REVERT: Runtime Verification for
Real-Time Systems

Illr) INDRAPRASTHA INSTITUTE of
INFORMATION TECHNOLOGY DELHI

Sangeeth Kochanthara

A Thesis Report submitted in partial fulfilment for the degree of
M. Tech in Computer Science
Under the Supervision of Dr. Rahul Purandare, Dr. David Pereira and
Dr. Geoffrey Nelissen
November 1, 2016

(©2016 Sangeeth Kochanthara
All rights reserved

Keywords: Run-time Verification, Real-Time Systems, Monitor, Timed
Automata

Certificate

This is to certify that the thesis titled "REVERT: Runtime Verifi-
cation for Real-Time Systems" submitted by Sangeeth Kochanthara
for the partial fulfillment of the requirements for the degree of Master of
Technology in Computer Science & FEngineering is a record of the bonafide
work carried out by him under our guidance and supervision in the Program
Analysis group at Indraprastha Institute of Information Technology - Delhi.
This work has not been submitted anywhere else for the reward of any other
degree.

Dr. Rahul Purandare
Indraprastha Institute of Information Technology - Delhi, India

Dr. David Pereira
CISTER research unit, Instituto Superior de Engenharia do Porto,
Porto, Portugal

Dr. Geoffrey Nelissen
CISTER research unit, Instituto Superior de Engenharia do Porto,
Porto, Portugal

Abstract

Real-time systems are becoming more complex and open, thus increasing
their development and verification costs. Although several static verification
tools have been proposed over the last decades, they suffer from scalability
and precision problems. As a result, the tools fail to cover all the necessary
safety properties for realistic real-time applications involving a large number
of components and tasks. Runtime verification is a formal technique that ver-
ifies properties during system execution with the support of monitors. The
monitors are generated from formal languages using correct-by-construction
generation methods. Runtime verification can thus be used as a complement
or replacement for static verification approaches. The current state-of-the-art
tools either do not have notion of time, or suffer from the potential blowup
of states at run-time. This thesis proposes REVERT, a framework developed
with a focus on the verification of functional and non-functional properties
with timing constraints. The contribution of this work is threefold: (i) a
domain-specific specification language allowing the definition of requirements
for real-time applications; (ii) a novel mechanism to generate monitors, with
state-space and time guarantees, capable of identifying and reacting to tim-
ing properties defined with the proposed specification language. (iii) a tool
that automatically transforms specifications written in REVERT to monitors
specified as complete timed deterministic finite automata in xml format.

Acknowledgments

“And, when you want something, all the universe conspires in helping you
to achieve it.” - The Alchemist, Pauolo Coelho.

AsIreach the end of my master’s, I would like to thank all those who made
the journey beautiful and whose thoughtfulness, care and support helped me
reach here.

My deepest gratitude to my advisors Dr. Rahul Purandare, Dr. David
Pereira and Dr. Geoffrey Nelissen for their guidance and support. The
quality of this work would not have been nearly as high without their well-
appreciated advice. Thanks to my thesis committee: Dr. P.B. Sujit and Dr.
Subodh Sharma for their feedback.

I am always indebted to my parents who have always been with me with
invaluable support and strong belief in me. I am grateful to my classmates,
juniors, seniors, the PhD group at III'T-Delhi, and my colleagues at CISTER
for offering a fresh perspective of research and being with me in all my crazy
deeds.

Sonia Dalal and Vedanshi Kataria from B.Tech 2016 batch did the suc-
ceeding section of my work: code generation from monitors. Thanks Sonia
and Vedanshi for productive discussions.

I would like to thank CISTER, Porto, Portugal for providing infrastruc-
ture support and funding via project CONCERTO (JU grant nr. 333053
ARTEMIS/0003/2012) for the initial stage of this work. This work is sup-
ported in part by Infosys Foundation and Infosys Center for Artificial Intel-
ligence at III'T-Delhi.

Contents

1 Introduction

2 Motivation and Related Work

2.1

2.2

Motivation
2.1.1 Modeling System Properties
2.1.2 Monitor Placement
2.1.3 Monitor Synthesis
Related Work

3 Background

3.1
3.2
3.3
3.4
3.5
3.6

4 The
4.1

4.2

4.3

Properties
Monitoring Architecture
Monitored Applications
Timed Automata L.
Timed Regular Expressions
Derivatives

REVERT Framework

REVERT Specification Language
4.1.1 Monitor Data
4.1.2 Monitor Environment
4.1.3 Nodes
4.1.4 Transitions and Transition Guard Expressions
Formal Monitor Specification
4.2.1 Modeling Monitors
4.2.2 Modeling Properties
Monitor Generation
4.3.1 Transition Automaton Generation

vi

10
10
11
11
12
13
13

4.3.2 Node Automaton Generation
4.3.3 Monitor Automaton Generation

5 Implementation
5.1 The Tool Chain

6 Example

7 Conclusion and Future Work
7.1 Conclusion and Future Work
7.2 Limitation,

A Example Monitor Output

28
28

30

32
32
32

38

List of Figures

1.1
2.1
3.1

4.1
4.2

5.1
6.1

General runtime verification structure 1
Inline monitoring and outline monitoring 6
Monitoring architecture. Adapted from [24] 11
FSM of the expression failure(duration(j;)<10) 26
FSM of the expression failure(jitter(time(startT compltT))< 3) 26
REVERT implementation 29
Example of the specification of a monitor with REVERT. . . . 30

viil

List of Algorithms

1 Algorithm to generate timed automaton from TRE expressed
using time operator

1X

Chapter 1

Introduction

Real-Time Systems (RTS) have become pervasive. Typical examples include
Air Traffic Control Systems, Networked Multimedia Systems, and Command
Control Systems [21]. In RTS, the correctness of an operation depends not
only on its functional correctness, but also on the time in which it is per-
formed. Depending on the application domain and on the level of criticality
associated with the application, failing to meet some timing constraints can
lead to drastic consequences for the system’s environment and the agents in-
volved in its operation. Due to the strong reliability, safety and predictability
demanded from these systems, verification and validation are fundamental
activities often required to be performed according to directives of legal cer-
tification entities [18].

Runtime Verification (RV) and runtime monitoring are techniques that
uses monitors to observe system properties during execution time and there-
fore enables to trigger corrective actions on violation of system properties.
Figure 1.1 outlines the general RV structure. Thus, RV improves safety,
predictability and reliability of RTS.

RV can also help in accelerating the development of RTS whilst main-
taining high degree of reliability demanded by such systems.

Observe

>I Monitors ‘

/

System Verdict
Y N

Feedback | -
| Handlers ‘

P
<

— 4

Figure 1.1: General runtime verification structure

We present REVERT framework for RV of RT'S. We address most of the
limitations of state-of-the-art RV frameworks (refer Chapter 2) in REVERT.
The key contributions of this thesis are:

i

i

1l

REVERT, a domain-specific specification language allowing the defini-
tion of requirements for real-time applications. REVERT is designed
to be simple and easy to learn. It supports timing constraints on top
of events relative ordering. REVERT is a combination of state ma-
chines, extended regular expressions, boolean expressions, and timing
constraints.

A novel mechanism to generate monitors, with state-space and time
guarantees, capable of identifying and reacting to timing properties
defined with the proposed specification language. We argue that novel
monitor generation mechanism guarantees that the generated monitor
has to keep track of only one state at any point in run-time, thus
avoiding the potential blowup in the number of states of the generated
monitor has to keep track of at runtime. A problem that most RV
frameworks suffer from today.

A new tool to generate monitors for RTS from specifications written in
REVERT using the novel generation mechanism. The tool takes speci-
fications written in REVERT and automatically generates monitors un-
der the form of complete timed Deterministic Finite Automata (DFA).
The generated timed DFA can later be used to generate code that can
eventually be integrated within the monitored system.

Thesis Organization

This thesis is organized as follows: Chapter 2 discusses problem motiva-
tion from three different perspectives and talks about the state-of-the-art.
Chapter 3 provides the necessary background. Chapter 4 and 5 explain the
contributions in detail followed by a walk-through example in Chapter 6 and
its output in Appendix A. Chapter 7 concludes the work with some future
directions.

Chapter 2

Motivation and Related Work

2.1 Motivation

Software flaws and failures have an increasing role in many recent acci-
dents [15]. The smallest flaw could have devastating consequences that can
lead to significant damage, including loss of life [30]. Embedded software
has a clear role in recent failures in commercial avionics, mid air software
glitches reported for fighter jets, and recent space accidents [14,30]. These
incidents also shows that the systems built in compliance with the most
stringent standards around the globe, namely, NASA Software Safety Stan-
dard, FAA System Safety Handbook, MIL-STD-882D (US Department of
Defense), DEF-STAN 00-56 (UK Ministry of Defense), DO-178B (Commer-
cial avionics), etc., are not always resilient to software flaws. Though the
above mentioned examples are from the space and aviation domains, similar
scenarios exist in other domains too [1|. These highlight the importance of
validation and verification for real-time embedded software.

The complexity and openness of the current RTS makes verification and
validation two of the most costly and time consuming steps during their
development. The major traditional validation and verification techniques
are testing [%,22] and model checking [12]. Though testing is a wide field of
diverse methods for finding bugs, it fails to show the absence of bugs or the
total correctness of the system being tested. Correctness of the system can
be shown using exhaustive testing, covering all possible program execution
paths with all possible constraints. However, exhaustive testing is impossible
for complex systems. Model checking is an automatic verification technique,

mainly applicable to finite state systems. Model checking needs the entire
system to be modeled as a finite state automaton, which often is impractical.
So, static program analysis became next immediate candidate to address the
strong reliability and predictability demands of RTS [13].

Static program analysis is the method of inspecting code without running
the program. However, static program analysis experiences practical limita-
tions such as undecidability of properties of the underlying formal model, or
blowup of the potential states to track. Moreover, extra-functional properties
like the time at which events occur are usually only available at run-time.
This scenario make RV techniques the natural candidate to address the cur-
rent limitations of static approaches [20].

RV is a technique used to verify the correctness of system properties
during execution of the system. The first step towards RV is modeling system
properties. The second step is the placement of monitors which specifies how
the monitor is integrated in the system. The third step is how monitors are
synthesized from specified properties.

2.1.1 Modeling System Properties

RV frameworks need an input that specifies the system properties to be
monitored. Any system behavior that needs to be followed for correct sys-
tem operation is termed as a system property. Duration of a job and event
sequences to be followed (say a file read event should happen only after a file
open event) are examples of system properties.

Early works |29] used automata as an input to the verification framework
or manually weaved monitor code into the system. Creating an automaton to
model system properties by hand is impractical for complex systems such as
the current generation of avionic systems, space systems, or medical systems.
Manually coded monitors are prone to errors same as coding errors in software
development. Moreover, verifiability of such monitors is hard. Using manual
methods for knowledge transfer of what the monitor does, among the entire
team working on the design and development of the system, is even a bigger
problem. The certification of such systems essentially requires certification
of the monitor too, which again increases the development cost. To overcome
these challenges, formal specification languages for monitor specification are
proposed.

