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ABSTRACT

The primary aim of any survey is to facilitate analysis of sensitive data to extract

useful information, without jeopardizing privacy of the participants. Privacy

models like k-anonymity do not guarantee privacy against attackers with back-

ground knowledge. "Differential privacy" is a model for data release which formalizes

data privacy and makes no assumption on the attackers’ background knowledge. It

builds on the idea that adding carefully computed noise to certain data can make it

safer from privacy perspective while retaining utility of the data. We have addressed

two problems for data release in this thesis and proposed algorithms that address the

trade-off between utility and privacy. Following are the major contributions of this thesis:

1. We studied a functional mechanism to achieve differential privacy in regression

analysis. We have extended an existing algorithm to achieve differential privacy

for a more general form of linear regression. We have proved that the mechanism

preserves differential privacy and provides better utility when compared to direct

perturbation technique.

2. We have analyzed two strategies of achieving differential privacy for publish-

ing summary statistics — the compose-then-perturb approach and perturb-then-

compose approach. We prove that the perturb-then-compose approach indeed

satisfies differential privacy. We then try to find out which approach provides better

balance between utility and privacy, for summary information that we want to

publish, for a dataset.
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1
INTRODUCTION

The primary aim of any survey is to learn useful information or trends about a

population. Data collected from surveys offers great opportunities for mining

useful information, but there is also a threat to privacy because data in raw form

may contain sensitive information about individuals. Privacy-preserving data publishing

[5] addresses this problem. Data curators use various methods like removing columns

containing Personally Identifiable Information (PII), k-anonymity [15], l-diversity [10],

t-closeness [9], etc to preserve privacy of the individuals. But all these techniques

are vulnerable to attacks in one way or the other. For example, privacy models like

k-anonymity do not guarantee privacy against attackers with background knowledge.

"Differential privacy" on the other hand is backed by a strong mathematical foundation,

and makes no assumption on the attackers’ background knowledge. It builds on the idea

that adding carefully computed noise to certain data can make it safer from privacy

perspective while retaining utility of the data. We have addressed two problems for data

release in this thesis and proposed algorithms that address the trade-off between utility

and privacy.

1.1 Thesis structure

In this Chapter, we give the motivation behind this thesis. Subsequently, we shortly

describe the work done in the thesis.

Chapter 2 contains the background information. It details privacy problems in

1



CHAPTER 1. INTRODUCTION

database that allows statistical aggregate queries. Then , we explain the concept of

differential privacy and utility and privacy guarantees.

Chapter 3 briefly explains the related work and prior research on differential privacy.

In Chapter 4, we explain how functional mechanism can be used to perform differen-

tially private linear regression. We also extend the approach to a more general variant of

the regression analysis.

In Chapter 5, we discuss two strategies for release of composite functions, maintaining

differential privacy. We then compare utility of above strategies for releasing average

grade in each bucket, from student grade database.

Finally, in Chapter 6, we conclude our work. We then also discuss possible future

work and research problems to work on.

1.2 Motivation

With the advances in IT, information gathering has become pervasive. Most of the times,

data is collected by government, corporations and companies without an individual’s

knowledge and consent. For example, e-commerce companies keep track not only of

the items you buy, but also the items you browse, to generate a detailed profile of each

individual. Using this profile information they later can advertise specific products to an

individual and plan business strategies accordingly.

When data about individuals or entities are to be publicized, care must be taken

to avoid privacy violations. Various examples of attacks against publicly released data

can be found in the literature. Some of the most popular ones include de-anonymization

attack against the Netflix Prize data set [13] and the identification of individuals from a

de-identified data set of AOL search queries.

Statistical Disclosure Control [2] (SDC) aims to allow the release of data and at the

same time preserve the privacy of individuals. These techniques mask or modify the

original data or the statistics that are to be published. This modification reduces the risk

of privacy breach at the cost of utility. Thus, there is a trade-off to find a balance between

privacy and utility. Traditional approach to evaluate the effectiveness of such a solution

involved running experiments and trying to re-identify records from the published

data. Since then, privacy models like k-anonymity and ε-differential privacy have been

proposed to provide formal privacy guarantees. These models introduce uncertainty in the

outcome of attacks against the privacy of individuals. In k-anonymity privacy model, the

information for each person contained in the published dataset cannot be distinguished

2



1.3. CONTRIBUTIONS

from at least k-1 individuals whose information is also present in the published dataset.

Though the method provides guarantees, attackers with some background knowledge

can still make inferences that compromise an individual’s privacy. The ε-differential

privacy, is a privacy model that perturbs the response to query answers by adding

independent random noise following a probability distribution. Although ε-differential

privacy provides strong privacy guarantee, it is not all good news because to achieve

the desired level of privacy, a lot of noise might get added which inadvertently leads to

poor utility. Thus, there is a need to have algorithms for data release that address the

trade-off between utility and privacy.

1.3 Contributions

We study ε-differential privacy in both interactive and non-interactive setting in detail

and also define formally the privacy and utility guarantees in case of ε-differential

privacy. Following are the major contributions of this thesis:

1. We studied a functional mechanism to achieve differential privacy in regression

analysis. We have extended an existing algorithm to achieve differential privacy

for a more general form of linear regression. We have proved that the mechanism

preserves differential privacy and provides better utility when compared to direct

perturbation technique.

2. We have analyzed two strategies of achieving differential privacy for publish-

ing summary statistics — the compose-then-perturb approach and perturb-then-

compose approach. We prove that the perturb-then-compose approach indeed

satisfies differential privacy. We then try to find out which approach provides better

balance between utility and privacy, for summary information that we want to

publish, for a dataset.
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2
BACKGROUND

Privacy is the ability of an individual to seclude themselves, or information about

themselves, and thereby express themselves selectively. Privacy, in case of census

problem or survey, is based on the intuition that one’s privacy is protected to

the extent that one blends in with the crowd. Privacy aware individuals reveal private

information to a third party, only if they are guaranteed that their participation will not

disclose specifics which were contributed by the individual.

