
Middleware Systems and Analytics for Energy
Management in Buildings

By
Pandarasamy Arjunan

Under the supervision of
Dr. Amarjeet Singh

Dr. Pushpendra Singh

Indraprastha Institute of Information Technology Delhi

March 2018

c© Indraprastha Institute of Information Technologyy (IIITD), New Delhi 2018

Middleware Systems and Analytics for Energy
Management in Buildings

by
Pandarasamy Arjunan

Submitted
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

to the

Indraprastha Institute of Information Technology Delhi
New Delhi, India

Certificate

This is to certify that the thesis titled Middleware Systems and Analytics for Energy Man-

agement in Buildings being submitted by Pandarasamy Arjunan to the Indraprastha Institute

of Information Technology Delhi, for the award of the degree of Doctor of Philosophy, is an

original research work carried out by him under my supervision. In my opinion, the thesis has

reached the standards fulfilling the requirements of the regulations relating to the degree.

The results contained in this thesis have not been submitted in part or full to any other uni-

versity or institute for the award of any degree/diploma.

Supervisors

Dr. Amarjeet Singh

Dr. Pushpendra Singh

March 2018

Indraprastha Institute of Information Technology Delhi
New Delhi 110 020

Keywords: Smart buildings, Building management system, Middleware system, Energy data
analytics, and Anomaly detection

dedicated to my mother...

Abstract

As one of the largest consumers of overall energy, buildings have emerged as attractive tar-

gets for using information and communications technologies to advance large-scale sustainabil-

ity goals. With increasing availability and affordability of sophisticated sensing, control and

computational methods, a variety of novel applications have been envisioned in the recent past

aiming towards energy savings. However, the centralized building management system with its

inflexible and isolated subsystems, currently used to manage the building operations, restrict the

widespread development and deployment of novel energy management applications. In this the-

sis, we hypothesize that decentralized, flexible, and extensible software systems, together with

novel applications and analytical techniques, would improve the energy efficiency in buildings.

To support our hypothesis, we present the architecture, design, development, and experimen-

tal validation of middleware systems for building energy management, which enable 1) decen-

tralized management of building resources involving different stakeholders, including occupants,

to make control-over decisions and energy management policies, by providing appropriate fine-

grained access-control mechanisms, 2) flexible interfaces for integrating existing and retrofitted

sensing and control systems, and suitable software representations for accessing and managing

their operations, e.g. spatio-hierarchical relationship, which are specific to buildings, and 3)

an extensible automation framework for developing and deploying energy management appli-

cations involving simple and advanced sensor data processing methods for identifying detailed

insights about the operational context of the building, and suitable programming abstractions for

developers.

We evaluate these systems through multiple real-world deployments in our test-bed build-

ings consisting of varied categories of functionalities, operations, users, and hundreds of het-

erogeneous sensor data streams, across the world. On top of this, we also implemented several

practical applications ranging from detecting the deviation in the energy usage of building sub-

vi

systems to inferring fine-grained building context using proxy sources. The practical usability of

the system was also evaluated through a user study. In summary, this thesis attempts to present a

holistic software ecosystem and novel applications by bringing the three major entities – devices,

computational methods, and humans, in buildings closer towards optimal energy management.

vii

viii

Acknowledgments
First of all, I would like to thank Prof. Pankaj Jalote for providing an opportu-

nity for pursuing my PhD at IIIT-Delhi. I am deeply indebted to my advisors, Dr.
Amarjeet Singh and Dr. Pushpendra Singh, for their great mentorship while I was
working towards the completion of this thesis. I am very grateful for their insights
and support during this process and have learned a great deal from them about all
facets of research. I am also very thankful to Prof. Mani Srivastava (NESL, UCLA)
for his guidance and active collaboration with us as part of the Indo-US PC3 project.

Special thanks to my PhD thesis examiners, Prof. Krithi Ramamritham, Prof.
Prashant Shenoy, and Prof. Anand Sivasubramaniam for providing invaluable feed-
back for improving this thesis. I have also been fortunate to receive quality feed-
back from the research community, particularly the program committee members of
BuildSys, eEnergy, MobiQuitous, among others.

I am very thankful to all the faculty members of Mobile and Ubiquitous Comput-
ing group, particularly Dr. Vinayak Nayak, and other faculty members of IIIT-Delhi
for providing necessary guidance and support whenever required. I also would like
to thank all administrative staffs and facilities department for providing all possible
support and help.

I have been grateful to have collaborated and worked with my lab mates Sid-
dhartha Asthana, Nipun Batra, Manoj Gulati, Manaswi Saha, Milan Jain, Haroon,
Dheryta, Anil, Garvita, and other PhD students and interns. Thank you guys for
providing constructive feedback, comments, motivation, support, and of course, all
fun. I am also thankful to Haksoo, Supriyo, Lucas and other lab mates at NESL,
UCLA for their guidance and support while my stay in the USA. Special thanks to
Sumesh, Jayaprakash, Monalisa, Swetha, Amani, Harish and Prabha for their friend-
ship, moral support, and making my stay in Delhi a memorable one.

I am deeply thankful to Mrs. Umayaparvathi, who made me who I am today.
She is the source of motivation and a mentor of my academic carrier. I also would
like to thank all my friends from my undergraduate and postgraduate courses and
ex-colleagues from HCL for their continuous encouragement throughout my PhD
life, particularly Senthilkumar, Marimuthu, Saravanan, Raj, Alex, Esakki, Pandian,
Karthick prakash, Brijesh, and Nithya. Special thanks to Christina John who made
me join IIIT-Delhi and for her continuous motivation during my early days of PhD.

Last but not least, I am indebted to all my family members, particularly my wife
Rajeshwari and my son Hariharan for supporting me all possible ways for complet-
ing my PhD thesis.

x

Contents

1 Introduction 1

1.1 Smart Energy Buildings . 1

1.2 Building Management Systems . 5

1.3 Thesis Contributions . 6

1.4 Thesis outline . 9

1.5 Thesis publications . 10

2 SensorAct – A Decentralized Energy Management System for Buildings 11

2.1 Background and Motivation . 12

2.2 SensorAct System Architecture . 14

2.2.1 Devices and Gateways . 14

2.2.2 Virtual Personal Device Server (VPDS) 15

2.2.3 Broker . 19

2.2.4 Applications . 19

2.3 Scripting Framework . 19

2.3.1 Tasklet Workflow . 20

2.3.2 Tasklet API Functions . 21

2.4 Implementation . 22

2.4.1 Gateways and Devices . 23

2.4.2 VPDS and Broker . 23

xi

2.4.3 Third party Applications . 25

2.5 Evaluation . 26

2.5.1 Campus Wide Electricity Monitoring at IIIT-Delhi 27

2.5.2 Research Lab at UCLA . 31

2.5.3 Student Dormitory Deployment at IIIT-Delhi 32

2.6 Related Work . 33

2.6.1 Building Management Systems . 33

2.6.2 Research Systems and Architectures . 34

2.6.3 Cloud-based IoT platforms . 35

2.7 Summary . 36

3 OpenBAN – A Context Inference System for Smart Buildings 39

3.1 Background and Motivation . 40

3.1.1 Evolution of building middleware systems 40

3.1.2 Motivating Applications . 42

3.1.3 Deployment scenarios . 44

3.2 OpenBAN System Architecture . 45

3.2.1 Data Adapters . 45

3.2.2 Feature Repository . 46

3.2.3 Model Repository . 48

3.2.4 Analytics Engine . 49

3.2.5 Context Inference Engine . 50

3.3 Implementation . 52

3.3.1 Data Adapters . 52

3.3.2 Feature and Model Repository . 52

3.3.3 Analytics Engine . 53

3.3.4 User Interface . 53

xii

3.4 Experimental Applications . 55

3.4.1 Energy disaggregation . 56

3.4.2 Sprinkler usage policy violation . 57

3.4.3 Indirect occupancy sensing . 58

3.5 System performance . 59

3.6 Related Work . 60

3.7 Summary . 64

4 A Scalable Aberration Detection Technique for Smart Energy Meters 65

4.1 Background and Motivation . 65

4.2 Definitions and Assumptions . 67

4.3 Anomaly Detection Algorithm . 70

4.3.1 Splitting data based on temporal context 72

4.3.2 Self-anomaly score computation . 72

4.3.3 Neighborhood based adjustment . 75

4.4 Datasets . 76

4.4.1 Commercial buildings . 76

4.4.2 Residential buildings . 77

4.4.3 Preprocessing and anomaly injection . 78

4.5 Experimental Results . 80

4.5.1 Baseline Methods . 80

4.5.2 Analysis of commercial building data 81

4.5.3 Analysis of residential building data . 85

4.6 Related Work . 88

4.7 Summary . 90

5 Conclusions and Future Work 91

xiii

5.1 Summary of contributions . 91

5.2 Future directions . 93

5.2.1 Vendor agnostic integration and portable building applications 93

5.2.2 Writing secure and fault-tolerant building applications 94

5.2.3 Usability study . 94

Bibliography 97

xiv

List of Figures

1.1 The sankey diagram showing the energy flow from sources of production to con-

sumptions across different sectors in the USA for the year 2015 [13]. It is esti-

mated that 35% of energy is wasted in both residential and commercial buildings. 2

1.2 Electricity consumption of residential [39] and commercial [7] buildings by end-

use in the USA for the year 2010. 3

2.1 SensorAct system architecture showing various layers and system components. . 13

2.2 Components of the VPDS and Broker in SensorAct. 15

2.3 Sensor data representation using WaveSeg format. 18

2.4 An example of a guard rule and a macro for selective sharing of sensor data. . . . 18

2.5 Scripting framework workflow with an example Tasklet. 21

2.6 Sample browser and mobile application user interface 25

2.7 Deployment scenario of SensorAct architecture showing VPDSes deployed across

four different locations and a common broker hosted at IIIT-Delhi. 27

2.8 Daily electricity usage pattern of street lights (6:30pm to 6:00am every day) for

12 days. Some abnormal energy usage events are marked in red. 29

2.9 Electricity usage patterns of sports area lights for 12 days. Few street lights

around the sports area consuming about 0.9 kilo-watts of power are used from

6pm to 6am every day. Each spike in this plot corresponds to the usage of flood

lights in the sports area. 29

xv

2.10 Campus-wide total commercial electricity usage (from two transformers) for 1

week. The spikes in transformer 1 corresponding to the electricity consumption

of HVAC systems, that consumes over 100 kilo-watts. 31

3.1 Evolution of building middleware systems based on support for processing sen-

sor data. (a) primitive middleware provides no support for sensor data analytics,

(b) rule-based middleware provides trigger-actions based on thresholds, and (c)

context-based middleware provides sophisticated analytics for inferring context

from sensory data. 40

3.2 OpenBAN system architecture showing various system components. 47

3.3 The workflow of the Context Inference Engine for training and execution mode. . 51

3.4 OpenBAN user interface showing the “Aggregate-Analyze-Act” pipeline for a

sensor data analytical application. 54

3.5 Integration of SensorAct and OpenBAN systems for energy disaggregation application. . 56

3.6 Water usage pattern for six sprinkler stations . 57

3.7 Indirect occupancy count prediction from network activity using SVM classifier. . 59

3.8 Comparison of execution time between local and cloud hosted analytics engine

for the energy forecasting contextlet . 60

4.1 Hourly power usage (normalized) of different buildings with in a large commer-

cial building complex (neighborhood) in Sweden for a year from 1st Feb 2013

to 31st Jan 2014. It shows, (a) daily and weekly power usage cycles with sea-

sonal variations during summer, winter and holidays, (b) examples of single point

anomaly (marked in black), and (c) examples of sequence anomaly (marked in

red). X-axis denotes the day of the year while Y-axis is hour of the day. 69

xvi

4.2 Logical flowchart of the proposed anomaly detection algorithm. The function f

computes self anomaly score for each meter and for each temporal context set

separately followed by function g concatenates them. Function p computes the

adjusted anomaly score for each meter data based on the available neighborhood

information. 71

4.3 The baseline correlation between 10 buildings for a year in the Sweden commer-

cial building data set. Meters are arranged using hierarchical clustering algorithm. 77