Specification languages allow system designers and developers to express
properties in at a very high level of abstraction, decreasing the possibil-

ity of human errors and increasing their understandability. There are a lot
of proven ways to express system behaviors using event sequences: Linear
Temporal Logic (LTL), regular expressions, context free grammars, etc. We
chose an extended version of regular expressions due to its universal un-
derstandability, ease to use and direct mapping to a complete deterministic
automaton. Universal understandability means that regular expressions are
easiest to understand and use among languages with same expressive power
like LTL, and is used widely in software development. However, such lan-
guages do not have notion of absolute time (specifying bounds on sequence
of events in time units).

Expressing properties of RTS not only needs specifying event sequences
to be followed, but also time bounds on these event sequences. The major-
ity of the specification languages do not have explicit notion of time. The
specification languages with notion of time are either too low-level or hard
to comprehend (need domain expertise to comprehend) and error-prone. For
instance, metric interval temporal logic [2], timed computation tree logic [2],
and a few of RV frameworks like RuleR(refer to the next section) are a few
examples. In this work, we introduce the three operators time, duration,
and jitter (refer to Chapter 4) to specify time bounds on top of event se-
quences, which covers all the basic timing properties in RTS that need to be
monitored.

Systems are changing with time so the properties that need to be moni-
tored changes with time. For instance, the properties that need to be mon-
itored in different modes during flight of a plane: taxi, take off, cruise, and
landing, are different. The specification language should be able to express
these mode changes, expressing properties needed to be monitored in each
mode, separate from one another. Existing languages and frameworks do not
provide this flexibility which is essential to specify behavior of complex RTS
systems that exist today.

This led us to create a new domain specific specification language, suited
for RTS. REVERT is crafted with notion of time while being easy to un-
derstand and used by the designers and developers of RTS, and yet being
expressive.

2.1.2 Monitor Placement

Monitor placement refers to how the monitor is integrated in the system.
Broadly there are two ways of monitor integration: inline and outline. In

System Monitor System €¢————> Monitor

\\ /’ J

(a) Inline monitoring (b) Outline monitoring

Figure 2.1: Inline monitoring and outline monitoring

the inline monitoring method, the monitor is a part of the system. Con-
versely in the outline monitoring context, the monitor and the system are
two completely different entities. In outline monitoring, since the monitor is
not integrated with the system, there will be an essential issue of synchro-
nization between monitor and monitored application. If the system to be
monitored is a distributed one, then the network delay also has to be taken
care of while estimating the response time of the monitor. There would
be shared memory problems for accessing events from the application being
monitored since all the events have to be passed via shared memory between
the system and the monitor. So inline monitoring seems to be a better can-
didate over outline monitoring to use with RTS. Figure 2.1 shows pictorial
representation of inline and outline monitoring methods.

Inline monitoring avoids or reduces possible adverse impact of monitor
on monitored system. A good inline monitoring system should provide time
partitioning, space partitioning and independence between different monitors
and between monitors and monitored system. Time partitioning ensures re-
sponse time of one task is not influenced by other tasks, removing monitor
impact on task execution times. In space partitioning, each monitor executes
in its own memory space avoiding possible corruption of the monitor by a
task and (or) or other monitors. Independence between monitors ensures
that failure of a monitor will not cause failure of any other monitor or an-
other task in the system being monitored. Monitor architecture should also
ensure bounded responsiveness of monitors. Bounded responsiveness of mon-
itors guarantee the feedback or judgement on violation of a property being
monitored in bounded time. The monitors that the REVERT framework gen-
erates can operate standalone or can be integrated to a system using any of
the above-mentioned methods. However, the monitors need to provide these
guarantees to be fabricated with RTS especially on safety critical systems.

Nelissen et. al [24] proposed a monitor architecture (refer Chapter 3) with
all these guarantees, which we use as reference architecture for REVERT.

Offline monitoring and online monitoring make another broad classifi-
cation based on time at which monitoring occurs. In offline monitoring the
traces of events produced during runtime (with or without timestamps de-
pending on whether the monitoring system needs notion of time) are analyzed
by the monitor aposteriori. The monitor analyzes log file or trace dump. This
method can be used to analyze the reason for crash or malfunctioning of the
system, to make it better in the future. However, this comes with a toll that
the analysis happens after the damage. It cannot be used to prevent the dam-
age or to steer the system from unsafe to safe state which is highly desirable
in RTS. In the online monitoring context, events are analyzed at runtime.
So the online monitoring method can be used to prevent damage and steer
the system from unsafe to safe state on violation of system properties.

2.1.3 Monitor Synthesis

To automate the process of building monitor there must be a defined proce-
dure to generate monitor from the given specification. The monitor should
be correct-by-construction, so that monitor will be correct if the specification
is correct. This reduces the cost and time needed for certification process,
because now the monitor does not need to be verified, rather only the gen-
eration process needs to be verified.

The generated monitor should give memory usage and time guarantees for
integration with a production level RT'S. To the best of our knowledge none of
state-of-the-art systems with explicit notion of time are able to provide both
space and time guarantees. We argue that our method of monitor generation
produces monitors with memory usage and runtime guarantees so that it can
be integrated with a production level RT'S.

2.2 Related Work

The earliest works in RV focused on event-triggered monitoring in which mon-
itors are invoked on each event occurrence that is being monitored. RMOR
[16] and MOP [10], are examples of event-triggered monitoring. RMOR
and MOP use aspect-oriented programming to instrument the target appli-
cation’s source code from a specification specified used regular expression,

linear temporal logic, context free grammar, etc.

Time of occurrence of events in runtime are not always predictable. The
events does not occur in a linearly distributed fashion in runtime. This causes
event-triggered methods to have unpredictable overheads 23] making them
unsuitable for RTS. Moreover, aspect-oriented programming may impact the
timing and correctness of the target system and may interfere with certifia-
bility constraints.

In order to make RV suitable for RTS, Zhu et al. [31] proposed pre-
dictable monitoring which ensures temporal non-interference of the system
being monitored while ensuring temporal correctness of monitor itself. It
demands bound on detection latency for deviation from specified behaviors.
More recently, Navabpour et al. introduced Rithm [23] for RV on many-core
platforms using LTL 3-valued logic to specify properties. Rithm is based
on a time-triggered framework. Time-triggered frameworks guarantees pre-
dictable overhead since the monitor invocations are predictable. Further,
Rithm can use a GPU to improve the responsiveness of the monitors by par-
allel execution of monitors on accumulated traces. However, it may face a
trade-off between responsiveness and efficiency. Execution of parallel moni-
tors needs to have trace accumulated over a longer time to make it efficient,
compromising response time. If the same method is used for each event
occurrence, in real-time, for better response time, it will reduce efficiency
of parallel monitors. Furthermore, there is a significant overhead incurred
while transferring data between the host monitoring process on the CPU
and the monitoring threads on the GPU since the events are captured using
CPU. In comparison, self-monitoring [7], where monitoring code is directly
inserted in the application code, has a better response time, but with the
potential drawback of hampering the timing properties of the program being
monitored, as well as linking the behavior of the monitors to the behavior of
the monitored tasks. The main limitation of Rithm is its lack of notion of
time. It relies on the relative ordering of events but cannot specify timing
constraints on a sequence of events.

RuleR [5], RT-MaC [27], and Copilot [19] are examples of tools with
notion of time. RT-MaC is built specifically for applications written in C
language. RT-MaC is language specific and unsuitable for current genera-
tion commercial off the shelf systems where different parts of the same system
may be built using different programming languages. RuleR has a highly ex-
pressive monitoring language which models constraints as rules. Yet, RTS
properties may be difficult to model as rules, which makes RuleR hard to

comprehend, error-prone, and better suited for domain experts rather than
for industrial developers. RuleR suffers from unpredictable memory use in
runtime since multiple rules may be active at the same time causing an ex-
ponential number of active rules. Notably, Copilot is one of the RV tools
designed to handle ultra critical systems and uses Satisfiability Modulo The-
ories (SMT) based k-induction [19] to prove invariant properties of generated
monitors. Copilot relies on sampling rates to model time rather than having
notion of absolute time (specifying time bounds in time units). This may lead
to complete re-writing of specifications written in Copilot in case of changes
in sampling rate.

In general, due to the non-deterministic properties of timed automata
models, the tools with notion of time may have to keep track of multiple
possible states at each time instant. It was shown that, under such models,
the number of states that need to be tracked by the monitor may grow expo-
nentially [3]. Therefore the memory space and the computing time required
by those tools are hard to predict.

To specify monitoring constraints for an RTS, a language should allow
specification of event sequences and time constraints on sequence of events.
RMOR and MOP despite being simple and efficient do not allow specification
of time constraints as implicit costructs. The language should give enough
level of abstraction to specify constraints at a high level so that it can also
be used by usual software engineer in industry. The language should be
simple yet expressive. RuleR is one of the highly expressive languages, but
it is complex to understand and even more tedious to model a complex RTS
in it with unpredictable memory usage in runtime. Furthermore, the system
changes with time, and the properties that needs to be monitored in different
stages can be completely different. There should be methods to express
different properties that needs to be monitored according to such changes in
the system.

Chapter 3

Background

3.1 Properties

System requirements or system behaviors need to be expressed in some form
to check whether they are respected at runtime. System behaviors can be
specified in the form of properties. RTS have two types of properties to
be verified: functional and extra-functional. Functional properties are those
which are related to the result produced or the order of execution of events.
Examples are, a file read operation should be preceded by a file open op-
eration, a file open operation should eventually be succeeded by a file close
operation, a file close operation should not come between a file open op-
eration and a file read operation, or a file open operation should return a
positive value. All such properties can be encoded as regular expressions
with the corresponding alphabet being the events of interest (events in the
above examples are file read operation, file open operation, and file close
operation).

RTS needs the notion of time. Extra-functional properties are used to
bridge this gap. Extra-functional properties can be defined as everything
that does not relate to the result produced or the order of execution of
events. Examples are, a train gate should close in 10 milliseconds, RFID
read should not execute for more than 1 second, door open should execute
atleast 10 millisecond after RFID read, core temperature must remain under
60°C', or power consumption of a sensor should be under 5 watts. In this
work we limit ourselves to timing properties.

11

3.2 Monitoring Architecture

Nelissen et. al [24] proposed a runtime monitoring architecture for real-time
(concurrent) applications that enforces space and time partitioning between
the monitored application and the monitors checking its behavior. The archi-
tecture is similar to [11]. It limits the impact of the monitoring architecture
on the application, avoids propagation of fault from the application to the
monitors, (and vice-versa) and ensures bounded responsiveness.

Acts upon
;I ~Pushes
Events F’OPS/J\ \
S— _.D_> Event Buffer 1 Events [/ L
~ 1 ggers
> —> Handler
Event Buffer 2 /r

Event Buffer 3 : D Event writer

- i riggers
R —_— " . \d :omtor Jv_li> Handler Event reader
- .
- Event Buffer n — . TBon
Running Runmngil P
on on 4

Run-Time Environment

Figure 3.1: Monitoring architecture. Adapted from [2/]

Figure 3.1 shows a pictorial representation of the monitoring architecture.
Events from different tasks are written to different buffers. This ensures iso-
lation between monitored application and monitors avoiding shared memory
issues. Each monitor reads events from the buffers, allowing them to oper-
ate independently from other monitors and read only those events that are
relevant to each monitor. The architecture is made for RTS and relies on
the scheduling by real-time operating system for time partitioning. Memory
partitioning is ensured by running each monitor on its own address space.

