
Visual Tracking using Analysis Dictionary
Learning

Submitted by

Divya Sitani

under the guidance of

Dr. A. V. Subramanyam

Asst. Professor, IIIT-Delhi

and

Dr. Angshul Majumdar

Asst. Professor, IIIT-Delhi

Indraprastha Institute of Information Technology
New Delhi

August 2017

©Indraprastha Institute of Information Technology(IIITD), New Delhi 2017

2

Visual Tracking using Analysis Dictionary Learning

By
Divya Sitani

Submitted
in partial fulfilment of the requirements for the degree of Master of Technology

to

Indraprastha Institute of Information Technology Delhi
August, 2017

3

Certificate

I hereby certify that the thesis titled, Visual Tracking using Analysis Dictionary
Learning being submitted by Divya Sitani to Indraprastha Institute of Information Tech-
nology Delhi, for the award of Master of Technology, is an original research work carried out
by her under my supervision. In my opinion, the thesis has reached the standards fulfilling
the requirements of the regulations relating to the degree.

The results contained in this thesis have not been submitted in part or full to any other
university or institute for the award of any degree.

August 2017

Dr. A. V. Subramanyam and Dr. Angshul Majumdar
Department of Electronics and Communication

Indraprastha Institute of Information Technology Delhi
New Delhi 110020

ii

Acknowledgement

First of all, I would like to thank my guide Dr. A. V. Subramanyam for his constant
support and encouragement. He has been extremely patient the entire time. He had com-
plete faith in my ideas and helped me implement my ideas with all his guidance and support.

I would like to express my sincere gratitude to Dr. Angshul Majumdar. His help at
various stages during this work right from the first day has been extremely valuable. He
patiently cleared all my doubts and confusions and eventually helped me get a better un-
derstanding of my work.

I would like to thank Mr. Shishir Sharma for all his help and support throughout this
work.

I am grateful to the institute for all its infrastructure support and for providing such a
conducive environment to young people to be able to think differently. I am also thankful
to all my seniors and colleagues who helped me in various ways throughout the thesis.

I dedicate this thesis to my mother who has always been an unending source of inspi-
ration and love for me. She has always trusted my abilities and given me the strength to
believe in myself.

Finally, I wish to thank my sister and my father for always having faith in me and stand-
ing strong with me in all the ups and downs of life.

Divya Sitani

iii

Contents

List of Figures . v
List of Tables . vi

1 Introduction 2
1.1 Visual Tracking Background . 4

2 Proposed Algorithms 7
2.1 Tracking using single Analysis Dictionary . 7

2.1.1 Problem Formulation . 7
2.1.2 Initialization . 9
2.1.3 Classification . 9
2.1.4 Tracking Procedure . 10

2.2 Multiple Analysis Dictionaries for tracking 12
2.2.1 Problem Formulation . 12
2.2.2 Initialization of HoG Dictionary and Classifier 14
2.2.3 Initialization of LDP Dictionary and Classifier 15
2.2.4 Classification . 16
2.2.5 Tracking Procedure . 18

3 Experimental Settings and Results 22
3.1 Evaluation Methodology . 23

3.1.1 Precision Plots . 23
3.1.2 Success Plots . 24

3.2 Feature Descriptors . 24
3.3 Parameter Selection . 25

3.3.1 Parameters for Single Analysis Dictionary Model 25
3.3.2 Parameters for Multiple Analysis Dictionaries Model 26

3.4 Results . 28
3.4.1 Plots and Tables . 28

4 Discussion 42
4.1 Quantitative Comparison with other trackers 42
4.2 Qualitative Comparison with other trackers 43
4.3 Comparison on the basis of Speed . 51
4.4 Conclusion . 51
4.5 Future Work . 52

iv

List of Figures

3.4.1 Overall-Success Plot . 29
3.4.2 The overall precision plot over all the video sequences in OTB-50 dataset. . 30
3.4.3 Success plot-Illumination Variation . 31
3.4.4 Precision plot-Illumination Variation . 31
3.4.5 Success plot-Background Clutter . 32
3.4.6 Precision Plot - Background Clutter . 32
3.4.7 Success plot-Fast Motion . 33
3.4.8 Precision Plot-Fast Motion . 33
3.4.9 Success plot-In-plane Rotation . 34
3.4.10 Precision plot-in plane rotation . 34
3.4.11 Success plot-Low Resolution . 35
3.4.12 Precision plot- Low Resolution . 35
3.4.13 Success plot-Motion Blur . 36
3.4.14 Precision plot-Motion Blur . 36
3.4.15 Success plots-Occlusion . 37
3.4.16 Precision plot- Occlusion . 37
3.4.17 Success plots-Out-Of Plane Rotation . 38
3.4.18 Precision plot - Out of plane Rotation . 38
3.4.19 Success plots-Out Of View . 39
3.4.20 Precision plot- Out of View . 39
3.4.21 Success plots- Scale Variation . 40
3.4.22 Precision plot -Scale Variation . 40
3.4.23 Success plot-Deformation . 41
3.4.24 Precision plot-Deformation . 41

4.2.1 Video Sequence:Walking2 . 44
4.2.2 Video Sequence:Football . 45
4.2.3 Video Sequence:Jumping . 46
4.2.4 Video Sequence:Singer1 . 47
4.2.5 Video Sequence:Singer2 . 48

v

List of Tables

3.3.1 Parameters in Single Analysis Dictionary model 25
3.3.2 Parameters used in Multiple Analysis Dictionaries Model 27
3.4.1 Success Plots-Overall . 29
3.4.2 Precision Plots-Overall . 30
3.4.3 Success Plots-Illumination Variation . 31
3.4.4 Precision Plots-Illumination Variation . 31
3.4.5 Success Plots- Background Clutter . 32
3.4.6 Precision Plots- Background Clutter . 32
3.4.7 Success Plots-Fast Motion . 33
3.4.8 Precision Plot-Fast Motion . 33
3.4.9 Success Plots- In-plane Rotation . 34
3.4.10 Precision Plots- In-plane Rotation . 34
3.4.11 Success Plots-Low Resolution . 35
3.4.12 Precision Plots-Low Resolution . 35
3.4.13 Success Plots- Motion Blur . 36
3.4.14 Precision Plots- Motion Blur . 36
3.4.15 Success Plots- Occlusion . 37
3.4.16 Precision Plots- Occlusion . 37
3.4.17 Success Plots- Out Of Plane Rotation . 38
3.4.18 Precision Plots- Out Of Plane Rotation . 38
3.4.19 Success Plots-Out Of View . 39
3.4.20 Precision Plots-Out Of View . 39
3.4.21 Success Plots- Scale Variation . 40
3.4.22 Precision Plots- Scale Variation . 40
3.4.23 Success Plots- Deformation . 41
3.4.24 Precision Plots- Deformation . 41

vi

Abstract

Visual tracking or object tracking is the process of estimating the state of the target in

successive frames of a video sequence. It is an integral part of a plethora of applications

like security, surveillance, navigation systems, traffic monitoring systems, human computer

interaction systems, and robotics where the target is tracked in both stationary as well

as dynamic environments. Visual tracking has remained a challenging problem in computer

vision because of numerous factors like occlusion, illumination variation, background clutter,

pose change, scale variation, deformation, etc. To overcome these challenges we propose an

online analysis dictionary learning framework for visual tracking.

Dictionary learning is a popular representation learning tool today. It has been suc-

cessfully applied to a wide range of computer vision tasks like image denoising, image super

resolution, face recognition, human action recognition, classification, etc. in the recent years.

Synthesis dictionary based learning approaches have been applied to visual tracking as well.

However, to the best of our knowledge, the use of analysis dictionary based algorithms for

visual tracking has not been done yet. The main advantage of an analysis dictionary over

a synthesis dictionary is, for an analysis and a synthesis dictionary of same dimensions, an

analysis dictionary is able to capture significantly more variability in the data compared to

a synthesis dictionary.

We have developed our algorithm in two stages. In this first stage we track the targets in

video sequences using a single analysis dictionary. In the next stage we develop a multiple

analysis dictionaries model to track the object of interest. After extensive experimentation

on video sequences from OTB-50 dataset, we have demonstrated that our algorithm works

better than the synthesis dictionary learning based trackers and also some of the other state

of the art trackers that do not incorporate dictionary learning in their tracking approach.

1

Chapter 1

Introduction

Visual object tracking is the process of predicting the future state of the target in an image

sequence given the state of the target in the first frame. The main challenges to overcome

while tracking can be divided into two categories, intrinsic variations and extrinsic variations.

The intrinsic variations are the appearance changes that the target goes through in the

subsequent frames like scale variation, deformation, blurring in the target region due to fast

motion of the camera or target, in and out of plane rotations of the target in the image

plane, fast motion of the target, low resolution in the target region and a part of the target

goes out of view from the frame. Extrinsic variations are the transitions that occur in the

background of the target like illumination variation, occlusion and background clutters.

A reliable tracking algorithm should be able to fulfil two requirements: it should be able

to adapt to the intrinsic variations that occur in the target and it should be invariant to the

extrinsic variations that occur in the background of the target, as the sequence progresses. In

our work we propose two discriminative trackers to deal with these variations that affect the

tracking process. Discriminative tracking algorithms solve a binary classification problem of

discriminating the foreground or the target from its background. Tracking algorithms have

an appearance model which represents the visual characteristics of the target by extracting

feature information from the target region.

2

In recent decades, implementations in which the appearance model is based on dictionary

learning have become quite popular [1–9]. These tracking algorithms that incorporate dic-

tionary learning in their framework use synthesis dictionary learning based approaches. In

the synthesis model, a signal x ∈ Rn can be sparsely represented in a dictionary D ∈ Rn×k,

as x = Dz, where z ∈ Rk is sparse, i.e. ‖z‖0 � k. In our work we have used analysis

dictionary learning to learn our dictionary. In the analysis model, a signal x is sparsifiable

using a dictionary D ∈ Rm×n, that is Dx = z, where z ∈ Rm is sparse.

