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Abstract

Face recognition is an important area of research due to its requirement in our day-to-day life, be

it surveillance or authentication. Current advancements in technology and computational power

have shown promising results to solve this problem. Despite such furtherance, face recognition

under uncontrolled environment still remains a challenging task and many state-of-the-art algo-

rithms are unable to serve the purpose due to several challenges including varying illumination,

pose, resolution, and occlusion. One primary reason for low performance is difference in training

and testing data distribution. In this research, we propose an algorithm for face identification

with varying pose and illumination. We propose an adaptive dictionary learning framework with

Group Sparse Representation based Classifier to learn domain invariant dictionary representa-

tion of the given data. The algorithm adapts the representation learnt from the source domain

with respect to the target domain in order to reduce the differences arising due to changes in

the training and testing data distributions. Further, the data may contain noise and affect the

dictionary atoms and group sparse coefficients, thereby hindering the discriminative power of the

learnt dictionary. We propose to solve this problem using low rank minimization on dictionary

atoms and group sparse coefficients. The effectiveness of the proposed algorithm is evaluated

on the CMU MultiPIE and Extended YaleB face datasets for varying pose and illumination.
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Chapter 1

Introduction

1.1 Overview and Research Motivation

Face has been established as one of the least invasive biometric modalities, thereby, making it

one of the most well explored signatures for person identification. It provides discriminative tex-

tural and structural information, which is often used for identity recognition. Many algorithms

have been proposed to automate this task under several covariates such as varying resolution,

occlusion and disguise [12,39]. Though recent algorithms claim high accuracies [25], the perfor-

mance of the same in real-world conditions is still an open research problem.

One of the major challenges associated with automated face recognition in completely uncon-

strained scenarios is the presence of pose and illumination variations. Algorithms that utilize

only frontal, well-illuminated face images for learning a classification model are often ineffective

in the presence of such covariates. This is primarily because the data distribution on which the

classifier is trained might differ from the distribution of the test samples. Studies have shown

that any variation in illumination or viewing angle can affect the performance of a recognition

system significantly. For example, Figure 1.1 and 1.2 depicts images from a single individual

with varying pose and illumination. Illumination variations such as capturing photos in indoor

or outdoor can cause traditional face recognition algorithms to fail.

Multiple features can be used in face recognition algorithms such as geometric, appearance,
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Figure 1.1: Images captured under unconstrained environment for Subject-1

Figure 1.2: Images captured under unconstrained environment for Subject-2

texture and representative learning based approaches. Geometry based approaches tend to use

relative position of facial features such as eyes, nose, chin to get appropriate features while

appearance based features rely on low dimension representation of image itself e.g. Eigenfaces

and SLAM. Although geometry based features are more resilient towards small variation of

pose and illumination variation, they are not very effective in unconstrained facial recognition.

Appearance based methods perform on these condition only when they are provided with large

amount of training samples for all possible variations, which itself is a challenging task. Texture

based approaches use handcrafted features Local Binary Features (LBP) and Scale Invariant

Feature Transform (SIFT) whereas, representative learning approaches are data driven that in-

clude deep learning and dictionary learning. Recently, 3-D modeling of face images constructed

with the training data have generated a lot of interest [20]. These 3-D models can be used to

render various illumination and pose variations while evaluating any test sample; however, 3-D

modeling of face also requires large number of samples.
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1.2 Literature Review

The major approaches for face recognition under pose and illumination variation include methods

like 3-D face reconstruction, image mosaicing, deep learning and domain adaptation [2, 9, 15,

24,30,32]. In this section, we present a brief overview on some existing approaches to deal with

the above mentioned problem:

• Passils et al. [20] proposed a novel 3-D face recognition method that takes into account

facial symmetry to handle all pose variations in the data. It uses an automatic landmark

detector that aims to detect occluded areas and pose for each given face image. Using

facial symmetry, an annotated face model is learnt and fitted to the facial scan to overcome

the challenges of missing data. The resultant image is pose invariant and thus helps in

overcoming the challenges of pose variations. Passils proposed algorithm, unlike other face

recognition methods, aims to perform comparisons between interpose scans with the help

of wavelet based biometric signature. The proposed method was evaluated on databases

from the University of Houston and the University of Notre Dame. It obtained an average

rank-one recognition rate of 83.7 percent.

• Zhu et al. [38] proposed to tackle the problem of pose and illumination variations by

learning Face Identity Preserving features (FIP). The Authors designed a deep network

consisting of a feature extraction and a reconstruction layer. The former encodes an im-

age into FIP features and the extracted features are then used to reconstruct them into

a canonical view by latter. Also, unlike conventional descriptors, FIP features aim to

reduce intra-class variances while still maintaining discriminative properties between dif-

ferent classes. These properties of FIP features makes it possible to improve performance

of descriptors like LBP and Gabor on pose and illumination variations. LBP and Gabor de-

scriptors are learned from reconstructed face image in canonical view, thereby, eliminating

the variations. The proposed algorithm was tested on CMU MultiPIE face database.

