the problem into smaller unit 

erases the issue of over-fitting.  

This Thesis has introduced two Algorithms merging two learning paradigms – 

Dictionary Learning and Deep Learning – as Deep Dictionary Learning - For 

primarily unsupervised Classification task. 

 

3.2  Initialization of Dictionary 

 

A variety of dictionaries have been developed in response to the rising need. 

These dictionaries emerge from one of two sources: either a mathematical 

model of the data, or a set of realizations of the data. Dictionaries of the first 

type are characterized by an analytic formulation and a fast implicit 

implementation, while dictionaries of the second type deliver increased 

flexibility and the ability to adapt to specific signal data. Most recently, there is 

a growing interest in dictionaries which can mediate between the two types, 
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and offer the advantages of both worlds. Such structures are just beginning to 

emerge, and research is still ongoing. 

One of the interesting concept here is, as the idea of data driven dictionary is 

adapted for the algorithm, the dictionary D for any layer is initialized either 

from the input data (in the case of first layer) or from the features acting as 

input (in the case of successive layers). Depending on the size of dictionary , 

data vectors are chosen randomly to initialize the dictionary.  

Another option is to initialize the dictionary from the samples of the Q matrix 

from the QR Decomposition of the input data. By input, it means the respective 

input to a layer. QR decomposition/factorization of a matrix ,is the 

factorization into a product, namely, Q x R where Q is an orthogonal matrix 

and R is an upper triangular matrix. QR decomposition is Gram–Schmidt 

orthogonalization of columns of A, starting from the first column. The property 

of Q is of great importance in the algorithm. If A has n linearly 

independent columns, the first k columns of Q form an orthonormal basis for 

the span of the first k columns of A for any 1 ≤ k ≤ n .Thus the initial dictionary 

is orthogonal to the input data and the representation coefficients can be 

computed as inner products of the signal and the atoms.  

However, any one the initializations can be used to generate features and 

classify. Dictionaries of each layer can be initialized in either way. Dictionary 

initialization of each layer is independent of the dictionary initialization of its 

preceding or succeeding layer. 

 

The discussion on dictionary initialization develops another compelling idea : 

whether to go for overcomplete (or fat) or undercomplete (or tall) dictionary. 

With the idea of initialization from the columns of Q matrix, the dictionary is, 

in majority of the cases , undercomplete as number of features are less than 

number of data vectors which are stacked as columns to make the input 

matrix. For example if: X = m x n , m < n then Q = m x m .To initialize the 

dictionary with columns of Q, the maximum number is ‘m’ with a square 

dictionary which makes no sense. Thus the only choice is to go for an 
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undercomplete dictionary. However if m > n, then either of the choice is open. 

Similarly, for dictionary initialization with the input data m < n , dictionary can 

be undercomplete or overcomplete. But with the reverse case, dictionary can 

only be undercomplete. 

 

3.3 Activation Function (Ф) 

It is essentially a function used to transform the input into an output signal. 

Activation functions are usually a non-linear function like sigmoid, tanh etc. 

However sometimes linear activation function works equally well. In Deep 

Learning context, the purpose of an activation function is to map the 

representation in the input space to a different space in the output. The input 

to each layer has an activation function , thus while learning the dictionary 

and the features of that layer, the updating of the features depends on the 

steepness (slope) of the activation function. In general it is also referred to as 

projection followed by selection. This introduces non-linearities that are 

desriable in multi-layer networks in order to detect non-linear features in the 

data. Typically, activation functions have a "squashing" effect. 

In this thesis, The activation function used is either sigmoid or tanh for non-

linear transformations .Sigmoid function maps the output between the range of 

[0,1] and tanh h maps the output between [-1,1]. However for few results linear 

tranformations worked better and were thus used. 

 

 

           

         Figure 9:     Sigmoid function                                    Tanh function 
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3.4  Algorithm 1 : Deep Dictionary Learning 

 

Equation (23) can be solved as the following Optimization Problem: 

                     
1 2

2

1 2 3 1, .. ,
min ( ....... ( )))(

N
n

FD D D Z
X D D D D Z Z                     …(24) 

However, Equation (24) is highly non-convex and requires solving huge number 

of parameters. With limited amount of data, it will lead to over-fitting. To 

address these issues, as mentioned before, we propose a greedy approach 

where, we learn one layer at a time – similar to deep learning paradigm.  

With the substitution, 
1 2 3( ....... ( )))( NZ D D D Z    . Equation (24) can be written 

as:                                                1 1X D Z   

 

Now this problem can be solved as single layer dictionary learning. Kindly note 

that the representation, Z1, is not sparse. Hence it can be solved using 

alternating minimization: 

                                      
2

1 1
,

min
FD Z

X D Z                                   …(25) 

Optimality of solving Equation (24) by alternating minimization has been 

proven in [56]. Therefore we follow the same approach: 
2

1 1 1

2

1 1 1

min

min

FZ

FD

Z X D Z

D X D Z

 

 
                                                        …   25(a) & 25(b)  

This is the method of optimal directions [36] and both Equation (25a) and (25b) 

are simple least square problems having closed form solutions.  