A little analysis shows that for a synthesis dictionary of size m×n, with sparsity(number

of non-zero elements in the sparse code z) being equal to k, the number of sub-spaces is
(
n
k

)
and each subspace is k− dimensional. For analysis dictionary learning of size p × d, with

co-sparsity l, the number of sub-spaces is
(
p
l

)
for sub-spaces of dimension d− l. In order to

compare the synthesis and analysis model, let us consider the dimensions of the subspaces

are same, i.e., k = d − l. Also let us assume equal redundancy, i.e. p = n = 2d. Then the

number of synthesis subspaces available are k.log2
(
n
k

)
(by Stirling’s Approximation) and the

number of available analysis subspace are n.

For example with n = 700, l = 300 and k = 50, the number of analysis sub-spaces

are 700 whereas the number of synthesis sub-spaces are only 191. This means that for an

analysis and a synthesis dictionary of same dimensions, an analysis dictionary is able to

capture significantly more variability in the data compared to a synthesis dictionary. A

more detailed analysis can be found in [10].

Further, in the second stage of our algorithm we use multiple analysis dictionaries for

tracking. Inspired by [9] we use a feature weighting scheme, where each feature gets a weight

in the appearance model based on its capability to describe the data, the feature which has

higher capability to describe the data gets a higher weight as compared to other features.

Some approaches have earlier used multiple dictionaries [11], but they do not consider the

fact that different features should have different importance.

3

1.1 Visual Tracking Background

In this section we discuss several existing popular tracking algorithms. Our work using

single dictionary is inspired by [1]. Thus, a description of these popular trackers and [1] is

as follows.

The tracking algorithm in [12] MDNET, is based on the representations from a discrim-

inatively trained Convolutional Neural Network (CNN). The algorithm pretrained a CNN

using a large set of videos with tracking ground-truths to obtain a generic target represen-

tation. The network is composed of shared layers and multiple branches of domain-specific

layers, where domains correspond to individual training sequences and each branch is respon-

sible for binary classification to identify the target in each domain. The authors train the

network with respect to each domain iteratively to obtain generic target representations in

the shared layers. When tracking a target in a new sequence, they construct a new network

by combining the shared layers in the pretrained CNN with a new binary classification layer,

which is updated online. Online tracking is performed by evaluating the candidate windows

randomly sampled around the previous target state.

In [13], tracking algorithm MEEM (Robust Tracking via Multiple Experts using Entropy

Minimization) is proposed. It is a multi-expert restoration scheme to address the model drift

problem in online tracking. In the scheme, a tracker and its historical snapshots constitute

an expert ensemble, where the best expert is selected to restore the current tracker when

needed based on a minimum entropy criterion, so as to correct undesirable model updates.

The base tracker in the formulation exploits an online SVM on a budget algorithm and an

explicit feature mapping method for efficient model update and inference.

In [14], tracking algorithm DSST (Discriminative Scale Space Tracker) is proposed. It

is an approach which works by learning discriminative correlation filters which is based on

a scale pyramid representation. The authors learn separate filters for translation and scale

estimation. They show that this improves the performance compared to an exhaustive scale

search. They propose that their scale estimation approach is generic as it can be incorporated

4

into any tracking method with no inherent scale estimation.

In [15], tracking algorithm TGPR analyses the probability of target appearance using

Gaussian Processes Regression (GPR), and introduce a latent variable to assist the tracking

decision. They observation model for regression is learnt in a semi-supervised fashion by using

both labelled samples from previous frames and the unlabelled samples that are tracking

candidates extracted from the current frame.

In [16], the tracking algorithm KCF (Kernelized Correlation Filters) proposes an analytic

model based on discriminative tracking for datasets of thousands of translated patches. By

showing that the resulting data matrix is circulant, the authors diagonalize it with the

Discrete Fourier Transform, reducing both storage and computation by several orders of

magnitude. For linear regression their formulation is equivalent to a correlation filter. For

kernel regression, they derive a new Kernelized Correlation Filter (KCF), that has the exact

same complexity as its linear counterpart.

In [17], the tracking algorithm STRUCK (Structured Output Tracking with Kernels) pro-

poses a framework for adaptive visual object tracking based on structured output prediction.

The method uses a kernelized structured output support vector machine (SVM), which is

learned online to provide adaptive tracking. To allow for real-time application, the authors

introduce a budgeting mechanism which prevents the unbounded growth in the number of

support vectors which would otherwise occur during tracking.

In [8], the authors have proposed a robust object tracking algorithm SCM (Sparsity

based collaborative model) using a collaborative model. Their appearance model exploits

both holistic templates and local representations. They develop a sparsity-based discrimi-

native classifier (SDC) and a sparsity-based generative model (SGM). In the SDC module,

they introduce a method to compute the confidence value that assigns more weights to the

foreground than the background. In the SGM module, they proposed a histogram-based

method that takes the spatial information of each patch into consideration.

In [18], a tracking framework TLD (Tracking-Learning-Detection) is proposed that ex-

5

plicitly decomposes the long-term tracking task into tracking, learning and detection. The

detector localizes all appearances that have been observed so far and corrects the tracker if

necessary. The learning estimates detector’s errors and updates it to avoid these errors in

the future. The authors identify detector’s errors and learn from them.

In [1], authors have proposed a tracking framework based on sparse representation and

online discriminative dictionary learning (ODDL). They associate dictionary items with la-

bel information, such that the learned dictionary is both reconstructive and discriminative,

which distinguishes target objects from the background. During tracking, the best target

candidate is selected by a joint decision measure. Reliable tracking results and augmented

training samples are accumulated into two sets to update the dictionary. Both online dictio-

nary learning and the proposed joint decision measure are important for the final tracking

performance.

In the next chapter, we explain the problem formulation, initialization, classification and

the tracking procedure of both our proposed algorithms.

6

Chapter 2

Proposed Algorithms

We propose our algorithm in two stages. In the first stage we have used single analysis

dictionary learnt using HoG (Histogram of Oriented Gradients). In the second stage we per-

form feature fusion by using a weighting scheme learned on multiple dictionaries learnt using

HoG (Histogram of Oriented Gradients) and LDP (Local Derivative Patterns). This multiple

dictionary model is used as the appearance model in the second stage of the algorithm.

2.1 Tracking using single Analysis Dictionary

In the first stage we use a single analysis dictionary and hence, the name of our algorithm is

OADL, Online analysis Dictionary Learning. The dictionary is learnt using HoG (Histogram

of Oriented Gradients) features [19], as the appearance model. The problem formulation is

explained below:

2.1.1 Problem Formulation

We have a set of training samples X = {x1, x2,, xn} as input and X ∈ Rd×n. Here, d is

the dimension of HoG vector. The value of d is 496. Now our aim is to learn a dictionary on

input training samples, that helps to solve a binary classification problem of discriminating

7

foreground from the background. Therefore, the class labels are Y = {1,−1}. Here, label =

1 corresponds to the foreground or the target and label = −1 indicates background or

the surrounding environment of the target. Each xi is a feature vector extracted from a

32x32 image patch using histogram of gradients for feature representation. This image patch

corresponds to either the positive sample which is our tracking target or a negative sample

which is the background in a frame of a video sequence.

Let the given dictionary be D = {d1, d2,, dk} ∈ Rk×d and k is the number of atoms.

The sparse code corresponding to each xi is zi. In the analysis formulation each zi ≈ Dxi

and zi ∈ Rk×1. The set of all sparse codes combined together is Z = {z1, z2,, zn}. Thus,

Z ≈ DX and Z ∈ Rk×n. The loss function over D and Z is:

minD,Z‖DX − Z‖2F + λ2‖D‖2F + λ1‖Z‖1 (2.1.1)

The term ‖DX − Z‖2F in Equation (2.1.1) is called the sparsification error for the data X

in the dictionary domain. It is the modelling error in the dictionary model. Our aim is to

minimize this error in order to learn the best analysis dictionary model. Here λ1 and λ2 are

regularization parameters.

After computing D and Z, we find classifier W on the value of Z that has been calculated

using Equation (2.1.1). Thus, we are solving two independent loss functions. For formulating

the loss function for calculating classifier W , we proceed as follows.

minW‖F −WZ‖2F + λ3‖W‖2F (2.1.2)

The term ‖F −WZ‖2F in the above equation is a linear regression loss or the classification

error. Each column of F , which is fi, is a label vector for xi and fi ∈ Rm. So, fi = [1, 0]T

indicates a positive sample or class label = 1 and fi = [0, 1]T indicates a negative sample

or class label = −1. The classifier W ∈ Rm×k. Number of rows in the classifier, m = 2,

because there are two classes, one positive and the other negative

8

2.1.2 Initialization

KSVD [20] is run on positive and negative samples separately to form two dictionaries of

the same size. These two are combined together to form a dictionary Dinit ∈ Rd×k. Now

we assume our initial analysis dictionary D0 is the transpose of Dinit. Thus, D0 = (Dinit)
T

and D0 ∈ Rk×d. The label fi for each dictionary atom remains same in subsequent learning,

only the value of each atom di is updated. Once we have the initial D0, the sparse code is

calculated over the initial dictionary:

Zcalc = argminZ‖DX − Z‖2F + λ1‖Z‖1 (2.1.3)

Z is calculated using soft thresholding with λ1 as the threshold. Here, D = D0. Now, once

we have the initial dictionary D0 and the sparse code Zcalc, we have to compute the initial

classifier W0. W0 is computed using ridge regression,

W0 = argminW‖F −WZcalc‖2F + λ3‖W‖2F (2.1.4)

Here, F is the label matrix as mentioned in Section (2.1.1). The solution to Equation (2.1.4)

is:

W0 = FZT
calc(ZcalcZ

T
calc + λ3I)−1 (2.1.5)

Now we have both the initial classifier and the initial dictionary.

2.1.3 Classification

For every new frame, a total of P particles are sampled around the centroid of the previous

frame. Now we extract the feature vector xi from a 32x32 image patch around the ith particle,

for each of the P particles. The feature vector xi is extracted from the image patch by finding

a 496 dimensional histogram of gradients feature using the toolbox provided by [21]. This

9

is how we obtain a new data matrix X = {x1, x2,xP}. We find the sparse code Z of X

using Equation (2.1.3). Then a joint decision metric is calculated for each particle during

testing. For calculating this joint decision metric, we first find out reconstructed xi (xi(rec))

using the sparse code zi and dictionary D. xi(rec) and joint decision error metric over each

particle are:

xi(rec) = (DTD + λ1I)−1DT zi (2.1.6)

ε(xi) = α‖X(tr) − xi(rec)‖2 + (1− α)‖fi −Wzi‖2 (2.1.7)

Here, X(tr) is the weighted average value and it will be described in the next Section (2.1.4).

