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1I N T R O D U C T I O N

Software is everywhere and touches all aspects of human lives in one form or the other. The relevance
of software in today’s world can be simply gauged by its current and ever increasing market size.
According to the industry analyst Gartner, worldwide software market size in 2016 is expected to be
US$326 billion1 with a 5.3% growth from the previous year 2015. The relevance of the industry and
its tremendous impact makes it important to optimize software productivity.

Software productivity is impacted by three main dimensions - process, people and tools/technol-
ogy [1]. Much of the earlier works on productivity improvement focused on process and tools/technol-
ogy. Studies on process focused on individual processes [2], overall process of a project or an organiza-
tion for improvements [3]. Studies on tools/technology evaluated the usefulness of tools/technology
for improving software productivity [4]. Relatively less focus was given to people aspects.

People are important assets in software projects as software productivity depends on the productiv-
ity of the contributors. This realization dates back to 1970s when Fred Brooks in ‘The Mythical Man-
Month’ argued that technical issues are subordinate to human issues while explaining the quality of
software development [5]. Further, Gerald Weinberg in ‘The Psychology of Computer Programming’
addressed “programming as human performance and social activity” [6]. However, there is not much
information to explain how software contributors perform their tasks in workplace [7]. Recently, the
studies in software engineering – an intensely people-oriented activity, observed a rise in explaining
software productivity in terms of contributor productivity.

The objectives of the studies on contributor productivity are to completely utilize the capabilities of
contributors and improve contributor productivity. To utilize the capabilities of contributors, studies
measure contributor productivity [8][9][10]. These measures of contributor productivity are useful for
performance appraisal, identify expertize, generate team awareness, identify strengths and areas of
improvements for training, etc. On the other hand, to improve contributor productivity, studies try to
understand the influence of factors like initial environment [11], diversity [12], etc. on contributor pro-
ductivity. This information is useful to promote best practices and mitigate or eliminate the negative
influences of factors.

One approach for contributor productivity studies is based on the experiences of seasoned soft-
ware professionals. The experience reports, processes, models, etc. generated by these professionals
are valuable and provide a deeper understanding of the contributor productivity. In modern software
organizations, practitioners often rely on prior experiences, intuitions and gut feelings gathered from
their stint in software development for decision making [13]. However, this approach fails to provide
evidence, deep models, and analytical tools to inform decisions. Also, as software continues to grow
(in size, complexity, etc.) and evolve (in terms of tools, technologies, etc. being used) rapidly, it be-
comes imperative to explain contributor productivity based on well-formed claims. There is a need of
a transparent, data-driven and objective way to substantiate software contributor productivity. These
insights can be realized through empirical studies.

Empirical studies provide a way to move towards well-founded decisions. It compares what we
believe to what we see and is capable of providing a deeper level of understanding of the software
development. This thesis uses Empirical Software Engineering approaches based on Mining Software
Repositories to help improve contributor productivity through the quantitative and qualitative analy-
ses of the data collected and generated during software development.

This thesis empirically analyses software contributor productivity to identify best practices and
areas for improvements. The empirical evidence gathered in these studies enable decision makers to
promote best practices and take corrective or preventive measures to mitigate or eliminate the negative
effects of areas for improvements. The informed decisions supported by empirical evidence have
applications in improving software contributor productivity and software productivity, in general.

This thesis looks at software contributor productivity from several angles. Primarily, this thesis in-
vestigates the influence of some factors on software contributors’ productivity, but in a related way,
also proposes measures of software contributor productivity. These measures of software contributor
productivity are used to provide a holistic understanding of developer contributions as an individ-

1 http://www.gartner.com/newsroom/id/3186517
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ual and in a team to identify outlier contribution patterns arising from factors such as malpractices.
This holistic understanding facilitates productivity improvements by generating awareness about the
prevailing good or bad developer contribution patterns.

In this chapter, we first give a brief background of Empirical Software Engineering, Mining Soft-
ware Repositories and Software Contributor Productivity. The background information of Empirical
Software Engineering and Mining Software Repositories is gathered from various sources, primarily
the books: ‘Guide to Advanced Empirical Software Engineering’ [7], and ‘Basics of Software Engineer-
ing Experimentations’ [14], and research papers: ‘Future of Empirical Methods in Software Engineer-
ing Research‘ [15], ‘Selecting Empirical Methods for Software Engineering Research’ [16], ‘Empirical
Studies of Software Engineering: A Roadmap’ [17] and ‘The Road Ahead to Mining Software Reposi-
tories’ [13]. This is followed by an overview of the contributions of this thesis, research method used,
and details of each contribution.

1.1 empirical software engineering

Empirical studies validate the existing beliefs in software engineering by providing evidence [14].
These studies explore, describe, explain, predict phenomenon using evidence from observation or
experience [15]. Empirical studies start with specifying a research question. Based on the type of re-
search question asked, a study design is proposed. To execute the proposed design, required data
or evidence are gathered which are then analyzed for interpretation [15]. Broadly there are two ap-
proaches to conduct empirical studies: quantitative analysis and qualitative analysis.

Quantitative research applies mathematical models on numerical data to get formal results [7]. It
collects numerical data and looks for relationships between the variables under examination [7]. For
instance, quantitative study to analyze the impact of two tools on programmer productivity measures
changes in programmer productivity.

Qualitative research, on the other hand, is done with words by observing objects in their natural set-
tings [7]. The observations are then combined to compare, contrast, analyze and identify patterns [7].
The intention of conducting qualitative research is to get a holistic overview of the context under
study [7]. For instance, qualitative study to analyze the influence of two tools on programmer produc-
tivity examines the closeness of the logics of the tools to human reasoning.

Quantitative investigations get more justifiable and formal results than qualitative inquiries [7].
However, qualitative studies are necessary for comprehensively defining the full body of knowledge of
any discipline [7]. Quantitative and qualitative analysis are complementary in nature [7]. Importantly,
the concept of subjectivity and objectivity are not necessarily correlated with either of these types of
investigations [7].

1.1.1 Research Methods

The choice of method for a study depends on various factoring like availability of resources, access
to subjects, opportunity to control variables of interest, etc [16]. Further, a variety of methods can be
applied to any research problem, where a combination of methods are necessary to fully understand
the problem. Below we describe the five classes of research methods that are most relevant to software
engineering [16]:

Controlled Experiments (including Quasi-Experiments)

A controlled experiment investigates a testable hypothesis to look for a cause-effect relationship [16].
In this experiment, independent variables are manipulated to measure the effect of dependent variable
by keeping variables other that the chosen independent variables as constant - control variables [16].
These experiments use an initial random assignment and are conducted in strictly controlled condi-
tions [16].

A close variant of controlled experiments is Quasi-controlled experiments, where “subjects are not
assigned randomly to treatments” [16]. Quasi-experiments are used where true experiments are not
possible [16]. For instance, in fields study. In Quasi-controlled experiments, the comparison happens
between non-equivalent groups [16]. Thus, the task of interpreting quasi-experiments is separating
the effects of a treatment from those due to the initial incomparability between the average units
in each treatment group [18]. Here, the strength of the evidence is related to the degree of control
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we have in the studies we perform [16]. Quasi-experiment is less powerful that true experiment and
requires more careful interpretations [16].

The strength and limitation of this technique is that it is theory driven [16]. The good thing about
this approach is that we do not search for results [16]. Conversely, since we build on theory, we might
ignore variables which might hold relevance outside laboratory setting [16].

Case Studies (both exploratory and confirmatory)

Case study is an "empirical enquiry that investigates a contemporary phenomenon within its real-life
context especially when the boundary between the phenomenon and context are not clear” [16]. They
offer an in-depth understanding of the mechanism by which cause-effect relationship occurs [16].

There are two types of case studies: Exploratory case study and Confirmatory case study [16].
Exploratory case studies are used as “initial investigations of some phenomenon to derive new hy-
potheses and build theories” [16], while Confirmatory case studies “test existing theories” [16]. Con-
firmatory case studies are important for refuting theories and choosing between rival theories [16].

For conducting a case study it is important to have “a clear research question of how and why a
certain phenomenon occurs” [16]. Case study is most appropriate where the context is expected to
play a role in the phenomenon and hence controlled experiments are inappropriate [16].

A major weakness of case study is that the collection and analysis of data is eligible for various
interpretation and researcher bias [16]. Hence, an explicit framework is required for the selection
of cases and data collection [16]. Also, while individual case study often reveals deep insights, the
validity of the results depends on the subsequent case studies that support or refute the theory [16].

Survey Research

Survey research “identifies the characteristics of a broad population of individuals” using question-
aire, structured interviews or data logging [16]. Two key things related to survey research are 1)
selecting representative sample from a defined population and 2) data analysis techniques used for
generalization [16]. A precondition for conducting survey research is a clear research question that
explores the nature of target population [16]. To select a representative subset of samples, stratified
sampling techniques are used to ensure that no one community is being over-represented [16].

The challenge of conducting survey research is to control for sampling bias which decides the gener-
alizability of the results [16]. Also, low response rates increase the risk of bias [16]. Other challenging
thing is to design questions in a way that yields “useful and valid data” [16]. Phrasing questions
that is understandable to a diverse population is difficult [16]. Moreover, there is a possibility that
what people do and what they say are different due to their inability to introspect reliably on their
work practices [16]. So, it is generally encouraged to compare survey results with other empirical
methods [16].

Ethnographies

Ethnography focuses on field observations to “study a community of people to understand how the
members of the community make sense of their social interactions” [16]. This helps to understand
“how technical communities build a culture of practices and communication strategies that enables
them to perform technical work collaboratively” [16].

Ethnography does not build on any theory, rather it creates local theories using the description of
the community to understand the culture of the community [16]. For such studies, researchers have
to explicitly consider their pre-conceptions [16].

A precondition for such studies is a research question with focus to understand the “cultural prac-
tices of a community and access to the members of that community” [16]. To identify target members,
usually representative members are identified and chain sampling is used to select further mem-
bers [16].

A special form of ethnography is participant observation where researchers become member of
the community for the duration of analysis [16]. For this the researcher should have the required
technical competency to become a member of the project and requires a much longer duration for the
study [16].

The biggest challenge for ethnographic research is to avoid preconceptions while performing obser-
vation, data collection and analysis [16]. Researchers are expected to obtain a high degree of training
to conduct such studies [16].
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Action Research

In action research, researchers attempt to solve a real problem by intervening in the studied situation
for improvements [16]. A precondition for action research is to have a problem owner – most of the
time the researcher themselves, who identifies the problem and tries to solve it [16]. The researcher is
expected to critically reflect “upon their past, current and planned actions to identify what helped (or
not) to solve the problem” [16].

Two key criteria for conducting this study is judging the authenticity of the problem and knowledge
outcomes for the participants [16]. The key characteristic of this research method is to bring real
changed and solve the problem iteratively [16]. Importantly, no attempt is being made to establish a
control group, rather the focus is to identify helpful lessons [16].

The biggest challenge for action research is its immaturity as an empirical method because of the
lack of frameworks for their implementation [16]. Finally, this method may be expensive due to the
required commitment from the organization [16].

Mixed-Methods Approach

Mixed-methods research originates from the stance that “all methods have limitations and that the
weakness of one method can be compensated for by the strengths of other methods” [19]. This ap-
proach uses both – quantitative and qualitative data collection and analysis techniques [16].

Mixed methods approach is powerful, however, the researcher is required to 1) collect extensive
data, 2) analyze multiple sources of data and 3) requires familiarity with both quantitative and quali-
tative forms of research [16]. The three most commonly used strategies for conducting mixed-methods
research are:

1. Sequential explanatory strategy This strategy is characterized by “collection and analysis of quan-
titative data followed by the collection and analysis of qualitative data” [16]. The purpose of this
strategy is “to use qualitative results to assist in explaining and interpreting the findings of a
quantitative study” [16]. It is useful when unexpected results arise [16].

2. Sequential exploratory strategy This strategy is characterized by “collection and analysis of quali-
tative data followed by the collection and analysis of quantitative data” [16].The purpose of this
strategy is “to use quantitative data and results to assist in the interpretations of qualitative find-
ings” [16]. It is useful to examine a proposed theory formulated as the outcome of a qualitative
study [16].

3. Concurrent triangulation strategy This strategy is characterized by using “different methods con-
currently to confirm, cross-validate or corroborate findings” [16]. This strategy is motivated by
the fact that ‘what people say’ and ‘what people do’ could be different [16]. So, in this strategy
researchers collect data from multiple sources helps improve validity [16].

1.1.2 Data Collection Techniques

Based on the levels of interaction with software engineers, the data collection techniques can be
classified as direct, indirect and independent [7]. Selecting an appropriate technique is influenced by
the question asked and the amount of resources available to conduct the study.

• Direct: Researchers directly interact with the participant population [7]. Direct data collection
techniques can be further classified as inquisitive and observational based on the type of infor-
mation gathered [7]. Inquisitive techniques help obtain a “general understanding of the software
engineering process” [7]. Examples of inquisitive techniques are brainstorming, focus groups, in-
terview, questionaries, etc.

Observational techniques provide a “real-time portrayal of the studied phenomenon” [7]. This
technique is subjective and requires considerable knowledge to interpret correctly [7]. Further,
this technique always run the risk of Hawthorne effect [7]. Examples are: participant observation,
shadowing and observation, think-aloud sessions, work diaries, etc.

• Indirect: Researchers have access to the participants via direct access to their work environ-
ment [7]. There is no need of direct contact between the participant and the researcher [7]. The
data is automatically gathered once the data collection is initiated [7]. This technique involves
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little or no intervention of participants and is ideal for longitudinal studies [7]. For example,
instrumenting systems, fly on the wall, etc.

• Independent: Researchers have access to the work artifacts of the software developers which is
used to uncover information about how software engineers work [7]. These artifacts are gener-
ated as a by-product of software development and can act as a primary source of information [7].
For example, source code, documentation, etc.

Independent data collection techniques

Independent data collection techniques helps “uncover information about how software engineers
work by looking at their output and by-products” [7]. In this thesis, we mostly use independent data
collection techniques. We briefly discuss the various types of independent data collection techniques
and the advantages/disadvantages of analyzing them.

Analysis of electronic databases of work performed

Most large organizations manage the work performed by developers using issue tracker, problem
reporting, change request, and configuration management system [7]. The data generated by such
systems are a rich source of information for software engineering researchers [7]. Below are the ad-
vantages and disadvantages of analyzing these databases [7]:

• Advantage

– A large amount of data is readily available for analysis.

– The data is stable and is not influenced by the presence of researchers.

• Disadvantage

– There is very little control over the quantity and quality of information manually entered
about the work performed.

– It is difficult to gather additional information.

Analysis of tool logs

Software systems generate logs in various forms [7]. For instance, automatic building tools leave
records as source code control system.

• Advantage

– The data is already in electronic form for coding and analysis.

– The logged behavior is part of software engineering normal work routine.

• Disadvantage

– Companies use different tools in different way, so it is difficult to gather data consistently
across organizations.

Documentation Analysis

This technique focuses on “the documentation generated in the source code as well as documents
describing the software system” [7]. Other sources of documentation are local newsgroups, group
e-mail lists, memos, documents defining the development process, etc.

• Advantage

– Documents capture conceptual information about the system. It also acts as an introduction
to the software and team. It provides low-level information of algorithms and data.

• Disadvantage

– Reading documentation is time consuming and requires a level of understanding.

– Documentation may be inaccurate.
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Static and Dynamic Analysis of the System

This technique analyzes “the code (static analysis) or traces generated by running the code (dynamic
analysis) to learn design and understand how software engineers work” [7].

• Advantage

– Readily available and large amount of information is ready to be mined.

• Disadvantage

– Need parser and other tools to extract useful information from source code, which in its
current form are not of high quality.

One field of research that analyzes historical software development activities to conduct empirical
studies is Mining Software Repositories. The field of Mining Software Repositories automates various
activities associated with the empirical studies in software engineering. This automation facilitates
replication on a large number of projects which helps generalizing the findings and validating the
theories.

1.1.3 Mining Software Repositories

Software development is facilitated by various tools. These tools generate artifacts that are archived for
future references. These artifacts are termed as software repositories. Software repositories are static
record-keeping repositories that are maintained centrally to manage progress of software projects [13].
Software repositories contain wealth of valuable information about projects. The information stored
in software repositories provide data-driven and objective measures based on historical and field data
and thus relies less on intuition and experience [13].

Mining Software Repositories (MSR) describe the broad class of investigation into the examination
of software repositories. MSR field “analyzes and cross-links the rich data available in these reposito-
ries to uncover interesting and actionable information about software systems” [13]. MSR researchers
aim to transform these repositories from static record-keeping ones into active repositories which can
guide decision processes in modern software projects [13]. So going by the management adage "What
you cannot measure; You cannot control", Mining Software Repositories provide data-driven evidence in
objective and transparent manner.

The focus of mining software repositories is in [13]:

• Techniques to extract information from repositories.

• Discovery and validation of novel techniques and approaches to mine information.

Types of Repositories

There are three types of software repositories: historical, run-time and code repository [13]. Below we
discuss the three types of repositories in details:

historical repositories Historical Repositories contains “several information about the evo-
lution, progress and current state of the project” [13]. For instance, bug repositories (also known as
Issue Tracking System), source control repositories, peer code review system, version control system
and archived communications (such as mailing lists, threaded discussion and IRC).

1. Bug Repositories also termed as defect tracking system keeps a track of reported software bugs
in software development projects. It is a type of issue tracking system. For instance, Google
Chromium Issue Tracking System, Bugzilla, Jira, etc.

2. Version Control Repositories This repository records the development history of a project. It tracks
all the changes to the source code along with the meta-data about each change. For instance, Git,
Mercurial, Subversion, Perforce, etc.

3. Peer Code-review System A system which is used to examine the documentation, code, etc. by
authors and one or more colleagues to evaluate its technical content. For example, Rietveld,
Gerrit, GitLab, etc.

4. Archived Communications This repository tracks the communications in a team involved in soft-
ware development. For example, mailing lists, IRC chats, instant messages, etc.
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run-time repositories Run-time repositories contain “information of the execution and usage
of an application at one or multiple deployment sites” [13]. The availability of these logs is on rise due
to their use of remote issue resolution and legal acts. For instance, deployment logs, build warnings,
test results, etc.

code repositories Code Repositories contain “source code of various applications developed
by several developers” privately or publicly [13]. They are often used by open source software and
multi-developer projects to handle versions. These websites often support version control, bug track-
ing, release management, mailing lists, and wiki-based documentation. For instance, Google Code,
SourceForge, PicoForge, GitHub etc.

Strengths and Limitations of Mining Software Repositories

One good thing about the MSR field is that the cost of experimenting with MSR techniques is usually
low as the data is readily available. However, there are some limitations of mining the repository
data [13]:

• Repository data cannot be used to conclude causation instead it can only show correlation.

• Findings must be investigated closely within the context of the studied project or system. Project
and system context are very important to reveal the true case for particular findings. For exam-
ple, some developers are more likely to perform buggy changes for the reason that they are
usually assigned more complex changes and not due to the skill level of these developers.

Thus, the limitations of the repository data should be closely examined and communicated when
presenting results to avoid misinterpretations.

1.1.4 Impact of Empirical Software Engineering

The applications of Empirical Software Engineering encompass the phases of software development
to address a wide range of problems. Starting from requirement analysis to maintenance of software
development, empirical software engineering provide solutions to correctly specify requirements [20],
enable correct design decisions [21], efficient and quality software development [22], cost-effective
maintenance of software [23], etc.

Studies using Empirical Software Engineering provide solutions from various perspectives. From
process perspective, it helps understand differences in actual and observed processes, bottlenecks in
development [24], etc. It helps curate the usability and effectiveness of tools and techniques in various
contexts of software development [25]. It helps understand how people with distinctive characteris-
tics interact with the team and environment to perform [11]. Empirical studies also provide tools that
help people in their work [26]. A combination of these diverse perspectives helps towards a better un-
derstanding of software development for quality product, satisfied workforce, efficient management,
etc.

1.2 software contributor productivity

Besides technical improvements, attempts to improve software productivity are directed towards utiliz-
ing and improving contributor productivity. These two objectives form the basis of studies on software
contributor productivity. Studies on utilizing software contributor productivity estimate the potential
of contributors in terms of their development activities and use this information for assigning work,
providing necessary training, compensation, etc. Another class of study looks into factors that facili-
tate or inhibit participation and use this information to plan actions to improve software contributor
productivity. Thus approaches to improve software contributor productivity can be broadly classified
into two classes: measure contributor productivity and understand contributor productivity. Below
we discuss the various perspectives with which studies measured and explained contributor produc-
tivity. The list of perspectives presented in this thesis is not exhaustive and is closely related to the
research contributions of this thesis.
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1.2.1 Measuring Contributor Productivity

Assessment of contributions is a standard practice in organization that serves versatile needs of var-
ious roles. Managers or decision-making roles inspect contributions to identify expertize, areas of
improvements, resource management, individual assessment, team assessment, recruitment, promo-
tions; study adversarial behavior, turnover, retention plans, training programs, etc. On a contrary,
contributors look to this information for self-reflection, team awareness, etc. Below we describe some
of the applications of measurement of contributor productivity.

Evaluation

Evaluating contributor productivity is important for self-reflection, performance appraisal, identify
strengths, areas of improvements, etc. Traditionally estimating software contributor productivity for
evaluation was based on the experiences of managers and self assessment of individuals. To bring
objectivity to these measures, researchers realized the potential of mining software repositories. Ex-
isting studies mined a variety of software repositories [27][28][29] and proposed simple measures
indicating contributor participation [8][30]. The proposed measures also accounted for the distributed
development environment [31] and used these measures in conjugation with the traditional software
development activities [32] to evaluate contributors.

Fernandes et al. proposed an analytical model and conducted a practical case-study in context of
distributed software development setting [33]. Kanij et al. pointed out the lack of well established
metrics for software testers and conducted a survey of industry professionals to identify important
factors for measuring performance of software testers [34]. Kidane et al. proposed two productivity
indices: creativity index and performance index for online communities of developers and users of
open source projects such as Eclipse [35]. Gousios et al. presented a list of pre-defined developer’s
actions for measuring developer’s involvement and activity by mining software repositories such as
source code repository, document archives, mailing lists, discussion forums, defect tracking system,
Wiki and IRC [36]. Nagwani et al. proposed a team-member ranking technique for software defect
archives and generate a ranked list of developers based on individual contribution [37]. Gilbert et
al. explored group dynamics to compare developers and their contribution in a distributed software
community by analyzing social visualization code [9].

Authorship Analysis

In large collaborative software projects, it is important to identify who did what to identify expert for a
task, generate team awareness, plagiarism detection, etc. Authorship analysis includes author discrim-
ination, author characterization and similarity detection. Author discrimination identifies which of the
known set of authors have written a new source code. Author characterization associates contributor
characteristics with the source code. Finally, similarity detection analyzes the degree of overlap in
code.

Existing studies proposed several numeric metrics [38] and visualizations to analyze authorship [9].
Taylor et al. introduced the concept of author entropy to characterize authorship. Author entropy in
conjunction with other software metrics has the potential to identify areas of concerns within source
code [38]. Krein et. al further introduced the concept of language entropy to characterize the distri-
bution of an individual’s development efforts across multiple programming languages [39]. Further,
more subjective elements of authorship based on fuzzy logic linguistic variables in combination with
objective counts improves authorship analysis [40].

Various visualization tools are proposed for authorship analysis. CVSscan tool observes the source
code structure and evolution during software maintenance. This tool colors source code according to
author, age or code construct [25]. StatSVN generates charts, tables and statistics for software develop-
ment. It shows contributions of authors at directory level [41]. CodeSaw [9] visualizes author activity
in distributed software development by combining code activity and developer communication. This
tool reveals group dynamics by presenting individual and team contributions.

Team Activity Awareness

To generate awareness of the activities of fellow contributors and to get a holistic view of team activ-
ities various visual presentations are proposed. Existing studies presented various types of visualiza-
tions namely spatial [10], temporal visualizations [42], etc. They analyzed tasks and social graphs [42]
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and devised ways to analyze collaborative development [43]. Other studies semantically aggregated
tool feeds and presented the results [44].

Storey et al. proposed a framework to describe, compare and understand human centric awareness
visualization tool in software development [26]. SeeSoft tool provides a line-based view of the code
where rows are colored to represent a particular aspect of the code file [45]. CodeThumbnails provide
a miniature view of the spatially arranged code. The active sections of the files are highlighted [46].
TeamTracks keeps a record of code navigations in the past to enable programmers to build on the
actions of others [47]. FastDash provides a real-time awareness of the activities of fellow contribu-
tors [10].

Several tools convey the status of shared artifacts. Community Bar tool allows collaborators to see
shared resources [48]. SEAPort extends this capabilities to multiple shared and personal devices [49].
CoWord [50] and Network Text Editor [51] faciliate collabortive work within a document.

Project Stability

A large number of developers leave the project in subsequent releases. Packages left orphan (result-
ing from developer leaving the project) are either adopted (by current working developers) or lost.
Packages thus lost are not included in stable release leaving users unsupported for their unique func-
tional needs [52]. Robles et al. added time dimension to onion model (organizational structure of libre
software projects) to study joining and leaving process in organization. A quantitative study of 21

large, well-known projects shows that majority of libre software projects have several generations of
developers (over time) and very few projects are led by founding core groups [53]. Robles et al. pro-
posed a novel methodology to visually analyze evolution of core team to ensure smooth transitions
by identifying breakpoints and unevenness [54].

A majority of open source software projects fail due to their inability to garner significant de-
veloper participation. Various researches analyzed the causes of turnover and its impact. Hall et al.
conducted an empirical study of 89 software practitioners to identify causes of turnover in software
projects that hampers project success. Results suggest that increase in motivation of developers re-
duces staff turnover [55]. Sharma et al. proposed a Logistic Hierarchical Linear Model approach to
analyze turnover in open source software based on individual developer level factors and project
specific factors. Analysis showed significant variations in turnover rate among projects with past ac-
tivity of developer, developer role, project size and project age as prime indicators [56]. Schilling et
al. suggested that team integration (measured as conversations in mailing list) facilitates contribution
retention in open source software projects. They expressed team integration as a function of spatial,
temporal and cultural distances of open source software developers and validated the results using
subjective and objective means [57].

1.2.2 Understanding Contributor Productivity

The productivity of software contributors can be explained in terms of their willingness, capacity
and opportunity [58]. Willingness to perform is influenced by the motivation, job involvement, per-
sonality, feelings of equity of contributors, etc [58]. Age, ability, knowledge, level of education, etc. –
variables of capacity are seen to influence contribution [58]. Similarly, variables of opportunity: work-
ing conditions, actions of coworkers, leader behavior, mentorism, organizational policies, time, etc.
are seen to influence contribution [58]. In this section, we discuss the factors that are seen to influence
software contributor productivity, where contributor productivity is measured as contributions and
participation intentions.

The work by Zhou et. al showed the influence of willingness, capacity and opportunity on the
long term contribution intentions of new comers [59]. They found that during first month, long term
contributors show more community-oriented attitude. They found that new comers who start by
commenting or reporting an issue, that is fixed, are more likely to be long term contributors. They
found that a very popular project and less attention from peers reduces the chances of participation
while working with clustered and productive peers increases the chances of future participation.

Open source development draws from a diverse set of motivation, many of which are based on
external rewards. Internal factors like intrinsic motivation, altruism, and identification with a com-
munity influences the motivation for participation in open source projects [60]. External factors like
direct compensation and anticipated returns influence the motivation for participation in open source
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Figure 1: Research Method - Mixed methods approach comparing and contrasting the observations of quantita-
tive analysis and qualitative analysis

projects [60]. Factors that promises future monetary rewards and personal need for a software solu-
tion were other key factors. Another study showed that a software developer’s ability and individual
need for achievement are the two strongest factors determining individual performance [61]. A longi-
tudinal study on Apache projects showed that a sense of obligation to the community and use value
also influences participation [62]. This study proposed a theoretical model and evaluated it on Apache
projects. Person-job and person-team fit also explained the participation behavior [63].

Other studies examined the influence of demographic attributes: gender and tenure on productiv-
ity [64], explored gender bias in evaluating contributors in GitHub [65]. The influence of communi-
cations [66], personality [67], spatial, temporal, cultural distance [68][57], diversity [12] and various
other project and contributor characteristics [56][59] on contributor productivity are studied.

1.3 thesis overview

This thesis derives its results from detailed studies on employee productivity at Microsoft, participa-
tion of contributors in GitHub, and measures of contributions of Google Chromium software mainte-
nance team. The study of large popular product groups at Microsoft reveal factors that influence the
ramp-up journey of new hires. The studies on GitHub analyze the dynamics of competing projects,
personality traits, and perception on bias to explain the participation of contributors. Also, the studies
on Google Chromium project propose measures of contributions for software maintenance team.

Each chapter in this thesis captures a different perspective with which we can help improve the
productivity of software contributors. The chapter-wise contributions of this thesis are:

1. Chapter 2 presents a comprehensive list of aids and impediments in the ramp-up journey of
new hires at Microsoft. The results of this study acts as a guide for managers to ensure that their
new employees reach the productivity levels of existing employees faster. Further, it helps the
faculty in academia to understand the skills needed in a software industry [69] [70].

2. Chapter 3 looks for the potential presence of bias which influences the sense of equity and hence
developer participation. This chapter presents an analysis of the perceptions and reality around
the presence of bias in peer code review in GitHub. The results of this study generate awareness
among software contributors that there exists a bias in the peer code review process which is
perceived to be experienced by the contributors and not the reviewers [71].
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3. Chapter 4 explains the influence of various contributor and project characteristics on contrib-
utor participation in open source projects. This chapter facilitates managers in evaluating the
sustainability of their project based on the dynamics of its competing projects. It also helps man-
agers understand the intricacies of the team by explaining the personality types that contributes
more and are best suited for a role. It also provides information on the the role of contributor
characteristics on their participation [72] [73] [74].

4. Chapter 5 provides robust, data-driven and role-based measures of contributor productivity in
the maintenance team of Google Chromium project. This study provides measures of individual
and team contributions and facilitates the analysis of contributions in the context of software
development. These measures and visualizations help contributors in self-reflection and man-
agers in evaluating contributors, identifying strengths, areas of improvements, outlier behavior,
etc. [75] [76] [77] [78].

This thesis uses a mixed-methods approach [19][16] to take advantage of the unique strengths and
mitigate the limitations of quantitative and qualitative analysis. Figure 1 summarizes the approach
used in this study.

To understand software development activities we gather the experiences of software professionals
and model the software development activities by mining software archives and its associated meta-
data. We analyze data in various software repositories like Issue Tracking System, Version Control
System, etc. to model the software ecosystem and test the hypotheses statistically. To get a deeper
understanding of the phenomenon, we conduct survey or interview and build on literature.

For survey or interview, we select respondents with desired characteristics by analyzing software
repositories or personal relations. We conduct a small scale interview or a pilot survey and incorpo-
rate suggestions and feedbacks received to modify the main survey. The main survey is sent to all
prospective survey respondents. The results of the survey are statistically analyzed for interpretation.

The other approach is to gather insights from literature. Studies in management science, social
science and software engineering explains contributor productivity. We use observations from these
domains to formulate our initial hypotheses or cross-validate the observations. We compare and
contrast the observations from quantitative analysis and qualitative analysis to draw inferences.

The contributions of this thesis are summarized in Figure 2 and are briefly discussed below:

1. Factors Influencing the Ramp-up Journey of New Hires - Chapter 2

Hiring top talent is essential for any software company’s success. After joining the company, new
hires often spend weeks or months before making any major contribution and attaining the same
productivity level as existing employees. Ramp-up journey is the transition of new hires from novice
to experts. There can be several factors, such as lack of experience or lack of familiarity with processes
unique to the new company, which influence the ramp-up journey. To understand such aids and
impediments in the ramp-up journey, we analyzed data extracted from version control systems of
eight large and popular product groups in Microsoft with several thousand software developers. In
particular, we study two aspects of the ramp-up journey. First, the time taken to make first check-in
into the version control system, an important milestone in the ramp-up journey indicating the first
contribution. Second, the time taken to reach the same productivity level as existing employees in
terms of check-ins. Further, the results of quantitative study is augmented with qualitative results
derived by surveying 411 professional developers. Our study produces promising results, including
factors such as unavailability of resources, having a mentor, prior knowledge of required skill sets,
proactively asking questions, career stage, etc. that could help improve the ramp-up journey of new
hires.

Factors ranging from ‘unavailability of resources’ to ‘career stage’ influence the ramp-up jour-
ney of new hires.

2. Presence of Geographical Bias in Peer Code Review Process - Chapter 3

Open source development has often been considered to be a level playing field for all developers.
But there has been little work to investigate if bias plays any role in getting contributions accepted
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Figure 2: Overview of the research contributions of this thesis

and developers’ perceptions of the bias. We present a study - one of the largest of its type, to under-
stand the perceptions and reality of the influence of geographical location on the evaluation of pull
requests in GitHub - one of the primary open source development platforms. Using a mixed-methods
approach that analyzes 70,000+ pull requests and 2,500+ survey responses, we find a bias blind spot.
Data analyses showed that geographical location explains differences in pull request acceptance de-
cisions. Compared to the United States, submitters from the United Kingdom(22%), Canada(25%),
Japan(40%), Netherlands(43%), and Switzerland(58%) have higher chances of getting their pull re-
quests accepted. However, submitters from Germany(15%), Brazil(17%), China(24%), and Italy(19%)
have lower chances of getting their pull requests accepted. The probability of pull request acceptance
increases by 19% when the submitter and integrator are from the same geographical location. Survey
responses from submitters indicate that the perceptions of bias are strong in Brazil and Italy, matching
the data analysis. However, integrators do not perceive as being biased.

A bias blind spot exists in the peer code review process in GitHub.

Project and Contributor Characteristics on Contributor Participation - Chapter 4

Contributor participation is a function of the willingness, capacity, and opportunity of contributors
and their interactions. Existing studies analyzed various factors along the three dimensions and stud-
ied their influence on contributor participation. For instance, studies explained the influence of will-
ingness on contributor participation in terms of intrinsic motivation, extrinsic motivation, feeling of
fairness, etc. The influence of capacity on contributor participation was explained in terms of knowl-
edge, age, personality, etc. Similarly, initial environment, demographics, etc., - variables of opportunity
of contributors are seen to influence contributor participation. Our studies bridge few gaps in litera-
ture to analyze the influence of some project and contributor characteristics in explaining contributor
participation. Particularly, we explain the rise and fall of developer participation due to competing
projects, the effect of personality traits on levels of contributions, and the impact of role reputation
and contribution on developer participation.
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3. Rise and Fall of Developer Participation due to Competing Projects

A majority of Open Source Software projects fails due to their inability to garner significant and
sustained developer community participation. The problem proliferates when competing projects
emerge from the source code of an existing project, a phenomenon called forking of the original
project, claiming existing and potential developer community participation. Our study empirically
analyze the influence of forking on the sustainability of the developer community participation in the
original project. Further, it explains the observed behavior in terms of the characteristics of the project
observed at the time of forking. A large-scale study of 2,217 projects hosted on GitHub shows that 1

in every 5 original projects observes a decline in the sustainability of the developer community partic-
ipation after forking. The negative effect is more pronounced in projects ported to GitHub from other
platforms (∼20%), compared to GitHub developed projects (∼9%). Also the observed behavior can be
explained in terms of the characteristics of the competing projects at the time of forking. For instance,
in medium sized projects an increase in the maturity of the original project by a year decreases the
odds of decline in the sustainability of the developer participation by 23%.

One in five projects observe decline in developer participation when competing projects grow.
This rise and fall of developer participation can be explained in terms of the characteristics of
competing projects.

4. Effect of Personality Traits on Levels of Contribution

People’s personality has the potential to explain the behavior in different contexts. Our study explores
the inferential power of personality traits in explaining the behavior of contributors in various contexts
of software development in GitHub. Analyses of 243 actively discussed projects showed that the
contributors with high or low levels of contributions are more neurotic compared to the contributors
with medium level of contributions. Analyses of 423 active contributors showed that contributors
evolve as more conscientious, more extrovert and less agreeable over the years of participation. The
findings of this study match our intuitions and are promising for further explorations.

Certain personality traits are associated with higher levels of contributions. Personality traits
of active contributors evolve with time. Personality traits of contributors are context-specific.

5. Impact of Role Reputation and Contribution on Developer Participation

Understanding and measuring factors influencing future participation is relevant to organizations.
This information is useful for planning and strategic decision-making. Our study measures contrib-
utor characteristics and compute attrition to investigate their relationship by mining Issue Tracking
System. The experiments are conducted on the four years data extracted from Google Chromium
Issue Tracking System. Experimental results show that the likelihood of future participation increases
with increase in relevance of the role in project and level of participation in previous time-interval.

Role reputation and contribution is directly proportional to the likelihood of developer partici-
pation.

Measures of Contributor Productivity - Chapter 5

Measuring contributor productivity is important to identify expertize, generate awareness, identify
strengths and areas of improvements, etc. Our studies propose metrics for individuals and team to
help analyze contributions and team stability respectively.

6. Measure Individual Contribution

Individual contribution and performance assessment is a standard practice conducted in organiza-
tions to measure the value addition by various contributors. Accurate measurement of individual
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contributions based on pre-defined objectives, roles and key performance indicators is a challeng-
ing task. Further, appraisers discern the need to scrutinize underpinning factors involved in perfor-
mance appraisal. Our study presents ‘Samiksha’ - a framework for contribution and performance
assessment of software maintenance professionals by mining software repositories. The framework
provides 11 role-based contribution and performance assessment metrics and demonstrate the results
on real-world data of Google Chromium Issue Tracking System. The requirement gathering of factors
influencing performance is based on survey conducted on experienced software maintenance profes-
sionals. Further, we propose a framework for visualization - ‘SamikshaViz’ to study panoramic view
of individual’s contribution and performance in a team. These visualizations reinforce and extend the
rationale of the metrics proposed in ‘Samiksha’ and gather detailed insights for appraisers to justify
performance. The results are validated by practitioners in industry.

