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Abstract

Gender classification is used in applications as a soft feature or attribute in biometrics to help

identify people. Using gender classification as an indexing technique can boost the performance

of facial-biometric. If the face images are obtained using high quality camera then only RGB

information is sufficient for gender classification. However, in surveillance scenario RGB face

images are of low quality and have covariates such as pose, illumination, expression and distance.

Therefore, in such scenarios depth information can be utilised to improve the performance of

gender classification. Low-cost depth sensors such as Microsoft Kinect provide the depth images

along with corresponding RGB color images. These low cost (Kinect) devices can be used for

video surveillance; however, not much research has been focused on RGB-D (RGB and Depth

data) video data obtained from these devices. In this research, we present a novel gender classi-

fication algorithm that extracts features using multiple algorithms from RGB-D videos. While

most of the work in gender classification has focused on handcrafted feature extraction techniques

such as Uniform Local Binary Pattern and Gradient Local Binary Pattern, we have also studied

effectiveness of learned feature extraction techniques such as Stacked denoising autoencoder on

gender classification. We also present a score level fusion of handcrafted features and learned

features, which significantly improves the performance of gender classification. The proposed

algorithm is evaluated on KaspAROV dataset, which contains RGB-D video data obtained from

Microsoft Kinect device. This dataset encompasses challenges of varying conditions related to

illumination, pose, expression, low image quality and distance. The experiments are also per-

formed on Eurecom Kinect dataset. On both the databases the proposed algorithm achieves

state-of-the-art results.
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Chapter 1

Introduction

1.1 Overview and Research Motivation

Automatic gender classification has several emerging practical use cases for example, it can be

used in surveillance camera settings of departmental stores such as Walmart, which records

the footfall of people in their stores to estimate the gender ratio visiting them and let them

stock different products accordingly. It can be used in security surveillance cameras, as gender

detection from facial features can narrow down the search space of face recognition systems.

Gender recognition can also be used in human computer interaction systems such as in creating

avatars for virtual world and gaming.

In case of face images obtained from conventional cameras under constrained conditions as shown

in Figure 1.1, RGB information is sufficient to achieve good performance for gender recognition

task. On the other hand, in unconstrained environment, face images obtained from surveillance

cameras, as shown in Figure 1.2, may not be of good quality and depth information may be

exploited along with RGB information to boost the performance. Classical 3D cameras are

generally expensive; however, with the introduction of low-cost depth sensors such as Microsoft

Kinect, which captures depth information along with RGB color images, face analysis tasks using

RGB-D information has gained significant attention. There has been relatively very less amount

of research in the field of gender recognition using RGB-D Kinect videos. In this research, we
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Figure 1.1: Sample RGB images under constrained environment.

Figure 1.2: Sample RGB images obtained from surveillance camera.

have proposed a novel RGB-D based gender classification approach.

During literature review, we observed that most of the research in gender classification is based on

handcrafted feature extraction techniques such as Uniform Local Binary Pattern [28], Histogram

of Oriented Gradients [12] and Gradient Local Binary Pattern [18]. Not much attention has been

given on data-driven representation learning based feature extraction techniques such as stacked

denoising autoencoder [36]. In this study, we have evaluated such data-driven learned feature

extraction algorithms on gender classification problem. We have also shown that the performance

of gender classification can been improved using the score level fusion of handcrafted features

and learned features.

During the course of this research work, we have evaluated the algorithms on KaspAROV and

Eurecom Kinect face datasets [26]. The key contributions of our research are:

• Utilizing depth information for improving the performance of gender classification.

• To study the effectiveness of learning based feature extraction techniques such as stacked

denoising autoencoder on gender classification problem.

• The score level fusion of handcrafted and learning based feature extraction techniques.

• Evaluate the above algorithms on KaspAROV Kinect video dataset. This dataset is rel-
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atively challenging as faces are extracted from RGB-D videos which are taken in uncon-

strained environment (with respect to pose, illumination, expression and distance).

1.2 Literature Review

Gender classification using 2D face images has been well studied in the literature; however, very

few studies have focused on utilising 3D information, especially depth information obtained from

low cost Microsoft Kinect devices. In this section, we present an overview of research work in

the field of gender classification.

• Alexandre et al. [5] have shown how the decision fusion of features obtained from different

image sizes improves the performance of the gender classification system. Three varying

image sizes (20× 20, 36× 36 and 128× 128) are used to evaluate the gender classification

performance on FERET [30] and UND collection B dataset [14]. They have used Local

binary pattern [28] and Histogram of oriented gradients [12] for feature extraction. These

features are extracted from varying scale images and classification is performed using

Support Vector Machine (SVM) classifier. Decision fusion is applied on the results obtained

from these classifiers. The best accuracy of 99.07% on FERET dataset and 91.19% on UND

collection B dataset using decision fusion across feature types and image sizes are reported.

• Dhamecha et al. [13] have studied gender classification across ethnicity on 2D face images.

They have created a heterogenous dataset by combining face images from different publicly

available datasets such as CMU PIE [34], Georgia Tech [2], GTAV [1] and FERET [30].