‖X(tr) − xi(rec)‖2 is the reconstruction error for the ith sample and ‖fi −Wzi‖2 is the linear

regression loss for the ith sample. α is a parameter that maintains a balance between both

the terms in the decision metric. The value of α is empirically chosen to be 0.8.

2.1.4 Tracking Procedure

For the first frame of our video sequence, we use ground truth given for the first frame and

annotate the target with a bounding box x1 = (px1, py1, h1, w1). Here, (px1, py1) is the

centroid, h1 and w1 are the height and width of the bounding box annotated around the

target respectively. Now, we randomly select N0 positive and N0 negative samples around x1.

Positive samples are obtained by randomly shifting the bounding box a few pixels around x1,

N0 times. N0 number of negative samples are obtained by randomly shifting the bounding

box far away from x1, N0 times. In order to make sure that positive samples do not overlap

with negative samples, the distance between the two is kept sufficiently large. The value

of N0 has been empirically fixed to 100. Now set Xp is created by combining the feature

vectors obtained on applying histogram of gradients to the image patches around each of the

N0 positive samples. In a similar way Xn is found out for negative samples. Once we have

10

X0 = [Xp;Xn], we can obtain D0 and W0 as described in Section (2.1.2).

For the frames ahead, we randomly sample a fixed number of P particles around the

centroid of the previous frame xt−1 based upon the Gaussian distribution p(xt/xt−1). Now

we extract the feature vector xi from a 32x32 image patch around the ith particle, for each

of the P particles. The feature vector xi is extracted from the image patch by finding a 496

dimensional histogram of gradients feature using [21]. This is how we obtain a new data

matrix X = {x1, x2, ..., xP}. Then we compute sparse code matrix Z using Equation (2.1.3).

Next, we compute the error vector ε ∈ RP×1 for all the sampled candidates using Equation

(2.1.6). The particle with the smallest joint error value is chosen to be the best particle

and chosen as the tracking result for the current frame. The value of P is chosen to be 800

empirically.

To calculate the reconstruction error term in Equation (2.1.7), we accumulate the feature

vector extracted from the image patch around the best location into a set U . This set U

always has a fixed number of elements Ufix. Whenever the number of elements in U exceeds

Ufix, the elements from older frames are deleted. With each element in U , a weight w = e−ε

is associated. Here, ε is the joint decision error for that element. Xtr in Equation (2.1.7)

is computed as the weighted average of all the elements in U . This way the elements with

smaller ε get more importance and the elements with larger ε get less importance on the

combined sample Xtr. In the first frame U just contains one element which is the ground

truth bounding box used to initialize the tracker. Thus, its weight is 1.

To run the update for D and W , another set V is constructed. In each frame after

finding out the best particle xt, we randomly sample N positive and N negative samples

around xt. Positive samples are obtained by randomly shifting the bounding box a few pixels

around xt, N times. N number of negative samples are obtained by randomly shifting the

bounding box far away from xt, N times. In order to make sure that positive samples do not

overlap with negative samples, the distance between the two is kept sufficiently large. Now

the feature vector for the positive samples (Xpos) is extracted using histogram of oriented

11

gradients of the image patch around each of the positive samples. In a similar way Xneg is

found out for negative samples. The distance between the negative and positive samples is

kept sufficiently large, so that Xneg represents pure background. X = [Xpos;Xneg] is added

to set V . After accumulating X in V for a fixed Vfix number of frames, D is updated by

solving Equation (2.1.1) for a fixed number of iterations. Then W is updated on Z obtained

from Equation(2.1.1), using Equation (2.1.5). After the update, set V is emptied. The value

of N has been empirically found out to be 100.

The tracking result obtained before might be noisy and may be inaccurate. Thus, we

experimentally fix two thresholds th1 and th2. Before accumulating the tracking result and

set X = [Xpos;Xneg] for a particular frame into U and V respectively, we check if the

reconstruction error as mentioned in Section (2.1.3) for the optimal particle for that frame

is less than th1 and likewise the regression loss is less than th2. If this is true, we add the

tracking result for that frame into U and X = [Xpos;Xneg] into V . If any of the two errors is

more than its respective threshold, we do not add the results and set X into sets U and V .

2.2 Multiple Analysis Dictionaries for tracking

Our algorithm using multiple analysis dictionaries is named as OMADL, Online Multiple

Analysis Dictionary Learning.

2.2.1 Problem Formulation

We have two sets of input training samplesX1 andX2. X1 = {x11, x12,, x1n} andX1 ∈ Rd1×n.

Here, d1 = 496 is the dimension of HoG vector. X2 = {x21, x22,, x2n} and X2 ∈ Rd2×n. Here,

d2 = 1024 is the dimension of LDP vector. Now our aim is to learn dictionary D1 on

HoG data samples and dictionary D2 on LDP as given in [22] data samples. Both the

dictionaries should solve a binary classification problem of discriminating foreground from

the background. Therefore, the class labels are Y1 = {1,−1}. Here, label = 1 corresponds

12

to the target and label = −1 indicates the background. Any x1i is a feature vector extracted

from a 32x32 image patch using histogram of gradients for feature representation. Similarly,

any x2i is a feature vector extracted a 32x32 image patch using second order local derivative

pattern. This image patch either corresponds to the positive sample which is our tracking

target or a negative sample which is the background in a frame of a video sequence.

Given dictionaries D1 = {d11, d12,, d1k} ∈ Rk×d1 and D2 = {d21, d22,, d2k} ∈ Rk×d2 . Here,

k is the number of atoms in a dictionary. The sparse code corresponding to each x1i is

z1i and each x2i is z2i . In the analysis formulation each z1i ≈ D1x
1
i and each z2i ≈ D2x

2
i .

Thus, z1i ∈ Rk×1 and z2i ∈ Rk×1 . The set of all sparse codes corresponding to HoG vectors

combined together is Z1 = {z11 , z12 ,, z1n}. Similarly, the set of all sparse codes corresponding

to LDP vectors combined together is Z2 = {z21 , z22 ,, z2n} Thus, Z1 ≈ D1X1 and Z1 ∈ Rk×n.

Likewise Z2 ≈ D2X2 and Z2 ∈ Rk×n The loss function over D1 and Z1 is:

minD1,Z1‖D1X1 − Z1‖2F + λ2‖D1‖2F + λ1‖Z1‖1 (2.2.1)

The loss function over D2 and Z2 is:

minD2,Z2‖D2X2 − Z2‖2F + λ5‖D2‖2F + λ4‖Z2‖1 (2.2.2)

The term ‖D1X1−Z1‖2F in Equation (2.2.1) is called the sparsification error for the data X1

in the dictionary domain and the term ‖D2X2−Z2‖2F in Equation (2.2.2) is the sparsification

error for the data X2 in the dictionary domain. Sparsification error is a modelling error in

the dictionary representation. Our aim is to minimize this error in order to learn the best

analysis dictionary model. Here λ1, λ2, λ4 and λ5 are regularization parameters.

After computing D1 and Z1, we find classifier W1 on the value of Z1 that has been

calculated using Equation (2.2.1). Thus, we are solving two independent loss functions. One

loss function to find D1 and Z1 and the other to find W1. For formulating the loss function

13

for calculating classifier W1, we proceed as follows.

minW1‖F −W1Z1‖2F + λ3‖W1‖2F (2.2.3)

The term ‖F −W1Z1‖2F in the above equation is a linear regression loss or the classification

error. Each column of F , which is fi, is a label vector for xi and fi ∈ Rm. So, fi = [1, 0]T

indicates a positive sample or class label = 1 and fi = [0, 1]T indicates a negative sample

or class label = −1. The classifier W1 ∈ Rm×k. Number of rows in the classifier, m = 2,

because there are two classes, one positive and the other negative.

Likewise, we find classifier W2 on the value of Z2 that has been calculated using Equation

(2.2.2).

minW2‖F −W2Z2‖2F + λ6‖W2‖2F (2.2.4)

Hence, for calculating second dictionary and classifier as well, we solve two independent loss

functions.

The term ‖F − W2Z2‖2F in the above equation is a linear regression loss. The classifier

W2 ∈ Rm×k. Number of rows in this classifier is also m = 2, because there are two classes,

one positive and the other negative.

2.2.2 Initialization of HoG Dictionary and Classifier

KSVD[KSVD paper] is run on positive and negative HoG samples separately to form two

dictionaries of the same size. These two are combined together to form a dictionary D1
init ∈

Rd1×k. Now our initial HoG dictionary D1
0 is the transpose of D1

init. Thus, D1
0 = (D1

init)
T

and D1
0 ∈ Rk×d1 . The label fi for each dictionary atom remains same in subsequent learning,

only the value of each atom d1i is updated. Once we have D1
0, the sparse code for HoG

14

samples is calculated over the initial dictionary D1
0:

Z1
calc = argminZ1‖DX1 − Z1‖2F + λ1‖Z1‖1 (2.2.5)

Equation (2.2.5) is solved using soft thresholding with λ1 as the threshold. Here, D = D1
0.

Now, once we have the initial dictionary D1
0 and the sparse code Z1

calc, we compute the initial

classifier W 1
0 . W 1

0 is computed using ridge regression,

W 1
0 = argminW1‖F −W1Z

1
calc‖2F + λ3‖W1‖2F (2.2.6)

Here, F is the label matrix as mentioned in Section (2.1.1). The solution to Equation (2.2.6)

is:

W 1
0 = FZ1

calc
T (Z1

calcZ
1
calc

T + λ3I)−1 (2.2.7)

Here, for any matrix A, AT is the transpose of matrix A.

2.2.3 Initialization of LDP Dictionary and Classifier

KSVD [20] is run on positive and negative LDP samples separately to form two dictionaries

of the same size. These two are combined together to form a dictionary D2
init ∈ Rd2×k. Now

our initial LDP dictionary D2
0 is the transpose of D2

init. Thus, D2
0 = (D2

init)
T and D2

0 ∈ Rk×d2 .