 

For the second layer we substitute 
2 3 4( ....... ( )))( NZ D D D Z    , which leads to  

1 2 2( )Z D Z  or alternatively, 1

1 2 2( )Z D Z   ; this too is a single layer dictionary 

learning. Since the representation is dense, it can be solved using : 

                                         
2 2

2
1

1 2 2
,

min ( )
FD Z

Z D Z                              …(26) 
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Equation (26) is can be solved by alternating minimization as in the case of 

first layer , Equation(25). Continuing in this fashion till the penultimate layer, 

in the final layer we have, 1 ( )N NZ D Z   or alternatively 1

1( )N NZ D Z

    .In the 

last level the sparse coding of the input to the layer can be performed, that is 

the coefficient, Z can be sparse. For learning sparse features, one needs to 

regularize by applying l1-norm on the features. This is given by: 

                                  
2

1

1 1,
min ( )

N
N N FD Z

Z D Z Z

                           …(27) 

This too is solved using alternating minimization: 

2
1

1 2 1
min ( )N FZ

Z Z D Z Z

                                                            …(28(a)) 

2
1

1min ( )
N

N N N FD
D Z D Z

                                                                                                   …(28(b)) 

As before, (28b) is a least square problem having a closed  form solution. The 

solution to (28a) is although not analytic; it can be solved using the Iterative 

Soft Thresholding Algorithm (ISTA) [29]. The ISTA solution for (28a) is given by: 

 

Initialize:  
2

1

1 2min ( )N FZ
Z Z D Z

     

Iterate till convergence :   
1

1

1
( ( ) )T

N N NB Z D Z D Z

   


  

                                                           ( ) max(0, )
2

Z signum B B


 

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3.4.1  Algorithm  
 

The training algorithm [6] is as shown in Table 3.1. Note that Activation 
function can be linear as well as non linear. 

 

                 Table 3.1 

                                  TRAINING ALGORITHM ( for any activation function Ф) 

 

Initialize D  
 
For 1st level : iterate till convergence 

2

1 1 1

2

1 1 1

min

min

FZ

FD

Z X D Z

D X D Z

 

 
 

 

For 2nd to penultimate level : repeat until convergence 
2

1

1 2min ( )
i

i i i FZ
Z Z D Z

     

2
1

1 2min ( )
i

i i i FD
D Z D Z

     

 

For last level :  repeat until convergence 
2

1

1 2 1
min ( )N FZ

Z Z D Z Z

     

2
1

1min ( )
N

N N N FD
D Z D Z

    

 

 

The testing algorithm is as shown in Table 3.2. Note that the algorithms are 

different for linear and non-linear Activation function. It is important to note 

that learning multiple dictionaries cannot be collapsed into a single one even if 

the activation function is linear. This is because dictionary learning is bilinear. 

For example, if the dimensionality of the sample is m and the first dictionary is 

of size m x n1  and the second one is n1 x n2, it is not possible to learn a single 

dictionary of size m x n2 and expect the same results as a two-stage dictionary. 

In general, for non-linear activation functions it is not possible to collapse the 

multiple levels of dictionaries into a single level for testing. However, for the 

linear activation function, the multiple levels of dictionaries can be collapsed 

into a single stage by matrix multiplication of the different dictionaries and the 
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sparse code / features computed from the thus formed single level dictionary 

by standard l1 minimization. 

     Table 3.2                       

                                  TESTING ALGORITHM ( for any linear function Ф) 

 
Collapse D =D1D2….DN 

 
Compute ztest ,Sparse representation of test sample vector xtest 

2

2 1
min

test
test test test test

z
z x Dz z     

 

                           TESTING ALGORITHM ( for Non-linear activation function Ф) 

 
For 1st level : Generate representation/features 

1,

2

1, 1 1, 2
min

test
test test test

z
z x D z    

 
For 2nd to penultimate level  

,

2
1

, 1, , 2
min ( )

i test
i test i test i i test

z
z z D z

     

 

For last level : 
2

1

1, 1
z min ( )

test
test N test N test testFz

z D z z

      

 

 

3.5  Algorithm 2 :  Robust Deep Dictionary Learning 

 
We propose to add a denoising layer at the top most layer i.e layer 1 wherein 

the dataset is the input. The denoising layer has been added to remove impulse 

noise, if any, before the representations are solved for. Impulse noise is present 

in images as well as in Hyperspectral images in the form of Shot noise. For 

other noise such as Gaussian noise , the previous Algorithm works well too. 

However in the case of impulse noise the Root Mean Square/Euclidean( l2 ) cost 

function does not work as well as the Absolute Deviation ( l1 ) cost function. 

The  l1 - norm is robust to measurement errors such as noise and outliers as 

compare to l2 - norm . It comes in more useful when one considers the 

robustness of the learning model. Model robustness refers to how robustly any 
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learning model can handle data corruptions in prediction. Hence we try to 

remove the impulse noise affecting the dataset before we learn the dictionary 

and the coefficients. Combining l1 and l2 loss functions in different layers tends 

to give a result with fewer regression coefficients shrunk exactly to zero than in 

a pure L1 setting, and more shrinkage of the other coefficients.   

The denoising layer is followed by the usual deep dictionary learning layers to 

generate features. The top most Denoising Layer can be represented as : 

                                                1 1X D Z   

Where  0    X X N    

           0X : Dataset 

            N :  impulse Noise or shot noise 

 

This can be solved using Absolute Deviation cost function as: 

                                           1 1 1,
min
D Z

X D Z                               …(29) 

Where  ,1
1 1

* *
n m

i j

i j 

   

Many methods have been proposed to solve Equation(29). Here we solve it 

using Split-Bregman Algorithm[54]. 

 

3.5.1 Split-Bregman Algorithm : 

Assuming :     1 1Q X D Z B    

The problem statement gets converted to:  

                         
1 1

2

1 1
, 1,

|m |in     ||F
Q D Z

Q µ Q X D Z B       

 

Split the Minimization Function: 

  2

1 1 1||1 min |  |  F
Q

P Q µ Q X D Z B      

 
1

1

2

12 min || ||F
D

P Q X D Z B      

 
1

1

2

13 min || ||F
Z

P Q X D Z B       
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Iterate till convergence : P1 

                                     P2  

                                     P3 

                                     Update Bregman variable B. 