Performance indicators perceived important by managers are not measured in practice. Role
based metrics based on key performance indicators are useful.

7. Measure Team Contribution Patterns

Community management is challenging in Open Source Software projects as contributor participation
is fluid. Contributor churn (joining or leaving a project) causes failure of the majority of software
projects. We present a framework to characterize stability of the community in software maintenance
projects by mining Issue Tracking System. Our study identifies key stability indicators, proposes
metrics to measure them, conducts time series analysis on metrics data to examine the stability of
the community and models community participation patterns to forecast future participation. A case
study of Google Chromium project investigates the inferential ability of the framework.

Metrics to measure temporal developer participation help analyze stability of project.



2A I D S A N D I M P E D I M E N T S I N T H E R A M P - U P J O U R N E Y O F N E W H I R E S

Hiring top talent is essential for any software company’s success. After joining the company, new
hires often spend weeks or months before making any major contribution and attaining the same
productivity level as existing employees. Ramp-Up journey refers to this transition of new hires from
novice to experts. There can be several factors, such as lack of experience or lack of familiarity with
processes unique to the new company, which influence the ramp-up journey. To understand such aids
and impediments in the ramp-up journey, this chapter provides a study by analyzing data extracted
from version control systems of eight large and popular product groups in Microsoft with several
thousand software developers. In particular, we studied two aspects of the ramp-up journey.

First, we studied time taken to make the first check-in into the version control system, an impor-
tant milestone in the ramp-up journey indicating the first contribution. Second, we analyzed the time
taken to reach the same productivity level as existing employees in terms of check-ins. We further
augmented our quantitative study with qualitative results derived by surveying 411 professional de-
velopers. In this Chapter, we describe the work and results obtained. Our study produced promising
results, including factors such as having a mentor, prior knowledge of required skill sets and proac-
tively asking questions, that could help improve the ramp-up journey of new hires.

2.1 introduction

Hiring new talent is one of the core competencies of any software company, to meet evolving business
requirements and to stay ahead of its competitors. For instance, over the past decade Microsoft hired
several thousand software developers each year. These new hires range from fresh college graduates
without any prior industry experience to professional developers with several years of experience.
Soon after on-boarding the company, new hires undergo rigorous training in getting familiar with not
only their assigned project, but also with processes and the overall culture of the company. Therefore,
new hires take some time before making any contribution to their project and becoming as productive
as existing employees. We use the term ramp-up journey to refer to this time period spent by new hires
in transitioning from novice to experts and becoming as productive as existing employees.

There exists several reasons why ramp-up journey of new hires can span up to several weeks
or months. In the case of college graduates, despite of best curricula there are still gaps between
what graduates learn in the college and what they need to know to be productive in a typical work
environment [79][80]. For instance, graduates are trained in various skills such as programming and
development methodologies (Agile or Extreme Programming). However, college graduates often lack
communication and teamwork skills, and are also not prepared to deal with various aspects such as
complex development processes, legacy code, and tight deadlines [81]. On the other hand, experienced
professionals, although familiar with some aspects such as working under tight deadlines, also face
challenges in a new company. The primary reason is that different companies use different processes,
technologies, tools, etc. For example, IBM primarily uses Rational Team Concert [82] as a version
control system, whereas Microsoft primarily uses Source Depot, Team Foundation Server [83], or
Git [84]. Therefore, experienced professionals need to master new processes and technologies before
becoming as productive as existing employees [85].

To understand the aids and impediments in the ramp-up journey of newly hired software develop-
ers, we conducted a large-scale study that uses mixed data analysis. Our analysis combines software
engineering data extracted from version control systems and qualitative data from surveys and in-
terviews. We analyzed recent releases of eight large and popular product groups in Microsoft with
several thousand software developers. These eight product groups account for the majority of engi-
neering workforce at Microsoft. We observed that 14-49% of all software developers in product teams
considered in our study are new hires (refer Figure 3). In Figure 3, the horizontal axis shows differ-
ent product groups and the vertical axis shows percentage of new hires for the duration of product
release under analysis. We use P1 to P8 to identify different product groups and to anonymize the
results for confidentiality. Percentage of new hires in product groups as high as 49% makes it inter-
esting to understand factors that influence the time it takes for new hires to become productive. To
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Figure 3: Percentage of new hires in different product groups

gain deeper understanding of the factors that influence the ramp-up journey of new hires with dif-
ferent experience levels, we used three levels to represent new hires: entry, middle, and senior. Entry
level represents developers such as college graduates without any prior industry experience. Middle
level represents developers with 1-3 years of experience or have higher qualification such as doctorate
degree. Finally, senior level represents developers with more than 3 years of experience.

We analyze the ramp-up journey of new hires on two aspects. The first milestone in the ramp-up
journey of new hires is achieved when new hires make first check-in into the version control system.
Specifically, we examine check-ins in the master branch or shippable branch. The choice of master or
shippable branch ensures that all check-ins analyzed in the study mark significant contribution and
are not test check-ins. Thus, first check-in ensures that new hires have attained a basic understanding
of the engineering system used by the project and also some basic knowledge of the project to achieve
the task. Finally, new hires ramp-up when they attain the productivity level of existing employees. In
this study, we measure the time to first check-in and the ramp-up time to analyze the productivity of
new hires and understand factors that influence the ramp-up journey.

Our motivation is that the results of our study help fix the problems from a two pronged approach
for both industry and academia. From the industry perspective, this information help managers and
business analysts fix some of the bottlenecks in the existing processes and improve useful practices
to help new employees ramp-up faster, increase morale, improve productivity, etc. From an academic
perspective, the study can help faculty understand the skills needed for the students to succeed in
the industrial environment. To summarize, in this study, we try to answer two broad sets of research
questions:

1. The factors that influence the ramp-up journey of new hires; and

2. The amount of time it takes for new hires to become productive.

To the best of our knowledge, our study is the first that attempts to combine both quantitative
and qualitative data to address these questions. There have been prior studies [86][87][88] discussed
in related work that approach this from different perspectives like interviews, surveys, etc. However,
we are the first to quantitatively combine both software engineering data and data from developers’
opinions. Noteworthy to add that some of the findings from this study may already be known in the
industry, however, there exists no empirical evidence drawn from a systematic analysis of software
engineering data. We believe that product teams can use the results from this study to adopt best
practices.

Our results indicate that the ramp-up journey is influenced by various factors in the company. We
discovered that while having a mentor, prior knowledge of required skill sets, etc. help in increasing
the productivity; lack of proper documentation, trying to get access and permissions, etc. reduce the
productivity of new hires. We complete the story by presenting a comprehensive list of activities that
new hires engage in and present their suggestions to improve the productivity.



2.2 related work 17

Figure 4: Data collected by CodeMine

2.2 related work

There exists a large body of research on integrating freshly recruited university graduates into the
organization. Begel and Simon conducted a qualitative analysis of fresh university graduates. They
observed that a large fraction of problems encountered by university graduates is due to their inex-
perience with the corporate environment [86]. Dagenais et al. provided an initial theory on project
landscapes to help new hires familiarize faster with the team [87]. Their study emphasized the rel-
evance of mentor and good documentation to help new hires adjust and perform in team. Sim and
Holt interviewed new hires to identify patterns in which they familiarize themselves with the project
and the environment, and discussed its implication [89]. Besides these, Ostroff investigated the role of
mentoring in the learning process of newcomers [88]. The author observed that newcomers with men-
tor have a better understanding of organizational issue and practices compared to others. Another
class of study provide recommendations to bridge gaps between the understanding of college gradu-
ates and the requirements of the industry. Raderwacher and Walia conducted a systematic literature
review to identify the most common areas of deficiency in university graduates from academia or
industry job perspectives [90]. Similarly, Begel and Simon observed difficulties in the transition from
college graduates to experienced software engineers and suggested changes in curricula and soft-
ware engineering courses[80]. Brechener goes on to recommend courses that might help bridge the
expectation gaps between academia and industry [79]. The existing studies have largely focused on
understanding problems encountered by fresh university graduates and attended this question from
the qualitative analysis perspective. In relation to existing studies, our study makes the following two
novel contributions:

1. We study the ramp-up journey of new hires ranging from fresh university graduates to profes-
sionals with prior job experience.

2. We quantitatively analyze the software engineering data and augment the results with qualita-
tive analysis.

2.3 background

CodeMine [91] provides a data collection framework for all major Microsoft development teams. It
collects information from source code repositories, irrespective of their format, and stores data on
changes, sources, branches, and code integrations in a normalized schema. It does the same for
builds, work item repositories, and organizational data. After normalizing into a common schema
(see Figure 4), it creates relationship between artifacts. For example, it creates relationship between
work items and source changes to capture the changes made in response to a work item. Similarly, it
creates relationship between builds and source code to capture the changes which appeared for the
first time in a particular build. When the relationships are built, CodeMine exposes all collected and
interpreted data as a service. As a result, the tool is ideal for learning about the practices used across
teams and developing a set of metrics that can be used for generally characterizing branch structures.
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Table 1: Products and start-end date of the releases
Products Start Date End Date

Azure 2011-01-01 2013-12-31

Bing 2009-12-30 2013-11-12

Exchange 2010-10-01 2013-08-31

Office 2011-09-01 2013-08-31

SQL Server 2009-07-01 2012-03-06

Windows 2009-10-22 2013-07-01

Windows Phone 2010-07-03 2014-02-03

Windows Server 2009-10-22 2013-07-01

2.4 methodology

2.4.1 Data Collection

In this section, we describe the data collection methodology for our study. We use a mixed data
analysis technique combining software engineering data extracted from version control systems and
qualitative data from surveys and interviews, to answer our research questions. Table 1 summarizes
the products from which we analyzed new employees and the start-end date of the releases under
analysis.

To determine the ‘new hires’ in our analysis, used in the rest of the study, the employee in the
software development role had to satisfy one or more of the following four criteria:

1. The employee is a university recruit or this is the first company of the employee.

2. The employee joined the company as an intern or vendor and converted to a full time position.

3. The employee left the company and joined again after at least a year.

4. The employee worked for other companies in the past.

In point 3, we consider returning employees as new hires because they have to adapt to the rapidly
changing technology and practices in the company, in addition to the other factors. The rest of the
software developers, including internal transfers, are termed as existing employees for this study.
Next, we explain below the quantitative and qualitative analysis methodology.

2.4.2 Quantitative Analysis

The core part of our quantitative analysis is formed by the CodeMine data [91]. We use the version
control system database and the employee information database as the starting point in our analysis.
In the ramp-up journey, for new hires to transition from novice to experts, they have to attain the pro-
ductivity level of existing employees. To do so, we first define a baseline for productivity of software
developers in the context of our study.

Software developers perform various activities like writing code, reviewing code, debugging code,
etc. The objective of these activities is to generate useful features, provide fixes to existing bugs, etc.
In Microsoft, all software developers are expected to make code check-ins into the version control
system as part of developing new features or making bug fixes. So, one denomination to measure
the contribution of software developers is code check-ins. In this study, we examine various factors
related to code check-in to suggest the productivity of software developers.

The first milestone in the ramp-up journey of new hires is when they make their first check-in
into the version control system. First check-in marks the first useful contribution, and time to first
check-in indicates the time it takes to make a useful contribution. Since, the first check-in alone does
not suggest that the developer is productive, we also measure the time to ramp-up. We quantify the
ramp-up time as the time it takes for a new hire to reach the average productivity level of existing
employees. To measure the time to ramp-up, we examine the frequency of check-ins as an indicator
of the familiarity with the process that comes with initial experience. Thus, frequency of check-ins
measure the familiarity with the process. However, it falls short to comment on the efforts and the
span of knowledge required to implement the change. To capture these features, we examine artifacts
related to source code like lines changed and files changed. Lines changed indicate efforts of software
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developers, where the contribution can be in the form of code, comments, or documentation. Similarly,
files changed indicates that the developer has acquired an understanding of a set of files and their
relationships. These measures, that is, check-ins count, lines of code changed, and files changed have
also been used in literature to measure developer’s contribution [92][93].

In this section, we measure the time to first check-in and examine the ramp-up time using frequency
of check-ins, lines changed, and files changed. Here, it is important to note that the three metrics used
to compute ramp-up time are not exhaustive. However, the three metrics capture the key contributions
of software developers and give a fair picture of the ramp-up journey. In addition to this, we examine
the influence of 1) experience, 2) product team of the new hire, 3) proximity to the core team and 4)
internship within the same company on the time to first check-in and the ramp-up time. In this study,
we try to answer the following research questions:

RQ1 Does the product group of new hires influence the time to first check-in?

RQ2 Does prior job experience, within or outside the company, influence the time to first check-in?

RQ3 Does proximity to the core team influence the time to first check-in?

RQ4 Does internship within the company influence the time to first check-in?

RQ5 Does early check-in correlates with early ramp-up?

RQ6 Is ramp-up journey a function of experience and product?

RQ7 Is ramp-up journey a function of proximity to the core-team and internship within the company?

2.4.3 Qualitative Analysis

To complete the understanding of factors that influence the ramp-up journey of new hires, we aug-
ment quantitative analysis with qualitative results. Here, qualitative results include a small set of
interviews and a broad deployment of a survey directed towards new hires at Microsoft. To get a
flavor of factors that influence the ramp-up journey of new hires and to help with designing the
survey, we conduct a small scale interview of four software developers. Three out of the four intervie-
wees were ‘Entry Level’ software developers and one of them was ‘Senior Level’ software developer.
We interviewed software developers for a half hour each and presented them with two open-ended
questions.

1. What factors supported or undermined their attempts to make early first check-in and reduced
the time to ramp-up?

2. What could have been done to reduce the time to first check-in and the ramp-up time?

We use the responses from the four interviews to formulate two sets of multiple-choice questions, in
addition to the demographics and open ended questions. The first set of questions try to understand
the influence of specified factors on the time to first check-in. Similarly, the second set of questions
try to understand the effect of specific factors on the time to ramp-up. The two sets of questions are
evaluated on a 5-point Likert scale, along with an additional field titled ‘I don’t know’. The field ‘I
don’t know’ is intended to address cases where the survey respondents have no understanding of the
situation described as factors influencing the ramp-up journey. Both sets of questions are followed by
an open ended question to capture factors that are not mentioned in the list. Next, we asked software
developers the list of activities, other than code check-in, that demands their time and efforts. Finally,
we requested their suggestions on practices that may help reduce the ramp-up time.

To conduct the survey, we identified software developers from the eight product groups based on
the following criteria:

• Developers have some minimum experience with the aids and impediments that can be faced
during ramp-up.

• The aids and impediments encountered during the ramp-up journey are still fresh in their
minds.

• Have a reasonable sample of new hires, as we anticipated a response rate of ≈ 20% based on
previously conducted studies.
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Table 2: Statistical significance of survey results
Parameter Increase No effect Decrease p-value

Lack of proper documentation for the project 267 63 75 <0.001***

Based on the above criteria, we identified 1,189 software developers with 6 to 13 months of ex-
perience at Microsoft on the date of analysis. The survey was sent to all identified software devel-
opers representing different roles, career stage paths, and nationalities. We received 411 completed
responses (34.57% response rate), 1 partially filled response, and no disqualified response. 99.8% of
the responses we received were from individual contributors. The other roles asked in the survey
were lead and manager.

As we present the qualitative results, we first analyze the usefulness of the summaries of survey by
computing statistical significance using chi-square test at 0.05 significance level. To compute statistical
significance, we convert the ordinal scale to its nominal equivalent. We merge ‘Strong Increase’ with
‘Moderate Increase’ and collectively present the result as ‘Increase’. Similarly, we merge ‘Strong De-
crease’ with ‘Moderate Decrease’ as ‘Decrease’. The rest two categories, ‘I Don’t Know’ and ‘No Effect’
are considered as one and are titled ‘No effect/I don’t know’. For each statistically significant result,
we compute the central tendency as the most frequent response or ‘mode’ and present the results.
Table 2 presents a sample question asked in the survey that tries to understand the impact of ‘Lack of
proper documentation for the project’ on the time to first check-in. A detailed discussion of the com-
plete list of factors is given in the next two sections. In Table 2, 267 survey respondents said that lack
of proper documentation for the project increases the time to first check-in. 63 survey respondents
either did not encounter this problem or considered that it had no effect, and 75 responses suggested
that it decreases the time to first check-in. We conducted chi-square test and observed p-value<0.001.
P-value<0.001 gives a very strong presumption against the null hypothesis, thereby suggesting that
the result is statistically significant. The claim made by central tendency summaries, as identified by
mode, is that ‘Lack of proper documentation increases the time to first check-in’.

In the next two sections, we present an analysis of the time to first check-in and the ramp-up time
respectively. We quantitatively analyze the time to first check-in and the ramp-up time, followed by
the summaries of the multiple choice questions asked in the survey. Further, to complete the analysis,
we present the opinions of survey respondents presented in the open ended questions. We present
the list of activities that claim the time and efforts of new hires and also suggestions from the survey
respondents to improve the ramp-up journey. We card sort the opinions of the new hires in the open-
ended questions and present it in the non-increasing order of the frequency of occurrence.

2.5 time to first check-in

The time to first check-in marks the first step in the ramp-up journey of new hires. We measure the
time to first check-in as the duration from the starting date at Microsoft until the time the new hire
makes first check-in into the master branch of the version control system. For confidentiality reasons,
we obscure the unit of time used in the study and report the results.

2.5.1 Quantitative Analysis

RQ1: Does the product group of new hires influence the time to first check-in?
Microsoft is a large software company with multiple product divisions. Each product division at
Microsoft is slightly different from other divisions in terms of tools, technologies, or processes being
used. Here, we are interested to know whether working with some specific product group helps new
hires make early first check-in into the system. By answering this question, we can identify some of
the best practices in product groups which can then be transferred to other product groups. To do
so, we measure the time to first check-in for all new hires in the eight product teams and compute
quartiles. The choice of quartiles for the study ensures that our results are not affected by outliers.
Figure 5 shows the boxplot of the time to first check-in for the new hires in the eight product teams.
Here, the horizontal axis shows the product groups and the vertical axis shows the time to first
check-in measured in weeks. In Figure 5, we observe that the median of the population of new hires
across all product divisions take ≈4-10% of the maximum time to first check-in. The analysis of eight
product groups at Microsoft suggests that working in some specific product group has no significant
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Figure 5: Product groups and time to first check-in Figure 6: Experience and time to first check-in

impact on the time to first check-in. However, we see that the third quartiles of the product teams
show marked differences. Figure 5 shows that new hires in products P2 and P8 take longer (≈34%
and ≈43% of the maximum time to first check-in across products respectively) relative to other prod-
uct groups (minimum ≈14% in product P5). Further investigation is required to understand the cause.

RQ2: Does prior job experience, within or outside the company, influence the time to first check-in?
Microsoft recruits several thousand new hires every year, ranging from fresh university graduates to
professionals with prior job experience. Here, we are interested to know whether prior job experience
help new hires make early first check-in into the system. To investigate the impact of prior job ex-
perience on the time to first check-in, we analyze the influence of the career stage path or job title,
an indicator of experience, on the time to first check-in. At Microsoft, professionals are hired with
job-titles that conform to their prior job experience. For instance, professionals with 1 to 3 years of
experience are hired as ‘Middle Level’ software developers. Thus, in this study, we analyze the role of
job title on the time to first check-in. To start with, we classify job titles in Microsoft into ‘Entry Level’,
‘Middle Level’ and ‘Senior Level’ software developers. ‘Entry Level’ include software developers with
job titles ‘Software Development Engineer (SDE)’ and ‘IT SDE’. ‘Middle Level’ include job titles ‘SDE
2’ and ‘IT SDE 2’, and ‘Senior Level’ include job titles ‘Senior SDE’, ‘Principal SDE’, ‘Partner SDE’ ,
and ‘Distinguished Engineer’. For each career stage path, we compute the time to first check-in for all
new hires and plot the results.

Figure 6 shows the viola plot where the horizontal axis shows the three career stage paths of
software developers and the vertical axis shows the time to first check-in (measured in weeks). The
plot in Figure 6 is a combination of box plot and smoothened density function where the density
function indicates the developer distribution pattern. Thus, broader the width; higher the fraction of
new hires that takes specific time to make first check-in. In Figure 6, we observe that the percentage
increase in the median time to first check-in for middle and senior level software developers is ≈20%
relative to entry level software developers. Least median time to first check-in for entry level software
developers imply that developers with no or less than a year of prior job experience makes early first
check-in compared to experienced new hires. Further, we observe that middle level and senior level
software developers have the same median time to first check-in with different density distributions.
The density distribution for senior level software developers peaks at median, relative to the spread
of middle level software developers. This distribution implies that senior level software developers
perform consistently and make early first check-ins compared to middle level software developers.
This observation calls for further investigation to understand the factors that influence the time to
first check-in for all levels of software developers.

RQ3: Does proximity to core team influence the time to first check-in?
Companies adopted distributed development as a strategic response to increasing concerns such as
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Figure 7: Proximity to core team and first check-in time Figure 8: Prior engagement and first check-in time

skill set unavailability, acquisitions, and government restrictions [94]. However, distributed develop-
ment has its own challenges such as restricted and delayed communication, and less shared project
awareness. Owing to these challenges, it is interesting to understand the influence of distributed de-
velopment on the ramp-up journey of new hires. In particular, here we are interested in studying
how proximity to the core of a team in a distributed-development environment influences the time to
first-check-in of a new hire.

To study the impact of distributed development, we classified all new hires into two categories:
employees hired within United States (US) and employees hired in the rest of the countries (Non-
US). In Microsoft, bulk of developers for all product teams is in the US. Therefore, the preceding
classification helps us understand the differences in the ramp-up journey when new hires are in
proximity to the core team.

We present the box and whisker plot, where the horizontal axis shows the geographical location
(‘US’ and ‘Non-US’) and vertical axis shows the time (refer Figure 7). In Figure 7, the percentage
decrease in the median time to first check-in for new hires in ‘US’ relative to the new hires in ‘Non-US’
is ≈ 57% when measured in weeks. Thus, new hires in the ‘US’ category make early first check-in
compared to new hires in the ‘Non-US’ category.

RQ4: Does internship within the company influence the time to first check-in?
Companies make huge investments in internship programs. For example, analysis of different product
groups at Microsoft suggested that between 7% and 26% of new hires in those groups had prior
internship experience at Microsoft. Apart from giving industry exposure to students, companies view
internship programs as a means to identify prospective employees and assess their strengths in real
workplace situations [95]. Given its importance, we plan to understand whether new hires with prior
internship experience ramp-up faster than others. To study the impact of internships, we classified all
new hires into two categories: employees who had prior internship experience at Microsoft (Interns)
and others (Non-Interns).

Figures 8 shows the impact of internship on the time to first check-in of new hires. Here, horizontal
axis shows the engagement of new hires as ‘Interns’ vs. ‘Non-Interns’, whereas, vertical axis shows
the time to first check-in. In Figure 8, the median time to first check-in reduces by ≈ 33% for ‘In-
terns’ relative to ‘Non-Interns’ when measured in weeks. Thus, new hires who had a prior internship
experience at Microsoft tend to make early first check-in compared to other new hires.

2.5.2 Qualitative Analysis

To present a comprehensive list of factors that influence the ramp-up journey, we present the opinions
of new hires at Microsoft on the factors that influence the time to first check-in. We asked new hires
the effect of a set of factors on the time to first check-in. These questions are based on the interviews
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Table 3: Influence of the following factors on the time to first check-in [SI: Strong Increase; MI: Moderate Increase;
NE: No Effect; MD: Moderate Decrease; SD: Strong Decrease; DK: Don’t Know]

How do the following items affect the time to first check-in? P1 P2 P3 P4 P5 P6 P7 Statistical
Significance

Lack of proper documentation for the project SI SI SI SI SI MI MI <0.001***

Getting access and permissions MI MI MI SI SI MI MI <0.001***

Working on a code with dependencies to others’ work SI MI MI MI - MI MI <0.001***

Working on preparatory tasks (like code review, coding assignments,
etc.)

MI MI MI SI MI MI MI <0.001***

Working on legacy code MI MI NE MI MI MI MI <0.001***

Availability of resources (like desktop, task related equipment(s) on
arrival)

NE NE NE SI SI - MI 0.25

Join the team near product release NE NE NE SI DK NE DK <0.001***

Changing products, such as moving from Windows DK DK DK NE NE NE DK <0.001***

Writing new code than fixing issues NE NE NE MI MI NE DK <0.001***

Identifying the reviewers for the code NE NE NE MI NE NE NE <0.001***

Changes in team composition, such as change of immediate manager NE NE NE NE NE NE NE <0.001***

Making check-ins in branches other than the main branch NE NE NE NE NE NE MI <0.001***

conducted with four new hires with different career stage paths. Table 3 shows the impact of these
factors on the time to first check-in. The opinions of new hires are presented on the scale of ‘Strong
Increase’ to ‘Strong Decrease’. We use an additional field titled ‘I don’t know’ to account for cases
where survey respondents have no opinion on the impact of the factor asked in the survey. Table 3

presents the opinions of new hires in 7 (out of 8) product groups as there was no survey response
from one product group analyzed in this study. These observations can be used by the product groups
to identify and eliminate bottlenecks in the process and help improve existing practices.

To visualize trends across product groups, we color code the observations in Table 3. Here, we
present areas of improvement as shades of red and good practices as shades of green. The factors on
which survey respondents have no opinion are presented as yellow. We leave the factors with no effect
colorless. Also, ‘-’ indicates that we received insignificant responses from the product division on the
influence of the factor to support interpretation. Further, darker the color; stronger is the impact. Thus,
dark red (on a relative scale) means that the parameter strongly increases the time to first check-in.
In Table 3, all results, except for ‘Availability of Resources on Arrival’ are statistically significant. We
present summaries of statistically significant results and open ended responses.

In Table 3, we see that lack of proper documentation increases the time to first check-in. The lack
of proper documentation strongly increases the time to first check-in in 5 (out of 7) product groups.
While for the rest 2 product groups, it moderately increases the time to first check-in. Also, getting
access and permissions, working on codes with dependencies, and working on legacy codes moder-
ately increases the time to first check-in for majority of product teams. 4 out of 7 product teams say
that joining the team near product release has no effect on the time to first check-in, while the other
2 teams did not comment on it. It is noteworthy to see that new hires in product P4 says that joining
the team near product release strongly increases the time to first check-in. Besides these, changing
product teams, writing new code compared to fixing the issues, identifying the reviewers for the
code, changes in team composition, and making check-ins in branches other than the main branch
have no effect for the majority of product teams. One key observation from this analysis is that not all
product teams are influenced by all the parameters stated above. Also, the degree of influence varies
substantially across product teams.

In the open-ended question that followed, we asked survey respondents to enumerate factors, other
than the ones listed in the survey, which influence the time to first check-in. We card-sorted the
responses in the open-ended question and found the following themes that influence the masses. The
themes are presented in the non-increasing order of occurrence.

1. Mentorship: Software developers stressed the importance of having a manager, mentor or lead,
to talk to, during the initial days. They said that mentors can assist new hires in getting un-
stuck and make early first check-ins. Also, software developers who were not assigned mentors
experienced significant loss of time.

2. Documentation: Software developers feel that lack of detailed documentation of products and
processes strongly increase the time to first check-in. To add to, the documents are stored at
different places, in different formats, and some documentation is out of date.
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Table 4: Correlation between time to first check-in and ramp-up time after first check-in
P1 P2 P3 P4 P5 P6 P7 P8

Commit Counts -0.06 -0.01 -0.09 -0.22 +0.04 -0.00 -0.04 +0.13

Lines Changed -0.07 -0.09 -0.24 -0.39 -0.13 +0.10 -0.34 -0.31

Files Changed -0.13 -0.18 -0.18 -0.52 -0.21 -0.00 -0.16 -0.30

3. Process: Software developers feel that engineering processes need some improvement. They be-
lieve that the use of standard components, for which documentations and manuals are available
widely, will help reduce the time to first check-in.

4. Access and Permissions: New hires feel that it takes time to figure out the desired access and
permissions. They suggest that it will be helpful to associate access and permissions with the
team and not the individuals.

5. System setup: Software developers say that they spend a considerable amount of time to set-up
environment and configurations, which can be improved.

Besides these, developers find that the lack of confidence to make changes, large size of the code
base to study, lack of technical skills required for the job, development environment, meetings with a
broader scope (not targeted), and frequent manager changes increase the time to first check-in.

2.6 time to ramp-up

2.6.1 Quantitative Analysis

New hires take time to reach the productivity level of existing employees. The amount of time taken
to ramp-up influences resource planning, effort estimation, and hence the productivity of the team.
Therefore, managers and business analysts might be interested to know the time to ramp-up and
study its impact. In this study, we define ramp-up time of new hires as the time required to reach the
median productivity level of existing employees. We measure the time to ramp-up on three param-
eters, namely the frequency of check-ins, lines changed, and files changed. To establish the baseline,
we measure the median check-in counts, lines changed, and files changed for existing employees in
each product per unit time. We then measure the unit of time it takes for the new hires to reach the
median productivity level of existing employees. In this section, we are interested to find answers to
the following research questions:

RQ5: Does early first check-in correlates with early ramp-up?
Managers and business analysts might be interested to understand the best practices that help reduce
the ramp-up time. We analyze whether early first check-in helps new hires ramp-up faster, compared
to others who take longer to make first check-in. For all product teams, we compute the correlation
between the time to first check-in and the time to ramp-up after first check-in. We compute the
correlation on check-in counts, lines changed, and files changed using Spearman’s rank correlation
coefficient. For all three parameters, we observe negligible to weak correlation ranging from +0.10 to
-0.39 (refer Table 4). Negligible to weak correlation between the time to first check-in and the ramp-up
time suggests that the time to ramp-up is not a function of the time to first check-in. However, the
negative magnitude of correlation implies that new hires who take longer to make first check-in do
not necessarily take longer to ramp-up after first check-in.

RQ6: Is ramp-up journey a function of experience and product?
In the previous section, we examined the impact of experience and product group on the time to
first check-in. We observed that the median time to first check-in is similar across all product groups
analyzed. Also, we saw that middle level software developers’ take longer than entry level and senior
level software developers to make first check-in. Here, we are interested to know that similar to the
time to first check-in, does experience and product team influence the ramp-up time?

For each product group, we compute the median time to ramp-up and present the results (as shown
in Figure 9). In Figure 9, the horizontal axis shows the product groups and the vertical axis shows
the time to ramp-up in months. The legend refers to the three parameters we used to measure the
time to ramp-up. In Figure 9, we observe that new hires ramp-up on the three parameters stepwise.
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Figure 9: Product groups and time to ramp-up Figure 10: Experience and time to ramp-up

First, new hires ramp-up on check-in counts, followed by lines changed, and files changed. This
follows the intuition that making changes to multiple files require broad understanding of the task,
and hence takes longer than ramping-up on check-in counts, or lines changed. Also, we observe that
the median time to ramp-up on eight product groups is similar for check-in counts (≈32-45% of the
maximum time to ramp-up measured in months). However, it varies significantly for lines changed
(≈45-81%) and files changed (≈68-100%). A large variance in the ramp-up time on lines changed and
files changed indicates differences in the ramp-up time across products. This information can be used
by managers and business analysts in understanding the productivity of new hires across products,
make better effort estimations, conduct resource planning, and take appropriate actions.

Figure 10 shows the time to ramp-up based on experience. In Figure 10, the horizontal axis shows
experience as identified by the title and the vertical axis shows the time to ramp-up (measured
in months). We analyze the median time to ramp-up on check-in counts, lines changed, and files
changed. We see that the percentage increase in the median time to ramp-up on check-in counts for
different experience levels is ≈5%. Thus, experience has no impact on ramp-up time on check-in
counts. However, for ramp-up on files changed and lines changed, we see that middle and senior
level software developers take marginally longer than entry level software developers to ramp-up.
The percentage increase in the median ramp-up time on lines changed for middle level and senior
level software developers is ≈13% and ≈6% respectively relative to entry level software developers.
Similarly, the percentage increase in the median time to ramp-up on files changed is ≈22% for middle
level and senior level software developers relative to the entry level software developers.

RQ7: Does proximity to core team and internship within the company influence the ramp-up time?
In the previous section, we examined the influence of proximity to core team and internship within
the company on the time to first check-in. We observed that proximity to core team and internship
within the company reduces the time to first check-in. Here, we are interested to know that similar
to the time to first check-in, does proximity to the core team and internship within the company
influence the time to ramp-up?

Figure 11 shows the ramp-up time of new hires classified by their proximity to the core team. We
present the box and whisker plot, where the horizontal axis shows the geographical location (‘US’
and ‘Non-US’) and the vertical axis shows the time. In Figure 11, the percentage decrease in the
median time to ramp-up for new hires in ‘US’ relative to new hires in ‘Non-US’ on check-in counts,
lines changed and files changed is ≈8%, ≈6% and ≈4% respectively when measured in months. This
implies that the three metrics used to measure the ramp-up time, i.e., check-in counts, lines of code
changed, and the number of files changed show only a marginal difference in the median ramp-
up time among new hires in ‘US’ and ‘Non-US’. New hires in ‘US’ take marginally less time than
their ‘Non-US’ counterparts. Our observations suggest that proximity to the core team does help the
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Figure 11: Proximity to core team and time to ramp-up Figure 12: Prior engagement and time to ramp-up

ramp-up journey of new hires in the beginning, however, the effect decreases in the overall ramp-up
journey.

Figure 12 shows the impact of internship on the ramp-up journey of new hires. Here, the horizontal
axis shows the engagement of new hires as ‘Interns’ vs. ‘Non-Interns’ whereas the vertical axis shows
the ramp-up time. In Figure 12, the percentage decrease in the time to ramp-up for ‘Interns’ relative
to ‘Non-Interns’ on check-in counts, lines changed and files changed is ≈10%, ≈6%, and ≈5% respec-
tively. Thus, interns ramp-up faster compared to non-interns, however, the time difference is marginal
compared to the time to first check-in (refer Figures 8 and 12). We also observe similar patterns for
other quartiles. Therefore, our observations indicate that familiarity with people, process, and product
acquired during the internship experience indeed influence the time to first check-in. However, the
effect attenuates in the long run as non-interns only take marginally more time to ramp-up than their
counterparts. This observation implies that among other factors, internship experience does help new
hires to ramp-up faster.

2.6.2 Qualitative Analysis

We present the opinions of new hires at Microsoft on the factors that influence the time to ramp-
up. We asked the new hires the effect of the factors (mentioned in Table 5) on the time to ramp-
up. These questions are based on the interviews of new hires who followed different career stage
paths. Table 5 shows the central tendency summaries, as presented by mode, for the 7 (out of 8)
product groups analyzed in the study. Similar to the previous section on qualitative results, here
red indicates areas of improvement, green indicates good practices, yellow implies don’t know, and
colorless means no effect. Also, darker the color means stronger the impact. In Table 5, all results,
except for ‘Communicating Technical Prerequisites’, are statistically significant.

In Table 5, we observe that prior knowledge of programming languages, programming environ-
ment, and tools help decrease the ramp-up time. Similarly, proactively asking questions, prior famil-
iarity with the process, and having a mentor decrease the time to ramp-up. Though, the influence is
different for products P4 and P5. Contrary to this, new hires say that maintaining documentations,
to do lists, and working on preparatory tasks increase the ramp-up. When asked about the impact of
prior familiarity with the team on ramp-up time, new hires expressed mixed opinions across product
teams. Also, 5 (out of 7) teams say that active participation in social events has no effect on the time
to ramp-up. The rest 2 teams say that it moderately increases the time to ramp-up. In addition to the
parameters stated above, software developers feel that the following practices influence their time to
ramp-up:

1. Team Interaction: New hires say that verbal communications in team and pair programming are
the most effective ways to ramp-up. They find that spending more time with the manager and
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Table 5: Influence of the following factors on the time to ramp-up [SI: Strong Increase; MI: Moderate Increase;
NE: No Effect; MD: Moderate Decrease; SD: Strong Decrease; DK: Don’t Know]

How do the following items affect the time to ramp-up? P1 P2 P3 P4 P5 P6 P7 Statistical
Significance

Prior knowledge about programming languages (such as C#), pro-
gramming environments (such as Visual Studio), or tools (such as
versioning tools)

SD MD SD - MD - SD <0.001***

Proactively asking questions to your manager, mentor or team SD MD MD - - SD MD <0.001***

Prior familiarity with processes (such as how effort estimation is
done or review process)

MD MD MD MI MI MD MD <0.05**

Having a mentor SD SD SD SI SI SD DK <0.001***

Maintaining documentation, to do lists, introductory videos for
different employee titles

SI NE SD SI MI MI MI <0.001***

Preparatory tasks (such as code review, building prototypes) or
training programs (like boot camp)

MI MI MD SI SI MI SI <0.001***

Communicating the relevant technical prerequisites (such as tools
and languages used) of an employee’s title, prior to joining

MD NE NE MI SI MI MI 0.66

Prior familiarity with team (such as the cases of moving from an
intern to a full time position)

NE DK DK MI MI DK DK <0.001***

Active participation in social events, such as team lunches etc. NE NE NE MI MI NE NE <0.001***

the team during first 1-2 months is helpful. They add that recently ramped-up employees reduce
the ramp-up time of new employees the most.

2. Training: Software developers say that training programs like boot camp, etc. are very helpful.

3. Overview of the system: Software developers say that well-chosen starting tasks that gives a com-
plete overview of the system helps reduce the ramp-up time.

4. Proximity to release: Developers find that joining the team after product release increases the time
to ramp-up as there is not much code to write.

Other than these, developers’ say that familiarity with people, customer, process, product, and code
helps improve the ramp-up journey.

2.7 other new hire activities

In the above two sections, we presented different factors that influence the ramp-up journey and
measured time to ramp-up using various features of check-ins. However, new hires perform various
activities, other than code check-ins, thereby making it important to understand the activities that are
not captured in the study. We asked the survey respondents the list of activities they perform and
present the themes arranged as different stages in the ramp-up journey of new hires.