These datasets have subjects belonging to different ethnicities and nationalities. They have

selected the face images with covariates such as expression and illumination. They have

evaluated the performance and generalization capability of Principal Component Analysis

(PCA) [19], Linear Discriminant Analysis (LDA) [32] and Subclass Discriminant Analysis

(SDA) [40] on gender classification problem across ethnicity. Three techniques PCA, PCA

+ LDA and PCA+SDA are evaluated and the best accuracy of 86.47% is reported using

PCA.
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• Shan et al. [33] have studied gender classification on real world 2D face images using La-

belled Faces in the Wild (LFW) dataset [17]. This real life dataset contains face images

with covariates such as pose, expression, illumination and occlusion. Viola-Jones face de-

tector [37] is used for detecting faces and all the face images are aligned using a commercial

software (Wolf et al. [38]). Local Binary Pattern (LBP) is used as feature descriptor and

Adaboost is applied on top of LBP to select the most discriminative LBPH bins. By using

SVM as a binary classifier, accuracy of 94.81% is reported on LFW dataset.

• Influence of automatic and manual alignment method on gender classification accuracy has

been reviewed by Makinen et al. [23]. IMM Face dataset [35] and FERET dataset [30] are

used for the experiments. They have evaluated three automatic alignment methods, one

profile alignment method and manual alignment method using four different classification

algorithms namely SVM with LBP, Neural network on face pixels, SVM on face pixels and

Adaboost with haar like features. They observed that manual alignment method provides

better performance than automatic face alignment methods which suggest further en-

hancement in automatic face alignment methods and SVM provides the best classification

accuracy compared to other classification algorithms.

• Above research papers have focused on 2D RGB face images. Some researcher have tried to

explore the 3D domain for gender classification. Lu et al. [22] use the intensity and range

information of human face obtained using Minolta Vivid 910 (3D laser scanner) for gender

classification. The range and intensity face images are first normalized and segmentation

scheme is applied on it to get the feature vector. SVM is used as classifier for its two class

classification problem. Further, they have also used sum rule to combine the posterior

probabilities obtained using SVM on range and intensity data. The combined dataset of

University of Notre Dame (UND) [10] and Michigan State University (MSU) [22] is used

in the experiment and an accuracy of 91% is obtained.

• There are very limited research works on the RGB-D data obtained from low cost Kinect

sensors for gender classification. Hyunh et al. [18] have made use of depth data obtained

from Kinect device in gender classification. They have proposed a novel Gradient LBP
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technique on depth images for feature extraction. The technique is evaluated on Eure-

com Kinect Face dataset [26] and Texas 3DFR dataset [16]. SVM is used as a classifier.

Classification rate of 87.18% is obtained using Gradient LBP compared to 87.82% using

Uniform LBP on Eurecom Kinect Face dataset. This experiment is performed on unseen

subjects of testing set. Further, they have improved the accuracy to 90.38% on Eurecom

dataset using the weighted combination of Uniform LBP and Gradient LBP.

• Boutellaa et al. [7] have reviewed the use of Kinect depth data in face analysis problem

such as face, gender and ethnicity recognition. Local Binary Pattern (LBP), Local Phase

Quantization (LPQ) [4], Histogram of oriented gradients (HOG), Binarized statistical im-

age features (BSIF) [20] are used as feature extraction technique on both RGB and depth

images of the dataset. The classification is performed using a SVM classifier. The re-

sults are evaluated on three Kinect face datasets namely, Facewarehouse [8], IIIT-D [15]

and CurtinFaces [21]. They have shown the importance of depth information in gender

classification task. Table 1.1 provides the summary of literature review.

• Ng et al. [27] have provided a comprehensive literature review of gender recognition using

2D face images and whole body. Commonly used feature extraction techniques are also

discussed in the paper. A comparison of different gender classification methods has been

provided by Mäkinen et al. [24]. They have performed experiments on FERET [30] and

WWW image databases [24]. Comparison of methods such as SVM, Neural Network,

LBP+SVM and Adaboost is provided with and without normalization of face images.

They found that results obtained from all four methods are similar and no statistically

significant difference is found. However, the accuracy improves when face images are

normalized before classification. Also the combination of classifiers increases the accuracy

over individual classifier.
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Table 1.1: Summary of Literature Review

Paper
2D or

3D
Dataset Technique Classifier Accuracy

Alexandre
et al. [5]

2D
FERET and

UND collection B

HOG, ULBP and decision
fusion across features and

image scales
SVM

99.07%
(FERET)

and 91.19%
(UND)

Dhamecha
et al. [13]

2D
Heterogenous

dataset
PCA, PCA+LDA,

PCA+SDA
Bayesian 86.47%

Shan et
al. [33]

2D LFW Adaboost on Uniform LBP SVM 94.81%

Makinen et
al. [23]

2D
IMM Face and

FERET

Automatic and manual
alignment method. LBP, face

pixels as features
SVM, NN

87.1%
(Manual

alignment)

Hyunh et
al. [18]