The label fi for each LDP dictionary atom remains same in subsequent learning, only the

value of each atom d2i is updated. Once we have D2
0, the sparse code for LDP samples is

calculated over it.

Z2
calc = argminZ2‖DX2 − Z2‖2F + λ4‖Z2‖1 (2.2.8)

15

Equation (2.2.8) is solved using soft thresholding with λ4 as the thresholding parameter.

Here, D = D2
0. Now, once we have the initial dictionary D2

0 and the sparse code Z2
calc, we

compute the initial classifier W 2
0 . W 2

0 is computed using ridge regression,

W 2
0 = argminW2‖F −W2Z

2
calc‖2F + λ6‖W2‖2F (2.2.9)

Here, F is the label matrix as mentioned in Section (2.1.1). The solution to Equation (2.2.9)

is:

W 2
0 = FZ2

calc
T (Z2

calcZ
2
calc

T + λ6I)−1 (2.2.10)

Now we have both the initial dictionaries and both the initial classifier, we proceed as follows.

2.2.4 Classification

Once we have learned the dictionaries and classifiers, we classify new frames into foreground

and background. For every new frame, P particles are sampled around the centroid of the

previous frame. Now we extract the feature vector x1i from a 32x32 image patch around the

ith particle, for each of the P particles. The feature vector x1i is extracted from the image

patch by finding a 496 dimensional histogram of gradients feature using [21]. This is how

we obtain a new data matrix X1 = {x11, x12,x1P}. We find the sparse code Z1 of X1 using

Equation (2.2.5). Similarly, by finding second order local derivative pattern on the image

patches, we get a new data matrix X2 = {x21, x22,x2P}. We find the sparse code Z2 of X2

using Equation (2.2.5).

Now inspired by [9], we use a weighted joint decision measure for each sample during

testing. For calculating this joint decision metric, we first find out reconstructed x1i (x1i(rec))

16

using the sparse code z1i and dictionary D1.

x1i(rec) = (DT
1D1 + λ1I)−1DT

1 z
1
i (2.2.11)

Likewise reconstructed x2i is:

x2i(rec) = (DT
2D2 + λ4I)−1DT

2 z
2
i (2.2.12)

The weighted joint decision measure for HoG data samples is:

ε1(x
1
i) = ‖X1

tr − x1i(rec)‖2 + ω1
i ‖fi −W1z

1
i ‖2 (2.2.13)

The weighted joint decision measure for LDP data samples is:

ε2(x
2
i) = ‖X2

tr − x2i(rec)‖2 + ω2
i ‖fi −W2z

2
i ‖2 (2.2.14)

X1
tr in Equation (2.2.13) is the weighted average value of HoG features of the tracking result

and X2
tr in Equation (2.2.14) is the weighted average value of LDP features of the tracking

result. ‖X1
tr−x1i(rec)‖2 is the reconstruction error for the ith HoG sample and ‖X2

tr−x2i(rec)‖2

is the reconstruction error for the ith LDP sample. ‖fi −Wz1i ‖2 is the linear regression loss

for the ith HoG sample and ‖fi−Wz2i ‖2 is the linear regression loss for the ith LDP sample.

We add a weight to classification error, so that its contribution to the error metric gets

updated dynamically. If a feature describes the target with higher ability, then the weight

of classification error associated to that feature would be high, else small.

17

Calculating Weights

To calculate the decision metrics in Equation (2.2.13) and Equation (2.2.14), we find out the

weighting parameters ω1
i and ω2

i as calculated in [9].

ω1
i = ρ(1−

‖X1
tr − x1i(rec)‖2

‖X1
tr − x1i(rec)‖2 + ‖X2

tr − x2i(rec)‖2
) (2.2.15)

ω2
i = ρ(1−

‖X2
tr − x2i(rec)‖2

‖X1
tr − x1i(rec)‖2 + ‖X2

tr − x2i(rec)‖2
) (2.2.16)

Here, ρ is a constant to control the contribution of weight to classification error and has been

fixed to 0.5 experimentally.

The weight attached to a feature is a measure of its dictionary’s capability to describe

the target. Thus, to calculate the weights we use the reconstruction error term described

before in the same Section. This way we make our appearance model more robust to various

situations and challenges. The terms X1
tr and X2

tr are explained in the next section.

2.2.5 Tracking Procedure

For the first frame of our video sequence, we use ground truth given for the first frame and

annotate the target with a bounding box x1 = (px1, py1, h1, w1). Here, (px1, py1) is the

centroid, h1 and w1 are the height and width of the bounding box annotated around the

target respectively. Now, we randomly select N0 positive and N0 negative samples around x1.

N0 Positive samples are obtained by randomly shifting the bounding box a few pixels around

x1. Negative samples are obtained by randomly shifting the bounding box far away from x1

N0 times. In order to make sure that positive samples do not overlap with negative samples,

the distance between the two is kept sufficiently large. The value of N0 has been empirically

fixed to 100. Now set (X1
p) is created by combining the feature vectors obtained on applying

histogram of gradients to the image patches around each of the N0 positive samples. In a

18

similar way X1
n is found out for negative samples. Once we have X1

0 = [X1
p ;X1

n], we can

obtain D1
0 and W 1

0 as described in Section (2.2.2). Similarly, set (X2
p) is created by combining

the feature vectors obtained on applying second order local derivative pattern to the image

patches around each of the N0 positive samples. In a similar way X2
n is found out for negative

samples. Once we have X2
0 = [X2

p ;X2
n], we can obtain D2

0 and W 2
0 as described in Section

(2.2.3).

For subsequent frames, we randomly sample a fixed number of P particles around the

centroid of the previous frame xt−1 based upon the Gaussian distribution p(xt/xt−1). Now

we extract HoG feature vector xi
1 and LDP feature vector xi

2 from a 32x32 image patch

around the ith particle, for each of the P particles. This is how we obtain new data matrices

X1 = {x11, x12, ..., x1P} and X2 = {x21, x22, ..., x2P}. Then we compute sparse code matrices Z1

and Z2 using Equation (2.2.5) and Equation (2.2.6) respectively.

Next, we compute an error vector ε1 ∈ RP×1, where the ith element is the joint decision

metric in Equation (2.2.13) for the ith candidate. In the same way error vector ε2 ∈ RP×1 is

calculated, where the ith element is the joint decision metric in Equation (2.2.14) for the ith

candidate. Now a total error vector ε is calculated by:

ε = ε1 + ε2 (2.2.17)

The particle with the smallest joint error value is chosen to be the best particle and chosen

as the tracking result for the current frame. The value of P is chosen to be 800 empirically.

Now to calculate X1
tr for finding the reconstruction error term in Equation (2.2.13), we

accumulate the HoG feature vector extracted from the image patch around the best location

into a set U1. This set U1 always has a fixed number of elements U1
fix. Whenever the

number of elements in U1 exceeds U1
fix, the element from the oldest frame is deleted. With

each element in U1, a weight e−ε1 is associated. Here, ε1 is the joint decision error for that

element calculated using Equation (2.2.13). X1
tr is computed as the weighted average of all

19

the elements in U1. This way the elements with smaller ε1 get more importance and the

elements with larger ε1 get less importance on the combined sample X1
tr. In the first frame

U1 just contains one element which is the ground truth bounding box used to initialize the

tracker. Thus, its weight is initialized to 1.

Likewise, we calculate X2
tr for finding the reconstruction error term in Equation (2.2.14),

we accumulate the LDP feature vector extracted from the image patch around the best

location into a set U2. The set U2 always has a fixed number of elements U2
fix. As soon

as the number of elements in U2 exceeds U2
fix, element from the oldest frame is deleted. A

weight e−ε2 is associated with each element in U2. Here, ε2 is the joint decision error for that

element calculated using Equation (2.2.14). X2
tr is the weighted average of all the elements

in U2. In the first frame U2 just contains one element which is the ground truth bounding

box used to initialize the tracker and its weight is initialized to 1.

To run the update for D1 and W1, another set V1 is constructed. In each frame after

finding out the best particle xt, we randomly sample N positive and N negative samples

around xt. Positive samples are obtained by randomly shifting the bounding box a few pixels

around xt, N times. N number of negative samples are obtained by randomly shifting the

bounding box far away from xt, N times. In order to make sure that positive samples do

not overlap with negative samples, the distance between the two is kept sufficiently large.

Now set X1
pos is created by combining the feature vectors obtained on applying histogram of

gradients to the image patches around each of the N positive samples. In a similar way X1
neg

is found out for negative samples. The distance between the negative and positive samples is

kept sufficiently large, so that X1
neg represents pure background. X1 = [X1

pos;X
1
neg] is added

to set V1. We keep accumulating X1 in V1 for a fixed V 1
fix number of frames and then D1 is

updated by solving Equation (2.2.1) for a fixed number of iterations. Then W2 is updated

on Z1 obtained from Equation(2.2.5). After the update, set V1 is emptied.

Similarly, for updating D2 and W2, we construct another set V2. In each frame after

finding out the best particle xt, we randomly sample N positive and N negative samples

20

around xt as explained above in the same Section. Now set X2
pos is constructed by combining

the feature vectors obtained on applying second order local derivative pattern to the image

patches around each of the N positive samples. X2
neg is found out for negative samples by

the same process. The distance between the negative and positive samples is kept sufficiently

large, so that X2
neg represents only background. X2 = [X2

pos;X
2
neg] is added to set V2. We keep

accumulating X2 in V2 for a fixed V 2
fix number of frames and then D2 is updated by solving

Equation (2.2.2) for a fixed number of iterations. Then W2 is updated on Z2 obtained from

Equation(2.2.8). After the update, set V2 is emptied. The value of N has been empirically

found out to be 100.

The tracking result obtained before might be noisy and may not accurately represent the

target. Thus, we have fixed two pairs of thresholds th11, th
1
2 and th21, th

2
2 empirically. Before

accumulating the HoG feature vector around the best particle and set X1 = [X1
pos;X

1
neg] for

a particular frame into U1 and V1 respectively, we check if the reconstruction error of HoG

dictionary as mentioned in Section (2.2.4) for the best particle of that frame is less than th11

and the regression loss is less than th12. If this is true, we add the HoG feature vector around

the best particle for that frame into U1 and X1 = [X1
pos;X

1
neg] into V1. If any of the two

errors is more than its respective threshold, we do not add the HoG vector and set X1 into

sets U1 and V1 respectively.