 

For second layer we substitute :     1 2 2( )Z D Z  or alternatively,    1

1 2 2( )Z D Z   

   

The second layer is also a single layer dictionary learning . But this layer is 

solved using Euclidean cost function : 

                                     
2 2

2
1

1 2 2
,

min ( )
FD Z

Z D Z                                …(30) 

 

Then continuing in this fashion till the penultimate layer, we impose sparsity 

constraint on loading coeffiecients at the last layer. 

Experimental Results have shown that Algorithm 2 performs equally well  as 

Algorithm 1 in the absence of impulse noise, but better than latter in the 

presence of impulse noise. 

 

3.5.2 Algorithm  
 

The training algorithm is as shown in Table 3.3. Note that Activation function 
can be linear as well as non linear. 

 

       Table 3.3 

                                  TRAINING ALGORITHM ( for any activation function Ф) 

 
Initialize D  
 

For 1st level : Assuming  : 1 1Q X D Z B     

 iterate till convergence 

  2

1 1 1min  | |  | |F
Q

Q Q µ Q X D Z B       

 
1

1 1 1

2min || ||F
D

D Q X D Z B      

 
1

1 1 1

2min || ||F
Z

Z Q X D Z B      
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For 2nd to penultimate level : repeat until convergence 
2

1

1 2min ( )
i

i i i FZ
Z Z D Z

     

2
1

1 2min ( )
i

i i i FD
D Z D Z

     

 

For last level :  repeat until convergence 
2

1

1 2 1
min ( )N FZ

Z Z D Z Z

     

2
1

1min ( )
N

N N N FD
D Z D Z

    

 

 

The testing algorithm is as shown in Table 3.4. Note that the algorithms are 
different for linear and  non linear Activation function. 

 
               Table 3.4 

                          TESTING ALGORITHM ( for linear activation function Ф) 

 

For 1st level : Assuming : 1 1,test testR x D z b     

 
 Generate representation/features 

1,

2

1, 1 1, 2
min ( )

test
test test test

z
z R x D z b      

  2

21 1 1,R min    || ||test test
R

bRµ x DR z       

 
Collapse D = D2D3….DN-1 

Generate features for Penultimate level : 

,

2

, 1, , 2
min

i test
i test i test i i test

z
z z D z    

 

For last level : 
2

1, 1
z min

test
test N test N test testFz

z D z z     

 
 

                          TESTING ALGORITHM ( for non-linear activation function Ф) 

 

For 1st level : Assuming : 1 1,test testR x D z b     

 Generate representation/features 

1,

2

1, 1 1, 2
min ( )

test
test test test

z
z R x D z b      

  2

21 1 1,R min    || ||test test
R

bRµ x DR z       
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For 2nd to penultimate level  

,

2
1

, 1, , 2
min ( )

i test
i test i test i i test

z
z z D z

     

 

For last level : 
2

1

1, 1
z min ( )

test
test N test N test testFz

z D z z

      

 

 

 

3.6 Going Deep in Dictionary Learning  

 

Depth has emerged as the one of the key aspects of the learning strategies. The 

argument in the favour of depth is that it promotes feature re-use. We learn 

hierarchy of features by constructing multi level dictionaries. The pivotal idea, 

referred to as greedy layerwise unsupervised learning [7-10] , is to learn a 

hierarchy of features one level at a time, using unsupervised feature learning to 

learn a new transformation at each level to be composed with the previously 

learned transformations[7]. After greedy layerwise unsuperivised training, the 

resulting deep features can be used either as input to a standard machine 

learning predictor (such as an SVM or KNN) or as initialization for a deep 

supervised neural network. It was empirically observed that layerwise stacking 

of feature extraction often yielded better representations, e.g., in terms of 

classification accuracy. 

Another advantage of depth is that more abstract features can be generated 

from less abstract features at deeper levels. The idea comes from the fact that 

the inputs are transformed to highly non-linear transformations at the deeper 

levels thus representing more variations. 

The succeeding chapters containing experimental results show that sufficient 

depth gives better representation which is shown in terms of classification 

accuracy. The results show that classification performance is better when 

features are learnt from multi-level than single level dictionary. 
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The effectiveness of the proposed deep dictionary learning is evaluated on 

multiple benchmark databases from different areas such as images and 

HyperSpectral Image Classification. The results are compared with related 

state-of-the-art algorithms. In this work we use a linear as well as non-linear 

activation function depending upon whichever gives the best accuracy 

 

 

The Features generated using Algorithm 1 and Algorithm 2 are sent as input to 

various Classifiers such as KNN , Neural Net Classifier and  SVM. The Results 

are compared with Stats-of-the-art Machine Learning strategies such as Deep 

Belief Networks and Stacked Autoencoders, and also with well-known 

Dictionary learning algorithms such as LC-KSVD1 and LC-KSVD2. 
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4│Deep Dictionary Learning on         

    Images  
 

We have evaluated the performance on several benchmarks datasets. They are 

described below : 

 

4.1 Data Description : 

 

4.1.1 MNIST 

The MNIST dataset that consists of 28x28 images of handwritten digits ranging 

from 0 to 9. It is a subset of a larger set available from NIST.  The dataset has 

60,000 images for training and 10,000 images for testing. It should be noted 

that we have not performed any preprocessing on this dataset. 

                        

                                                                               Figure 10 : MNIST dataset 
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 Related to MNIST database, MNIST variations datasets are also used. These 

are more challenging databases, primarily due to fewer training samples 

(10,000) and larger number of test samples (50,000). The validation set of 2000 

samples are not used in this work since our method does not require tuning 

and SAE as well as DBN are already optimized for MNIST. These were 

preprocessed by thresholding the pixels to 0.9. 