• Singh et al. [29] proposed to overcome the problems of pose variation using face mosaicing

algorithm to generate a composite face image using frontal and semi-profile images. This
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is achieved using a terrain transform that determines the transformation relating the side

and frontal profiles by exploiting the neighborhood properties. Further, multi-resolution

splining is used to blend the profiles to generate a composite face image, template face

mosaic. A given input image is then matched with the template face mosaics present in

the gallery using Local Binary Pattern matching algorithm. The proposed algorithm was

evaluated on a dataset of 27 users and results showed the effictiveness of the algorithm.

• Sparse representation and dictionary learning algorithms has shown some interesting re-

sults for face recognition. Using this, Yang et al. [33] proposed a dictionary learning

method (DL) to achieve improved pattern classification performance. A class-wise struc-

tured dictionary is learned using Fisher discrimination criteria such that the reconstruction

error can be used for pattern classification. Fisher discrimination criteria is being imposed

on the coding coefficients in order to maximize between-class scatter but at the same time

minimize the within-class scatter. This is then known as Fisher discrimination DL (FDDL)

method that uses both sparse coding coefficients and the discriminative information in the

reconstruction error. The proposed algorithm is then evaluated on MultiPIE and Yale face

datasets.

• Sharma et al. [27] discussed in their paper that an algorithm dealing with domain adapta-

tion should have following properties: supervised, generalizable to unseen classes, ability to

handle multi-view and not domain dependent. Hence, he proposed Generalized Multi-view

Analysis (GMA) that aims to learn a common discriminative subspace and abide all the

above mentioned properties. It solves a joint, relaxed Quadratic Constrained Quadratic

Problem (QCQP) over different feature spaces and obtains a single subspace i.e., it solves

a generalized eigenvalue problem leading to a globally optimal solution. The paper dis-

cusses that GMA is a generalized extension of Canonical Correlation Analysis, Partial

Least Squares and Bilinear Model. GMA is tested for simultaneous pose and illumination

variation on CMU MultiPIE face dataset and Wiki text-image data.

• Shekhar et al. [28] discussed that data driven dictionaries perform very well on various clas-

sification tasks. Thus, they proposed to represent the source as well as target domain data
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by a common dictionary such that the difference between two domains is minimized. Since

the features from the two domains may not be well connected, therefore, they projected

data from both domains, separately, on a low dimensional space. This helps in handling

any changes in feature type and dimensions across the domains. Simultaneously, a com-

mon dictionary is learnt that represents the projected data from both domains. This joint

optimization offers generalizability, efficiency and helps to find common internal structure

between source and target domain that is well represented by linear sparse combinations

of dictionary atoms. This algorithm has been evaluated on CMU MultiPIE face dataset,

as well as, Caltech-256 and Amazon datasets for object recognition.

• Qui et al. [23] discussed a domain adaptation method to learn to incrementally adapt a

dictionary from source to target domain such that the difference between the two domains

can be minimized. They proposed a Domain Adaptive Dictionary Learning framework

(DADL) that learns a transformation for dictionary in one domain to another domain,

while taking care of the domain invariant sparse codes of a signal. Dictionary atoms and

domain invariant sparse codes are jointly learnt by solving an optimization problem. This

algorithm was evaluated on CMU PIE and extended YaleB dataset.

• Sharma et al. [26] introduced a view-based subspace, hybrid-eigenfaces, to generate im-

ages for different illumination and poses from a single image. Hybrid-eigenfaces are very

different from view-based subspace as proposed by Pentland and Turk [21]. For example

Hybrid-eigenfaces provides high co-relation for a subject even under different illumination

and poses, while this advantage is not offered by view-based eigenfaces. Hybrid eigenfaces

are then further combined with Global Linear Regression, proposed by Chai et al. [3], to

generate 2D images with different pose and illumination. These images were then used

for training for some state-of-art methods on FERET and extended YaleD face dataset to

compare its robustness and generalization.
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Table 1.1: Brief survey on Literature Review