3.3 Monitored Applications

The kind of RTS that we target with REVERT are the class of periodic or
sporadic task systems.

Definition 1 (Application) An application is a set of periodic or sporadic
tasks T = {m,...,n} wherer, = (p;, d;) withp;,d; € T (T is a time domain),
such that p; and d; are the period (or minimum inter-arrival time) and the
deadline of the task T;, respectively.

Each task 7; € T' generates events during their operation on the environ-
ment, and we denote such set by X(7;) and a particular event by ev;. The
set of all events that can occur during the application run-time is the union
of the events of its constituent tasks, which we denote by 3, defined as the
union of all the events produced by its tasks, that is, ¥ = X(m) U - - UX(7).

Events in Y denote the concrete events that occur in the monitored ap-
plication. To capture real-time properties, just the event is not sufficient.
For instance, if we are interested in verifying the duration of a job, we would
need the time of its start and the time when it terminated. Hence, we refer
to events as pairs £ = (ev,t) such that ev € ¥ and t € T, and define its
projections as event(§) = ev and time(§) = ¢.

Definition 2 (Trace) Let ¥ be the alphabet of observable events, and let T
be a time domain. A trace is a sequence p = (§1&y -+) such that for alli > 1
we have time(§;) < time(&;11).

Although traces are defined as potentially being infinite, monitors will
only analyze prefixes of these traces which are finite.

3.4 Timed Automata

Timed automata [3] is a finite state automaton with a set of asynchronous
clocks and a set of clock constraints. The clocks are asynchronous in the
sense that all the clocks active at any instant may not have the same value,
but clock ticks (value increment of all clocks) happens synchronously. A clock
valuation maps each clock in the set of clocks to a non-negative integer value.
Initial value of a clock in timed automaton is zero if nothing is explicitly
specified. Initial value of a clock can start from any value assigned from an

integer constant, a variable, an expression, or value of another clock variable.
A vertex in a timed automaton may be associated with a clock reset. An
edge in a timed automaton is associated with a clock constraint apart from
an event of the alphabet of the automaton. An edge of a timed automaton
can contain computations and clock reset that are executed if all the clock
constraints associated with that edge evaluates to true and current event
encountered is same as the event in that edge.

Definition 3 (Timed Automaton) A timed automaton A is a tuple

(@, q, 95, X, C, E, I), where Q is the set of vertices or states, gqo C @ is the
set of initial states, g C @ is the set of final states, ¥ is a nonempty finite
alphabet of events, C is a finite set of non-negative integer valued clocks,
E € Q x ®(C) x ¥ x Comp x 2° x Q is the set of edges or transitions,
I : Q — V(C) is a mapping that maps states on clock resets, ®(C) is
the set of clock constraints of the form c1 ® x (where c1 € C and x can be
another clock in C or any expression that evaluates to a positive integer and
O =<|>|<=|>=]=), V() is the set of clock resets of the form
cl :=x, and Comp 1is the set of all computations.

3.5 Timed Regular Expressions

Timed Regular Expressions (TRE) are regular expressions (RE) with the
notion of time. The expressive power of TRE is strictly less than timed
automata. TRE captures only a subclass of timed automata [1].

Definition 4 (Timed Regular Expression) Timed Regular Expression, «
1s recursively defined as follows

a == 0|1]ev]ag Vas|ag.as|a®|{(a)r

where ay and as are TRE, 0 denotes the empty language, 1 denotes the
language containing only the null word, ev denotes the language containing
the string with the single symbol ev, where ev € ¥ where X is the nonempty
finite alphabet of all events, I is a closed interval [a,b] with a,b € NT and
a < b, V7 is the logical or, ‘.7 1is the concatenation, %’ is the Kleene’s
star operator, and {«) is defined as the set of all strings that belong to the

language of o but where the duration of the string, that is, the total amount
that takes to consume the string according to the timestamps of the events is
a value that belongs to the interval I.

3.6 Derivatives

The notion of derivative of a regular expression was introduced in the 60’s
by Brzozowski [9] and have received much attention in the last decade by the
communities of program verification and formal language theory. Derivatives
provide an alternative method to the classic finite automata construction
methods. Pucella [20] extended derivatives for timed regular expressions.

Given a TRE « and a timestamped event ¢ = (ev,t), informally the
derivation process will return a new TRE that removes the event ev from
the head of all traces that are members of the language denoted by L(«),
where L(«) denotes the language of timed traces. This method is used to
check membership of a timed word in the language of a given TRE. We
now provide the formal definition of derivative, but first we need to provide
a syntactic function that is able to decide whether or not the empty trace
belongs to the language of the expression given to be derived.

Definition 5 (Empty trace membership) Let ¥ be a non-empty finite
set of events, and let o be a TRE defined over . The syntactic emptiness
function is inductively defined as follows:

E(0) = false E(1) = true

E(ev) = false,ev € ¥ E(aV p) = E(a)V E(S)

E({a);) = E(a) E(a*) = true

E(a- f) = E(a) A E(B)
Definition 6 (Derivative) Let ¥ be a non-empty finite set of events, let o
be an TRE, and let & = (ev,t) be a timed symbol with ev € ¥ and t € T,

where T is a time domain. The derivative of a with respect to &, denoted as
De(v), is inductively defined as follows:

De(ar V az) = De(ar) V De(a) De(1) =0

De(a*) = De(a) - a* De(0) = 0
| (De(@)) 1=, if I —t#0; L dfa=ev;
Del{a)r) = {0, otherwise. Dela) = {0, otherwise.

De(ov - az) = De(on) - az V E(an) - De(as)

Chapter 4

The REVERT Framework

The REVERT framework proposes an end to end solution for RV from a new
specification language to a novel monitor generation method. The framework
is a combination of the REVERT specification language, monitor definition,
and the generation method used to generate monitors from specifications.

4.1 REVERT Specification Language

We define the REVERT monitor specification language for building monitor-
based safety nets for real-time applications. REVERT was designed with
usability and easiness of specification in mind, with the industry practitioners
of the real-time embedded computing sectors as special targets. Although
the underlying mechanisms of the framework are based on rigorous formal
models, the details of these models is reduced to the minimum in the REVERT
syntax, so that it can be quickly adopted by users without deep knowledge
in formal methods.

REVERT is a combination of state machine, extended regular expressions,
boolean expressions, and timing constraints. REVERT relies on external
events to reason about traces. Properties on execution patterns or execution
order of events, that must be enforced during the application run-time, are
specified using extended regular expressions. To express timing constraints
on a sequence of events we use three high-level operators: time, duration
and jitter (refer to section 4.2.2 for a formal definition). These operators
are then automatically converted to finite timed automata. The syntactic
structure of a monitor specification in REVERT is presented below:

17

use " fi.ev"

use "f,.ev"

monitor m; {
observe { evy, ..., ey }
variables {v; : type, ..., v; : type }
jobs{
7
start: {evy,..., ev;}
suspend: {evp,. .., €v,}
resume: {ev,,..., ev,}
complete: {evy,. .., ev,}

2

i}
}

nodes { ny, ..., ny }
initial { ng }

node ny { init; prop; trans, }

node ny, { inity propy transy }

Listing 4.1: Structure of a monitor specification in REVERT

4.1.1 Monitor Data

REVERT relies on external events to reason about traces. These external
events are imported into the scope of a REVERT specification using the use
statement. The name after the keyword use refers to external files that con-
tain the real event identifiers. The use statement can also be used to specify
the external procedures that can be invoked during the monitor execution to
drive the monitored system from unsafe to safe state.

All the events in event files listed using the use statement will not be
relevant to each monitor. The observe statement specifies the events that
are monitored by the monitor m;, out of the complete set of events. This

helps in reducing the size of monitor automaton generated (refer to section
4.3) from the specification. Listing 4.2 shows an example observe statement.

H observe {arrT, startT, suspT, blockedT ,resumeT, unblockedT', complT }

Listing 4.2: Example observe statement

4.1.2 Monitor Environment

The sections variables, jobs, nodes, and initial outlines the environment
of the monitor.

The variables statement defines variables local to the monitor m;. vy,
..., v; are names of variables and type defines what kind of values a variable
can take (either integer, boolean or real). Typically variables can be used
for storing intermediate results that has to be carried among different nodes
(defined later in this section), as flags for indicating current state of the
monitor, or as arguments for external procedure calls.

The jobs statement declares the set of jobs associated with different tasks.
Each job is characterized by a starting or release event and a completion
event, between which its execution may be suspended (for instance, due
to preemption, unavailability of a shared resource or a self-suspension) and
resumed. Each job specification is defined by the set of events associated with
its lifecycle from its release to its completion. REVERT defines a job using
the following four sets of events; start, suspend, resume and complete, which
contain events related to the release, suspension, resumption, and completion
of the job, respectively. Listing 4.3 shows an example job specification
jobs{

jobi{

start: {startT}

suspend: {suspT, blockedT}
resume: {resumel’, unblockedT'}
complete: {complT'}

}

Listing 4.3: Example for a job in REVERT specification

At a high-level, the monitor is modeled as a finite state machine (FSM).
We use the term node to denote the states of the state machine. The nodes

statement declares identifiers of all the nodes of the monitor. They model
the different states that can be reached by the finite state machine, which
determine how the properties to be monitored evolve with the system state.
These nodes can be seen as different specifications that must be monitored in
different modes of execution of the system, for example, taxi, takeoff, cruise,
and landing modes of a plane. The node in which the monitor starts its
execution is declared using the initial statement.

4.1.3 Nodes

The structure of the specification language is built on the key observation
that RTS may be dynamic, adapting to the changes in the environment, their
workload, and the type of operations that must be performed at a given time
or reacting to detected anomalies. Consequently, the properties that must
be verified by the monitors may change over time, and it should be possible
to specify different modes of operations that are activated depending on
some constraints. In the monitor specification as presented in Listing 4.1,
different nodes can be seen as different modes of execution. Transitions can
be used to specify mode changes or the activation of corrective measures in
case of a specification violation. The definition of a corrective action and the
mechanism for its execution are not in the scope of this work.

The semantic model of a REVERT specification is an FSM with transi-
tions guarded by regular expressions and logical constraints and the three
special operators - time, duration and jitter (discussed in detail later in
this section). Each state, which we call node, corresponds to one mode of
operation of the monitor. A different set of constraints is associated to each
node. The transitions between the nodes are guarded by expressions based
on the success or failure of the constraints defined in the active node. Some
of these transitions may have associated operations for modifying internal
variables of the monitor, or calling external procedures.

The behavior of the monitor for each node n; is specified in a node block.
A node block n; includes some initialization code init;, the set of properties
that need to be monitored prop;, and the set of transitions trans; from the
current node n; to any other node defined in the monitor. The transitions
between the nodes are guarded by guards based on the success or failure of
the properties monitored in that node.