2.1 Privacy In Databases

Databases can serve many social goals, such as identifying generic indicators for disease,

strategic implementation of government development plans, fair allocation of critical

resources, etc. The data privacy problem in databases is to learn and publish statistical

information about a population while maintaining confidentiality of the participants. If

this confidentiality is not guaranteed, the concerned population may refrain from taking

participation in the survey.

A privacy breach may include one or more of the following:

• leaking of individual records,

• linking with public databases to re-identify individuals,

• allowing adversary to reconstruct a database with significant probability.

5



CHAPTER 2. BACKGROUND

There are two different settings to be considered when talking about privacy in databases

— interactive and non-interactive.

• In the interactive setting, the aim of the data collector, which is a trusted party, is

to provide a query interface to the user where queries about the data can be posed

and the user is provided a response for the same.

• In the non-interactive setting, the data collector publishes a sanitized version of

the dataset collected. The sanitized version may contain only summary information

about the database.

The classical intuition for privacy in databases given by Dalenius [2] in 1977, was

very much similar to the notion of semantic security of encryption given by Goldwasser

and Micali [6] in 1982. The intuition was that privacy meant anything that can be

learned about a respondent from the statistical database can be learned without access

to it. Unfortunately, it was shown by Dwork in 2006, that such type of privacy cannot

be achieved. Since, we are not able to give absolute guarantees of disclosure, we turn

towards relative guarantees.

Privacy models like k-anonymization, t-closeness provide such guarantees. The con-

cept of k-anonymity was first formulated by Latanya Sweeney in 2002. The aim of

"k-anonymization" is to produce a release of data, given a person-specific database with

attributes, with scientific guarantees that the individuals who are the subjects of the

data cannot be re-identified while the data remain practically useful. In k-anonymity,

the goal is to make each record indistinguishable from at least k-1 other records.

The problem with k-anonymization and other related techniques is that they are

vulnerable to background knowledge attacks. The problem of making assumptions on

the background knowledge of adversary can be understood from this example.

During World War II, Germany believed that its secret codes for radio messages were

indecipherable to the Allies. German military used an Enigma machine for battlefield,

naval and diplomatic communications. Due to the close link between German and Polish

engineering industries, Polish were able to reconstruct an Enigma machine and read the

messages of armed forces of Germany. This information was later shared with British,

who then using the meticulous work of code breakers cracked the secret of German

wartime communication, and played a crucial role in the final defeat of Germany.

Similarly, assumptions on the background knowledge of an adversary can lead to

severe consequences when considering privacy in statistical databases. Using the back-

ground knowledge that heart attacks occur at a reduced rate in Japanese patients

6



2.1. PRIVACY IN DATABASES

Machanavajjhala et al. [10], in 2007, narrowed the range of values for a sensitive at-

tribute of patient’s disease.

We now elaborate with the help of examples, privacy breach in statistical databases.

Example 1. Consider a non-interactive setting, in which a survey is conducted in a large

corporate office, to learn smoking habits of employees. The aim of the survey is to publish

number of smokers cubicle wise. Assume we have a database D1 containing records

of smoking habits of employees in cubicle 1, where each record consists of Name and

Smoking Habits, as shown in 2.1. The Smoking Habits value ∈ {0,1} where 0 indicates

that the person smokes and 1 indicates he/she doesn’t.

Name Smoking Habits
Alice 1
Bob 1
Jimmy 1
Paul 1
Jeremy 0

Table 2.1: Dataset D1 with "Smoking Habit Records" of employees in cubicle 1

Suppose, an adversary possesses additional information that Jeremy in cubicle 1 doesn’t

smoke. Now, when the number of smokers is published, the number would be 4 for cubicle

1. The adversary will thus learn that remaining four employees working in cubicle 1 are

smokers. Thus, it is clear that individual information can be compromised even without

querying for any particular individual. Here the smoking habits of Alice, Bob, Jimmy

and Paul are revealed.

Example 2. Consider an interactive setting, in which a university database of students

and their grade marks between (1 - 10) is available for statistical queries like mean,

sum, count, etc. A sample database D2 of 5 students is shown in 2.2. A query interface

is provided to ask queries like average grade marks of students whose name start with

some characters.

Consider an adversary possesses auxiliary information that there are only 5 students in

the database and only Alex is a student whose name starts with ’A’. The adversary can

then issue two queries Q1 and Q2 as follows:

Q1 : Find the average grades of students in the database whose names start with

characters ’A’, ’B’, ’C’, or ’D’.

7



CHAPTER 2. BACKGROUND

Name Grade Marks
Alex 7.5
Bob 8
Cathy 9
Barry 8.5
Dan 9

Table 2.2: Dataset D2 with Student Grade Records

Q2 : Find the average grades of students in the database whose names start with

characters ’B’, ’C’, or ’D’.

Using the responses from above queries, grade marks of Alex, that is, 7.5 is revealed

without even querying specifically for Alex’s information.

A solution to the problem of information disclosure can be found if we consider the

effect of uncertainty on data. To counter the background knowledge attacks, we can

instead guarantee that whether or not an individual participates in a survey, cannot be

inferred from summary published or responses generated when querying the database.

This is exactly what differential privacy does.

2.2 The Concept of Differential Privacy

The concept of differential privacy [3] was first given given by Cynthia Dwork, in 2006,

in the context of statistical database, where a trusted party holds a dataset D containing

sensitive information of individuals. Each row contains the data of a single individual

and the goal is to simultaneously protect every individual row and permit statistical

analysis of the database as a whole. Thus,

• In non-interactive setting, the sanitized version is usually obtained by techniques

such as data perturbation, by adding random noise to each row of the database. Any

PII (Personally Identifiable Information) such as names, mobile number, aadhar

number, etc are also removed.

• In interactive setting, the query interface returns to the user a carefully perturbed

response as answer to the query.

Differential privacy guarantees that for any two neighboring databases, that is,

databases that differ in only one row, the trusted third party’s distribution over po-

tential outputs are statistically close.