Similarly, before we accumulate the LDP feature vector around the best particle and

set X2 = [X2
pos;X

2
neg] for a particular frame into U2 and V2 respectively, we check if the

reconstruction error of LDP dictionary as mentioned in Section (2.2.4) for the best particle

of that frame is less than th21 and the regression loss is less than th22. If this is true, we add

the LDP feature vector around the best particle for that frame into U2 and X2 = [X2
pos;X

2
neg]

into V2. If any of the two errors is more than its respective threshold, we do not add the

LDP feature vector and set X2 into U2 and V2 respectively.

21

Chapter 3

Experimental Settings and Results

This chapter describes all the experimental settings and simulations for evaluating the per-

formance of both the trackers. There are 50 videos in OTB-50 dataset in [23] which cover

all the eleven attributes (illumination variation, occlusion, deformation etc.) that affect a

tracker’s performance. The two proposed trackers are made to run on this dataset and their

overall performance as well as performance against these eleven attributes individually is

assessed.

The metrics for evaluating their performance are: Precision Plots and Success Plots. The

underlying metrics to generate these plots are Central Location Error and Intersection Over

Union Score respectively. This section briefly explains both the metrics and the methodology

of generating the plots using these metrics. The performance of our trackers using these plots

is compared with all the trackers mentioned in Visual Tracking Benchmark [23] and some

other state of the art trackers like [1, 12, 13, 15–17].

This section also gives a detailed account of all the parameters and their values that were

chosen for running the experiments. The two proposed trackers were coded in MATLAB

and all the experiments were performed on MATLAB R2014a running on a 64 bit Windows

machine having 4 GB RAM and Intel i5 CPU @ 2.5 GHz.

22

3.1 Evaluation Methodology

As in [23], Success Plots and Precision Plots are used for quantitative assessment of both

the proposed trackers. The two plots are generated as under:

3.1.1 Precision Plots

Center location Error is an error metric used for evaluating the performance of tracking

algorithms. It is defined as the Euclidean distance between the centres of the bounding box

predicted by the tracker and the manually labelled ground truth. Then the average center

location error over all the frames of one sequence is calculated. This average center location

error gives the tracking performance for that sequence.

The average center location is not sufficient alone to evaluate the performance of trackers

because when the tracker will lose the target, the predicted bounding box location can be

random and the average error value may not accurately measure the tracking performance.

It was argued by [24] that precision plot is a better metric to evaluate trackers than centre

location error.

The precision plot is generated in the following way. A range of values of pixel distances

from 0 to 50 units is chosen as the threshold. The percentage of frames in which the estimated

location of the centre of bounding box is within a particular value of threshold distance when

compared to ground truth is plotted against the threshold values to generate the precision

plots. These plots are simple and easy to understand. As in [16] more accurate trackers have

high values of precision at lower thresholds values. If a tracker is not able to reach precision

values equal to 1 for a large range of threshold, it indicates its performance is poor.

To calculate the ranking of the trackers based on precision plots, a threshold value of 20

pixels is chosen as explained in [23]. This is how precision plots are produced and ranking

of trackers based on precision plots is done.

23

3.1.2 Success Plots

Intersection over unions is another common metric frequently used for evaluating the per-

formance of trackers. Given the resultant bounding box RT , as predicted by the proposed

tracker for a frame and the ground truth bounding box RGT , then the intersection over union

metric is calculated by IOU = area(RGT∩RT)
area(RGT∪RT)

. Here, ∩ is intersection and ∪ is union of two

regions.

Earlier, a specific threshold used to be selected(for eg. 0.5) and all frames in which

the IOU was above this threshold were treated as successful. But this method is not very

appropriate to quantify the performance of trackers. Thus, [23] introduced success plots to

measure the performance of trackers.

To generate the success plots, the threshold is varied from 0 to 1. The number of frames

in which the IOU is greater than the given threshold, are considered as successful for that

value of threshold. The ratio of successful frames to total frames is plot against threshold

values. This is how the success plots are generated.

For the ranking of trackers based on success plots, the Area Under Curve(AUC) is cal-

culated for the success plot of each tracking algorithm. The trackers are ranked on the basis

of decreasing order of these AUC values.

3.2 Feature Descriptors

In our implementation using single analysis dictionary (OADL), we use a 496-dimensional

histograms of oriented gradients (HoG) feature. The objects that are being tracked are

mostly human and animal faces, humans, vehicles etc. For discriminating these objects from

the background, using the information encoded in edges and corners is very useful because

edges and corners convey a lot of information about object shape. There is a sharp change

in intensity around edges and corners and the magnitude of gradients is considerably large

around them. Thus, using a descriptor in which the underlying features are gradients is a

24

suitable choice for classification task.

In our implementation using two analysis dictionaries (OMADL), we use a 496-dimensional

histograms of oriented gradients (HoG) feature [19] and second order local derivative pat-

tern(LDP) with 1024-dimensional LDP feature vector to generate the dictionaries. To model

the distribution of second order LDP we have used a histogram as in [22]. The reason for

using HoG has already been explained. The second-order LDP captures the change of deriva-

tive directions in the local neighbourhood, and encodes the change in a given direction. More

extensive discriminative information can be captured by a second order descriptor in a frame.

Thus, LDP in conjunction with HoG gives a considerably good performance.

3.3 Parameter Selection

3.3.1 Parameters for Single Analysis Dictionary Model

The values of parameters used for single analysis dictionaries are in the table below :

Table 3.3.1: Parameters in Single Analysis Dictionary model

Parameter Value

λ1 0.01

λ2 0.00001

λ3 1000

No. of dictionary atoms 200

No. of optimal candidates in set U 20

No. of frames after set V is emptied 4

In the above table, λ1, λ2 and λ3 are regularization parameters as explained before. The

number of dictionary atoms were chosen empirically. Lesser number of atoms deteriorated the

performance of tracking algorithm and choosing more number of atoms decreased its speed.

Thus, experimentally 200 atoms was a good trade-off between the speed and performance

25

of the tracker. Out of 200 dictionary atoms, 100 atoms represent positive samples and

100 atoms represent negative samples. The number of iterations for dictionary learning

during initialization are 5. The number of iterations have also been fixed experimentally.

The number of optimal location candidates in U, that is the number of optimal location

candidates stored from the previous frames is 20. As soon as the number of candidates

become more than 20, the candidates from oldest frame are deleted. Thus, U always has a

fixed number of elements stored in it. The number of frames after which the dictionary and

classifier are updated or set V is emptied are 4. The threshold value th1 for reconstruction

error is 0.35 and the the threshold value th2 for regression loss or classification error is 1. If

any of the two errors are more than their respective threshold values, the tracking result of

that frame is discarded and not saved in set U. The value of parameter α that maintains a

trade off between the classification error and linear regression loss is 0.8. All of these have

been found out empirically and their values remain same for all the videos sequences in the

dataset.

3.3.2 Parameters for Multiple Analysis Dictionaries Model

In the table for multiple analysis dictionaries model (OMADL) given on the next page, λ1,

λ2 and λ3 are regularization parameters for the dictionary with HoG features as explained

before. λ4, λ5 and λ6 are regularization parameters for the dictionary with LDP features.

The number of dictionary atoms are 200 for both the dictionaries. The number of atoms

representing positive and negative samples are 100 each. The number of iterations for learn-

ing the HoG dictionary during initialization are 5. The number of iterations for learning the

LDP dictionary during initialization are 5. The number of optimal location candidates in U,

that is the number of optimal location candidates stored from the previous frames is 20. As

soon as the number of candidates become more than 20, the candidates from oldest frame

are deleted.

26

Table 3.3.2: Parameters used in Multiple Analysis Dictionaries Model

Parameter Value

λ1 0.01

λ2 0.00001

λ3 1000

λ4 0.001

λ5 100

λ6 10

No. of dictionary atoms 200

No. of optimal candidates in set U1 and U2 20

No. of frames after which sets V1 and V2 are updated 4

The number of frames after which the both the dictionaries and classifiers are updated or

sets V1 and V2 are emptied are 4. The threshold value th1 for reconstruction error is 0.35 and

the threshold value th2 for regression loss or classification error is 1 for both HoG and LDP

dictionaries. If any of the two errors are more than their respective threshold values for any

of the two dictionaries, the tracking result of that frame is discarded and not saved in set U.

The value of parameter ρ that controls the contribution of the weight of each dictionary in

the error metric is 0.5 for both the dictionaries. All of these have been found out empirically

and their values remain same for all the videos sequences in the dataset.

27

3.4 Results

We run both the proposed algorithms on all the video sequences in OTB-50 dataset. We

used the results of all the publically available trackers[2, 3, 7, 8, 17, 18, 24–44] computed on

OTB-50 dataset as provided by [23] and the codes of MDNET [12], MEEM [13], DSST [14],

KCF [16], TGPR [15] and ODDL [1] have been made available by the authors online. They

were downloaded and were run on the OTB-50 dataset on our machine.

The performance of trackers has been shown by Success and Precision Plots and the

tracked results of the trackers on frames of some video sequences from the dataset. Our

proposed algorithm using single analysis dictionary is Online Analysis Dictionary Learn-

ing OADL. Our proposed algorithm using multiple analysis dictionary is Online Multiple

Analysis Dictionary Learning OMADL.

3.4.1 Plots and Tables

The overall success and precision plots computed on all the video sequences in the dataset

and the success and precision plots for all the eleven conditions include top 10 trackers in

each case. For each plot we have computed a table that compares the Area Under Curve for

each tracker and shows ranking of trackers based on both the plots. The ranking of trackers

in success and precision plots has been done as described in section 3.1. Each table includes

top 10 trackers along with the ranking and AUC for ODDL because our work is inspired by

[1].