3D Eurecom
Weighted combination of

ULBP and GLBP
SVM 90.38%

Lu et
al. [22]

3D UND and MSU
Range and Intensity

information combination at
decision level

SVM 91%

Boutellaa
et al. [7]

3D
Face warehouse,

IIIT D,
Curtinface

LBP, LPQ, HOG, BSIF SVM
87.7%

(Curtin-
face)
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Chapter 2

Preliminaries

Color and depth images obtained from Kinect devices of low resolution are often noisy. Therefore,

images often need a preprocessing step before feature extraction. In this chapter, we have

explained Layered bilateral filtering technique for preprocessing of depth images. In this section,

we have also given a brief overview of different handcrafted and learned feature extraction

techniques used in our study. Finally, Support Vector Machine which has been proven as an

effective technique for gender classification has been described in this section.

2.1 Preprocessing: Layered Bilateral Filtering

The depth images acquired from the Kinect sensors are of relatively lower resolution and fidelity

as compared to the RGB images. Hence, to deal with the problem of low quality depth images,

we used layered bilateral filtering technique as introduced in [39]. This technique makes use

of the registered high resolution color image to supersample and enhance the quality of the

corresponding depth image. By using color image, it gets the true edges of the depth image.

This approach for depth enhancement improves the input depth image by passing it through

an iterative refinement module. The approach is divided into three steps: Iterative refinement

module, bilateral filtering and sub pixel refinement.

• Iterative Refinement Module
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A cost volume (C) is first build upon the input depth image, D. Then bilateral filtering

is applied on each slice of the iterative cost module, by making use of the high resolution

color images, to produce a new cost volume C′. The refined depth map is generated by

passing the new cost volume through a sub pixel refinement stage. The cost function is

calculated as:

Ci (y, x, d) = min
(
η ∗ L, (d−Di (y, x))2

)
(2.1)

where η is constant, L is search range, d is depth candidate and Di(y, x) is currently

selected depth.

• Bilateral Filtering

Bilateral filtering phase takes the input cost volume C and registered color image and

returns a new cost volume C′. For each slice in C, a patch of fixed size is taken and moved

through all the pixels in a sliding window fashion. For each pixel in the current slice, a

patch from the fixed neighbourhood of the slice is element-wise multiplied to the gaussian

filter response of the R, G and B channels of the corresponding registered color image

patch, (Equation 2.2). The resultant patch of the previous operations is then averaged

over all its pixels and the center pixel of the patch is replaced by the same. Once the

operations has been done on all the pixels of all the slices the new cost volume C′ is

obtained which is then passed over to the sub pixel refinement stage.

F (y + u, x+ v) = fc (Wc (y, x, u, v)) fs (Ws (u, v)) (2.2)

fc (x) = exp

(
−|x|
γc

)
(2.3)

fs (x) = exp

(
−|x|
γs

)
(2.4)

Wc (y, x, u, v) =
1

3
(|R (y + u, x+ v)−R (y, x) |

+|G (y + u, x+ v)−G (y, x) |

+|B (y + u, x+ v)−B (y, x) |)

(2.5)
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(a) (b) (c)

Figure 2.1: KaspAROV dataset a) RGB Image. b) Depth image before preprocessing. c) Depth
image after applying Layered bilateral filter.

Ws (u, v) =
√
u2 + v2 (2.6)

• Sub Pixel Refinement

Since the input depth image in previous step is converted into a cost volume of fixed number

of quantization levels, this can lead to discontinuities in the resultant depth image. In order

to smoothen out the discontinuities a sub-pixel estimation algorithm is proposed in [39],

based on quadratic polynomial interpolation.

Upon passing the low quality depth image and the registered color image through this itera-

tive refinement module, we obtain the enhanced depth image, which we have used in gender

classification. Figure 2.1 shows examples of this preprocessing technique.

2.2 Feature Extraction

An effective feature extraction technique is required for gender classification. Uniform LBP [28]

which extracts the local texture features on RGB images and Gradient LBP [18] on depth

images is widely used for gender classification. In this research, we have used these two feature

extraction technique along with learned feature extraction technique, namely stacked denoising
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autoencoder [36].

2.2.1 ULBP: Uniform Local Binary Pattern

Local Binary Pattern, as described by Ojala et al. [28], is calculated by taking the difference

between centre pixel and neighbouring pixel in a 3× 3 grid. Thresholding function is applied on

the calculated values to obtain an 8 bit binary pattern. This 8 bit binary pattern is converted

into decimal to get the value of the center pixel. An example is shown in Figure 2.2. A histogram

of all such 256 possible values is used as feature descriptor when the neighborhood consist of 8

pixels. Thresholding function is given by:

s(z) =

{1 if z ≥ 0

0 otherwise

(2.7)

LBPP,R is given by:

LBPP,R =

P−1∑
p=0

s(gp − gc)2p (2.8)

where, gc is the gray value of the center pixel (xc, yc), P is number of neighbouring pixels on

circle of radius R, gp refers to gray values of P neighbouring pixels, and s is a thresholding

function.