New hires who relocated from other countries or states say that it takes time to settle in a new
place. Further, they add that on arrival, they have to set-up the system, get the required access and
permissions, enroll for benefits, get HR/staffing set up, etc. Once the required resources are made
available, new hires find themselves trying to understand the existing system and identify their role
in the team. They say that they undergo training programs, attend meetings, and study all kinds of
documentation to acquire the required technical and functional knowledge. They add, that sometimes
they are assigned code reviews, prepare prototypes or demos, or even read legacy code to get a better
understanding of the system. Further, in the process of knowledge transfer, they spend substantial
time in proactively asking questions. New hires emphasize that while they are learning and trying
to ramp-up, they also engage in other activities like testing, bug fixing, debugging, bug triaging,
identifying and resolving dependencies, etc.

New hires also identify some miscellaneous activities that claim their time and effort. They say that
they spend time in planning, writing proposals, estimate time for the task, perform production related
duties, add work items, participate in events like ‘Hackathon’, etc. While this list is not exhaustive, it
gives a fair understanding of the various activities that new hires perform other than code check-ins.
This list of activities suggest that while code check-in is a good indicator of productivity, it does not
present a complete picture.

We requested new hires for suggestions on practices that might help improve the productivity of
new hires. We believe that this information can help companies in improving the ramp-up journey of
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new hires. New hires suggest that improvements in engineering systems like applying companywide
coding standards, improved code base and documentation, easy tools, etc. will increase the produc-
tivity of new hires. These findings align with Microsoft’s recent initiatives such as One Engineering
System to have one common system across all projects. They emphasized the usefulness of training
tools and sessions, and guided work for a few weeks during ramp-up time. They also added that cen-
tralization of all information and clearly communicated expectations are other factors that accelerate
the ramp-up journey.

2.8 threats to validity

2.8.1 Internal Validity

• Data accuracy: The accuracy of the results of this study depends on the accuracy of the data on
which it is built, e.g., some data may be missing or incomplete. We believe that this is only a
minor threat. For the study, we used the CodeMine tool, which attempts to capture software
development activities as accurately and completely as possible. Several production systems at
Microsoft are built on top of CodeMine and its accuracy has been extensively verified.

2.8.2 Construct Validity

• Activities in other product groups: We analyze commits in the eight product groups, which consti-
tute a vast majority of the Microsoft workforce. However, if developers engage in activities in
product groups other than the ones analyzed here, we are not able to capture their contribution.

• Activities other than code check-ins: We compute the ramp-up journey of new hires in terms of
code check-ins. However, new hires engage in a wide variety of activities other than code check-
ins (refer Section 2.7). Also, different product groups emphasize on different set of activities
during the ramp-up journey of new hires. These two factors may influence the observed time to
first check-in and the time to ramp-up. So, while comparing product groups on the time to first
check-in and the time to ramp-up, these two factors should be taken into consideration.

2.8.3 External Validity

• Application of results to product divisions within and outside Microsoft: We analyzed eight large,
popular product teams, which constitute the majority of Microsoft’s engineering workforce. We,
therefore, believe that the results are widely applicable to product divisions in Microsoft. We
do not claim that the findings and recommendations presented in this study extend to any
organization and product team. For example, we expect that the findings may not generalize
to organizations with bootstrap mechanism different from Microsoft or organizations that hire
software developers for testing purposes only. While findings may not generalize, the research
methodology can be applied to other contexts as long as there are sufficient data points to
compute a baseline productivity of existing employees.

• Geographic differences: The survey included participants from different countries with different
cultures and working hours. In addition, Microsoft relocates new hires from other countries to
new countries. We did not collect enough data to analyze and control for this effect. We, there-
fore, caution the readers that our findings may not apply to arbitrary countries and cultures.

2.9 summary

In this chapter, we described quantitative and qualitative analysis to understand the factors that
influence the ramp-up journey of new hires. The results of this study reiterate some of the knowledge
already known to the industrial world by mining software engineering data. We analyzed eight large
product groups at Microsoft and observed that the time to first check-in, a milestone in the ramp-up
journey of new hires, is invariant to the product group analyzed. In terms of experience, as indicated
by the career stage path levels, entry level software developers make faster check-ins compared to
middle and senior level software developers. Proximity to the core team and internship within the
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company reduces the time to first check-in. To complete the analysis, we asked the opinions of new
hires to understand the factors that influence the time to first check-in. We observed that among
other factors, lack of proper documentation, getting access and permissions, etc. increase the time to
first check-in. Further, we computed the ramp-up time of newly hired software developers on check-in
counts, lines changed, and files changed. We observed that first new hires ramp-up on check-in counts,
followed by lines changed, and files changed. We also found that the time to first check-in is weakly,
if at all, correlated with the ramp-up time. The negative correlation implies that new hires who take
longer to make first check-in do not necessarily take longer to ramp-up thereafter. We see that ramp-
up time is a function of experience and product on lines changed and files changed. Also, proximity
to the core team and internship within the company has a marginal effect on the ramp-up time of
new hires. In addition to this, survey results suggest that prior knowledge of required technical skills,
proactively asking questions, and familiarity with the process help reduce the ramp-up time along
with other factors. We also list activities, other than the code check-in, that claim developers’ time and
efforts. We conclude the study with suggestions of new hires to help improve the productivity of new
hires.



3G E O G R A P H I C A L B I A S I N P E E R C O D E R E V I E W

Open source development has often been considered to be a level playing field for all developers. But
there has been little work to investigate if bias plays any role in getting contributions accepted and
developers’ perceptions of the bias. In this chapter, we present a study - one of the largest of its type,
to understand the perceptions and reality of the influence of geographical location on the evaluation
of pull requests in GitHub - one of the primary open source development platforms. Using a mixed-
methods approach that analyzes 70,000+ pull requests and 2,500+ survey responses, we found a bias
blind spot.

Data analyses showed that geographical location explains differences in pull request acceptance
decisions. Compared to the United States, submitters from the United Kingdom(22%), Canada(25%),
Japan(40%), Netherlands(43%), and Switzerland(58%) have higher chances of getting their pull re-
quests accepted. However, submitters from Germany(15%), Brazil(17%), China(24%), and Italy(19%)
have lower chances of getting their pull requests accepted. The probability of pull request acceptance
increases by 19% when the submitter and integrator are from the same geographical location. Survey
responses from submitters indicate that the perceptions of bias are strong in Brazil and Italy, matching
the data analysis. However, integrators do not perceive as being biased.

3.1 introduction

Biases have been found to hurt meritocracy in offline work groups [96][97]. For years, visible charac-
teristics have been used to differentiate people in all spheres of life ranging from sports [98] to health
care [99] to job applications [100]. The perceived differences in values and norms point towards the
likelihood of engaging in stereotyping, cliquishness, and conflicts [101]. Recently biases have been
reported in online environments too [102][103].

Open source software (OSS) development started as a merit-based model [104] which gave rise
to terms like ‘code is king’ [104][105]. Social factors were found to influence work-related decisions
[106], in addition to the technical factors. In recent years, social work environments like GitHub
[107], Bitbucket [108], etc. have gathered a large number of developers. These platforms provide
transparency and access to developers’ profiles. The increasing level of awareness of demographic
attributes of fellow contributors makes it important to understand the reaction of the community to
this diversity.

Studies on GitHub have looked into the influence of visible demographic attributes like gender,
tenure, etc. on the presence of bias [65] and productivity of teams [64]. Our goal with this work is to
understand whether the geographical location of developers influences the way their contributions are
evaluated. We choose to study the influence of geographical location on the evaluation of contributions
for the following reasons: 1) its observed impact on work-related decisions in offline groups [96][102],
and 2) a reasonable degree of visibility of geographical location in social work environments [109].
Through this study, we intend to generate awareness of the presence of bias and bridge gaps in
perceptions, if any. Studies show that individuals can only work to correct for sources of bias that
they are aware exist1 [110]. Awareness may prompt individuals to pursue corrective measures [111].
In terms of Nathaniel Branden [112]

“The first step towards change is awareness...”

To examine bias in online, distributed software development, we leverage GitHub - the largest, most
popular online collaborative coding platform. We study the pull-based development model - one of
the most popular models for collaborative development (45% of collaboratively developed repositories
use the pull-based development model), which has all the characteristics of an online and distributed
development environment.

One of the key challenges in conducting this study is to detect the presence of bias when the
developers themselves might not be aware of it. Even when developers are aware of their biases, it
is hard to make developers accept them. For this reason, we use a mixed-methods approach. We

1 http://www.ncsc.org/~/media/Files/PDF/Topics/Gender%20and%20Racial%20Fairness/IB_Strategies_033012.ashx
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combine observations from 70,000+ pull requests and 2,500+ survey responses - one of the largest
response population of open source projects[113], to analyse the influence of geographical location on
pull request acceptance decisions.

We quantitatively analyse GitHub projects’ data to measure the influence of 1) the geographical
location of submitters on pull request acceptance decisions and 2) the same geographical location of
submitters and integrators on pull request acceptance decisions. We examined pull request acceptance
rate across geographical locations as a proxy to geographical bias. We support these observations with
the quantitative and qualitative analysis of the survey responses of submitters and integrators on the
perceptions of bias. The two roles of developers: submitter and integrator, together present the main
stakeholders. We combine results to understand the difference (or agreement) between actual and
perceived bias on geographical location.

We find a bias blind spot - a type of cognitive bias where integrators perceive the absence of bias
while submitters experience it - similar to the results from data analysis. This study informs both
integrators and submitters about the actual presence of bias despite their reported perceptions.

3.2 background and related work

3.2.1 Visible Demographic Attributes and Bias

The relationship between visible demographic attributes (like race, gender, etc.) of people and work-
related decisions in offline groups had been a subject of study for years [99][100][114]. The influence of
these diversities was felt in online communities too. The reaction of the community to these diversities
depends on the extent to which these features are salient [64]. OSS started as a merit-based model
[115], however, with the rise of social work environments, like GitHub, developers are somewhat
aware of the demographic features (age, gender, ethnicity, etc.) of the fellow developers [109]. This
awareness has been used to form impressions using the history of activities [116]. This is also analysed
to understand the influence of gender and tenure diversity on team productivity [64] and the presence
of gender bias [65] in GitHub.

3.2.2 Pull-based Development

GitHub supports two models of collaboration: the shared repository model and the pull-based de-
velopment model. The pull-based development model separates development efforts from the deci-
sions to include the submitted code [117]. This separation allows projects to be more democratic and
transparent, which has increased participation [118]. Currently, less than half of the collaboratively
developed projects exclusively or complementarily use this model [117].

3.2.3 Factors Influencing Pull Request Acceptance Decisions

Factors influencing pull request acceptance decisions can be broadly classified as developer charac-
teristics, project characteristics, and pull request characteristics. For a developer, reputation (techni-
cal and social) is seen to positively influence pull request acceptance decisions [106][119][120][121].
Following technical and social norms are seen to increase the chances of contribution acceptance
[106][116][120]. For a project, maturity and popularity are related to lesser chances of pull request
acceptance [106][120]. Also, the nature of the pull request, measured as its size (source code churn),
quality (including test cases) and uncertainty associated with it (amount of discussion) influence the
chances of contribution acceptance [106][120][122].

3.3 methodology

We use a mixed-methods approach [19][16] and triangulate our observations by combining GitHub
projects’ data with survey response data. First, we carefully select a dataset of GitHub developers and
projects and model the influence of geographical location on the pull request acceptance decision by
controlling for confounding effects. Further, we conduct two large-scale surveys of submitters and
integrators in GitHub and quantify their perceptions and experiences. Conducting surveys of submit-
ters and integrators helped us analyze differences (or agreement) between the actual and perceived
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Figure 13: Research Method: Mixed-Methods Approach

bias on geographical location. Below, we present a detailed description of our selection procedure and
analysis methods. A diagrammatic presentation of the research method is shown in Figure 13. All the
data and procedures used in this section are made publicly available for replication [123]. We strongly
encourage researchers to download the data and build on our work.

3.3.1 GitHub Data

3.3.1.1 Feature Selection

Factors influencing pull request acceptance decisions are borrowed from the literature in software
engineering [106][64][120] and social sciences [99][100][114][124]. Table 6 presents a comprehensive
list of factors that are seen to influence pull request acceptance decisions. In addition to these factors,
for our study, we borrow the concept of bias based on the geographical location from the social
sciences literature [125] and measure it in terms of software engineering data and its associated meta-
data. The list of features used in this study is presented in the last column of Table 6.

3.3.1.2 Data Collection

We downloaded the GitHub projects’ data designed to analyse the pull request development model,
made publicly available by Gousios et al. [113]. We enrich the dataset with additional information
required for this study from the GHTorrent dataset made available on August 18, 2015 [126]. We also
use the GHTorrent dataset for surveys, as we discuss later. The enriched dataset is a collection of 1,069

projects and 370,411 pull requests developed in Python (357), Java (315), Ruby (359), and Scala (38).
These carefully selected projects represent top 1% of the projects developed by using the pull request
development model. It combines GHTorrent data with project repositories data and provides a list
of features seen to influence pull request development. For this study, we augment this dataset with
pull request life cycle information, participants’ demographic information, and measures of social
norms that influence pull request acceptance decision. A description of the procedure to extract the
above-mentioned factors from the GHTorrent dataset follows:

3.3.1.3 Features

participants’ demographics We measure the geographical location of developers as the loca-
tion (or country of residence) specified by developers in their GitHub profiles. Following two factors
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Table 6: A comprehensive list of factors influencing pull request acceptance decisions

Characteristics Measure

Tsay et. al [106] Gousios et. al [120] Current study Representation

Project characteristics

Maturity Project tenure - Project tenure repo_pr_tenure_mnth

Team size Count of collaborators Active core team Active core team -

Popularity Watchers’ count Watchers’ count Watchers’ count repo_pr_popularity

Size of code sloc sloc sloc sloc

Openness - % of external contribu-
tion

% of external contribu-
tion

perc_external_contribs

Test based code quality
- Test lines per kloc Test lines per lloc test_lines_per_lloc

- Test cases per kloc Test cases per lloc -

- Asserts per kloc Asserts per lloc -

Developer’s acquired characteristics

Social
skills

Status in commu-
nity

Followers Followers Followers prs_popularity

Status in project Project membership Project membership Project membership prs_main_team_member

Social
norms

Follow the integra-
tor a priori

Follow the integrator
prior to contribution

- Follow the integrator
prior to contribution

prs_followed_pri

Follow the reposi-
tory a priori

Follow the repository
prior to contribution

- Follow the repository
prior to contribution

prs_watched_repo

Technical
skills Experience/Expertise

- Previous pull requests Previous pull requests prev_pullreqs

- Submitter success rate Submitter success rate prs_succ_rate

Submitter tenure - Submitter tenure prs_tenure

Technical
norms

Size of change src churn src churn src churn src_churn

Files changed Files changed Files changed files_changed

Test cases Test inclusion Test churn Test inclusion test_inclusion

Developer’s innate characteristics

Geographical location - - Country of residence prs_location
Explicit or implicit bias on
geographical location - - Likelihood of PR ac-

ceptance on geo loc
measured using
prs_location

In-group bias - - Likelihood of PR ac-
ceptance on same geo
loc

measured using
prs_pri_same_location

Pull request characteristics
Uncertainty associated
with pull requests Comments count Comments count Comments count num_issue_comments

motivates our choice of country of residence as a measure of geographical location. First, the percep-
tions of fellow developers around geographical location are framed in terms of the location specified
in GitHub profile. Second, we believe that work habits and cultural environment, specific to the lo-
cation of current residence of a developer, may explain differences in the behaviour. One may argue
that these differences are caused by a combination of current and attenuating effects of past locations
of residence. However, for simplicity, we study the differences in pull request acceptance decisions in
terms of current location only.

In GitHub, mentioning the location is optional and is specified in a free-form text. Thus, develop-
ers can write ‘US’, ‘United States’, ‘XYZ Apartments, New York’, etc. to refer to the same location.
To identify the geographical location of developers irrespective of the format of the location, we use
‘countryNameManager’ script used by Vasilescu et. al [64]. This script uses free-form text to identify
the geographical location of GitHub users, who chose to disclose it. Further, to identify the geograph-
ical location of developers who did not mention it explicitly, we proposed some heuristics.

The proposed heuristic uses the data points for which geographical location is identified using
‘countryNameManager’ as training data. It then uses domain names of email addresses and affiliation
of developers to identify their geographical location. The underlying principle used by the heuristics
is that the affiliation and domain name can be used to localise country of residence. For instance,
affiliation to ‘Peking University’ maps the country of residence to China. However, this approach is
prone to false-positives. To minimise false positives, we choose one-to-one mapping between predic-
tors and geographical location (exclude one-to-many) and set the threshold for inclusion to 20. Thus,
if in our training dataset the company name ‘Peking University’ maps to China only and has at least
20 data points to support it, we map ‘Peking University’ to China. This information is used to identify
the geographical location of developers for whom we cannot identify the geographical location using
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Table 7: Pull request data generated
ID State: Open State: Merge State: Close Status Same

Loc

1 Dev1 (India) - - Open -

2 Dev1 (India) Dev2 (India) - Merged Yes

3 Dev1 (India) Dev3 (US) Dev3 (US) Merged No

4 Dev1 (India) - Dev4 (France) Not Merged No

5 Dev1 (India) Dev1 (India) Dev1 (India) Merged Self

‘countryNameManager’ script and who have mentioned company name or email address. This way,
we identified the geographical location of 149,268 developers (out of 541,685) who participated in pull
request based development. Here, participants refer to both submitters and integrators.

life cycle of a pull request A pull request is opened by a submitter and is in state ‘open’.
Integrators (core team developers) review the pull request. The integrators evaluate the opened pull
request and decide to 1) merge the suggested change in the original code with a state ‘merge’, followed
by state ‘close’ or 2) close it directly without merging it with a state ‘close’. A pull request can be in
state ‘open’, ‘merged’, or ‘not merged’. A pull request may get re-opened multiple times. However,
here for simplicity, we focus on the pull request lifecycle starting from the time when the pull request
was opened the first time until it gets closed the first time.

We select pull requests which are ‘merged’ and ‘not merged’, and exclude ‘open’ pull requests.
We construct the pull request life cycle and append it with the developer of the action, geographical
location of developer and other attributes. Here, developers who opened pull requests are marked
as ‘submitter’. Developers who merged the pull requests are termed as ‘merger’ and developers
who closed the pull requests as ‘closer’. Together, ‘merger’ and ‘closer’ are integrators and are the
core team of the project. The final data from this exercise looks like the one in Table 7. In Table 7,
submitter ‘Dev1’ from India interacts with integrators ‘Dev1’, ‘Dev2’, ‘Dev3’, and ‘Dev4’ from various
geographical locations to get her pull requests reviewed. The outcome of the pull request review
(status) and the relationship between the geographical location of submitters and integrators (same
geographical location) is identified.

3.3.1.4 Pull Request Project Sample

The geographical location of submitters follows a highly skewed distribution (kurtosis: γ=98.2). So,
to ensure that we have diverse geographical locations and significant pull request counts for each
location, we select geographical locations, which represent at least 1% of the total pull requests of
the GitHub data. Thus, the United States (38%), the United Kingdom (8%), Germany (6%), France
(5%), Canada (4%), Japan (3%), Brazil (3%), Australia (2%), Russia (2%), Netherlands (2%), China
(2%), Spain (2%), India (2%), Switzerland (1%), Sweden (1%), Italy (1%), and Belgium (1%) with
at least 1% of total pull requests are selected for analysis. These selected 17 geographical locations
represent approximately 83% of the total developer population for whom we were able to identify the
geographical location. We observed that the submitters themselves merge a significant fraction of pull
requests on GitHub. An analysis of 113,191 pull requests in the enriched dataset showed that other
developers integrate 63% of the pull requests and the submitters themselves integrate the remaining
37%. Similar statistics are observed in the GHTorrent dataset (44% merged by self, 56% by others). So,
by selecting pull requests from submitters from the selected 17 geographical locations, eliminating
pull requests merged by self and incomplete data, we are left with 70,740 pull requests for analysis.

3.3.1.5 Statistical Methods

In this study, a pull request is the base unit of analysis. Each pull request is an independent obser-
vation characterized by temporally evolving project, developer and pull request characteristics. To
understand the influence of geographical location of a submitter and its interaction with the geo-
graphical location of an integrator on the pull request acceptance decision, we test two hypotheses.

H10 There are no differences in the pull request acceptance decisions based on the geographical
location of submitters.
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H1a There are differences in the pull request acceptance decisions based on the geographical
location of submitters.

H20 There are no differences in the pull request acceptance decisions based on the same geo-
graphical location of submitters and integrators.
H2a There are differences in the pull request acceptance decisions based on the same geograph-

ical location of submitters and integrators.

To test the two hypotheses, we use regression modeling. We model the pull request acceptance
decision as a binary classification problem. Specifically, we use logistic regression, as implemented
in R [127][128]. We measure statistical significance at a p-value <=0.05, the size of change as log
odds, and the impact as the percentage of deviance as used in other studies [4]. Though this measure
provides an interpretation similar to the percentage of the total variance explained by least square
regressions, the two measures are not the same [129].

At a finer level of details, we compute a pairwise correlation of continuous variables and note
down the two highly correlated variables. We consider two variables as highly correlated when their
correlation coefficient is greater than 0.7 [130]. Similarly, to measure the relationship between two
categorical variables, we use a chi-square test for dependence for significance and measure its effect
size using Cramer’s V [131]. For categorical variables, we consider that the relationship between
two variables is strong if it exceeds 0.7 [132]. We identify and note strongly correlated categorical
variables too. We model the relationship between a set of predictors and the response variable. Next,
to stabilise the variance, we log-transform the independent count variables. We verify this by using
AIC and Vuong test for non-nested models [133] to compare the transformed and non-transformed
data. To check that multicollinearity is not an issue, we compute the Variance Inflation Factor (VIF).
Any VIF value greater than 5 is considered to indicate multicollinearity, as used in various studies
[129]. At this step, we eliminate highly correlated variables that cause multicollinearity. We measure
the fitness of the model using Area under Curve (AUC). The value of AUC should be greater than 0.5
for the model to be acceptable2.

Once the model is built, we read the coefficients of logistic regression as the expected changes
in the log of responses for a unit change in the predictor variable while keeping all other predictor
variables at a constant value. So, for continuous predictor variables, one unit change in its value is
associated with an exponent of the coefficient change in the response variable. The interpretation
is slightly different for categorical variables. To analyse the effect size of statistically significant
features, we use dummy or treatment code to compare a base level with treatments. Specifically, to
measure the influence of geographical location, we choose the United States, with the majority of
developers, as the base level. Similarly, to test for bias based on the interactions between the geographi-
cal location of submitters and integrators, we choose ‘different geographical location’ as the base level.

3.3.2 Survey

We designed two surveys - one from the perspective of submitters and the other from the perspective
of integrators. The choice of conducting two separate surveys helps us understand perspectives and
experiences.

3.3.2.1 Design

Since the goal of conducting two surveys is to learn from the developer community rather than a few
individuals, we designed online surveys [134] [135]. We did not give any monetary incentives. The
survey was designed to take a maximum of 7 minutes for survey respondents and was active for three
weeks.

There were two rounds for each survey. First, we identify 50 developers each for the role of the
submitter and the integrator and sent them the survey as part of the pilot study. Based on their
feedback and refinement, we sent the main survey to all submitters and integrators identified to

2 https://www.kaggle.com/wiki/AreaUnderCurve
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answer our surveys. We explicitly informed our prospective survey respondents that the results of the
study would be anonymous to ensure that developers share their true opinion and not try to present
themselves in good light. The details of each survey are given below:

integrators We asked our survey respondents four types of questions. First, we asked them a
few demographic questions to get an understanding of the diversity and representativeness of the
survey responses. This was followed by questions to understand their perspectives on the presence of
bias. These questions are:

1. The level of awareness of the demographic features of the submitters they work with.

2. Perceived relevance of the importance of developers’ characteristics.

3. Explicit perceptions of bias based on the geographical location of submitters and its interaction
with the geographical location of integrators.

In total, we asked 12 questions, out of which there were 8 multiple-choice questions, 3 Likert scale
questions and 1 open-ended question. The aim of the open-ended question was to discover factors
other than the ones mentioned in the survey.

submitters We asked our survey respondents two types of questions. Similar to the survey for
integrators, we started with asking a few demographic questions. This was followed by questions to
understand the following:

1. Their understanding of the importance of factors influencing pull request acceptance decision
of integrators.

2. Their personal experiences with bias.

In total, we asked them 11 questions, out of which there were 8 multiple choice questions, 2 Likert
scale questions and 1 open-ended question.

Throughout the two surveys, we used 5-point Likert scale for the study with one exception. To
understand the perceptions of submitters on “The important of factors influencing pull request ac-
ceptance decision of integrators”, we provided an additional choice - ‘I don’t know’. This choice was
provided to account for cases when submitter doesn’t know the perceived importance of the factor.

3.3.2.2 Identify Survey Respondents

From the GHTorrent dataset, we extracted developers’ geographical location information, role, and
contribution count to identify a list of survey respondents for this study. We selected all submitters
who have submitted at least 10 pull requests that were reviewed by integrators from various geograph-
ical locations (at least 2). Here, the count of pull requests submitted does not include the pull requests
closed by self. Similarly, we identified integrators who reviewed at least 10 requests of submitters
from various geographical location (at least 2). Here also the count of the pull requests excluded the
pull requests merged by self. These selection criteria ensure the following:

1. Candidacy of the developer to answer our survey questions: The choice of two or more geographi-
cal locations ensures that the developer has experience working with developers from diverse
geographical locations. Such developers can help us understand the influence of geographical
location on the pull request acceptance decisions.

2. Reasonable experience and diversity of respondents: The choice of working on at least 10 pull requests
not closed by self, ensure that the respondent has reasonable experience working with the pull-
based development model. It ensures that we include a wide range of developers for the study.

Developers can play the roles of submitter and integrator simultaneously. To select unique respon-
dents per survey, we select developers for the role they worked the most. So, a developer who wrote
100 pull requests and reviewed 150 pull requests is considered for the role of the integrator. Following
this approach, we identified 6,628 integrators and 9,254 submitters. Out of these 15,882 prospective
respondents, only 15,615 respondents had a valid email address.

We sent customised, personally addressed emails to all identified prospective survey respondents.
We informed the developers about their contribution in terms of the approximate count of pull re-
quests they worked on and an approximate count of the geographical locations with which they
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collaborated. This customised report generated interest in the survey, which was reflected in the 500+
email responses received and 2,532 survey responses - one of the largest survey responses with 17%
response rate (excluding 818 messages which failed to deliver).

3.3.2.3 Data Analysis

We identified all complete survey responses, preprocessed it and got it into a form usable for analysis.
To hypothesis test the research questions, we converted the ordinal data to its nominal equivalent and
conducted chi-square test.

We started with some basic understanding of the diversity of responses in terms of respondents’
demographics. This is followed by the perceived importance of the geographical location of the sub-
mitter on the pull request acceptance decision across the two roles. We additionally analysed the
level of awareness of the integrators regarding submitters’ demographics. Finally, to understand the
perceptions of bias based on geographical location, we asked submitters and integrators different
questions.

• Question for submitters Did you experience bias based on your geographical location in getting
your pull requests accepted?

• Questions for integrators How much do you agree with the following statement?

– It is easy to work with developers from the same geographical location.

– I encourage developers from my geographical location to contribute.

– Developers from some geographical locations are better at writing pull requests relative to
others.

To understand the perceptions of developers, we hypothesis tested the response as follows

H0 The experiences on bias are of equal proportions.
Ha There are unequal proportions of experiences on the perceptions on bias.

If at a 0.05 significance level null hypothesis is rejected, we measure the effect size as the percentage
difference. Next, we see if there are significant differences in perceptions of bias across geographical
locations. If the differences are significant, we measure the differences in the experiences around bias
using logistic regression. For this, we select geographical locations for which we received at least 10

responses.
We codified open-ended survey response to get an understanding of the justification of integrators

around the presence of bias based on geographical location. The first author started with identifying
themes by analysing first 100 comments. The themes were the top three suggestions that integrator
would like to give to submitters to improve the chances of their pull requests getting accepted. These
themes, along with any other theme that evolved in time were codified for all open-ended responses.
One other author then verified this. These suggestions conveyed the expectations of integrators from
submitters and also pointed towards the possible explanation of observed differences in perceptions.

3.4 results

3.4.1 Analysis of GitHub projects’ data

To answer our research question, we test Hypothesis 1 and Hypothesis 2 using GitHub projects’ data.
We model the influence of geographical location on pull request acceptance decisions using logistic
regression while controlling for the effect of confounding factors (refer Table 8).

H1: There are differences in the pull request acceptance decisions based on the geographical location of sub-
mitters.

In Model 1 of Table 8, we see that increase in maturity, popularity, the size of the code, and open-
ness to external contribution reduces the chances of the pull request acceptance decision while a
well-tested code - an indicator of code quality increases it. We see that increase in technical skills of
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Table 8: Logistic regression model of factors influencing pull request acceptance decision [AUC: 0.7]
Model 1 Model 2

(Intercept) 2.82 (0.14)∗∗∗ 2.61 (0.14)∗∗∗

Control variables

repo_pr_tenure_mnth −0.01 (0.00)∗∗∗ −0.01 (0.00)∗∗∗

repo_pr_popularity −0.00 (0.00)∗∗∗ −0.00 (0.00)∗∗∗

perc_external_contribs −0.01 (0.00)∗∗∗ −0.01 (0.00)∗∗∗

test_lines_per_lloc 0.00 (0.00)∗∗∗ 0.00 (0.00)∗∗∗

log(sloc + 1) −0.06 (0.01)∗∗∗ −0.06 (0.01)∗∗∗

prs_tenure −0.00 (0.00)∗∗∗ −0.00 (0.00)∗∗∗

log(prev_pullreqs + 1) 0.17 (0.01)∗∗∗ 0.17 (0.01)∗∗∗

prs_succ_rate 0.01 (0.00)∗∗∗ 0.01 (0.00)∗∗∗

test_inclusion1 0.26 (0.03)∗∗∗ 0.26 (0.03)∗∗∗

log(src_churn + 1) −0.06 (0.01)∗∗∗ −0.06 (0.01)∗∗∗

log(files_changed + 1) 0.01 (0.02) 0.01 (0.02)

prs_main_team_member1 0.06 (0.07) 0.05 (0.07)

log(prs_popularity + 1) 0.06 (0.01)∗∗∗ 0.07 (0.01)∗∗∗

log(num_issue_comments + 1) −0.25 (0.01)∗∗∗ −0.24 (0.01)∗∗∗

prs_watched_repo1 0.04 (0.03) 0.05 (0.03)

prs_followed_pri1 0.11 (0.03)∗∗ 0.10 (0.03)∗∗

prs_locationunited kingdom 0.13 (0.04)∗∗ 0.20 (0.04)∗∗∗

prs_locationgermany −0.25 (0.04)∗∗∗ −0.16 (0.05)∗∗∗

prs_locationfrance 0.02 (0.06) 0.11 (0.06)

prs_locationcanada 0.12 (0.07) 0.22 (0.07)∗∗

prs_locationjapan 0.25 (0.08)∗∗∗ 0.34 (0.08)∗∗∗

prs_locationbrazil −0.27 (0.06)∗∗∗ −0.19 (0.07)∗∗

prs_locationaustralia 0.05 (0.07) 0.14 (0.07)

prs_locationnetherlands 0.26 (0.09)∗∗ 0.36 (0.09)∗∗∗

prs_locationchina −0.39 (0.09)∗∗∗ −0.27 (0.10)∗∗

prs_locationrussia −0.06 (0.07) 0.04 (0.07)

prs_locationspain 0.08 (0.10) 0.15 (0.10)

prs_locationindia 0.02 (0.07) 0.12 (0.07)

prs_locationswitzerland 0.38 (0.11)∗∗∗ 0.46 (0.11)∗∗∗

prs_locationsweden −0.21 (0.09)∗ −0.10 (0.09)

prs_locationbelgium 0.09 (0.12) 0.18 (0.12)

prs_locationitaly −0.31 (0.08)∗∗∗ −0.21 (0.09)∗

prs_pri_same_location1 0.18 (0.03)∗∗∗

AIC 49231.59 49198.20

BIC 49534.09 49509.87

Log Likelihood −24582.80 −24565.10

Deviance 49165.59 49130.20

Num. obs. 70740 70740

∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

the submitters and abiding by technical norms are seen to increase the chances of pull request accep-
tance while an increase in experience decreases it. We also notice that submitters with a high social
reputation and those who follow social norms are more likely to get their pull requests accepted. Fi-
nally, the uncertainty associated with the pull request influences the chances of pull requests getting
accepted. The influence of the above-mentioned factors is already known to the software engineering
community [106][113]. Controlling for the effect of these factors in Model 1 in Table 8, we see that the
geographical location of submitters explains significant differences in the chances of the pull request
acceptance. The deviance explained by each factor in shown in Table 9.

Our observations support our hypothesis that there are differences in the pull request acceptance
decision based on the geographical location of submitters (refer Table 8). Next, we identify the
differences in the pull request acceptance decision location-wise. We see the sign and magnitude
of the estimate for a given geographical location relative to the base level - the United States. The
coefficients for submitters’ geographical location can be divided into three categories: statistically
insignificant coefficients, positive coefficients, and negative coefficients (refer Table 8). For 7 out
of the 17 geographical locations under analysis, the results are statistically insignificant, that is,
there are no differences in the chances of a contribution acceptance compared to the United States.



3.4 results 39

Table 9: Deviance explained by factors influencing pull request acceptance decision
Df Deviance Resid.

Df
Resid.
Dev

Pr(>Chi)

NULL 70739 52354.02

repo_pr_tenure_mnth 1 509.46 70738 51844.56 0.0000

repo_pr_popularity 1 175.49 70737 51669.07 0.0000

perc_external_contribs 1 321.47 70736 51347.59 0.0000

test_lines_per_lloc 1 47.84 70735 51299.75 0.0000

log(sloc + 1) 1 30.85 70734 51268.90 0.0000

prs_tenure 1 25.46 70733 51243.45 0.0000

log(prev_pullreqs + 1) 1 1014.64 70732 50228.81 0.0000

prs_succ_rate 1 389.62 70731 49839.19 0.0000

test_inclusion 1 22.73 70730 49816.46 0.0000

log(src_churn + 1) 1 164.02 70729 49652.44 0.0000

log(files_changed + 1) 1 0.11 70728 49652.34 0.7444

prs_main_team_member 1 2.62 70727 49649.72 0.1055

log(prs_popularity + 1) 1 57.46 70726 49592.26 0.0000

log(num_issue_comments
+ 1)

1 273.45 70725 49318.81 0.0000

prs_watched_repo 1 2.82 70724 49315.99 0.0931

prs_followed_pri 1 6.79 70723 49309.20 0.0092

prs_location 16 143.61 70707 49165.59 0.0000

prs_pri_same_location 1 35.39 70706 49130.20 0.0000

For geographical locations, where the coefficients are positive, the chances that their pull requests
get accepted are higher than that of the United States. Similarly, geographical locations for which
coefficients are negative have lower chances of getting their pull requests accepted. Thus, France,
Australia, Russia, Spain, India, Sweden and Belgium observe no differences in getting their pull
requests accepted compared to the United States. The United Kingdom (22%), Canada (25%), Japan
(40%), Netherlands (43%), and Switzerland (58%) have higher chances of getting their pull requests
accepted. Germany (15%), Brazil (17%), China (24%), and Italy (19%) have lower chances of getting
their pull requests accepted. In Table 9, we see that the geographical location of submitters explains a
small, yet significant percentage of the total deviance.

H2: There are differences in the pull request acceptance decisions based on the same geographical location of
submitters and integrators.

To test this hypothesis, we control for the effect of above-mentioned factors including the geo-
graphical location of submitters. In Model 2 of Table 8, we see that the same geographical location
of submitters and integrators, compared to different geographical locations of submitters and inte-
grators, has statistically significant influence on pull request acceptance decisions. This observation
supports our hypothesis 2. We see that controlling for the effects of other factors when submitters and
integrators are from the same geographical location, there are 19% more chance that the pull requests
will get accepted compared to when submitters and integrators are from the different geographical
location. Further, in Table 9, we see that the same geographical location of submitters and integrators
explains a small, yet significant percentage of the total deviance.

3.4.2 Analysis of Survey Data

3.4.2.1 Submitters

We received 1,603 complete responses from submitters. These responses present perspectives of
a wide range of submitters from 76 countries with different age [21-30 years (47%), 31-40 years
(42%), 41-50 years (7%) and others] , gender [male (98%), female (2%)], experience in OSS [1-2
years (10%), 3-6 years (53%), 7-10 years (19%), more than 10 years (17%) and others], job [In-
dustry (62%), Academia (5%), Freelance (7%) and others], and role [source code contributor (49%),
owner (47%) and others]. We analyse the perceptions of these submitters to answer our hypothesis H3.