4.4 The baseline correlation between 18 apartments for a year in the Indian residen-

tial buildings dataset. Meters are arranged using hierarchical clustering algorithm. 78

4.5 Hourly meter readings of a Sweden commercial building with computed anomaly

score by different baseline and proposed anomaly detection methods. It shows

several instances of point and sequence anomalies and how the computed anomaly

score differs using the temporal and neighborhood information. 82

4.6 Anomaly score comparison of (a) self anomaly score without using any context verses

self anomaly score using only the temporal context, (b) self-anomaly score only using the

temporal context verses using available neighborhood information, and (c) a violin plot

(a combination of box and density plot) shows the differences between anomaly scores

(self minus adjusted), by using different adjustment weights for the Sweden commercial

building dataset. 83

4.7 Adjusted anomaly score difference for different weights over time for the Swedish

commercial building data set. The curve with the smallest magnitude corre-

sponds to a weight of 10% and the one with the highest magnitude corresponds

to a weight of 100%. Positive values indicate a reduction in the anomaly score

after neighborhood comparison and vice versa. 84

xvii

4.8 Hourly meter readings of an Indian residential building with computed anomaly

score by different baseline and proposed anomaly detection methods. It shows

several instances of point and sequence anomalies and how the computed anomaly

score differs using the temporal and neighborhood information. 86

4.9 Anomaly score comparison of (a) self anomaly score without using any context verses

self anomaly score using only the temporal context, (b) self-anomaly score only using

the temporal context and using available neighborhood information, and (c) violin plot

(a combination of box and density plot) shows the differences between anomaly scores

(self minus adjusted), by using different adjustment weights for the Indian residential

building dataset. 87

4.10 Adjusted anomaly score difference for different percentage of weights over time

for the Indian residential building data set. The curve with the smallest mag-

nitude corresponds to a weight of 10% and the one with the highest magnitude

corresponds to a weight of 100%. Positive values indicate a reduction in the

anomaly score after neighborhood comparison. 88

xviii

List of Tables

2.1 Primitive API functions in Scripting framework available to use in Tasklet Scripts. 22

2.2 A list of APIs supported by different components of the SensorAct architecture. . 24

2.3 Different deployment details of SensorAct system. Ambient sensors include

Temperature, light intensity, motion, and door contact status 28

3.1 Motivating energy management applications which require complex features and

analytics on top of the collected sensor data. 42

3.2 List of system requirements for designing an analytics middleware and the cor-

responding system components. 45

3.3 List of different categories of features that can be identified from various sensor

data streams to infer a wide range of context information of a building. These

features are computed for each time window spanning a N-seconds interval. . . . 48

4.1 Details about the injected abnormal energy usage events into the residential

building dataset. 80

xix

xx

Chapter 1

Introduction

1.1 Smart Energy Buildings

Buildings account for the largest proportion of overall energy use in both developing (e.g. 47%

of total energy in India [87]) and developed (e.g. 41% in the USA [60]) countries. They consume

72% of total electricity and emit approximately 40% of greenhouse gases (GHG) annually in the

USA itself [50]. The Sankey diagram in Figure 1.1 shows the energy flow across different sectors

within the USA as of 2015 [13]. It also shows how much energy is consumed by residential and

commercial buildings and their inefficiencies. Further, rapid urbanization in developing countries

is resulting in substantial increase in building floor space with inefficient Energy Performance

Index (EPI)1.

According to the Smart 2020 report [89], buildings have been identified as one of the pri-

mary targets to reduce the overall energy consumption to achieve the energy sustainability goals

and to reduce the greenhouse gas emissions. With a large number of buildings, even modest

improvements will lead to significant impact at the national aggregate scale. As a result, there is

tremendous research and entrepreneurial activity targeting buildings as an exciting substrate for

1EPI of 200-400 kWh/m2/year in India while comparable buildings in North America and Europe have
EPI < 150kWh/m2/year

1

Figure 1.1: The sankey diagram showing the energy flow from sources of production to consumptions
across different sectors in the USA for the year 2015 [13]. It is estimated that 35% of energy is wasted in
both residential and commercial buildings.

novel computational methods and technologies. These techniques measure, model, analyze, and

optimize the design and operations of the buildings.

Electricity consumption in buildings is spread across diverse subsystems such as Heating

Ventilation and Air Conditioning (HVAC), lighting, entertainment, security and safety systems,

and Miscellaneous Electronic Loads (MELs). Modern buildings are also instrumented with sev-

eral Information and Communications Technology (ICT) systems like computers, printers, wired

and wireless networking devices, which in turn increase the net electricity consumption. As an

example, Figure 1.2a and Figure 1.2b illustrate end-use energy consumption of residential and

commercial buildings, respectively, in the USA for the year 2010. It also shows that lighting,

space heating, cooling and ventilation systems are the topmost energy consumers in both resi-

dential and commercial buildings.

2

(a) Residential buildings (b) Commercial buildings

Figure 1.2: Electricity consumption of residential [39] and commercial [7] buildings by end-use in the
USA for the year 2010.

Several techniques have been proposed in the past decade by both research community and

several governments and industry sectors to reduce the energy footprint of buildings. There

are two broad categories of techniques found in the literature: Supply-side management (SSM)

and Demand-side management (DSM). Supply-side management involves improving the existing

energy generation systems or adopting renewable energy sources such as solar and wind power

[10]. Whereas, demand-side management optimizes individual building’s energy budget. DSM

is performed using Demand-Response (DR) programs or energy efficiency methods [12]. DR

programs motivate the consumers to reduce energy consumption during peak hours or shift some

loads to off-peak hours, thus reduce the demand-supply mismatch.

Energy efficiency methods are targeted towards optimizing the overall energy usage within

buildings, resulting in the permanent reduction of energy demand. They are primarily targeted

towards manipulating the three major elements: 1) building-centric (retrofitting the building’s fix-

tures); 2) human-centric (changing the occupant’s energy usage behavior); and 3) Cyber-Physical

Systems (CPS) based control systems and applications.

3

The building-centric retrofitting methods primarily focus on identifying energy inefficient

fixtures and replacing them with energy efficient ones. Examples include compliance with build-

ing energy efficiency codes and standards such as IECC [21] and ASHRAE [1], energy audits

[11], blower door testing [5] for detecting thermal leakage in buildings to ensure proper insula-

tion of walls and windows, replacing incandescent bulbs with Compact Fluorescent Lamp (CFL)

and Light-emitting diode (LED) lights [6], and replacing inefficient and old refrigerators and air

conditioners with energy star rated appliances [14].

Several human-centric methods have also emerged recently focusing on educating the build-

ing users about their day-to-day energy usage pattern and subsequently changing their behavior

by providing continuous energy usage feedback. Example methods include energy awareness

campaigns [41] and games [71], offering a breakdown of electricity bills [44], energy dashboards

[62], and In-Home Displays (IHD) [8] showing real-time energy usage. All these methods can

help the occupants to take informed decisions based on their everyday electricity usage. This di-

rection is extensively studied by Human-Computer-Interaction (HCI) community [108]. A user

study conducted by Darby [81] showed that better feedback systems encourage energy-saving

behavior that can save up to 5-15% of the electricity usage. Another study conducted by Bidgely

among 850 PG&E customers showed that up to 7.7% of energy savings was achieved when the

customers were informed about their energy usage behavior during certain peak hours [3].

CPS-based solutions often involve software and hardware-based systems for energy man-

agement in buildings. Examples include occupancy-based lighting [61, 100] and HVAC control

[85, 86, 112], automated identification of abnormal energy usage events [67, 88, 114], and identi-

fication of HVAC faults [104]. In contrast with building and human-centric solutions, CPS-based

solutions make use of both existing and retrofitted sensing and control systems in buildings. Fur-

ther, they leverage the advanced computational methods for optimizing the energy usage of build-

ings, thus making them affordable at scale. The primary focus of this thesis is proposing novel

software systems and applications for monitoring and reducing the energy usage in buildings.

4

1.2 Building Management Systems

Modern buildings are increasingly instrumented with a large number of networked sensing and

control systems such as HVAC, lighting, security, and safety. Building managers often employ

individual software systems for managing and automating various building operations. These

software systems are commonly referred as Building Management System (BMS). Several com-

mercial systems are currently available in the market for monitoring, controlling and automating

various building subsystems and operations. Examples of commercially available BMS systems

include Trane [45], Johnson Controls [23], Siemens [43], and Honeywell [20]. These systems

comprise of several isolated subsystems, each performing a particular task.

While BMS includes a large number of sensing points spread across the building, the sensor

data collected by these subsystems are often discarded after they are processed by their corre-

sponding isolated control applications. Since these sensor data encompass several operational

characteristics of a building (e.g., occupancy information, historical energy usage patterns), stor-

ing and thereafter analyzing them can lead to identifying potential energy saving measures. As

an example, sensor data for temperature and CO2 collected in HVAC systems can be analyzed

to extract occupancy information, which in turn can be used for conditioning the devices in un-

occupied regions of a building.

With increasing availability and affordability of sophisticated sensing, control and computa-

tional methods, a variety of novel energy saving applications have been proposed in the recent

past by leveraging the building sensor data. Example applications include occupancy-based light-

ing, heating and cooling control [61, 86, 101]; energy forecasting for demand-side load manage-

ment [118]; energy disaggregation for providing appliance level consumption feedback [65, 93];

and automated anomaly detection methods for reducing energy wastage [68, 88, 114]. However,

all these efforts in building-scale energy management are fraught with deployment challenges,

many of which are rooted in the centralized, inflexible, isolated, and archaic architecture that

forms the middleware in the current building management systems.

5

To cater to these requirements we envision a decentralized energy management system archi-

tecture for easy development and deployment of novel energy monitoring applications. Such sys-

tems should provide flexible interfaces for integrating and managing the existing heterogeneous

sensing and control systems in buildings. It should be extensible for implementing sophisticated

application logic using the right abstractions, and scalable for a large number of buildings. In

this thesis, we present the design, development, deployment, and validation of novel software

systems and analytical techniques for optimizing the energy usage in buildings.

1.3 Thesis Contributions

The major contributions of this thesis are twofold: First, we present the design, development, and

evaluation of a suite of software systems and novel applications for optimal energy management

in buildings. The proposed software systems provide several key functionalities such as, (1) de-

centralized and distributed management of building resources facilitating occupant-level energy

management policies, (2) a flexible system for integrating the existing and retrofitted sensing

and control systems and their data into a single platform for better resource management, (3) a

scalable service for sensor data analytics to infer the operational context of the building, and (4)

an extensible automation framework for implementing novel energy monitoring applications.