Paper
2D or

3D
Dataset Technique

Average
Accuracy

Passils et al. [20] 3D

3-D face dataset
from University
of Houston and
University of
Notre Dame

Automatic landmark
detection and Wavelet

transformation
83.7

Zhu et al. [38] 2D CMU MultiPIE Deep Network 95.6

Singh et al. [29] 2D

WVU Visible
Face dataset,

WVU SWIR Face
dataset and

CMU MultiPIE

Face mosaic
97.5, 98.2
and 96.9

Yang et al. [33] 2D
CMU MultiPIE
and extended

YaleB

Class-wise structured
dictionary using Fisher
discrimination criteria

93.9 and
91.9

Sharma et al. [27] 2D
CMU MultiPIE
and Wiki text

image data

Generalized Multiview
Analysis

99.2 and
99.7

Shekhar et al. [28] 2D
CMU MultiPIE,
Caltech-256 and

Amazon

Dictionary Learning on a low
dimensional space

98.5 and
46.2

Qui et al. [23] 2D
CMU MultiPIE
and extended

YaleB

Domain Adaptive dictionary
learning framework

90.4

Sharma et al. [26] 2D
FERET and

extended YaleB
Hybrid eigenface with Global

Linear Regression
76 and
61.32

1.3 Research Contributions

In this research, a Low Rank Group Sparse Representation based Classifier(LR-GSRC) is pro-

posed for face recognition with pose and illumination variations. The algorithm is built upon

existing Group Sparse Classifier [10] and utilizes incremental learning [23] with trace norm reg-

ularizer [17] for addressing the given problem. In Dictionary Learning approaches, images are

represented as a linear combination of atoms of a dictionary. Generally, for a given dictionary,

the total number of atoms are large as opposed to the atoms used for the reconstruction of a

given image, which results in sparse coefficients for an image. Recently, Group Sparse Classifier

has been proposed which assumes that a test sample can be represented as a linear combination
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of training samples belonging to the same group as that of the given test sample. Since the

samples are linearly correlated, the dictionary for a particular group should fall in a low dimen-

sional manifold [14]. To enforce this, a trace norm regularizer on the group-wise dictionaries is

introduced in the dictionary learning algorithml. As mentioned earlier, since the distribution

of the test samples (target domain) might differ from the distribution of the training samples

(source domain), the above framework is learnt in an incremental manner. The research work

is evaluated on CMU MultiPIE [11] and Extended YaleB [8] face dataset for varying pose and

illumination.

8



Chapter 2

Preliminaries

This chapter provides some preliminaries that is required for the proposed algorithm LR-GSRC.

Details about Sparse Approximation, Dictionary Learning, Group Sparse Representation based

Classifier (GSRC) and Low Rank Minimization are given below.

2.1 Sparse Approximation

Sparse approximation is a technique used to obtain a vector, sparse in nature, which is an ap-

proximate solution for a system of equations. It has found wide use in the applications of image

processing, mainly because of the known fact that signals and images can be sparse in some

dictionary D [7,13,31,34].

Given a linear system of equations, y = Dx, where D is an undetermined matrix also known as

dictionary and x is a signal that has to be estimated with the constraint that it should be sparse

in nature. The motivation towards finding a sparse representation of an input signal is that even

though the observed values of input y are in high dimension space but the actual signal has been

organized in a low dimensional subspace [4, 5]. Sparsity in simple terms implies that very few

components of x are non-zero. Therefore, the input signal y can be decomposed into a linear

combinations of few vectors in D, known as atoms. Mathematically, the sparse approximation
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problem is represented as,

argmin
x
‖x‖o subject to y = Dx (2.1)

where ‖x‖o refers to lo norm that gives the number of nonzero entries in vector x. This is a

NP-Hard problem that can be reduced to NP-complete subset selection problems. Often the

observed values of input signal y are noisy in nature. For such cases, the sparse approximation

problem can be represented as:

argmin
X
‖Y −DX‖22 + λ ‖α‖1 (2.2)

where, ||α||1 induces sparsity and λ is a slack variable that is responsible for balancing the

trade-off between finding a sparse representation and fitting the data properly.

Several algorithms have been proposed to solve sparse approximation problem. The most com-

monly used techniques are:

• Matching Pursuit: It is a greedy algorithm using iterative approach to solve lo problem

mentioned in equation 2.1. Matching pursuit aims to find a basis vector D such that

it maximizes the correlation with the residual and then re-computes the coefficients and

residual by projecting them on all atoms of the dictionary.

• Orthogonal Matching Pursuit: Matching Pursuit has a drawback that an atom can be

picked multiple times that is overcome by Orthogonal Matching Pursuit algorithm. It is

very much similar to Matching Pursuit and in addition maintains that an atom picked

once will not be picked again. It maintains an active set of atoms that have already been

picked and adds a new atom after every new iteration. Similar to Matching Pursuit the

residual is projected onto this linear combination of active atoms such that an orthogonal

recomputed residual is obtained.

• Projected Gradient Descent: This method works in a similar manner as the Gradient
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Descent i.e., given an initial point it provides the information that point to new search

directions. Since aim is to sparse solution therefore, the presumptive solutions are sparsely

projected onto scaffold of k-vectors.

• LASSO: This algorithm aims to solve the l1 minimization problem given in equation 2.1.