8



2.2. THE CONCEPT OF DIFFERENTIAL PRIVACY

Mathematically, let us consider the following setting in this regard :

• A sensitive database D ∈U , where U is the set of all databases

• Neighboring databases : D, D i ∈ U, such that, δ(D,D i) = 1, where D i is defined

for i = {1,2, ....,n} as a database D with ith row removed, n being the number of

rows in database, and δ is a discrete distance function defined over two databases

to the set of natural numbers {0,1,2....}

• A Randomized mechanism R, the range of which is denoted by Range(R) and S

represents any subset of Range(R).

A randomized mechanism R which satisfies ε - differential privacy guarantees that it

behaves similarly on similar input databases, where ε is a privacy parameter. Thus, a

differentially private randomized mechanism must satisfy equation 2.1 below.

exp(−ε)Pr[R(Di) ∈S]≤Pr[R(D) ∈S]≤ exp(ε)Pr[R(Di) ∈S] (2.1)

One of the basic technique that lets us achieve our goal is to add small random Lapla-

cian noise to the answer of user’s queries. This mechanism involves adding random noise

that conforms to the Laplace statistical distribution with mean 0, and a scale parameter

b that controls the amount of noise added. A random variable x has a Laplace(0, b)

distribution if its probability density function is given by equation 2.2.

f (x|0,b)= 1
2b

exp
(
−|x|

b

)
(2.2)

The scale parameter of Laplace mechanism depends on the privacy parameter ε as well

as on the nature of query itself. The parameter that covers the nature of the query is

called sensitivity, denoted by ∆. Sensitivity should be chosen in a way that it protects

even the most different individual in the database. To achieve differential privacy using

Laplace mechanism we take scale parameter b given by ∆
ε

. The For any real-valued

query function, we perturb the query output by adding random noise with Laplacian

distribution given by Lap(0,∆
ε

). If we have a random variable Y drawn from the uniform

distribution in the interval (-1/2,1/2), the random variable X, given by equation 2.3

follows Laplace distribution.

X =−∆
ε

sgn(Y ) ln(1−2|Y |) (2.3)

We now see how Laplace mechanism achieves differential privacy by considering the

example 2 related to university database of student grades, for some suitable value of

9



CHAPTER 2. BACKGROUND

privacy parameter ε. The output of a differentially private mechanism to queries Q1 and

Q2 can also be modeled as a single average grade query running on two datasets, one

with and other without Alex’s entry. We call the one with Alex’s entry as DO and the one

without that entry as D1, as shown in Table 2.3 and Table 2.4 respectively.

Name Grade Marks
Alex 7.5
Bob 8
Cathy 9
Barry 8.5
Dan 9

Table 2.3: Student Grade Dataset DO

Name Grade Marks
Bob 8
Cathy 9
Barry 8.5
Dan 9

Table 2.4: Neighboring Dataset D1
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Figure 2.1: Probability distribution of response on original student grade database
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Figure 2.2: Probability distribution of response on a neighboring database
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2.2. THE CONCEPT OF DIFFERENTIAL PRIVACY

The probability of output distribution of differentially private mechanism on Dataset

DO and D1 is shown in Figure 2.1 and Figure 2.2 respectively. In Figure 2.1, Pr (Average

Marks = 8.4) ≈ 0.069 while in Figure 2.2, Pr (Average Marks = 8.375) ≈ 0.069. Also

the probability distribution of both the datasets are very similar. Thus, an adversary

trying to distinguish between the two databases will not be able to do so and hence the

adversary will not be able to extract grade marks of Alex.

The task of preserving differential privacy stand alone isn’t hard as the trusted third

party can add so much noise to the users’ queries so that it renders the data collected and

stored useless. Table 2.5 gives an example where a lot of noise gets added to the query

response on dataset DO and D1, derived from the example of university database of

student grades. The reason for large noise addition may be attributed to high sensitivity

of query or improper choice of privacy parameter. Obviously, the usefulness of such

analysis is very low.

Dataset Query Response
DO 17.3691
D1 3.2814

Table 2.5: Query response for Student Grade example dataset when large noise gets
added

Similarly the task of preserving utility stand alone isn’t difficult too. To answer the

user queries in this case, just compute on the data collected and return the answers

without any alteration. Of course, there is no privacy preserved in this case and all

the participants of the survey are vulnerable. The interesting question thus is "how to

preserve differential privacy and provide good utility guarantees at the same time?".

The answer is utility and privacy trade-off.

Laplace mechanism can’t be used for query functions which are not real-valued.

For such cases, we can achieve differential privacy using exponential mechanism [12].

Preserving ε-differential privacy can be a very strong condition in many applications. For

example, in case of output distribution on DO and D1 for university database of student

grade, probability of occurrence of some range of outputs is 0 for DO. As per the definition

of definition of differential privacy given by equation 2.1, probability of occurrence of

these ranges of outputs should be 0 for D1. But, this cannot be easily achieved. A weaker

notion of(ε,δ)-differential privacy, given by equation 2.4 is used for these cases.

exp(−ε)Pr[R(D i) ∈ S]+δ≤ Pr[R(D) ∈ S]≤ exp(ε)Pr[R(D i) ∈ S]+δ (2.4)

11



CHAPTER 2. BACKGROUND

2.3 Privacy and Utility Guarantees

Differentially private mechanisms must make confidential data available for accurate

data analysis. The strategy to enforce ε-differential privacy depends on the nature of

statistical analysis that is to be performed on the data collected. Once we are aware of

the analysis that is to be done or the queries that will be issued, we find the sensitivity

of the function, come up with a privacy budget ε and add noise using some mechanism.

In this work, we deal with real-valued queries, so we use Laplacian mechanism [14] for

noise addition. The value for privacy budget can be taken as a small constant like 2 or 3,

or by experiments values from 0.01 to 100 can be tried. To choose the privacy budget, an

economic model has been proposed by J. Hsu et al.[7]. If we know the type of numeric

queries the user poses beforehand and the actual answer to it is, say Q(DO), then we

have sensitivity given by,

∆= maxDO ,D i (Q(DO)−Q(D i))

where, D i for i from 1 to n. is a neighboring database of DO.

To re-iterate the fact, when or where to add the noise generated from the distribution

depends on the setting (interactive or non-interactive), mechanism employed to preserve

differential privacy and on the statistical queries being performed.