Secondly, we present an unsupervised and scalable analytical technique for identifying aber-

rations for a network of buildings within a neighborhood, using only the aggregate-level smart

meter data. Prototype implementations of the proposed software systems and methods for im-

proving the energy efficiency of buildings were deployed in our testbed buildings. In addition

to this, a number of practical energy monitoring applications are developed to validate how the

proposed systems are helpful in identifying the real-world energy wastage events. A summary

of the proposed systems and their contributions are described below.

The first system that we describe is a decentralized, flexible, and extensible middleware sys-

tem architecture, called SensorAct, for energy management in buildings. In addition to providing

6

support for managing and integrating heterogeneous sensing and actuation systems in buildings,

SensorAct architecture provides two novel features: 1) a scripting framework for extending and

automating the various energy management functions of the modern buildings, and 2) a rule-

based fine-grained mechanism for sharing sensor data and control across building applications

and stakeholders, including occupants. The SensorAct system provides abstractions, through

RESTful APIs, for accessing the underlying networked resources which enable the development

of extensible energy monitoring applications. We describe the system design in detail and pro-

vide a proof of concept through multiple third-party applications built using SensorAct APIs,

and deployment in diverse settings across India and United States. We developed several energy

monitoring applications using the SensorAct system, such as 1) monitoring and detecting aber-

rations in the street lighting system, 2) irregular usage of the sports area lighting system, and 3)

campus-wide critical energy usage alerts.

The second system is focused on providing sensor data analytics support for identifying the

fine-grained operational context of the buildings. The scripting framework in SensorAct provides

support for detecting aberrations by applying threshold based conditions over raw sensor data

readings. Though it is simple and powerful for detecting aberrations, it is insufficient in detecting

complex context based aberrations, which require advanced sensor data analytics for identifying

the operational context of the buildings e.g. operating state of a device, and occupancy levels

of a building region. We presented OpenBAN, a middleware system service which provides a

framework of extensible sensor data processing elements for identifying various building context

using historical and real-time sensor data. The computed context information can be shared

across multiple energy monitoring applications.

OpenBAN architecture was designed to scale across local and cloud-based deployments and

to support a diverse array of services and platforms designed for networked sensors. It provides

a runtime environment for developing and scheduling Contextlet – a pipeline of processing ele-

ments for inferring a particular building context from sensory data. Furthermore, OpenBAN was

7

designed to enable building facilities department to connect various sensor data streams with

different existing and new control applications through a powerful analytics engine capable of

inferring context information. Using our prototype implementation, we developed three con-

crete applications to demonstrate the utility of OpenBAN for a range of applications based on

our testbed buildings: (1) disaggregating household appliance usage; (2) identifying sprinkler

usage violation from water meter data, and (3) identifying occupancy information using network

activity. Both SensorAct and OpenBAN are released in open-source for the community use.

Finally, we present a novel unsupervised method for monitoring and identifying energy usage

aberrations for a large number of buildings within a neighborhood using aggregate level smart

meter data collected by utilities. The proposed approach recognizes that sensing every possible

context variable (such as occupancy, internal and external temperature), which affects the energy

usage, is technically and economically infeasible. Instead, it uses the context information which

is directly available from meter readings: temporal context and metadata attached to the meter

identity. Temporal context information, such as operating hours and seasonal changes, is used

for improving the aberration detection accuracy by picking only the relevant historical data for

baseline estimation. Neighborhood information (as derived from available metadata) is used

for adjusting the aberration score to account for unknown context variables (e.g. local festivals

and holidays) that influence historically correlated consumption patterns in the same way. We

validated the effectiveness of the proposed method using real-world smart meter readings for

both commercial and residential buildings. We showed that using context information improves

the detection accuracy, and it outperforms a baseline method proposed in the literature.

In summary, the software systems presented in this thesis provide platform support for the

development and deployment of extensible building applications pertaining to the automated

identification of energy usage aberrations in the building subsystems.

8

1.4 Thesis outline

The structure of the remainder of this thesis is as follows:

In Chapter 2, we describe the design, development, deployment and experimental validation

of the SensorAct system. We also present the details of a candidate set applications for detecting

real-world abnormal energy usage events in our test-bed buildings

In Chapter 3, we describe the design, development, and experimental validation of Open-

BAN system for sensor data analytics. We also present the requirements and design consider-

ations for making it extensible and scalable. Finally, we show how the SensorAct and Open-

BAN systems can be integrated for developing novel energy monitoring applications.

In Chapter 4, we describe our unsupervised aberration detection method for detecting abnor-

mal energy usage for a network of buildings within a neighborhood. We explain how the readily

available metadata can be used as context variables for improving aberration detection method

accuracy.

In Chapter 5, we conclude this thesis with a summary of contributions, limitations and outline

the future directions.

9

1.5 Thesis publications

• Our work in Chapter 2 was published in the following proceedings:

Arjunan, Pandarasamy, Nipun Batra, Haksoo Choi, Amarjeet Singh, Pushpendra Singh,

and Mani B. Srivastava. ”SensorAct: a privacy and security aware federated middleware

for building management.” In Proceedings of the Fourth ACM Workshop on Embedded

Sensing Systems for Energy-Efficiency in Buildings, pp. 80-87. ACM, 2012. Arjunan,

Pandarasamy, Manaswi Saha, Haksoo Choi, Manoj Gulati, Amarjeet Singh, Pushpendra

Singh, and Mani B. Srivastava. ”SensorAct: A Decentralized and Scriptable Middleware

for Smart Energy Buildings.” In Proceedings of the 2015 IEEE 12th Intl Conf on Ubiqui-

tous Intelligence and Computing and 2015 IEEE 12th Intl Conf on Autonomic and Trusted

Computing and 2015 IEEE 15th Intl Conf on Scalable Computing and Communications

and Its Associated Workshops (UIC-ATC-ScalCom), pp. 11-19. IEEE, 2015.

• Our work in Chapter 3 was published as:

Arjunan, Pandarasamy, Mani Srivastava, Amarjeet Singh, and Pushpendra Singh. ”Open-

BAN: An Open Building ANalytics Middleware for Smart Buildings.” In proceedings of

the 12th EAI International Conference on Mobile and Ubiquitous Systems: Computing,

Networking and Services on 12th EAI International Conference on Mobile and Ubiquitous

Systems: Computing, Networking and Services, pp. 70-79. ICST (Institute for Computer

Sciences, Social-Informatics and Telecommunications Engineering), 2015.

• Our work in Chapter 4 was published as:

Arjunan, Pandarasamy, Harshad D. Khadilkar, Tanuja Ganu, Zainul M. Charbiwala, Amar-

jeet Singh, and Pushpendra Singh. ”Multi-user energy consumption monitoring and anomaly

detection with partial context information.” In Proceedings of the 2nd ACM International

Conference on Embedded Systems for Energy-Efficient Built Environments, pp. 35-44.

ACM, 2015.

10

Chapter 2

SensorAct – A Decentralized Energy

Management System for Buildings

The archaic centralized building management systems, currently used to manage buildings, make

it hard to incorporate advances in sensing technology and user-level applications. They are in-

stalled with a fixed number of isolated and closed-loop control applications which are not ex-

tensible. In this chapter, we present SensorAct, a novel software platform that enables the de-

velopment of extensible applications for monitoring and identifying the energy wastage events

in buildings. SensorAct provides two novel features, in addition to providing flexible interfaces

for integrating heterogeneous sensing and actuation systems in buildings for better management:

1) a scripting framework for extending and automating the energy management functions of

the modern buildings, and 2) a rule-based sensor data and control sharing mechanism for fine-

grained sharing of sensor data and control across building applications and various stakeholders.

We describe the detailed system design, implementation, and provide proof of concept through

several energy monitoring applications built using SensorAct APIs. We also show that how the

scripting framework is useful in detecting real-world energy usage aberrations by defining simple

threshold-based rules.

11

2.1 Background and Motivation

Commercial buildings often employ BMS for monitoring and controlling their subsystems. While

striving to achieve an optimal energy efficient control, these BMSes restrict the management to a

central facility department. They typically provide a stand-alone package of fixed, pre-configured

applications and limited support for control and automation. Their archaic nature limits integra-

tion of different subsystems, addition of new sensors, and development of novel energy monitor-

ing and control applications. Their legacy programming models and application-specific jargons

making them difficult to extend the system by non-expert users[98].

To support interoperability, many of these BMSes support open standard protocols such as

BACnet [2]. However, external third-party application development using BACnet interface is

complex; hence it restricts widespread development of applications [98]. Such third party appli-

cations, if facilitated, can further support the integration of different building subsystems for im-

proved operations. For example, information from Radio-frequency identification (RFID) based

access control system can be used to infer the occupancy and accordingly control the HVAC and

lighting systems.

Motivated by these limitations we present SensorAct, a middleware system architecture de-

signed for detailed monitoring and control of buildings. Beyond connecting devices and thereby

monitoring the built spaces, SensorAct provides emerging capabilities including:

1. Virtual Personal Device Servers (VPDS) (See Section 2.2.2) for local hosting of middle-

ware within the buildings to alleviate data sharing, control security and intermittent net-

work connectivity problems.

2. Decentralized and distributed management of building resources involving diverse devices

and different stakeholders, including the occupants, at scale.

3. Fine-grained selective sharing of sensor data and control with users at the global scale to

alleviate control security concerns and providing building-wise local storage for protecting

the data privacy.

12

D
e

vi
ce

s
V

ir
tu

a
l P

e
rs

o
n

a
l

D
e

vi
ce

 S
e

rv
e

rs

(V
P

D
S)

B
ro

ke
rs

T
h

ir
d

 P
a

rt
y

A
p

p
lic

at
io

n
s

VPDS 1 VPDS 2 VPDS n. . .

SensorAct
Middleware

.

Device 4Device 3

VM Server Hosting
Multiple VPDS

IP Interface

LabSense
(Zwave → IP)

Zwave interface

HVAC System

Commercial
BMS

OPC-UA REST-
Client

OPC interface

G
at

e
w

ay

A
p

p
lic

at
io

n
s RESTful APIs

RESTful APIs

Homes/Commercial Buildings

Sub-systems in Buildings

Building Occupants
Facility Manager

SBC hosting VPDS

BACnet-IP

Figure 2.1: SensorAct system architecture showing various layers and system components.

4. Scripting framework (See Section 2.3), simple programming abstractions for extending

the system features and developing energy managing applications involving sensing and

control, analysis, alerts, and notifications in rich form to support diverse usage scenarios.

Together with supporting diverse usage scenarios, SensorAct accommodates a rich ecosystem

of existing and new monitoring and control systems for the development of extensible building

applications.

13

2.2 SensorAct System Architecture

SensorAct adopts a tiered architecture connecting the building subsystems with control applica-

tions and occupants as shown in Figure 2.1. The main layers of SensorAct are Virtual Personal

Device Servers (VPDS) and Brokers, which interact with Devices that monitor and control dif-

ferent building spaces at the bottom layer, and third-party applications and users at the top layer.

2.2.1 Devices and Gateways

Existing building subsystems contain numerous sensing and actuation points connected using

diverse protocols such as BACnet and Modbus [27]. SensorAct maps the existing and new

sensing and actuation points as Devices by eliminating the underlying complex naming con-

ventions used in the legacy building subsystems. A device in SensorAct consists of a collection

of sensors (monitoring the ambient environment or the state of a building subsystem) and ac-

tuators (that allow for changing the state of a building subsystem). Each sensor, in turn, may

consist of a collection of channels which measure a particular building phenomenon. Senso-

rAct uses an intuitive and hierarchical naming scheme for managing and identifying the de-

vices and their associated sensors/actuators, channels and readings uniquely. As an example,

a single reading from a smart energy meter connected with the main panel is identified as

OwnerName/MainPanel/EnergyMeter1/power/ < timestamp > / < value >.