Computational code reacting to some specific properties can be added to
the specification. The init block (as in Listing 4.4, where reset AllSystemFlags();

is an external procedure call) declares code executed when transitioning to
a node, while trans provides means to declare code when transitioning out of
the node (refer to subsection 4.1.4).
init {
reset AllSystemFlags();

}

Listing 4.4: Example init block in REVERT specification

4.1.4 Transitions and Transition Guard Expressions

As a main observation, we realized that the number of timing properties
(extra-functional properties) that must be verifiable are rather limited and
can all be expressed with a combination of the three operators time, duration
and jitter, which return the time taken by a sequence of events, the exe-
cution time of a job, and the jitter on a timing property, respectively. The
time operator may, for instance, be used to verify that a deadline, a period or
a minimum separation time between two events is respected. The duration
operator is useful to check that the execution time of a job does not exceed its
budget or estimated worst-case execution time, or to ensure that the interfer-
ence suffered by one task due to other tasks is bounded. Finally, the jitter
operator may be used to bound the variation on any timing property. It
can be argued that similar properties can be encoded in existing frameworks
such as RULER and RT-MaC. However, they are not all intrinsic constructs
of the language, which renders their specification difficult and error-prone to
inexperienced users.

The properties (both functional and extra-functional) are expressed in
the prop block syntactically specified as constraints, inside node. Listing
4.5 shows an example constraints section. cl, ..., ¢4 are identifiers of prop-
erties. Functional properties are expressed in the form of extended regular
expressions (discussed in detail in the next section) with an [ERE] suffix
after the identifier for that property. Extra-functional (timing) properties
are expressed using the corresponding keyword after the identifier for that
property, as specified in the example. These property identifiers are used
later in the transition to specify guards.

constraints {
cl: time(blockedT resumeT)) < 2;

¢2: duration(Jobl) < 10;
c3: jitter(time(startT compltT)) < 3
CA[ERE|: startT _ complT;

}

Listing 4.5: Example constraint block in REVERT specification

Transitions are defined node-wise. Transitions are declared in a block
transitions { t; { b1 } ...ty { by } } where each t; is either of the form
success(¢;) — N; or failure(c¢;) — N;, and b; is a block of executable code
that is called if the transition t; is activated. The statement success(c¢;)
means that the transition from the current node to the node N; will be acti-
vated when the constraint expressed by ¢; is valid, whereas failure(c;) means
that the transition to N; is activated when the constraint denoted by ¢; fails.
The identifier ¢;, belongs to the properties associated with the current node,
declared in constraints section.

The specification language does not explicitly impose but expects the
guards on the transitions to be mutually exclusive. If some non-determinism
exists in the specification due to non-mutually exclusive node transitions, it
is resolved during the monitor generation using implicit priorities as in the
order of their declaration. The guards on the transitions are evaluated in-
order they appear in transitions and only the transition with the first guard
to be true is activated, thereby ensuring that there is only one active node
at any time.

4.2 Formal Monitor Specification

4.2.1 Modeling Monitors

Let X be the set of all observable events in the application. The monitoring
model considers a finite set of monitors M = {my,...,my}, where each
monitor m; € M is a tuple (P, E;, A;) such that E; C ¥ specifies the subset
of events of interest for the monitor m;, P; is a collection of properties over FE;,
and A; is a structure (N, v;) such that NV; is the set of states that the monitor
m; can reach, and v; : N; — G; — N; is a transition function dependent on a
transition guard that is a member of the set of guarded expressions G;. Each
guarded expression is expressed as the success or the failure of one property
in P;. Properties in P; can be expressed as logical expressions and extended

reqular expressions (ERE) or extended timed regular expressions inductively
defined over E;.

4.2.2 Modeling Properties
Functional Properties

Functional properties are expressed using ERE which extends the traditional
regular expression with an [operator expressed as in the specification
language.

Formally, FRE used in REVERT are defined as follows. Let > be a
nonempty finite set of alphabets. The set of Extended Regular Expressions
is inductively defined by the following BNF grammar:

a == 0|llee¥|aValaala™||Da

where 0 is the empty set, 1 is the set containing the null string, ‘v’ is the
logical or, ‘.’ is the concatenation, ‘x’ is the Kleene’s star operator, and [
is a newly introduced operator. The introduction of the operator [is based
on the observation that regular expressions may become extremely complex
when (i) the number of monitored event increases but (ii) some properties
refer only to a small subset of those events. For instance, specifying that
a monitor should shift from one mode to another after beginning and com-
pletion of a task with any sequence of events happening in between would
require to express all possible sequence of events that do not comprise the
completion event between the start and completion of the task. However, us-
ing the [J operator, the same property can simply be written as start [J comp
(specified as start _ comp in the specification). [J operator is formally de-
fined as follows: considering that £(a) C ¥* is the language denoted by the
event expression «, the language of £(«) is defined as the set of all words
w = wywy such that we € L(«), and w; does not contain any word in the
language denoted by «. In terms of regular expression this will translate
to Ja =~ a . a Note that [J acts as a way more convenient and handy
operator than complement operator in regular expression. So we decided to
drop complement operator from the specification language.

Except for the newly introduced operator [1«, the syntax of ERE is the
same as of classic regular expressions, as well as their semantic interpretation
in the domain of regular languages.

Extra-Functional Properties

Extra-functional properties are expressed as logical expressions that extend
the traditional propositional logic with the time-related predicates

time(a) ® val, duration(j;) ® val and jitter(oc) ® val, where « is a Regular
Expression, j; is the identifier of a job (see section 4.1), o is either a time
or a duration predicate, ® € {<,<,=,>,>}, and val is a natural num-
ber. Assuming that the function A returns the timestamp associated with
any event in Y, the semantics of the previous three predicates are defined
as follows: if first and last are the events that denote the start and the
end of «, respectively, then time(a) ® val holds iff (A(last) - A(first)) ®
val; similarly, let start, suspg, resip, and comp be the events that denote
the start, the k™" suspension, the k™ resumption, and the completion of the
job j;, then duration(j;) ® val holds iff (A(comp) - A(start) - >, (Alres,)
—A(susp,))) © val; finally for the case of jitter(s) ® val, the predicate
holds iff (max;(0) — min,(c)) ® val where max; and min, return the maxi-
mum and minimum value of ¢ until time ¢. Formally, TRE (refer to Chapter
3 for formal definition) is used in REVERT to model these extra functional
properties.

To demonstrate the ease and simplicity of REVERT specification language,
we compare a specification written in REVERT with a specification written
in one of the existing specification language: RuleR (refer to Chapter 2).
For example “whenever property a occurs both now and in the immediate
previous state then b must occur as a later observed property” [0] is expressed
in RuleR as below.

ro: —e= ro.T1.73 ria—es ro ra:
ry:a.re —e= b | =b.ry ry: —e= b | =bry

The same property is specified in REVERT specification language as: (a.a) b

4.3 Monitor Generation

In order to generate the monitor that will be running beside the application,
we transform the specification to a complete deterministic finite automaton
with the notion of time. Note that the automaton generation occurs before
run-time and the automaton has a maximum of one transition per event

occurrence. This enables to generate a monitor with time and space guar-
antees by avoiding the potential blowup of states in run-time, irrespective of
the size and complexity of autmaton from which the monitor is generated.
The determinism and finiteness of the automaton ensures that the generated
monitor will be tracking one single state at any time. To the best of our
knowledge no other RV tool with the notion of time gives state-space and
time guarantees.
The generation of monitors is achieved through the following steps:

1. Generating an automaton for each transition;

2. Generating an automaton for each node n; by applying a product op-
eration on the automata obtained for each transition from n; to any
other node. As mentioned in section 4.1, implicit priority is used to
resolve potential conflicts on the final state;

3. Generating the monitor automaton by concatenating the automata of
all nodes. The monitor automaton is then converted to XML format
which can be used to produce code.

4.3.1 Transition Automaton Generation
Automaton Generation for Functional Properties

Functional properties are expressed in the form of ERE. The [J operator (
in specification language) is converted to the equivalent regular expression
with complement operator. Standard automaton construction algorithms are
used to build complete deterministic automata from the regular expression.
Non-deterministic finite automaton (NFA) is built from regular expression
using Thompson’s construction [28]. Subset construction algorithm [28] is
employed to create deterministic finite automaton from NFA. Hopcroft’s al-
gorithm [17] is used for minimization of deterministic finite automaton. The
final state or sink of the automaton is made the final state of property the
transition based on success or failure specified in the transition, respectively.

Automaton Generation for Extra-Functional Properties

Extra-functional properties are expressed as a logical expression on the time
taken for a property denoted as regular expression, the duration of a job,

or the jitter of a time property. For transitions based on time, the tradi-
tional automaton construction methods were incapable of generating com-
plete deterministic finite timed automaton from TRE that corresponds time.
We extended the notion of derivative (refer to Chapter 3) with a notion of
pseudo-integral.

Given an TRE « and a timestamped event & = (ev;, t;), informally the
derivation process will return a new TRE that removes the event ev; from the
head of all traces that are members of the language denoted by «; pseudo-
integration process will give a TRE as result which will accept the language
formed by appending event ev; to the language of a. By applying these meth-
ods finitely many times with respect to all events of interest, the result will
be a finite automaton that recognizes all the words of the original expression
a.

Definition 7 (Pseudo Integral) Let Y be a non-empty finite set of events,
let a be a TRE, and let £ = (ev,t) be a timed symbol with ev € ¥ and t € T,
where T is a time domain. The integral of o with respect to &, denoted as
Te(ov), is inductively defined as follows:

15(0) =0 If(l) = ev Ig(al . Oég) = (07 'Ig(Oég)
Q, if a = ev™;

Ze(a) = { . Le(on V az) = Ie(on) V Ie(o)
«a-ev, otherwise.

Ie(aF) = o - Le(a
0, otherwise. e(a”) (@)

) {<Ig(a>>1_t, if 1 —t#0;

We propose Algorithm 1 to build a complete deterministic finite timed
automata from the logical expression time(«).

The transformation of a logical expression duration or jitter in a timed
automaton, is implemented using predefined templates. For example, Figure
4.1 shows failure(duration(job;) < 10), where job; is defined in Listing 4.3
and the list of observed events are defined in Listing 4.2. Figure 4.2 shows
failure(jitter(time(startT compltT)) < 3) defined on the same set of events.