The privacy guarantees are given by the definition of differential privacy itself. To

do an analysis of the utility of the mechanism employed, we first proceed with the more

straight forward case of non-interactive setting [8]. In this case, since the trusted third

party releases a perturbed database, if we run queries on it, the answers should be

reasonably close to answer the original database would have given. So we consider the

following setting:

• DO is the original database that has the collected records from individuals,

• D’ is the perturbed database released by the trusted party,

• Q is the query, which gives response based on the database provided as input,

Now, for very small quantities β and γ, we can write the utility requirements as,

Pr[|R(DO) - R(D’)| = β] ≥ 1 - γ

In the case of interactive setting we need to keep in mind that, generally no perturbed

dataset is released but we add noise while answering the queries itself. Now,

12



2.3. PRIVACY AND UTILITY GUARANTEES

• DO denotes the database of collected records as before,

• Q(DO) denotes the actual answer to the query posed by the user, that is, without

considering any setting for differential privacy,

• R(DO) denotes the noise perturbed answer to the user’s query, that is, actually

returned by the deferentially private mechanism

similar to previous case, for small quantities β and γ we can write utility requirement as,

Pr[|R(DO) - Q(DO)| = β] ≥ 1 - γ

The measure of utility can be estimated by the values of β and γ. Closer these values to

zero more is the usefulness.

We now see how the privacy and utility of a differentially private mechanism can be

evaluated. Consider that the actual results of count query on a statistical database is

C0.C1,C2.....Cn, where C0 is the answer to count query on original database and C i is

the result of count query on original database with ith row removed. The differentially

private release mechanism instead answers D0,D1,D2.....Dn, for each count query, as

depicted in Figure 2.3

Figure 2.3: Unperturbed and perturbed responses to count query

The privacy requirement can be met if, D0 ≈ D i for all values of i from 1 to the number

of rows.

The utility of the mechanism has two requirements as mentioned below:

• E[D i]= C i

• Var[D i] should be small

13
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3
RELATED WORK

Ever since the concept of differential privacy was introduced by Cynthia Dwork

[3, 4], a lot of work has been done by various researchers in the field. A major

portion of work focused on achieving differential privacy for analysis tasks that

can be performed in data mining. A lot of work has also been done on how to publish

differentially private summary of datasets like health records, diseases outbursts in var-

ious community. Apart from these, methods are being devised to perform social network

analysis and graph analysis maintaining differential privacy.

Dwork et al. showed that ε-differential privacy can be achieved by using Laplace mech-

anisms. Sarathy et al. [14] used this mechanism to achieve differential privacy for

numeric data. This method works for aggregate queries and for cases where output is

real number. Differentially private release of histograms was then proposed by Xu et

al. [17]. For queries whose output space is discrete, McSherry et al. [12] proposed the

exponential mechanism. Using exponential mechanism various interesting problems

were then solved. The task of privacy preserving regression analysis was first undertaken

by Chaudhari et al. [1]. The technique worked for linear regression but could not be

generalized to other regression tasks. Zhang et al. [18] then proposed the functional

mechanism to achieve differentially private regression. The mechanism proposed was

generic and it could be applied to any optimization problem. Our work extends the

application of functional mechanism to achieve the most generic differentially private

linear regression model of the form y=ω∗ x+ c, instead of the less generic one, that is,

15
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y=ω∗ x.

The problem of perturbing data for differential privacy, and optimizing their effect

on utility has already been discussed in literature.Some strategies for achieving dif-

ferential privacy provide more utility compared to others. Wang et al.[16] proposed a

divide-and-conquer approach for function computation in private network analysis. They

proposed to equally split the privacy budget among unit function computations. In line

with the above approach, we have proposed perturb-then-compose method, which for

some privacy budget allocations outperforms the direct approach of noise addition.
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4
REGRESSION ANALYSIS UNDER DIFFERENTIAL

PRIVACY

The basic idea behind Regression Analysis is to use data to identify relationships

among variables and use these relationships to make predictions. Regression

analysis techniques involves solving an optimization problem. Starting with the

original data, it is hard to decide on the amount of noise needed to make the optimization

results differentially private. We can instead, perturb the objective function of the

optimization problem itself. This is the main idea behind the functional mechanism of

enforcing ε-differential privacy. Privacy preserving regression model should guarantee

protection against attempt of an adversary to infer whether an individual was included

in the training set used to learn the regression model.

4.1 Prior Related Work

Only a few methods have been used to preserve privacy in case of regression analysis

using differential privacy. One way to do the same is to generate synthetic data in a

differentially private way using original sensitive data. This synthetic data can be then

used to generate the regression model. However, to generate the synthetic data we need

to add Laplacian noise to the original dataset. Unfortunately, this method injects a large

amount of noise and so is unable to produce accurate regression results.

Other technique to preserve differential privacy is to perturb the coefficients of the

17



CHAPTER 4. REGRESSION ANALYSIS UNDER DIFFERENTIAL PRIVACY

actual model that we get when applying regression analysis to the original dataset.This

technique can then be used to generate newer synthetic data which can be published or

can be used for further analysis. Adding Laplace noise directly to the coefficients although

preserves privacy, but due to this direct noise addition, the accuracy of model drops.

Zhang et al. proposed a functional mechanism for regression analysis under differential

privacy. They apply functional mechanism on a simpler form of linear regression and

propose an algorithm for the same. We have extended the functional mechanism to a

more generic form of linear regression.

4.2 Functional Mechanism for Differentially Private
Regression Analysis

Consider D is a database with n records r1, r2,......, rn and d+1 attributes X1, X2,....., Xd,

Y. A record in a database can be denoted as r i = (xi1, xi2,....,xid,yi).

Our aim is to generate a linear regression model that predicts the value of attribute

Y of a record based on the value of attributes X1, X2,....., Xd for the same record. Thus,

the function f that we obtain as a regression model takes as input (xi1, xi2,....,xid) and

outputs a prediction of yi that is as accurate as possible.

Consider ω as the model parameter, which is a d-dimensional vector where the j-th

number in the vector (j ε 1,2,.....,d) is the weight of xi j in the function f. Additionally,

depending on the type of regression model we can have more model parameters. zhang

et al. [18] in their work applied functional mechanism to a simpler version of linear

regression with ω as the only model parameter and an objective function given by ω* =

arg minω
∑n

i=1 (yi - xT
i .ω)2.