H3: Submitters perceive bias based on their geographical location.
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Table 10: Submitters’ perception on bias - location-wise [AUC: 0.9]
Bias

(Intercept) 4.84 (0.50)∗∗∗

prs_locationGermany 0.01 (1.12)

prs_locationUnited Kingdom 16.73 (2908.74)

prs_locationFrance 16.73 (3116.19)

prs_locationCanada −0.74 (1.13)

prs_locationRussia 16.73 (3906.35)

prs_locationBrazil −2.60 (0.69)∗∗∗

prs_locationAustralia 16.73 (4015.38)

prs_locationIndia −1.20 (1.13)

prs_locationNetherlands 16.73 (4941.18)

prs_locationItaly −2.13 (0.89)∗

prs_locationSweden 16.73 (5250.30)

prs_locationSpain 16.73 (5524.41)

prs_locationJapan −2.80 (0.79)∗∗∗

prs_locationNorway −1.75 (1.14)

prs_locationPoland −1.75 (1.14)

prs_locationSwitzerland 16.73 (6379.04)

prs_locationUkraine −2.07 (1.15)

prs_locationDenmark 16.73 (7812.70)

prs_locationCzech Republic 16.73 (8107.62)

prs_locationFinland 16.73 (8107.62)

prs_locationPortugal −2.35 (1.16)∗

prs_locationBelgium 16.73 (8438.68)

prs_locationArgentina −2.54 (1.16)∗

prs_locationAustria 16.73 (8813.91)

prs_locationIreland 16.73 (8813.91)

prs_locationSingapore 16.73 (9244.11)

AIC 236.25

BIC 378.45

Log Likelihood −91.12

Deviance 182.25

Num. obs. 1432

∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

There are statistically significant differences in the perceptions of submitters on the presence of bias.
Using chi-square test of independence at a significance level of 0.05 (chi-squared = 1448.743, df = 1, p-
value< 2.2e-16) we found that 97% more developers feel that they did not experience bias compared to
those who feel that they experienced it. Our hypothesis H3, that is, submitters perceive bias based on
their geographical location is rejected. Further analysis showed that the differences in the perceptions
of bias across geographical location are statistically significant (chi-squared = 72.1569, df = 26, p-value
= 3.203e-06), that is, there are differences in the perceptions of bias based on the geographical location
of submitters. To tease out the individual effects, we modeled the perceptions on the experience of
bias location-wise using logistic regression. An analysis of 27 geographical locations from which we
received at least 10 survey responses shows that more submitters from some geographical locations
perceive the presence of bias compared to others. We found that the perceptions of the presence of bias
are more for submitters from Brazil (93%), Italy (87%), Japan (94%), Portugal (90%), and Argentina
(93%) compared to other geographical locations (refer Table 10).

3.4.2.2 Integrators

We received 929 complete responses from integrators from 61 different geographical locations. These
respondents were diverse in terms of age [21-30 years (38%), 31-40 years (46%), 41-50 years (12%)],
gender [male (97%), female (3%)],
experience in OSS [1-2 years (6%), 3-6 years (43%), 7-10 years (24%), more than 10 years (26%) and
others] , job [Industry (66%), Freelance (10%), Academia (6%) and others] and role [Owner (88%)
and Source code (11%)]. We started the survey by understanding their perceptions of the level of
awareness of the geographical locations of the submitters they work with. 43% of integrators say that
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they are rarely aware of the geographical location of submitters they work with. This is followed by
28% of integrators who feel that they sometimes know the geographical location, followed by 16%
who never know, 10% often and only 3% always. This was followed by a direct question to understand
their perceptions on the importance of geographical location on the pull request acceptance decision
for which we tested hypothesis H4.

H4: Integrators perceive that the geographical location of submitters is important on their pull request accep-
tance decisions.

88% more developers perceive that the geographical location of submitters is unimportant than
those who consider it important (chi-squared = 705.8317, df = 1, p-value < 2.2e-16) and this was
consistent across all geographical locations (chi-squared = 12.958, df = 16, p-value = 0.6758). Thus, our
observation refutes our hypothesis H4. This was followed by more specific questions to understand
the influence of geographical location.

H5: Developers from some geographical locations are better at writing pull requests relative to others.
530 integrators responded to this question. An analysis of the integrators show with statistical
significance that 52% more integrators disagree than those who agree that developers from some
geographical locations are better at writing pull requests than others (chi-squared = 138.1231, df = 1,
p-value < 2.2e-16). This refutes our hypothesis H5 that developers from some geographical locations
are better at writing pull requests relative to others. On digging deeper, we found that the perceptions
are similar across geographical locations (chi-squared = 18.3874, df = 11, p-value = 0.07302), with an
exception of India, where integrators felt that developers from some geographical locations are better
at writing pull requests. For the rest of the geographical locations, for every 1 developer that feels
that there are differences in the abilities of submitters to write pull requests based on geographical
locations, there are 4 developers that disagree with it. On a contrary, half of the integrators from
India agree and the other half disagrees with it (refer Table 11).

H6: Integrators perceive that it easy to work with submitters from the same geographical location.
418 integrators responded to this question. Integrators felt that it is easy to work with submitters

from their own geographical location with statistically significant results (chi-squared = 80.597, df = 1,
p-value < 2.2e-16). There were 45% more integrators who felt that it is easy to work with submitters
from their own geographical location. This supports our hypothesis H6. Further, we examined
perceptions across geographical locations and found a different perspective (chi-squared = 24.4768,
df = 8, p-value = 0.001906). On one side, countries like the United States (8 out of 10) and the United
Kingdom (6 out of 10) agree that it is easy to work with developers from the same geographical
location. On the other side, integrators from Germany and India disagree 6 out of 10 and 8 out of 10

times respectively. In short, a majority of the geographical locations analysed feel that it is easy to
work with developers from the same geographical location with few exceptions (refer Table 12).

H7: Integrators encourage submitters from their geographical location to participate.
437 integrators responded to this question. 26% more integrators agree that they encourage devel-

opers from their geographical location to participate with statistically significant results (chi-squared
= 27.8244, df = 1, p-value = 1.328e-07). This supports our hypothesis H7. Further, we see that percep-
tions on this depend on the geographical location of integrator (chi-squared = 24.3008, df = 8, p-value
= 0.00204). Unlike other geographical locations, integrators in the United Kingdom (62%), Germany
(69%) and Sweden (77%) are less likely to encourage developers from their geographical location to
participate (refer Table 13).

3.4.3 Open-ended Survey Responses

We received 639 open-ended survey responses from integrators where they talked about factors that
influence their acceptance decisions. From manually coding these open-ended responses, six themes
came up: technical skills (47%), the relevance of the requested feature (12%), communication skills (23%),
behaviour (11%), trust (4%), and pro-activeness (2%). We went deeper into non-technical aspects to un-
cover the expectations of integrators that may possibly explain the perceived differences in pull re-
quest acceptance decision. One key observation from these responses was the ability to communicate.
Integrators mentioned that they form an impression about the pull request based on the description
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Table 11: Integrators’ perception on pull request quality and geographical location [AUC: 0.6]
Better loc on PR

(Intercept) 1.30 (0.16)∗∗∗

pri_locationUnited Kingdom 0.84 (0.55)

pri_locationGermany 0.22 (0.45)

pri_locationFrance −0.52 (0.52)

pri_locationCanada −0.04 (0.59)

pri_locationSweden 1.19 (1.05)

pri_locationAustralia −0.71 (0.58)

pri_locationNetherlands −0.09 (0.68)

pri_locationIndia −1.45 (0.58)∗

pri_locationBrazil 0.90 (1.07)

pri_locationSwitzerland 1.27 (1.05)

pri_locationNorway −0.45 (0.71)

AIC 440.03

BIC 488.51

Log Likelihood −208.01

Deviance 416.03

Num. obs. 420

∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

Table 12: Integrators’ perception on ease to work with the same location developers [AUC: 0.7]
In group ease

(Intercept) 1.50 (0.19)∗∗∗

pri_locationUnited Kingdom −1.10 (0.45)∗

pri_locationGermany −1.76 (0.46)∗∗∗

pri_locationFrance −0.55 (0.56)

pri_locationCanada 1.14 (1.05)

pri_locationSweden 15.07 (665.51)

pri_locationAustralia 0.11 (0.80)

pri_locationIndia −2.89 (0.81)∗∗∗

pri_locationBrazil −1.50 (0.84)

AIC 323.24

BIC 356.99

Log Likelihood −152.62

Deviance 305.24

Num. obs. 314

∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

of the pull request. Integrator [R496] mentioned that “bad or misleading title influence her chances of
accepting the pull request”.

They also used the ability to communicate to justify their perceptions of the importance of the
geographical location of submitters in explaining pull request acceptance decision. Integrator [R289]
stated that “Nationality really only plays a role in my ability to understand the written communication.
Being distributed makes communication more important, so if I cannot understand the requester<submitter>,
I’m much less likely to accept the request.". Further, integrator [R201] added that “There’s a possibility of
language bias - if the pull request isn’t well-written (which is often the case when English is not the PR author’s
first language) I may be more hesitant, but usually because of a fear of misunderstanding.". Integrator [R883]
even goes on to add that “I often reject pull requests that add in code that has misspelled words, poor grammar,
etc., and ask the contributor to fix those before merging.". In addition to this, integrators also mentioned
the importance of behaviour, trust, and pro-activeness of submitters on their pull request acceptance
decision. Integrator [R738] said that the tone of the pull request’s body is important for her. She said
that “I don’t want to work together if the person is rude.". Integrator [R773] even goes on to say that “If
they<submitters> are rude, their pull request is rejected, even if the code quality is great.". Besides these,
integrators place their bet on the submitters they trust. Integrator [R50] stated that “People that have
submitted good PRs in the past I almost blindly merge". Finally, integrators appreciate the willingness of
the submitters to quickly make desired changes to improve contribution. Integrators ruled out the
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Table 13: Integrators’ perception on encouraging developers from same geographical location [AUC: 0.6]
In group encourage

(Intercept) 0.81 (0.16)∗∗∗

pri_locationUnited Kingdom −1.00 (0.40)∗

pri_locationGermany −1.18 (0.42)∗∗

pri_locationFrance −0.19 (0.50)

pri_locationCanada 0.20 (0.61)

pri_locationSweden −1.50 (0.63)∗

pri_locationNetherlands −0.25 (0.65)

pri_locationIndia 0.17 (0.70)

pri_locationBrazil 15.76 (758.80)

AIC 399.35

BIC 433.04

Log Likelihood −190.67

Deviance 381.35

Num. obs. 312

∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

presence of explicit bias based on the geographical location in favour of the valuable contribution
they receive for their projects. In this context, integrator [R661] quoted that “I see PRs as a favor to me,
so I tend to take it seriously to process PRs ASAP and treat requesters<submitters> well.”.

3.5 threats to validity

3.5.1 Internal Validity

Data accuracy The accuracy of the results of the study depends on the accuracy of the data on which
it is built. We have used GHTorrent data, which has been extensively used in several prior studies.

Language bias The surveys deployed for this study were written in English. We justify our choice
by conducting a pilot study where an equal number of surveys were sent out in English and French
to developers in France. We received similar response rates from both. This is intuitive as developers
who use GitHub must be aware of basic English used in the survey. Still, there is a possibility that the
choice of English biased the response rates from some geographical locations.

Researcher bias To prevent researcher’s bias on the articulation of our questions, we got our survey
questions validated by a wide range of people including survey design experts even before making it
public. These people checked the language of the questions for ambiguity and the presence of bias.

Research reactivity The tendency of the respondents to appear in the positive light may influence
the results. However, we tried to minimize it by conducting anonymous surveys and not giving any
monetary incentive to survey respondents.

Non-response bias It is possible that the developers who did not respond to the survey may have
different insights. However, we do not see this as a big concern as we received survey responses from
more than 76 geographical locations.

3.5.2 External Validity

Generalisability The quantitative analysis present in this study is built on small, carefully selected
projects. These projects may not be representative of all the collaborative developed projects. We try
to address this concern by combining the results of the quantitative data with large-scale survey
responses. Further, while we conducted this survey on GitHub - one of the biggest code hosting sites
featuring pull-based development model, we believe that similar experiments must be conducted on
other platforms, like Bitbucket, for generalisability.

3.6 implications

Data analyses suggest the presence of geographical bias. Analyses of 70,000+ pull requests show that
the geographical location of submitters significantly influences the pull request acceptance decisions.
Compared to the United States, submitters from United Kingdom (22%), Canada (25%), Japan (40%),
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Netherlands (43%), and Switzerland (58%) have higher chances of getting their pull requests accepted.
However, submitters from Germany (15%), Brazil (17%), China (24%), and Italy (19%) have lower
chances of getting their pull requests accepted. Also, the same geographical location of submitters
and integrators increases the chances of pull request acceptance by 19%.

Submitters from some geographical locations perceive to experience bias. Overall, submitters do not per-
ceive that they experience bias. 97% more submitters feel that they did not experience bias compared
to those who felt that they experienced it. However, submitters from some geographical locations per-
ceive to have experienced bias, which is more compared to the other geographical locations. We found
that the perceptions of the presence of bias are stronger for submitters from Brazil (93%), Italy (87%),
Japan (94%), Portugal (90%), and Argentina (93%) when compared to other geographical locations.

Perceptions of submitters on geographical bias are in agreement with the data analysis. Submitters from
Brazil and Italy perceive to experience bias more than other geographical locations. The same is
observed in our analysis of GitHub data that developers from Brazil and Italy have lower chances of
getting their pull requests accepted compared to other geographical locations.

Integrators perceive that they are not biased in evaluating submitters. 53% more integrators perceive that
they encourage developers from their country to participate. Also, 8 out of every 10 integrators feel
that it is easy to work with submitters from the same geographical location. However, they do not
feel that developers from some geographical locations are better at writing pull requests compared to
others, with an exception of India. For every 1 developer who feels that there are differences in the
abilities of submitters to write pull requests based on geographical location, there are 4 developers that
disagree with it. However, in India half of the integrators agree and the other half of the integrators
disagree with it.

Integrators think that factors relating to the geographical location and not necessarily the geographical loca-
tion may influence their pull request acceptance decisions. In the open-ended survey, integrators suggest
that the observed differences may be explained in terms of language barriers and the ability to com-
municate, and not necessarily bias based on the geographical location of submitters.

There exists a bias blind spot [136] - a cognitive bias, as integrators perceive the absence of bias and submitters
perceive to experience it. Submitters from some geographical locations perceive to experience bias and
is supported by data analysis. This is contrary to the opinions of integrators that they are biased.
This may imply the presence of geographical bias with disagreement in the perceptions of integrators.
Alternatively, it may be due to communication barriers which make submitters experience bias while
integrators are just trying to ensure quality submissions.

We have various reasons why we believe that it is not due to communication barriers: 1) There are
geographical locations in the list which have higher chances of pull requests acceptance and where
English is not widespread in use (relatively speaking) like Japan. 2) Switzerland and Germany are
pretty much exactly similar in terms of language use, but fall in different spectrums. While English
is widely spoken and used in Germany it has lower chances of pull request acceptance. 3) We sent
the survey requests in different languages like French and got numerous responses that stated that
all GitHub developers communicate through English and we should not translate survey and send
in the local languages. 4) The law of large numbers also ensures that our results are not biased by a
handful of people who have poor communication skills. Together these suggest the actual presence
of geographical bias and a bias blind spot as developers see the impact of bias on others judgement
while failing to see the impact of bias on their own judgement.

3.7 summary

In this chapter, we combined observations from 70,000+ pull requests and 2,500+ survey responses to
analyze the influence of geographical location on pull request acceptance decisions. We found a bias
blind spot- a type of cognitive bias in the peer code review process in GitHub. This study shows that
integrators perceive the absence of bias while submitters from some geographical locations perceive
to experience it. The perceptions of submitters match the data analysis - differences in the pull request
acceptance rates based on geographical locations. This study informs integrators and submitters about
the presence of bias despite the differences in their reported perceptions.
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Managers and decision makers are interested in the explanations of contributor productivity. These
explanations facilitate planning and informed decisions. In this chapter, we study the influence of
various project and contributor characteristics on contributor participation. We start with a study to
understand how competing projects’ dynamics influence contributor participation. Next, we study
the relationship between the personality traits of contributors and their levels of contribution. We also
study that how people perform in different work situations. Finally, we see that how role and past
contributions relate to future participation. A detailed description of each study is presented in the
following sections.

4.1 dynamics of competing projects

4.1.1 Introduction

Sustained developer community participation is fundamental to the long-term success of open source
software (OSS) projects [137]. A significant fraction of OSS projects fails due to their inability to attract
a critical mass of developers [138] and lack of sustained developer community participation [63]. The
problem proliferates when projects start competing for the developer community participation [139].

In OSS, new projects may start using someone else’s project as a starting point, a phenomenon
termed as forking of the original project. The new project emerged, termed as independently developed
fork (IDF), competes with the original project for the developer community participation. The com-
petition is not only for the existing developer community participation, but also for the potential
developer community participation to ensure sustained development of the project.

Some recent examples of popular forks are 1) the start of LibreSSL out of frustration with OpenSSL1,
2) fork of IO.js from Node.js, which recently got merged into the original2, and 3) Docker fork cre-
ated by Windows3. These popular, competing projects gained the attention of the masses, making
it relevant to understand how the original and the forked projects are doing in terms of developer
involvement. Besides these, many not-so-popular and small projects observe forking. Thus, to bet-
ter understand the project’s development trajectory and success, there is a need to understand the
response of the developer community to this change. An understanding of the response of the devel-
oper community to forking may inform future research to support preemptive measures for project
success.

Forking has received mixed reactions from the developer community [140]. Existing studies claim
that forking is healthy for the software ecosystem in the ‘survival of the fittest sense’ [141][142][143].
However, the split (in the project) costs the loss of developers as the synergy to work together is lost
[141][142][143] and incompatibilities among the two projects [144]. Other studies visually analyzed
temporal trends in large, popular projects, like OpenOffice and its fork LibreOffice and observed that
forking has no effect on the original project and the emerged IDF [137][139]. However, a comprehen-
sive understanding of the influence of forking is missing. In this study, we statistically investigate the
influence of forking on the sustainability of the developer community participation in a wide range
of projects. The relevance of asking this research question (RQ) increases with the recent changes in
the software development, that is, the use of coding sites like GitHub, Bitbucket, etc.

GitHub is a project-hosting site build on distributed version control system. Currently, it is the most
popular coding site, surpassing GoogleCode and SourceForge in popularity4. GitHub hosts more than
23.8 million git repositories5 (as observed in June 2015) and has more than 6 years of development
history. With its 1) widespread popularity, 2) representation of a wide range of projects in terms of
size, language, domain, etc., and 3) availability of the data through GitHub REST API for analysis,

1 http://arstechnica.com/information-technology/2014/04/openssl-code-beyond-repair-claims-creator-of-libressl-fork/
2 http://news.softpedia.com/news/io-js-Will-Be-Merging-Back-into-Node-js-482552.shtml
3 http://blog.docker.com/2014/10/docker-microsoft-partner-distributed-applications/
4 http://readwrite.com/2011/06/02/github-has-passed-sourceforge
5 https://github.com/features
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GitHub has emerged as a favored test-bed for conducting a wide variety of large scale studies [145]
[146]. In this study, we leverage the diverse projects’ data hosted on GitHub to answer the following:

How forking influences the sustainability of the developer community participation in the
original project hosted on GitHub?

In GitHub, many active projects are brought from outside, dating earliest to 1999. These imported
projects are mirrors of projects hosted elsewhere or are ported from git or other version control systems
like Mercurial after some initial development. Unlike the projects that are created on GitHub, also
termed as internally developed projects, these projects have a prior development history and assumably
have reasonably mature code at the time of project creation on GitHub. In this study, we study the
two classes of projects in parallel and look for possible differences in their response to forking. So, the
sub research question we try to address is:

Do projects ported to GitHub behave differently relative to projects created in GitHub?

Understanding the community response to forking alone does not help project success. There is a
need to understand the factors driving community behavior which can be fine-tuned to improve the
chances of a project’s success. So, here we examine the role of project characteristics in competing
projects at the time of forking on the observed behavior. We ask the following question:

How do project characteristics at the time of forking influence the forkability and the sustain-
ability of the developer community in the original project?

To investigate the influence of forking, we propose a quantitative framework to identify forks,
characterize projects, and measure changes in the developer community participation in the origi-
nal project after forking. To do so, we identify types of forks and propose a quantitative approach
to single out independently developed forks from the original project – a concept measured in qual-
itative terms in literature. The proposed measure helps to analyze a wide range of projects to get a
comprehensive view of the influence of forking. Next, we distinguish between internally developed
and imported projects on GitHub using quantitative measures. This classification of projects may
help future research on project characterization to examine the two distinct classes of projects dis-
tinctly. Thus, while designing the framework for experimentation, we also make the following two
contributions in this study:

1. Classification of forks and identification of IDFs in quantitative terms.

2. Classify projects as imported and internally developed projects quantitatively.

We start with an early remark on the relevance of forking in GitHub by analyzing temporal trends.
As we discuss later, the term forking is used in a broad manner in GitHub. So, unless stated otherwise,
we use the term forking to imply the emergence of IDFs from the original project.

To measure the sustainability of the developer community participation, we adopt and extend
approaches from existing studies and measure the contribution of the developer community in terms
of software configuration management artifacts. We measure changes in the developer community
participation after forking and model the influence as 1) decrease, 2) increase, and 3) no effect on the
sustainability of the developer community participation in the original project. Further, we model the
observed behavior in terms of project characteristics to understand its reasons.

A large-scale study of projects hosted on GitHub shows that forking significantly alters the sus-
tainability of the developer community participation in the original project. We find that 18%, 29%,
and 53% of the original projects observe decrease, increase, and no effect respectively on the developer
community participation after forking. These results indicate that a small, yet significant, fraction of
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projects observe a decline in the sustainability of the developer community participation after forking.
This effect is more pronounced in projects ported to GitHub from external sources than projects cre-
ated in GitHub. We find that the maturity of the project, popularity of the owners of the competing
projects, domain, community size of the competing projects, and popularity of the competing projects
explain the forkability and the chances of the decline in the developer community participation.

4.1.2 Related Work

Forks may result from a wide variety of reasons. Web-searches of popular forks [147], interviews,
surveys [148], and fact-sheets [149] created by researches found that forks may result from 1) techni-
cal reasons, 2) disregard for the developer community, 3) discontinuation of the original project, 4)
commercialization of fork, 5) legal issues, and 6) differences among the team. Forking is observed
in every domain and very few forks are merged into the original [147]. Literature on popular forks
suggests that forking has no effect on the original project or the emerged new project[148] [149]. The
above-mentioned studies examine the reasons and outcomes of forking through qualitative measures.
However, the influence of forking on the developer community participation has seen little study. A
closely related work by Gamalielsson et al. analyzed developer communities and their evolution in
terms of project activity, developer commitment, and retention of committers over time [137]. They
supported their analysis with the first-hand experiences of contributors [139]. This study visually
analyzes temporal trends in a large, popular project and presents their observations. However, a com-
prehensive analysis of the influence of forking on a wide variety of projects is missing. Further, what
explains the observed behavior is not known. There are studies that examine the role of individ-
ual factors (willingness, opportunity, identity construction, etc.), and social factors (sociality, situated
learning, etc.) on long-term participation of developers [150] [59] [11]. However, the characterization
of the observed behavior in terms of project characteristics is missing to the best of our knowledge.

4.1.3 Background

4.1.3.1 Forks

In terms of Eric Raymond, forking “spawns competing projects that cannot later exchange code, split-
ting the potential developer community" [151]. The definition of forking has evolved since then. In
recent times, GitHub started using the term forking in a broad fashion. In GitHub, a repository is
forked to 1) propose changes to someone else’s project and 2) use someone else’s project as a starting
point of a new idea6. Based on the current usage of the term ‘fork’ in GitHub, there are three types of
forks:

1. Contributing forks: Forks which propose changes to others’ code.

2. Independently developed forks: Forks which use someone else’s project as a starting point to a new
idea.

3. Inactive forks: Forks which neither contribute nor are maintained independently.

All forks in GitHub can be classified into one of the three mutually exclusive categories based on their
contributions. In GitHub, there are two ways to collaborate.

1. In the Fork & Pull model changes are reviewed via pull requests before they are included in the
main project.

2. In the shared repository model, everyone is granted push access to a single shared repository and
topic branches are used to isolate changes.

For this study, we choose the Fork & Pull model – a popular collaborative development model in open
source projects. The choice is also driven by the fact that the shared repository model is prevalent in
1) private projects which are not analyzed in this study, and 2) small teams which are excluded
from analysis, as we discuss later. Thus, we limit the scope of this study to Fork & Pull collaborative
development model. Now, we introduce the basic terminology used for forks, followed by defining the
rules for classification. Finally, we classify forks to identify original projects, independently developed

6 https://help.github.com/articles/fork-a-repo/
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Figure 14: Fork Tree, and Types of Forks on Pull Request History

forks, and inactive forks. The proposed framework can be used to identify forking in projects of
different sizes quantitatively.

basic terminology Forking in GitHub follows a tree structure [152] with the original project,
also termed as the master fork (MF), at the root of the tree. All subsequent forks of the master fork are
termed as primary forks (PFs), secondary forks (SFs), tertiary forks (TFs) and so on [152]. In Fig. 14, the
original project, MF is at level 0. PF1 and PF2 are forked from MF and are at level 1. Similarly, SFs
forked from PFs and TFs forked from SFs are at level 2 and level 3 respectively. Unlike forks which
follow a tree structure, pull requests and commits float arbitrarily by appropriately setting remotes7

to relevant repositories. This arbitrary contribution behavior decides the relationship between forks
and hence the rules for classification discussed below.

rules for classification For projects build using Fork & Pull model, following are the rules for
classification:

• Forks that initiate pull requests to predecessor forks are contributing forks.

• Forks that do not send pull requests to predecessor forks, but observe internal commits are
independently developed forks. These forks may get pull requests from successor forks.

• Forks that neither send nor receive pull requests nor have internal commits are inactive forks.

Based on the rules defined above, the original project is an independently developed fork with
successor IDFs. The proposed definition of original projects and independently developed forks is
inclusive of various possible combinations. Thus, in a sub-system PF can act as the original project
for SF, if 1) PF does not contribute back to the MF and is developed independently with pull requests
from successor forks and internal commits, and 2) SF (derived from PF) does not contribute back to
the PF or MF and is developed independently. However, for the ease of analysis and considering the
limited data points at higher levels in the tree, we limit the definition of the original project to MF
and that of the independently developed fork to PF.

nomenclature and classification With MF as the original project and PF as the only possi-
ble independently developed fork, we present a detailed nomenclature for forks. This is followed by
the classification of forks based on all possible contribution patterns:

1. Forks which send pull requests to IDFs (PFs) are termed as exogenous forks while forks which
send pull requests to original projects (MFs) are termed as endogenous forks [152].

7 https://help.github.com/articles/using-pull-requests/
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Table 14: Classification of Forks [PR: Pull Request; MF: Master Fork; PF: Primary Fork; SF: Secondary Fork]

Category Symbol Name Description Pull Request Commit History

Independently
Developed Forks S_Exo

Secondary Exogenous Fork PF PR←− SF 3 Not Required

P_Intra
PF Intra PF PR←− PF 3 Not Required

P_ID Internally Developed PF with commit his-
tory

7 3

Contributing to
the Master Fork

P_En
Primary Endogenous Fork MF PR←− PF 3 Not Required

S_En
Secondary Endogenous Fork MF PR←− SF 3 Not Required

Merge Merged Fork MF PR←− PF PR←− SF 3 Not Required

M_Intra
MF Intra MF PR←− MF 3 Not Required

Inactive Forks P_Inact Primary Inactive Fork PF with no pull re-
quest(s) or commit his-
tory

7 7

S_Inact Secondary Inactive Fork SF with no pull re-
quest(s) or commit his-
tory

7 7

a) Secondary forks (SF) which send pull requests (PR) to Primary Forks (PF) are termed as

secondary exogenous forks (see S_Exo = PF2
PR←−− SF3 in Fig. 14 and Table 14).

b) Pull requests by PFs and SFs to MFs are termed as primary endogenous forks (P_En) and

secondary endogenous forks (S_En) respectively (see P_En = MF PR←−− PF1 and S_En = MF PR←−−
SF3 in Fig. 14 and Table 14).

2. There is one more variant to this category where SFs send pull requests to PFs and PFs send

pull requests to MFs. These forks are termed as merged forks (see Merge = MF PR←−− PF1
PR←−− SF2

in Fig. 14 and Table 14).

3. When the source and destination of pull requests are same, it is intra branch pull requests. Pull
requests are termed as MF Intra (M_Intra) and PF Intra (P_Intra) when the source and destination

are MFs and PFs respectively (see M_Intra = MF PR←−− MF and P_Intra = PF1
PR←−− PF1 in Fig. 14

and Table 14).

4. Forks which do not send pull requests (refer column Pull Request in Table 14) are classified into
two heads on commit history (refer columns Pull Request and Commit History in Table 14).

a) Forks with no pull requests, but commit history are internally developed forks (see P_ID in
Table 14).

b) Forks with no pull requests and no commit history are inactive forks (see P_Inact and S_Inact
in Table 14).

The definition descends for all original project-independently developed forks pair. So, if PF acts as
the original project, pull requests from SFs to PFs are SF Endogenous Fork and pull requests from TFs
to independently developed SFs are Tertiary Exogenous Fork. For this study, secondary exogenous
fork (S_Exo), primary fork intra (P_Intra) and internally developed (P_ID) are Independently Developed
Forks (refer Section 1 in Table 14). Similarly, primary endogenous fork (P_En), secondary endogenous
fork (S_En), merged fork (Merge) and MF Intra (M_Intra) are contributing forks contributing to the MF
(refer Section 2 in Table 14). Also, primary inactive fork (P_Inact) and secondary inactive fork (S_Inact)
are Inactive Forks (refer Section 3 in Table 14).

4.1.3.2 Projects Ported vs Created on GitHub

In GitHub, a wide variety of projects are ported from elsewhere. Recently, GoogleCode announced
its shutdown and ported numerous projects to GitHub8. In this section, we present a quantitative
approach to distinguish between projects created in GitHub and projects ported from elsewhere.

8 http://google-opensource.blogspot.in/2015/03/farewell-to-google-code.html
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Imported projects include mirrors of popular projects which observe development activities at their
respective official sites [153]. These projects with no development within GitHub are not of any interest
for this study. And interestingly, these projects characterized by no forks or fork tree structure [153]
are automatically eliminated when we select projects with fork tree structure at least up to two levels.
The next category is of projects ported from git or other version control systems. These projects have
a fair amount of code before they are ported to GitHub.

One characteristic that differentiates imported projects from internally developed projects is their
commit history. Imported projects have commit history prior to their date of creation on GitHub.
Manual analysis of projects hosted on GitHub shows development history dated back to the year
1999. We use this feature to separate the two classes of projects.

1. Imported projects: Projects with commit history prior to project creation date on GitHub.

2. Internally developed projects: Projects with commit history (or pull request history) after project
creation date on GitHub.

It is important to note here that imported projects do not have pull request history, so we compare
commit history with project creation date on GitHub.

4.1.4 Methodology

We identify projects with independently developed forks and statistically analyze changes in the devel-
oper community participation in the original project after forking. A step-by-step detailed description
of the methodology is described hereby. To help replication, the data are made publicly available9.

4.1.4.1 Data Acquisition and Curation

We start with the GitHub mysql data10 made available at GHTorrent on January 2014 [154]. GHTorrent
is an offline mirror of the data offered through the GitHub REST API. It monitors the GitHub public
event timeline and tracks all user activities and events in a project, including commits, pull requests,
etc. The downloaded GHTorrent data stores development history of 3,004,002 projects hosted on
GitHub from October 2007 to January 2014.

preprocessing

• Project Selection Criteria: We select projects where MFs are created between the year 2008 and
2012. The choice of 2012 as the end year ensures that we have at least a year of development
history, even for the projects that are created towards the end of the year 2012.

• Project Elimination Criteria: We eliminate projects with deleted MFs. Public projects where the
MF is deleted, are assigned a new MF and all subsequent forks and pull requests go to the new
MF11. The distribution of the developer community contribution into old and new MF gives
ground to remove such projects from the study.

identify projects with idfs Selection of projects with IDFs require that we select projects with
at least two levels in the fork tree. This step also eliminates mirrored projects that are actively main-
tained outside GitHub and have no forks in GitHub (Peril IX) [153]. Thus, we select projects with MF at
level 0, PF at level 1 and SF at level 2. A two level fork tree captures all possible combinations defined
in the scope of this study. Empirical analysis shows that this also ensures that we eliminate personal
projects and select collaboratively developed MF in the study. Then, based on the fork classification
criteria discussed in Section 4.1.3.1, we identify projects with independently developed forks.

We select projects where IDFs received significant participation from the community to possibly
influence the original project. So, we select projects where IDFs have at least 100 commits, 90 days
of activity, 4 contributors and 2 committers (an indicator of significant contribution used in [146]).
This gives us MF-PF pairs where PFs have significant developer community participation to influence
the original project. It is important to note here that we do not apply the significance criteria on the

9 https://github.com/AyushiRastogi/fsoc
10 http://ghtorrent.org/downloads.html
11 https://help.github.com/articles/what-happens-to-forks-when-a-repository-is-deleted-or-changes-visibility/
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original project. This ensures that we do not bias our data set towards the original projects that get
significant attention from the developer community. Now we have MF-PF pairs where one MF can
have multiple PFs based on significant participation from the developer community. Here, we treat
each MF-PF pair uniquely because different PFs may cast different influence on their MFs. Finally, we
aggregate the results and present the cumulative effect for projects.

classify projects on development history before creation date on github We clas-
sify the selected MF-PF pairs on prior development history. MF-PF pairs, where any of the MF or PF
has commit history prior to their creation date on GitHub, are classified as imported projects. Rest all
MF-PF pairs are classified as internally developed projects. We study the two classes of MF-PF pairs
in parallel.

4.1.4.2 Developer Community Participation

All relevant contributions to a repository are bookmarked in the form of commits. GitHub’s pull based
development model facilitates the core contributors to push their changes directly into the repository
while the rest submit their contributions via pull requests. The pull requests are reviewed and contin-
gent on their suitability these requests may get merged into the system. Contributors can also report
issues, post comments to help get it fixed, and close issues by committing12. Thus, commit counts
provide a fair representation of the overall activities of contributors and has been used in various
studies[137][146]. So, in this study, we measure commit counts as a proxy of developer community
participation and use commit counts per time-interval to measure the sustainability of the developer
community participation. It is important to note here that we do not measure changes in developer
community rather changes in developer community participation. The justification for our choice is
that developers may participate in both the competing projects. Also, developers may adjust their
efforts to account for the developers’ loss to ensure sustainability of the project.

4.1.4.3 Influence of Forking

For MFs of the selected projects, we identify breakpoint on the creation date of fork and study changes
in the developer community participation after forking. One of the key challenges to empirically
investigate projects with forks is sporadic developer community participation in the original projects.
We found that the count of time-intervals when developer community participates is significantly
less than the count of time-intervals of project existence. So, to ensure that we have 1) significant
development history and 2) fair count of projects to conduct analysis, we experiment with multiple
time-intervals of existence and time intervals of activity. In this study, we experiment with 3, 6, 9, and 12

month time intervals of existence and activities and present our results.
We model changes in the developer community participation using Mann-Whitney U Test, a non-

parametric test and decide at the 0.05 significance level. The choice of non-parametric test is guided by
the significant fraction of projects with insufficient developer community participation to approximate
a normal distribution. Also, this ensures that contribution spikes during the time of release do not
bias our results. The two-sided hypothesis to study changes in the developer community participation
is as follows:

H0 : Forking has no effect on the sustainability of the developer community participation in the
original project.
Ha : Forking changes developer community participation in the original project.

Further, we measure the direction of change (increase or decrease) when forking changes developer
community participation in the original project.

4.1.4.4 Project Characteristics and Developer Community Participation

Projects are characterized by various static (owner, domain, tools and technology used, etc.) and tem-
poral (maturity, contributors, process followed, tools and technology used, popularity, etc.) attributes.
In this study, we discuss the role of some of these characteristics in explaining the forkability and

12 https://help.github.com/articles/closing-issues-via-commit-messages/
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sustainability of the developer community participation in the original project. Below, we define these
project characteristics in terms of SCM artifacts.

maturity Maturity of the MF at the time of creation of PF is measured as the duration between
the minimums of MF creation or first commit date and PF creation or first commit date. The choice
of first commit date accounts for projects with development activities outside the GitHub develop-
ment environment. Mathematically, age of MF is {min(PFcreated, PFfirstCommit) - min(MFcreated,
MFfirstCommit)}.

developer community size Developer community size is the count of contributors whose code
was committed into the repository.

owner We measure the influence of the owner in terms of the nature and size of the fol-
lower base. By the term nature of followers, we mean the influence of the followers of the owner,
measured here as the count of the follower’s followers. Thus, the influence of the owner is∑
follower[follower[repository]].

domain The domain of projects hosted on GitHub is not stated explicitly. In this study, we infer
the domain of a project from its textual description. We use a mix of automated and manual tech-
niques (as suggested by [4]) and classify projects into six domains, namely, application, database,
compiler, middleware, library, framework, and others. We identify topics using Latent Dirichlet Allo-
cation (LDA), a well-known topic analysis algorithm and then manually classify the topics into the
six domains described above.

popularity We measure the popularity of a repository in terms of watchers’ count for the reposi-
tory.

4.1.4.5 Statistical Method

We use logistic regression to model the relationship of a set of predictors (project characteristics)
against a binary outcome, which is, significant fork or insignificant fork, and a decline in developer
community participation or not. We choose each MF-PF pair as a row in our regression model. Our
choice to consider each MF-PF pair as an independent observation is motivated by the fact that the
dynamics of each PF with the same MF is different.

Descriptive statistics of the independent variables show that our data is heteroscedastic. Thus, to
stabilize the variance and help improve the model fit, we log transform the data. We verify this by
comparing the AIC of the model with transformed and non-transformed data. Further, to help com-
pare ‘domain’ relative to base level, we use treatment code. As we expect the developer community
participation to respond differently to different sized projects, we classify projects on team size as
small, medium, and large-sized projects. Small sized projects have less than 11 contributors in MF,
medium sized projects have more than 10 and less than 30 contributors, and large sized projects have
more than 30 contributors as suggested by [146]. We build the regression model using generalized
linear models, as implemented in the function glm from the package glm2 in R. Coefficients are con-
sidered important if they are statistically significant (p < 0.05). Effect sizes are obtained from ANOVA
analyses and we evaluate models using residual deviance as a measure of goodness of fit. Table 17

and Table 18 show the results from the study. Here the coefficients are read as the expected changes
in the log of responses for a unit change in the predictor variable while keeping all other predictor
variables at a constant value. Log odds can also be expressed as (exp(coeffs)-1)*100 percentage change
in odds ratio. The interpretation of the result is the percentage change in odds (relative to the baseline)
by which a unit increase in the predictor variable influence the response variable.