Unlike Matching Pursuit, instead of projecting the residual on dictionary atoms, it aims

to move the residual iteratively towards the atoms by a small step each time.

2.2 Dictionary Learning

In dictionary learning algorithms, images are represented as a linear combination of atoms of a

dictionary. Given a signal y and dictionary D, sparse representation of y can be learned through

following optimization problem:

x̂ = argmin
x
‖x‖o subject to y = Dx (2.3)

where, ‖x‖o refer to lo norm that gives the number of nonzero entries in vector x. Recently,

many new approaches have been discussed to learn an efficient dictionary [15, 16] from the given

data. It has mainly been influenced by recent advances in sparse algorithms and representation

theory. One of the established methods of learning a dictionary from training samples is the

K-SVD algorithm [1, 36]. K-SVD is a dictionary learning algorithm, which is a generalization

of k-means clustering method. K-means clustering can also be regarded as a method for sparse

representation that aims to find the best possible codes to represent the input signal y by nearest

neighbor method through solving following equation:

argmin
D,X

‖Y −DX‖2F s.t. ∨i, ‖xi‖o = 0 (2.4)

The sparse representation ‖x‖o = 1 enforces the K-means algorithm to have just one atom in

the dictionary. Since K-SVD algorithm aims to achieve linear combinations of atoms, therefore,
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the constraint is updated in such a way that xi is greater than 1, but smaller than a threshold

To,

argmin
D,X

‖Y −DX‖2F s.t. ∨i, ‖xi‖o ≤ T (2.5)

where X = [x1,...,xN ], xi ε ∈ Rk are sparse codes of N input signals Y, D = [d1,...,dk], di ε

∈ Rn and T restricts the signal to have less than T items in its decomposition. k represents

the number of atoms in learnt dictionary and n represents the number of samples on which the

dictionary has been learned. This equation is solved using Orthogonal Matching Pursuit (OMP)

to learn both, sparse codes and dictionary alternatively as well as iteratively. At the end, result

is a sparse representation that very well represents the input signal y.

2.3 Group Sparse Representation based Classification

2.3.1 Sparse Representation Based Classification

Sparse Representation based Classification (SRC) [31] assumes that a test sample can be rep-

resented as a linear combination of training samples belonging to the same class as the test

sample. For example: if vtest is a sample belonging to the kth class then, it can be depicted as,

vtest = αk,1vk,1 + αk,2vk,2 + ....+ αk,nvk,n + ε (2.6)

Where, vtest belongs to class k, vi,k represents ith training sample from kth class and ε is the

approximation error. Since the correct class of vtest is not known, therefore, for classification

purpose SRC represents vtest as linear combination of all samples from all classes:

vtest = V α+ ε (2.7)

where, V = [ [V1,1.....V1,N ], [V2,1.....V2,N ], , [VC,1.....VC,N ]] and α = [ [α1,1.....α1,N ], [α2,1.....α2,N ],

, [αC,1.....αC,N ]]. Here Vi,j represents a jth training sample from class i, C depicts the number

of classes in the given data and N represents the number of training samples belonging to a
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class. As mentioned earlier, a given test sample can be linearly associated with only the training

samples belonging to the same class as the test sample and samples from other classes should

not contribute. Therefore, α is likely to be sparse in nature i.e., it will have a zero value for

all other classes and non-zero values only for the class to which it belongs. This can be solved

using following minimization problem:

min
α
‖vtest − V α‖22 + λ ‖α‖1 (2.8)

Majumdar et al. [19] and Elhamifar et al. [6] claim that l1-norm does not explicitly impose that

α for correct class should be non-zero and otherwise zero. Instead, it can better be enforced

using supervised l2,1-norm. So the minimization changes to:

min
α
‖vtest − V α‖22 + λ ‖α‖2,1 (2.9)

This is known as block/joint SRC and works well for simple classification problems [19, 35],

however, yields very low performance for face recognition in comparison to SRC. Using equation

2.9 Wright et al. [31] proposed the following algorithm in order to determine class of a given

test sample:

• For each class c, reconstruct a sample vrecon(c) by the linear combination of training

samples from that class:

vrecon(k) = Vkαk (2.10)

• Find the error between a given test sample and the reconstructed sample

• Assign the test sample to the class with the minimum reconstruction error

13



Figure 2.1: Group Sparse Representation based Classifier

2.3.2 Group Sparse Representation based Classification

Group Sparse Representation based Classification [10] is similar to SRC, however, it aims to

handle multiple features at same time i.e., if there are N modalities then, for each modality SRC

model holds true (test sample from a modality can be linearly associated with only the training

samples belonging to the same modality and class as test sample),

vitest = V iαi + ε (2.11)

vitest = αik,1v
i
k,1 + αik,2v

i
k,2 + ....+ αik,nv

i
k,n + ε (2.12)

where vitest depicts that this test sample refers to ith modality, vik,n refers to nth training sample

from kth class and ith modality, and similarly, αik,n refers to α coefficient for nth training sample

from kth class and ith modality. Since SRC algorithm is true for each individual modality,

therefore, αik is sparse in group i that contains non-zero values for samples from the ith group

and kth class, and zero otherwise. Therefore, equation 8 can now be solved using:

min
Z
‖vtest − V α‖22 + λ ‖α‖2,1 (2.13)
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The classification algorithm for Group Sparse is also very similar to SRC. For a given test sam-

ple, following steps are followed to perform classification:

• For each class c and modality i, reconstruct a sample virecon(c) by the linear combination

of training samples from that class and modality

• Find error between given test sample and reconstructed sample

• Assign the test sample to the class with the minimum reconstruction error

2.4 Low Rank Approximation

As discussed, in SRC samples belonging to the same class are linearly correlated. Therefore,

an input signal can be represented through few atoms of an over-complete dictionary. Such an

architecture has achieved quite impressive performance for applications like image classification.

Quality of a learnt dictionary is crucial factor for sparse representation. The SRC algorithm

takes entire training set to learn a dictionary, however, given a large dictionary, sparse coding

is computationally expensive. Therefore, some researches [18, 22] focused on learning discrim-

inative and compact dictionaries. The performance of algorithms on applications like image

classification improves dramatically for a well-constructed dictionary. Also, compact dictionary

has been proven to be efficient for encoding step. However, performance of such methods degrade

if the training data is noisy or contaminated (for example lighting variations, occlusion, pixel

corruption, disguise, etc.). One approach towards learning a compact and noise-free dictionary

for better image classification is low rank approximation [14,37].

Low Rank Approximation is a minimization problem that aims to find the best fit between a

given matrix and an approximating matrix, subject to the constraint that it has low rank. It

has wide application in the field of image compression and mathematical modeling.

15



2.4.1 Basic Low Rank Minimization Problem

The fit measured by Frobenius norm,

argmin
D

∥∥∥D − D̂∥∥∥2

F
s.t. rank(D̂) ≤ r (2.14)

contains an analytic in reference to singular value decomposition of given matrix D i.e., Let

singular value decomposition of D be

D = UΣV T ε Rm∗n (2.15)

where, U = [U1 U2], V = [[V1 V2] and ε = diag(σ1,..,σm). The rank-r matrix obtained from this

singular value decomposition is:

D̂∗ = U1ΣV T
1 ε Rm∗n (2.16)

Such that,

∥∥∥D − D̂∗
∥∥∥
F

= minrank(D̂)≤r

∥∥∥D − D̂∥∥∥
F

=
√
σ2

1 + ....+ σ2
n (2.17)

2.4.2 Trace Norm

The Schatten p-norm acts on the singular values of a given matrix in the following way,

‖D‖p =

min(m,n)∑
i=1

σpi

1/p

(2.18)

To obtain a low rank matrix for given matrix D. If p value in equation 2.18 is substituted with

value p = 2, it yields the Frobenius norm and if the p is substituted with value p = 1, it yields
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the trace norm (also known as nuclear norm). So, for trace norm equation 2.18 will look like,

‖D‖∗ = trace
(√

D∗D
)

=

min(m,n)∑
i=1

σi (2.19)

As discussed before, samples belonging to same class are linearly correlated therefore, the dic-

tionary for a particular group should fall in a low dimensional manifold. To enforce this, a trace

norm regularizer on the group-wise dictionaries can be applied in order to obtain a low rank

group-wise dictionary [16, 37]. One advantage of low rank representation is that since it acts

directly on singular values therefore, it take cares of any noise present in the training samples.
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Chapter 3

Low Rank Group Sparse

Representation based Classifier

(LR-GSRC)

The existing algorithms for domain adaptation on pose and illumination variations either require

large amount of data to identify different poses belonging to the same identity, can handle only

a specific pose in the target domain at a time or are unable to find correlation between images

having left and right view of the same individual. Some of these disadvantages are overcome

by proposing a novel framework based on adaptive dictionary learning and Group Sparse Rep-

resentation based Classifier (GSRC). Adaptive dictionary learning approach helps interpolating

the path between the source and target domain, thereby obtaining a good representation of data

present in the target domain. On the other hand, GSRC trains the classifier to learn both left

and right view simultaneously such that, even if the target domain contains different views for

a class then also it should be able to assign it to the right identity.
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Figure 3.1: Given a source domain, proposed algorithm aims to interpolate the path between
source and target domain by learning intermediate dictionaries until it finds the best possible
representation for target domain

3.1 Proposed Algorithm

In this section the proposed algorithm is described in detail. Let Ys = [Y1,s, Y2,s,....,Yc,s] contains

all samples from source domain, with a total of Ns instances from c different classes. Hence,

Yi,s ε ∈ Rn∗msi , where n is the dimension of the samples and msi refers to the ith class size

in the Source Domain. Similarly, Yt = [Y1,t, Y2,t,....,Yc,t] contains samples from target domain

such that Yi,t ε ∈ Rn∗mti . From Ys, a dictionary Dj is learnt for each class. D = [D1,D2,..,Dc],

where Dj is the dictionary for jth class and Dj ε ∈ Rn∗p. Here p depicts number of atoms in

the dictionary.