Algorithm 1: Algorithm to generate timed automaton from TRE ex-
pressed using time operator

© 0N O A WN

NN N R R R R R E R R
N H O © 00 0 A WNKO

23
24
25
26
27
28
29
30
31

32
33
34
35

every state state; is associated with two variables REex; and RFEel;;
add start state (stateg) to the set waiting _states;
reset clock variable main_ clock;
RFEexo = o
REFEely := 0;
for all state; € waiting_states do
for all £ € ¥ do
if D¢(REex;) # 0 then
if dstate; € waiting_states s. t. D¢(REex;) € REex; then
| REel; := REel; vV I (REel;);
else if D¢(REex;) = 1 then
create a new final state state;;
REex; := 1;
REel; := I¢(REel;);
else
add a new state state; to waiting states;
REex; := D¢(REex;) ;
REelj := I¢(REel;);
end
create a transition from state; to state;;
else
LST := longest suffix of Z¢(REel;) matched with REel; for any state
state; € waiting _states;
if LSI is empty then
‘ create a transition from state; to stateo;
else if length of LSI = 1 then
‘ create a self-loop on state; with main_ clock reset;
else
add an auxiliary clock aux _clk;;
REpre := longest prefix of Z; (RFEel;) before LSI;
reset aux _clk; at stater, € waiting states s. t. REpre = REely;
create a transition from state; to state; with main_ clock set to value of
aux _clk;;
end

end

end
end

unblockedT; clk < 10,

complT, unblockedT, blockedT, resumeT’; clk < 10,
T e T arrTclk ilO,
resumeT, arrT, susp complT; clk<10 startT;clk < 10

startT;clk := 0

—p»| CMPLTD

complT; clk >= 10,
unblockedT; clk >= 10,
blockedT; clk >= 10,
blockedT, arrT, suspT Zii’%‘m:‘lz;gl:k 1>0: 10,
suspT; clk >= lb,
startT;clk >= 10

startT, complT

Figure 4.1: FSM of the expression failure(duration(j;)<10)

complT, unblockedT, blockedT, startT, unblockedT, blockedT,
resumeT, arrT, suspT resumeT, arrT, suspT complT, unblockedT, blockedT,

clk :=0 resumeT, arrT, suspT

startT;clk := 0

complT; Var := clk

STRT

startT;clk := 0

complT; Var — clk <=8;clk < Var?Var := clk

unblockedT; Var — clk <= 3,
blockedT; Var — clk <= 3,
resumeT; Var — clk <= 3,
arrT; Var — clk <=3, ,
suspT; Var — clk <=

complT; Var — clk > 3, >
unblockedT; Var — clk > 3,
blockedT; Var — clk > 3,
resumeT; Var — clk > 3,
arrT; Var — clk > 3

suspT; Var — clk > 3,

Figure 4.2: FSM of the expression failure(jitter(time(startT compltT))< 3)

4.3.2 Node Automaton Generation

The node automaton is generated using product construction [28] for finite
state automata among all the transition automata generated for a node.
Since all the transition automata have a single event associated with every
edge, the projection of them to finite state machine with only events (without
notion of time), will give a complete deterministic finite automaton. We build

the product automaton of them rather than actual transition automata.

Final states of product automaton are indicated with destination nodes of
the corresponding transition. If the same state in product automaton is final
state for more than one transition, then destination node for the transition
which is first in-order in the specification, is considered. All the outgoing
edges from all the final states of resulting product automaton is removed.
The resulting unreachable portion of the node automaton is removed as the
next step. The edges in product automaton are then replaced with the cor-
responding edges in the individual transition automata to get resultant node
automaton.

4.3.3 Monitor Automaton Generation

Monitor automaton is built by concatenating all the node automata begin-
ning from the node which is designated as initial in the specification.
The standard concatenation procedure for concatenating finite state au-
tomata [28] is employed in this stage. The destination automaton is found
from the destination node denotation done as part of the last step of node
automaton generation. There will not be any conflict in this stage since, all
the outgoing edges from final states of node automata are eliminated in node
automata generation process.

Chapter 5

Implementation

The REVERT framework is built using java programming language. It takes
REVERT specifications as input and automatically generates monitors under
the form of complete timed deterministic finite automata. This automaton
checks that the traces monitored during the system execution respect spec-
ifications. The monitor automaton generated is saved in an xml format. A
graphical representation of the monitor automaton is also generated.

5.1 The Tool Chain

The REVERT framework is built as a tool chain as shown in Figure 5.1a. The
parser is built using Antlr 4.0 [25]. The parser checks for syntax errors and
builds an abstract syntax tree. A symbol table like structure, intermediate
data structure, is built from the abstract syntax tree. Intermediate data
structure provides a loose coupling between the parsing and the automaton
generation phase.

The input to the next phase in the tool chain, automaton generator, is
the intermediate data structure. The automaton generation builds a com-
plete deterministic timed automaton from the intermediate data structure.
The dedicated packages that deal transformations in each step of the automa-
ton generation are, transition automata generator, node automata generator,
and monitor automata generator (refer to Figure 5.1b). Transition automata
generator consists of independent methods to generate automaton for time,
duration and jitter operators and ERE. Node automata generator takes
these automata and names of nodes from the intermediate datastructure and

30

builds node automata. Node automata acts as input to monitor automata
generator along with monitor name and other details from intermediate data
structure. The monitor automaton generator builds the final monitor au-
tomaton, which forms input to the XML converter. XML converter converts
monitor to an XML format so that this architecture can be seamlessly inte-
grated as a part of other monitor integration tools.

The xml monitor automaton can be used as is to verify the correctness
of the traces. The trace or log can be fed to the monitor automaton and
can check whether the log indicates a correct behavior according to the given
specification. Also the xml format gives the flexibility to integrate the mon-
itor with the system in the way desired by the implementer.

The xml automaton output generated by the tool chain from the example
specification in Chapter 6 is listed in Appendix A.

Monitor
Specification

Monitor
Specification

Intermediate
Datastructure

Timed
Automaton

Automaton in
XML format

Monitor automaton in XML format

(a) Tool chain

(b) Architecture diagram

Figure 5.1: REVERT implementation

Chapter 6

Example

use "T_Events.ev"; c2: duration(Jobl) < 10;
use "Ext_Procs.h"; }
transitions {
monitor MyMon { fail_blocked_time: failure(cl) —
RecoveryMode {
observe { arrT, startT, suspT, blockedT, failureReason := 1;
resumeT, unblockedT, complT } recover_from_blocking();
}
variables { failureReason : 5} fail_duration: failure(c2) — RecoveryMode {
failureReason := 2;
jobs { recover_from_duration();
Job1 { }
start: {startT} }
suspend: {suspT, blockedT} }
resume: {resumeT, unblockedT} node RecoveryMode {
complete: {complT} init{
} initializeSystemRecovery();
} }
constraints {
nodes { NormalMode, RecoveryMode } c1[ERE[: _ complT;

initial { NormalMode }
transitions {

node NormalMode { job_completion: success(cl) —
init{ NormalMode;
resetAllSystemFlags(); }
} }
constraints { }

cl: time(blockedT resumeT)) < 2;

Figure 6.1: Example of the specification of a monitor with REVERT.

As an example, we present in Figure 6.1, a specification written with
REVERT that declares a monitor verifying:

i Blocking time of a job is upper bounded

33

ii The execution time of the job never exceeds its estimated worst-case
execution time.

The monitor has two modes of operation that are declared as two different
nodes, namely, the NormalMode which is also defined as the initial node, and
the RecoveryMode which gets activated when an error is detected.

Monitor execution is started with a call to the external function speci-
fied in the node NormalMode. In the node NormalMode, the monitor verifies
two different properties: c1 and c2. The constraint c1 bounds the maximum
blocking time, and c2 limits the maximum amount of time, Job1 can execute
on the processor until its completion. If either of these constraints fail, the
monitor transits to the node RecoveryMode. Depending on the activated tran-
sition, a different external procedure is called to attempt recovery from the
fault, after which a complete system recovery is attempted by execution of
the external procedure, initializeSystemRecovery, specified in the init sec-
tion of the node RecoveryMode. The monitor returns to the node NormalMode
as soon as the task under analysis completes its execution, i.e., when the
regular expression (_ complT) is detected.

Note that the monitor generated from this simple specification is a rather
complex FSM with clocks which is listed in the Appendix A. During the
monitor generation process, the nodes and transitions specified with REVERT
are expanded to build a final FSM that checks the specified properties.

Chapter 7

Conclusion and Future Work

7.1 Conclusion and Future Work

We presented REVERT, a specification language for performing RV on RTS.
We proposed a novel method to generate complete deterministic timed au-
tomata from the specification. The proposed method avoids blowup in the
number of states at run-time suffered by the other state-of-the-art tools. We
implemented the REVERT framework as a tool-chain that generates monitors
from given specifications.

A future direction of this work is formally proving the correctness of the
presented algorithm, and extending it to support the [J operator. Bounding
the time and space complexity of the generated monitors would be another
future work. An immediate next step on the implementation side is build-
ing a tool for automatic integration of generated monitors with monitored
application.

7.2 Limitation

We limit our work to timing and functional properties. So REVERT specifi-
cation language cannot express other extra-functional properties as intrinsic
language constructs. For instance, REVERT specification language does not
have intrinsic language constructs to express a constraint on power consump-
tion or a constraint on temperature, similar to time, duration, and jitter
operators for expressing time constraints. Due to inherent non-deterministic
properties of the underlying model: timed automata, we do not allow com-

35

plement operator inside time operator to ensure determinism. So expressing

time bounds on top of functional properties that use [J operator will be
difficult.

Bibliography

1]

2]

3]

4]

[5]

[6]

7]

18]

19]

Homa Alemzadeh, Ravishankar K Iyer, Zbigniew Kalbarczyk, and Jai
Raman. Analysis of safety-critical computer failures in medical devices.
IEEE Security € Privacy, 11(4):14-26, 2013.

Rajeev Alur. Techniques for automatic verification of real-time systems.
PhD thesis, stanford university, 1991.

Rajeev Alur and David L Dill. A theory of timed automata. Theoretical
computer science, 126(2):183-235, 1994.

Eugene Asarin, Paul Caspi, and Oded Maler. Timed regular expressions.
Journal of the ACM, 49(2):172-206, 2002.

Howard Barringer, Klaus Havelund, David Rydeheard, and Alex Groce.
Runtime verification. chapter Rule Systems for Runtime Verification: A
Short Tutorial, pages 1-24. Springer, 2009.

Howard Barringer, David Rydeheard, and Klaus Havelund. Rule systems
for run-time monitoring: from eagle to ruler. In International Workshop
on Runtime Verification, pages 111-125. Springer, 2007.

Borzoo Bonakdarpour, Johnson J Thomas, and Sebastian Fischmeister.
Time-triggered program self-monitoring. In 2012 IEEE International
Conference on Embedded and Real-Time Computing Systems and Ap-
plications, pages 260-269. IEEE, 2012.

Manfred Broy, Bengt Jonsson, Joost-Pieter Katoen, Martin Leucker,
and Alexander Pretschner. Model-based testing of reactive systems: ad-
vanced lectures, volume 3472. Springer, 2005.

Janusz A Brzozowski. Derivatives of regular expressions. Journal of the
ACM (JACM), 11(4):481-494, 1964.

37

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

Feng Chen and Grigore Rosu. Mop: An efficient and generic runtime ver-
ification framework. In Proceedings of the 22Nd Annual ACM SIGPLAN
Conference on Object-oriented Programming Systems and Applications,

OOPSLA, pages 569-588, New York, NY, USA, 2007. ACM.