Here is the listing of these variation databases: 

 

1. basic (smaller subset of MNIST)  

 

2. mnist-rot: the digits are rotated by an angle between 0 and 2π radians. 

Thus the factors of variation are the rotation angle and the factors of 

variation already contained in MNIST, such as handwriting style. 

 

3. mnist-back-rand: a random background was inserted in the digit image. 

Each pixel value of the background was generated uniformly between 0 

and 255. 

 

4. mnist-back-image: a patch from a black and white image was used as 

the background for the digit image.  
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5. mnist-rot-back-image: the perturbations used in mnist-rot and mnist-

back-image were combined 

 

          

 

 

4.1.1.1 Experimental Results on MNIST and its variations:  

 

Case 1 : Classification accuracies  

 

Table 4.1 : Classification accuracy on MNIST and its variants for proposed 

methods 

Dataset 
DBN-3 

[11] 

SDAE 

[11] 

LC 

KSVD1 

LC 

KSVD2 

Proposed  
Algorithm 1 

+ SVM 

Proposed 
Algorithm 2 

+KNN 

MNIST 60K 98.54 98.72 93.30 93.65 98.60 98.53 

MNIST Back+ 
Rand 

93.05 89.70 87.70 87.70 92.37 92.96 

MNIST Back 
Img 

83.37 83.32 80.65 81.20 86.17 85.47 

MNIST Back+ 
Rot 

52.17 56.24 48.70 50.18 63.85 63.72 

MNIST Rot 

digits 
89.43 90.47 75.40 75.40 90.34 90.83 

MNIST Basic 96.74 97.16 91.90 92.10 97.28 97.63 
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Case 2 : Classification accuracies in the presence of impulse noise  

In this section, impulse noise was introduced in MNIST and its variations. 

Varying amount of pixels were made off in the entire set. This replicates the 

scenario where there are missing pixels in an image. The impulse noise was 

added randomly to individual images. Case 2 considers the case where the 

testing and training sets are corrupted.  

It was observed that while proposed algorithms performed decently with 

respect to state-of-the-art methods , given that the complexity and running 

time is very less. Also the main aim of introducing Algorithm 2 to work with the 

noisy data is achieved with its performance being better than Algorithm 1. 

 

Table 4.2 : Classification accuracy on MNIST and its variants for proposed 

methods with added impulse noise of 10% to training and testing sets. 

Dataset DBN 
LC 

KSVD1 

LC 

KSVD2 

Algorith
m 1 + 

SVM 

Algorithm 

2  + SVM 

MNIST 60K 97.14 93.00 92.6 97.23 97.17 

MNIST Back+ 

Rand 
91.32 86.63 86.72 88.24 88.62 

MNIST Back 

Img 
79.41 79.90 78.85 80.30 80.95 

MNIST Back+ 
Rot 

50.30 47.87 46.26 55.67 57.03 

MNIST Rot 

digits 
85.95 73.92 73.47 85.74 86.13 

MNIST Basic 94.72 91.8 91.32 95.25 95.47 
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Table 4.3 : Classification accuracy on MNIST and its variants for proposed 

methods with added impulse noise of 20% to both training and testing sets. 

Dataset  DBN-3 
LC 

KSVD1 
LC 

KSVD2 
Algorithm 
1 + SVM 

Algorithm 
2  + SVM 

MNIST 60K 96.48 92.52 92.73 96.79 96.87 

MNIST Back+ 
Rand 

88.20 86.00 85.77 87.29 87.50 

MNIST Back 

Img 
77.39 77.50 76.89 78.39 80.32 

MNIST Back+ 

Rot 
48.03 45.78 44.58 53.72 54.83 

MNIST Rot 

digits 
83.04 72.18 71.64 84.02 84.25 

MNIST Basic 92.63 90.90 90.72 94.60 94.56 

 

 

Table 4.4 : Classification accuracy on MNIST and its variants for proposed 

methods with added impulse noise of 30% to both training and testing sets. 

Dataset DBN 
LC 

KSVD1 
LC 

KSVD2 
Algorithm 
1 + SVM 

Algorithm 2  
+ KNN 

MNIST 60K 95.37 91.69 91.27 96.02 95.89 

MNIST Back+ 
Rand 

86.01 84.28 84.14 85.06 85.49 

MNIST Back 
Img 

75.97 76.52 76.02 76.66 78.64 

MNIST Back+ 
Rot 

43.25 43.80 43.59 50.27 51.02 

MNIST Rot 
digits 

80.48 70.96 70.51 81.54 81.75 

MNIST Basic 89.64 90.04 90.28 93.42 93.28 
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4.1.2   USPS: 
 

The dataset contains the numeric data obtained from the scanning of 

handwritten digits from envelopes by the U.S. Postal Service. The original 

scanned digits are binary and of different sizes and orientations; the images 

here have been de-slanted and size normalized, resulting in 16 x 16 grayscale 

images of 10 classes. There are 7291 training observations and 2007 test 

observations. The test set is considered to be notoriously "difficult”.  

                                                     
           

                                                      Figure 11 :  USPS dataset 

 

4.1.2.1 Experimental Results on USPS:  

Case 1 : Classification accuracies  

Table 4.5 : Classification accuracy on USPS for proposed methods with SVM as 

classifier 

# DKSVD LCKSVD2 DBN SAE 

Proposed 

Algorithm 

1 

Proposed 

Algorithm 

2 

USPS 95.05 93.91 94.42 95.26 95.67 95.42 
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Case 2 : Classification accuracies in the presence of impulse noise  

In this section, impulse noise was introduced in MNIST and its variations. 