As observed by Ojala et al. [28] some binary patterns appear more commonly than others. A

uniform pattern is made of at most two 0-1 or 1-0 transitions. Each uniform pattern is given

a separate bin in the computed histogram whereas, all other non-uniform patterns are given a

single bin which helps in reducing the size of feature vector. In 3× 3 grid with 8 neighbouring

pixels, uniform pattern reduces the size of histogram to 59 from 256 in original LBP. This

Uniform LBP is used in this research, by first dividing the face image into patches and then

using Uniform LBP operator to each patch separately. Further we concatenate the histograms

from all patches to obtain the final feature descriptor. As shown in Figure 2.3, the face image

is divided into 16 patches and then Uniform LBP operator is applied on each patch to get final

histogram of size 16 × 59 = 944. An illustration of LBP image obtained from original RGB
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image is shown in Figure 2.4.

Figure 2.2: Example of LBP operator [28].

Figure 2.3: Uniform LBP histogram obtained from the face image divided into patches.

Figure 2.4: Illustration of LBP image obtained after applying LBP operator.
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2.2.2 GLBP: Gradient Local Binary Pattern

Gradient LBP proposed by Huynh et al. [18] has been proven as an effective LBP based descriptor

for facial depth images. The 8 neighbouring pixels of the original LBP of 3× 3 grid correspond

to eight orientations. The actual depth difference value is calculated between centre pixel and

neighbouring pixels which creates eight depth difference images. Minimum value of this depth

difference is stored as -8 and maximum value as 7. All the depth difference values below -8

are assigned value -8 and in same way all depth difference values above 7 are assigned value

as 7. This way depth difference has 16 possible values. A histogram with 16 bins is computed

along each orientation. An example of GLBP computation is shown in Figure 2.5. Also the

Uniform LBP is applied on depth image and 59 bin histogram is extracted from it. As the 8

orientations of depth differences are pairwise symmetric, only half of the 8 orientations are used.

The 4 histogram of depth difference and 1 histogram of uniform LBP are concatenated to get

the final feature vector. In case of 3 × 3 grid of LBP having 8 neighbouring pixels, the size of

final Gradient LBP feature vector will be 59+16× 4 = 123 where 59 bins are of Uniform LBP

histogram and 16 bins are of depth difference histogram calculated over four orientations. The

main advantage of Gradient LBP is, it stores the actual depth difference value which preserves

the sign of the depth difference and also the size of the feature vector is small. In this research,

we have divided the depth image into 4 × 4 patches and then we have applied the Gradient

LBP operator on each patch. Final histogram is the concatenation of all individual histograms

of patches. An example of GLBP images obtained corresponding to four orientations from the

depth image is shown in Figure 2.6.

Figure 2.5: Example of Gradient LBP [18].
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Figure 2.6: Illustration of GLBP images obtained corresponding to four orientations after ap-
plying GLBP operator.

2.2.3 SDAE: Stacked Denoising AutoEncoder

Autoencoder is an unsupervised learning algorithm which tries to reconstruct the given input

vector. It has architecture similar to the neural network as shown in Figure 2.7. Autoencoder

consist of encoding and decoding step. It first takes the input vector x and produces the hidden

representation y (encoding step), as follows:

y = s (Wx+ b) (2.9)

where s(.) is a sigmoid activation function, W (Weight) and b (Bias) are parameters. Then

Approximate reconstruction x̂ of the input vector x using the hidden representation y (decoding

step) is calculated as follows,

x̂ = s
(
W ′y + b′

)
(2.10)

where W ′ (Weight) and b′ (Bias) are parameters. Autoencoder learns to minimize the recon-

struction error between x and x̂.

argmin ||x− x̂||2 (2.11)

L2 regularization is used to prevent overfitting. Cost function with added regularization term is

given as:

C =
1

2n

n∑
k=1

||x− x̂||2 +
λ

2n

∑
w

w2 (2.12)

where n is the size of input data and λ is the regularization parameter. Typically for the purpose

of classification, decoding layer is discarded in the end and the hidden representation is used
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as new feature vector which is then given as input to any classifier. Denoising autoencoder is

similar to normal autoencoder except that, instead of input vector x a noisy input x′ is used.

However, the reconstruction error is calculated between x and x̂ even though the input vector

is a noisy input x′. It makes the autoencoder resistant to the noise in the input. Encoding and

decoding equations in denoising autoencoder are represented as follows:

y = s
(
Wx′ + b

)
(2.13)

x̂ = s
(
W ′y + b′

)
(2.14)

Stacked denoising autoencoder [36] is a concatenation of multiple layers of denoising autoencoder

where output (hidden representation) of the previous layer is given as input to the next layer.

The hidden representation of the last layer is used as new feature vector for classification.

Figure 2.7: Illustration of Autoencoder [6].
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2.3 Classification using Support Vector Machine

Support Vector Machine [11] is a supervised learning algorithm which tries to divide the input

feature vector by finding the hyperplane such that mis-classification rate is minimum. SVM is

primarily built for two class classification problem; however, it can be extended to multiclass

classification. As shown in Figure 2.8, if the data is linearly separable, SVM tries to find the

hyperplane separating the data points and if not, SVM maps the input data to higher dimensions

by using the kernel trick.