28

Figure 3.4.1: Overall-Success Plot

Table 3.4.1: Success Plots-Overall

Tracker AUC(Area Under Curve) Rank

MDNET 0.682 1

MEEM 0.571 2

DSST 0.562 3

OMADL 0.558 4

TGPR 0.543 5

KCF 0.508 6

OADL 0.498 7

SCM 0.496 8

STRUCK 0.468 9

TLD 0.435 10

ODDL 0.380 18

29

Figure 3.4.2: The overall precision plot over all the video sequences in OTB-50 dataset.

Table 3.4.2: Precision Plots-Overall

Tracker CLE = 20 pixels Rank

MDNET 0.905 1

MEEM 0.833 2

TGPR 0.771 3

OMADL 0.755 4

KCF 0.737 5

DSST 0.730 6

OADL 0.692 7

STRUCK 0.649 8

SCM 0.641 9

TLD 0.601 10

ODDL 0.525 14

30

Figure 3.4.3: Success plot-Illumination Variation

Tracker AUC(Area Under Curve) Rank

MDNET 0.668 1

DSST 0.566 2

MEEM 0.548 3

TGPR 0.526 4

OMADL 0.503 5

KCF 0.483 6

SCM 0.473 7

OADL 0.435 8

ASLA 0.429 9

VTS 0.429 9

STRUCK 0.428 10

ODDL 0.348 18

Table 3.4.3: Success Plots-Illumination Variation

Figure 3.4.4: Precision plot-Illumination Variation

Tracker CLE = 20 pixels Rank

MDNET 0.897 1

MEEM 0.779 2

TGPR 0.721 3

KCF 0.717 4

DSST 0.716 5

OMADL 0.645 6

SCM 0.594 7

VTS 0.573 8

OADL 0.568 9

STRUCK 0.558 10

ODDL 0.459 17

Table 3.4.4: Precision Plots-Illumination Variation

31

Figure 3.4.5: Success plot-Background Clutter

Tracker AUC(Area Under Curve) Rank

MDNET 0.632 1

MEEM 0.576 2

OMADL 0.543 3

TGPR 0.536 4

KCF 0.514 5

DSST 0.509 6

OADL 0.490 7

STRUCK 0.458 8

SCM 0.450 9

VTS 0.428 10

ODDL 0.363 18

Table 3.4.5: Success Plots- Background Clutter

Figure 3.4.6: Precision Plot - Background Clutter

Tracker CLE = 20 pixels Rank

MDNET 0.866 1

MEEM 0.801 2

TGPR 0.745 3

OMADL 0.744 4

KCF 0.725 5

OADL 0.695 6

DSST 0.666 7

CSK 0.585 8

STRUCK 0.585 8

SCM 0.578 9

VTS 0.578 9

ODDL 0.529 12

Table 3.4.6: Precision Plots- Background Clutter

32

Figure 3.4.7: Success plot-Fast Motion

Tracker AUC(Area Under Curve) Rank

MDNET 0.625 1

MEEM 0.566 2

TGPR 0.481 3

STRUCK 0.462 4

OMADL 0.454 5

DSST 0.446 6

KCF 0.445 7

TLD 0.417 8

CXT 0.388 9

OADL 0.388 9

OAB 0.358 10

ODDL 0.291 25

Table 3.4.7: Success Plots-Fast Motion

Figure 3.4.8: Precision Plot-Fast Motion

Tracker CLE = 20 pixels Rank

MDNET 0.826 1

MEEM 0.749 2

TGPR 0.636 3

STRUCK 0.604 4

OMADL 0.585 5

KCF 0.581 6

TLD 0.551 7

DSST 0.520 8

CXT 0.515 9

OADL 0.478 10

ODDL 0.341 26

Table 3.4.8: Precision Plot-Fast Motion

33

Figure 3.4.9: Success plot-In-plane Rotation

Tracker AUC(Area Under Curve) Rank

MDNET 0.645 1

DSST 0.579 2

MEEM 0.533 3

OMADL 0.502 4

TGPR 0.501 5

KCF 0.500 6

SCM 0.451 7

CXT 0.448 8

OADL 0.440 9

STRUCK 0.4343 10

ODDL 0.373 19

Table 3.4.9: Success Plots- In-plane Rotation

Figure 3.4.10: Precision plot-in plane rotation

Tracker CLE = 20 pixels Rank

MDNET 0.864 1

MEEM 0.798 2

DSST 0.764 3

KCF 0.727 4

TGPR 0.717 5

OMADL 0.683 6

OADL 0.625 7

CXT 0.604 8

STRUCK 0.604 8

VTD 0.588 9

SCM 0.583 10

ODDL 0.508 16

Table 3.4.10: Precision Plots- In-plane Rotation

34

Figure 3.4.11: Success plot-Low Resolution

Tracker CLE = 20 pixels Rank

MDNET 0.629 1

OMADL 0.426 2

DSST 0.422 3

OADL 0.402 4

MTT 0.389 5

L1APG 0.381 6

TGPR 0.380 7

STRUCK 0.372 8

MEEM 0.360 9

CSK 0.350 9

SemiT 0.330 10

ODDL 0.293 16

Table 3.4.11: Success Plots-Low Resolution

Figure 3.4.12: Precision plot- Low Resolution

Tracker CLE = 20 pixels Rank

MDNET 0.861 1

OMADL 0.577 2

OADL 0.558 3

TGPR 0.552 4

STRUCK 0.545 5

DSST 0.524 6

MTT 0.510 7

MEEM 0.483 8

SemiT 0.471 9

L1APG 0.460 10

ODDL 0.393 12

Table 3.4.12: Precision Plots-Low Resolution

35

Figure 3.4.13: Success plot-Motion Blur

Tracker AUC(Area Under Curve) Rank

MDNET 0.669 1

MEEM 0.559 2

TGPR 0.503 3

KCF 0.476 4

DSST 0.471 5

OMADL 0.455 6

STRUCK 0.433 7

TLD 0.404 8

CXT 0.369 9

OADL 0.366 10

ODDL 0.290 24

Table 3.4.13: Success Plots- Motion Blur

Figure 3.4.14: Precision plot-Motion Blur

Tracker CLE = 20 pixels Rank

MDNET 0.887 1

MEEM 0.725 2

TGPR 0.648 3

KCF 0.621 4

OMADL 0.580 5

STRUCK 0.551 6

DSST 0.545 7

TLD 0.518 8

CXT 0.509 9

TM-V 0.447 10

OADL 0.443 11

ODDL 0.341 20

Table 3.4.14: Precision Plots- Motion Blur

36

Figure 3.4.15: Success plots-Occlusion

Tracker AUC(Area Under Curve) Rank

MDNET 0.649 1

MEEM 0.560 2

OMADL 0.548 3

DSST 0.533 4

TGPR 0.509 5

KCF 0.502 6

OADL 0.486 7

SCM 0.480 8

LSK 0.413 9

STRUCK 0.402 10

ODDL 0.349 20

Table 3.4.15: Success Plots- Occlusion

Figure 3.4.16: Precision plot- Occlusion

Tracker CLE = 20 pixels Rank

MDNET 0.853 1

MEEM 0.799 2

KCF 0.740 3

OMADL 0.723 4

TGPR 0.718 5

DSST 0.683 6

OADL 0.649 7

SCM 0.627 8

TLD 0.550 9

STRUCK 0.549 10

ODDL 0.458 21

Table 3.4.16: Precision Plots- Occlusion

37

Figure 3.4.17: Success plots-Out-Of Plane Rotation

Tracker AUC(Area Under Curve) Rank

MDNET 0.670 1

MEEM 0.563 2

DSST 0.544 3

OMADL 0.529 4

TGPR 0.520 5

KCF 0.487 6

SCM 0.465 7

OADL 0.458 8

VTD 0.431 9

VTS 0.424 10

STRUCK 0.424 10

ODDL 0.356 19

Table 3.4.17: Success Plots- Out Of Plane Rotation

Figure 3.4.18: Precision plot - Out of plane Rotation

Tracker CLE = 20 pixels Rank

MDNET 0.895 1

MEEM 0.840 2

TGPR 0.738 3

KCF 0.721 4

DSST 0.719 5

OMADL 0.718 6

OADL 0.646 7

VTD 0.611 8

SCM 0.608 9

VTS 0.597 10

ODDL 0.486 22

Table 3.4.18: Precision Plots- Out Of Plane Rotation

38

Figure 3.4.19: Success plots-Out Of View

Tracker AUC(Area Under Curve) Rank

MDNET 0.684 1

MEEM 0.614 2

OMADL 0.501 3

OADL 0.488 4

KCF 0.483 5

DSST 0.482 6

LOT 0.467 7

TGPR 0.462 8

STRUCK 0.459 9

TLD 0.457 10

ODDL 0.371 20

Table 3.4.19: Success Plots-Out Of View

Figure 3.4.20: Precision plot- Out of View

Tracker CLE = 20 pixels Rank

MDNET 0.839 1

MEEM 0.752 2

OMADL 0.583 3

TLD 0.576 4

LOT 0.567 5

OADL 0.554 6

KCF 0.554 6

TGPR 0.551 7

DSST 0.521 8

LSK 0.515 9

CXT 0.510 10

ODDL 0.436 17

Table 3.4.20: Precision Plots-Out Of View

39

Figure 3.4.21: Success plots- Scale Variation

Tracker AUC(Area Under Curve) Rank

MDNET 0.677 1

DSST 0.564 2

OMADL 0.529 3

SCM 0.512 4

MEEM 0.498 5

TGPR 0.477 6

OADL 0.467 7

ASLA 0.443 8

TLD 0.416 9

STRUCK 0.414 10

ODDL 0.377 19

Table 3.4.21: Success Plots- Scale Variation

Figure 3.4.22: Precision plot -Scale Variation

Tracker CLE = 20 pixels Rank

MDNET 0.906 1

MEEM 0.785 2

DSST 0.730 3

TGPR 0.707 4

OMADL 0.707 4

KCF 0.661 5

SCM 0.660 6

OADL 0.636 7

STRUCK 0.626 8

TLD 0.595 9

VTD 0.584 10

ODDL 0.467 18

Table 3.4.22: Precision Plots- Scale Variation

40

Figure 3.4.23: Success plot-Deformation

Tracker AUC(Area Under Curve) Rank

MDNET 0.706 1

MEEM 0.579 2

OMADL 0.564 3

TGPR 0.540 4

KCF 0.539 5

DSST 0.509 6

OADL 0.469 7

SCM 0.448 8

DFT 0.439 9

STRUCK 0.393 10

ODDL 0.354 20

Table 3.4.23: Success Plots- Deformation

Figure 3.4.24: Precision plot-Deformation

Tracker CLE = 20 pixels Rank

MDNET 0.949 1

MEEM 0.852 2

OMADL 0.760 3

KCF 0.751 4

TGPR 0.749 5

OADL 0.675 6

DSST 0.644 7

SCM 0.586 8

DFT 0.537 9

STRUCK 0.521 10

ODDL 0.486 15

Table 3.4.24: Precision Plots- Deformation

41

Chapter 4

Discussion

4.1 Quantitative Comparison with other trackers

As can be seen from the Success and Precision plots above, our approach OADL is among top

10 trackers for all plots exceept for precision plot of Motion blur, where it ranks 11th. Clearly,

our approach OMADL is an improvement over our approach using OADL. OMADL is

among top 5 trackers for all the situations except in precision plots it stands 6th for illumi-

nation variations, in-plane-rotations and out-of-Plane Rotations. In success plots it ranks

6th in motion blur. The approach using multiple analysis dictionaries works fairly well for

most of the situations because the analysis dictionaries that are learnt are able to classify the

object from its background accurately. This is because the dictionaries are learnt on HoG

and LDP features. HoG captures first order derivatives and LDP captures second order

derivatives. Hence, both are non overlapping features and help to learn dictionaries which

when used jointly with a weighting measure, have a good ability to distinguish foreground

from the background.