Varying amount of pixels were made off in the entire set. This replicates the 

scenario where there are missing pixels in an image. The impulse noise was 

added randomly to individual images. Case 2 considers the case where the 

testing and training sets are corrupted. The noise was added in the range of 

50-70% as with lower percentage of impulse noise there was not appreciable 

difference. Case 2(A) considered the case where the testing and training sets 

are corrupted. Case 2(B) considered that training set was noise free while the 

testing set was corrupted. 

It was observed that while proposed algorithms performed decently with 

respect to state-of-the-art methods. The results for denoising case  are less 

than LCKSVD as they were majorly designed for denoising. Also the main aim 

of introducing Algorithm 2 to work with the noisy data is achieved with its 

performance being better than Algorithm 1. 

 

Case 2(A) :  Noisy Training set & Noisy Testing set 

 

Table 4.6 : Classification accuracy with added 50% impulse noise to training 

samples and testing samples for proposed methods using KNN as classifier  

50% 

impulse 

noise LCKSVD1 LCKSVD2 DBN SAE 

Proposed 

Algorithm 

1 

Proposed 

Algorithm 

2 

USPS 93.42 93.03 86.15 90.98 87.19 89.74 
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Table 4.7 : Classification accuracy with added 60% impulse noise to training 

samples and testing samples for proposed methods using KNN as classifier  

 

60% 

impulse 

noise DKSVD LCKSVD DBN SAE 

Proposed 

Algorithm 

1 

Proposed 

Algorithm 

2 

USPS 92.69 92.04 81.37 88.89 84.55 86.00 

 

 

Table 4.8 : Classification accuracy with added 70% impulse noise to training 

samples and testing samples for proposed methods using KNN as classifier  

70% 

impulse 

noise DKSVD LCKSVD DBN SAE 

Proposed 

Algorithm 

1 

Proposed 

Algorithm 

2 

USPS 92.42 91.64 75.93 85.2 82.12 83.01 

 

 

Case 2(A) :  Clean Training set & Noisy Testing set 

Table 4.9 : Classification accuracy with added 50% impulse noise to testing 

samples for proposed methods using KNN as classifier  

50% 

impulse 

noise DKSVD LCKSVD DBN SAE 

Proposed 

Algorithm 

1 

Proposed 

Algorithm 

2 

USPS 93.37 92.93 78.03 90.33 85.091 88.17 
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Table 4.10 : Classification accuracy with added 60% impulse noise to testing 

samples for proposed methods using KNN as classifier  

60% 

impulse 

noise DKSVD LCKSVD DBN SAE 

Proposed 

Algorithm 

1 

Proposed 

Algorithm 

2 

USPS 92.80 92.73 65.57 86.21 83.11 85.00 

 

 

 

 

Table 4.11 : Classification accuracy with added 70% impulse noise to testing 

samples for proposed methods using KNN as classifier  

70% 

impulse 

noise DKSVD LCKSVD DBN SAE 

Proposed 

Algorithm 

1 

Proposed 

Algorithm 

2 

USPS 91.34 90.26 48.88 74.74 75.08 76.36 

 

 

 

4.2 Effect of Deep Learning 

This section analyzes the results of the proposed deep dictionary learning and 

the effect of increasing the number of layers. The features obtained via shallow 

dictionary learning are used for classification . The classification performance 

is then compared with the same number of features generated via deep 

dictionary learning. For MNIST shallow dictionary 50 atoms were learnt while 

deep dictionary learnt 300-150-50 atoms. For USPS shallow dictionary 30 

atoms were learnt while deep dictionary learnt 160-60-30 atoms. 
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Table  4.12: Classification accuracy on USPS and MNIST and its variations for 

Shallow vs Deep learning for proposed methods  

# Proposed Algorithm 1 Proposed Algorithm 2 

 
Shallow 

[50] 

Deep 

[300-150-50] 

Shallow 

[50] 

Deep 

[50] 

MNIST 60K 
93.75 98.67 93.75 98.53 

MNIST Back+ Rand 
87.19 92.38 87.19 92.96 

MNIST Back Img 
78.86 86.17 78.86 85.47 

MNIST Back+ Rot 
54.40 63.85 54.40 63.72 

MNIST Rot digits 
84.19 90.344 84.19 90.83 

MNIST Basic 
95.02 97.28 95.02 97.63 

 
   

 

 
Shallow 

[30] 

Deep 

[160-60-30] 

Shallow 

[30] 

Deep 

[150-70-30] 

USPS 92.64 95.017 92.64 95.017 

 

 

 

 

 

 

 



Page | 45  

 

5│Deep Dictionary Learning on         

    HyperSpectral Images  

 
Hyperspectral data classification is a hot topic in remote sensing community. 

In recent years, significant effort has been focused on this issue. However, 

most of the methods extract the features of original data either in a shallow 

manner or uses Convolutional Neural Net (CNN), Deep Belief Network(DBN) 

and Stacked Autoencoder (SAE) for deep learning. SAE was introduced for this 

problem in [55] by Chen et al; the same researchers applied DBN to the 

problem to publish another paper [56]. There are a two papers that use CNN 

for the said problem [57,58]; the main problem of using CNN for this problem is 

that it is data hungry and yields poor results when the training data is limited. 

In this chapter, we introduce our deep dictionary learning approach into 

hyperspectral image classification. The proposed approaches are used on the 

raw hyperspectral datasets as well as their pre-processed versions. 