Here we consider the most general form of linear regression with model parameters ω

and α. The cost function cf helps to evaluate if the model parameters leads to an accurate

model. It takes as input ri, ω and α and outputs a score that measures the distance

between original and predicted values of yi. Let the optimal model parameters be ω*

and α*. Also consider sum square error of the predicted Y values as the cost function c f .

Then,

(ω*,α*) = arg minω,α
∑n

i=1 c f (ri,ω,α)

⇒ (ω*,α*) = arg minω,α
∑n

i=1 (yi - xT
i .ω - α)2

The linear regression on D thus gives us a model function f = xT
i .ω* + α*.

18
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Direct publication of model parameters ω*, α* violates ε-differential privacy since it

reveals information about the Database D. This issue can be addressed by adding noise

to the model parameters using Laplace mechanism but the sensitivity analysis of ω*, α*

is not straight forward due to no direct relationship between the model parameters and

the Database D. We instead use functional mechanism to achieve ε-differential privacy

and perturb the cost function. We then release the model parameters that minimize the

perturbed cost function. To obtain the perturbed cost function we add Laplacian noise to

the coefficients of the cost function equation for the database D.

To calculate sensitivity ∆, we first write the polynomial representation of cfD(ω,α). ω

and α are vector that contains d values, (ω1, ω2, ω3.....,ωd) and (α1, α2, α3,....,αd). Let φ

denote some product of powers of ω1, ω2, ..., ωd, α1, α2,...,αd. The powers depend on the

value of d, for which the regression is being performed. Let Φ j denote the set of all the

products of (ω1, ω2, ω3.....,ωd) and (α1, α2, α3,....,αd) with degree j.

For any record r i, we can write cf(r i, ω, α) now in terms of φ, for all products of model

parameters possible. So, for any J ∈ [0,∞], we can write

cf(r i, ω, α) =
∑J

j=0
∑
φ∈Φ j λφr iφ

where λφr i ∈ R denotes the coefficient of φ in the polynomial. Using the same method we

can express cfD(ω,α) as a polynomial.

We then perturb cfD(ω,α) by injecting Laplace noise into the polynomial coefficients,

and then find the parameters ω and α that minimizes the perturbed function c fD (ω,α).

Now, let us consider D and Dk be any two neighboring databases. We denote the

objective functions of the regression analysis on D and Dk as cfD(ω,α) and cfDk (ω,α),

respectively. These are represented as follows:

cfD(ω,α) =
∑J

j=0
∑
φ∈Φ j

∑
r i∈D λφr iφ,

cfDk (ω,α) =
∑J

j=0
∑
φ∈Φd

∑
r i∈Dk λφr iφ

We now write down a result that we use further to prove that our mechanism is differen-

tially private. The proof of the result is omitted here, but can be found in section 4.1 of

[18]. We then give the algorithm Functional Mechanism that takes as input Database

D, the objective function and the privacy budget and outputs the model parameters ω*

and α* that should be published to preserve privacy. The algorithm and the proof of it

being differentially private, follows the same steps as the one given in [18], with some

minor changes. We include these here for the sake of completeness.
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Result 1: Let D and Dk be neighboring databases and cfD(ω,α) and cfDk (ω,α), as

shown above be the objective functions of regression analysis on D and Dk respectively.

Then,

∑J
j=0

∑
φ∈Φ j

∣∣∣∣∣∣∑r i∈D λφr i −
∑

r i∈Dk λφr i

∣∣∣∣∣∣
1
≤ 2maxr

∑J
j=0

∑
φ∈Φ j

∣∣∣∣λφr
∣∣∣∣

1.

where r i is an arbitrary record.

Notation Description
D Database of n records
r i = (xi, yi) ith record in D
d number of entries in vector xi
(ω,α) the model parameter vectors for generic linear regres-

sion model
c f (r i,ω,α) the cost function of the linear regression model that

evaluates whether model parameters (ω,α) leads to
an accurate prediction for a record r i

c fD(ω,α)
∑

r i∈D c f (r i,ω,α)
(ω∗,α∗) (ω∗,α∗) = arg minω,α c fD(ω,α)
φ a product of one or more values in (ω,α)
Φ j the set of all possible φ(ω,α) of degree j
λφr i the polynomial coefficient of φ in c f (r i,ω,α)
c fD(ω,α) noisy version of c fD(ω,α)
(ω,α) (ω,α) = arg minω,α c fD(ω,α)

Table 4.1: Table of notations

Theorem 1: Algorithm 1 satisfies ε-differential privacy.

Proof: Without loss of generality, let us consider that D and Dn are two neighbor

databases that differ in the last record. Suppose rn (r′n) be the last record in D (Dn).

Calculation of sensitivity ∆ is done on the first line of Algorithm 1, and c fD (ω,α) gets

output from Line 9. We need to find the ratio of probability to achieve the same perturbed

objective function c fD (ω,α) using databases D and Dn.

Pr(c f (ω,α)|D)

Pr(c f (ω,α)|Dn)
=

∏J
j=0

∏
φ∈Φ j exp

(
ε∗

∣∣∣∣∣∣∑ri∈D λφri−λφ
∣∣∣∣∣∣

1
∆

)

∏J
j=0

∏
φ∈Φ j exp

ε∗
∣∣∣∣∣∣∣∣∑r′i∈Dn λφr′i

−λφ
∣∣∣∣∣∣∣∣

1
∆
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≤
J∏

j=0

∏
φ∈Φ j

exp

 ε
∆
∗

∣∣∣∣∣∣
∣∣∣∣∣∣ ∑
r i∈D

λφr i −
∑

r′i∈Dn
λφr′i

∣∣∣∣∣∣
∣∣∣∣∣∣
1


=

J∏
j=0

∏
φ∈Φ j

exp
( ε
∆
∗ ∣∣∣∣λφxn −λφx′n

∣∣∣∣
1

)

= exp

(
ε

∆
∗

J∑
j=0

∑
φ∈Φ j

∣∣∣∣λφrn −λφr′n
∣∣∣∣

1

)

Now by Using Result 1, we can write

≤ exp

(
ε

∆
∗2maxr

J∑
j=0

∑
φ∈Φ j

∣∣∣∣λφr
∣∣∣∣

1

)

= exp(ε)

Thus, we have proved that Algorithm 1 is differentially private.