For Group Sparse Classifier, let there be i groups in the source domain on which the Group Sparse

coefficients are trained such that Y i
t represents instances from target data belonging to ith group

and Di
j represents dictionary from ith group and jth class. The aim here is to incrementally

learn Group Sparse coefficients and dictionary such that at kth iteration dictionary D∗,k is closer

to the target domain as compared to the k − 1th iteration dictionary. Here, D∗,k refers to the

dictionary D = [D1,D2,..,Dc] learned at the kth iteration for all classes c in the data.
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3.1.1 Training

Given Yt and Ys (instances from target and source domain respectively), the algorithm is as

follows:

Step 1: Learn the source dictionary D∗,o using samples from Ys. Using this dictionary as initial

point, our aim is to incrementally learn Group Sparse coefficients α and target dictionary that

gives the best representation for the target domain.

Step 2: D∗,k is updated for the next intermediate domain k + 1 to incrementally adapt to the

target data [23]. D∗,k+1 is learnt on the basis of its coherence with the dictionary in kth domain

and residual of instances in Yt. The residual,Z∗,k is obtained using the following:

X∗,k = argmin
X

‖Yt −D∗,kX‖2F , s.t.∨i, ‖pi‖o ≤ T (3.1)

Z∗,k = ‖Yt −D∗,kX∗,k‖2F (3.2)

here X∗,k = [p1, ..., pNt ] refers to the sparse coefficients of data instances in Yt decomposed

with dictionary from kth iteration. pi refers to sparse coefficients of data instances belonging

to class i. The updation in D∗,k atoms, ∆ D∗,k, to obtain D∗,k+1 is formulated using following

minimization:

min
∆D∗,k

‖Z∗,k −∆D∗,kX∗,k‖2F + λ ‖∆D∗,k‖2F (3.3)

The first term is responsible for adjustments in atoms of dictionary D∗,k in order to decrease

residual reconstruction error Z∗,k. The second term is used to control sudden changes in dictio-

nary atoms between current domain and next domain. Hence, D∗,k+1 can be formulated using:

∆D∗,k = Z∗,kX
T
∗,k(λI +X∗,kX

T
∗,k)

−1 (3.4)

D∗,k+1 = D∗,k + ∆D∗,k (3.5)
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This step is repeated to learn intermediate representation till the best representative dictionary

of target data is obtained. This is enforced by a stopping criteria: ‖∆D∗,k‖F < δ.

Step 2: Using adapted dictionary with respect to Yt, α for GSRC is learned using the following

formulation:

min
D,α

∥∥Y i
t −Di

∗,kα
i
∥∥2

2
+ λ

∥∥αi∥∥
2,1

+
∑
j

∥∥αij,k∥∥∗ +
∑
j

∥∥Di
j,k

∥∥
∗ (3.6)

here, ‖a‖∗ refers to trace norm that is used as low rank regularization on dictionary. Di
j,k repre-

sents dictionary for ith group and jth class at kth iteration. This approach has been summarized

in Algorithm 1.

Data: Source Dictionary D∗,o learnt after Step 1, target data Yt, sparsity level T,
Result: D∗,k and α for intermediate domains
initialization;
do

1. Obtain Obtain Z∗,k from Yt and D∗,k using equation (3.1) and (3.2)
2. Update atoms in D∗,k to get next intermediate domain D∗,k+1 using (3.3), (3.4)
and (3.5);

while ‖∆D∗,k‖F < δ;
3. Learn Group Sparse coefficients α with adapted Dictionary using equation (3.6)

Algorithm 1: Low Rank GSRC

3.1.2 Testing

For a given test sample, following steps are followed:

1. For each class c, reconstruct a sample vrecon(c) by the linear combination of training samples

from that class:

vrecon(k) = Vkαk (3.7)

2. Find error between given test sample and reconstructed sample

3. Assign the test sample to the class with the minimum reconstruction error
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Chapter 4

Experiments and Results

The performance of the proposed algorithm for face recognition under pose and illumination

variations is verified using CMU MultiPIE and Extended YaleB face datasets. Different experi-

mental settings and comparisons with existing approaches has been presented below.