Given a set of N data points, (xi, yi) where, xi is a input feature vector and yi is the corresponding

label, SVM finds the hyperplane given by equation:

H3 : wTx+ b (2.15)

such that distance between two class distributions is maximum. In two class classification

problem, equations of two boundary hyperplanes (H1 and H2) are:

H1 : wTx+ b = 1 (2.16)

H2 : wTx+ b = −1 (2.17)

The objective is to maximize the margin which is defined as maximum distance between the

two boundary hyperplanes (H1 and H2). This margin is calculated as 2
wTw

. This optimization

function equivalently can also be stated as follows:

argmin
1

2
wTw (2.18)

subject to the constraint that

yi(w
Txi + b) ≥ 1 ∀i {1, 2, ....N} (2.19)
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Figure 2.8: Maximum Margin Hyperplanes H1 and H2, samples on margin hyperplane are
support vectors [11].

which can be converted to solving the optimization problem having Lagrangian dual formulation

as :

argmax
N∑
i=1

αi −
1

2

N∑
i,j

αiαjyiyjx
T
i xj (2.20)

where αi are lagrangian multipliers, such that αi ≥ 0 and
∑

i αiyi = 0.

After calculating αi, one can infer from the Karush-Kuhn-Tucker (KKT) condition, that only

support vectors (points on the boundary hyperplanes H1 and H2) have αi 6= 0. The final solution

has the form:

w =
N∑
i=1

αiyixi (2.21)

where, xi are support vectors. Slack variable εi is added to allow misclassification of difficult or

noisy data points. The optimization function becomes:

argmin
1

2
wTw + C

N∑
i

εi (2.22)

where, C is the cost parameter which controls the over-fitting, subject to the constraints

yi(w
Txi + b) ≥ 1− εi for i = 1, ..., N (2.23)
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Chapter 3

Gender Classification

3.1 Proposed Algorithm

Figure 3.1 shows the proposed architecture for gender classification. Depth images are prepro-

cessed using layered bilateral filter and features are extracted using Gradient LBP. For a given

RGB face image features are extracted using Uniform LBP and stacked denoising autoencoder.

These features are provided as input to SVM and distance score metric is obtained from each

SVM classifier. This distance score metric is then used for performing score level fusion.

3.1.1 Preprocessing

For Eurecom dataset, we have used similar preprocessing as mentioned in [18] for cropping the

face image. Face images are cropped using nose as the center having width and height equal to

twice the distance between left eye and right eye. No image enhancement is applied on the RGB

images of either datasets. Depth images from KaspAROV dataset are enhanced using Layered

bilateral filtering technique [3] [39]. As seen from the Figure 3.2, depth image quality after

applying layered bilateral filtering has improved significantly. Morphological closing operation

is performed on depth images of Eurecom Kinect Face Dataset to fill the holes as the depth

images of Eurecom dataset are relatively better.
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Figure 3.1: Algorithm for RGB-D face based gender classification.

(a) (b) (c)

Figure 3.2: KaspAROV dataset a) RGB Image. b) Depth image before preprocessing. c) Depth
image after applying Layered bilateral filter.

19



3.1.2 Feature Extraction and Classification

For feature extraction, we have used Uniform LBP and stacked denoising autoencoder on RGB

images and Gradient LBP on depth images. SVM is used for two class classification i.e. (male,

female). LIBSVM [9] is used for training SVM models for all experiments. This section describes

the score level fusion of Uniform LBP, Gradient LBP and stacked denoising autoencoder.

• ULBP:

In the experiments, after converting the RGB face image to gray scale image, we have

divided the gray scale image into 4× 4 blocks and Uniform LBP (with P=8 and R=1) is

applied on each block separately to form the histograms, and then we have concatenated

these histograms to form the final feature vector. The size of final feature vector is 16×59

=944. The feature vector is then given as input to SVM for classification.

• SDAE:

Stacked denoising autoencoder is trained on gray scale face images of size 64× 64 pixels.

These input images are first converted into vector form of [1×4096] and are given as input

to the two layer stacked denoising autoencoder. In each hidden layer, number of hidden

nodes are one fourth of the previous layer, therefore the first hidden layer contains 1024

nodes and the second hidden layer contains 256 nodes. Stacked denoising autoencoder is

trained using the layer-by-layer greedy approach and the weights are learned using the

backpropagation algorithm. The final hidden layer of size 256 gives us new feature rep-

resentation of the given input vector. This final feature vector is then given to SVM for

classification. The architecture is shown in Figure 3.3. Stacked denoising autoencoder

implementation provided by deep learning toolbox [29] is used in all experiments. The

same architecture is followed for both KaspAROV and Eurecom datasets; however, as the

number of training images are less in Eurecom dataset, we have first trained SDAE on

KaspAROV Kinect v1 dataset and used the same parameters for initialization of SDAE on

Eurecom dataset. Then we learned the parameters using the training images of Eurecom

dataset.
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Figure 3.3: Architecture of two layer stacked denoising autoencoder.