4.1.5 Results

Table 15 shows the count of projects selected in each step of the methodology discussed in Section 4.1.4.
The projects count is measured annually to help analyze temporal trends. A total of 1,082,501 projects
are hosted on GitHub from the year 2008 to the year 2012 where the projects count triples every year
(refer ‘Projects Count’ in Table 15). Based on the project selection/elimination criteria in preprocessing,
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Table 15: Basic statistics of GitHub dataset

Year Projects
Count

Selection/ Elim-
ination Criteria

Collaboratively
Developed
Projects

Projects with Indepen-
dently Developed Forks
(MF-PF pairs)

Total Projects = Projects developed within ∪ out-
side GitHub with Significant Forks (MF-PF pairs)

2008 008,873 008,541 004,635 01,211 (028,216) 0,277 = 038 ∪ 0,263 (0,056 / 0,569)

2009 026,775 025,632 015,161 03,633 (067,087) 0,647 = 103 ∪ 0,615 (0,339 / 1,143)

2010 064,886 061,407 034,300 08,559 (123,471) 1,277 = 215 ∪ 1,196 (0,390 / 2,221)

2011 179,654 165,718 082,576 19,497 (199,127) 1,815 = 317 ∪ 1,670 (0,565 / 3,134)

2012 802,313 616,390 178,661 32,738 (219,719) 1,408 = 262 ∪ 1,223 (0,398 / 1,993)

Total 1,082,501 877,688 315,333 65,638 (637,620) 5,424 = 935 ∪ 4,967 (1,748 / 9,060)

we identified 877,688 projects out of which 315,333 projects have fork structure up to two levels
and 65,638 projects with IDFs or 637,620 MF-PF pairs (refer Total of ‘Selection/Elimination Criteria’,
‘Collaboratively Developed Projects’ and ‘Projects with Independently Developed Forks’ respectively
in Table 15).

Approx. one-third of the projects hosted on GitHub are developed collaboratively (refer columns
‘Projects Count’ and ‘Collaboratively Developed Projects’ in Table 15). This observation is in agreement
with the study of Kalliamvakou et al. [153]. Out of the total collaboratively developed projects, approx.
one-fifth of the projects (65,638 projects), observe development activities other than contribution to
MF (refer ‘Collaboratively Developed Projects’ and ‘Projects with Independently Developed Forks’ in
Table 15). An analysis of the temporal trends in column ‘Projects with Independently Developed Forks’
in Table 15 shows that every year projects with IDFs double in counts and represents a consistent
fraction of projects in time. Noteworthy, we see a sudden dip in project counts that observe forking
for the year 2012. This may be explained in terms of the insufficient development history for forking
to occur at first place and for significant development activities to happen thereafter to examine the
influence. Thus, forking is significant and is going to be more frequent in the future. This observation
regarding the increasing relevance of forking for independent development is in agreement with the
study by Robles et al. [147] who studied forking at project level.

4.1.5.1 How forking influences the sustainability of the developer community participation in the original
projects hosted on GitHub? Do projects ported to GitHub behave differently relative to projects created
in GitHub?

Out of the 5,424 projects with significant IDFs only 2,217 projects have significant developer commu-
nity participation before and after forking for analysis (refer Total of ‘Projects with IDFs’ and ‘Total
Projects’ in Table 15). This project count includes projects created and ported to GitHub. For iden-
tified projects, we compute changes in developer community participation in MF-PF pairs. Table 16

summarizes changes in the developer community participation as decrease, increase, and no effect
for the MF-PF pairs created or ported to GitHub annually. Here, each entry summarizes the mean
± standard deviation of selected projects with 3, 6, 9, and 12 months of existence before and after
forking.

In Table 16, we see that imported projects (1,881) are approx. three times in count with respect to
the internally developed projects in GitHub (541). Approximately 58% of the internally developed
projects in GitHub observe no effect in developer community participation after forking. Of the re-
maining, ≈33% and ≈9% of projects observe an increase and decrease in developer community partic-
ipation respectively. Interestingly, more imported projects observe a decrease in developer community
participation after forking (≈19%), while the fraction of the projects that observe no effect (≈50%) or
observe an increase (≈30%) in developer community participation reduces proportionally.

Fig. 15, 16 and 17 show instances of three projects and the ways in which the sustainability of the de-
veloper community is influenced by forking. Here, the horizontal axis shows time-intervals measured
monthly and the vertical axis shows developer community participation measured as commit counts
per month. The dotted red line indicates the time of occurrence of forking. In Fig. 15, the developer
community participation decreases after forking. In Fig. 17 developer community participation is not
affected and in Fig. 16 developer community participation increases after forking.
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Table 16: Classification of MF-PF pairs (or projects) developed within and outside GitHub as decrease, increase, and
no change in sustainability of the developer community after forking. Each column entry is a summary
(mean ± standard deviation) of MF-PF pairs having 3, 6, 9, and 12 months of existence before and after
forking

Type Year Decrease Increase No
Change

Total

Internal 2008 02±0 011±00 015±01 028±01

Internal 2009 18±0 156±02 084±06 258±08

Internal 2010 20±0 130±02 122±06 272±08

Internal 2011 28±1 148±06 210±20 387±27

Internal 2012 12±4 042±12 108±22 161±38

Projects Count 50 178 313 541

Percentage ≈9% ≈33% ≈58%

Imported 2008 041±00 150±01 071±01 0216±02

Imported 2009 075±02 233±03 189±07 0496±12

Imported 2010 159±06 457±05 441±22 1057±33

Imported 2011 570±16 570±16 791±46 1650±78

Imported 2012 213±10 292±09 504±42 1009±60

Projects Count 365 569 947 1881

Percentage ≈20% ≈30% ≈50%

All Projects Count 400 651 1166 2217

Percentage ≈18% ≈29% ≈53%

Time

C
o

m
m

it
 C

o
u

n
ts

2010 2011 2012 2013

0
1

0
2

0
3

0
4

0
5

0
6

0
7

0

Figure 15: Decrease in participation
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Figure 16: Increase in participation
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Figure 17: No effect in participation

Table 17: Influence of project characteristics on emergence of significant PF. Team size segments on contributors’
count: Small < 11; 10 < Medium < 30; 30 < Large

Small Medium Large

(Intercept) −8.62 (0.10)∗∗∗ −6.00 (0.20)∗∗∗ −5.36 (0.09)∗∗∗

projectAge 0.47 (0.02)∗∗∗ 0.10 (0.02)∗∗∗ 0.11 (0.02)∗∗∗

mf_authorCount 1.55 (0.04)∗∗∗ 0.75 (0.07)∗∗∗ 0.38 (0.02)∗∗∗

mf_followersCount −0.10 (0.01)∗∗∗ −0.10 (0.01)∗∗∗ −0.13 (0.00)∗∗∗

pf_followersCount 0.05 (0.01)∗∗∗ 0.09 (0.01)∗∗∗ 0.18 (0.00)∗∗∗

mf_domainCompiler −0.05 (0.13) −0.18 (0.13) 0.17 (0.10)

mf_domainDatabase 0.19 (0.10) 0.01 (0.08) 0.66 (0.09)∗∗∗

mf_domainFramework −0.26 (0.10)∗∗ 0.02 (0.08) 0.29 (0.07)∗∗∗

mf_domainlibrary −0.44 (0.11)∗∗∗ −0.42 (0.09)∗∗∗ 0.07 (0.08)

mf_domainMiddleWare 0.25 (0.16) 0.45 (0.12)∗∗∗ 1.05 (0.10)∗∗∗

mf_domainOthers 0.11 (0.07) 0.14 (0.05)∗ 0.74 (0.05)∗∗∗

mf_watchersCount −0.27 (0.01)∗∗∗ −0.24 (0.01)∗∗∗ −0.27 (0.01)∗∗∗

AIC 25997.69 30564.25 42813.81

BIC 26145.54 30695.19 42947.10

Log Likelihood −12986.85 −15270.12 −21394.91

Deviance 25973.69 30540.25 42789.81

Num. obs. 1656514 404926 492457

∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05
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4.1.5.2 How do project characteristics at the time of forking influence forkability of the original project?

maturity With the rest of the characteristics being the same, in small projects, an increase in the
maturity of a project by a year increases the odds of occurrence of a significant fork by 60%. However,
for medium and large projects the increase in odds is 10% (refer projectAge in Table 17).

Maturity of the MF is positively related to its forkability, with an attenuating effect as project
size increases.

community size In small projects, one unit increase in the contributors’ count increases its fork-
ability by 370%, which reduces to 110% and 40% for medium and large projects respectively (refer
mf_authorCount in Table 17).

An increase in developer community size of MF is positively related to its forkability with
attenuating effect as project size increases.

owner One unit increase in the influence of the owner of MF is related with 10-12% decrease in
odds of occurrence of forks for all sized projects (refer mf_followersCount in Table 17). However, one
unit increase in the influence of the owner of PF is related with 5%, 9%, and 19% increase in the odds
of occurrence of fork (refer pf_followersCount in Table 17).

An increase in the influence of the owner of MF decreases the forkability of the MF.
An increase in the influence of the owner of PF increases the forkability of MF.

domain We choose domain ‘Application’, with large project counts and developer base, as the base
level to compare the impact of domain on significant forking. In Table 17, domain coefficients can be
broadly categorized into three general categories. The first category includes those domains for which
coefficients are statistically insignificant and the modeling procedure could not distinguish the impact
from domain ‘Application’ (the base level). These domains behave like domain ‘Application’ or have
wide variance. The remaining coefficients are either positive or negative. For domains with positive
coefficients, the odds of occurrence of significant fork relative to domain ‘Application’ is positive. For
instance, domain ‘Middleware’ in medium-sized projects and domain ‘Database’, ‘Framework’ and
‘Middleware’ in large-sized project. For those with negative coefficients, the odds of occurrence of sig-
nificant fork are less relative to domain ‘Application’. For instance, domain ‘Framework’ and ‘Library’
in small sized projects, and domain ‘Library’ in medium-sized projects. To sum up, domains influence
the occurrence of significant fork. Domain ‘Application’ is more likely to observe significant forking
relative to other domains in small-sized projects. It has mixed-effects on medium-sized projects and is
less likely to observe significant forking relative to other domains in large-sized projects (refer domain
in Table 17).

The domain has significant, mixed-effects on the forkability of the MF.

popularity An increase in the popularity of the MF by one unit decreases the odds of occurrence
of a significant fork in all sized projects by approx. 21-23% (refer mf_watchersCount in Table 17).

The more popular the MFs; less likely is its forkability.

4.1.5.3 How do project characteristics at the time of forking influence the sustainability of the developer com-
munity participation?

maturity In Table 18, the impact of project maturity (projectAge) is statistically significant for
medium and large-sized teams. We observe that an increase in the maturity of MFs by a year reduces
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Table 18: Influence of project characteristics on decrease in developer community participation in the original
project. Team size segments on contributors’ count: Small < 11; 10 < Medium < 30; 30 < Large

Small Medium Large

(Intercept) −11.60 (0.68)∗∗∗ −7.09 (0.66)∗∗∗ −6.49 (0.31)∗∗∗

projectAge −0.11 (0.12) −0.27 (0.07)∗∗∗ 0.17 (0.05)∗∗∗

mf_authorCount 1.42 (0.28)∗∗∗ 0.12 (0.22) −0.16 (0.07)∗

pf_authorCount 2.64 (0.14)∗∗∗ 2.42 (0.08)∗∗∗ 1.70 (0.05)∗∗∗

mf_followersCount −0.19 (0.04)∗∗∗ −0.09 (0.02)∗∗∗ −0.18 (0.02)∗∗∗

pf_followersCount 0.05 (0.04) 0.01 (0.02) 0.04 (0.02)∗∗

mf_domainCompiler 0.28 (0.66) −1.73 (0.62)∗∗ 0.64 (0.27)∗

mf_domainDatabase −0.38 (0.61) 0.13 (0.24) 0.81 (0.22)∗∗∗

mf_domainFramework 0.39 (0.48) 0.21 (0.23) 0.22 (0.22)

mf_domainlibrary 0.04 (0.52) 0.00 (0.25) −0.19 (0.29)

mf_domainMiddleWare 0.31 (0.78) −1.06 (0.53)∗ 1.01 (0.24)∗∗∗

mf_domainOthers −0.26 (0.36) −0.60 (0.17)∗∗∗ −0.08 (0.16)

mf_watchersCount −0.23 (0.07)∗∗∗ −0.23 (0.04)∗∗∗ −0.17 (0.03)∗∗∗

pf_watchersCount 0.20 (0.12) 0.15 (0.08) 0.41 (0.05)∗∗∗

AIC 983.23 2708.90 4382.38

BIC 1155.71 2861.66 4537.88

Log Likelihood −477.61 −1340.45 −2177.19

Deviance 955.23 2680.90 4354.38

Num. obs. 1656514 404926 492457

∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

the odds of decline in the developer community participation by 23% in medium size projects and
increases the odds of decline by 18% in large size projects (refer projectAge in Table 18).

An increase in the maturity of the MF combats decline in medium sized projects and supports
decline in large sized projects.

community size In small projects, an increase in the community size of MF by one unit increases
the chances of decline in the developer community participation by 313%. In large projects, an increase
in the community size of MF by one unit decreases the odds of decline in the developer community
participation by 15%.

An increase in the community size of PF by one unit increases the odds of decline in the developer
community participation by 13, 10, and 5 times.

An increase in the community size of MF increases the chances of decline in developer commu-
nity participation in small projects.

An increase in the community size of MF decreases the chances of decline in developer com-
munity participation in large projects.

An increase in the community size of PF increases the chances of decline in developer commu-
nity participation in the original project.

owner In Table 18, an increase in the influence of the owner (refer mf_followersCount) decreases
the odds of decline in the developer community participation by 17%, 8%, and 16% for small, medium
and large projects respectively.

In large projects, an increase in the influence of the owner of the PF increases the odds of decline in
the developer community participation by 4%.

An increase in the influence of the owner of the MF decreases the chances of decline in devel-
oper community participation in the MF.

An increase in the influence of the owner of the PF increases the chances of decline in developer
community participation in the MF.
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domain The influence of domain is statistically insignificant for small-sized projects. For medium-
sized projects, the odds of decline of developer community participation decrease by 82% for domain
‘Complier’ and 40% for domain ‘Middleware’ relative to domain ‘Application’ (refer Table 18). How-
ever, for large projects, odds of decline in developer community participation relative to ‘Application’
increases by 89%, 124%, and 174% for domains ‘Compiler’, ‘Database’, and ‘Middleware’ respectively.
In short, projects in domain ‘Application’ are less likely to observe a decline as project size increases.

The domain has significant, mixed-effects on the decline in developer community participation.

popularity In Table 18, increase in the popularity of the original project (refer mf_watchersCount)
decreases the odds of decline in the developer community participation by 20%, 20% and 15% in small,
medium and large projects respectively.

In large projects, an increase in the popularity of the PF increases the odds of decline in the devel-
oper community participation by 51%.

An increase in the popularity of the MF decreases the chances of decline in developer commu-
nity participation in the original project after forking.

An increase in the popularity of the PF increases the chances of decline in developer community
participation in the original project after forking.

4.1.6 Threats to Validity

We try to address concerns related to Git[155] or GitHub[153] by removing projects with too few
commits and also one-person projects. However, our attempts to quantitatively measure the influence
of forking are subjected to limitations.

• Internal Validity

– Data Accuracy: GHTorrent data provide a fair estimate of activities and events in a project
and has been used in various studies. However, projects where history is rewritten may
provide an underestimation of the developer community participation and classification of
forks.

– Classification of Forks: Some forks start as contributing and then grow to become indepen-
dent or vice-versa. Since we do not include the temporal aspect here, we may end up
classifying both types of projects as contributing.

– Collaborative Development Model: We study collaboration through Fork & Pull model. So,
projects which use a mix of Fork & Pull and shared repository model are not modeled
completely.

• External Validity We present a case study of projects hosted on GitHub. While GitHub represents
a diverse set of projects, for generalization, similar experiments must be conducted on other
coding sites like BitBucket, etc.

4.1.7 Implications

Forking is significant and is going to be more relevant in the future. An analysis of more than 2,000

OSS projects shows that forking alters developer community participation in approximately half of
the projects. Interestingly, it increases developer community participation in more projects than it de-
creases developer community participation. Yet, the decrease observed influences a significant fraction
of the projects. Also, the effect is more pronounced in imported projects than internally developed
projects. Further, to understand the cause of the decline in the sustainability of the developer commu-
nity participation, we study the influence of various project characteristics at the time of forking. We
found that an increase in the maturity of the MF, its community size and the influence of the owner of
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the PF increases the forkability of the original project. An increase in the influence of the owner of MF
and the popularity of the MF decreases the forkability. The domain has a significant, mixed-effect on
the forkability. We see that an increase in the maturity of MF decreases the chances of decline in the
developer community participation in medium sized projects and increases the chances of decline in
large sized projects. Similarly, an increase in the community size of MF increases and then decreases
the chances of decline in developer community participation as project size increases. Besides this,
an increase in the community size of PF, the influence of its owner, and its popularity increases the
chances of decline in the developer community participation in the original project. An increase in
the influence of the owner of MF and its popularity decreases the chances of decline in the developer
community participation in the original project. Among others, these observations explain why fork
LibreOffice has no effect on the sustainability of the developer community participation in OpenOffice.
It is important to note here that some factors have effects both ways. For instance, an increase in the
maturity of the MF increases the forkability, while also decreasing the chances of decline in developer
community participation of MF.

4.2 personality traits and context of software development

4.2.1 Introduction

Studies in Psychology suggest that behavior is best predicted from a comprehensive understanding
of the person, the situation and the interactions between the person and the situation [156]. In this
study, we intend to empirically explain the behavior of contributors by investigating their personality
profiles - unique to them, and the context of software development. We believe that an understanding
of the behavior of contributors will help comprehend the true nature of online distributed software
development. This understanding of contributors’ behavior can be used to facilitate software develop-
ment process thereby improving project performance. For instance, personality traits can be used to
explain productivity [157], withdrawal behavior [158], etc.

Studies on commercial software development projects [159] [160] [161] [162] and online platforms
like StackOverflow [163] and Twitter [164] have shown the importance of personality traits in explain-
ing behavior. A preliminary study on an OSS project also acknowledged the inferential ability of
personality traits in explaining contributors’ joining and leaving behavior [158].

In this study, we measure the personality profiles of contributors, as evident from their language
use [165], in discussions on software development. Personality profiles of contributors are described
through five traits namely Openness to Experience, Conscientiousness, Extraversion, Agreeableness
and Neuroticism [166]. Openness to Experience is related to being insightful and open to new ideas
[157]. Conscientiousness is the preference for order and goal-directed work [157]. Extraversion de-
scribes individuals’ desire to seek company and derives stimulation from the external world [157].
Agreeable people are cooperative, compassionate and sensitive to others [157]. Neuroticism is related
to the tendency to express negative emotions and anger [157].

We empirically analyze the relationships of the personality traits of contributors with contributions
and context of software development in GitHub. Specifically, we study differences in the personality
traits of sub-communities of contributors with different levels of contributions and project member-
ship status. Also, we study differences in the personality traits of individuals when they contribute in
different contexts. Particularly, we look for changes in the personality traits with time, type of contri-
bution, role and project membership. We leverage the software development project data in GitHub
to provide answers to the following project-level and contributor-level research questions:

Project-level

RQ1) Do personality types vary with the contribution?

Contributors who contribute more score high on Openness to Experience, Conscientiousness, and
Extraversion. Agreeableness decreases as contribution increases. Contributors with extreme (high and
low) levels of contributions are more Neurotic compared to the contributors with medium-level of
contributions.
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RQ2) Do personality types vary with project membership?

There are no differences in Openness to Experience and Neuroticism based on the membership of
contributors in the projects. Project members are more Conscientious and Extrovert and less Agreeable
compared to non-project members.

Contributor-level

RQ3) Do personality traits of contributors evolve with time?

There are no changes in Openness to Experience and Neuroticism. Active contributors evolve as more
Conscientious, more Extrovert and less Agreeable with time.

RQ4) Do contributors show different personality traits for different contribution types?

There are no differences in Openness to Experience based on the contribution type. Active contributors
are most Conscientious, Extrovert and Neurotic while discussing pull requests and most Agreeable
while discussing issues.

RQ5) Do contributors show different personality traits for different roles?

As reporters, highly active contributors are more Open to Experience, Conscientious and Neurotic
compared to when they act as reviewers. Contributors are more extrovert as reviewers. There is no
change in Agreeableness.

RQ6) Do contributors show different personality traits based on project membership?

Active contributors are more Conscientious, Agreeable and Neurotic then when they are not the
member of the project. Contributors are more extrovert when they are the member of the project.
There is no change in Openness to Experience. It is important to note here that in RQ2, we compare
the personality profiles of sub-communities of contributors who are project members against non-
project members. While in RQ6, we compare the personality profiles of contributors in projects where
they are project members against their personality profiles in projects where they are not project
members.

We presented several results that match our expectations, thereby demonstrating the inferential
power of the personality traits in explaining the behavior in various contexts of software development
in GitHub. We see this study as a first step towards comprehending the intricacies of a team by
creating a better understanding of contributors’ behavior.

4.2.2 Background and Related Work

4.2.2.1 Personality Theories and Tools

Personality theories use validated tests to capture individuals’ personality profiles. The two most pop-
ular personality models are the Big Five [167] (with a variation called the Five Factor Model [168]) and
Myers-Briggs Type Indicator (MBTI) [169]. The Big Five personality model is developed on the under-
lying position that “personality is encoded in natural language, and differences in personality may
become apparent through language use” [170]. In contrast, MBTI model was developed on the stance
that “individuals evolve psychologically through experiences and this evolution shapes individuals’
behavior along different psychological types” [171]. Studies say that MBTI is suitable for assessing
individual’s self-awareness as against its common use for explaining performance [172]. MBTI has
reliability and validity issues too [173]. We use the Big Five model to measure personality traits in
this study. The Big Five personality profiles have been correlated with individuals’ language use [174]
- the phenomenon under consideration in this work.

Individual’s linguistic style is quite stable [175] [176]. Personality traits can be detected in individ-
ual’s interactions, even if they occur in textual settings [175]. There are text analytics programs that
accurately links language characteristics to personality traits with a modest but reliable effect [175]
[176]. For instance, use of pronouns or articles may not reveal which objects or events a person is
talking about, but it provides a sense of the person’s general approach to the world.
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We use LIWC software tool [177] to measure personality traits in terms of the language used. This
tool captures over 86% of the words used during conversations (around 4500 words) [177]. The relia-
bility and the validity of the tool have been extensively evaluated by the studies on various platforms
such as Facebook [178], Twitter [164] [179], and StackOverflow [180] [163]. We chose LIWC tool for
analysis because comments on GitHub are short and informal, similar to Facebook and Twitter -
which used LIWC tool. Further, existing studies on software development provide useful discoveries
to encourage the systematic application of linguistic analysis techniques to study developers’ commu-
nications [158][157].

4.2.2.2 Textual Communication, Personality Traits and Software Development

Communication archives in software development projects are shown to contain significant informa-
tion about the software systems they discuss [181]. These archives are also used to infer personality
profiles which have a significant influence on people’s job behavior [182].

In commercial software development projects, the personality of project managers influences the
success of projects [162]. Attitude and behavior of the software development team vary with the
nature of task performed [159]. Further, high levels of organizational and interpersonal skills are
found useful for those operating in distributed settings, and that personality diversity boosts team
performance [157].

Preliminary analyses of the personality traits of four developers on a large, popular, open source
software project show promise in understanding developers’ joining and leaving pattern [158]. Dif-
ferences in the personality traits of contributors were also observed [158]. Building on the existing
studies, here we explore the inferential power of the personality traits in explaining the behavior of
contributors in various contexts of software development in GitHub.

4.2.3 Methodology

For RQ1 and RQ2, we classify the contributors in projects into groups based on their levels of contri-
butions and project membership respectively. Similarly, for RQ3 to RQ6, we group the contributions
of contributors based on time of participation, contribution type, role and project membership respec-
tively. We compute the personality traits of contributors in each group and study their relationships
with the above-mentioned factors. The step-by-step procedure used in this study is summarized in
Figure 18. All the data and procedures used here is made publicly available for replication13.

4.2.3.1 Data Preparation

We downloaded the GitHub projects’ data publicly available by GHTorrent14 [154]. The dataset has
development history of more than six years (October 2007 to August 2014). The selection criteria of
projects and contributors is mentioned below:

4.2.3.2 Project Selection Criteria

We selected 243 actively discussed projects. These projects are the union of top 100 projects selected
in terms of comments count to discuss issues, pull requests and commits. The selected projects have
119,638 contributors who participated at least once in discussions. Refer step 1, part 1 (Identify target
audience) of Figure 18.

4.2.3.3 Contributor Selection Criteria

We selected 423 active contributors in discussions. These contributors wrote at least 100 comments
during discussions on issues, pull requests and commits separately. The participation of these selected
contributors is not limited to the projects selected in sub-section 4.2.3.2. Refer step 1, part 2 (Identify
target audience) of Figure 18.

13 https://sites.google.com/site/ayushirastogi1989india/research/personalitytraits-data
14 http://ghtorrent.org/downloads.html

https://sites.google.com/site/ayushirastogi1989india/research/personalitytraits-data
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Figure 18: Research Method [Step 1] Identify projects and contributors for the study. [Step 2] Compute personality
traits score from discussions. [Step 3] Group contributors based on contribution and project member-
ship. Group contribution of contributors based on time, type, role and project membership. [Step 4]
Conduct statistical analyses to test for significance of the differences in personality traits across groups.

4.2.3.4 Measure

personality traits Yarkoni [175] measured personality traits of individuals using LIWC tool.
LIWC tool uses a dictionary for text analysis. The default LIWC 2007 dictionary is made up of more
than 4,500 words and word stems. Each word or word stem is defined in one or more word categories
or sub-dictionaries. These categories or LIWC dimensions are arranged hierarchically. For instance,
‘psychological process’ consists of ‘social processes’, ‘affective processes’, ‘cognitive processes’, etc.

Yarkoni measured personality traits as the weighted sum of LIWC dimensions. Here, the weight
was the correlation coefficient between the LIWC dimension and the personality trait. Thus, LIWC
dimension which has a high correlation with the personality trait is given more weight. The measure
of Neuroticism proposed by Yarkoni [175] is:

(0.12 × FirstPersonSingular) + (0.10 × FirstPerson) − (0.15 × SecondPerson) + (0.11 ×Negation) − (0.11 ×
Article) − (0.08×Optimism) + (0.16 ×NegativeEmotion) + (0.17 × Anxiety/Fear) + (0.13 × Anger) + (0.10 ×
Sadness) + (0.13 × CognitiveProcess) + (0.11 × Causation) + (0.13 × Discrepancy) + (0.09× Inhibition) +
(0.12×Tentative)+ (0.13×Certainty)+ (0.10×Feeling)− (0.08×OtherReferences)− (0.08×Friends)− (0.09×
Spaces)− (0.10×Up)+ (0.10×Exclusive)+ (0.10×Sleeping)+ (0.11×SwearWords)

Here, deleted terms were seen to correlate with personality traits when using LIWC 2001 dictio-
nary, but were removed from LIWC 2007 due to low base rate [176]. Similarly, Yarkoni [175] proposed
measures for the other four personality traits. In this study, we use the measures of Personality Traits
proposed by Yarkoni [175]. It is important to note that the measures of personality traits are com-
posite and hence the absolute values are meaningless. However, comparing the relative scores helps
determine differences in the personalities [158].

We apply LIWC tool to each comment and calculate the values of the “Big Five Personality Traits”.
Refer step 2 (Compute personality scores) of Figure 18. For instance,
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Comment 1: “Yep, you are right, the problem is that we don’t know if more headers have been added.
Another option is to create a ’refresh’ method and call it from outside every time a new header is
created/removed. Makes sense for me.”
Comment 2: “Why did these need to change? the fact that it didn’t break any tests means we have
some untested and unverified cases here as well.”

Using the formula for Neuroticism mentioned in equation 4.2.3.4, comment 1 has a lower neuroti-
cism score (5) relative to comment 2 (8).

contribution Contributors participate (in issues) by reporting issues or by helping get it fixed.
Similarly, contributors participate in pull requests and commits. We measure contribution as the count
of issues, pull requests and commits on which the contributor participated in any form and to any
degree.

4.2.3.5 Classify Contributors in Projects

contribution (rq1) The distribution of contributors based on their contributions follows a
skewed distribution [183]. Therefore, similar to other studies [163], we classify contributors into three
classes as follows: 1% of contributors as high contribution contributors (H), 10% of contributors as
medium contribution contributors (M) and the remaining 89% of contributors as low contribution
contributors (L). We study contributions of individuals with at least 10 comments to have a reliable
estimate of their personality traits. Refer step 3, part 1, RQ1 (Classify contributors in projects) in
Figure 18.

project membership (rq2) We classify contributors in each project into two classes based on
whether they are a member of the project or not. Contributors with commit access are members of
the project. Refer step 3, part 1, RQ2 (Classify contributors in projects) in Figure 18.

4.2.3.6 Classify Contribution of Contributors

time (rq3) We classify contributions of contributors based on the year of participation. We ex-
amine participation in three consecutive years. Refer step 3, part 2, RQ3 (Classify contributions of
contributors) in Figure 18.

contribution type (rq4) We classify contributions of contributors based on participation in
issues, pull requests and commits. Refer step 3, part 2, RQ4 (Classify contributions of contributors) in
Figure 18.

role (rq5) We classify contributions of contributors based on their role as a reporter or a reviewer.
Refer step 3, part 2, RQ5 (Classify contributions of contributors) in Figure 18.

project membership (rq6) We classify contributions of contributors based on whether they are
a member of the project or not. Similar to RQ2, contributors with commit access are members of the
project. Refer step 3, part 2, RQ6 (Classify contributions of contributors) in Figure 18.

4.2.3.7 Statistical Tests

We conduct statistical tests to examine differences in personality traits in two cases: 1) examine dif-
ferences in personality traits across the sub-communities of projects (RQ1 and RQ2) and 2) examine
differences in personality traits across the roles of contributors (RQ3-RQ6). Refer step 4 in Figure 18.

To compare the personality traits of contributors in two contexts (as in RQ3, RQ5, and RQ6), we con-
ducted pairwise t-test and reported the effect size using Cohen’s d. For RQ2, where the observations
are independent, we conducted t-test followed by Cohen’s d. For the five personality traits, we report
mean and standard deviation of group 1 (M1; SD1) and group 2 (M2; SD2). We report t-statistics (t)
with the degree of freedom (d), p-value (p) and Cohen’s d (d). We also report differences in mean.
The differences are significant for p<0.001.

To compare personality traits across more than two groups (as in RQ1 and RQ4), we conducted
ANOVA to compare the means of the distribution. If significant differences were observed, we con-
ducted Tukey’s HSD to test for significant differences between all pairs. We report effect size using
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Table 19: (RQ1) Differences in the personality traits of contributors across projects with high (H), medium (M),
and low (L) levels of contributions

Personality Trait
ANOVA Tukey’s HSD

F(df, dferror) p-value η2 M-H L-H L-M

diff p-value diff p-value diff p-value

O F(2,18906)=166.8 0.000 0.017 -0.16 0.09 -0.84 0.000 -0.68 0.000

C F(2,18906)=421.4 0.000 0.042 -0.65 0.000 -1.21 0.000 -0.55 0.000

E F(2,18906)=78.48 0.000 0.008 -0.45 0.000 -0.68 0.000 -0.23 0.000

A F(2,18906)=121.7 0.000 0.012 0.09 0.01 0.34 0.000 0.24 0.000

N F(2,18906)=13.22 0.000 0.001 -0.20 0.000 -0.07 0.20 0.12 0.000
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Figure 19: Differences in the personality traits of contributors across projects with High (H), Medium (M) and
Low (L) levels of contributions

eta squared (η2). For the five personality traits, we report F-statistics along with the degree of free-
dom and degree of error as F(df, dferror). We report p-values (p) and eta square (η2). We report the
results of Tukey’s HSD as the differences in mean (diff) for all pairs and their p-values (p-value). The
differences are significant for p<0.001.

We show differences in the personality traits across groups using notched boxplot (for instance,
refer Figure 19). The vertical axis on the boxplot shows the relative personality traits score and the
horizontal axis shows groups. Each figure presents the results of the five personality traits (Openness
to Experience, Conscientiousness, Extraversion, Agreeableness, Neuroticism). The interpretation of
the figure is that that if the notches of the two groups do not overlap, there are statistically significant
differences in the personality traits of the groups. All the tests are conducted using R language [184].

4.2.4 Results

rq1 : do personality types vary with contribution? We compared the personality traits
of contributors with different (high, low, and medium) levels of contributions. There is a significant
effect of the level of contribution on the Openness to Experience of contributors F(2,18906)=166.8,
p=0.000, η2=0.017. There is no difference in the Openness to Experience between high and medium
levels of contributors diff=-0.16, p=0.09. Openness to Experience decreases with the decrease in the
level of contribution. There is a significant effect of the level of contribution on the Conscientiousness
of contributors F(2,18906)=421.4, p=0.000, η2=0.042. Conscientiousness decreases with the decrease in
the levels of contributions. There is a significant effect of the level of contribution on the Extraversion
of contributors F(2,18906)=78.48, p=0.000, η2=0.008. Extraversion decreases with the decrease in the
levels of contributions. There is a significant effect of the level of contribution on the Agreeableness
of contributors F(2,18906)=121.7, p=0.000, η2=0.012. Agreeableness is similar for high and medium
contribution contributors diff=0.09, p=0.01 and decreases for low contribution contributions. There is
a significant effect of the level of contribution on the Neuroticism of contributors F(2,18906)=13.22,
p=0.000, η2=0.001. Neuroticism is high for high and low contribution contributors diff=-0.07, p=0.20

and decreases for medium contribution contributors. Refer Table 19 and Figure 19 for the summary
of the observations.

rq2 : do personality types vary with project membership? We compared the personal-
ity traits of contributors who were the member of the selected projects against the personality traits
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Table 20: (RQ2) Differences in the personality traits of contributors across projects based on whether they are a
member of the project (PM) or not project member (NPM)

Groups Personality Trait M1 SD1 M2 SD2 df t p d Mean of differences

PM and NPM

O 71.3 2.2 71.1 2.5 3781 2.66 0.007 0.05 -

C 67.1 1.7 66.2 1.6 3503 24.06 0.000 0.50 0.86 ↑
E 39.6 2.5 38.4 1.9 3136 22.06 0.000 0.55 1.14 ↑
A 49.3 1.1 49.5 1.0 3341 -7.05 0.000 0.15 0.17 ↓
N 24.7 1.6 24.6 1.5 3426 2.59 0.009 0.05 -
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Figure 20: Differences in the personality traits of contributors across projects based on whether they are a member
of the project (M) or not (NM)

of contributors who were not the member of the selected projects. We find that there is no signifi-
cant difference in the Openness to Experience of project members (M=71.3, SD=2.2) from non-project
members (M=71.1, SD=2.5), t(3781)=2.66, p=0.007, d=0.05. There is a significant difference in Con-
scientiousness of project members (M=67.1, SD=1.7) from non-project members (M=66.2, SD=1.6),
t(3503)=24.06, p=0.000, d=0.50. Project members are high on Conscientiousness by 0.86 compared to
the non-project members. There is a significant difference in the the Extraversion of project members
(M=39.6, SD=2.5) from non-project members (M=38.4, SD=1.9), t(3136)=22.06, p=0.000, d=0.55. Ex-
traversion increases by 1.14 from non-project members to project members. There is a significant dif-
ference in the Agreeableness of project members (M=49.3, SD=1.1) from non-project members (M=49.5,
SD=1.0), t(3341)=-7.05, p=0.000, d=0.15. Agreeableness decreases by 0.17 from non-project members
to project members. There is no significant difference in the Neuroticism of project members (M=24.7,
SD=1.6) from non-project members (M=24.6, SD=1.5), t(3426)=2.59, p=0.009, d=0.05. Refer Table 20

and Figure 20 for the summary of the observations.

rq3 : do personality traits of contributors evolve with time? We compared the per-
sonality traits of contributors during the first year and the second year of their participation. Out of
the selected 423 contributors, 413 contributors participated for two consecutive years. We find that
there is no significant difference in the Openness to Experience from year 1 (M=70.9, SD=3.3) to year
2 (M=71.1, SD=1.9), paired t(412)=-0.93, p=0.346, d=0.05. There is a significant difference in the Con-
scientiousness from year 1 (M=66.7, SD=2.2) to year 2 (M=67.0, SD=1.5), paired t(412)=-3.21, p=0.001,
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Figure 21: Differences in the personality traits of the contributors during the first year (Y1) and the second year
(Y2) of their participation
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Table 21: (RQ3,5,6) Differences in the personality traits of contributors with time (Year 1, Year 2 and Year 3),
role (Reporter Rep and Reviewer Rev) and project membership (Project Member PM and Non Project
Member NPM)

Paired Groups Personality Trait M1 SD1 M2 SD2 df t p d Mean of differences

Year 1 and Year 2

O 70.9 3.3 71.1 1.9 412 -0.93 0.346 0.05 -

C 66.7 2.2 67.0 1.5 412 -3.21 0.001 0.17 0.34 ↑
E 38.8 2.5 39.3 1.9 412 -3.51 0.000 0.20 0.45 ↑
A 49.6 1.3 49.4 0.9 412 3.64 0.000 0.19 0.22 ↓
N 25.0 2.5 24.9 1.6 412 0.72 0.467 0.04 -

Year 1 and Year 3

O 70.8 3.4 71.0 1.8 366 -0.98 0.326 0.06 -

C 66.5 2.2 67.1 1.4 366 -4.3 0.000 0.27 0.52 ↑
E 38.6 2.4 39.6 2.1 366 -6.2 0.000 0.42 0.99 ↑
A 49.7 1.3 49.4 0.9 366 5.97 0.000 0.37 0.45 ↓
N 24.9 2.6 25.2 1.3 366 -1.9 0.053 0.12 -

Rep and Rev

O 71.3 1.9 71.1 1.6 422 3.49 0.000 0.11 0.21 ↓
C 68.3 1.6 67.1 1.2 422 21.12 0.000 0.83 1.23 ↓
E 39.4 2.2 40.0 1.9 422 -4.66 0.000 0.27 0.58 ↑
A 49.1 0.9 49.1 0.9 422 -1.02 0.304 0.04 -

N 26.4 1.5 25.0 1.1 422 21.34 0.000 0.99 1.39 ↓

PM and NPM

O 71.1 1.8 71.2 1.7 396 -0.61 0.535 0.02 -

C 67.3 1.5 67.6 1.5 396 -3.95 0.000 0.17 0.27 ↑
E 40.0 2.0 39.2 1.6 396 8.29 0.000 0.46 0.84 ↓
A 49.1 1.0 49.3 0.8 396 -4.90 0.000 0.20 0.19 ↑
N 25.2 1.5 25.6 1.4 396 -5.91 0.000 0.28 0.42 ↑
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Figure 22: Differences in the personality traits of contributors during the first year (Y1) and the third year (Y3) of
their participation

d=0.17. Conscientiousness increases by 0.34 from year 1 to year 2. There is a significant difference in
the Extraversion from year 1 (M=38.8, SD=2.5) to year 2 (M=39.3, SD=1.9), paired t(412)=-3.51, p=0.000,
d=0.20. Extraversion increases by 0.45 from year 1 to year 2. There is a significant difference in the
Agreeableness from year 1 (M=49.6, SD=1.3) to year 2 (M=49.4, SD=0.9), paired t(412)=3.64, p=0.000,
d=0.19. Agreeableness decreases by 0.22 from year 1 to year 2. There is no significant difference in
the Neuroticism from year 1 (M=25.0, SD=2.5) to year 2 (M=24.9, SD=1.6), paired t(412)=0.72, p=0.467,
d=0.04. Refer Table 21 and Figure 21 for the summary of the observations.