4.1 CMU MultiPIE

MultiPIE face dataset collected by Carnegie Mellon University contains 337 subjects captured in

four different sessions under 15 view points and 20 illumination conditions (examples are shown

in Figure 4.1). The number of subjects across the four sessions is 129 subjects. Face detection

and cropping of this subset of data was done using Haar Cascades and manual cropping (due

to limitations of face detection algorithms on pose variation). The resultant face images were

then resized to 90x90 resolution. In these experiments, 6 different view points -45, -30, 0, 15,

30 and 45 degrees have been considered. Source domain contains poses 0, 45 and -45 degrees,

while target domain varies according to experimental setups.
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Figure 4.1: Samples of CMU MultiPIE face dataset for pose and illumination variations

4.1.1 Experimental Protocol

4.1.1.1 Experimental Setup-1

For experimental setup-1, the following protocol has been followed: source domain contains

instances having pose variations of 0, 45 and -45 degrees. For each user, the source dictionary

is learnt on this data. Similarly, target domain contains instances having pose variations of

30, 15 and -30 degrees, thereby, ensuring that the training and testing instances were mutually

exclusive. Using the proposed algorithm, the learnt dictionaries are adapted to get the best

representation of the target domain. Testing of trained and adapted classifier was done on

probe images containing poses at 45, 30, 15, 0, -30 and -45 degrees.

4.1.1.2 Experimental Setup-2

For experimental setup-2, the following protocol has been followed: source domain contains

instances from pose variations of 0, 45 and -45 degrees on which the source dictionary is learnt.

Target domain consists of images having pose variations of 30, 15 and 45 degrees, individually.

The source dictionaries are adapted for the target domains and results were obtained on set of

probe images containing 30, 15 and 45 degrees exclusively.

4.1.1.3 Experimental Setup-3

For experimental setup-3, following protocol has been followed: source domain contains instances

from poses 0, 45 and -45 degrees on which the source dictionary is learnt. Target domain

consists of images having pose variations of 30, 15 and 45 degrees (for both left and right

view), individually. The source dictionaries are adapted for the target domains and results were
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Table 4.1: Training and testing split for CMU MultiPIE for different experimental setups

Training Testing

Source Domain Target Domain Probe Images

Experimental
Setup-1

11,610 11,610 15,480

Experimental
Setup-2

11,610 3,870 5,160

Experimental
Setup-3

11,610 3,870 5,160

obtained on a set of probe images containing 30, 15 and 45 degrees (for both left and right view),

exclusively.

4.2 Extended YaleB

The extended YaleB dataset contains 16128 face images of 28 subjects captured under 9 view

points and 64 different illumination conditions (examples are shown in Figure 4.2). For our

research we considered all the view points and illumination conditions. Face detection and

cropping of this dataset was mainly done using Haar Cascade with some manual cropping. The

resultant face images were then resized to 60x60 resolution.

4.2.1 Experimental Protocol

The Extended YaleB dataset consists of 28 individuals with a total of nine different views for each

subject and 64 different illumination conditions per view. The source domain contains 34 images

for each subject, chosen at random, for poses P00, P01, P07 and varying lighting conditions.

Class-wise source dictionary is learned on this data. Similarly, target domain contains 34 images

of each subject having pose variations mutually exclusive from source domain. The images were

cropped and normalized to 60x60. Using the proposed algorithm, the learnt dictionaries are

adapted to get the best representation of the target domain. Testing of trained and adapted

classifier was done on test data containing 30 images per subject, view and varying lighting

conditions.
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Figure 4.2: Samples of Extended YaleB face dataset for pose and illumination variations

Table 4.2: Training and testing split for Extended YaleB dataset

Training Testing

Source Domain Target Domain Probe Images

Experimental
Setup

2,856 5,712 7,560

4.3 Results

Results obtained with the proposed algorithm is evaluated on CMU MultiPIE and extended

YaleB dataset using experimental protocol mention in Section 4.1 and 4.2 are summarized as

follows:

• In Experimental setup-1, where testing was done on probe images containing poses 0,

15, -30, 30, 45 and -45 degrees, a rank-1 accuracy of 73.06% was obtained. This shows that

the proposed algorithm can handle the randomness in the target domain with respect to

varying pose and illumination while other algorithms aim to adapt the source domain to

a specific target domain. Algorithms like GMLDA [27], SDDL [28] and FDDL [33] adapt

its source domain to either 30, 15 or 45 degrees individually and do not take into account

the case of all poses together.