• GLBP:

The depth face data is converted to gray scale depth image of size 64× 64 pixels. Layered

bilateral filtering technique is used for preprocessing to improve the quality of the depth

face images. Thereafter, the depth face image is divided into 4 × 4 blocks and Gradient

LBP operator is applied on each block to get the histograms. The histograms are then

concatenated get the final feature vector of the depth images. The feature vector is then

given to SVM for two class classification. In case of Eurecom dataset, only closing opera-

tion is performed as preprocessing step. Depth images are divided into 4 × 4 blocks and

the same procedure is repeated.

• Score level fusion of ULBP, GLBP and SDAE:

We proposed an approach wherein, we have performed the SVM score level fusion of

handcrafted features (Uniform LBP and Gradient LBP) and learned features obtained

from stacked denoising autoencoder. The distance scores obtained after using SVMs is

used for score level fusion. As suggested in literature [31], score level fusion can improve

the performance of gender classification compared to feature extraction technique applied
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individually. Overall, we have performed four score level fusion experiments, namely 1)

Uniform LBP and Gradient LBP SVM score fusion, 2) Uniform LBP and SDAE SVM score

fusion, 3) Gradient LBP and SDAE SVM score fusion and 4) Uniform LBP, Gradient LBP

and SDAE SVM score fusion. We have found that all three techniques (ULBP, GLBP,

SDAE) are statistically different using McNemar test [25].1 In score level fusion, match

scores from multiple algorithms are consolidated via sum rule, (Equation 3.2) to get a

single score.

score =

N∑
i=1

WiSi (3.2)

where, Si are individual scores of the classifier andWi are corresponding assigned weights.

This single score is now used for classification.

3.2 Dataset Specification

To evaluate the proposed algorithm, we have used KaspAROV Kinect video dataset and Eurecom

Kinect Face dataset. Both dataset contains RGB and Depth images. KaspAROV dataset is

relatively large in terms of number of images and also challenging as face images are obtained

from RGB-D surveillance videos. Table 3.1 provides the summary of the databases used.

3.2.1 KaspAROV Kinect Video Dataset

The dataset contains 108 subjects with two videos per subject on both Kinect version1 device

and Kinect version2 device. Therefore, there are four videos per subject. These videos are

taken in unconstrained environment with respect to pose, expression, illumination and distance.

Figure 3.4 shows example frames from this database. Both RGB and depth information are

captured in these videos. Frame resolution of RGB frames in Kinect v1 is 640 × 480 and for

1Mcnemar test calculates the statistical correlation of two classifiers with regard to their classification per-
formance. Two classifiers are said to be statistically different if the χ2 ≥ 3.8415 at 0.05 significance level. The
formula for McNemar test is given as follows:

χ2 =
(|n1 − n2| − 1)2

n1 + n2
(3.1)

where n1 and n2 are the number of misclassification made by one of the classifier while it is correctly classified
by the other classifier.
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Figure 3.4: Sample RGB and depth images of KaspAROV dataset along with covariates. The
first two rows contains images captured using Kinect v1 device and the last two rows contains
images captured using Kinect v2 device.

Kinect v2 is 1920× 1080. Resolution of depth frame for Kinect v1 is 320× 240 and for Kinect

v2 is 512×424. The dataset provides detected and cropped face images of the subjects from the

video frames. All the face images are detected and resized to 64× 64 resolution. For each RGB

face image in the dataset, it also provides the corresponding raw depth image of size 64× 64.

3.2.2 Eurecom Kinect Face Dataset

Eurecom Kinect face dataset [26] contains RGB and depth images of 52 subjects out of which

38 are males and 14 are females, taken in two sessions using Kinect v1 device. Each session

has nine face images with varying states. Nine states are neutral, light on, smile, left profile,

right profile, open mouth, occlusion on eyes, occlusion on mouth, occlusion with paper. It also
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(a) (b) (c) (d) (e) (f)

Figure 3.5: Sample images from Eurecom dataset a) RGB Image light on. b) Depth image light
on. c) RGB Image neutral. d) Depth image neutral. e) RGB Image smile. f) Depth image
smile.

Table 3.1: Summary of databases

Database
No. of male

subjects
No. of female

subjects
Total No. of

images
Image resolution Devices used

KaspAROV 79 29
22,251 (Kinect v1)
34,128 (Kinect v2)

64× 64
Kinect v1
Kinect v2

Eurecom 38 14 936 (Kinect v1) 256×256 Kinect v1

provides 6 facial landmark points such as left and right eye, nose tip, chin, left side of the mouth

and right side of the mouth in text file. Figure 3.5 shows the sample images from Eurecom

dataset.
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Chapter 4

Result and Conclusion

4.1 Experimental Protocol

KaspAROV dataset consists of 108 subjects out of which 29 are female and rest are male. In

order to maintain unbiased class data division, we have taken only 29 male subjects for our

task. Hence, the subset of KaspAROV dataset that we will be using in this work throughout

consists 58 subjects. For our experiment, we have applied 3 fold cross-validation with random

sub sampling where each fold consist of 15 male and 15 female subjects in training set, and 14

male and 14 female (unseen) subjects in testing set. 64× 64 pixel size images have been used in

the experiment.