Sarah E Chodrow, Farnam Jahanian, and Marc Donner. Run-time mon-

itoring of real-time systems. In Real-Time Systems Symposium, 1991.
Proceedings., Twelfth, pages 74-83. IEEE, 1991.

Edmund M Clarke, Orna Grumberg, and Doron Peled. Model checking.
MIT press, 1999.

Alain Deutsch. Static verification of dynamic properties. PolySpace
White Paper, page 45, 2003.

Francesca M Favaro, David W Jackson, Joseph H Saleh, and Dimitri N
Mavris. Software contributions to aircraft adverse events: Case stud-
ies and analyses of recurrent accident patterns and failure mechanisms.
Reliability Engineering € System Safety, 113:131-142, 2013.

Veronica L. Foreman, Francesca M Favaro, and Joseph H Saleh. Analysis
of software contributions to military aviation and drone mishaps. In 2014
Reliability and Maintainability Symposium, pages 1-6. IEEE, 2014.

Klaus Havelund. Runtime verification of ¢ programs. In Proceed-
ings of the 20th IFIP TC 6/WG 6.1 International Conference on Test-
g of Software and Communicating Systems: Sth International Work-
shop, TestCom 08 / FATES ’08, pages 722, Berlin, Heidelberg, 2008.
Springer-Verlag.

John Hopcroft. An n log n algorithm for minimizing states in a finite
automaton. Technical report, DTIC Document, 1971.

Andrew Kornecki and Janusz Zalewski. Software certification for safety-
critical systems: A status report. In Computer Science and Informa-
tion Technology, 2008. IMCSIT 2008. International Multiconference on,
pages 665-672. IEEE, 2008.

Jonathan Laurent, Alwyn Goodloe, and Lee Pike. Assuring the
guardians. In Runtime Verification, pages 87-101. Springer, 2015.

[20]

[21]
22]

23]

[24]

[25]

[26]

27]

28]

[29]

[30]

Martin Leucker and Christian Schallhart. A brief account of runtime
verification. The Journal of Logic and Algebraic Programming, 78(5):293
- 303, 2009.

Fan Liu, Ajit Narayanan, and Quan Bai. Real-time systems. 2000.

Glenford J Myers, Corey Sandler, and Tom Badgett. The art of software
testing. John Wiley & Sons, 2011.

Samaneh Navabpour, Yogi Joshi, Wallace Wu, Shay Berkovich, Ramy
Medhat, Borzoo Bonakdarpour, and Sebastian Fischmeister. Rithm: a
tool for enabling time-triggered runtime verification for ¢ programs. In
Proceedings of the 2013 9th Joint Meeting on Foundations of Software
Engineering, pages 603-606. ACM, 2013.

Geoffrey Nelissen, David Pereira, and Luis Miguel Pinho. A novel run-
time monitoring architecture for safe and efficient inline monitoring. In
Ada-FEurope 2015. Springer, 2015.

Terence Parr. The definitive ANTLR / reference. Pragmatic Bookshelf,
2013.

Riccardo Pucella. On equivalences for a class of timed regular expres-
sions. Electronic Notes in Theoretical Computer Science, 106:315-333,
2004.

Usa Sammapun, Insup Lee, and Oleg Sokolsky. RT-MaC: Runtime mon-
itoring and checking of quantitative and probabilistic properties. In
RTCSA 2005, pages 147-153. IEEE Computer Society, 2005.

Michael Sipser. Introduction to the Theory of Computation, volume 2.
Thomson Course Technology Boston, 2006.

Stavros Tripakis. Fault diagnosis for timed automata. In International
Symposium on Formal Techniques in Real-Time and Fault-Tolerant Sys-
tems, pages 205-221. Springer, 2002.

W Eric Wong, Vidroha Debroy, and Andrew Restrepo. The role of
software in recent catastrophic accidents. IEEE Reliability Society 2009
Annual Technology Report, 2009.

[31] Haitao Zhu, Matthew B Dwyer, and Steve Goddard. Predictable run-
time monitoring. In 2009 21st Euromicro Conference on Real-Time
Systems, pages 173-183. IEEE, 2009.

Appendix A

Example Monitor Output

Listing A.1: xml file generated by REVERT framework for the specification
in Figure 6.1

1 <?xml version="1.0" encoding="UTF-8"7>
2 <automaton name= "MyMon">

3 <event files list of files= "T Events.ev"/> <l— Set of states of
the monitor —>

4 <states>

5 <state name="MyMonNormalMode2" />

6 <state name="MyMonNormalMode5" />

7 <state name="RecoveryModecljob completionl" />

8 <state name="MyMonNormalMode6" />

9 <state name="MyMonNormalMode0" />

10 <state name="MyMonNormalModel" />

11 </states>

12 <!— Set of events wused in the monitor —>

13 <events>

14 <event name="complT" />

15 <event name="unblockedT" />

16 <event name="blockedT" />

17 <event name="resumeT" />

18 <event name="arrT"/>

19 <event name="suspT"/>

20 <event name="startT"/>

21 </events>

22 <!— Set of clocks used by the monitor —>

23 <clocks>

24 <clock name="MyMonNormalModec2fail durationFclk" />

25 <clock name="MyMonNormalModeclfail blocked timeclk0" />

26 </clocks>

27 <!— Set of initial computations —>

28 <initial computations>

29 <function call="resetAllSystemFlags();" from="Ext Procs.h"/>

30 </initial computations>

31 <!— Transitions —>

32 <transitions>

33 <transition src="MyMonNormalMode0" dst="MyMonNormalMode0">

41

34
35
36
37
38

39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

60
61
62
63
64
65
66
67
68

69
70
71
72
73
74
75
76
77
78
79
80

81
82
83
84

85

<guard>
<event name="resumeT" />
</guard>
</transition>
<transition src="MyMonNormalMode6" dst="RecoveryModecljob completionl

||>
<guard>
<event name="resumeT" />
<clocks>
<clock name="MyMonNormalModeclfail blocked timeclk0">
<condition type>"gt'"</condition type>
<value>"2"</value>
</clock>
</clocks>
</guard>
<actions>
<clocks>
<clock name="MyMonNormalModec2fail durationFclk">
<value>"MyMonNormalModec2fail durationFvar'"</value>
</clock>
</clocks>
<computations>
<function call="recover from jitter();" from="Ext Procs.h"/>
<variable name="failureReason">
<expression>"[1]"</expression>
</variable>
<function call="initializeSystemRecovery ();" from="Ext Procs
.h" />
</computations>

</actions>
</transition>
<transition src="MyMonNormalMode2" dst="MyMonNormalMode0">
<guard>
<event name="unblockedT" />
</guard>
</transition>
<transition src="MyMonNormalModel" dst="RecoveryModecljob completionl
l|>
<guard>
<event name="blockedT" />
<clocks>
<clock name="MyMonNormalModec2fail durationFclk">
<condition type>"gt'"</condition type>
<value>"10"</value>
</clock>
</clocks>
</guard>
<actions>
<computations>
<function call="recover_ from_duration();
/>
<variable name="failureReason">
<expression>"[2]|"</expression>
</variable>
<function call="initializeSystemRecovery ();
.h" />
</computations>

" from="Ext Procs.h"

" from="Ext Procs

86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101

102
103
104

106
107
108
109
110
111
112
113
114
115
116
117
118
119

120
121
122
123
124

125
126
127
128
129

131
132
133
134

135
136
137

</actions>
</transition>
<transition src="MyMonNormalModel" dst="MyMonNormalMode5">
<guard>
<event name="suspT"/>
<clocks>
<clock name="MyMonNormalModec2fail durationFclk">
<condition type>"leq'"</condition type>
<value>"10"</value>
</clock>
</clocks>
</guard>
<actions>
<computations>
<variable name="MyMonNormalModec2fail durationFvar">
<expression>"|[MyMonNormalModec2fail durationFclk]"</
expression>
</variable>
</computations>
</actions>
</transition>
<transition src="MyMonNormalModel" dst="MyMonNormalMode6">
<guard>
<event name="blockedT" />
<clocks>
<clock name="MyMonNormalModec2fail durationFclk">
<condition type>"leq'"</condition type>
<value>"10"</value>
</clock>
</clocks>
</guard>
<actions>
<computations>
<variable name="MyMonNormalModec2fail durationFvar">
<expression>"|[MyMonNormalModec2fail durationFclk] "</
expression>
</variable>
</computations>
</actions>
</transition>
<transition src="RecoveryModecljob completionl" dst="
RecoveryModecljob completionl">
<guard>
<event name="unblockedT" />
</guard>
</transition>
<transition src="RecoveryModecljob completionl" dst="
RecoveryModecljob completionl">
<guard>
<event name="blockedT" />
</guard>
</transition>
<transition src="RecoveryModecljob completionl" dst="
RecoveryModecljob completionl">
<guard>
<event name="resumeT" />
</guard>

138
139

140
141
142
143
144

145
146
147
148
149

150
151
152
153
154

155
156
157
158
159
160
161
162
163
164
165
166

168
169
170

171
172

174

175
176
177
178

180
181
182
183
184
185
186

</transition>
<transition src="RecoveryModecljob completionl" dst="
RecoveryModecljob completionl">
<guard>
<event name="arrT"/>
</guard>
</transition>
<transition src="RecoveryModecljob completionl" dst="
RecoveryModecljob completionl">
<guard>
<event name="suspT" />
</guard>
</transition>
<transition src="RecoveryModecljob completionl" dst="
RecoveryModecljob completionl">
<guard>
<event name="startT"/>
</guard>
</transition>
<transition src="MyMonNormalModel" dst="RecoveryModecljob completionl

ll>
<guard>
<event name="resumeT" />
<clocks>
<clock name="MyMonNormalModec2fail durationFclk">
<condition type>"gt"</condition type>
<value>"10"</value>
</clock>
</clocks>
</guard>
<actions>
<computations>
<function call="recover from duration();" from="Ext Procs.h"
/>
<variable name="failureReason">
<expression>"|[2]|"</expression>
</variable>
<function call="initializeSystemRecovery ();" from="Ext Procs
.h'" />
</computations>
</actions>

</transition>
<transition src="MyMonNormalModel" dst="RecoveryModecljob completionl

ll>
<guard>
<event name="arrT"/>
<clocks>
<clock name="MyMonNormalModec2fail durationFclk">
<condition type>"gt'"</condition type>
<value>"10"</value>
</clock>
</clocks>
</guard>
<actions>
<computations>
<function call="recover from duration();" from="Ext Procs.h"

/>

187
188
189
190

191
192
193
194
195
196
197
198

200
201
202
203
204
205

207
208
209
210
211
212
213
214
215
216
217
218

219
220
221
222

223
224
225
226
227
228
229

231
232
233
234
235
236
237
238
239

<variable name="failureReason">
<expression>"[2]"</expression>
</variable>
<function call="initializeSystemRecovery ();
.h'" />
</computations>
</actions>
</transition>
<transition src="MyMonNormalMode2" dst="MyMonNormalMode2">
<guard>
<event name="blockedT" />
</guard>
<actions>
<clocks>
<clock name="MyMonNormalModeclfail blocked timeclk0">
<value>"0"</value>
</clock>
</clocks>
</actions>
</transition>
<transition src="MyMonNormalModel" dst="RecoveryModecljob completionl