Experimental results with hyperspectral data indicate that the proposed 

algorithms using raw data performed more or less at par with the State-of-the-

art methods using preprocessed data especially for limited amount of training 

data(practical scenario). The complexity and time taken is also way less. The 

proposed algorithm learns representation of the well-known hyperspectral 

scenes in an unsupervised manner. Few experiments were also conducted in 

the presence of shot noise and it was observed that while the classification 

accuracies were little short of the State-of-the-art methods, Algorithm 2 

outperforms Algorithm 1. In addition, this reveals that deep learning system 

has huge potential for hyperspectral data classification. 
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5.1 HyperSpectral Data 

 

Hyperspectral data, also known as hyperspectral datacube, is a 3 dimensional 

data, produced by instruments called imaging spectrometers. This technology 

combines the power of digital imaging and spectroscopy. For each pixel in an 

image, a hyperspectral camera acquires the light intensity (radiance) for a large 

number (typically a few tens to several hundred) of contiguous spectral bands. 

Every pixel in the image thus contains a continuous spectrum (in radiance or 

reflectance) and can be used to characterize the objects in the scene with great 

precision and detail. 

Hyperspectral imaging divides the spectrum into numerous bands. This 

technique of dividing images into bands can be extended beyond the visible 

providing much more detailed information about a scene than a normal color 

camera which captures a scene in three bands (red, green, and blue), In 

hyperspectral imaging, the recorded spectra have fine wavelength resolution 

and cover a wide range of wavelengths.  Hence, hyperspectral imaging leads to 

a vastly improved ability to classify the objects in the scene based on their 

spectral properties. 

Hyperspectral sensors look at objects using a vast portion of the 

electromagnetic spectrum. Certain objects leave unique 'fingerprints' in the 

electromagnetic spectrum. Known as spectral signatures, these 'fingerprints' 

enable identification of the materials that make up a scanned object. 

Figuratively speaking, hyperspectral sensors collect information as a set of 

'images'. Each image represents a narrow wavelength range of the 

electromagnetic spectrum, also known as a spectral band. These 'images' are 

combined to form a three-dimensional (x,y,λ) hyperspectral data cube for 

processing and analysis, where x and y represent two spatial dimensions of the 

scene, and λ represents the spectral dimension (comprising a range of 

wavelengths). 
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                                                                  Figure 12: Hyperspectral Datacube 

Hyperspectral cubes are generated from airborne sensors like the 

NASA's Airborne Visible/Infrared Imaging Spectrometer(AVIRIS), or from 

satellites like NASA's EO-1 with its hyperspectral instrument Hyperion.  

Recent advances in sensor design and processing speed has cleared the path 

for a wide range of applications employing hyperspectral imaging, ranging from 

satellite based/airborne remote sensing and military target detection to 

industrial quality control and lab applications in medicine and biophysics. Due 

to the rich information content in hyperspectral images, they are uniquely well 

suited for automated image processing, whether it is for online industrial 

monitoring or for remote sensing. 

5.2 Dataset Description 

5.2.1 Indian Pines 

The dataset consists of a scene of 145X145 pixels and 224 spectral reflectance 

bands in the wavelength range 0.4–2.5 micro meters. It was gathered 

by AVIRIS sensor over the Indian Pines test site in North-western Indiana .The 

Indian Pines scene contains two-thirds agriculture, and one-third forest or 

other natural perennial vegetation.. Since the scene is taken in June some of 
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the crops present, corn, soybeans, are in early stages of growth with less than 

5% coverage. The ground truth available is designated into sixteen classes and 

is not all mutually exclusive. Class zero represents the background and 

accounts for almost 50% of the data. Rest 50% pixels are composed of 

remaining 16 classes. The number of bands were reduced to 200 by removing 

bands number: [104-108], [150-163], 220 covering the region of water 

absorption. Hence the final dataset used is of 145X145 pixels with 200 spectral 

bands[59]. The dataset and detailed description is given in [59]. 

Table 5.1 provides with the groundtruth classes along with the sample number 

of each class. 

                                              Table 5.1 

   # Class Samples 

1 Alfalfa 46 

2 Corn-notill 1428 

3 Corn-mintill 830 

4 Corn 237 

5 Grass- Pasture 483 

6 Grass- trees 730 

7 Grass- Pasture - mowed 28 

8 Hay- windrowed 478 

9 Oats 20 

10 Soyabean-notill 972 

11 Soyabean-mintill 2455 

12 Soyabean-clean 593 

13 Wheat 205 

14 Woods 1265 

15 Buildings-Grass-Trees-Drives 386 

16 Stone-Steel-Towers 93 
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                       Figure 13 : a)  False color image of Indian Pines (band 50,27,17) 

                                      b) Ground truth representing 16 crop cases 

5.2.2  Pavia University 

This scene was acquired by the Reflective Optics System Imaging 

Spectrometer (ROSIS)  during a flight campaign over Pavia, nothern Italy. Pavia 

University is 610*610 pixels, but some of the samples in image contain no 

information and have to be discarded before the analysis. Thus the final scene 

is of 340*610 pixels. 115 bands were collected over 0.43 - 0.86 µm range of the 

electromagnetic spectrum. In the experiment, some bands were removed due to 

noise; the remaining 103 bands were used for the classification The spatial 

resolution is 1.3 m. Image groundtruth consists of 9 classes. Class zero 

represents background and accounts for almost 50% of the data. Rest 50% 

pixels are composed of remaining 9 classes. The dataset and detailed 

description is given in [59]. 

 

                                

                                    Figure 14: a) Pavia, Italy. False-color composite (Band 10, 27, 46)  

                                        b) Groundtruth representing 9 land-cover classes. 
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Table 5.2 provides with the groundtruth classes along with the sample number 

of each class. 

                                             Table 5.2 

   # Class Samples 

1 Asphalt 6631 

2 Meadows 18649 

3 Gravel 2099 

4 Trees 3064 

5 Painted metal sheets 1345 

6 Bare soil 5029 

7 Bitumen 1330 

8 Self-Blocking bricks 3682 

9 Shadows 947 

 

5.3 Input Features 

A) Spectral Features  

 

Input  X is, generally, the raw spectral data collected as a one dimensional  

(1-D) vector for each pixel. That is we take the responses of all the spectral 

channels into the input space. 