Experimental protocol for Eurecom dataset is same as in [18]. Only three states (Neutral, Smile

and Light on) of Eurecom dataset are used. Two experimental setup of the dataset are used:

in the first setup, all the images from session 1 are used for training and images from session

2 for testing; in the second setup, half the number of males and females belonging to the both

sessions are used for training while remaining half are used for testing. The details of training

and testing split are shown in Table 4.1.
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Table 4.1: Training and testing split of the dataset used for experiments.

KaspAROV Eurecom

Kinect v1 Kinect v2
Setup 1 Setup2

Fold 1 Fold 2 Fold 3 Fold 1 Fold 2 Fold 3

No. of Training
images

9186 8038 7849 16747 13181 15487 156 156

No. of Testing
images

5590 6738 6927 9266 12832 10526 156 156

4.2 Results

As stated in Section 3.1, the algorithms are evaluated on KaspAROV and Eurecom datasets using

the experimental protocol mentioned in Section 4.1. The accuracies on KaspAROV dataset are

reported in Tables 4.4 and 4.5, whereas accuracies on Eurecom dataset are reported in Table 4.6.

Along with accuracy, Area Under Curve (AUC) and Equal Error Rate (EER) are also reported

in Table 4.3 and Table 4.7. ROC (Receiver operating characteristic) for both the dataset are

shown in Figure 4.1. The best accuracies are marked in bold. Following analysis can be drawn

from the obtained results:

• ULBP outperforms SDAE and GLBP in all experimental setups except for KaspAROV

Kinect v1 device where SDAE has produced marginally better accuracy than ULBP. The

performance of GLBP on depth data of KaspAROV dataset is lower as compared to ULBP

and SDAE on RGB data due to low quality of facial depth images obtained from RGB-D

videos captured in unconstrained environment. For Eurecom dataset, the performance of

GLBP is at par with ULBP and SDAE due to high quality depth images captured under

constrained environment.

• As observed from Table 4.2, the χ2 value between all three classifiers is greater than

3.8415 which proves that all three techniques are statistically different. Therefore, score

level fusion can be performed using the weighted sum of scores of SVM.

• Score level fusion improves the accuracy in all experimental setups. In case of KaspAROV

Kinect v1 device, score level fusion of ULBP, GLBP and SDAE provides the best average

accuracy of 93.02% with an Equal error rate of 7.08% over all three folds. Similarly for
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Table 4.2: χ2 value using McNemar Test.

Classifiers χ2 value

ULBP-SDAE 479.89

SDAE-GLBP 41.91

ULBP-GLBP 478.69

Table 4.3: Area Under Curve (AUC) and Equal error rate (EER - %) reported for Kinect v1
and Kinect v2 of KaspAROV dataset.

Kinect v1 Kinect v2

AUC EER AUC EER

ULBP (Gray) 94.33±1.11 12.54±2.38 89.22±1.09 17.83±0.57

GLBP (Depth) 78.30±1.43 27.79±0.38 77.71±2.88 28.91±2.85

SDAE (Gray) 95.72±1.71 9.92±2.06 83.57±3.08 23.00±2.61

ULBP+GLBP 95.52±0.35 10.88±1.57 90.11±1.62 16.74±0.34

ULBP+SDAE 97.21±0.47 8.00±0.09 90.29±0.24 16.38±1.29

SDAE+GLBP 96.32±1.75 8.91±2.24 86.60±1.39 20.28±1.55

SDAE+ULBP+GLBP 97.51±0.85 7.08±0.90 91.63±0.90 15.36±0.81

KaspAROV Kinect v2 device the best average accuracy of 84.97% with an Equal error

rate of 15.36% is obtained by fusion of all three descriptors. Accuracy for Kinect v2 device

is lower compared to Kinect v1 because Kinect v2 has more number of detected faces

compared to Kinect v1 which results in more variations of face images. Also for Eurecom

dataset the combination of all three descriptors in experimental setup 2 outperforms com-

bination of ULBP and GLBP. The best accuracy of 95.51% with an Equal error rate of

4.76% is obtained on Eurecom dataset with experimental setup 2.

• Score level fusion also improves the individual class accuracies of males and females. Eu-

recom dataset consist of 38 males and 14 females which clearly makes any classifier biased

towards male class; however, as seen from Table 4.6 in setup 2, female accuracy is increased

to 85.71% from 73.80% (fusion of ULBP and GLBP) when we perform score level fusion

of ULBP, GLBP and SDAE. Table 4.8 shows some sample examples of correctly classified

or misclassified face images by ULBP and SDAE.
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(a) ROC on KaspAROV Kinect v1 over three folds (b) ROC on KaspAROV Kinect v2 over three folds

(c) ROC on Eurecom using experimental setup 1 (d) ROC on Eurecom using experimental setup 2

Figure 4.1: ROC on KaspAROV and Eurecom dataset, positive class is female and negative
class is male.