Devices are assumed to either communicate directly or through a gateway (e.g., LabSense

[25], as discussed in Section 2.4.1) that can bridge the sensing interface with SensorAct using its

RESTful API. Each device is associated with a device profile that contains all meta information.

A building owner can manage multiple devices owned by him through the profile manager facil-

itating the creation of device profiles. It consists of a set of key-value paired attributes such as

its name, IP address, a collection of sensor and actuator profiles, number of channels, data types

and units, location, and placement. Besides, the physical sensors and actuators, SensorAct also

supports:

14

Tasklet

Virtual Personal Device Server

Device data, Guard rules,
Tasklet scripts and Profiles

D
e

vi
ce

 A
P

Is

U
se

r/
B

ro
ke

r
 A

P
Is

Guard rule engine

Profile
Manager

Tasklet Manager

(a) VPDS Components

Broker

User and VPDS
profiles

V
P

D
S

 A
P

Is

U
se

r
 A

P
Is

Profile
Manager

Operation and
Management

functions

(b) Broker Components

Figure 2.2: Components of the VPDS and Broker in SensorAct.

Computed sensors: are abstractions that can be calculated based on a pre-defined mathematical

function applied to a single or multiple sensor values. For example, a computed sensor can

specify average temperature in a room over 10 minutes (calculated using temperature val-

ues observed every second) and a computed sensor InMeeting can be set based on multiple

occupants in the room (using a combination of a motion sensor and microphone sensor).

Grouped actuators: are abstractions that can control multiple actuators e.g. power off the room

may result in turning off air-conditioner as well as lights. These are similar to “scenes” as

specified in several commercial home automation systems.

2.2.2 Virtual Personal Device Server (VPDS)

VPDS is the primary core component of SensorAct middleware architecture. As a package,

VPDS contains (a) Data Archiver for storing and retrieving time-series sensor data, (b) Scripting

Framework for executing the custom building applications, (c) Guard Rule Engine for access

control, and (d) Profile Manager and APIs for devices, applications, and brokers to interact with

15

the VPDS, as shown in Figure 2.2. To ensure scalability, a single physical server may host

multiple VPDS, however virtualization is used to, ensure the isolation of VPDS and privacy of

the data within it. A building owner who owns a particular VPDS is called as VPDS Owner

(VO) in SensorAct. VO may allow other users and applications to have controlled access to the

devices registered with the VPDS. These devices monitor and control the buildings owned by

VO. Each VPDS has an associated auto-generated owner’s key which is used while registering

the VPDS with a Broker for data and control sharing. All communication between VPDS and

VO is authenticated using the owners key.

A schema-less, key-value based database (described in Section 2.4.2) is used to store the

sensor data from devices, allowing for efficient storage and querying of unstructured time-series

data. Access to the database is guarded via the Guard Rule Engine (see Section 2.2.2) in the

VPDS. Lightweight scripts are used to act on configured triggers to support complex automation

tasks (see Section 2.3). The VPDS abstraction not only permits flexible provisioning of hardware

resources but also allows diverse deployment scenarios including a VPDS hosted on a local

machine for high-frequency sensors, low dependence on Internet connectivity, high-security and

low-latency sensing and control. Such multiple VPDS instances are coordinated through Brokers

in the higher tier. VPDS-Broker architecture further enables global access through the distributed

registry of users at scale.

Sensory Information Representation

SensorAct system needs to handle large volumes of data generated by a multitude of sensors.

Storing the time series of sensor data as individual tuples is inefficient both in terms of storage

size and querying time. In order to provide an abstraction of sensors that is generic, compact,

efficient, and scalable to diverse sensing modalities and sampling policies, SensorAct represents

the continuous sensor data streams using WaveSegs, an abstraction for sensor waveforms used in

[79] and in turn inspired by SigSeg used in MIT’s WaveScript system [105]. WaveSegs refers to

16

non-overlapping windows of the sensor waveform, and are the atomic units from which a sensor

waveform in SensorAct is composed. Sensors send measurements to SensorAct as WaveSegs,

and SensorAct’s storage is also organized in terms of WaveSegs instead of individual samples.

Within a WaveSeg the sampling policy is fixed, with support for both isochronous (periodic

or uniform) sampling and asynchronous (aperiodic or non-uniform or adaptive) sampling. In the

former case, SensorAct leverages isochronicity for compactness of representation by foregoing

explicit annotation of samples with timestamps and instead associating a sampling period with

a WaveSeg, as is also illustrated in the example below. Each WaveSeg contains self-explanatory

metadata about the sensor readings such as location, device name, sensor name, sensor id, sam-

pling interval and start time of the readings to enable rich data querying capabilities. Addi-

tionally, each channel within a sensor is separately specified with channel name, units for the

readings and an array of float values specifying the sensor readings. Additional metadata infor-

mation, such as location, can also be easily added to this description.

Figure 2.3 illustrates the JSON representation of a WaveSeg, as used by a sensor device to

upload data. While WaveSegs significantly improve upon per-sample storage, the number of

WaveSegs stored in SensorAct’s database nevertheless directly affect query processing perfor-

mance. To further optimize performance, SensorAct opportunistically merges WaveSegs as they

are uploaded by a device.

Guard Rule Engine for Selective Sharing

Guard Rule Engine in SensorAct is designed to support selective sharing of sensor data and

actuation control with users and external applications as governed by the corresponding owner.

All access requests for actuators or sensor data are governed by Guard Rule Engine. Tight

control on the access is maintained through owner-defined guard rules which are policies for

restricting access to the data and control of the devices configured for buildings. Guard Rule

Engine enables fine-grained access control by allowing the owner to define rules based on user,

group, time, location, sensor data, and actuators. Every device registered with the VPDS has

17

{

"DEVICE_NAME": "Office_Flyport",

"SENSOR_NAME": "MultiSensor",

"SENSOR_ID": 1,

"SAMPLING_INTERVAL" : 1,

"EPOC_TIME": 1344147449,

"CHANNELS": [

{

"NAME": "Temperature",

"UNIT": "Celsius",

"READINGS": [28.1,28.2,28.6,28.5,28.2,28.6,28.5,28.7]

},

{...}

]

}

Figure 2.3: Sensor data representation using WaveSeg format.

{

NAME: “ReduceResolution”,

PRIORITY: 1,

TARGET_OPERATION: “READ”,

TARGET_CONSUMERS: [“alice@sensoract.edu”],

CONDITION: “NOT $(WORK_TIME)”,

ACTION: “DownSample(avg, 15min)”

}

(a) Guard rule with macros as condition

{

NAME: “WORK_TIME”,

VALUE: “[* * 9-18 * * 1-5]”

}

(b) Macro definition

Figure 2.4: An example of a guard rule and a macro for selective sharing of sensor data.

an associated set of guard rules, created by the corresponding VO, for facilitating external (or

shared) access.

Figure 2.4 shows an example of a guard rule and a macro. This guard rule enforces a policy

to share data during non-working hours only, which is defined by the macro using a Cron time

expression and reduces the data access resolution to 15 minutes. The guard rule itself does not

necessarily contain references to specific users, sensors, or actuators, but it can be associated

with them later by its owner. This lazy-association allows users to reuse same rules for different

users, multiple devices, or groups of devices.

18

2.2.3 Broker

In SensorAct, a trusted broker contains a registry of users, a registry of VPDSes, and it acts

as a mediator to assist client applications to establish a connection with multiple VPDSes. A

VO needs to register her VPDS on one of the brokers to share data and control with other users

registered on the corresponding broker. For data communication to scale across multiple VPDSes

and users managed by a single broker, direct communication over a secured channel is provided

between users and VPDSes.

2.2.4 Applications

Programming abstractions in SensorAct, using RESTful APIs, allow easy development of third-

party applications that provide a user with controlled access to sensor data and actuators. A

SensorAct user may have two roles: i) An owner of her own devices and their correspondingly

associated VPDS ii) A user with data and control access as per the privileges assigned by the

owner of other VPDS. A single user could be the owner of her own VPDS and user for some

other VPDS. As an owner, a user may grant controlled access to other users thus letting them

access sensor data from her devices or to even control them in a constrained manner. Third-party

applications may provide users with a more convenient interface to the underlying functionality

of VPDS and broker. We discuss three such third-party applications in Section 2.4.

2.3 Scripting Framework

The scripting framework in SensorAct provides an application execution environment within

the middleware for high-level scripting languages in a sandbox. Unlike other systems, wherein

external applications read sensor data and perform control actions outside the middleware, this

framework enables building owners to inject their custom application logic written in a high-

level scripting language, termed as tasklets, into the middleware to perform sophisticated energy

19

management and control operations. These tasklets can be scheduled to read and process live

sensor data streams. The proposed Scripting Framework also provides a set of read functions

to access sensor data streams and write functions to control the actuators. These read/write

primitives can then be used to develop complex (one-shot or persistent) control actions providing

rich support for automation including sensor data processing, data fusion, actuator control, and

notifications. Figure 2.5 illustrates the workflow of the proposed scripting framework.

2.3.1 Tasklet Workflow

A tasklet in the scripting framework is a piece of light-weight non-blocking script that performs

a particular set of operations. As shown in Figure 2.5, it consists of tasklet description and

tasklet script. While the tasklet description contains meta information about the tasklet, such

as resources (sensors and actuators identifier) to be used, parameters, scheduling and triggering

conditions, tasklet script contains the application logic in a high-level scripting language. More

details about tasklet description can be found in [64]. A tasklet scheduler receives the tasklet

execution requests, submitted using the corresponding tasklet management API provided by the

VPDS, and it is responsible for scheduling, managing, and controlling the tasklet throughout its

life-cycle. Once a tasklet is scheduled for execution, the tasklet scheduler first classifies and

schedules the tasklet, based upon the identifiers used in the When primitive of the description, as

one of the following categories:

One-shot: One-time and immediate execution of a tasklet script. For example, querying the

current status of a sensor or instantaneous switching of an actuator.

Periodic: Executing a tasklet script whenever timer elapses to perform periodic operations. For

example, switch on my office air-conditioner at 9 AM only on weekdays or email me the

electricity usage summary every day at 8 PM.

Event based: Executing a tasklet script whenever a change in the value of sensors or actuators

is observed. For example, switching off lights when a window is opened.

20

Alerts and
Notifications

Tasklet

Sensors and Actuators connected via Gateways

{

"NAME": "Monitor_AC",

"PARAMS": {

"T1": "Mickey:MyOffice:Tempr:t1",

"A1": “Mickey:MyOffice:AC:a1",

"MINS": 5,

"LIMIT": 30

}

"INPUT": {

"TIMER1": "[0 0/2 10-18 * *]"

}

"WHEN": "TIMER1",

"EXECUTE": "[monitor_ac.lua]"

}

-- monitor_ac.lua

avgTr = VPDS:readAvg(T1,MINS*60)

if avgTr > LIMIT then

VPDS:write(A1,VPDS:TURNON)

end

Scripting
Framework

Sandbox

Building occupants

Guard Rule Engine

Scripting API functions

Tasklet script

Tasklet description

Figure 2.5: Scripting framework workflow with an example Tasklet.

As per our own experiences with implementing several energy management applications and

discussion with facility manager, these three tasklet types are sufficient for automating all the

energy management tasks in a building.