42

4.2 Qualitative Comparison with other trackers

To visually compare the results of our proposed trackers with other trackers, we show the

results of trackers in the form of bounding boxes on frames of some video sequences from

OTB-50 dataset. We choose some sequences like Walking2, Football, Jumping, Singer1,

Singer2 and we choose some of the challenging frames in which the effect of various con-

ditions like Occlusion, background clutter, fast motion etc is clearly depicted. Our tracker

performs consistently in all these video sequences under all the challenging conditions.

In the sequence Singer2, we also show a comparison between our two proposed algo-

rithms. Clearly our proposed algorithm with multiple analysis dictionaries OMADL, has

an improved performance than our proposed algorithm with a single analysis dictionary

OADL.

43

(a) Frame No.-69 (b) Frame No.-152

(c) Frame No.- 193 (d) Frame No.- 198

(e) Frame No.- 230 (f) Frame No.- 377

(g) Frame No.- 382 (h) Frame No.- 407

Figure 4.2.1: Video Sequence:Walking2

(a) Frame No.-61 (b) Frame No.-70

(c) Frame No.- 283 (d) Frame No.- 286

(e) Frame No.- 287 (f) Frame No.- 290

(g) Frame No.- 291 (h) Frame No.- 292

Figure 4.2.2: Video Sequence:Football

(a) Frame No.-16 (b) Frame No.-35

(c) Frame No.- 36 (d) Frame No.- 37

(e) Frame No.- 98 (f) Frame No.- 126

(g) Frame No.- 178 (h) Frame No.- 287

Figure 4.2.3: Video Sequence:Jumping

(a) Frame No.-67 (b) Frame No.-70

(c) Frame No.- 169 (d) Frame No.- 218

(e) Frame No.- 228 (f) Frame No.- 267

(g) Frame No.- 275 (h) Frame No.- 295

Figure 4.2.4: Video Sequence:Singer1

(a) Frame No.-16 (b) Frame No.-20

(c) Frame No.- 37 (d) Frame No.- 178

(e) Frame No.- 249 (f) Frame No.- 260

(g) Frame No.- 286 (h) Frame No.- 323

Figure 4.2.5: Video Sequence:Singer2

We compare our trackers with other state of the art trackers based on the frames illus-

trated above. The target in video Walking2 is influenced by occlusion and the target itself

undergoes scale variation and low resolution. In frames 69 and 152, there is a scale variation

in the target, both our trackers OADL and OMADL are able to track the target correctly

and are closest to the ground truth annotation. In frames 193 and 198, when the target is

occluded by a man, MEEM, TGPR, KCF and MDNET trackers lose the target partially but

our trackers are able to track the target correctly. In frames 230, 377 and 382, MEEM and

KCF have completely lost the target and they start tracking the occlusion. Our trackers are

still tracking the target. Finally in frame 407, MEEM and KCF have lost the target and

TGPR has not been able to adapt to the scale variation in the target. Both of our proposed

trackers are still closest to the ground truth bounding box.

In the video Football, in frame 61, there is a partial occlusion in the target and MDNET

starts tracking the occlusion. In all the future frames it loses the target completely and drifts

with the occlusion. Our trackers tracks the target well. In frame 286, there is a occlusion

again, the trackers MEEM and KCF start tracking the occlusion. In frame 287, all the

trackers except both of our trackers and TGPR, are tracking the occlusion. In frame 290,

all the trackers except both of our trackers, drift away from the target completely. Finally

in frames 291 and 292, our trackers are still able to track the target. The bounding box of

tracker MEEM comes back on the target in both these frames. But rest of the trackers have

completely lost the target. Throughout the entire sequence, both of our trackers are able to

track the target well.

In the video sequence Jumping, fast motion and motion blur occur in the target region.

In frame 16, MDNET, TGPR and DSST lose the target partially. In frame 35, ODDL loses

the target completely. In the same frame TGPR and KCF lose the target partially. In frame

36, ODDL, KCF and DSST have lost the target completely whereas MDNET and TGPR

lose the target partially. In frame 37, MDNET is able to track the target back but ODDDL,

TGPR, DSST and KCF have lost the target. In frame 98, DSST, TGPR and KCF are not

49

able to track the target. By frame 126, TGPR has been able to come back to the target, but

DSST and KCF have lost the target completely. In frame 178 and 287, TGPR is not able

to track the target properly. Throughout the entire sequence both of our trackers stay close

to the ground truth bounding box annotation and are able to track the target correctly.

In the next video sequence Singer1, illumination variation, occlusion and background

clutter affect the target externally. The target itself goes through scale variation, deformation

and out of plane rotation. In frames 67 and 70, the trackers MEEM, ODDL and TGPR are

not able to model scale variation in the target properly. In frame 169, MEEM and TGPR

have expanded much more than the ground truth bounding box and ODDL has shrunk a lot

in comparison to the ground truth bounding box. In frame 218 and 228, MEEM loses the

target completely and the size of KCF bounding box is very large as compared to the ground

truth. In frames 275 and 295, MEEM is able to partially track the target but the size of the

bounding boxes of MEEM and KCF is still very large as compared to ground truth. In the

entire sequence, both of our trackers are able to track the target accurately.

In video sequence Singer2, the target is affected externally by illumination variation and

background clutter. The internal variations that occur in the target in this sequence are

deformation, in plane rotation and out of plane rotation. In this sequence in addition to

comparison with other trackers, we compare the performance of our trackers OADL and

OMADL against each other as well. In frames 16 and 20, the trackers MEEM, MDNET

and ODDL are not able to track the target properly. On the contrary, both of our trackers

are able to track the target accurately in frames 16 and 20. In all the subsequent frames

till the last frame, MEEM loses the target completely. In frame 37, our tracker OADL, is

only able to track the target partially. Furthermore, the bounding box of ODDL tracker is

very small as compared to the ground truth bounding box. Whereas our tracker OMADL,

is still able to track the target well. In frame 178, the bounding boxes of our proposed

tracker OADL and the bounding box of the tracker ODDL shrink a lot in comparison to the

ground truth. Our tracker OMADL still tracks the target correctly. In frame 249, OADL

50

and ODDL have lost the target completely. In frame 260 and 286, the tracker MDNET,

tracks the target partially. Our tracker OMADL tracks the target well. In frame 323, TGPR

tracker’s bounding box becomes quite small as compared to ground truth and is not able to

track the target accurately. Our tracker OMADL is able to track the target well throughout

the entire video sequence. Whereas our tracker OADL is not able to track the target properly

in this sequence. Thus, our approach with multiple analysis dictionaries (OMADL) shows

an improvement over our work with single analyis dictionary (OADL).

4.3 Comparison on the basis of Speed

In terms of frames per second our algorithm using single analysis dictionary gives a tracking

speed of 5 frames per second and our algorithm using multiple analysis dictionaries gives a

speed of 3 frames per second. Whereas, trackers that use deep learning architectures like

MDNET has a tracking speed of 1 frame per second and Convolutional Neural Net Bagging

for Online Visual Tracking(CNN Bagging) [45] has a tracking speed of around 1.6 frames

per second. This makes our algorithm OMADL three times faster than MDNET and around

two times faster than CNN Bagging. Moreover, the model update in OMADL is simpler and

faster as compared to MDNET and CNN Bagging. This makes our algorithm more desirable

for online tracking applications.

4.4 Conclusion

Thus, in this thesis we propose two tracking algorithms. The first one uses single analysis

dictionary to model the target and the second one uses multiple analysis dictionaries to

model the target. Our work is so far to the best of our knowledge the first work that

uses analysis dictionaries for visual tracking and analysis dictionary approaches clearly show

an improvement over synthesis dictionary approaches for visual tracking. In our approach

with multiple analysis dictionaries, we dynamically weigh different features. This way the

51

feature which has a higher capability to describe the target gets higher weight as compared

to other features in the representation. In an experimental evaluation on OTB-50 dataset

that contains videos that are influenced by the combinations of all the tracking situations,

we are able to demonstrate that our proposed method using multiple analysis dictionaries

(OMADL) is able to outperform many state of the art trackers.

4.5 Future Work

For future work, to deal with a condition on which our model gives average performance, we

can add more dictionaries to the appearance model of our multiple analysis dictionaries algo-

rithm. These dictionaries can be learnt on such features that are invariant to that particular

condition out of the 11 conditions on which our algorithm has an average performance. Then

we can combine this dictionary with other dictionaries using the same weighting measure

explained in Section (2.2.4). For example, to deal with rotations, we can further add a dictio-

nary learnt on a feature that is rotation invariant to the appearance model of our proposed

algorithm that uses multiple analysis dictionaries. We will then combine this dictionary with

other dictionaries using the same weighting measure as explained in Section (2.2.4).