" from="Ext Procs

ll>
<guard>
<event name="unblockedT" />
<clocks>
<clock name="MyMonNormalModec2fail durationFclk">
<condition type>"gt'"</condition type>
<value>"10"</value>
</clock>
</clocks>
</guard>
<actions>
<computations>
<function call="recover from duration();" from="Ext_ Procs.h"
/>

<variable name="failureReason">
<expression>"[2]"</expression>
</variable>
<function call="initializeSystemRecovery ();
.h'" />
</computations>
</actions>
</transition>
<transition src="MyMonNormalMode2" dst="MyMonNormalMode0">
<guard>
<event name="suspT"/>
</guard>
</transition>
<transition src="MyMonNormalModel" dst="MyMonNormalModel">
<guard>
<event name="unblockedT" />
<clocks>
<clock name="MyMonNormalModec2fail durationFclk">
<condition type>"leq'"</condition type>
<value>"10"</value>
</clock>
</clocks>

" from="Ext Procs

240
241
242
243
244
245
246
247
248
249
250
251
252

254

255
256
257
258

260
261
262
263
264
265

267
268
269

270
271
272
273
274
275
276
277
278

280
281

282
283
284

286
287
288
289

290
291

</guard>
</transition>
<transition src="MyMonNormalMode5" dst="MyMonNormalModel">
<guard>
<event name="resumeT" />
</guard>
<actions>
<clocks>
<clock name="MyMonNormalModec2fail durationFclk">
<value>"MyMonNormalModec2fail durationFvar"</value>
</clock>
</clocks>
</actions>
</transition>
<transition src="RecoveryModecljob completionl" dst="MyMonNormalMode0
l|>
<guard>
<event name="complT" />
</guard>
<actions>
<computations>
<function call="resetAllSystemFlags();" from="Ext Procs.h"/>
</computations>
</actions>
</transition>
<transition src="MyMonNormalMode0" dst="MyMonNormalMode0">
<guard>
<event name="arrT" />
</guard>
</transition>
<transition src="MyMonNormalModel" dst="RecoveryModecljob completionl

l|>
<guard>
<event name="arrT" />
<clocks>
<clock name="MyMonNormalModec2fail durationFclk">
<condition type>"gt'"</condition type>
<value>"10"</value>
</clock>
</clocks>
</guard>
<actions>
<computations>
<function call="recover from duration();" from="Ext_ Procs.h"
/>
<variable name="failureReason'">
<expression>"[2]|"</expression>
</variable>
<function call="initializeSystemRecovery();" from="Ext Procs
.h'" />
</computations>

</actions>
</transition>
<transition src="MyMonNormalMode5" dst="RecoveryModecljob completionl
l|>
<guard>
<event name="complT" />

292 </guard>

293 <actions>

294 <computations>

295 <function call="recover_ from duration();" from="Ext_ Procs.h"
/>

296 <variable name="failureReason">

297 <expression>"[2]|"</expression>

298 </variable>

299 <function call="initializeSystemRecovery ();" from="Ext Procs
.h" />

300 </computations>

301 </actions>

302 </transition>

303 <transition src="MyMonNormalMode6" dst="MyMonNormalMode6">
304 <guard>

305 <event name="blockedT" />

306 </guard>

307 <actions>

308 <clocks>

309 <clock name="MyMonNormalModeclfail blocked timeclk0">
310 <value>"0"</value>

311 </clock>

312 </clocks>

313 </actions>

314 </transition>

315 <transition src="MyMonNormalMode2" dst="MyMonNormalMode0">
316 <guard>

317 <event name="complT" />

318 </guard>

319 </transition>

320 <transition src="MyMonNormalMode2" dst="MyMonNormalModel">
321 <guard>

322 <event name="startT"/>

323 </guard>

324 <actions>

325 <clocks>

326 <clock name="MyMonNormalModec2fail durationFclk">

327 <value>"0"</value>

328 </clock>

329 </clocks>

330 </actions>

331 </transition>

332 <transition src="MyMonNormalMode2" dst="RecoveryModecljob completionl
ll>

333 <guard>

334 <event name="resumeT" />

335 <clocks>

336 <clock name="MyMonNormalModeclfail blocked timeclk0">

337 <condition type>"gt"</condition type>

338 <value>"2"</value>

339 </clock>

340 </clocks>

341 </guard>

342 <actions>

343 <computations>

344 <function call="recover from jitter();" from="Ext Procs.h"/>

345 <variable name="failureReason'">

346
347
348

349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368

369
370
371
372
373
374
375
376
377
378
379
380

381
382
383
384

385
386
387
388
389
390
391
392
393

394
395
396
397

<expression>"[1]|"</expression>
</variable>
<function call="initializeSystemRecovery ();
.h'" />
</computations>
</actions>
</transition>
<transition src="MyMonNormalMode5" dst="MyMonNormalMode6">
<guard>
<event name="blockedT" />
</guard>
</transition>
<transition src="MyMonNormalModel" dst="MyMonNormalModel">
<guard>
<event name="arrT"/>
<clocks>
<clock name="MyMonNormalModec2fail durationFclk">
<condition type>"leq"</condition type>
<value>"10"</value>
</clock>
</clocks>
</guard>
</transition>

n

<transition src="MyMonNormalModel" dst="RecoveryModecljob completionl

I|>
<guard>
<event name="complT" />
<clocks>
<clock name="MyMonNormalModec2fail durationFclk">
<condition type>"gt'"</condition type>
<value>"10"</value>
</clock>
</clocks>
</guard>
<actions>
<computations>
<function call="recover from duration();"
/>
<variable name="failureReason">
<expression>"[2]|"</expression>
</variable>
<function call="initializeSystemRecovery ();"
.h'" />
</computations>

</actions>
</transition>
<transition src="MyMonNormalMode0" dst="MyMonNormalMode2">
<guard>
<event name="blockedT" />
</guard>
</transition>

<transition src="MyMonNormalModel" dst="RecoveryModecljob completionl

ll>
<guard>
<event name="complT" />
<clocks>
<clock name="MyMonNormalModec2fail durationFclk">

from="Ext Procs

from="Ext Procs.h"

from="Ext Procs

398
399
400
401
402
403
404
405

406
407
408
409

410
411
412
413

414
415
416
417
418
419

420
421
422
423

424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443

444
445
446
447
448

<condition type>"gt'"</condition type>
<value>"10"</value>
</clock>
</clocks>
</guard>
<actions>
<computations>
<function call="recover from duration();" from="Ext Procs.h"
/>
<variable name="failureReason'">
<expression>"[2]|"</expression>
</variable>
<function call
.h" />
</computations>
</actions>
</transition>
<transition src="MyMonNormalMode6" dst="RecoveryModecljob completionl
ll>
<guard>
<event name="startT"/>
</guard>
<actions>
<computations>
<function call="recover from duration();" from="Ext_ Procs.h"
/>
<variable name="failureReason">
<expression>"[2]|"</expression>
</variable>
<function call="initializeSystemRecovery ();
.h" />
</computations>
</actions>
</transition>
<transition src="MyMonNormalMode6" dst="MyMonNormalMode5">
<guard>
<event name="arrT" />
</guard>
</transition>
<transition src="MyMonNormalModel" dst="MyMonNormalModel">
<guard>
<event name="startT"/>
<clocks>
<clock name="MyMonNormalModec2fail durationFclk">
<condition type>"leq'"</condition type>
<value>"10"</value>
</clock>
</clocks>
</guard>
</transition>
<transition src="MyMonNormalModel" dst="RecoveryModecljob completionl
l|>
<guard>
<event name="startT"/>
<clocks>
<clock name="MyMonNormalModec2fail durationFclk">
<condition type>"gt'"</condition type>

_n n

initializeSystemRecovery ();" from="Ext Procs

" from="Ext Procs

449
450
451
452
453
454

456
457
458
459

461
462
463
464
465
466

468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487

489
490
491
492
493
494

496
497
498
499
500
501
502
503

<value>"10"</value>
</clock>
</clocks>
</guard>
<actions>
<computations>
<function call="recover from duration();
/>
<variable name="failureReason">
<expression>"[2]|"</expression>
</variable>
<function call="initializeSystemRecovery ();
.h'" />
</computations>
</actions>
</transition>
<transition src="MyMonNormalMode0" dst="MyMonNormalModel">
<guard>
<event name="startT"/>
</guard>
<actions>
<clocks>
<clock name="MyMonNormalModec2fail durationFclk">
<value>"0"</value>
</clock>
</clocks>
</actions>
</transition>
<transition src="MyMonNormalMode6" dst="MyMonNormalModel">
<guard>
<event name="resumeT" />
<clocks>
<clock name="MyMonNormalModeclfail blocked timeclk0">
<condition type>"leq'"</condition type>
<value>"2"</value>
</clock>
</clocks>
</guard>
<actions>
<clocks>
<clock name="MyMonNormalModec2fail durationFclk">
<value>"MyMonNormalModec2fail durationFvar"</value>
</clock>
</clocks>
</actions>
</transition>
<transition src="MyMonNormalModel" dst="MyMonNormalMode6">
<guard>
<event name="blockedT" />
<clocks>
<clock name="MyMonNormalModec2fail durationFclk">
<condition type>"leq'"</condition type>
<value>"10"</value>
</clock>
</clocks>
</guard>
<actions>

"

from="Ext Procs.h"

from="Ext Procs

504 <computations>

505 <variable name="MyMonNormalModec2fail durationFvar">

506 <expression>"|[MyMonNormalModec2fail durationFclk]| "</
expression>

507 </variable>

508 </computations>

509 </actions>

510 </transition>

511 <transition src="MyMonNormalMode6" dst="MyMonNormalMode5">

512 <guard>

513 <event name="suspT" />

514 </guard>

515 </transition>

516 <transition src="MyMonNormalMode0" dst="MyMonNormalMode0">
517 <guard>

518 <event name="complT" />

519 </guard>

520 </transition>

521 <transition src="MyMonNormalMode2" dst="MyMonNormalMode0">
522 <guard>

523 <event name="resumeT" />

524 <clocks>

525 <clock name="MyMonNormalModeclfail blocked timeclk0">
526 <condition type>"leq'"</condition type>

527 <value>"2"</value>

528 </clock>

529 </clocks>

530 </guard>

531 </transition>

532 <transition src="MyMonNormalMode5" dst="MyMonNormalModel">
533 <guard>

534 <event name="unblockedT" />

535 </guard>

536 <actions>

537 <clocks>

538 <clock name="MyMonNormalModec2fail durationFclk">
539 <value>"MyMonNormalModec2fail durationFvar'"</value>
540 </clock>

541 </clocks>

542 </actions>

543 </transition>

544 <transition src="MyMonNormalMode2" dst="MyMonNormalMode0">
545 <guard>

546 <event name="arrT" />

547 </guard>

548 </transition>

549 <transition src="MyMonNormalModel" dst="MyMonNormalModel">
550 <guard>

551 <event name="resumeT" />

552 <clocks>

553 <clock name="MyMonNormalModec2fail durationFclk">
554 <condition type>"leq'"</condition type>