Tasklet manager provides an isolated execution environment for each tasklet and restricts

any interaction among them for sensitive building control applications. By default, a tasklet

inherits the privileges of a user who submitted it. All read and write operations on sensors and

actuators performed from tasklets go through Guard Rule Engine. Correspondingly, tasklets can

only perform operations allowed for a user invoking them, thus protecting against unauthorized

access.

2.3.2 Tasklet API Functions

The scripting framework in SensorAct provides a set of primitive API functions as shown in

Table 2.1, in order to perform various runtime operations. Tasklet scripts can invoke these low-

level API functions and it enables developers to create and schedule custom building control

21

Table 2.1: Primitive API functions in Scripting framework available to use in Tasklet Scripts.

map read(DeviceId, duration(in seconds))
map read(DeviceId, startTime, endTime)
number read(DeviceId, duration, [sum|count|min|max|mean])
number read(DeviceId, startTime, endTime, [sum|count|min|max|mean])
string plot(DeviceId, duration)
boolean write(DeviceId, status=ON|OFF|value)
boolean email(to, subject, message [,plot])
boolean sms(to, message)

and automation applications. While expert users can write complex tasklet scripts on their own,

novice users can use an interactive web interface to create simple automation applications. We

also plan to provide tasklet templates for commonly used applications, so that users can easily

create tasklets by filling in only the required parameters.

The proposed tasklet framework provides a platform to implement and schedule several en-

ergy management tasks within the middleware system. Examples are 1) inferring high-level rich

occupant-specific context information, such as occupancy and usage patterns, by fusing several

raw sensors and actuator values; 2) automation of the routine building control activities per-

formed by the occupants in their day-to-day life, e.g., pre-heating or pre-cooling the workspaces

in advance; 3) custom creation of coordinated appliances based upon detected building events,

e.g., switching off a meeting room may result in switching a group of devices together or in a

particular sequence; and 4) development of an automated alert or notification system for moni-

toring and management of building premises, e.g., alerting the facility management team in case

of any abnormal energy consumption. In Section 2.5, we present a list of energy management

applications created using the proposed tasklet framework.

2.4 Implementation

In this section, we present the implementation details of a prototype SensorAct architecture ele-

ments, as discussed in Section 2.2.

22

2.4.1 Gateways and Devices

Gateways interconnect existing and new sensors and actuators in the buildings with a VPDS.

In the current implementation, three gateways are supported: 1) LabSense [25] for interfacing

Z-Wave based ambient sensors (temperature, light intensity, motion, and door contact status)

in existing Home Automation Systems, Modbus based smart energy meters, SNMP [54] based

Raritan power distribution units [37], and Modbus based Veris [47] and Eaton [9] energy meters,

2) sMAP [82] to communicate with several commercial energy meters and HVAC systems using

different protocols such as Modbus and BACnet, and 3) A custom built Wi-Fi based Flyport [17]

module to interface ambient sensors and actuation relays. These gateways push sensor readings

in WaveSeg format, as described in Section 2.2.2, to VPDS using RESTful APIs, as shown in

Table 2.2, and execute the actuation commands received from the building control applications.

In the current implementation, SensorAct natively supports only push-based sensors, i.e.,

sensors pushing data to VPDS using its RESTful interface. However, pull-based sensors can be

easily incorporated using third party gateway applications. Currently, we use two such gateway

applications - LabSense [25] gateway to pull data from Z-Wave based sensors and a PyModbus

based python application to pull data from Modbus enabled smart meters.

2.4.2 VPDS and Broker

Various VPDS and Broker components, as explained in Figure 2.1, was implemented in Java

using open-source tools and the code is released in open-source for community use [42]. Senso-

rAct exposes a rich set of RESTful APIs for most of its functionalities. Such open APIs enable

easy integration with other systems and allow developers to write custom third party (stand-

alone, web, or mobile based) applications for extending the system features, e.g., visualization,

scripting, access control, and sharing. Table 2.2 lists the APIs currently implemented for various

components in VPDS and Broker. In the current implementation, we use MongoDB1 for storing

1http://www.mongodb.org

23

Table 2.2: A list of APIs supported by different components of the SensorAct architecture.

Component VPDS API endpoints
User /user/{register|list}
Device /device/{add|delete|get|list}

/device/template/{add|delete|get|list}
Guardrule /guardrule/{add|delete|get|list}

/guardrule/association{add|delete}
Tasklet /tasklet/{add|delete|get|list}

/tasklet/{execute|cancel|status}
Data /data/{upload/wavesegment|query}
Share /device/share

Component Broker API endpoints
User /user/{register|login|list}
VPDS /vpds/{register|get|list}
Device /device/{search|share}

/device/{user|owner}/shared

device profiles, user profiles, guard rules and tasklets due to its flexible, schema-less document

format. We support two types of time series sensor data archiver, Informix database2 on servers

for optimized storage and MongoDB on Single Board Computers (SBC) for portability.

The scripting framework in SensorAct uses Quartz scheduler [36] library to schedule and

execute tasklets. It is a high-performance, industrial-strength job scheduler which scales well to

manage a large number of tasklets. We leverage its inherent support for cron based periodic jobs

to implement periodic tasklets. We also implemented additional modules to support event-based

tasklets that require sensory event registration and notification to trigger the tasklets whenever

the system receives new data.

The current implementation supports Lua [26] and Jython [24] to write tasklet scripts. Lua

was chosen because it is a light-weight, compact, and easy-to-learn scripting language which

also has been widely used to program home automation systems. Jython, an implementation

of the Python scripting language in Java, provides rich support for data processing. Java to

Lua integration was done using jnlua binding engine which is invoked via Java Scripting API

framework from the tasklet manager. Several higher level scripting API functions, listed in

2http://www-01.ibm.com/software/data/informix

24

(a) Browser application (b) Mobile application

Figure 2.6: Sample browser and mobile application user interface

Table 2.1, are exported into Lua interpreter’s execution context so that the API functions can be

directly called from the user-written tasklet scripts. Further, a VPDS instance can be hosted on

multifarious devices including single board computers such as Raspberry Pi [38].

2.4.3 Third party Applications

Three third-party applications were implemented using the VPDS and Broker APIs and they are

explained below.

Web portal: It is a configurable stand-alone web application, as shown in Figure 2.6a, that

interacts with a broker and registered VPDSes using SensorAct APIs. Both VPDS owner and

other users can use this application to visualize sensor data and to manage devices, guard rules,

and tasklets based upon granted privileges.

Time and presence-based actuation: It is an intuitive web interface, extended from the

web portal application, which allows users to actuate their devices remotely based on time and

presence, e.g., pre-heating/cooling a workspace. The user interface makes use of tasklets to allow

users to switch their appliance “now”, “once” at a specific time, or “periodically” at a regular time

25

interval. Guard rules are used to restrict users to actuate the devices in their own spaces only.

This system is currently under deployment in a commercial building for lighting control.

Mobile application: An Android application was developed whereby users can specify their

Broker credentials and correspondingly manage the devices owned or shared with them.

Further, in order to simplify the SensorAct system installation for a building, all VPDS,

broker and user interface components of SensorAct were packaged into a Virtual Machine image.

The detailed installation instruction manual was documented and the usage of the system was

evaluated using a user study (See Section 2.5.3).

2.5 Evaluation

The proposed SensorAct architecture is evaluated based on multiple real-world deployments for

supporting different usage scenarios. Particularly, the utility of the proposed tasklet framework

is shown for various energy monitoring and alerting applications. Further, a user study was

performed to evaluate the different aspects of deployment of SensorAct in a student dormitory

building.

SensorAct was deployed in four different settings as illustrated in Figure 2.7: (1) Campus-

wide energy monitoring at IIIT-Delhi, India, (2) Student dormitory deployment at IIIT-Delhi,

India, (3) Research lab at UCLA, USA, and (4) Research wing at IIIT-Delhi. Each deployment

was done with different requirements, devices, gateways, users, and scales as shown in Table 2.3.

Separate VPDS instances were used for each deployment, and they were registered with a com-

mon broker, hosted at IIIT Delhi, for sharing sensor data and control with users across different

buildings. In each deployment, the corresponding owner or tenant of the building managed the

VPDS and granted privileges to other occupants who all were registered themselves with the

common broker if required.

26

NESL lab

at UCLA

LabSense Gateway

Z
W

a
v
e

M
o

d
b

u
s

S
N

M
P

IIIT-Delhi

campus

Student dorms

at IIIT-Delhi

sMAP

M
o

d
b

u
s

Flyport WiFi

180 smart energy meters

Temperature, light, motion and door status
Ambient sensors and

energy meters

Research Wing

at IIIT-Delhi

Flyport WiFi

SensorAct broker hosted at IIIT-Delhi

Web and mobile application

Owners and users

V
P

D
S

D
e
v
ic

e
s

a
n

d
 G

a
te

w
a
y
s

Figure 2.7: Deployment scenario of SensorAct architecture showing VPDSes deployed across four differ-
ent locations and a common broker hosted at IIIT-Delhi.

2.5.1 Campus Wide Electricity Monitoring at IIIT-Delhi

One of the largest deployments of SensorAct involved monitoring the electricity usage of all the

buildings in IIIT-Delhi campus. IIIT-Delhi campus was newly constructed two years ago in a

space of 25 acres. It consists of five buildings: academic, facilities, faculty apartments (30 flats),

mess and hostel (400 dorm rooms) buildings. All these buildings are equipped with a commercial

BMS system for managing the various building operations, under the administration of a facility

manager (FM). In addition to the commercial BMS system, all the buildings (each floor and

flats) were instrumented with over 180 smart meters measuring various electrical parameters.

A sMAP based archiver was used for collecting meter readings at every 30 seconds. Existing

BMS subsystems, such as HVAC, were also interfaced with the sMAP archiver using BACnet

27

Table 2.3: Different deployment details of SensorAct system. Ambient sensors include Temperature, light
intensity, motion, and door contact status

Deployment Research Wing Student Dorms IIITD Campus NESL, UCLA
Purpose Occupancy

sensing and data
sharing

Occupancy
sensing and data
sharing

Energy monitoring
and alerts

Occupancy sensing and
energy monitoring

Scale Single building 21 student
dorms

6 buildings Research lab

Platform Virtual machine Laptop and PCs Virtual machine Virtual machine and
MiniITX

Sensors Ambient sensors
(14)

Ambient sensors
(21)

Electricity meters
(180)

Ambient sensors and
electricity meters (3)

Sampling
rate

1 second 1 second 30 seconds 2 seconds

Gateway &
protocols

FlyPort, WiFi FlyPort, WiFi sMAP, Modbus LabSense, ZWave, Mod-
bus

Duration 2 months 1 month 4 months 8 months
Users 20 21 2 15

and Modbus bridge. A separate sMAP to SensorAct gateway was implemented for uploading

all real-time measurements to SensorAct. As per FM’s requirements, three energy management

applications were created, to be managed by him, using the proposed tasklet framework.

Abnormal street light usage detection

IIIT-Delhi campus contains pathways around the campus for about 2 kilometers. There are about

135 street lights installed in the path way. These street lights are manually switched on in the

evening and switched off in the morning by an operator. They consume over 6 kilo-watts of

power. From the street light meter readings, as shown in Figure 2.8, we observed that there

were some suspicious electricity usage events during day time and occasional events during

night time as well. Hence, to monitor such abnormal electricity usage events by street lights,

two tasklets, one for day time and another for night time were setup. They computed average

electricity consumption of the street lights every five minutes. If the average consumption was

above a threshold (derived based on our observation), these tasklets sent an email and SMS to the

FM for taking necessary action. Over the course of past one month of this setup, these tasklets

28

Mar 19 Mar 21 Mar 23 Mar 25 Mar 27 Mar 29 Mar 31

0
5

10
15

P
ow

er
 (

K
ilo

W
at

ts
)

Street light usage
Abnormal usage

Figure 2.8: Daily electricity usage pattern of street lights (6:30pm to 6:00am every day) for 12 days. Some
abnormal energy usage events are marked in red.