Algorithm 1 Functional Mechanism (Database D, objective function c fD(ω,α), privacy
budget ε)

1. Set ∆ = 2maxr
∑J

j=0
∑
φ∈Φ j

∣∣∣∣λφr
∣∣∣∣

1

2. for each 0 ≤ j ≤ J do

3. for each φ ∈ Φ j do

4. set λφ =
∑

r i∈D λφr i + Lap (∆
ε

)

5. end for

6. end for

7. Let c fD (ω,α) =
∑J

j=0
∑
φ∈Φ j λφ φ(ω,α)

8. Compute (ω, α) = arg minω,α c fD (ω,α)

9. Return (ω, α)

4.3 Applying Functional Mechanism to achieve
Differentially Private Linear Regression

Linear regression finds the linear relationship between the input attributes that fits the

input data most. For the sake of simplicity we now consider the case when d=1, that is,
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CHAPTER 4. REGRESSION ANALYSIS UNDER DIFFERENTIAL PRIVACY

we have only two attributes in total, x and y. We are thus finding a prediction of y using

the x values.

To add Laplacian noise to the cost function so that we obtain a perturbed cost function

we first need to find the sensitivity ∆. To keep the analysis simple, we take record ri =

(xi,yi) in the database D with xi ≤ 1 and yk ε [-1,1]. We now calculate sensitivity ∆ using

line 1 of Algorithm 1.

∆= 2maxr i

J∑
j=0

∑
φ∈Φ j

∣∣∣∣λφr
∣∣∣∣

1

≤ 2maxr i (y2 + x2 +2yx+2x+2y)

= 16

(As per the conditions on value of attributes in record)

Following the Algorithm 1 we then add Lap (16
ε

) noise to each coefficient. Thus, we obtain

the perturbed cost function c fD (ω,α). We then differentiate c fD (ω,α) partially with

respect to ω and α and equate them to zero.

∂
∂ω

c fD (ω,α) = 0
∂
∂α

c fD (ω,α) = 0

Solving the above two equations we get the value of optimized model parameters ω and α.

Finally, we get to release the ε-differentially private linear regression analysis equation

f given by,

f = x.ω+α

Now we perform an experiment to illustrate the process. For example, let us assume we

have a two-dimensional database D with six records as shown in Table 4.2. Also let us

take an arbitrary value of privacy budget ε. Here, to avoid adding too much noise to the

coefficients of cost function and showing the utility of mechanism, we choose ε = 8.
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x y
0.3 0.50
0.4 0.35
1.0 0.9
0.6 0.75
0.8 0.9

0.25 0.2

Table 4.2: Two dimensional database with 6 points

The objective function for linear regression is,

c fD(ω,α)= 2.3125ω2 +6.7ωα−4.5ω+6α2 −6.8α+2.275

Optimal values of the model parameters are ω* = 0.7951 and α* = 0.1228. So, linear

regression without any privacy mechanism would output regression line given by,

f = 0.7951x+0.1228
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Figure 4.1: Laplace distribution for noise generation in direct perturbation method

By directly adding Laplace noise to the model parameters using distribution given by

Figure 4.1, we get regression line given by,

f ′ = 0.4636x+0.7078
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Figure 4.2: Laplace distribution for noise generation in functional mechanism

Now we apply Algorithm 1 by setting ∆ = 16. The Laplace distribution used to generate

the noise to be added is shown in Figure 4.2.

We then generate the noisy objective function given by,

c fD(ω,α)= 2.4396ω2 +6.802ωα−4.5731ω+6.2961α2 −6.9984α+2.1652

Optimal values of the model parameters that will be published to maintain differential

privacy will be ω = 0.6579 and α = 0.2004. Thus, the result of the differentially private

linear regression using functional mechanism is given by,

f = 0.6579x+0.2004

The results of original linear regression, differentially private linear regression us-

ing direct perturbation and using functional mechanism along with data points of the

database D are plotted in Figure 4.3. It can be easily seen that the accuracy of differen-

tially private linear regression using functional mechanism is more when compared to

the direct perturbation technique.
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Figure 4.3: Result comparison of different methods of Linear Regression for Database D
in Table 4.2

4.4 Conclusion and Future Work

Functional mechanism is a general approach for differentially private regression analysis.

Other techniques to achieve privacy in regression tasks add too much noise to the

results. The utility of functional mechanism approach is best when the coefficients of

the perturbed objective function are approximately preserved, that is, the perturbed

coefficients are very close to the coefficients of the original objective function. The generic

linear regression model gives a line of the form "y= w∗ x+ c", which fits the given data

most. Previous work for the differentially private linear regression using functional

mechanism focused on the simpler model "y= w∗ x". Here, we extended the functional

mechanism to generic linear regression and compared it’s result to direct perturbation

technique. It was found that for a dataset, the results of functional mechanism are much

more accurate.

The functional mechanism approach to differential privacy can be applied to many
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other optimization problems also. There are still some aspects for functional mechanism

that demand further research

• The utility of the functional mechanism depends on the sensitivity value. More

analysis needs to be done to find if sensitivity of the objective function for regression

tasks can be lowered or not. If we are able to get a lower value for sensitivity, we

will be able to provide more accurate models.

• There is no proper mechanism to choose privacy budget ε for functional mecha-

nism. More research in finding a suitable value for privacy budget in functional

mechanism would prevent disclosure of any sensitive information.
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5
RELEASE OF COMPOSITE FUNCTIONS MAINTAINING

DIFFERENTIAL PRIVACY

Enabling accurate analysis of data while preserving differential privacy is a chal-

lenging task due to the high sensitivity of query functions. Various interesting

functions like clustering coefficient in cluster analysis or average, are different

from traditional aggregate functions, in a way that these involve computations of two

or more aggregate functions. Here, we call these functions as composite functions. In

this chapter, we first give two strategies to release composite functions, that preserve

ε-differential privacy. We then compare utility of above strategies for releasing average

grade in each bucket, for a sample student grade database.