            

                        Figure 15: Spectral vector of Hyperspectral Features 
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Then, proposed DDL algorithms are applied to learn the representative and 

robust features from the inputs via several layers of linear/nonlinear feature 

transformation. Finally, the learned features are input to a classifier to produce 

the class labels in the absence of any noise for Case 1 or in the presence of 

varying amount of shot noise for Case 2. 

B) Spectral –Spatial Features  

 

For this we integrate the spectral and spatial features together to construct a 

spectral–spatial-based classification framework. Pure spectral features and 

spatial features both provide a discriminating power for the pixel-wise 

classification. The spectral feature of a pixel contains important information for 

discriminating different kinds of ground categories.  

The Spatial vector with the spatial information of neighbourhood of a pixel , 

decreases the intra-class variance. 

 

        

 

                                                Figure 16: Spatial Vector of Hyperspectral Features 
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Forming a hybrid set of spectral–spatial features can present more reliable 

classification. The integration of multiple features is addressed by using a 

vector stacking (VS) approach. That is to say, for each pixel, spatial vector is 

added to the end of the spectral vector.  

            

                                 Figure 17 :  Spectral-Spatial Vector of Hyperspectral Features 

Then, proposed DDL algorithms are applied to learn the representative and 

robust features from the inputs via several layers of linear/nonlinear feature 

transformation. Finally, the learned features are input to a classifier to produce 

the class labels in the absence of any noise for Case 1 or in the presence of 

varying amount of shot noise for Case 2. 

5.4 Experimental Results 

Prior studies on deep learning based classification assumed an overtly 

optimistic scenario [55,56] – they assumed 50% (30% training + 20% 

validation)  labelled data is available; and only 50% need to be predicted. In 
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this work we consider a more realistic scenario; we assume only 10% or 20% of 

the each of the labelled class available. No validation set was used. 

The results were compared with Stacked Autoencoder (SAE) and Deep Belief 

Network(DBN). The implementation for the SAE has been obtained from [56] for 

Case 1 with the [training: validation: testing] set being [1:1:8] , for rest of the 

cases i.e Case 1(b) and Case 2 with varying ratios of testing and training set 

and for DBN ,the results were generated from the 

rasmusbergpalm/DeepLearnToolbox [60]. Overall Accuracy (OA) is used to 

indicate the classification accuracy.  

 

In this section, we evaluate our proposed DDL-based framework .The feature 

selection architecture used for input to proposed algorithms are the spectral 

features. 

Case 1 : Classification accuracies in the absence of noise  

Case 1(a) :  The accuracies for DBN and SAE were calculated from [60] as the 

code released for SAE[55] does not include the case for validation set being zero 

for [training: testing] cases being [1:9] respectively. The case for validation and 

training being 5% each could not be considered as well, because the set ratio 

were to be in integers. 

 

Table 5.3 : Classification accuracy with 10% training samples and 90% testing 

samples for proposed methods using Neural Net as classifier  

10% Training 

samples DBN SAE 

Proposed 

Algorithm 1 

Proposed 

Algorithm 2 

Indian Pines 79.48 83.00 81.76 82.07 

Pavia University 90.37 92.16 93.52 93.15 
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Case 1(b) : For the below result, the accuracies for SAE were generated from 

the code released online by authors of paper [55]. 

 

Table 5.4 :Classification accuracy with 20% training samples and 80% testing 

samples for proposed methods using Neural Net as classifier  

20% Training 

samples DBN SAE [55] 

Proposed 

Algorithm 1 

Proposed 

Algorithm 2 

Indian Pines 80.32 85.86 87.19 86.82 

Pavia University 94.94 96.32 96.30 97.68 

 

 

Case 2 : Classification accuracies in the presence of shot noise  

For this section, Shot noise was introduced in the Hyperspectral images. 

Varying amount of pixels were made off throughout their respective 

wavelengths. This replicates the scenario where one or more sensors are not 

working while capturing the image, thus having no information throughout 

their respective wavelength bands. 10%,20% and 30% of shot noise was 

introduced for below explained two cases. Case 2(A) considered the case where 

the testing and training sets are corrupted. Case 2(B) considered that training 

set was noise free while the testing set was corrupted. 

It was observed that while proposed algorithms performed decently with 

respect to state-of-the-art methods , the main aim of introducing Algorithm 2 to 

work with the noisy data is achieved with its performance being better than 

Algorithm 1. 
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Case 2(A) :  Noisy Training set & Noisy Testing set 

i) 10% shot noise 

 

Table 5.5 :Classification accuracy with added noise to 10% training samples 

and 90% testing samples for proposed methods using Neural Net as classifier  

10% Training 

samples  DBN SAE 

Proposed 

Algorithm 1 

Proposed 

Algorithm 2 

Indian Pines 74.83 77.22 78.62 78.93 

Pavia University 85.89 75.36 85.84 86.00 

 

 

 

Table 5.6 : Classification accuracy with added noise to 20% training samples 

and 80% testing samples for proposed methods using Neural Net as classifier  

20% Training 

samples  DBN SAE 

Proposed 

Algorithm 1 

Proposed 

Algorithm 2 

Indian Pines 79.64 82.24 81.45 82.69 

Pavia University 86.06 83.72 88.21 88.67 
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ii) 20% shot noise 

Table 5.7 : Classification accuracy with added noise to 10% training samples 

and 90% testing samples for proposed methods using Neural Net as classifier  

10% Training 

samples  DBN SAE 

Proposed 

Algorithm 1 

Proposed 

Algorithm 2 

Indian Pines 72.81 73.57 74.70 76.28 

Pavia University 80.62 74.54 81.09 82.73 

 