Mar 23 Mar 25 Mar 27 Mar 29 Mar 31 Apr 02 Apr 04

0
5

10
15

P
ow

er
 (

K
ilo

W
at

ts
)

Figure 2.9: Electricity usage patterns of sports area lights for 12 days. Few street lights around the sports
area consuming about 0.9 kilo-watts of power are used from 6pm to 6am every day. Each spike in this
plot corresponds to the usage of flood lights in the sports area.

detected two such abnormal electricity usage events and notified the FM. The FM asked the

facility support team to check the street lights and its power meters. FM also suggested that such

period monitoring tasklets for street lights are essential, particularly in India, as electricity theft

is not uncommon. Hence, the implemented tasklet helped the FM for continuous monitoring of

street lights and it prevented any electricity theft.

Sports area usage summary

IIIT-Delhi campus has a sports area that consists of a basketball court, a football court, and

a common playground. The entire sports area is equipped with several flood lights and they

29

consume over 10 kilowatts of power when they are in use. At present, students are advised to

turn on and off these lights whenever they want to play during night time. For accountability and

to make policies for the sports area usage, FM wanted to know how many hours these sports area

was being used every day and the corresponding energy usage.

Since the sports area lights were connected through a separate smart meter, we monitored

the electricity usage for a month to know the baseline usage. Figure 2.9 illustrates power con-

sumption of the sports are lights (all the peaks) along with some other constant load for 12 days.

Based on our observation, a periodic tasklet was created and it was scheduled to run at 8 A.M.

every day. The tasklet reads the smart meter’s readings for the previous night and filtered out

the readings only for the sports area usage based on a known threshold value. The tasklet is also

configured to send a summary email to the FM about how many hours the sports area was used

and the total energy consumption.

Critical energy usage alert

IIIT-Delhi campus receives two power lines from the grid, one for commercial and another for

residential usage. While the residential power line is being used for faculty apartments and stu-

dent’s hostels, a commercial power line is being used by the rest of loads in the campus. External

commercial load from the grid is stepped down using two transformers, one for supplying high-

voltage loads such as HVAC, and another one for connecting commercial usages such as lighting

and IT devices. As shown in the Figure 2.10, commercial energy usage for a typical working

day is over 3,000 units and it varies based on many other factors. In order to monitor the overall

energy usage, FM wanted to develop an application that can alert him when the total energy

consumption of the current day exceeds the previous day.

A periodic tasklet was created for monitoring the campus-wide energy usage in real time. The

tasklet was scheduled to be run at every five minutes. The tasklet script was configured to perform

the following tasks in each run: 1) it reads the previous day and current day energy usage from the

30

Apr 10 Apr 12 Apr 14 Apr 16

0
50

10
0

15
0

P
ow

er
 (

K
ilo

W
at

ts
)

Transformer−1
Transformer−2

Figure 2.10: Campus-wide total commercial electricity usage (from two transformers) for 1 week. The
spikes in transformer 1 corresponding to the electricity consumption of HVAC systems, that consumes
over 100 kilo-watts.

smart meters which are connected with the corresponding transformers, and 2) it compares them

and sends an email and SMS to the FM if the current day energy usage exceeds the previous day

consumption, 3) Since this is a periodic tasklet and to avoid continuously sending the notification

on successive alerts, it was configured to send alerts two times maximum in a day.

2.5.2 Research Lab at UCLA

In this deployment, SensorAct was deployed for a 1,200 square feet university research lab, occu-

pied by 12 graduate students, in UCLA for occupancy and electricity monitoring applications. It

was instrumented with several sensors including 1) high-frequency multi-channel Raritan, Eaton,

and Veris power meters measuring several electrical parameters of the lab servers, devices, and

power outlets, and 2) Z-Wave based Aeon Labs door sensors and HomeSeer [19] multi-sensor

(measuring motion, temperature, and light intensity level).

LabSense [25] gateway was used to pull data from all of these sensors and push it to Sen-

sorAct. FireSense [16] system was also used to monitor the real-time network traffic of the lab

and the network event logs were pushed to SensorAct in real time. A separate VPDS instance

was hosted on a VM and it is collecting data for the past 6 months. The VPDS was registered

with a common broker hosted in IIIT-Delhi. Permission to access sensor data and create tasklets

31

was shared with one of the graduate student at IIIT-Delhi, who created a computed sensor for

presence detection (discussed in Section 2.4) and performed occupancy based experiments.

Occupancy and energy usage summary: Based on this setup, a periodic tasklet was created

for monitoring the occupancy and electricity usage of the lab. The tasklet was scheduled to run at

12 A.M. midnight every day to send a summary report to the lab members. The tasklet script was

primarily doing three functions: 1) it decided whether some one is entering or exiting the lab by

fusing the door status (open/close) with motion sensor events, 2) it compares the entry and exit

events of the two doors and decides the first entry and last exit time of the lab, 3) it aggregated

the total power consumption of a day and created a plot of power consumption at 5 minutes, and

4) finally, it sent a summary email mentioning how many hours lab was opened on a particular

day and how was the total power consumption during that time. This energy usage summary

report was useful for giving insights about the usage patterns of the lab and for increasing energy

usage awareness of the occupants. Further, the inferred occupancy information can also be used

to pre-heat/cool the lab.

2.5.3 Student Dormitory Deployment at IIIT-Delhi

In this deployment, in order to validate the utility and easy deployment of SensorAct middleware

system, 21 student groups (each with 2 students at IIIT-Delhi were engaged. They deployed Fly-

port based Wi-Fi nodes in student dormitory rooms, collecting motion, temperature, and window

status information every second, by following the installation manual. One of the faculty coordi-

nators hosted a central VPDS on one of the servers and registered it with the broker at IIIT-Delhi.

Students were then asked to register themselves and room occupants (for the case when they are

deploying in someone else’s room) on the broker. Faculty coordinator first shared privileges with

the engaged student groups and allowed them to create devices in his VPDS though they were

not allowed to see data from the devices added by them. This privilege was revoked after two

days, and the added devices were shared with the corresponding room occupants to let them

32

decide whom they want to share data. While the study mandated each student to collect only 2

days worth of data from their individual deployment, a total of 100 days worth of data together

from all the groups was reported by the students.

A survey was conducted at the end of the deployment to get feedback from these students

on different aspects of using the SensorAct system. Overall 17 student groups responded to

the survey at the end of the study. Among them, 16 student groups had no prior experience

with uploading data to a server or cloud system such as SensorAct. More than 80% of the

respondents mentioned that SensorAct installation and configuration on their individual laptops,

with different OS, was easy. Approximately 45% of respondents gave their preference for local

hosting of SensorAct VPDS instead of the cloud, due to privacy reasons, if they were to deploy

SensorAct for monitoring and control in their homes. Students used SensorAct for basic data

collection and visualization while the occupants used sharing capability for data and control to

provide access of their devices to their friends. 64% of them found SensorAct to be a good

and usable system. More than 90% of responses rated SensorAct documentation to be detailed

enough with 73% of them asserting that, with the current level of documentation, a new person

can setup SensorAct system without any help. More than 90% of the responses were positive

about the usability of the browser application that was used as a front-end for the study.

2.6 Related Work

We group the related work into following three categories: building management systems, re-

search prototypes and architectures, and cloud services.

2.6.1 Building Management Systems

Existing BMS [20, 23, 43, 45] and home automation systems comprise of several isolated sub-

systems each performing a particular task such as fire alarms, security and access control and

33

HVAC. While they include a large number of sensing points spread across a building, data from

these sensors are usually inaccessible to building occupants as these systems are normally con-

trolled and managed by a central facility department. While many commercial buildings already

have some form of BMS in existence, SensorAct can be used to augment them to develop novel

occupant-centric applications such as personalized control of workspaces. Gateway applications

can be easily developed to interface such M2M applications with SensorAct (as shown in Fig-

ure 2.1). Further, higher costs typically associated with such BMSs, prohibit their usage across

small deployments such as in residential homes. Home automation systems, try to fill in the gap

providing comfort to the occupants, using local storage and several automation scripts. However,

they provide limited support for fine-grained data and control sharing across multiple homes and

users, supported extensively in SensorAct.

2.6.2 Research Systems and Architectures

Several research systems pertaining to connecting and sharing sensors at Internet scale, such

as SenseWeb [90], SensorWeb [80], GSN [59], and WattDepot [72] have been developed and

deployed in the recent past. However, these systems are limited primarily to sensory data ag-

gregation and visualization and provide minimal sharing capabilities. Some research software

systems have been proposed in the literature that provides an abstraction over diverse devices

and enable uniform interfaces to access them [84, 95]. For example, HomeOS [84] addresses

the interoperability and usability issues by providing a PC-like abstraction over the networked

devices as peripherals for both users and developers. Sensor Andrew [111] shares some common

design goals with SensorAct. It focuses on a large-scale data aggregation from diverse sensors

and event-based control for building operations. However, the data and control sharing mech-

anism is at a coarse-grained level, based only on user identity. BuildingDepot [63] focuses on

managing network of buildings by isolating the data, users, and privilege management from each

other.

34

Similarly, Building Operating System Services (BOSS) and Building Application Stack [83]

enable writing portable and fault-tolerant applications on top of diverse physical resources present

in buildings. Specific to residential buildings, VHome [115] provides an isolated application

execution environment for data analysis. Though VHome shares several design goals with Sen-

sorAct, it provides an application runtime to execute Cloud Based Application, focusing only

on energy data analytics. Further, access control mechanism in VHome supports only time and

location-based energy data sharing, whereas SensorAct supports fine-grained sharing.

2.6.3 Cloud-based IoT platforms

Several public cloud-centric IoT platforms exist today for collecting, archiving and visualizing

the real-time sensory data such as Xively [55], Nimbits [52], Mango M2M [51], Sen.se [53],

SmartThings [58], openHAB [57] and Kaa [56]. While these services provide rich support for

data aggregation and visualization of sensor data collected from diverse devices, they provide

inadequate or limited support for IoT applications specifically pertaining to the buildings domain:

1) They provide limited capabilities for sharing the collected sensor data as they follow “all-or-

nothing” model based only on user identity. Since the sensor data collected from buildings carry

several forms of occupancy and usage patterns about the buildings, devices, and occupants [79],

controlled and fine-grained sharing is required to protect the sensitive sensory data collected

from buildings. 2) They provide limited or no support for controlling the devices and automating

their operations. For example, Sen.Se provide remote actuation support but they handle simple

use cases wherein the control is manual or is based on events, e.g., whenever motion is detected,

switch on/off an appliance.

SmartThings [58] provide scheduling APIs which are limited to creating only one-time and

repeating schedules, but not event-based which is necessary for many energy management tasks

in buildings. Further, SmartThings’s SmartApps model is inflexible for passing custom parame-

ters (see PARAMS clause in the Tasklet) and sensor data events to the application logic. open-

35

HAB’s Rules feature shares the some of the design principles of Tasklets by providing trigger-

action based automation. But, it combines the rule configuration and scripts in a single file,

making it inflexible for customizing the application logic. In contrast, SensorAct’s Scripting

framework decouples the tasklet configuration and logic, thus provides flexible, expandable and

customizable ways for automating the devices.