5.1 Strategies to achieve Differential Privacy

Our aim is to release ratio of two measures from a database, preserving differential

privacy, and at the same time we want the released value close to the actual value.

Average is a composite function that is a ratio of two aggregate functions, sum and count.

Mentioned below are the two strategies:

5.1.1 Compose-then-Perturb

In this method, differential privacy is achieved by adding carefully calculated

Laplace noise after the value of composite function is calculated. First, we find
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global sensitivity ∆ for the composite function and then generate noise, from

a Laplace distribution with scale parameter given by
(
∆
ε

)
, where ε is the user-

specified privacy budget, which is then added directly to the value of composite

function.

5.1.2 Perturb-then-Compose

In this method, the target function is decomposed into several unit functions,

which are less complex and connected by basic mathematical operators. We then

perturb each unit function computation with Laplace noise derived from its own

sensitivity and chosen privacy budget. Finally, we use the perturbed output of each

unit computations to compute the perturbed output of composite function.

Let f denote the value of target computation, and f1, f2, .... fn, denotes the value

of each of the n unit functions, involved in the target computation. Let sensitivity

and chosen privacy budget of these n functions be ∆1,∆2....,∆n and ε1,ε2, ....εn

respectively. We denote by f ′i , the perturbed value of each unit computations and

by f ′ the perturbed value of target computation.

To guarantee ε-differential privacy using this approach, we need to allocate privacy

budget among all unit computations maintaining ε =
∑n

i=1 εi. One possible approach

to do this is to distribute privacy budget equally among all unit computations, that

is, εi = 1
mε.

For average function, the unit computations involved are sum and count. So, f1 is

computed value of sum and f2 is computed value of count. These are the perturbed

with Lap
(
∆1
ε1

)
and Lap

(
∆2
ε2

)
respectively. Thus we obtain f ′1 and f ′2 which we use

to compute f ′.

Proceeding forward, we first describe the dataset D, whose statistics is to be published.

We then give proofs of various results that we use in our approach.

5.2 Dataset Description And Statistics Published

For our experiments, we consider the dataset of student grades. The grades of students

are assumed to have any value between 4 - 10. Thus, if we consider an interval of 1,

we will have 6 buckets of grades as 4 - 5, 5 - 6,..., 9 - 10. The aim is to publish average

grade in each of these buckets maintaining differential privacy. The dataset with student
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grades is shown in Table 5.1. A published summary that doesn’t provide any privacy

guarantee, but provides accurate results for the student grades dataset of Table 5.1 is

shown in Table 5.2.

S.No Name Grade
Points

1 Alice 9.6
2 Bob 9.4
3 Jimmy 9.1
4 Paul 8.7
5 Jeremy 8.8
6 Lynda 8.6
7 Ryan 8.2
8 Mike 7.9
9 Henry 7.4
10 Andy 7.5
11 Judith 7.2
12 Laurel 6.3
13 Jones 6.7
14 Rob 6.4
15 Arya 6.2
16 Jimmy 6.1
17 Emma 5.9
18 Emily 5.7
19 Kevin 5.6
20 Dean 5.3
21 Tim 5.2
22 Christine 4.8
23 Jill 4.9
24 Amanda 4.7

Table 5.1: Dataset with
Student Grade records

S.No Grade
Range

Grade
Sum

Count Average
Grade

1 4 - 5 14.4 3 4.8
2 5 - 6 27.7 5 5.54
3 6 - 7 31.7 5 6.34
4 7 - 8 30 4 7.5
5 8 - 9 34.3 4 8.575
6 9 - 10 28.1 3 9.367

Table 5.2: Summary of Student Grade records

5.3 Mathematical Results and Proofs

Result 1 The expected value of the quotient of two perturbed results with Laplace noise

is equal to the expected value of the two original values without the perturbation.

E

 f1 +Lap
(
0, ∆1

ε1

)
f2 +Lap

(
0, ∆2

ε2

)
= f1

f2
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Proof
Let f ′1 = f1 + e1 and f ′2 = f2 + e2 where e1 ∼ Lap

(
0, ∆1

ε1

)
and e2 ∼ Lap

(
0, ∆2

ε2

)
.

Since, f ′1 and f ′2 are independent random variables,

E

( f ′1
f ′2

)
= E( f ′1)
E( f ′2)

Now, using linearity of expectations and that mean for Laplace distribution used is 0,

E( f ′1)
E( f ′2)

= f1 +E(e1)
f2 +E(e2)

= f1

f2

Result 2 The perturb-then-compose approach for a computation that can be expressed

in the form f1
f2

guarantees ε-differential privacy when ε = ε1 + ε2, where ε1 is the privacy

budget allocated to f1 and ε2 is the privacy budget allocated to f2.

Proof
Consider that randomized mechanism R1 and R2 are independent mechanisms, with

privacy guarantees ε1, ε2 differential privacy respectively, give response to computation

of f1 and f2, respectively on a dataset.

Using the sequential composability property [11] of differential privacy, that if there

are n independent mechanisms: R1,R2, ....,Rn, whose privacy guarantees are ε1,ε2, .....,εn

differential privacy, respectively, then any function of them is (
∑n

i=0 εi)-differentially

private. So, the computation will be (ε1 + ε2)-differentially private.

But, we have ε1 + ε2 = ε, so it guarantees ε-differential privacy.

5.4 Utility Comparison of Proposed Strategies

To do a comparison of the two strategies, we first take an overall value of privacy budget

that should be guaranteed by both the strategies. Suppose the overall privacy budget is

2.