52

Bibliography

[1] F. Yang, Z. Jiang, and L. S. Davis, “Online discriminative dictionary learning for visual

tracking,” in Applications of Computer Vision (WACV), 2014 IEEE Winter Conference

on. IEEE, 2014, pp. 854–861.

[2] X. Jia, H. Lu, and M.-H. Yang, “Visual tracking via adaptive structural local sparse

appearance model,” in Computer vision and pattern recognition (CVPR), 2012 IEEE

Conference on. IEEE, 2012, pp. 1822–1829.

[3] B. Liu, J. Huang, C. Kulikowski, and L. Yang, “Robust visual tracking using local

sparse appearance model and k-selection,” IEEE transactions on pattern analysis and

machine intelligence, vol. 35, no. 12, pp. 2968–2981, 2013.

[4] X. Mei and H. Ling, “Robust visual tracking using 1 minimization,” in Computer

Vision, 2009 IEEE 12th International Conference on. IEEE, 2009, pp. 1436–1443.

[5] S. Zhang, H. Yao, H. Zhou, X. Sun, and S. Liu, “Robust visual tracking based on online

learning sparse representation,” Neurocomputing, vol. 100, pp. 31–40, 2013.

[6] T. Zhang, B. Ghanem, S. Liu, and N. Ahuja, “Low-rank sparse learning for robust

visual tracking,” in European Conference on Computer Vision, 2012, pp. 470–484.

[7] ——, “Robust visual tracking via multi-task sparse learning,” in Computer Vision and

Pattern Recognition (CVPR), 2012 IEEE Conference on. IEEE, 2012, pp. 2042–2049.

53

[8] W. Zhong, H. Lu, and M.-H. Yang, “Robust object tracking via sparsity-based col-

laborative model,” in Computer vision and pattern recognition (CVPR), 2012 IEEE

Conference on. IEEE, 2012, pp. 1838–1845.

[9] R. Liu, X. Lan, P. C. Yuen, and G. Feng, “Robust visual tracking using dynamic feature

weighting based on multiple dictionary learning,” in 24th European Signal Processing

Conference, EUSIPCO 2016, Budapest, Hungary, 2016, pp. 2166–2170.

[10] M. Yaghoobi, S. Nam, R. Gribonval, and M. E. Davies, “Constrained overcomplete

analysis operator learning for cosparse signal modelling,” IEEE Transactions on Signal

Processing, vol. 61, no. 9, pp. 2341–2355, 2013.

[11] H. Fan and J. Xiang, “Robust visual tracking with multitask joint dictionary learning,”

IEEE Transactions on Circuits and Systems for Video Technology, vol. 27, no. 5, pp.

1018–1030, 2017.

[12] H. Nam and B. Han, “Learning multi-domain convolutional neural networks for visual

tracking,” in Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, 2016, pp. 4293–4302.

[13] J. Zhang, S. Ma, and S. Sclaroff, “MEEM: robust tracking via multiple experts us-

ing entropy minimization,” in Proc. of the European Conference on Computer Vision

(ECCV), 2014.

[14] M. Danelljan, G. Häger, F. Khan, and M. Felsberg, “Accurate scale estimation for

robust visual tracking,” in British Machine Vision Conference, Nottingham, September

1-5, 2014. BMVA Press, 2014.

[15] J. Gao, H. Ling, W. Hu, and J. Xing, “Transfer learning based visual tracking with

gaussian processes regression,” in European Conference on Computer Vision. Springer,

Cham, 2014, pp. 188–203.

54

[16] J. F. Henriques, R. Caseiro, P. Martins, and J. Batista, “High-speed tracking with

kernelized correlation filters,” IEEE Transactions on Pattern Analysis and Machine

Intelligence, vol. 37, no. 3, pp. 583–596, 2015.

[17] S. Hare, S. Golodetz, A. Saffari, V. Vineet, M.-M. Cheng, S. L. Hicks, and P. H.

Torr, “Struck: Structured output tracking with kernels,” IEEE transactions on pattern

analysis and machine intelligence, vol. 38, no. 10, pp. 2096–2109, 2016.

[18] Z. Kalal, J. Matas, and K. Mikolajczyk, “Pn learning: Bootstrapping binary classifiers

by structural constraints,” in Computer Vision and Pattern Recognition (CVPR), 2010

IEEE Conference on. IEEE, 2010, pp. 49–56.

[19] N. Dalal and B. Triggs, “Histograms of oriented gradients for human detection,” in

Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society

Conference on, vol. 1. IEEE, 2005, pp. 886–893.

[20] M. Aharon, M. Elad, and A. Bruckstein, “K-svd: An algorithm for designing overcom-

plete dictionaries for sparse representation,” Signal Processing, IEEE Transactions on,

vol. 54, no. 11, pp. 4311–4322, 2006.

[21] A. Vedaldi and B. Fulkerson, “VLFeat: An open and portable library of computer vision

algorithms,” http://www.vlfeat.org/, 2008.

[22] B. Zhang, Y. Gao, S. Zhao, and J. Liu, “Local derivative pattern versus local binary

pattern: face recognition with high-order local pattern descriptor,” IEEE transactions

on image processing, vol. 19, no. 2, pp. 533–544, 2010.

[23] Y. Wu, J. Lim, and M.-H. Yang, “Online object tracking: A benchmark,” in Proceedings

of the IEEE conference on computer vision and pattern recognition, 2013, pp. 2411–2418.

[24] B. Babenko, M.-H. Yang, and S. Belongie, “Visual tracking with online multiple instance

55

learning,” in Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Con-

ference on. IEEE, 2009, pp. 983–990.

[25] D. Wang, H. Lu, and M.-H. Yang, “Least soft-threshold squares tracking,” in Proceedings

of the IEEE conference on computer vision and pattern recognition, 2013, pp. 2371–2378.

[26] S. He, Q. Yang, R. W. Lau, J. Wang, and M.-H. Yang, “Visual tracking via locality

sensitive histograms,” in IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), 2013, pp. 2427–2434.

[27] K. Zhang, L. Zhang, and M.-H. Yang, “Real-time compressive tracking,” in European

conference on computer vision. Springer, Berlin, Heidelberg, 2012, pp. 864–877.

[28] J. F. Henriques, R. Caseiro, P. Martins, and J. Batista, “Exploiting the circulant struc-

ture of tracking-by-detection with kernels,” in Computer Vision–ECCV 2012. Springer

Berlin/Heidelberg, 2012.

[29] Y. Wu, B. Shen, and H. Ling, “Online robust image alignment via iterative convex

optimization,” in Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Con-

ference on. IEEE, 2012, pp. 1808–1814.

[30] S. Oron, A. Bar-Hillel, D. Levi, and S. Avidan, “Locally orderless tracking,” Interna-

tional Journal of Computer Vision, vol. 111, no. 2, pp. 213–228, 2015.

[31] C. Bao, Y. Wu, H. Ling, and H. Ji, “Real time robust l1 tracker using accelerated

proximal gradient approach,” in Computer Vision and Pattern Recognition (CVPR),

2012 IEEE Conference on. IEEE, 2012, pp. 1830–1837.

[32] L. Sevilla-Lara and E. Learned-Miller, “Distribution fields for tracking,” in Computer

Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on. IEEE, 2012, pp.

1910–1917.

56

[33] J. Kwon and K. M. Lee, “Tracking by sampling trackers,” in Computer Vision (ICCV),

2011 IEEE International Conference on. IEEE, 2011, pp. 1195–1202.

[34] T. B. Dinh, N. Vo, and G. Medioni, “Context tracker: Exploring supporters and dis-

tracters in unconstrained environments,” in Computer Vision and Pattern Recognition

(CVPR), 2011 IEEE Conference on. IEEE, 2011, pp. 1177–1184.

[35] J. Kwon and K. M. Lee, “Visual tracking decomposition,” in Computer Vision and

Pattern Recognition (CVPR), 2010 IEEE Conference on. IEEE, 2010, pp. 1269–1276.

[36] S. Stalder, H. Grabner, and L. Van Gool, “Beyond semi-supervised tracking: Tracking

should be as simple as detection, but not simpler than recognition,” in Computer vision

workshops (ICCV Workshops), 2009 IEEE 12th international conference on. IEEE,

2009, pp. 1409–1416.

[37] H. Grabner, C. Leistner, and H. Bischof, “Semi-supervised on-line boosting for robust

tracking,” Computer Vision–ECCV 2008, pp. 234–247, 2008.

[38] D. A. Ross, J. Lim, R.-S. Lin, and M.-H. Yang, “Incremental learning for robust visual

tracking,” International Journal of Computer Vision, vol. 77, no. 1, pp. 125–141, 2008.

[39] H. Grabner and H. Bischof, “On-line boosting and vision,” in Computer Vision and

Pattern Recognition, 2006 IEEE Computer Society Conference on, vol. 1. IEEE, 2006,

pp. 260–267.

[40] A. Adam, E. Rivlin, and I. Shimshoni, “Robust fragments-based tracking using the

integral histogram,” in Computer vision and pattern recognition, 2006 IEEE Computer

Society Conference on, vol. 1. IEEE, 2006, pp. 798–805.

[41] R. T. Collins, Y. Liu, and M. Leordeanu, “Online selection of discriminative track-

ing features,” IEEE transactions on pattern analysis and machine intelligence, vol. 27,

no. 10, pp. 1631–1643, 2005.

57

[42] R. T. Collins, “Mean-shift blob tracking through scale space,” in Computer Vision and

Pattern Recognition, 2003. Proceedings. 2003 IEEE Computer Society Conference on,

vol. 2. IEEE, 2003, pp. II–234.

[43] D. Comaniciu and P. Meer, “Kernel-based object tracking,” IEEE Transactions on

pattern analysis and machine intelligence, vol. 25, no. 5, 2003.

[44] P. Pérez, C. Hue, J. Vermaak, and M. Gangnet, “Color-based probabilistic tracking,”

in Eur. Conf. on Computer Vision (ECCV 2002). Springer Berlin Heidelberg, 2002.

[45] H. Li, Y. Li, and F. Porikli, “Convolutional neural net bagging for online visual track-

ing,” Computer Vision and Image Understanding, vol. 153, pp. 120–129, 2016.

58