The SensorAct architecture allows for easy support of complex energy management appli-

cations using the scripting framework. In addition to the features provided by these systems,

SensorAct supports rule-based selective sharing model for sensor data. Further, the proposed

scripting framework (discussed in detail Section 2.3) supports notification and enables users to

create Computed Sensors (e.g., occupancy) that can then be further used to create automation

scripts depending on the context and not on real sensor values. SensorAct scripting framework is

also flexible to be extended for supporting any new scripting language which is not the case with

any of the existing systems.

2.7 Summary

In this chapter, we described the design, development, deployment, and validation of Senso-

rAct system for optimizing the energy usage in buildings. SensorAct system is a result of the

needs informed by our first-hand experience in monitoring building ecosystem: an open, flexi-

ble, extensible, and scalable information substrate for buildings into which multitude of sensors,

actuators, and applications could be integrated.

SensorAct architecture supports several novel features including (i) Virtual Personal Device

Servers (VPDS) for local hosting the middleware within the building, (ii) Scripting framework

within the system for providing rich support for developing and automating energy management

applications, and (iii) A rule-based access control mechanism for fine-grained sharing of sensor

data and actuation control with other users. Validation of the developed system was done using

multiple deployments, from residential to commercial buildings, spread across India and USA.

36

The SensorAct system enabled the development and deployment of extensible building man-

agement applications. Using our prototype implementation of the system, we experimented a

number of real-world energy monitoring applications for identifying the potential energy wastage

events in our testbed buildings, by applying simple threshold-based rules. Threshold-based rules,

which operate directly on sensor data in real-time are simple, but they are inadequate in detecting

complex aberrations under different building context, e.g., a sudden increase in the energy usage

of a room is due to genuine reasons (high occupancy) or device misbehavior? To address this, in

the next chapter, we present a system for identifying the operational context of buildings using

sensor data analytical methods, which enables the identification of context-based aberrations.

37

38

Chapter 3

OpenBAN – A Context Inference System

for Smart Buildings

In the previous chapter, we described the architect of SensorAct system for developing extensible

building applications and showed that how the simple threshold-based rules can be applied for

detecting energy usage aberrations. Though the rule-based method is simple and powerful, it is

insufficient in detecting complex context-based aberrations, which require advanced sensor data

analytics for identifying the operational context of the buildings e.g. operating state of a device,

and occupancy levels of a building region. In this chapter, we present the design and development

of OpenBAN, a middleware system service for sensor data analytics to detect complex context-

based aberrations in buildings.

OpenBAN provides a runtime environment for developing and scheduling Contextlet — a

pipeline of processing elements for inferring a particular building context from sensory data.

Furthermore, OpenBAN is designed to enable building facilities department to connect various

building sensor data streams with different existing and new control applications through a pow-

erful analytics engine capable of inferring context information. Moreover, OpenBAN facilitates

the inclusion of several analytical algorithms as part of the sense-analyze-act pipeline for de-

veloping novel building energy management applications. Using our prototype implementation,

39

Sensors

S1 S2 Sn

Sensors

S1 S2 Sn

Sensors

S1 S2 Sn

Raw sensor data Context

(a) Primitive (b) Trigger based (c) Context based

App 1

Action

App 2

Action

App 1

Action

App 2

Action

Middleware

Simple triggers/rules

Middleware

App 1

Analysis

Action

App 2

Analysis

Action

Sensor event

Middleware

Context Inference Engine

Figure 3.1: Evolution of building middleware systems based on support for processing sensor data. (a)
primitive middleware provides no support for sensor data analytics, (b) rule-based middleware provides
trigger-actions based on thresholds, and (c) context-based middleware provides sophisticated analytics for
inferring context from sensory data.

we developed three concrete applications to demonstrate the utility of OpenBAN for a range of

applications based on our testbed buildings: (1) disaggregating household appliance usage; (2)

identifying sprinkler usage violation from water meter data, and (3) forecasting hourly energy

usage from smart meter data.

3.1 Background and Motivation

3.1.1 Evolution of building middleware systems

Diverse sensor data streams generated in building management subsystems are often discarded

after they are processed by their corresponding applications. Since these sensor data streams

encompass several operational characteristics of a building (e.g., occupancy information, energy

usage patterns), storing and thereafter analyzing them can help optimize building operations.

Motivated by this, recent efforts have sought to redesign the legacy building management systems

for not only storing such rich sensory data, but, also enabling novel applications to process them.

Examples of such research systems are HomeOS [84], SensorAct , BuildingDepot [119], and

40

BOSS [83]. Most of these systems provide new abstractions, in the form of RESTful APIs or

RPCs, for accessing the underlying distributed network of sensors, actuators, and their data. In

addition to this, these systems provide an application runtime environment for developing and

executing novel applications that can access and process the sensory data [84, 98, 119].

Such redesigned middleware systems for buildings have opened up opportunities for both re-

searchers and developers to experiment complex yet futuristic building control applications such

as personalized HVAC control [98], occupancy prediction [101], and energy monitoring [115].

Although these applications are relatively complex, their processing pipeline is still similar to ex-

isting commercial BMS and HAS applications: access raw sensory data, process it and perform

the desired control actions. While these redesigned middleware systems provide abstractions

for accessing sensors and their data, their inherent support for processing sensory data within the

middleware is limited. Based on support for processing sensor data streams, existing middleware

systems proposed can be broadly classified into two categories: primitive and trigger-based, as

illustrated in Figure 3.1.

Primitive support middleware systems expose only the raw sensory data to building manage-

ment applications. The applications can query historical data or subscribe to real-time sensory

events. It is the responsibility of the applications to process the sensor data stream in accordance

to the desired application. Applications often match the queried raw sensory data with some

threshold value for identifying a particular building context. As an example, AppDoorNotifier

security application in HomeOS detects abnormal activity by comparing the timestamp of door

sensor events with a predefined time period. Recent research systems such as HomeOS[84],

SensorAct , and BuildingDepot [119] are examples of primitive support category.

Trigger-based middleware systems, on the other hand, allow applications to inject triggers

for monitoring sensory events. These triggers involve simple threshold-based conditions applied

over raw or aggregated data, corresponding to identifying a particular building context. Mid-

dleware system monitors sensory data events and invokes the applications whenever the trigger

condition is satisfied. Unlike primitive support middleware systems, identifying the occurrence

41

Table 3.1: Motivating energy management applications which require complex features and analytics on
top of the collected sensor data.

Application Example features Algorithm
Energy disaggrega-
tion

Power, Difference in successive power readings, Raw voltage
and harmonics, Current, Power factor

Combinatorial
Optimization

Sprinkler usage vi-
olation

Mean, standard deviation, range and time of the day SVM

Indirect occupancy
sensing

Mean, min, max, and standard deviation of network activity SVM

of a building context is done by the middleware and applications are responsible for executing

only the actions. Most of the home automation systems support trigger-based actions. For ex-

ample, Vera [46] supports trigger-based action schemes such as “when the temperature is below

a threshold, turn on the thermostat”.

Most of the existing building control applications are performing relatively simple opera-

tions. However, novel applications proposed recently involve complex sensor data processing

methods. Often these applications apply computationally intensive machine learning algorithms

for detecting complex building contexts, such as activity monitoring [75] and occupancy detec-

tion [86, 101]. We argue that such essential yet complex sensor data analyzing functions should

be an integral component of the middleware system instead of implementing them in each ap-

plication separately. Moving such complex algorithms into the middleware not only makes the

applications lighter but also provides better abstractions for accessing them, as shown in Fig-

ure 3.1. Further, common contextual information can be computed centrally and shared with

multiple applications. Motivated by this, we seek to design a sensor data analytics middleware,

called OpenBAN, that provides a runtime environment for developing and scheduling complex

context identification algorithms.

3.1.2 Motivating Applications

We now present the details of three motivating energy management applications which require

context of the building operation. Our aim is to understand the requirements and goals of a

42

middleware system enabling building applications involving complex computation.

1. Energy disaggregation: Previous studies have shown that providing appliance level con-

sumption feedback to consumers can help them save upto 15 % energy [81]. However, instru-

menting individual appliances with power monitors to infer detailed appliance consumption in-

formation can be expensive, difficult to maintain and is considered intrusive. In contrast, Non

Intrusive Appliance Load Monitoring (NILM) [93] or energy disaggregation is a viable method

for identifying individual appliance level usage from the household total power meter readings.

A typical NILM setup involves complex pattern recognition algorithms to disaggregate total con-

sumption (as measured at the meter level) into constituent appliances consumption.

2. Inferring sprinkler usage policy violation: Sprinklers for irrigating lawns, plants, and

flower-beds are quite common in many households across the world. Since sprinklers consume

large amounts of water (for example, a single sprinkler station may consume as much as 70 cc

per second), most cities impose restrictions on when and for how long can sprinklers be used.

For example, Los Angeles Department of Water and Power (LADWP) has a policy according to

which ”Spray head sprinklers are allowed up to 8 minutes per watering station per day. They

are restricted to hours before 9:00 a.m. and after 4:00 p.m.”[107]. While the law exists, the

compliance is not good and enforcement non-existent. We designed an application for detecting

sprinkler usage compliance with the help of the water usage trace of an entire house, as recorded

by the water meter.

3. Indirect occupancy sensing: Occupancy sensing is an important research problem in build-

ing energy domain due to its role in several building control applications including HVAC and

lighting control [61, 85, 86, 101, 113]. While occupancy information can be inferred directly us-

ing several direct sensors such as motion, many indirect sensing techniques have been proposed

in the literature using readily available data (collected by service providers such as utilities) such

as smart energy meter readings [76, 97] and network activity [112, 117]. In this application, we

identify the number of occupants of a building region using the network traffic traces data which

require sensor data analytical methods.

43

Table 3.1 summarizes the statistical features and machine learning capabilities which these

three applications require. From our own experience with ad hoc implementation of these appli-

cations, we concluded to design OpenBAN to provide centralized and reusable analytical support

for all these and similar complex building energy management applications. Further, many of

these applications require an inference output on a continuous basis and thus, this is also a re-

quirement which OpenBAN adheres to.

3.1.3 Deployment scenarios

Having discussed the motivating applications and the requirements imposed by them, we now

look at scenarios in which OpenBAN needs to be deployed in. We envision that the proposed

OpenBAN can be deployed under two different scenarios as follows:

As an embeddable service with home automation system: Existing home automation ap-

plications such as Vera and HomeOS are often limited to detecting only simple contexts. e.g.,

“if garage door is left open notify me”. In such residential settings, OpenBAN can be hosted

along with an existing HAS controller software for detecting complex contexts from existing

ambient sensors and energy meter data. Similar to developing home automation system plug-ins,

an analyst or a developer (who has knowledge about analytical algorithms) can create contextlets

and share them with other home owners. OpenBAN can leverage the existing HAS system and

build richer context inferences on top. For instance, an example contextlet- “notify when air-

conditioner is used when no one is in home” can combine the relatively simple garage door con-

text supported by the HAS with the more complicated energy disaggregation systems (discussed

in Section 3.4) supported in OpenBAN.

As a private service for commercial buildings: For commercial building settings, Open-

BAN can be hosted along with modern building management systems such as SensorAct and

BOSS[83] for providing analytics capabilities to novel building control applications. Open-

BAN can integrate existing sensor data streams and apply analytical functions to extract inter-

44

Table 3.2: List of system requirements for designing an analytics middleware and the corresponding
system components.