For compose-then-perturb approach, consider the following parameter values for pub-

lishing the summary:

• Privacy budget ε = 2

• Sensitivity ∆ = 10

Table 5.3 shows the actual average grade and perturbed average grade using compose-

then-perturb approach.
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S.No Grade Range Actual Average Grade Perturbed Average Grade
1 4 - 5 4.8 4.4550
2 5 - 6 5.54 5.0235
3 6 - 7 6.34 6.2314
4 7 - 8 7.5 7.4078
5 8 - 9 8.575 8.7093
6 9 - 10 9.367 9.6608

Table 5.3: Perturbed average grade calculated using compose-then-perturb approach

We now publish the perturbed average grade using perturb-then-compose approach for

three different privacy budget allocations:

• Privacy budget for computation of sum function ε1 = 1.5

• Sensitivity of numerator computations ∆1 = 10

• Privacy budget for denominator computations ε2 = 0.5

• Sensitivity of denominator computations ∆2 = 1

Table 5.4 shows the actual average grade and perturbed average grade using compose-

then-perturb approach, with ε1=1.5 and ε2=0.5.

S.No Grade
Range

Perturbed
Grade Sum

Perturbed
Count

Actual
Average

Perturbed Aver-
age Grade

1 4 - 5 14.5221 3.0021 4.8 4.837
2 5 - 6 25.1185 4.7448 5.54 5.294
3 6 - 7 36.0057 5.6488 6.34 6.374
4 7 - 8 29.861 3.8802 7.5 7.695
5 8 - 9 36.8639 4.4571 8.575 8.270
6 9 - 10 28.3952 3.1274 9.367 9.079

Table 5.4: Perturbed average grade calculated using compose-then-perturb approach
with ε1=1.5 and ε2=0.5

Next, we publish the summary using the perturb-then-compose approach using different

set of parameters as below:

• Privacy budget for numerator computations ε1 = 0.1

• Sensitivity of numerator computations ∆1 = 10
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• Privacy budget for denominator computations ε2 = 1.9

• Sensitivity of denominator computations ∆2 = 1

S.No Grade
Range

Perturbed
Grade Sum

Perturbed
Count

Actual
Average

Perturbed Aver-
age Grade

1 4 - 5 18.478 4.390 4.8 4.209
2 5 - 6 25.60 4.9905 5.54 5.129
3 6 - 7 44.5273 7.2402 6.34 6.15
4 7 - 8 35.325 4.458 7.5 7.924
5 8 - 9 27.4943 3.117 8.575 8.8208
6 9 - 10 43.8314 4.4708 9.367 9.804

Table 5.5: Perturbed average grade calculated using perturb-then-compose with ε1 = 0.1
and ε2 = 1.9

Now, We publish the summary using the perturb-then-compose approach with third

set of parameters as below:

• Privacy budget for numerator computations ε1 = 1

• Sensitivity of numerator computations ∆1 = 10

• Privacy budget for denominator computations ε2 = 1

• Sensitivity of denominator computations ∆2 = 1

S.No Grade
Range

Perturbed
Grade Sum

Perturbed
Count

Actual
Average

Perturbed Aver-
age Grade

1 4 - 5 17.327 3.5955 4.8 4.819
2 5 - 6 27.42 5.1300 5.54 5.345
3 6 - 7 46.128 7.44 6.34 6.20
4 7 - 8 36.309 4.4901 7.5 7.41
5 8 - 9 30.1735 3.4967 8.575 8.629
6 9 - 10 47.278 5.079 9.367 9.308

Table 5.6: Perturbed average grade calculated using perturb-then-compose with ε1 = 1
and ε2 = 1

We now compare our approaches of perturb-then-compose for 3 sets of parameters

and the compose-then-perturb approach. Table 5.7 shows mean of the L2-norm for total

privacy budget of 2.
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S.No Approach Mean L2-norm error
1 Compose-then-Perturb (ε=2) 0.1027
2 Perturb-then-Compose (ε1=1.5, ε2=0.5) 0.0459
3 Perturb-then-Compose (ε1=0.1, ε2=1.9) 0.1642
4 Perturb-then-Compose (ε1=1, ε2=1) 0.07383

Table 5.7: Mean of squared error for differentially private approaches

From the error values, it can be seen that the perturb-then-compose approach with ε1

= 1.5, and ε2 = 0.5, is the approach that has the most utility. For given values of overall

privacy budget and individual privacy budget, using above error values, we can decide

which approach will have more utility. It can also be deduced that for different set of

values of privacy parameter, a different strategy may provide more utility.

5.5 Conclusion and Future work

Of the few strategies that exist to preserve differential privacy while publishing some

statistics, there is no definite answer to the question : "Which strategy is better?".

In this chapter, we studied about two approaches to preserve differential privacy

when the query is a composite function. We have published range wise average as a

summary statistics for a sample student grade database. In our experiments, we have

published this summary using four approaches, one compose-then-perturb and other

perturb-then-compose. Using mean of squared error, we also find out the best approach to

publish the summary. Although the perturb-then-compose method is applied to publish

average grades in each range, it can be applied to any function computation which

involves calculating unit functions linked with basic mathematical operators.

There is a lot of scope for future work and research. Among them, a few are listed

below:

• In this thesis, we have focused on only one composite function, that is, average and

it involves two aggregate functions. It would be an interesting to find out, if the

work can be extended to unit functions combined with more complex operators,

like, log, square root, etc.

• To find the most optimal privacy budget distribution is a hard problem. It would be

great to find out how to allocate privacy budget among the unit functions to get

more accurate results
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• There is no actual way to determine the amount of privacy guarantee a mechanism

should provide. Explicitly finding the privacy budget for the task of ratio publishing,

without leaking any private information, would also be a good research problem.
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CONCLUSION

D ifferential privacy is a strong privacy notion, but most of the times we need to

add a lot of noise. Designing differentially private mechanisms with more utility

is an important and challenging task.

In this thesis, we have extended the differentially private linear regression using func-

tional mechanism, to the most generic expression of linear regression. We have given the

extended algorithm and showed that it preserves differential privacy. Using a sample

dataset, we have verified that the accuracy of linear regression under functional mecha-

nism is more, when compared to direct perturbation techniques.

We then solved the problem of releasing a composite function for a given dataset. The

composite function average, can be published by adding noise directly to response or

by adding noise independently to numerators and denominators and then finding the

response. We call these two approaches compose-then-perturb and perturb-then-compose

respectively. Using both the strategies, we published average in each range, for a sample

student grade database and compared utility using mean of square error values.
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