We also compared the personality traits of contributors during the first year and the third year
of their participation. Out of the selected 423 contributors, 367 contributors participated for three
consecutive years. We find that there is no significant difference in the Openness to Experience from
year 1 (M=70.8, SD=3.4) to year 3 (M=71.0, SD=1.8), paired t(366)=-0.98, p=0.326, d=0.06. There is
a significant difference in the Conscientiousness from year 1 (M=66.5, SD=2.2) to year 3 (M=67.1,
SD=1.4), paired t(366)=-4.3, p=0.000, d=0.27. Conscientiousness increases by 0.52 from year 1 to year
3. There is a significant difference in the Extraversion from year 1 (M=38.6, SD=2.4) to year 3 (M=39.6,
SD=2.1), paired t(366)=-6.2, p=0.000, d=0.42. Extraversion increases by 0.99 from year 1 to year 3.
There is a significant difference in the Agreeableness from year 1 (M=49.7, SD=1.3) to year 3 (M=49.4,
SD=0.9), paired t(366)=5.97, p=0.000, d=0.37. Agreeableness decreases by 0.45 from year 1 to year 3.
There is no significant difference in the Neuroticism from year 1 (M=24.9, SD=2.6) to year 3 (M=25.2,
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Table 22: (RQ4) Differences in the personality traits of contributors while discussing issues (I), pull requests (P)
and commits (C)

Personality
Trait

ANOVA Tukey’s HSD

F(df, dferror) p-value η2 P-I C-I C-P

diff p-value diff p-value diff p-value

O F(2,1266)=3.3 0.036 0.005 0.23 0.18 0.33 0.030 0.10 0.72

C F(2,1266)=2044 0.000 0.76 4.60 0.000 3.93 0.000 -0.67 0.000

E F(2,1266)=14392 0.000 0.95 9.10 0.000 -0.24 0.000 -9.34 0.000

A F(2,1266)=2917 0.000 0.82 -3.59 0.000 -0.39 0.000 3.19 0.000

N F(2,1266)=2129 0.000 0.77 4.91 0.000 4.45 0.000 -0.45 0.000
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Figure 23: Differences in the personality traits of contributors while discussing issues (I), pull requests (P) and
commits (C)

SD=1.3), paired t(366)=-1.9, p=0.053, d=0.12. Refer Table 21 and Figure 22 for the summary of the
observations.

rq4 : do contributors show different personality traits for different contribu-
tion types? We compared the personality traits of contributors when discussing issues, pull re-
quests and commits. There is no effect of the contribution type on the Openness to Experience of
contributors F(2,1266)=3.3, p=0.036, η2=0.005. There is a significant effect of the contribution type on
the Conscientiousness of contributors F(2,1266)=2044, p=0.000, η2=0.76. Conscientiousness is highest
when working on pull requests and decreases for commits and issues sequentially. There is a sig-
nificant effect of the contribution type on the Extraversion of contributors F(2,1266)=14392, p=0.000,
η2=0.95. Extraversion is highest when working on pull requests and decreases while working on
issues and commits sequentially. There is a significant effect of the contribution type on the Agree-
ableness of contributors F(2,1266)=2917, p=0.000, η2=0.82. Agreeableness is highest when working on
issues and decreases while working on commits and pull requests sequentially. There is a significant
effect of the contribution type on the Neuroticism of contributors F(2,1266)=2129, p=0.000, η2=0.77.
Neuroticism is highest when working on pull requests and decreases while working on commits and
issues sequentially. Refer Table 22 and Figure 23 for the summary of the observations.

rq5 : do contributors show different personality traits for different roles? We
compared the personality traits of contributors for their roles of reporter and reviewer. We find that
there is a significant difference in the Openness to Experience from the role reporter (M=71.3, SD=1.9)
to the role reviewer (M=71.1, SD=1.6), paired t(422)=3.49, p=0.000, d=0.11. Openness to Experience
decreases by 0.21 for the role of reviewer compared to the role of reporter. There is a significant differ-
ence in the Conscientiousness from the role reporter (M=68.3, SD=1.6) to the role reviewer (M=67.1,
SD=1.2), paired t(422)=21.12, p=0.000, d=0.83. Conscientiousness decreases by 1.23 from the role re-
porter to the role reviewer. There is a significant difference in the Extraversion from the role reporter
(M=39.4, SD=2.2) to the role reviewer (M=40.0, SD=1.9), paired t(422)=-4.66, p=0.000, d=0.58. Extraver-
sion increases by 0.58 from the role reporter to the role reviewer. There is no significant difference
in the Agreeableness from the role reporter (M=49.1, SD=0.9) to the role reviewer (M=49.1, SD=0.9),
paired t(422)=-1.02, p=0.304, d=0.04. There is a significant difference in the Neuroticism from the role
reporter (M=26.4, SD=1.5) to the role reviewer (M=25.0, SD=1.1), paired t(422)=21.34, p=0.000, d=0.99.
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Figure 24: Differences in the personality traits of contributors when they are reporter (Rp) versus when they are
reviewer (Rv)
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Figure 25: Differences in the personality traits of the contributors based on whether they are a member of the
project (M) or not (NM)

Neuroticism increases by 1.39 from the role reporter to the role reviewer. Refer Table 21 and Figure 24

for the summary of the observations.

rq6 : do contributors show different personality traits based on project member-
ship? We compared the personality traits of contributors when they played project member and
non-project member. Out of the 423 contributors, only 397 contributors played project member in
some projects and non-project member in other projects. We find that there is no significant difference
in the Openness to Experience when contributors are project members (M=71.1, SD=1.8) compared
to when they are non-project member (M=71.2, SD=1.7), paired t(396)=-0.61, p=0.535, d=0.02. There is
a significant difference in the Conscientiousness when contributors are project members (M=67.3,
SD=1.5) compared to when they are non-project members (M=67.6, SD=1.5), paired t(396)=-3.95,
p=0.000, d=0.17. Conscientiousness increases by 0.27 for non-project members compared to project
members. There is a significant difference in the Extraversion when contributors are project mem-
bers (M=40.0, SD=2.0) compared to when they are non-project members (M=39.2, SD=1.6), paired
t(396)=8.29, p=0.000, d=0.46. Extraversion increases by 0.84 from non-project members to project
members. There is a significant difference in the Agreeableness when contributors are project mem-
bers (M=49.1, SD=1.0) compared to when they are non-project members (M=49.3, SD=0.8), paired
t(396)=-4.90, p=0.000, d=0.20. Agreeableness decreases by 0.19 from non-project members to project
members. There is a significant difference in the Neuroticism when contributors are project members
(M=25.2, SD=1.5) compared to when they are non-project members (M=25.6, SD=1.4), paired t(396)=-
5.91, p=0.000, d=0.28. Neuroticism decreases by 0.42 from non-project members to project members.
Refer Table 21 and Figure 25 for the summary of the observations.

4.2.5 Discussions

We started the study by proposing that the personality traits of contributors, mined from software
repositories, could offer a way to explain their contributions in different contexts of software develop-
ment. We were able to present several results that support our idea.
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We showed that the personality traits of contributors with different levels of contributions are dif-
ferent. We found a steady increase in the Openness to Experience, the Conscientiousness, and the
Extraversion as contribution increases. This is expected as contributors with higher levels of contri-
butions are the ones who take the lead to ensure project success. These contributors characterized by
being more insightful, more goal-oriented and social seems intuitive. Further, we found that contribu-
tors with higher levels of contributions are lower on the Agreeableness. This is again what we would
expect from them to ensure the health of the project.

We found that the project members are more Conscientious, more Extrovert and less Agreeable
compared to the non-project members. Again, this is what we would expect from project members that
they are rigorous in their work, are social to attract participation, and are less agreeable to maintain
quality software development.

We showed that the personality profiles of most active contributors evolve with time. We found that
the most active contributors evolve as more Conscientious, more Extrovert and less Agreeable with
time. These characteristics explain at the first place why and how these people became the most active
contributors.

We showed that the contributors portray different personality traits in different contexts of software
development. We found that contributors when working on pull requests are most Conscientious,
most Extrovert, most Neurotic and least Agreeable. We believe that this behavior indicates gatekeeping
to the entry of quality work and that pull requests mark the highest barrier to entry. Among commits
and issues, contributors are most Conscientious, most Neurotic and least Agreeable when working
on commits. This implies that after pull requests, commits impose largest barriers to ensure quality
software development. It is important to note that contributors are least Extrovert when working on
commit. One possible explanation for this is that project members collaborate on commits, unlike
issues which are discussed by some prospective project participants. Finally, while working on issues,
contributors are least Conscientious, least Neurotic and most Agreeable. This behavior shows how
active contributors facilitate the free inflow of suggestions from the masses.

We found that contributors are more Extrovert when they are the member of projects or are re-
viewing others work. This explains the expectations from the project members and the reviewers of
successful projects to maintain cordial terms to attract participation. Other than this, we found that
as reporter, contributors are more Open to Experience, more Conscientious, and more Neurotic com-
pared to when they are reviewing others work. Also, we find that when contributors are not the
member of the project they more Conscientious, more Agreeable and more Neurotic.

To summarize, our results are promising and encouraging for further explorations. Further im-
provements required are discussed below. The measures of personality traits used in this study were
proposed on texts not specific to software engineering domain. We expect that a software engineering
specific lexicon would produce similar effects but with higher effect sizes. However, as rightly pointed
out by other studies [185], even an SE-specific lexicon results may not be perfect. Each project is likely
to have its own vocabulary and words may have different meanings across different projects [185].

Finally, it is important to note that the observed effect sizes are small. We think that this only
illustrates the general problems in finding personality traits from the text. Various highly cited studies
have reported effect sizes (Cohen’s d) ranging from 0.008 to 0.02 [186] as significant, while our effect
sizes range from 0.05 to 0.99. While it is difficult to set a threshold for how big effect size is big enough,
we believe that replications of this study will help us achieve a baseline on effect sizes. For instance,
personality psychologists routinely calculated and reported effect sizes thereby developing a view of
what effect size means and how to interpret it15.

4.2.6 Threats to Validity

4.2.6.1 Internal Validity

We assume a causal relationship between the personality of contributors and their written communi-
cations to discuss issues, pull requests and commits on GitHub. This assumption is grounded on the
empirical evidence in other domains [175]. Also, this assumption has been widely validated through
its applications on various platforms like Facebook [178], Twitter [164] [179], StackOverflow [163]
[180], etc.

15 https://funderstorms.wordpress.com/2013/02/01/does-effect-size-matter/
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The genuineness of the personality traits mined is prone to adversary effects where people try to
present themselves in ways that best suits their purpose. However, we believe that this is not a con-
cern for this study as the contributors are not aware that their communications are being monitored.
Further, we collected data for an extended period of time to strengthen the validity of our results.

This is an empirical study and we do not claim any causality between the inferred personality traits
and the various factors analyzed in this study. However, the fact that the findings match our intuitions
strengthens our believe in the results obtained.

4.2.6.2 Construct Validity

Mining personality traits from discussions on the issues, pull requests and commits are challenging.
We adopted approaches used in existing studies to measure the personality traits from communica-
tions. While these approaches are validated on various studies, the measures of personality traits may
be biased against contributors whose first language is not English.

We find that a subset of contributors never participated in any discussions. The personalities of
these contributors cannot be analyzed using the techniques proposed here and are excluded from
analyses. Any traits specific to these contributors are not captured and hence not presented here.

4.2.6.3 Reliability Validity

This is the first attempt to study the relationship of the personality traits with the contribution and
the context of software development. There exists no ground truth with which we can compare our
findings. However, the match between our findings and our intuitions strengthens our confidence in
the reliability of the results. Further, while the measures of personality traits from written communi-
cations were not designed for software engineering domain, we believe that its applications in various
domains increases our confidence on the results obtained.

4.2.6.4 External Validity

We analyzed the most actively discussed projects and the most active contributors. These projects and
contributors are not representative of all the open source projects. So, while the results of our study
may not generalize, the framework presented here can be applied to different contexts. Replication of
this work on a wider range of open source projects and commercial projects will confirm our findings.

4.3 role and past contributions

4.3.1 Introduction

Contributors leaving project incurs significant direct and indirect costs [187] [188][54][57] thereby
making it critical to retain existing contributors [189]. A data-driven approach to study future partic-
ipation helps overcome challenges in existing practices by providing objectivity and transparency. In
this work, we examine contributor characteristics namely role of participation and amount of work
done as a measure of predicting future participation. We present an approach that uses statistical mea-
sures to classify contributors based on contribution into three mutually exclusive sets namely non-core
team, loose core team and tight core team. Also we define attrition as a function of participation in
two consecutive time intervals and study attrition rate for four roles (reporter, owner, commenter
and cc’ed-contributor (cc’ed)) and three classes of contributors. We conduct experiments on Google
Chromium Issue Tracking System (GC-ITS) dataset16. The dataset is extracted for four consecutive
years and observations are recorded quarterly (3 months). In Issue Tracking Systems contributors
play various roles. However, for this work we focus on four roles namely reporter, owner, commenter
and cc’ed. These roles are associated with various stages of bug fixing lifecycle. Reporter reports the
issue. Issue is fixed by owner in collaboration with commenters participating via threaded discussion
forum. Owner may also request participation by cc’ing contributors. Contributors cc’ed are called for
to serve specific request in issue.

16 https://code.google.com/p/chromium
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Table 23: Role based individual contribution pattern
Role Mean Std Min Max .25Q .5Q .75Q .9Q .95Q .99Q Skew

Own 24.8 038.1 1 000559 3 10 32 67 94 172.1 003.8

Rep 02.9 008.8 1 000476 1 01 02 04 11 040.0 013.5

CC 20.0 051.4 1 001315 1 04 20 59 92 190.2 009.7

Com 14.0 422.9 1 119803 1 01 02 07 30 239.0 129.9

4.3.2 Empirical Analysis

class of contribution Research shows that open source projects follow Pareto Distribution
[53] that is 20% of contributors do 80% of work. However, our experimental results do not commu-
nicate the same. Table 23 shows that in GC-ITS contribution pattern is highly skewed for four roles.
This observation demands statistical and data-driven approach to classify contribution of contribu-
tors. In Algorithm 1 we classify each contributor in one of the three mutually exclusive classes namely
non-core team, loose core team and tight core team based on contribution. Non-Core Team (NCT)
includes contributors who join project to address some specific issue they encountered. Loose Core
Team (LCT) includes dedicated contributors with substantial contribution and Tight Core Team (TCT)
includes contributors with relatively large contribution (with respect to LCT).

Algorithm 1 Algorithm to Identify Contribution Class
Require: struct{Owner O, Reporter R, CC’ed CC, Commenter Com} Contributor Con[]
Ensure: ConClass[][3]
1: procedure ContributionClass(Con)
2: for all Time-Interval Tt do
3: Normalize contribution using Range Normalization [1-100]

Yi =
(100− 1)×Xi

Max(X)−Min(X)
(1)

4: Calculate weighted Geometric Mean where wO >wR >wCC >=wCom and sum(wO +wR +wCC +wCom) =1

Score(S) =OwO ×RwR ×CCwCC ×ComwCom (2)

5: Calculate Z-Score

Z =
S−µ

σ
(3)

6: if Z < 0 then
7: ConClassTt

[1]← Con[Z< 0] . Non-Core Team
8: else if Z > 1 then
9: ConClassTt

[2]← Con[Z > 1] . Tight Core Team
10: else
11: ConClassTt

[3]← Con[Z >= 0 && Z <= 1] . Loose Core Team
12: end if
13: ConClass[Tt]← ConClassTt
14: end for
15: return ConClass
16: end procedure

The input to the Algorithm 1 is contribution of contributors where each contributor plays at least
one of the four roles. The output is contribution class of contributors calculated for all time-intervals.
We measure the contribution for the role of owner, reporter and cc’ed as the total number of issues
participated in time-interval defined quarterly. Similarly, for commenter we measure contribution
in terms of total number of comments in time-interval. Further to ensure homogeneity for cross
comparison we range normalize contribution in each role for all time-intervals on a scale of 1-100

(refer Equation 1). We then append the scores for four roles of contributor for a time-interval to
create a structure. All missing values are assigned a negligibly small value (0.0001). We generate
cumulative score that measures contribution in terms of relevance of role (weight of owner (WO)
> weight of reporter (WR) > weight of cc’ed (WCC) > weight of commenter (WCm) ) as WO=0.5,
WR=0.25, WCC=0.125 and WCm=0.125. The choice of weight depends on specific requirements and
may vary for individuals. Assuming that participation in one role is independent of participation in
other roles, we use weighted Geometric Mean to generate cumulative score (refer to Equation 2).The
score generated ranges from 100 (highest) to approximately 0.0001 (negligible or no contribution).
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Figure 26: Attrition rate of maintainers for four years
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Figure 27: Comparison of attrition rates for contribution
classes for four years

Next we find relative relevance of contribution that is the number of standard deviations datum is
related to mean. We calculate Z-Score (refer to Equation 3). If value of Z is less than 0, it indicates
that contributor is part of NCT. If value of Z is greater than 1 it defines TCT. Likewise value of Z
greater than equal to 0 and less than equal to 1 implies LCT. We calculate contribution class for all
time-intervals and return set of contributors for each class for each time-interval.

attrition rate In this study, we believe that the contributor has left the project if duration of
inactivity exceeds one time-interval (in this case measured quarterly). Thus Attrition Rate (AR) for
time-interval Tt measures (in percentage) the fraction of contributors who left the project in time-
interval Tt to the total number of contributors who participated in time-interval Tt and its preceding
time-interval Tt−1 .

graphical analysis of the relationship between contributor characteristics and

future participation In Figure 35 horizontal axis of the plot represents consecutive time-
intervals (measured quarterly) and vertical axis shows attrition rate. Colored lines (refer to legend)
present attrition rate for contributors and their roles. We observe that contributor attrition rate (irre-
spective of roles as shown in black) fluctuates from 27% to 47%. Also we observe marked difference
in attrition patterns for four roles. We see minimum attrition rate for owner (shown in blue) and maxi-
mum for reporter (shown in red). This follows the intuition that not every contributor can own issues.
Figure 27 compares attrition rate of three classes of contributors namely non-core team, loose core
team and tight core team (refer Algorithm 1) across four years. We see in Figure 27 that the attrition
rate for LCT and TCT ranges from 3% to 10% which is relatively less than the attrition rate for NCT
(ranges between 27% and 43%). It indicates that retention in project is directly related to degree of
involvement in project. Also interestingly after initial fluctuations, attrition rate of TCT is higher than
attrition rate of LCT indicating that TCT contributes relatively large however sporadically.

4.4 summary

In this chapter we studied the influence of competing projects’ dynamics on contributor participation,
effect of personality traits on levels of contributions, and impact of role reputation and contribution
on developer participation.

First, we studied the influence of diverse project and contributor characteristics on future participa-
tion. A large-scale study of 2, 217 projects hosted on GitHub shows that 1 in every 5 original projects
observes a decline in the sustainability of the developer community participation after forking. We
find that the negative effect is more pronounced in projects ported to GitHub from other platforms
(≈ 20%), compared to GitHub developed projects (≈ 9%). We also find that the observed behavior can
be explained in terms of the characteristics of the competing projects at the time of forking. For in-
stance, in medium sized projects an increase in the maturity of the original project by a year decreases
the odds of decline in the sustainability of the developer participation by 23%.

Second, we analyzed the relationship of personality traits of contributors with their levels of contri-
butions. We found that personality traits of contributors relate to their contributions and that contrib-
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utors behave differently in different work situations. We analyzed 243 most actively discussed projects
and 423 most active contributors and showed that:

• Contributors with different levels of contributions have different personality profiles.

• Personality profiles of most active contributors evolve with time.

• Contributors portray different personality traits in different contexts of software development.

The findings of our study are promising. Most of the observations confirm our intuitions, thereby
demonstrating the inferential power of personality traits in explaining the behavior in various contexts
of software development.

Finally, we studied the impact of role reputation and contribution on developer participation. We
measured contributor characteristics and investigated their relationship with contributor attrition by
mining Issue Tracking System. Experimental results show that the likelihood of future participation
increases with increase in relevance of role in project and level of participation in previous time-
interval.



5M E A S U R E S O F S O F T WA R E C O N T R I B U T O R P R O D U C T I V I T Y

Evaluating software contributor productivity is a standard practice in organizations. It is used to un-
derstand the value addition by various contributors and its influence on project success. However,
accurate measurement of contributions based on pre-defined objectives, roles and key performance
indicators is a challenging task. Existing approaches to measure contributor productivity are subjec-
tive and imprecise. There is a need to objectively measure software contributor productivity. In this
chapter, we identify 1) gaps between expectations and measurements of contributions in practice, 2)
propose metrics to measure individual contribution and team participation, 3) present visualizations
to help scrutinize underpinning factors involved in explaining productivity, 4) evaluate the proposed
metrics and 5) discuss its applications. Here, we study individual and team productivity in the soft-
ware maintenance team of the Google Chromium project.

5.1 introduction

“What you cannot measure you cannot control” sets the broad motivation of the work presented in this
study. Assessing productivity of employees and workers is a standard human resource management
practice followed in organizations world-wide [190]. It is an important and routine activity performed
within organizations to measure value addition based on pre-defined Key Performance Indicators
(KPIs) [191] [192]. These measures are required for career advancement decisions, identification of
strengths and areas of improvements of the employee, rewards and recognition, resource planning
etc. [191] [192].

Assessing productivity of people is fraught with several challenges and imperfections that neg-
atively influence employees’ motivation and organization’s growth [190][193]. Solutions for contri-
bution and performance assessment of software maintenance professionals as well as defect-fixing
performance is an area that has recently attracted several researcher’s attention [194] [36] [34] [35]
[37] [67] [26][33]. This study is motivated by the need to develop novel framework and metrics to ac-
curately and objectively measure contribution of software maintenance professionals by mining data
archived in Issue Tracking Systems. The aim of this study are the following:

1. To investigate the perceived importance of key performance indicators and their measurements
in practice.

2. To investigate role-based metrics to accurately, reliably and objectively measure the productivity
of software maintenance professionals involved in defect fixing process.

3. To validate the proposed metrics with software maintenance professionals in industry and apply
it on real-world dataset demonstrating the effectiveness of the approach.

4. To visualize the contributions of software maintenance professionals in the contexts of software
development.

5. To investigate the effectiveness of the proposed visualization solution by studying the complex
interplay of variables to 1) analyze trends, outlier behavior, patterns and regularities, 2) extract
actionable insights from the perspectives of decision makers and 3) get their validation.

6. To investigate metrics to objectively characterize community stability on key stability indicators
by mining Issue Tracking System.

7. To demonstrate the inferential ability of time series data on key stability indicators by investi-
gating the stability of the community and estimating future participation.

5.2 related work and research contributions

The literature on evaluating contributor productivity can be broadly classified into three heads: 1)
measure individual productivity, 2) measure team productivity and 3) approaches to visualize indi-
vidual and team productivity.

73
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5.2.1 Measure Individual Productivity

The most closely related research to the study presented here is the work by Nagwani et al. However,
there are several differences between the work by Nagwani et al. and this study. Nagwani et al.
propose a team-member ranking technique for software defect archives [37]. Their technique consists
of generating a ranked list of developers based on individual contributions such as the quantity and
quality of bugs fixed, comment activity in discussion forums and bug reporting productivity [37].

Gousios et al. present an approach for measuring developer’s involvement and activity by mining
software repositories such as source code repository, document archives, mailing lists, discussion
forums, defect tracking system, Wiki and IRC [36]. They present a list of pre-defined developer actions
(easily measurable and weight assigned based on importance) such as reporting a bug, starting a new
wiki page, committing code to the source-code repository which are used as variables in a contribution
factor function [36].

Ahsan et al. present an application of mining developer effort data from bug-fix activity repository
to build effort estimation models for the purpose of planning (such as scheduling a project release
date) and cost estimation [194]. Their approach consists of measuring the time elapsed between as-
signed and resolved status of a bug report and multiplying the time with weights (incorporating
defect severity-level information) to compute developer contribution measure [194].

Kidane et al. propose two productivity indices (for online communities of developers and users
of the open source projects such as Eclipse) in their study on correlating temporal communication
patterns with performance and creativity: creativity index and performance index [35]. They define
creativity index as the ratio of the number of enhancement (change in the quantity of software) inte-
grated in a pre-defined time-period and the number of bugs resolved in the same time-period [35].
Performance index is defined as number of bugs resolved in a pre-defined time-period and number
of bugs reported in the same time-period.

Kanij et al. mention that there are no well established and widely adopted performance metrics
for software testers and motivate the need for a multi-faceted evaluation method for software testers
[34]. They conduct a survey of industry professionals and list five factors which are important for
measuring performance of software testers: number of bugs found, severity of bugs, quality of bug
report, ability of bug advocacy and rigorousness of test planning and execution [34].

Rigby et al. present an approach to assess the personality of developers by mining mailing list
archives [67]. They conduct experiments (using a psychometrically-based word count text analysis
tool called as Linguistic Inquiry and Word Count) on Apache HTTPD server’s mailing list to assess
personality traits of Apache developers such as diligence, attitude, agreeableness, openness, neuroti-
cism and extroversion [67].

Fernandes et al. mention that performance evaluation of teams is challenging in software devel-
opment projects [33]. They propose an analytical model (Stochastic Automata Networks model) and
conduct a practical case-study in the context of a distributed software development setting [33].

5.2.2 Measure Team Productivity

FLOSS projects undergo phases of contributor evolution. In initial phase, a small core team devel-
ops software. As the project matures multiple core teams contribute to develop software [195][52].
Research shows that a majority of FLOSS projects fails due to the lack of sustained developer partici-
pation [63][57].

To estimate the stability of FLOSS projects, research identifies three community stability indica-
tors namely attrition, retention, and regeneration [53] [63][57][56][189]. While the three indicators are
known to explain the stability, there does not exists metrics to quantify contributor churn.

In another line of study, researches compute the likelihood of future participation by mining soft-
ware repositories[12][63][11][59]. Studies by Wu et al. and Yu et al. conduct time series analysis of
contributor participation to identify trends and use it for predicting future participation[196][197].
However, existing studies do not explain how changes in community participation pattern may affect
stability of community.
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5.2.3 Visualize Contributor Productivity

Visualization ease software understandability and analyzes of the evolution of software ecosystem
[43][198]. It also find its application in analyzing software team. To facilitate visualization in man-
agement domain Zhang et al. proposed a theoretical, general visualization model. They identify five
processes namely domain problem space analysis, domain data and knowledge collection, pattern
discovery and data aggregation, and image construction as theoretical foundations to achieve data
comprehension and improve problem solving performance [199]. Schonhage et al. build a prototype
for visualization in business to aid managers analyze past and present data and venture with future
situations [200].

Storey et al. proposed a framework to describe, compare and understand human centric awareness
visualization tool in software development [26]. Taylor et al. introduced the concept of author entropy
to characterize authorship. Author entropy in conjunction with other software metrics has the poten-
tial to identify areas of concerns within source code [38]. Gilbert et al. explored group dynamics to
compare developers and their contribution in a distributed software community by analyzing social
visualization code [9]. Robles et al. propose a novel methodology to visually analyze evolution of core
team to ensure smooth transitions by identifying breakpoints and unevenness [54]. However, to the
best of our knowledge existing literature does not explore the expressive power of visualization to
analyze productivity by mining software repositories.

In context of literature, the work presented here makes the following novel contributions:

1. A framework for assessing the productivity of software maintenance professionals. We propose
11 metrics for four different roles. The novel contribution of this work is to assess the developer
in terms of the various roles played by a developer. The metrics (data-driven and evidence-based)
is computed by mining data in an Issue Tracking System. While there are some studies on the
topic of contribution assessment for Software Maintenance Professionals, we believe (based on
our literature survey) that the area is relatively unexplored and in this study we present a fresh
perspective to the problem.

2. A survey conducted with experienced software maintenance professionals on the topic of assess-
ing contributor productivity for bug reporter, bug owner, bug triager and contributor. We believe
that there is a dearth of academic studies surveying the current practices and metrics used in
the industry for contribution assessment of software maintenance professionals. To the best of
our knowledge, the work presented in this study is the first study to present the framework,
survey from practitioners and application of the proposed framework on a real-world publicly
available dataset from a popular open-source project.

3. We propose 6 visualization techniques for the four roles of software maintenance professionals
viz. bug reporter, bug triager, bug owner and bug collaborator. The unique contribution here is a
visualization framework (panoramic view) to justifiably distinguish performance by deriving ac-
tionable insights. We see application of visualization in software industry to analyze process and
generate awareness. However, its application to measure productivity of software maintenance
professionals by mining software repositories is unexplored to the best of our knowledge.

4. Implementation of proposed visualization techniques on real world data of GC-ITS, infer action-
able insights and validate its usability based on survey responses from professionals.

5. A framework to quantify key stability indicators on community participation patterns; investi-
gate trends and predict stability of software maintenance projects as identified by mining Issue
Tracking System.

5.3 methodology

We believe that inputs from practitioners are needed to inform our research. So we conduct a survey
of two experienced industry professionals (project manager level with more than a decade of experi-
ence in software development and maintenance) and present the results of the survey as well as our
insights (refer to Section 5.4.1). We present 11 performance and contribution metrics for four roles:
bug reporter, bug triager, bug owner and collaborator. We define each metrics and describe the ratio-
nale and the formula (Section 5.5). The metrics are discussed at an abstract level and are not specific
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Figure 28: Research method used to measure software contributor productivity

to a project or Issue Tracker. Next, we use the general visualization model proposed by Zhang et al.
[199] to propose a framework of visualizations. We start by studying variegated sources for uncon-
ventional visualizations. We identify approximately 30 unique visualizations. For each visualization,
we analyze the rationale behind its proposition and the nature of information that can be inferred
from the visualization. We map these visualizations to the metrics to capture multiple information
needs of decision makers. Each visualization technique maps to multiple metrics. However, due to
limited space availability and for the ease of comprehension we present one metric for a visualization
(refer Section 5.4.6). All visualizations present in this work are written in R language1 (GNU project
for statistical computing and graphics). Post-implementation, we conduct survey of practitioners. We
received 10 valid responses from practitioners in large global IT industry. 9 survey respondents have
more than 5 years of experience and 1 had more than 1 year of experience. 8 survey respondents
played role of Project Manager, 1 was head of R & D initiatives and 2 Bug Owner/Bug Fixer with
overlapping roles. 8 out of 10 survey respondents had been appraisers in the past or are in present.

We also propose metrics to analyze temporal community contribution. We identify three KSIs
namely attrition, regeneration, and retention from the literature. We propose metrics to quantify the
three KSIs by mining ITS. A contributor can play multiple roles by participating in multiple activities.
For instance, a contributor may report an issue (reporter), and also own it (owner). A contributor
may comment on an issue (commenter) or may collaborate because contributor is cc’ed the issue
(collaborator-cc). In this study, we investigate participation in four roles, and present the results. The
list of four roles is representative and not exhaustive. Also the roles are overlapping and by no means
represent disjoint sets. We generate time series data of metrics and investigate the inferential ability of
the temporal trends. We present representative research questions to investigate the inferential ability
of the metrics. We model community participation pattern to estimate future participation by using
statistical prediction models with justifications for the choice of models (refer Section 5.5.4). We assess
the goodness of fit of the models, compute the accuracy of prediction, compare models, and present
our inferences.

In short, we gather requirements for the study by talking to practitioners or from literature. We
propose metrics that meet the requirements identified in stage one. Then we evaluate it based on
inputs from practitioners or by examining the characteristics of project. Table 28 summarizes the
research method used to measure individual and team productivity.

Experimental dataset

The dataset for analyzing the results is build on GC-ITS. The choice of dataset is motivated by the fol-
lowing reasons: 1) publicly available, 2) dataset is replicable (can be downloaded using Issue Tracking
System API), 3) wide usage and popularity. We implement the proposed metrics and visualization on
the Google Chromium dataset. Unless specified otherwise all analysis is conducted on ‘Closed’ bug
reports with status ‘Fixed’ or ‘Verified’.

To evaluate the productivity of software maintenance professionals, we analyze one year data. This
duration is in agreement with the performance appraisal cycle at most of the places. The details of
the dataset are given in Table 24. The one year dataset consists of 24, 743 bugs, 6, 765 reporters, 500

1 http://www.r-project.org
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Table 24: Experimental Dataset 1

Duration 1year

Start date of the first bug report in
the dataset

01/01/2009 End date of the last bug report in the
dataset

31/12/2009

Bug ID of the first bug report 5,954 Bug ID of the last bug report 31,403

Total number of Reported bugs 25,383

Total number of Forbidden bugs 640

Total number of Available bugs (25,383-640)=24,743

Table 25: Experimental Dataset 2

Duration 1year

Start date of year-I 01/01/2009 End date of year-I 31/12/2009

Start date of year-II 01/01/2010 End date of year-II 31/12/2010

Year 2009-10 Year 2010-11

Available bugs 24,629 Available bugs 36,176

CLOSED bugs 21,984 CLOSED bugs 32,289

Statistics for CLOSED bug reports (Count of)

Bug Reporters 6,742 Bug Reporters 13,581

Bug Triagers 325 Bug Triagers 475

Bug Owners 307 Bug Owners 480

Bug Collaborators 12,324 Bug Collaborators 15,307

triagers, 391 owners, and 5, 043 collaborators. Out of the 24, 743 reported bugs, 8, 628 bug reports were
Closed with status Fixed or Verified.

Next, to help visualize the trend, we analyze contribution in two consecutive years (2009-11) with
34,056 unique contributors. However dataset to create visualization for a role encompass less num-
ber of developers compared to total (refer Table 25). It happens due to 1) exclusion of data points
with missing or inconsistent information 2) considering developers who worked for two years and 3)
setting thresholding criteria on selection of developers for analysis.

Finally, to analyze temporal contributor community participation, we conduct experiments on four
years data of Google Chromium Issue Tracking System (GC-ITS) extracted from January 1, 2009 to De-
cember 31, 2013 and measure it quarterly. In Google Chromium project, we observe that contributor
participation is intermittent in time. A contributor may continue participation months after discon-
tinuing participation in the project. We assume that contributor has left the project when contributor
does not participate for at least three months. This may generate false positives as contributors con-
tinue participation quarters after last contributor. Moreover, this behavior is exhibited by the majority
of participants (70% of contributors in FLOSS projects are one-time contributors or contribute sporad-
ically in time [54]). Thus, assuming lag in participation as contributor churn we portray community
behavior.

5.4 individual key performance indicators - measurement and visualization

In this section, we describe 11 performance and contribution assessment metrics for four different
roles. These 11 metrics are representative metrics valued by the organization and are not exhaustive.

Table 26: Experimental Dataset 3

Start Date End Date Available Bug Reports Contributor Count

2009-01-01 2009-12-31 025841 13006

2010-01-01 2010-12-31 044041 26654

2011-01-01 2011-12-31 051683 28170

2012-01-01 2012-12-31 057970 30510
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Table 27: Defining the metadata of the survey
Attribute Definition Scale

PIK Perceived Importance of Key Performance Indicators 5: Highly influence (important)

1: Does not influence (least important)

CopKC Current organizational practices to capture KPIs 1: Captured accurately (formula based i.e. objective measure)

2: Captured accurately (based on subjective information,

self-reporting and perception)

3: Unable to capture accurately

4: Not relevant / Not considered

Following are few introductory and relevant concepts which are common to several metrics definition
and Google Chromium project describes these in bug-lifecycle and reporting guidelines2.

A closed bug can have status values as: Fixed, Verified, Duplicate, Won’tFix, ExternalDependency,
FixUnreleased, Invalid and Others3. An issue can be assigned a priority value from 0 to 3 (0 is most
urgent; 3 is least urgent). Google Chromium issue reports has a field called as Area4. Area represents
the product area to which an issue belongs. An issue can belong to multiple areas such as BuildTools,
ChromeFrame, Compat-System, Compat-Web, Internals, Feature and WebKit. A product area Build-
Tools maps to Gyp, gclient, gcl, buildbots, trybots, etc. and the product area WebKit maps to HTML,
CSS, Javascript, and HTML5 features.