555 <value>"10"</value>

556 </clock>

557 </clocks>

558 </guard>

559 </transition>

560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576

577
578
579
580
581
582
583
584
585
586
587
588

589
590
591
592

593
594
595
596

597
598
599
600
601
602
603
604
605
606

607
608
609
610
611

<transition src="MyMonNormalModel" dst="MyMonNormalMode0">
<guard>
<event name="complT" />
<clocks>
<clock name="MyMonNormalModec2fail durationFclk">
<condition type>"leq'"</condition type>
<value>"10"</value>
</clock>
</clocks>
</guard>
</transition>
<transition src="MyMonNormalMode0" dst="MyMonNormalMode0">
<guard>
<event name="suspT" />
</guard>
</transition>
<transition src="MyMonNormalModel" dst="RecoveryModecljob completionl

l|>
<guard>
<event name="startT"/>
<clocks>
<clock name="MyMonNormalModec2fail durationFclk">
<condition type>"gt'"</condition type>
<value>"10"</value>
</clock>
</clocks>
</guard>
<actions>
<computations>
<function call="recover from duration();" from="Ext Procs.h"
/>
<variable name="failureReason">
<expression>"[2]|"</expression>
</variable>
<function call="initializeSystemRecovery ();" from="Ext Procs
.h'" />
</computations>

</actions>
</transition>
<transition src="RecoveryModecljob completion0" dst="MyMonNormalMode0
l|>
<guard>
<event name="complT" />
</guard>
<actions>
<computations>
<function call="resetAllSystemFlags();" from="Ext Procs.h"/>
</computations>
</actions>
</transition>
<transition src="MyMonNormalModel" dst="RecoveryModecljob completionl
||>
<guard>
<event name="suspT"/>
<clocks>
<clock name="MyMonNormalModec2fail durationFclk">
<condition type>"gt'"</condition type>

612
613
614
615
616
617
618

619
620
621
622

623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649

650
651
652
653
654
655
656
657
658
659
660
661
662
663
664

<value>"10"</value>
</clock>
</clocks>
</guard>
<actions>
<computations>
<function call="recover from duration();
/>
<variable name="failureReason">
<expression>"[2]|"</expression>
</variable>
<function call="initializeSystemRecovery ();
.h'" />
</computations>
</actions>
</transition>
<transition src="MyMonNormalMode5" dst="MyMonNormalMode5">
<guard>
<event name="suspT" />
</guard>
</transition>
<transition src="MyMonNormalMode5" dst="MyMonNormalMode5">
<guard>
<event name="arrT"/>
</guard>
</transition>
<transition src="MyMonNormalModel" dst="MyMonNormalMode5">
<guard>
<event name="suspT"/>
<clocks>
<clock name="MyMonNormalModec2fail durationFclk">
<condition type>"leq'"</condition type>
<value>"10"</value>
</clock>
</clocks>
</guard>
<actions>
<computations>
<variable name="MyMonNormalModec2fail durationFvar">
<expression>" [MyMonNormalModec2fail durationFclk] "</
expression>
</variable>
</computations>
</actions>
</transition>
<transition src="MyMonNormalModel" dst="MyMonNormalModel">
<guard>
<event name="arrT"/>
<clocks>
<clock name="MyMonNormalModec2fail durationFclk">
<condition type>"leq'"</condition type>
<value>"10"</value>
</clock>
</clocks>
</guard>
</transition>

" from="Ext Procs.h"

" from="Ext Procs

665

666
667
668
669
670
671
672
673
674
675
676
677

678
679
680
681

682
683
684
685

686
687
688
689
690

691
692
693
694
695

696
697
698
699
700

701
702
703
704
705

706
707
708
709
710

711
712

<transition src="MyMonNormalModel" dst="RecoveryModecljob completionl

l|>
<guard>
<event name="unblockedT" />
<clocks>
<clock name="MyMonNormalModec2fail durationFclk">
<condition type>"gt'"</condition type>
<value>"10"</value>
</clock>
</clocks>
</guard>
<actions>
<computations>
<function call="recover from duration();" from="Ext_ Procs.h"
/>
<variable name="failureReason">
<expression>"|[2]|"</expression>
</variable>
<function call="initializeSystemRecovery ();" from="Ext Procs
.h'" />
</computations>

</actions>
</transition>
<transition src="RecoveryModecljob completion0"
RecoveryModecljob completionl">
<guard>
<event name="unblockedT" />
</guard>
</transition>
<transition src="RecoveryModecljob completion0"
RecoveryModecljob completionl">
<guard>
<event name="blockedT" />
</guard>
</transition>
<transition src="RecoveryModecljob completion0"
RecoveryModecljob completionl">
<guard>
<event name="resumeT" />
</guard>
</transition>
<transition src="RecoveryModecljob completion0"
RecoveryModecljob completionl">
<guard>
<event name="arrT"/>
</guard>
</transition>
<transition src="RecoveryModecljob completion0"
RecoveryModecljob completionl">
<guard>
<event name="suspT" />
</guard>
</transition>
<transition src="RecoveryModecljob completion0"
RecoveryModecljob completionl">
<guard>
<event name="startT"/>

dst="

dst="

dst="

dst="

dst="

dst="

713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742

743
744
745
746
747
748
749
750
751
752
753
754

755
756
757
758

759
760
761
762

764
765

</guard>
</transition>
<transition src="MyMonNormalModel" dst="MyMonNormalMode0">
<guard>
<event name="complT" />
<clocks>
<clock name="MyMonNormalModec2fail durationFclk">
<condition type>"leq'"</condition type>
<value>"10"</value>
</clock>
</clocks>
</guard>
</transition>
<transition src="MyMonNormalModel" dst="MyMonNormalModel">
<guard>
<event name="resumeT" />
<clocks>
<clock name="MyMonNormalModec2fail durationFclk">
<condition type>"leq'"</condition type>
<value>"10"</value>
</clock>
</clocks>
</guard>
</transition>
<transition src="MyMonNormalMode0" dst="MyMonNormalMode0">
<guard>
<event name="unblockedT" />
</guard>
</transition>
<transition src="MyMonNormalModel" dst="RecoveryModecljob completionl

ll>
<guard>
<event name="suspT" />
<clocks>
<clock name="MyMonNormalModec2fail durationFclk">
<condition type>"gt'"</condition type>
<value>"10"</value>
</clock>
</clocks>
</guard>
<actions>
<computations>
<function call="recover_ from duration();" from="Ext_ Procs.h"
/>

<variable name="failureReason">
<expression>"[2]"</expression>
</variable>
<function call="initializeSystemRecovery ();
.h" />
</computations>
</actions>
</transition>
<transition src="MyMonNormalMode6" dst="RecoveryModecljob completionl
ll>
<guard>
<event name="complT" />
</guard>

" from="Ext Procs

766
767
768

769
770
771
772

773
774
775
776
T
778
779
780
781
782
783
784
785
786
787
788

789
790
791
792
793
794
795
796
797
798
799
800

801
802
803
804

805
806
807
808
809
810
811
812
813
814
815
816
817

<actions>
<computations>
<function call="recover from duration();" from="Ext Procs.h"
/>
<variable name="failureReason'">
<expression>"[2]|"</expression>
</variable>
<function call="initializeSystemRecovery ();
.h'" />
</computations>
</actions>
</transition>
<transition src="MyMonNormalMode6" dst="MyMonNormalModel">
<guard>
<event name="unblockedT" />
</guard>
<actions>
<clocks>
<clock name="MyMonNormalModec2fail durationFclk">
<value>"MyMonNormalModec2fail _durationFvar'"</value>
</clock>
</clocks>
</actions>
</transition>
<transition src="MyMonNormalModel" dst="RecoveryModecljob completionl

" from="Ext Procs

ll>
<guard>
<event name="blockedT" />
<clocks>
<clock name="MyMonNormalModec2fail durationFclk">
<condition type>"gt'"</condition type>
<value>"10"</value>
</clock>
</clocks>
</guard>
<actions>
<computations>
<function call="recover from duration();" from="Ext Procs.h"
/>
<variable name="failureReason'">
<expression>"[2]|"</expression>
</variable>
<function call="initializeSystemRecovery ();" from="Ext Procs
.h" />
</computations>

</actions>
</transition>
<transition src="MyMonNormalModel" dst="MyMonNormalModel">
<guard>
<event name="startT"/>
<clocks>
<clock name="MyMonNormalModec2fail durationFclk">
<condition type>"leq"</condition type>
<value>"10"</value>
</clock>
</clocks>
</guard>

818
819

820
821
822
823
824
825
826
827
828
829
830
831

832
833
834
835

836
837
838
839

840
841
842
843
844
845

846
847
848
849

850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865

867
868

</transition>
<transition src="MyMonNormalModel" dst="RecoveryModecljob completionl

ll>
<guard>
<event name="resumeT" />
<clocks>
<clock name="MyMonNormalModec2fail durationFclk">
<condition type>"gt'"</condition type>
<value>"10"</value>
</clock>
</clocks>
</guard>
<actions>
<computations>
<function call="recover from duration();" from="Ext Procs.h"
/>
<variable name="failureReason'">
<expression>"[2]|"</expression>
</variable>
<function call="initializeSystemRecovery ();" from="Ext Procs
.h" />
</computations>

</actions>
</transition>
<transition src="MyMonNormalMode5" dst="RecoveryModecljob completionl
ll>
<guard>
<event name="startT"/>
</guard>
<actions>
<computations>
<function call="recover from duration();" from="Ext_ Procs.h"
/>
<variable name="failureReason">
<expression>"[2]"</expression>
</variable>
<function call="initializeSystemRecovery ();
.h" />
</computations>
</actions>
</transition>
<transition src="MyMonNormalModel" dst="MyMonNormalModel">
<guard>
<event name="unblockedT" />
<clocks>
<clock name="MyMonNormalModec2fail durationFclk">
<condition type>"leq'"</condition type>
<value>"10"</value>
</clock>
</clocks>
</guard>
</transition>
</transitions>

" from="Ext_ Procs

<!— Initial state —>
<initial_state name="MyMonNormalMode0" />
<!— Final states —>

<final _states>

869 </final states>
870 </automaton>

	Introduction
	Motivation and Related Work
	Motivation
	Modeling System Properties
	Monitor Placement
	Monitor Synthesis

	Related Work

	Background
	Properties
	Monitoring Architecture
	Monitored Applications
	Timed Automata
	Timed Regular Expressions
	Derivatives

	The Revert Framework
	Revert Specification Language
	Monitor Data
	Monitor Environment
	Nodes
	Transitions and Transition Guard Expressions

	Formal Monitor Specification
	Modeling Monitors
	Modeling Properties

	Monitor Generation
	Transition Automaton Generation
	Node Automaton Generation
	Monitor Automaton Generation

	Implementation
	The Tool Chain

	Example
	Conclusion and Future Work
	Conclusion and Future Work
	Limitation

	 Example Monitor Output