• Similar results were obtained for extended YaleB dataset where LR-GSRC outperformed

other algorithms by obtaining a rank-1 accuracy of 93.2%, as mentioned in Table 4.5

• Adaptive dictionary learning based algorithms like SDDL and LR-GSRC tend to perform

well for domain adaptation under pose and illumination variations. LR-GSRC obtained the

highest rank-1 accuracy for 15 and 45 degrees (99.8 and 99.5 respectively) while obtaining

good accuracy of 98.6 for 30 degrees. This shows that sparse representation and adaptive
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dictionary learning framework is a progressive approach towards domain adaptation

• Most of the algorithms in literature can handle either left or right view of a pose at a time

while performing domain adaptation. However, introducing group sparsity with existing

dictionary learning framework, trains the classifier to learn both left and right view of a

pose simultaneously such that, even if target domain contains different views for a class

it is able to assign it to the correct identity. Experimental setup-3 verifies this property

of the proposed algorithm by obtaining great accuracies on +/- (30,45 and 15) degrees as

shown in table 4.2

• The adaptive dictionary learning approach interpolates the path between the source and

target domain by learning intermediate dictionaries at each iteration. This builds a linear

path from the source to target dictionary such that, given a pose that lies on this linear

path, classifier should be able to assign it to the right identity.

Table 4.3: Comparison of proposed algorithm with other Domain Adaptation algorithms on
CMU MultiPIE dataset for Experimental Setup-2

Method 150 300 450
Average
Accuracy

GMLDA [27] 99.7 99.2 98.6 99.2

GMMFA [27] 99.7 99.0 98.5 99.1

LDA+CCA [26] 95.9 94.9 93.6 94.8

FDDL [33] 96.8 90.6 94.4 93.9

SDDL [28] 98.4 98.2 98.9 98.5

LR-GSRC 99.8 98.6 99.5 99.3

Table 4.4: Performance of proposed algorithm on CMU MultiPIE dataset for Experimental
Setup-3

Method
+/−
150

+/−
300

+/−
450

Average
Accuracy

LR-GSRC 90.9 83.4 89.1 87.8

Along with Rank-1 accuracies, CMC curves for all four setups have been shown in Figure 4.3,

4.4, 4.5 and 4.6. The comparison between proposed algorithm and exsiting work has also been

shown graphically in Figure 4.7.
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Table 4.5: Comparison of proposed algorithm with other Domain Adaptation algorithms on
extended YaleB dataset

Method
Identification

Rate

SRC [31] 90.0

DKSVD
[36]

75.3

SVM 88.8

DLSI 85.0

FDDL [33] 91.9

LR-GSRC 93.2

Figure 4.3: Face identification accuracy on CMU MultiPIE for proposed algorithm with multiple
poses in target domain (Experimental Setup-1)

Figure 4.4: Face identification accuracy on CMU MultiPIE for proposed algorithm with each
domain individually (Experimental Setup-2)
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Figure 4.5: Face identification accuracy on CMU MultiPIE for proposed algorithm with each
domain individually containing both left and right view (Experimental Setup-3)

Figure 4.6: Face identification accuracy on extended YaleB face dataset for proposed algorithm
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Figure 4.7: Comparison of LR-GSRC on CMU MultiPIE with some exsiting work
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Chapter 5

Conclusion and Future Work

In this research, we proposed a novel framework, Low Rank Group Sparse Representation based

Classifier, to learn low rank dictionary and Group Sparse coefficients for the problem of face

recognition with varying pose and illumination conditions. Results on the CMU MultiPIE and

extended YaleB dataset support the effectiveness of the proposed algorithm for domain adapta-

tion. Therefore, there is a scope for extending this work towards various other domains including

resolution, blurdness, occlusion, etc. Some literature has shown that adpative dictionary learn-

ing framework performs fairly well for object recognition as well [28]. Thus, the scope of this

work is not just limited to face recognition and it can be extended for object recognition as well.

In the proposed framework, we have focussed to deal with pose and illumination variations for

view point between -45 to 45 degrees. Looking at the results obtained we aspire to expand our

view point to the range of -90 to 90 degrees for full coverage of pose and illumination variations.

In this case, keeping source domain as 0, 90 and -90 degrees domain adaptation will be done

on -70, -60, -45, -30, -15, 0, 15, 30, 45, 60 and 70 degrees. The experiments and results can be

obtained on CMU MulitPIE dataset, which provides data according to this specification, with

respect to the experimental protocol defined for this dataset.

Also as mentioned above, there is a scope of extending this work beyond pose and illumination

covariates in face recognition and diversifying it to object recognition as well. Therefore, this
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research work can be extended to the following:

• Face recognition across resolution and blurdness: To solve this problem we can take ad-

vangtage of group sparcity in our proposed framework such that using resoltuion, blurdness

and normal images as three different groups in LR-GSRC we can adapt to learn good rep-

resentation for target domain. This might help to deal with the problems of blurdness and

varying resolutions in our testing data

• Object recognition: The Amazon dataset provides three domains under which images of

different objects have been captured. These images are captured using dslr, webcam and

images available on Amazon. To approach this problem, we can use two domains as source

as two different groups for our LR-GSRC and adapt it to the third domain. Testing and

results will be obtained for this third domain
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