Table 5.8 : Classification accuracy with added noise to 20% training samples 

and 80% testing samples for proposed methods using Neural Net as classifier  

20% Training 

samples  DBN SAE 

Proposed 

Algorithm 1 

Proposed 

Algorithm 2 

Indian Pines 75.96 78.41 77.63 79.01 

Pavia University 80.502 81.33 83.50 84.65 

 

iii) 30% shot noise 

Table 5.9 : Classification accuracy with added noise to 10% training samples 

and 90% testing samples for proposed methods using Neural Net as classifier  

10% Training 

samples  DBN SAE 

Proposed 

Algorithm 1 

Proposed 

Algorithm 2 

Indian Pines 65.42 60.82 71.48 73.09 

Pavia University 74.71 72.93 75.35 76.60 



Page | 57  

 

Table 5.10 : Classification accuracy with added noise to 20% training samples 

and 80% testing samples for proposed methods using Neural Net as classifier  

20% Training 

samples  DBN SAE 

Proposed 

Algorithm 1 

Proposed 

Algorithm 2 

Indian Pines 71.08 74.66 75.82 77.35 

Pavia University 75.38 77.31 78.25 79.16 

 

Case 2(B) :  Clean Training set & Noisy Testing set 

i) 10% shot noise 

Table 5.11 : Classification accuracy with 10% training samples and 

added noise to 90% testing samples for proposed methods using Neural 

Net as classifier  

10% Training 

samples  DBN SAE 

Proposed 

Algorithm 1 

Proposed 

Algorithm 2 

Indian Pines 78.00 79.35 79.78 78.84 

Pavia University 80.91 75.66 81.91 81.08 

 

Table 5.12 : Classification accuracy with 20% training samples and added 

noise to 80% testing samples for proposed methods using KNN as classifier  

20% Training 

samples  DBN SAE 

Proposed 

Algorithm 1 

Proposed 

Algorithm 2 

Indian Pines 76.95 83.92 83.43 84.01 

Pavia University 83.30 82.96 85.37 86.93 
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ii) 20% shot noise 

Table 5.13 : Classification accuracy with 10% training samples and added 

noise to 90% testing samples for proposed methods using KNN as classifier  

10% Training 

samples  DBN SAE 

Proposed 

Algorithm 1 

Proposed 

Algorithm 2 

Indian Pines 73.26 75.27 78.32 78.57 

Pavia University 72.64 70.69 73.07 74.10 

 

Table 5.14 : Classification accuracy with 20% training samples and added 

noise to 80% testing samples for proposed methods using KNN as classifier  

20% Training 

samples DBN SAE 

Proposed 

Algorithm 1 

Proposed 

Algorithm 2 

Indian Pines 73.33 80.00 80.19 82.26 

Pavia University 74.45 77.15 75.26 76.88 

 

iii) 30% shot noise 

Table 5.15 : Classification accuracy with 10% training samples and added 

noise to 90% testing samples for proposed methods using KNN as classifier  

10% Training 

samples  DBN SAE 

Proposed 

Algorithm 1 

Proposed 

Algorithm 2 

Indian Pines 62.19 66.38 74.74 76.84 

Pavia University 65.16 63.67 64.17 70.16 
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30% shot noise ….(cont.) 

Table 5.16 : Classification accuracy with 20% training samples and added 

noise to 80% testing samples for proposed methods using KNN as classifier  

20% Training 

samples + 30% 

shot noise DBN SAE 

Proposed 

Algorithm 1 

Proposed 

Algorithm 2 

Indian Pines 67.61 75.48 81.45 82.01 

Pavia University 68.72 73.34 69.98 72.29 

 

5.5 Effect of Deep Learning 

This section analyzes the results of the proposed deep dictionary learning and 

the effect of increasing the number of layers. The features obtained via shallow 

dictionary learning are used for classification . The classification performance 

is then compared with the same number of features generated via deep 

dictionary learning. 

 

Table  5.17: Classification accuracy on Indian Pines for Shallow vs Deep 

learning for proposed methods  

Indian Pines 

10% training 

data 

 Shallow (41) 

10% training data  

Deep (163-82-41) 

20% training 

data 

Shallow (41) 

20% training data 

Deep(163-82-41) 

Proposed 

Algorithm1 71.76 81.75 81.67 87.19 

Proposed 

Algorithm 2 71.76 82.07 81.67 86.82 
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Table  5.18: Classification accuracy on Pavia University for Shallow vs Deep 

learning for proposed methods  

Pavia 

University 

10% training 

data 

 Shallow (20) 

10% training data  

Deep (210-50-20) 

20% training 

data 

Shallow (35) 

20% training data 

Deep (300-150-35) 

Proposed 

Algorithm1 86.88 93.52 92.52 96.30 

Proposed 

Algorithm 2 86.88 93.15 92.52 97.68 
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Graphs for Classification Accuracies for Case 2(A) 

 

   

Figure 18: Classification accuracy for          Figure 19: Classification Accuracy for  

             Indian Pines (10% Test set)                             Indian Pines (20% Test set) 

 

 

 

    
Figure 20: Classification accuracy for                  Figure 21 : Classification Accuracy for 

                 Pavia U (10% Test set)                                          Pavia U (20% Test set) 
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     Graphs for Classification Accuracies for Case 2(B) 

 

 

Figure 22 : Classification Acuracy for                 Figure 23: Classification Acuracy for 

                  Indian Pines (10% Test Set)                               Indian Pines (20% Test set) 

 

 

 

 

Figure 24: Classification Accuracy for                   Figure 25 : Classification Accuracy for 

                 Pavia U (10% Test set)                                            Pavia U (20% Test set) 
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