5.4.1 Survey of Software Maintenance Professionals

We conducted a survey to understand the relative importance of various Key Performance Indicators
(KPIs) for the four roles: bug reporter, bug owner, bug triager and collaborator. We prepared a ques-
tionnaire consisting of four parts (refer to Tables 28, 29, 30, 31). Each part corresponds to one of the
four roles. The questionnaire for each part consists of a question and two response fields. The question
mentions a specific activity for a particular role. For example, for the role of bug owner the activity
is: number of high priority bugs fixed, and for the role of bug triager the activity is: number of times
the triager is able to correctly assign the bug report to the expert (bug fixer who is the best person to
resolve the given bug report).

One of the response fields, Perceived Importance of Key Performance Indicators (PIK) denotes the
importance of the activity (for the given role) on a scale of 1 to 5 (5 being highest and 1 being low-
est). The other response field, Current Organizational Practices to capture KPIs (CopKC) denotes the
extent to which these performance indicators are captured in practice. We broadly define the notion
of the ability to capture KPIs into two heads: non-relevant and relevant. The KPI is either considered
non-relevant (for evaluation of developers) and hence not measured or it is considered important. The
relevant KPIs are either not captured (inability of the organizations to measure) or they are able to
capture it. The KPIs captured can again be classified based on the approach to measure it as objective
or subjective. Objective measures are captured using statistics (based on formulas) while subjective
measures are evaluated based on the perceived notion of contribution. This hierarchical classifica-
tion completely defines the notion of measurement in organization (refer to Table 27 specifying the
metadata for the survey).

We surveyed two experienced software maintenance professionals for this study. The two profes-
sionals had more than 10 years of experience in the software industry and were at the project manager
level. One of them worked in a large and global IT (Information Technology) services company (more
than 100 thousand employees) and the other worked in a small (about 100 employees) offshore prod-
uct development services company. Tables 28, 29, 30 and 31 show the results of the survey. Some of
the cells in the table have values ′− ′ or ′NULL ′. ′− ′ means that at the time of the survey, the sur-
vey respondent was not asked this question and ′NULL ′ implies that the survey respondent did not
answer this question (left the field blank).

We find gaps between the perceived importance of certain performance indicators and the extent to
which such indicators are objectively and accurately measured in practice. We believe that the perfor-

2 http://www.chromium.org/for-testers/bug-reporting-guidelines
3 user defined Status as permitted by Google Chromium Bug Reporting Guidelines
4 http://www.chromium.org/for-testers/bug-reporting-guidelines/chromium-bug-labels
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Table 28: Survey results for the role of bug reporter

Survey questions Company A Company B

PIK CopKC PIK CopKC

Number of bugs reported 4 1 3 1

Number of Duplicate bugs reported 5 - 4 -

Number of non-Duplicate bugs reported 3 - 5 -

Number of Invalid bugs reported 3 - 5 -

Number of high Priority bugs reported 5 NULL 4 1

Number of high Severity bugs reported 5 NULL 5 1

Number of bugs reported that are later reopened NULL NULL 4 1

Number of hours worked - 3 - -

Quality of reported bugs 5 3 5 2

Followed bug reporting guidelines 5 2 5 2

Correctly assigned bug area (like WebKit, BrowserUI etc.) 5 NULL 4 3

Correctly assigned bug type (like Regression, Performance etc.) 4 NULL 5 3

Reported bugs across multiple components (Diversity of Experience) 4 3 2 3

Reported bugs belonging to a specific component (Specialization) NULL 3 4 3

Participation level delivered (responded to queries and clarifications) after reporting bug - 3 - 3

Table 29: Survey results for the role of bug owner

Survey questions Company A Company B

PIK CopKC PIK CopKC

Number of bugs assigned or owned 5 - 4 -

Number of bugs successfully resolved (from the set of bugs owned) 5 NULL 5 1

Number of high Priority bugs owned 5 1 4 3

Number of high Severity bugs owned 5 3 4 1

Number of resolved bugs that get reopened 5 1 4 1

Number of hours worked - 1 - 3

Participated in (facilitated) discussion through comments on Issue Tracker 4 - 3 -

Owned bugs across multiple components (Diversity of Experience) 5 3 3 3

Owned bugs belonging to a specific component (Specialization) 5 3 3 3

Average time taken to resolve bug 5 NULL 4 2

Response time to a directly addressed comment - 3 - NULL

Table 30: Survey results for the role of bug collaborator

Survey questions Company A Company B

PIK CopKC PIK CopKC

Participation level delivered (responded to queries and clarifications) through online
threaded discussions

3 NULL 4 1

Response time to a directly addressed comment on Issue Tracker 4 NULL 5 3

Collaborated in bugs across multiple components (Diversity of Experience) 2 4 2 3

Collaborated in bugs belonging to a specific component (Specialization) 3 2 2 3

Average time taken to resolve bug 5 3 1 2

Number of times collaborated on high Priority bugs 5 NULL 3 2

Number of times collaborated on high Severity bugs 5 NULL 3 2

Number of hours worked - 3 - 3
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Table 31: Survey results for the role of bug triager

Survey questions Company A Company B

PIK CopKC PIK CopKC

Number of bugs Triaged 5 NULL 5 2

Number of hours worked - 2 - 3

Identified Duplicate bug reports 5 NULL 4 2

Identified Invalid bug reports 5 NULL 4 2

Identified exact bug area (like WebKit, BrowserUI etc.) 5 3 5 3

Assigned best developer considering skills and workload 5 - 5 -

Correctly assigned owner (fixer) - 3 - 3

Correctly assigned bug type (like Regression, Performance etc.) 4 2 5 2

Correctly assigned Priority/Severity 5 3 5 3

Participated in (facilitated) discussion through comments on Issue Tracker 4 - 4 -

Response time to a directly addressed comment on Issue tracker - 3 - 3

mance indicators considered important are not measured rigorously due to the lack of tool support.
Results of the survey (refer to Tables 28, 29, 30 and 31) are evidences supporting the need for devel-
oping contribution and performance assessment framework for Software Maintenance Professionals.

It is interesting to note that the two experienced survey respondents from different sized organi-
zations have given similar values to some KPIs while for the others, the result varied considerably.
Based on the survey results, we infer that the perceived value of an attribute varies across organiza-
tions. Therefore, the proposed metrics should account for the perceived value of the attribute for the
organization while measuring the contribution of a developer for a given role.

5.4.2 Bug Owner Metrics

priority weighted fixed issues (pwfi) We propose a contribution metric for the bug owner
which incorporates the number of bugs fixed as well as the priority of each bug fixed. For each bug
owner in the dataset, we count only Fixed or Verified issues and not Duplicate, Won’tFix, ExternalDe-
pendency, FixUnreleased and Invalid. We exclude Invalid and Won’tFix bugs because these bugs are
not a contribution by the bug owner to the project.

PWFI(d) =

|P|∑
i=0

WPi ×
NdPi
NPi

(4)

where WPi is the weight (a tuning parameter which is an indicator of importance, higher for urgent
bugs and lowest for least urgent bugs) or multiplication factor incorporating issue priority informa-
tion. Due to the weight WPi (sum of the weight equal to one), a bug-owner contribution is not just
a function of absolute number of bugs fixed and is also dependent on the type of bugs fixed. NPi is
the total number of Fixed or Verified bugs in the dataset with priority Pi and NdPi is the number of
priority Pi bugs Fixed or Verified by developer d in the dataset. The value of PWFI(d) will be between
0 and 1 (higher the value, more is the contribution).

specialization and breadth index (sbi) A developer can specialize and be an expert in a
specific product area (component) or can have knowledge across several product areas. Let n be the
total number of product areas and d denotes a developer. We represent Bn(d) as an index for breadth
of expertise and 1− Bn(d) as an index for specialization. pi is the probability value (probability of
developer d working on component i) derived from historical dataset. A lower value of Bn(d) means
specialization and a higher value means breadth of expertise of a developer.

Bn(d) = −

i=n∑
i=1

pi ∗ logn(pi) (5)
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Table 32: Priority-Time correlation statistics

Priority Count Time Duration (in days)

(of bugs) Maximum 3/4 Quartile Median 1/4 Quartile Minimum

P0

↑

00258 0495.37 010.69

↓

02.71

↓

0.44 0.0002

P1 02,839 1120.37 044.10 11.04 2.03 0.0000

P2 17,923 1273.15 129.63 21.99 1.93 0.0000

P3 02,265 1180.56 206.02 55.90 5.03 0.0000

The Bn(d) value can vary from 0 (minimal) to 1 (maximum). If the probability of all areas is the
same (same distribution) then the Bn(d) is maximal. This is because the pi value is the same for all
n. On the other extreme end, if there is only one area associated to a particular developer d then
the Bn(d) becomes minimal (value of 0). The interpretation is that when Bn(d) is low for a specific
developer then it means a small set of product areas are associated with the specific developer d.

deviation from median time to repair (dmttr) Bugs reported in Issue Tracking System
can be categorized into four classes as adaptive, perfective, corrective and preventive5 (as part of
Software Maintenance Activities). Depending on their class these bugs have different urgency with
which they must be resolved. For instance, a loophole reported in security of a software must be fixed
prior to improving its Graphical User Interface (GUI).

According to Google Chromium bug label guidelines, priority of a bug is proportional to the ur-
gency of the task. More urgent a task; higher is its priority. Also, urgency is a measure of the time
required to fix bug. Therefore, high priority bugs should take less time to repair as compared to low
priority bugs (more urgent tasks take less time to fix). To support this assertion, we conducted an ex-
periment on Google Chromium Issue Tracking System dataset to calculate the median time required
to repair bugs with same priority. The results of the experiment support the assertion (as shown in
Table 32).

One of the key responsibilities for the role of bug owner is to fix bugs in time where time required
may be influenced by various external factors. Bettenburg et al. in their work pointed out that a poor
quality reported bug increases the efforts and hence the time required to fix it [201] [202]. Irrespective
of these factors, ensuring timely completion of the reported bugs is an indicator of positive contribu-
tion for the role of bug owner and vice-versa.

DMTTR metric is defined for Closed bugs with status Fixed or Verified. It calculates deviation of
the time required to fix a bug from the median time required to repair bugs with same priority.

DMTTR(o,p) =
1

Ttotal
×

|P|∑
i=0

∑
∀bi

wi × (Tbi −MTTRPi)

where

{
|Tbi −MTTRPi | if (Tbi −MTTRPi)<0

0 otherwise

(6)

DMTTR(o,n) =
1

Ttotal
×

|P|∑
i=0

∑
∀bi

wi × (Tbi −MTTRPi)

where

{
|Tbi −MTTRPi | if (Tbi −MTTRPi)>0

0 otherwise

(7)

Time required to fix a bug may be less than, greater than or equal to the median time required to fix
same priority bugs. Less or equal time required to fix a bug is a measure of positive contribution and
vice-versa. We propose two variants of DMTTR(o) i.e. DMTTR(o,p) and DMTTR(o,n). For an owner o,
DMTTR(o,p) measures positive contribution p (relatively less time to repair) and DMTTR(o,n) mea-
sures negative contribution n (relatively more time to repair). wi is a normalized tuning parameter
which weighs deviation proportional to priority i.e. less time required to fix a high priority bug adds

5 http://en.wikipedia.org/wiki/Software_maintenance
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more value (to the contribution of a bug owner) than less time required to fix a low priority bug. Here
bi is a bug report with priority Pi. Tbi is the total time required to fix bug bi and is measured as
difference in the reported timestamp of bug as Fixed and first reported comment with status Started
or Assigned in the Mailing List. MTTRPi is median of the time required to fix bugs with Priority Pi
(median is robust to outliers6). Ttotal is a normalizing parameter and is calculated as summation of
the time taken by each participating bug.

5.4.3 Bug Reporter Metrics

In Issue Tracking System bugs are reported by various users (project members and non-project mem-
bers). These users may report bugs with different quality. This fact was highlighted by Schugerl et
al. in their work. They said that quality of reported bugs vary significantly [203] and good quality
reported bug optimizes the time required to fix it and vice-versa [201].

Chromium in its bug reporting guidelines specified the factors that ensures the quality of the re-
ported bugs. However, evaluating bug reports based on these guidelines is subjective [203] and so is
assessing the contribution of the bug reporter (result of online survey mentioned in Section 5.4.1).

status of reported bug index (sri) A Closed bug may have status values (any one) defined
in equation 9. The fraction of Closed bugs reported by a developer is a measure of contribution for the
role of bug reporter. However, the status with which these bugs were Closed is a measure of quality
of contribution. For instance, a bug Closed with status Fixed adds more value to the contribution of
bug reporter than a bug closed as Invalid.

SRI(r) =
Nr

N
×

|s|∑
s=1

ws ×
Crs
Cs

(8)

LetN be the total number of bugs reported andNr be the total number of bugs reported by reporter
r. ws is a weight normalized tuning parameter defined for each Cs , where Cs is the count of bugs
reported with status s. Crs is the count of bugs (reported by reporter r) with status s. s is defined as
follows:

s = < Fixed >,< Verified >,< FixUnreleased >,< Invalid >,< WontFix >,< Duplicate >,

< ExternalDependence >,< Other7 >
(9)

The relative performance is a fraction calculated with respect to baseline SMode, where SMode is
frequently delivered performance.

degree of customer eccentricity (dce) Google Chromium Issue Tracking System defines
priority of a bug report in terms of the urgency of the task. A task is urgent if it affects business8.
Among other factors, business is affected (measured by priority) if bugs in the software influences
large fraction of the user base. Hence, reporting large fraction of high priority bugs is an indication
of the degree of customer eccentricity.

DCE(r) =

|P|∑
i=0

WPi ×
NrPi
NPi

(10)

where WPi is a normalized tuning parameter with value proportional to the priority. NPi is the
total number of priority Pi bugs reported. NrPi is the total number of priority Pi bugs reported by bug
reporter r. This metric is defined for Closed bugs with status Fixed or Verified.

5.4.4 Bug Triager Metrics

In Triage Best Practices9 written for Google Chromium project it is stated that identifying correct
project owner is one of the roles of a bug triager. Guo et al. stated that determining ownership is

6 http://en.wikipedia.org/wiki/Outlier
8 http : //sqa.fyicenter.com/art/Bug_Triage_Meeting.html
9 http://www.chromium.org/for-testers/bug-reporting-guidelines/triage-best-practices
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one of the five primary reasons for bug report reassignment [204]. Jeong et al. in their study on
Mozilla and Eclipse reported that 37%-44% of the reported bugs are reassigned which increases the
time-to-correction [205].

A bug triager is supposed to conduct quality check on bug reports (to make sure that it is not spam
and contains required information such as steps to reproduce etc.) and assign bug report to a devel-
oper who is (available) expert to resolve similar bugs. A bug triager should have good knowledge
about the expertise, workload and availability of bug developers (fixers). Incorrectly assigned bug (er-
ror by bug triager) cause multiple reassignments which in turn increases the repair time (productivity
loss and delays). We believe that computing the number of correct and incorrect reassignment is thus
an important key performance indicator for the role of a bug triager.

Google Chromium in its Issue Tracking System does not give any account of the Triager who ini-
tially assigned the project owner but subsequent reassignments (through labels defined in comments
in the Mailing List) are available.

reassignment effort index (rei) Reassignments are not always harmful and can be the result
of five primary reasons: identifying root cause, incorrect project owner, poor quality reported bug,
difficulty to identify proper fix and workload balancing [204]. In an attempt to identify the correct
project owner, triagers make large number of reassignments. These large number of reassignments to
correctly identify project owner is a measure of the efforts incurred by a bug triager.

REI(t) =
Nt

N
×
∑
∀b

CRtb
CRb

(11)

Let N be the total number of bug reports which were at least once reassigned and Nt is the total
number of bug reports which were at least once reassigned by triager t. This metric is defined for
Closed bugs with status Fixed or Verified. For a given bug report b, CRb is the count of total number
of project owner reassignments and CRtb is the count of project owner reassignments by triager t.

accuracy of reassignment index (ari) Correctly identifying project owner is a challenging
task. It involves large number of reassignments by multiple triagers. Each of these triagers make
their contribution through reassignments. However, accuracy index (for the role of bug triager) is a
measure of number of times triager correctly identifies project owner in a bug with large number of
reassignments.

ARI(t) =
1

n×CRmax

∑
∀b
CRb (12)

where n is the total number of bug reports which were accurately reassigned (last reassigned)
by triager t. For all bug reports b, CRb measures the count of the total number of reassignments
before it was accurately (finally) reassigned by triager t. CRmax measures the maximum number
of reassignments before final. The value of ARI(t) lies between 0 and 1 (higher the value, more the
contribution).

5.4.5 Bug Collaborator Metrics

A group of people who collectively (as a team) contribute to fix a bug are termed as bug collaborators.
According to the user guide for Project Hosting Issue Tracker10, collaborators provide additional
information (in the form of comments in Mailing List) to fix bugs. These comments contribute in
timely resolution of reported bug.

cumulative comment score (ccs) Introduction to Issue Tracker - a user guide for Project
Hosting Issue Tracker states that developers make multiple comments in mailing list. The number of
comments entered in mailing list is contribution of the developer and is used to measure performance.

CCS(c) =
1

n

∑
∀b

Ncb
Nb
∗Kb (13)

10 http://code.google.com/p/support/wiki/IssueTracker
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Here, Nb is the total number of comments in bug report b. Ncb is the total number of comments
entered by collaborator c in bug report b. n is the count of total number of bug reports. Kb is a tuning
parameter to account for variable number of comments in bug reports. Kb is defined as ratio of Nb
and NMode, where NMode is the count of number of comments entered frequently by collaborators
(except collaborator c) on a bug b. This metric is defined for Closed bugs with status Fixed or Verified.

potential contributor index (pci) A developer can specialize and be an expert in one or
multiple areas (as calculated in SBI(d)). Multiple developers (potential contributors) are added to
CC-list based on prior knowledge (historical data or past experience) of their domain of expertise.

PCI(c) =
∑
∀a

Ncca
Na
× Va (14)

Given a bug report b, PCI metric identifies list of contributors who are valued to fix it by assigning
them values in the range from 0 to 1. It is defined for Closed bugs with status Fixed or Verified and
CC-list defined. Here Na is the total number of bugs reported in area a. Ncca is the number of times
prospective collaborator c was mentioned in CC-list of bugs reported in area a. Va is the importance
of area of reported bug (as calculated in PWFI for area a).

potential contributor index-1 (pci-1) PCI− 1 extends the idea presented in PCI. In bug
fixing lifecycle, contributors are incrementally appended to CC-list to meet additional support or
expertise requirement.

PCI− 1(c) =
∑
∀a

N
appCC
a

Na
× Va (15)

Rest parameters being same (as explained in PCI), NappCCa is the count of number of times collab-
orator c was incrementally appended to the CC-list of bugs with Area a.

contribution index (ci) When a bug is reported, developers are added to CC-list as potential
or prospective contributors. However, only few people mentioned in CC-list contribute to fix bug
through comments in Mailing List.

CI(c,a) =
∑
∀a

Ncola
Ncca

× Va (16)

CI(c,a) measures expected to actual contribution for the role of bug reporter. HereNcca is the number
of times collaborator cwas added in CC-list of bugs reported in area a.Ncola is subset ofNcca in which
developers mentioned in CC-list actually contributed to fix it. Va is the importance of area of reported
bug (as calculated in PWFI for area a). It values contribution proportional to importance of area and
normalizes it.

5.4.6 Visualizations

We use the general visualization model proposed by Zhang et al. [199]. We start by studying varie-
gated sources for unconventional visualizations. We identify approximately 30 unique visualizations.
For each visualization, we analyze the rationale behind its proposition and the nature of information
that can be inferred from the visualization. We map these visualizations to the metrics to capture
multiple information needs of decision makers. Each visualization technique maps to multiple met-
rics. However, due to limited space availability and for the ease of comprehension we present one
metric for a visualization (refer Section 5.4.6). All visualizations present in this work are written in R
language11 (GNU project for statistical computing and graphics).

Unless specified otherwise all analysis is conducted on ‘Closed’ bug reports with status ‘Fixed’ or
‘Verified’. We assign each developer a unique identity (chronologically). The unique identity is of the

11 http://www.r-project.org
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form ‘dxxxx’ where ‘x’ is any numeric value. This unique identifier ensures anonymous behavior for
ethical reasons and uniformity.

In this section we discuss 6 visualization techniques. Table 33 is an analysis and comparison of the
6 visualization techniques.

trellis plot Trellis plot is a visualization technique to uncover relationships of variables in a
multivariate dataset. Systematic application of Trellis plot shows how the response depends on ex-
planatory variables [206][207]. We use Trellis plot visualization to analyze and interpret the perfor-
mance of bug reporters using Status of Reported bug Index (SRI) metric. Figure 29 is an arrangement
of rows, columns and panels. Panels in Figure 29 represent statuses of the bugs reported with state
‘Closed’. They are arranged in the non-increasing order of importance of each status towards contri-
bution and performance. Rows in each panel are the bug reporters arranged in non-increasing order
of the number of bugs reported annually. Based on performance, bug reporters can be broadly cat-
egorized into five heads as ‘Excellent’, ‘Very Good’, ‘Good’, ‘Satisfactory’ or ‘Non-Satisfactory’. The
criteria for classification is specified in caption of Figure 29. The classification criteria of bug reporters
can be fine-tuned to meet specific needs of organization.

In Figure 29, horizontal axis is fraction of bugs reported by bug reporter (shown on vertical axis in
blue) for a given status (each panel) for two consecutive years 2009-10 and 2010-11 (represented by
symbol variables: Red for the year 2009-10; Blue for the year 2010-11). Bug reporters arranged (top to
bottom) in the non-increasing order of number of bugs reported followed by their score on Status of
Reported bug Index (SRI) metric (in pink). 20 bug reporters are categorized into performance heads
as ‘Excellent’, ‘Very Good’, ‘Good’, ‘Satisfactory’ and ‘Non-Satisfactory’ (based on the total number
of bugs reported) [‘Excellent’ >250 bug reports, ‘Very Good’ >200 and <250 bug reports, ‘Good’ >100

and <200 bug reports, ‘Satisfactory’ >50 and <100 bug reports, and ‘Non-Satisfactory’ <50 bug reports].
Status arranged (top to bottom) in non-increasing order of relevance (in terms of contribution) for the
role of bug reporter.

Following are interpretations for performance appraiser:

1. Which bug reporters have high efficiency? Efficiency is magnitude of time, effort or cost utilized to
achieve target12. In Figure 29 we observe that bug reporter ‘d28779’ reports more bug reports
than bug reporter ‘d0001’ (bug reporters arranged top to bottom in non-increasing order of
total number of bugs reported). However, bug reporter ‘d0001’ has higher SRI score than bug
reporter ‘d28779’ (as shown in pink on right). We conclude that bug reporter ‘d28779’ has higher
efficiency than bug reporter ‘d0001’. The explanation is that bug reporter ‘d28779’ places lots of
efforts, however the usefulness of contribution is substantially less.

2. How bug reporter’s performance vary with time? In Figure 29 we see that for large parts blue dots
(fraction of bugs reported in year 2010-11) are ahead of red dots (2009-10). However, in panel
‘Fixed/Verified’ we see the two colored dots swapped and separated by large distances (w.r.t.
other developers) for bug reporter ‘d22575’. We infer that performance of bug reporter ‘d22575’
declined considerably in the year 2010-11 (w.r.t. year 2009-10).

Other interesting questions:

1. Which bug reporters add overhead (in terms of resources) to the organization through their contribution?

2. What is the relative performance of a bug reporter?

3. Which bug reporter’s issues receive less attention by team and hence get ‘Closed’ as ‘IceBox’?

4. Which bug reporters report large fractions of ‘Invalid’ or ‘Duplicate’ issues?

treemap plot Treemap plot maps hierarchical information in a space-efficient and space-filling
manner. It partitions the display space in rectangles. Each rectangle (sub-partition) is a child node with
two distinguishing features: size and color. Size of a child node is proportional to the weight of sub-
partition (w.r.t. whole) and color represents node-specific property. In a nutshell, Treemap encodes
information as partitions (sub-partitions), size and color [208][209].

Treemap plot partitions rectangle into components (areas) namely BrowserUI, Misc, Internal, We-
bkit, and UI. Size of each component is proportional to the total number of bugs reported. Each

12 http://en.wikipedia.org/wiki/Efficiency
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component is sub-partitioned on the bug collaborators, where size of sub-partition is proportional to
the potential contribution index of developers for the component. The color of each sub-partition is
an indicator of number of times bug collaborator actually contributed (on the scale above).
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Figure 30: Treemap Plot

In Figure 30, Potential Contribution Index of bug collaborator is shown as the size of sub-partition
of a component. Also, Contribution Index in Figure 30 is denoted by the color of sub-partition for
each bug collaborator in Treemap. Color of sub-partition indicates initiative and contribution of bug
collaborator. Detailed description in caption of Figure 30.

We present contribution of bug collaborators in 5 prominent components (areas in which maximum
number of bugs were reported in year 2010-11, except area ’Undefined’). To ease comprehension
in the limited space of the study, we include bug collaborators who contributed on more than 50

bug reports in an area for analysis. In Figure 30, bug collaborators are arranged bottom-to-top and
left-to-right in the non-increasing order of Potential Contribution Index. Color-to-Size ratio indicates
bug collaborators performance. High color-to-size ratio suggests performance more than expected
(indicator of initiation and contribution) and vice-versa. Following are the inferences :

1. Which bug collaborators are high performers? In Figure 30, bug collaborator ‘d17756’ is distinguished
from its neighborhood by contrasting color. Bug collaborator ‘d17756’ works significantly in
three out of the five reported areas in Treemap and is an asset to the organization.

2. Which bug collaborator is a critical resource to the organization? In area ‘Feature’ of Treemap plot
we see that only bug collaborator ‘d17465’ worked on more than 50 bug reports. Thus, bug
collaborator ‘d17465’ is a critical resource to the organization.

3. Which bug collaborators contribute more than expected?

In area ‘UI’ of Treemap plot we see that the size of sub-partition for bug collaborator ‘d29449’ is
comparable to the size of sub-partitions for neighboring bug collaborators like ‘d06974’, ‘d14528’,
etc. Figure 30 shows similar Potential Contribution Index for the above-mentioned bug collabora-
tors. However, high color-to-size ratio for bug collaborator ‘d29449’ (compared to the neighbors)
signifies more contribution than expected.

bertin’s hotel plot Bertin’s Hotel plot is a homogenous structure that uses rearrangement of
rows and columns to reveal information of interest. Input to the plot can be simple face values or
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complex derived (transformed) versions of the input. Global scaling is applied to the data to support
homogenous nature [210]. Here, this visualization is applied on the Specialization and Breadth Index
metric for the role of bug owner.

Specialization and breadth of knowledge are important for the role of bug owner and are related in-
versely. Issues with dependencies across components can be very well fixed by bug owners with some
understanding of all linked components. Similarly issues which are deeply embeded in a component
require bug owners with specialized knowledge in the area.

Bertin’s Hotel plot is a matrix of areas and bug owners (detailed description in caption of Figure 31).
Figure 31 shows the gross performing trends of bug owners for the year 2010-2011. The contribution
of bug owners in these areas is range normalized (refer equation 17) to ensure homogeneity for
comparison across areas.

RangeScore =
x−min

max−min
(17)

In Figure 31), horizontal axis shows the ten most popular components (areas) arranged chronolog-
ically in the non-increasing order of number of bugs reported in the area. Vertical axis is a list of
20 bug owners arranged in the non-increasing order of Specialization and Breadth Index (SBI) score
for the year 2010-11. Contribution of bug owner in an area is measured relatively (w.r.t other bug
owners working in the same area). Score scale is color coded. 100% imply distinguished contribution
in an area and vice-versa. Shaded upper triangular matrix represents bug owners with breadth of
knowledge and vice-versa.

In Figure 31 we see that the upper half triangle is a shade of gray. It implies that as we go from top
to bottom, breadth of knowledge decreases and specialization increases. Following are the inferences
relevant to appraisers:

1. Which bug owners have specialized knowledge and vice-versa? In Figure 31 we see that bug owner
‘d09728’ worked across multiple areas (except area ‘BrowserBackend’). Also the collaboration
pattern is almost uniform across areas (as shown by the slightly varying shades of gray). Thus,
bug owner ‘d09728’ has breadth of knowledge. Similarly we see in Figure 31 that bug owner
‘d02209’ owns bug reports from two areas namely ‘Internal’ and ‘BrowserBackend’. A striking
contrast in the shades of gray in Figure 31 indicates that the bug owner ‘d02209’ has specialized
knowledge in the area ‘BrowserBackend’.

2. Which bug owners are critical to my project? For area ‘ChromeFrame’ in Bertin’s Hotel plot, we see
that bug owner ‘d01682’ owns maximum number of bug reports (dark shade of gray in column
‘ChromeFrame’ of Figure 31). Apart from bug owner ‘d01682’, no other bug owner contributed
to the area ‘ChromeFrame’. Thus bug owner ‘d01682’ with expert knowledge in ‘ChromeFrame’
is a critical resource to the organization.

3. Which bug owner meets my project specific requirements? Bug reports with high dependency across
areas need bug owners with breadth of knowledge and vice-versa. For instance, projects in
which bug reports have dependencies in ‘UI’ and ‘Feature’ will be best solved by bug owner
‘d28504’. We see in Figure 31 that bug owner ‘d28504’ has good knowledge of area ‘UI’ and
‘Feature’ (as shown by the dark shades of gray for the two columns) and hence is a best fit for
the project.

dart chart Dart chart is a radial equivalent of the bullet chart. The name dart chart comes from
its structural and conceptual resemblance to dart board. Bullet chart establishes a qualitative equiv-
alent of performance from a quantitative measure of contribution score. The choice of classification
scale is a function of the performance w.r.t. other developers or specific organization’s expectations.
Another aspect attached to this chart is performance relative to self [211]. Figure 32 is a visualization
of Priority Weighted Fixed Index (PWFI) score for the role of the bug owner.

Understanding relationships between scores and its interpretation is a crucial task for organizations.
However, such demarcations are not intuitive and are subjected to individual’s perception. The aim of
this plot is to justify performance ranking (classification) and ensure fairness and uniformity. Based
on PWFI score, performance is broadly classified as ‘Excellent’, ‘Very Good’, ‘Good’, ‘Satisfactory’,
and ‘Not-Satisfactory’ using min-max normalization of contribution of all bug owners for four halves
in two consecutive years 2009-10 and 2010-11. Other normalization techniques may be applied to meet
specific needs of organization.
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In Figure 32, circle is divided into 50 sectors. Each sector is a bug owner arranged chronologically
in the non-decreasing order (counter-clockwise) of Priority Weighted Fixed Issues (PWFI) score in
the year 2010-11 (second half). Each concentric circle (outside to inside) is categorical classification of
performance as ‘Excellent’, ‘Very Good’, ‘Good’, ‘Satisfactory’, or ‘Not-Satisfactory’. This classification
is based on quantitative score (PWFI score) [‘Excellent’: Score >0.5, ‘Very Good’: Score >0.25 and
<0.5, ‘Good’: Score >0.125 and <0.25, ‘Satisfactory’: Score >0.0625 and <0.125, ‘Not-Satisfactory’: Score
<0.0625]. Color of each concentric circle indicates total number of bug owners (as shown in legend
’count’) that falls in a given performance category. ‘Legend’ shows performance in four halves over
two consecutive years (2009-11).
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Figure 32: Dart Chart

Following are a few interpretations to help performance appraisers:

1. Which bug owners are high performers relative to the team? In Figure 32 we see color coded con-
centric circles. Lightest shade of innermost circle shows that a majority of bug owners deliver
‘Not-Satisfactory’ performance. Only two bug owners ‘d00184’ and ‘d14019’ achieve ‘Excellent’
performance for their outstanding contribution in second half of 2010-11 (shown as green col-
ored dots on outermost circle).

2. How consistent is the performance of bug owner? In Figure 32 we observe three overlapping dots for
bug owner ‘d00184’ in the outermost circle. These three dots are for the three halves: green for
the second half of 2010-11, red for the first half of 2010-11 and blue for the second half of 2009-
10. The yellow dot for the bug owner ‘d00184’ lies in the innermost circle (i.e. ‘Not-Satisfactory’
performance for the first half of 2009-10). Thus bug owner ‘d00184’ starts with ‘Not-Satisfactory’
performance and shows marked improvement by consistently performing ‘Excellent’ for the
next three halves. The positions of dots for bug owner ‘d19551’ in Figure 32 shows periodic
fluctuations in performance. Bug owner ‘d19551’ performs well in the first halves of the two
consecutive years, while in the second half performance observes a steep fall. Similarly, bug
owners with marked improvement, slight improvement, consistently average, steep decline in
performance, etc. can be observed.

hybrid plot Hybrid plot is a combination of simple plots to display rich and otherwise complex
information. Adjacent plots share axis to link different pieces of information and present it as a whole
[212]. In this plot, we study Deviation from Median Time To Repair metric for the role of bug owner.
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Figure 33 consolidates twelve plots of two types: back-to-back bar chart and simple bar chart. The
arrangement of graphs is such that the adjacent plots share axis and present same information. Vertical
axis of the plot has two levels of hierarchy in information. At level one, information is presented for
all priorities i.e. priority 0, 1, 2 and 3. For each priority, we analyze the contribution of bug owners
arranged in the non-increasing order of the total number of bugs owned.

In Figure 33 we study ‘Security’ bug reports ‘Closed’ by bug owners during 2010-11 (first half).
The time to fix is the minimum time between bug ‘Start’ or ‘Assigned’ status and ‘Fixed’ or ‘Verified’
status. Cases in which multiple bug owner reassignments occur are not considered. The choice of
Expected Time To Repair for a given priority bug can be organization specific.

Based on priority of bug reports vertical section is divided into four segments as P0, P1, P2 and
P3 (P1 is highest; P3 is lowest). Each segment in the vertical section is a list of bug owners arranged
in the non-increasing order of total number of security bug reports owned. Horizontal axis measures
three different scores. ‘Value’ is count of bug reports owned by a bug owner for a given priority.
Red and blue colored ‘Value’ is the count of bug reports where bug owner exceeded/preceded the
time specified respectively. Similarly, ‘Negative’ and ‘Positive’ shows the time exceeded/preceded (in
hours) to fix the bug report (w.r.t. expected time) respectively.

Following are the possible inferences for decision makers:

1. Which bug owners have expertise in solving a given priority ‘Security’ bug report? In Figure 33 we
see that for each priority, bug owners are arranged (top to bottom) in the non-increasing order
of the value of back-to-back bar chart. Back-to-back bar chart shows the total number of bug
reports owned with a given priority. Red bar in the back-to-back bar chart measures the number
of bug reports with negative contribution and vice-versa.

In Priority P0 panel of Hybrid plot, we see that bug owner ‘d05167’ owns maximum number of
bug reports and thus has expertise in solving priority P0 bug reports. Similarly, we can derive
inferences for other priorities.

2. Which bug owner delivers good management skills? In Priority P0 panel, we observe that ‘Posi-
tive’ bar chart has maximum value for bug owner ‘d31174’. However this maximum value is
for one bug report (shown as blue color bar of the back-to-back bar chart). Thus bug owner
‘d31174’ shows good management skills. However, one bug report does not establish the desired
confidence in result. Combining these two factors, we infer that bug owner ’d05167’ has good
management skills (worked on four bug reports and ‘Fixed’ them 289 hours before expected
time). Similarly, we can infer bad management skills.

nightingale rose plot Nightingale Rose plot (also known as coxcomb) is a radial plot. It ana-
lyzes the gap between the actual value and the corresponding reference expected value. Nightingale
Rose plot displays contrast by analyzing data for two consecutive years. However to ensure compar-
isons and to analyze sophisticated interactions between causative factors the period i.e. time interval
between two consecutive observation points must be uniform [213][214]. For this visualization, we
use Priority Weighted Fixed Issue metric to gain detailed insights on performance trends.

In Figure 34, each sector of the circle is a month of the year. Two radial plots are drawn presenting
data for two consecutive years (Regime:Year 1 for 2009 and Regime:Year 2 for 2010). Bug owners
are represented by different colors as shown in the ‘Legend’. Area of wedge shows the performance
of bug owner (for a given month of the year) where radius of wedge is square root of the Priority
Weighted Fixed Issue (PWFI) score. Bug owners are arranged (inside to outside) in the non-decreasing
order of their PWFI Score.

Figure 34 is an activity track of 10 bug owners for two consecutive years (2009-10 and 2010-11). The
selection of these bug owners is based on their PWFI score (detailed description in caption of Figure
34). The inferential power of Nightingale Rose plot can be harnessed by capturing environmental
factors. In the absence of the information related to the environmental factors, the inferences stated
below are exemplary and must be put into right perspective for analysis by the organizations.

1. Which bug owners are environmental susceptible? or Which bug owners can act as a savior for the team?
In Figure 34 we see a steep decline in the quality contribution for the month of December
(w.r.t. the neighbouring months November and January) for years 2009-10 and 2010-11. One
possible justification is reduced activity during Christmas vacations. However, we observe that
bug owner ‘d05167’ contributes significantly in times of general inactivity.
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Figure 34: Nightingale Rose Plot

2. Analyze performance variations within/across years? In Figure 34 we see that the contribution of bug
owner ‘d07873’ was overshadowed (wedge disappear) by the significantly large contributions by
other bug owners. However, for the year 2010 we observe that the wedge corresponding to the
bug owner ‘d07873’ appears for all months of the year. It shows quality contribution delivered
significantly.

3. Which bug owner’s contribution dominate in a given time period? Assume organization has product
release scheduled in April 2009. In times of peak workload we observe that the contributions of
bug owner ‘d13741’ and ‘d00184’ overshadow the contribution of other bug owners. These bug
owners deliver quality contribution to ensure timely release and are asset to the organization.

Table 33 summarizes the 6 visualization techniques and compare them.