Table 4.4: Accuracy (%) on KaspAROV dataset Kinect v1 device using 3 fold cross validation.

Kinect v1

Male Female Overall

ULBP (Gray) 94.67±2.99 75.76±11.48 88.54±1.59

GLBP (Depth) 72.09±4.93 72.31±3.66 72.34±1.91

SDAE (Gray) 88.00±4.50 91.40±2.99 89.23±2.42

ULBP+GLBP 95.02±3.11 77.89±10.97 89.46±1.45

ULBP+SDAE 94.01±2.84 88.21±5.88 92.15±0.43

SDAE+GLBP 89.44±5.01 91.98±3.37 90.41±2.92

SDAE+ULBP+GLBP 93.92±3.07 91.07±4.17 93.02±1.01
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Table 4.5: Accuracy (%) on KaspAROV dataset Kinect v2 device using 3 fold cross validation.

Kinect v2

Male Female Overall

ULBP (Gray) 79.82±3.01 85.01±4.63 82.64±1.54

GLBP (Depth) 66.67±3.14 75.07±2.23 70.47±1.67

SDAE (Gray) 76.18±4.47 77.44±8.19 77.66±2.91

ULBP+GLBP 80.47±3.15 86.36±3.19 83.60±0.75

ULBP+SDAE 83.26±3.08 84.18±6.08 84.40±1.77

SDAE+GLBP 77.88±4.69 80.95±6.47 79.98±2.11

SDAE+ULBP+GLBP 82.50±4.72 86.05±6.44 84.97±1.43

Table 4.6: Accuracy (%) on Eurecom dataset Kinect v1 device with two experimental protocols.

Setup1 Setup2

Male Female Overall Male Female Overall

ULBP (Gray) 99.12 88.09 96.15 98.24 61.9 88.46

GLBP (Depth) 97.36 80.95 92.94 95.61 57.14 85.25

SDAE (Gray) 98.24 66.66 89.74 97.36 61.90 87.82

ULBP+GLBP 100 97.61 99.35 100 73.8 92.94

ULBP+SDAE 98.24 100 98.71 98.24 71.42 91.02

SDAE+GLBP 98.24 95.23 97.43 99.12 71.42 91.66

SDAE+ULBP+GLBP 99.12 100 99.35 99.12 85.71 95.51

Table 4.7: Area Under Curve (AUC) and Equal Error Rate (EER - %) of Eurecom dataset
Kinect v1 device with two experimental protocols.

Setup1 Setup2

AUC EER AUC EER

ULBP (Gray) 99.52 2.38 83.33 5.75

GLBP (Depth) 97.47 9.52 76.19 14.05

SDAE (Gray) 91.42 21.43 73.81 14.90

ULBP+GLBP 100 0.00 86.97 16.67

ULBP+SDAE 99.71 2.38 93.59 16.67

SDAE+GLBP 99.02 2.38 92.90 14.29

SDAE+ULBP+GLBP 99.98 0.00 99.06 4.76
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Table 4.8: Images correctly classified (
√

) and misclassified (×) by ULBP and SDAE

ULBP SDAE

√ √

√
×

×
√

× ×

4.3 Conclusion and Future Work

In this research, we have utilized RGB and depth information obtained from Kinect sensor for

gender classification. We have also shown the effectiveness of learned feature extraction tech-

niques, namely stacked denoising autoencoder, in gender classification problem. In this study,

we have also shown that score level fusion of Uniform LBP, Gradient LBP and stacked denoising

autoencoder improves the performance of gender classification. Experiments are performed on

KaspAROV and Eurecom Kinect datasets and state-of-the-art gender classification accuracies

are achieved. KaspAROV dataset is a challenging dataset as the face images are extracted

from RGB-D videos captured in surveillance settings. Therefore, there is scope for further im-

provement in performance of gender classification in such settings. The accuracy on low quality

depth images can be improved further by developing new preprocessing and feature extraction

techniques. Also, the effectiveness of other learning based feature extraction techniques such as

convolution neural network and deep belief network can be evaluated.
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[24] Mäkinen, E., and Raisamo, R. An experimental comparison of gender classification methods.

Pattern Recognition Letters 29, 10 (2008), 1544–1556.

[25] McNemar, Q. Note on the sampling error of the difference between correlated proportions or

percentages. Psychometrika 12, 2 (1947), 153–157.

[26] Min, R., Kose, N., and Dugelay, J.-L. Kinectfacedb: A kinect database for face recognition.

IEEE Transactions on Systems, Man, and Cybernetics: Systems 44, 11 (2014), 1534–1548.

[27] Ng, C. B., Tay, Y. H., and Goi, B.-M. Recognizing human gender in computer vision: a survey.

In PRICAI 2012: Trends in Artificial Intelligence. Springer, 2012, pp. 335–346.
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