Table 33: Analysis and comparison of visualizations
Features Trellis Plot Treemap Plot Bertin’s Hotel Plot Dart Chart Hybrid Plot Nightingale Rose

Plot

Metrics SRI PCI,PCI-1,CI SBI PWFI DMTTR PWFI

Data
Dim.

5 3 3 4 5 3

Approx.
Team
Size

15-20 members 50-75 members 25-50 members 50-100 members 15-20 members 15-20 members

Appl Study trends and
outlier behavior
by systematic
arrangement of
variables; Tem-
poral analysis
of performance;
Measure perfor-
mance relatively

Map data hi-
erarchically;
Panoramic view
to individual’s
contribution in a
team; Compare
and contrast
performance
relatively

Pattern analysis
from rearrange-
ment of rows and
columns based on
criteria

Establish qualita-
tive equivalent of
quantitative score;
Analyze tempo-
ral variations
in performance;
Combine statis-
tical data for
each class of
observations

Study positive
and negative
contribution

Impact of envi-
ronmental factors
on performance;
Compare actual
vs expected
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Table 34: Survey Results [PoR=Percentage of Relevance; CPoR=Cumulative Percentage of Relevance]
Metrics RQ Not at all

Effective(1)
Slightly Ef-
fective(2)

Moderately
Effective(3)

Very Effec-
tive(4)

Extremely
Effective(5)

Total Mode PoR CPoR

Dart Chart RQ1 0 0 3 5 0 8 4 100
100

RQ2 0 0 3 2 2 7 3,4 100

Bertin’s Hotel
RQ1 0 2 4 4 0 10 3,4 80

83.33RQ2 0 1 3 6 0 10 4 90

RQ3 0 2 5 3 0 10 3 80

Treemap Plot
RQ1 0 2 3 5 0 10 4 80

73.33
RQ2 1 2 4 2 1 10 3 70

RQ3 1 2 3 4 0 10 4 70

Trellis Plot

RQ1 2 1 2 2 1 8 3,4 62.5

75
RQ2 1 0 4 3 0 8 3 87.5

RQ3 1 1 4 1 1 8 3 75

RQ4 1 1 3 3 0 8 3 75

Hybrid Plot RQ1 0 1 1 4 1 7 4 85.71
92.85

RQ2 0 0 2 3 2 7 4 100

Nightingale Rose RQ1 0 2 4 1 0 7 3 71.43
66.96

RQ2 1 2 1 4 0 8 4 62.5

5.4.7 Evaluation

Post-implementation, we conducted a survey of practitioners. We received 10 valid responses from the
practitioners in a large global IT industry. 9 survey respondents had more than 5 years of experience
and 1 had more than 1 year of experience. 8 survey respondents were Project Managers, 1 was head
of R & D initiatives and 2 were Bug Owner/Bug Fixer. The roles were overlapping in nature. 8 out of
10 survey respondents had been appraisers in the past or present.

Table 34 shows the usefulness of the visualization techniques when compared with the existing
practices in organization to assess contribution and performance. Research questions (RQ) asked for
each visualization technique are arranged in order of reference in the study.

Percentage of Relevance (PoR) is the percentage of responses which consider RQ effectively an-
swered by visualization technique where relevant responses are those with value ‘Moderately Effec-
tive’ or higher. Similarly, Cumulative PoR (CPoR) is mean of all RQs for a visualization technique.
Survey results show that the usefulness of visualization techniques vary considerably. However, gen-
eral consensus, as suggested by the mode of survey results, validates the usefulness of our work.

5.5 measuring changes in contributor community participation

We investigate the stability of community in software maintenance projects by mining Issue Tracking
System. We probe temporal community contribution patterns to analyze trends and estimate future
participation to support planning and decision making. We study literature in community manage-
ment to understand stability indicators. We identify three KSIs namely attrition, regeneration, and
retention. We propose metrics to measure the KSIs and compute their time series data. We explore the
inferential ability of the time series data through research questions that may help project managers
and decision makers in informed decision making.

5.5.1 Attrition Rate

During the maintenance phase of software development lifecycle projects loose its critical human
resource also termed as Attrition. These contributors may be regenerated (substituted) or lost com-
pletely [52]. Attrition Rate (AR) for time interval Tt is the percentage of contributors who left the
project in time interval Tt to the total number of contributors who participated in the preceding time
interval Tt−1. If the contributors do not participate for one time-interval we assume that they have
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left the project. In set notations, the attrition rate is the cardinality of set difference13 of contributors
(Con) in two consecutive time intervals Tt−1 and Tt divided by the cardinality of all participant con-
tributors in the time interval Tt−1 multiplied by 100 (refer Equation 21). The unit of Attrition Rate is
quarter−1.

∣∣ARTt ∣∣ =
∣∣ConTt−1

\ConTt
∣∣∣∣ConTt−1

∣∣ × 100 where t >1 (18)

5.5.2 Regeneration Rate

FLOSS projects evolve temporally with contributors entering or leaving the project at will. Research
shows that new entrants drive a large fraction of open source projects as original contributors leave the
project [195]. Regeneration replenishes the resources lost due to contributor attrition and help meet
additional resource requirement in the project. However, a very high regeneration rate may indicate
problems with the team composition. For instance, high regeneration rate indicates imbalanced team
composition (junior to senior ratio) with smaller fractions of experienced contributors. The imbalanced
team composition may adversely influence the stability of the project.

Regeneration Rate (RgR) for time interval Tt measures the rate (in percentage) at which new contrib-
utors start participating in ITS in two consecutive time intervals under analysis. In set notations, we
define regeneration rate for time interval Tt as fraction of cardinality of set difference of contributors
(Con) in Tt from contributors (Con) in time interval Tt−1 to the cardinality of contributors (Con) in
time interval Tt multiplied by 100. The unit of measurement is quarter−1.

|RgRTt | =

∣∣ConTt \ConTt−1 ∣∣
|ConTt |

× 100 where t >1 (19)

5.5.3 Retention Rate

Knowledge acquired with experience, formal and informal understanding of the project cannot be
transferred [63]. When a contributor leaves project, knowledge acquired goes with the contributor
causing knowledge loss. A key parameter to understand the stability of the software maintenance
project is to know its ability to retain knowledge or its contributors.

Retention Rate measures contributors retained by the project. Retention Rate (RtR) for time interval
Tt measures percentage of contributors retained out of all participants in time interval Tt−1. In set
notations, Retention Rate for time interval Tt is the ratio of cardinality of intersection of contributors
(Con) in time interval Tt and preceding time interval Tt−1 to the cardinality of contributors (Con) in
time interval Tt−1. The unit of Retention Rate is quarter−1.

∣∣RtRTt ∣∣ =
∣∣ConTt ∩ConTt−1

∣∣∣∣ConTt−1

∣∣ × 100 where t >1 (20)

The three metrics proposed in the study cannot be compared. So to help cross comparison, we
normalize the metrics on the union of contributor count in two consecutive time intervals Tt and
Tt−1. The normalization facilitates comparison at the cost of affecting the scores. In this study we
conduct analysis of modified metrics to ease comparison. The three metrics can be restated as:

∣∣ARTt ∣∣ =
∣∣ConTt−1

\ConTt
∣∣∣∣ConTt−1

∪ConTt
∣∣ × 100 where t >1 (21)

|RgRTt | =

∣∣ConTt \ConTt−1 ∣∣∣∣ConTt−1 ∪ConTt ∣∣ × 100 where t >1 (22)

13 Set difference is set of all contributors who worked in one time interval (Tt−1) but did not continue participation in next time
interval (Tt)
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Figure 35: Attrition Rate of contributors across four
years
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Figure 36: Issue count distribution calculated monthly

|RtRTt | =

∣∣ConTt ∩ConTt−1 ∣∣∣∣ConTt−1 ∪ConTt ∣∣ × 100 where t >1 (23)

Together the three metrics sum to 100 as shown below:

AR+ RgR+ RtR = 100 (24)

Figure 35, Figure 37, and Figure 38 show Attrition Rate, Regeneration Rate, and Retention Rate
respectively for 15 time intervals starting from ‘2009-04:06’. The horizontal axis of the plot shows
consecutive time intervals measured quarterly and the vertical axis shows metric score in percent-
age. Colored lines (refer to the legend) shows metric scores for contributors and the four roles of
contributors (reporter, owner, cc’ed and commenter).

5.5.4 Applications

RQ1: Do we observe high Attrition Rate in Google Chromium Project?
In Figure 35, contributor Attrition Rate in Google Chromium Project (shown in black) ranges from
27% to 47% with 34.7% mean and 4.07 % standard deviations. It implies that every three months
one-third of the contributors discontinue to participate in ITS. The high attrition rate in GC-ITS raises
concerns regarding the stability of the project. However, it fails to give a complete picture of the
status of the project. High Attrition Rate makes it relevant to conduct further analysis to understand
its cause and hence RQ2.

RQ2: Do we observe comparable Attrition Rates for all roles? If no, how does it vary with role rele-
vance?
In Figure 35, we observe a marked difference in the Attrition Rates for the four roles where role
relevance follows the order: owner > cc’ed > commenter > reporter. We observe that Attrition Rate
increases with decreasing relevance of the role. We see minimum Attrition Rate for owner (shown in
blue) and maximum for reporter (shown in red). This observation follows the intuition and results
of previous research. Attrition Rate for reporter varies from 28.9% to 44.2% with mean 37.7% and
standard deviation 4.3%.

The issue count reported in GC-ITS increases over time (refer Figure 36). Thus a high Attrition Rate
for the role of reporter presents an open question that is, whether the project is able to compensate
for the resources lost and generate resources to meet the increase in requirements. Subsequent RQs
address these concerns.

RQ3: Is high Attrition Rate accompanied by high Regeneration Rate?
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Figure 37: Regeneration Rate of contributors across four
years
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Figure 38: Retention Rate of contributors across four
years

In Figure 37, we see that in GC-ITS contributor Regeneration Rate fluctuates from 30.0% to 45.4%
with mean 38.7% and 4.2% standard deviation. This indicates that the resource lost is regenerated.
However, like RQ2, do we observe a marked difference in regeneration rates for four roles and how
it may impact the stability. Our next RQ attends anomalous behavior, if any, in Attrition Rate and
Regeneration Rate patterns for four roles.

RQ4: Do we observe anomaly, if any, in the temporal behavior of Attrition Rate and Regeneration Rate
for the four roles of contributors?
In Figure 39, we present contribution patterns for the four roles of contributors. Dotted lines represent
actual Attrition Rate and Regeneration Rate while dark lines indicate smoothed data (moving average
with past 3 observations) to generate approximate function to capture important patterns. The hori-
zontal axis shows the time intervals while the vertical axis shows the scale in percentage to measure
Attrition Rate and Regeneration Rate. Colors in the legend specify the values being measured by dot-
ted or dark line. In Figure 39 we observe that for the owner Regeneration Rate is always higher than
the Attrition Rate while the same does not hold true for the other three roles. For reporter, commenter,
and cc’ed we observe cross overs and fluctuations. Cross overs and fluctuations may point to con-
cerns. Thus, in the next RQ we analyze what temporal trends signals change in the stability of GC-ITS.

RQ5: Do we observe changes in lag between Attrition Rate and Regeneration Rate?
In Figure 39, we see that for owners, Attrition Rate remains low and consistent for most parts while
a constant dip in Regeneration Rate is observed. Similarly for other roles we observe decrease in lag
between Attrition Rate and Regeneration Rate accompanied by crossovers and fluctuations. Thus, in
the last few time intervals contributors lost due to high Attrition Rate are not replenished with high
Regeneration Rate. Also, though we do not observe this trend for owner their participation pattern is
also heading on similar lines.

RQ6: Do we observe increasing or decreasing trend in Retention Rate over time?
Figure 38 shows that contributor Retention Rate ranges from 23% to 32% with wide variations across
four activities. Retention Rate is high for owner and cc’ed compared to the retention rate for reporter
and commenter. One observation from this graph is that commenters stay in projects longer than the
contributors who report bugs.

RQ7: Do we observe changes in the relationship between Attrition Rate, Regeneration Rate, and Reten-
tion Rate? What implications can we draw from such observations?
To answer this RQ, we approximate the trend by fitting a linear model to the temporal data of
Attrition Rate, Regeneration Rate, and Retention Rate for 15 time intervals. The simple linear
regression model creates an approximation of the trend with correlation coefficients r of 0.73, -0.71,
and -0.70 respectively. The fitted model is statistically significant with p-values 0.005, 0.008 and 0.004

respectively. The fitted model provides an approximation of the trend. Moreover, the residuals of the
model have mean close of zero and a finite variance indicating that the residuals do not follow any
pattern.
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Figure 39: Comparison of Attrition Rate and Regeneration Rate of contributors across four years
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Figure 40: Changes in contributor participation pattern

In Figure 40, we observe that Regeneration Rate is decreasing, Attrition Rate is increasing, and
Retention Rate is decreasing. Thus over time contributors leaving the project are not regenerated and
the retention of contributors is decreasing over time. In a nutshell, the contributors are slowly moving
away from the project. This observation may influence the stability of the project depending on
whether the project is in initial phase or has attained maturity. Decreasing contributor participation
during initial phase may indicate decrease in interest and hence a decrease in the popularity of the
project. While if we observe the same trend once the project is mature, it may indicate that the project
observes few issues that must be incorporated. This observation leads us to the last RQ that examines
the influence of issue counts on participation.

RQ8: Do we observe an increase in contribution overhead on each contributor with time?
In Table 26 we observe an increase in the contributor count with increase in issue count. However,
the increase is not proportional. Thus over time there is an increase in workload on contributors. The
increase in workload may be welcoming or may further lead to decrease in contributor participation.

estimating future participation Planning is the response of forecasting. Estimating future
participation helps project managers plan ahead and facilitate informed decision making. Research
in FLOSS projects shows that contributor participation is a volunteering activity where contributors
join or leave project at will. Individual participation or contribution at microscopic level cannot be
estimated. However, participation at the macroscopic level follows trend [215].

In this section, we use historical data to make short-term predictions of contributor participation
patterns. The aim is to explore the time series data of KSI metrics for trends and investigate the
confidence in predicting future participation. We investigate the correlation between the community
participation pattern and stability of the community. Since we model historical participation data, the
study does not capture changes in participation pattern due to changes in external factors like similar
project gaining popularity, etc. Though these changes will get reflected in subsequent time intervals.

We propose statistical forecasting models that along with judgmental forecasting of decision mak-
ers (to capture environmental factors) will present a complete understanding of factors that influences
the stability of the project. We conduct experiments on GC-ITS dataset for 15 time intervals. We enu-
merate three statistical prediction models, justify the choice, implement, compute accuracy, compare
the models for goodness of fit and forecast accuracy and present visual analysis. We present results
for the three metrics and visualization of one metric. Given the small data size we choose 12 (out of
15) data points for training and the rest 3 for testing. The small dataset influences the selection of
modeling technique as discussed below. However, it has limited influence on the accuracy of the pre-
diction as old time series data is less useful to study changes in the project. All experiments present
in this section are implemented using toolkits available in R language14.

The baseline model (Model-I) for prediction assumes (also conducted experimentally) that the con-
tributor participation pattern follows normal distribution. We compute mean and standard deviation
of the time series data with 99% and 95% confidence interval to estimate participation patterns in
following three time intervals (refer Table 35). In Table 35 we see that the simple statistical model

14 http://www.r-project.org
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Figure 41: Model I: Simple Statistical Model to analyze trends in time series data of Attrition Rate

Table 35: Model-I: Simple Statistical Model [SD=Standard Deviations; Conf=Confidence Interval;
Obs=Observations for next three time intervals]

Metrics Mean SD 99% Conf 95% Conf Obs

AR 34.02 3.68 24.56-43.47 26.80-41.23 36.54, 32.65, 43.04

RgR 39.38 3.73 29.78- 48.97 32.06-46.70 36.54, 32.65, 43.04

RtR 28.27 2.40 22.10- 34.44 23.57-32.97 26.64, 28.29, 23.84

computes future participation with 99% confidence interval. Figure 41 show the simple statistical
model and the confidence interval for Attrition Rate, Regeneration Rate, and Retention Rate metrics
respectively.

The baseline model sets benchmark for the two more involved statistical models. To select models,
we conduct exploratory analysis to understand the composition of time-series data. In Figure 42, we
decompose the time-series data into trends, seasonal components, and remainders using stl function
in R. stl function in R uses loess smoothing to identify seasonal, trend, and irregular components. We
use the default settings with seasonality set to periodic. A preliminary analysis of time series data of
Attrition Rate metric (also implemented for Regeneration Rate and Retention Rate metrics) suggests
that the seasonality (if any) does not grow with the trend. Thus we use an additive model to represent
time series data. Figure 42 shows additive components of the time series data along with actual
observed data. In Figure 42, we see that Attrition Rate observes an increasing trend with the increase
in the irregular component or remainder. The increase in the irregular component with time indicates
that the time series does not observe seasonality though we may observe cycles with the trend. In
Figure 42 we observe that the time series data of Attrition Rate metric increases linearly in time. Thus,
the model close to the observed trend is a linear regression model. We model the time series data of
KSI metrics using tslm function. We estimate the goodness of fit of the model and predict accuracy
and confidence interval of the observations. The code snippet below from R shows the goodness of fit
of the model.

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 29.1656 1.6195 18.009 5.97e-09

x 0.7464 0.2201 3.392 0.00686

Residual standard error:

2.631 on 10 degrees of freedom

Multiple R-squared: 0.535,

Adjusted R-squared: 0.4885

F-statistic: 11.5 on 1 and 10 DF,

p-value: 0.006864

From statistical significance testing, p-value less than 0.01 indicates that the linear fit provides a
good estimation of the trend. We then use the fitted model to measure the predictive ability of the
model with 80% and 95% confidence intervals. Figure 43 show the observed trend, fitted model,
and predicted observations along with the confidence intervals. We see in Figure 43 that the fitted
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Figure 42: Decomposition of time series data of Attrition Rate metric into trend, seasonal and remainder compo-
nent using stl function in R
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Figure 43: Model II: Linear Regression Model to analyze
trends in time series data of Attrition Rate
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model predicts Attrition Rate in next three time intervals with 95% confidence. We observe that the
participation varies substantially from the fitted model. In the next model we try to model a better fit
to the data (without overfitting) to address this concern.

For statistical time series modeling, exponential smoothing and ARIMA models are two popu-
lar techniques. The small dataset available for prediction makes estimating parameters for ARIMA
modeling difficult without overfitting. Thus ruling out the choice of ARIMA modeling for the study.
Exponential smoothing, on the other hand, uses recent observations for prediction. Therefore, for
third model we choose exponential smoothing to predict contributor participation patterns. To imple-
ment Model III, we use HoltWinters function in R to compute additive exponential smoothing with
trend and level and without seasonal components. We forecast participation in three upcoming time
intervals with 80% and 95% confidence. Figure 44 shows the observed and expected contribution
patterns.

A manual inspection of Model-II and Model-III shows slight improvement in prediction accuracy
of first time interval (refer Figure 43 and Figure 44) of Attrition Rate metric. However, not much dif-
ference is observed for second, and third time intervals. We observe similar trends for Regeneration
Rate and Retention Rate metrics. In the code snippet that follows, we compare the prediction accura-
cies of Model-II and Model-III for different horizons (1,2 and 3). We conduct Daibald Mariano Test
to compare the predictive accuracies of models (implemented in R language). We hypothesize that
the predictive accuracy of linear regression model is less than the predictive accuracy of exponential
smoothing model. However, the code snippet extracted from R language shows that with forecast
horizons 2 and 3 (for Attrition Rate time series data) the two models are comparable in predictive ac-
curacy. However, for forecast horizon 1 exponential smoothing model outperforms linear regression
model. We compute the same statistics for Regeneration Rate and Retention Rate metrics and observe
same results for the two models.

Diebold-Mariano Test

DM = -1.7906,

Forecast horizon = 3,

Loss function power = 2,

p-value = 0.05044

alternative hypothesis: less

%%%%%%%%%%%

DM = -1.9919,

Forecast horizon = 2,

Loss function power = 2,

p-value = 0.0359

alternative hypothesis: less

%%%%%%%%%%%

DM = -2.8443,

Forecast horizon = 1,

Loss function power = 2,

p-value = 0.00798

alternative hypothesis: less

5.5.5 Discussion

In FLOSS projects contributor participation follows Pareto Distribution that is 20% of contributors do
80% of work. Also, not all roles are equally relevant. Thus one may argue that it is the contribution
pattern of core participants and not all contributors that matters for the project. However, success
of FLOSS projects is driven by the masses and not individuals where each contributor has a unique
role to serve. For instance, approximately 70% of contributors in FLOSS projects are one time con-
tributors. However, their presence ensures popularity and interest in the project, and is appreciated.
So if contributors cease to file issues it is an indicator of decreasing popularity and influences the
lifetime of the project. In this study absence of activities for three months implies that contributors
left the project. This assumption is localized. For instance, an owner who stop participating for three
months indicates that the contributor has left the project while a reporter may continue participation
even after a year. However, this assumption indicates the trend of participation. The data available
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in ITS may not answer all RQs that are relevant to decision makers. However, it gives a justifiable
understanding of the stability of the project in a data-driven and objective manner.

5.6 threats to validity

1. Survey sample size: We surveyed two very experienced software maintenance professionals in
industry. The two professionals worked in very different organizations and presented a range
of experience. However, the small sample size is a potential source of bias. Future studies may
try to gain perspectives from more such professionals.

2. Adversary Behavior: At the time of analysis, the data analyzed in this study is not affected by the
adversary behavior. However, in future the choice of metrics may influence the behavior and
hence the metrics must be chosen appropriately.

3. Choice of metrics: We present 11 metrics for the four roles of software maintenance professionals.
This list is not exhaustive, yet covers various aspects of performance. We introduce a framework
which can be extended by adding more metrics based on the needs in industry.

4. Limit on visual points: In Table 33 we see that the 6 visualization techniques analyze a limited set
of developers (count of developers calculated approximately). Beyond this limit, visualization
seems cluttered and fail to present the intuition for the plot.

5. Fixed data dimensionality: The number of data dimensions that can be analyzed with a visualiza-
tion technique are fixed. It cannot analyze complex relationships in a higher dimensional dataset
(beyond the limit specified for each visualization in Table 33).

6. Missing data: We have no way to measure activities that are not recorded in ITS, or activities that
are performed between two reported activities in ITS. Also, since we do not consider multiple
software repositories that maintains a project we may miss some participation activities for
analysis. So the framework present in this study may not measure participation completely.
However, assuming that the missing records are uniformly distributed throughout the project,
this study provides a fair estimation of the trends which otherwise go unnoticed.

7. Generalizability: We conducted experiments on one project. The applicability and usability of the
stated approach must be evaluate on various projects.

5.7 summary

In this chapter, we proposed measures the productivity of software contributors by mining software
repositories. We found gaps between the perceived relevance of key performance indicators and their
measurements in practice. We proposed a framework of metrics for the various roles of software main-
tenance professionals. Next, we proposed visualizations to presents a panoramic view of developer’s
contribution in a team and analyzed performance with the perspectives of the managers. These results
are validated by survey responses from practitioners in industry. We also present a generalized frame-
work to characterize the stability of software maintenance projects based on community participation
patterns. We proposed metrics for three key stability indicators and investigated temporal trends to
analyze project stability. We modeled participation pattern to predict future participation.
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When you can measure what you are speaking about, and express it in numbers, you know
something about it.

— Lord Kelvin

Software development is a people-intensive activity where contributors create, modify and maintain
the software. Much of the earlier works to improve software productivity focused on improvements
in process and tools/technology - technical aspects. Relatively less focus was given to people aspects.
Recently, the researches on people aspects gained momentum.

This thesis studies contributor productivity to help utilize the capabilities of contributors and im-
prove contributor productivity. It uses Empirical Software Engineering approaches based on Mining
Software Repositories to present a quantitative and qualitative analysis of the software development
activities. This thesis, through a series of empirical studies, provides frameworks to measure individ-
ual and team contributions and explains the influence of various factors on contributor productivity.
These studies are conducted on diverse and representative commercial and open source software
projects: the popular products at Microsoft, a wide range of software development projects at GitHub
and Google Chromium project, to establish the usefulness of the proposed frameworks.

This thesis helps formulate a true picture of software development and facilitates informed decision
making. The results of this thesis cross-examines the prevalent intuitions, and backs the intuitions with
data. It is to be noted that the results presented in this thesis may not generalize to arbitrary projects.
While the results are not generalizable, the frameworks proposed in this thesis can be applied in
diverse contexts.

This chapter revisits our studies on contributor productivity and discusses our main contributions.
Then we sketch some broader and detailed directions for future research. Additional details are avail-
able in the chapter that covers the study.

Factors Influencing the Ramp-up Journey of New Hires

To understand the aids and impediments in the ramp-up journey of newly hired software developers,
we conducted a large-scale study. Our analysis combined software engineering data extracted from
version control systems and qualitative data from surveys and interviews. We analyzed eight large
and popular product groups in Microsoft with several thousand software developers - the majority of
engineering workforce at Microsoft. We observed that 14-49% of all software developers in product
teams considered in our study are new hires.

This study makes two major contributions. First, it provides a framework to measure the time taken
by new hires to reach the productivity level of existing employees. Second, it presents a comprehensive
list of factors influencing the ramp-up journey of new hires. This study empirically validates some of
the known findings in industry from a systematic analysis of software engineering data.

We measure the ramp-up on two aspects: time to first check-in and time to ramp-up. Time to first
check-in marks the time required to make first useful contribution. We measure time to ramp-up as
the time required by new hires to reach the median productivity level of the existing employees in the
product. Particularly, we measure the time required by new hires to match the frequency of check-ins,
lines changed and files changed by existing employees as ramp-up time. These three measures indicate
the familiarity with the process, efforts and span of knowledge acquired by new hires respectively.

The results of this study showed that the ramp-up journey is influenced by various factors in
the company. We discovered that having a mentor, prior knowledge of required skill sets, etc. helps
increase the productivity of new hires. Lack of proper documentation, trying to get access and per-
missions, etc. reduces the productivity of new hires. Product group of new hires has no influence on
the time to ramp-up while career stage of new hires influence it. Various strategic practices like dis-
tributed development and prior internship experience within the company are also seen to influence
the time to ramp-up. Surprisingly, early first check-in does not imply a faster ramp-up - as expected
by the managers.
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We found that new hires engage in a wide range of activities other than code check-ins that are not
measured in the existing framework. For instance, new hires participate in code reviews, preparing
prototypes, reading legacy code, etc. Since, these activities claim time and efforts of new hires and are
not measured in the existing framework, care must be taken in evaluating new hires based on these
metrics.

New hires also gave suggestions to improve the ramp-up journey based on their experiences. New
hires advocated the application of company-wide coding standards, improved code base, improved
documentations, easy tools, etc.

Presence of Geographical Bias in Peer Code Review Process

This study analyzes the perceptions and reality of the influence of geographical location on the eval-
uation of pull requests in GitHub. This study intends to generate awareness and bridge gaps in
perceptions, if any. We used a a mixed-methods approach to detect the presence of bias when devel-
opers are not aware or not willing to accept their biases. We combined observations from 70,000+ pull
requests and 2,500+ survey responses - one of the largest response population of open source projects,
to analyse the influence of geographical location on pull request acceptance decisions.

We controlled for the various factors that influence pull request acceptance decisions and quanti-
tatively analysed the GitHub projects’ data to measure the influence of 1) geographical location of
submitters on pull request acceptance decisions and 2) same geographical location of submitters and
integrators on pull request acceptance decisions. We examined pull request acceptance rate across
geographical locations as a proxy to geographical bias. We supported these observations with the
quantitative and qualitative analysis of the survey responses of submitters and integrators on the
perceptions of bias.

The data analysis suggests the presence of geographical bias as there were significant differences in
pull request acceptance rates based on geographical locations. This observation was in agreement with
the experiences of pull request submitters. We found that the perceptions of submitters classified by
geographical locations match the data analysis. However, integrators did not perceive being biased in
evaluating submitters. Integrators felt that factors relating to the geographical location of submitters
and not necessarily the geographical location may influence their pull request acceptance decisions.
Integrators perceived that the observed differences can be explained in terms of language barriers and
the inability to communicate.

We cross-compared the observations of the survey and data analysis to explain the differences in
pull request acceptance rate as geographical bias or factors related to the geographical location. We
found the following: First, there are geographical locations in the list which have higher chances of
pull request acceptance and where use of English is not widespread, like Japan. Second, we saw that
Switzerland and Germany which are pretty similar in terms of language usage are different in terms of
pull request acceptance rate. Third, we sent the survey in different languages like French and received
numerous responses stating that GitHub contributors are familiar with basic English and there is
no need to translate the survey in local languages. Finally, the large number of survey responses
received ensures that our results are not biased by a handful of people who have poor communication
skills. Together these observations suggest that language barrier and inability to communicate cannot
explain the observed behavior implying the presence of geographical bias. It also indicates a bias
blind spot as developers see the impact of bias on the judgement of others while failing to see the
impact of bias on their own judgement. This study informs both integrators and submitters about the
actual presence of bias despite their reported perceptions.

Rise and Fall of Developer Participation due to Competing Projects

This study analyzes the rise and fall of developer participation in a project when competing projects
emerge from its source code - termed as forking, claiming existing and potential developer participa-
tion. To investigate the influence of forking on the sustainability of original project, we proposed a
quantitative framework to identify projects with forks, characterize projects based on developer par-
ticipation, and measure changes in developer community participation in the original project after
forking. We measured changes in the developer community participation after forking and modeled
the influence as 1) decrease, 2) increase, and 3) no effect on the sustainability of the developer com-
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munity participation in the original project. We modeled the observed behavior in terms of project
characteristics to understand its reasons.

A large-scale study of projects hosted on GitHub showed that forking is significant and is going to
be more relevant in the future. An analysis of more than 2,000 open source software projects suggest
that forking significantly alters the sustainability of the developer community participation in the
original project. We found that 18%, 29%, and 53% of the original projects observe decrease, increase,
and no effect respectively in the developer community participation after forking. Thus a small, yet
significant fraction of projects observed a decline in the sustainability of the developer community
participation after forking. This effect is more pronounced in projects ported to GitHub from external
sources than projects created in GitHub.

We found that the observed behavior can be explained in terms of the characteristics of the com-
peting projects at the time of forking. We analyzed projects of various sizes: small, medium and large
and observed the following. We observed that in small projects increase in the maturity of a project
by a year increases the chances of a new project emerging from it by 60%. In medium-size projects,
increase in contributors’ count by a unit reduces the chances of new project emerging from it by 110%.
Increase in the influence of the owner of the original project decreases the chances of starting a new
project by 10% in large projects. And increase in the influence of the contributor intending to start the
new project increases the chances of starting a new project by 19% in large projects. We also found
that domain of the project influences the chances of observing a new project and that more popular
the original project, less likely it is that a new project will start from it.

We also found that the maturity of the original project, domain, size of the community of the
original and new project, influence of the owner of the original and new project, and popularity
of the original and new project influences the rise and fall of developer participation in the original
project. For instance, an increase in the influence of the owner of the original project and its popularity
decreases the chances of decline in the developer community participation in the original project.
This observation explains why fork LibreOffice had no effect on the sustainability of the developer
community participation in OpenOffice. Interestingly, some factors have dual effects on the project.
For instance, in large projects an increase in the maturity of the original project increases the chances
of observing a new project while also not influencing the sustainability of the original project.

Effect of Personality Traits on Levels of Contribution

This study explores the inferential power of the personality traits in explaining the behavior of contrib-
utors in various contexts of software development in GitHub. This understanding of the behavior of
contributors is important to comprehend the intricacies of team. To do so, we measured the personal-
ity profiles of contributors, as evident from their language use in discussions on software development.
We used the Big Five model from psychology that measures personality profiles in terms of Openness
to Experience, Conscientiousness, Extraversion, Agreeableness and Neuroticism.

We empirically analyzed the relationships of the personality traits of contributors with contributions
and context of software development in GitHub. Specifically, we studied differences in the personality
traits of sub-communities of contributors with different levels of contributions and project member-
ship status. Also, we studied differences in the personality traits of individuals when they contributed
in different contexts. Particularly, we looked for changes in the personality traits with time, type of
contribution, role and project membership.

We started the study by proposing that the personality traits of contributors mined from software
repositories could offer a way to explain their contributions in different contexts of software develop-
ment. We were able to present several results that supported our ideas.

We showed that the personality traits of contributors with different levels of contributions are dif-
ferent. We found a steady increase in the Openness to Experience, the Conscientiousness, and the
Extraversion as contribution increases. This was expected as contributors with higher levels of contri-
butions are the ones who take lead to ensure project success. These contributors - characterized by
being more insightful, more goal-oriented and social, seems intuitive. Further, we found that contrib-
utors with higher levels of contributions are lower on the Agreeableness. This is again expected from
them to ensure the health of the project.

We found that the project members are more Conscientious, more Extrovert and less Agreeable
compared to the non-project members. This is expected from project members that they are rigorous in
their work, social to attract participation, and less agreeable to maintain quality software development.
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We showed that the personality profiles of most active contributors evolve with time. We found that
the most active contributors evolve as more Conscientious, more Extrovert and less Agreeable with
time. These characteristics explain at the first place why and how these people became the most active
contributors.

We showed that contributors portray different personality traits in different contexts of software
development. We found that contributors when working on pull requests are most Conscientious,
most Extrovert, most Neurotic and least Agreeable. We believe that this behavior indicates gatekeep-
ing to the entry of quality work and that pull requests mark the highest barrier to entry. Among
commits and issues, contributors are most Conscientious, most Neurotic and least Agreeable when
working on commits. This implies that after pull requests, commits impose largest barriers to entry
to ensure quality software development. It is important to note that contributors are least Extrovert
when working on commit. One possible explanation for this is that project members collaborate on
commits, unlike issues which are largely discussed by prospective project participants or end users.
Finally, while working on issues, contributors are least Conscientious, least Neurotic and most Agree-
able. This behavior shows how active contributors facilitate the free inflow of suggestions from the
masses.

We found that contributors are more Extrovert when they are member of projects or are reviewing
others work. This explains the expectations from the project members and the reviewers of successful
projects to maintain cordial terms to attract participation. Other than this, we found that as reporter,
contributors are more Open to Experience, more Conscientious, and more Neurotic compared to when
they are reviewing others work. Also, we found that when contributors are not the member of the
project they more Conscientious, more Agreeable and more Neurotic.

Impact of Role Reputation and Contribution on Developer Participation

This study examines contributor characteristics namely role of participation and amount of work done
as a measure of predicting developer participation in Google Chromium project. We presented an
approach that classifies contributors based on contribution into three mutually exclusive sets namely
non-core team, loose core team and tight core team. We defined attrition as a function of participation
in two consecutive time intervals and studied attrition rate for reporter, owner, commenter and cc’ed-
contributor and the three classes of contributors.

We observed that the attrition rate of all contributors fluctuates from 27% to 47%. We observed
marked differences in the attrition rates for the four roles. We found minimum attrition rate for
owner and maximum for reporter. This follows the intuition because majority of reporters are end
users and not necessarily contributors to the project. We found that the attrition rate for loose core
team and tight core team ranges from 3% to 10% which is less than the attrition rate for non-core team
(ranges between 27% and 43%). This indicates that retention in project is directly related to the degree
of involvement in the project. Interestingly after initial fluctuations, attrition rate of tight core team is
higher than the attrition rate of loose core team indicating that tight core team contributes relatively
large however sporadically.

Measuring Individual Contribution

This study proposes measures of individual contributions based on pre-defined objectives, roles, and
key-performance indicators. We started with a survey of experienced industry professionals to un-
derstand the relevance of performance indicators and their measurements in practice. We found that
there are differences in the perceived importance of key performance indicators and their measure-
ments. We proposed 11 metrics for bug reporters, bug triagers, bug owners and collaborators based
on key performance indicators. Next, we proposed visualizations to present a holistic view of individ-
ual contribution in a team. We validated the proposed framework with 10 professionals in industry.
Survey responses suggested that the usefulness of the six visualizations varied considerably. However,
general consensus validated their applicability.
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Measuring Team Contribution Patterns

This study investigates the stability of community in software maintenance projects by analyzing
team contributions pattern. We identified three key stability indicators namely attrition, regeneration,
and retention and proposed metrics to measure them. We probed temporal community contribution
patterns to answer representative research questions aimed at investigating the inferential ability of
the metrics in understanding the stability of the project. We modelled the community participation
pattern to estimate future participation.

There are many possible ways in which the work described in this thesis can be extended. Some of
the broad research directions and specific problems for the research studies are:

Broad Directions

1. Empirical Analysis Various studies in management science, social science and psychology study
people aspects. Recent years witnessed a rise in studies that empirically analyzes contributor
productivity. More such studies are required to completely explain contributor productivity.

2. Holistic View A majority of studies analyze the influence of the factor of interest on contribu-
tor productivity. However, a holistic understanding of the context and characteristics that com-
pletely explains the behavior is missing.

3. Real-time or Near Real-time Solutions The solutions proposed in this thesis and various other ex-
isting studies are build on historical data and explain the observed behavior. There is a need to
apply the knowledge acquired from such studies in real-time or near real-time. For instance, we
need a model that comments on the project stability by analyzing the contemporary characteris-
tics of the project and learnings from similar projects in the past.

4. Replication This thesis analyzes representative commercial and open source projects. Further
studies are required that replicate the frameworks and help generalize the findings.

Specific Problems

1. Ramp-up Journey It will be interesting to study the influence of cultural and work hour differences
in different nations on the ramp-up journey of new hires. Also, a study on the ramp-up journey
of internal transfers can help understand the usefulness of this practice in large companies.

2. Personality Traits We characterized the personality traits of most active projects and contributors.
Other studies may explore what differentiates most active projects and contributors from less
active projects and contributors. Further studies must be conducted on a wider range of open
source projects and commercial projects to establish the baseline.

3. Measuring Contributor Productivity Future studies may build interactive tools, combine plots to
study complex concepts, compare teams and projects for planning and study the evolution of
project and organization.
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