System requirements Architectural elements Description

Integration of existing and
new sensor data streams

Data adapters
Provision to integrate internal and external
sensor data services. Support for pull and
push-based sensors.

Extracting features from
sensor data streams

Feature repository
A repository of commonly used features from
sensor data analysis literature. Provision for
adding additional features and reusing them.

Support for including var-
ious analytics algorithms

Model repository
A repository of commonly used analytics al-
gorithms and trained models. Provision for
adding additional features and reusing them.

Experimenting and de-
ploying the analytics ap-
plication pipeline

Context Inference Engine
(CIE) and a scheduler

An execution environment for scheduling the
analytics algorithms. Provision to scale up the
computing power.

esting contexts. Facility managers can create contextlets with the help of building data analysts

and configure them for multiple buildings. Example applications are energy forecasting, anomaly

detection, occupancy detection for controlling lighting and HVAC systems.

3.2 OpenBAN System Architecture

Based on the specification of our motivating applications discussed in Section 3.1.2, Table 3.2

lists the functional requirements of OpenBAN and its corresponding architectural components

that meet the identified requirements. As shown in Figure 3.2, OpenBAN middleware consists

of four major components: (i) Data adapters, (ii) Feature repository, (iii) Model repository, and

(iv) Context Inference Engine.

3.2.1 Data Adapters

Data adapters are connectors that enable OpenBAN to act as an interface between diverse Sensor

Data Services for receiving sensor data and sending out the context inferences. It can be either

pull-based or push-based. Sensors can also be directly connected with OpenBAN if they are

accessible through web APIs. The primary responsibility of these data adapters is to handle the

45

interoperability and data exchange issues across diverse sensors, actuators, applications and their

corresponding communication interfaces and APIs.

An Input data adapter retrieves sensor data from a particular service and converts it into a

common format (< timestamp, value >) understandable by OpenBAN. Whereas, an Output

data adapter converts the computed result (context inferences) into a format required by the

target service and sends it to the target service. Data adapters for existing building subsystems,

and external sensor data services, such as GreenButton [18] and Xively [55], are implemented

and integrated with OpenBAN as plug-ins.

Therefore, any building sensor data service with a compatible data adapter can be integrated

with OpenBAN. Such integration of multiple sensor data services into a single framework enables

the user to create a custom application pipeline in OpenBAN that receives data from multiple

sensor data streams, computes relevant inferences, and then communicates the learned inferences

to external services.

3.2.2 Feature Repository

Once a Data adapter is available for a sensor stream, the next step is to derive a set of suitable

features from raw sensor data values for further analysis, e.g. the average electricity consumption

in an hour. In order to facilitate the feature identification step as a part of the “sense-analyze-act”

application pipeline, OpenBAN provides a Feature Repository containing a candidate set of fea-

ture names which are commonly used in the literature for processing sensor data streams. Each

feature name in the repository is associated with a feature function that computes the correspond-

ing feature value over the specified time slice window. A time-series sensor data stream is split

into a sequence of contiguous time windows at each N-second interval (feature window size).

Thus, each time window contains a tuple of < timestamp, value > pairs. The feature function

receives a time window as a parameter and returns the computed feature value for each of the

time windows.

46

Context
Inference
Engine

Model Repo

Feature Repo

Features

Utility meters IoT platformsBuilding management systems

Output Adapters

Input Adapters

Analytic
Engines

(Libraries for
Regression,

classification and
time series
analysis)

OpenCPU
(R)

OpenPy
(Python)

Sensor Data Services (SDS)

Building management applications
(HVAC, Lighting, etc.)Third-party services

Ac
t

An
al

yz
e

Ag
gr

eg
at

e

C
on

te
xt

le
ts

Sensor data streams Context

O
pe

nB
AN

Figure 3.2: OpenBAN system architecture showing various system components.

These feature functions are enclosed with a piece of code written in a high-level programming

language, such as Python, using various mathematical and statistical library functions. Such shal-

low association of a feature name with a piece of program code allows users to easily contribute

additional and reusable features to the repository. OpenBAN provides an interface for users to

easily create additional features. Once a new feature is created and made available to the repos-

itory, other users can also use that feature for their analysis. In this way, OpenBAN creates an

ecosystem wherein domain experts, researchers and application developers can collaborate, reuse

and share features with others. Table 3.3 lists a set of different categories of features that were

derived from various sensor data streams to infer a range of context information in buildings.

These commonly used feature names were populated from literature [66, 75, 101]. Additional

features can also be computed from these basic features e.g. ratios of different quantities.

47

Table 3.3: List of different categories of features that can be identified from various sensor data streams
to infer a wide range of context information of a building. These features are computed for each time
window spanning a N-seconds interval.

Feature Description with example usage Sensors Context and applications
Statistical features

Temperature,
Motion,
CO2 level,
Light-intensity,
Door status,
Electricity meter,
Water meter,
Gas meter,
Wi-Fi status,
Network traffic,
Security and access con-
trol, and RFID tag data

Occupancy sensing (presence,
count, identity, location, and
prediction),
Energy data disaggregation, En-
ergy (electricity, water and gas)
usage prediction and forecast,
Load shedding for demand-
response,
Activity monitoring,
and anomaly detection

min Minimum light intensity level of a room
max Maximum temperature of a workspace
mean Hourly average electricity usage
median Median CO2 level in an hour window
sum Total water consumption of a day
count Number of times door closed/opened
range Temperate range of a workspace in a day
mode Mode of a list of active network ports
stddev Standard deviation of gas usage
var Variance in the power usage

Temporal features
time-of-day Time of the day e.g morning and evening
hour-of-day Hour of the day
day-of-week Day of the week
day-of-month Day of the month
week-day Is’t a week day?
week-end Is’t a week-end?

In addition to providing support for computing features from the Feature Repository, Open-

BAN also facilitates creating Feature templates. A feature template is an abstraction over a set

of features derived from a particular sensor data stream, which are required to infer a specific

building context information. Essentially, it is represented as a triplet of {Context-inference-

name, Sensor-name, {Feature-name1, ..., Feature-nameN}}. As an example, a feature template

for inferring binary occupancy information from electricity meter readings could be {Binary-

occupancy, {Electricity-meter-power, mean, standard-deviation, range}}[97]. Similar to feature

names, feature templates for a specific application can also be created and shared with other

users.

3.2.3 Model Repository

OpenBAN allows users to experiment and include several analytics algorithms as an integral

component of the sense-analyze-act application pipeline. In order to facilitate complex analyt-

ical computations by non-experts, OpenBAN provides a Model Repository. It provides a set of

analytical algorithms and their model instances that are commonly used for inferring various con-

text information, as listed in Table 3.3, from different sensor data streams in a building. There are

48

four categories of analytics algorithms in the repository: 1) Regression analysis, 2) Classifica-

tion, 3) Time series analysis, and 4) User contributed algorithms. Similar to Feature repository,

each analytical algorithm in the repository is associated with some meta information, such as

model description and parameters, and a link for invoking the corresponding analytics function.

This link points to an HTTP API endpoint in an Analytics Engine (see Section 3.2.4) that hosts

and executes the corresponding analytics function. Users can integrate these algorithms easily,

to infer a particular building context with the help of a user interface (see Section 3.3.4). Addi-

tional analytics functions, developed by OpenBAN users, can be made accessible to other users

by updating the repository with the required meta information.

3.2.4 Analytics Engine

Sensor data analytics applications typically require significant computing power as they inher-

ently use complex optimization functions. Analytics engines are dedicated external systems in

the OpenBAN architecture, as shown in Figure 3.2, that provide required computing power (CPU

and memory) for executing various analytics library functions in real time. Analytics Engine is

designed as a separate entity to ensure system scalability as it manages a large number of sensor

data streams and draws the necessary inferences from each of them. Moreover, such loosely cou-

pled design allows for easy integration of additional analytics engines or provision of multiple

running instances of an analytics engine which are hosted within buildings or in the cloud.

In addition to providing a platform for executing the analytics functions in real time, an

analytics engine may also provide persistent trained models. A handle of the persistent trained

model and its meta information can be updated into the Model repository (see Section 3.2.3) for

later use.

49

3.2.5 Context Inference Engine

Context Inference Engine (CIE) in OpenBAN is the overall coordinator of the system. Based

on analytics application requirements, it wires up other components in a sequence and creates

an execution pipeline through which sensor data streams flow. The CIE can be executed in

two modes: 1) Training mode to learn model parameters for a specific building context, and 2)

Execution mode to execute a previously learned model over live sensor data streams. Figure 3.3

illustrates the workflow of both the training mode and the execution mode.

Training mode

Many novel building management applications require learning a model about a specific context

of their interest. Typically, learning a model involves learning the correlation between the sen-

sor data and the occurrence of the desired context events over a period of time e.g. learning an

occupancy model using motion sensor data labeled with ground truth occupancy patterns. Open-

BAN provides integrated support for training these models. The required parameters to train

a model are: (a) a list of sensor data streams and their corresponding ground truth labels for

the training period, (b) a list of feature names from the Feature repository for each sensor data

stream and feature window interval, and (c) the model algorithm. Based on these parameters,

CIE performs the following steps:

1. Fetches sensor data streams for the given training period using the corresponding data

adapters.

2. Splits the time-series data, for each sensor, into a sequence of time windows and invokes

the specified feature function for each time window to compute the corresponding feature

vector.

3. Combines the feature vector with the ground truth labels to create a training data set by

aligning the timestamps.

4. Invokes the corresponding API for learning the model, provided by an analytics engine,

50

Feature
computation

Label annotation

Inferences
….

Analytics
engine

(OpenCPU)

Primary sensor data
streams

Trained
models

Model RepoFeature Repo

Features

Learning

Feature
computation

Context Inference
Engine

Ground truth
sensor data stream

Execution set

Model info

Training set

Model output

Ground truth labels

Figure 3.3: The workflow of the Context Inference Engine for training and execution mode.

given the training set.

After successfully learning the model parameters a handle for the model is returned by the

analytics engine. This handle and the meta information about the learned model are stored in the

model repository for later use during the execution mode.

Execution mode

A user can integrate the previously trained model (or a shared trained model from other users)

into their analytics application pipeline. In the execution mode, previously trained models are

executed over live or historic sensor data streams based on user-specified intervals and time

schedule, e.g. “execute the occupancy prediction model every 2 minutes between 9 a.m to 7 p.m.

everyday”. For each execution instance of such a model, CIE fetches sensor data and computes

the required features, as explained in steps 1-2 for the training mode, and creates an execution

dataset. Thereafter, CIE invokes the corresponding API function provided by the analytics engine

51

with the execution dataset and a handle to the previously trained model. The computed results

returned by the analytics engine can be sent to multiple external services, based on application

preferences.

3.3 Implementation

In this section, we describe the details of a prototype implementation of OpenBAN architecture,

as described in Section 3.2. We have leveraged several open source technologies for our im-

plementation, and have released the code as open source [29]. We have used Java-based Play

framework [35] to implement the data adapters, feature and model repository, context inference

engine, and a sample user interface for OpenBAN. The Context Inference Engine described in

Section 3.2.5 uses Quartz scheduler [36] to schedule and execute the previously learned models.

3.3.1 Data Adapters

We implemented three data adapters in the released version of OpenBAN: (1) Xively IoT platform

[55], (2) sMap[82], and (3) SensorAct , a research building middleware system. These adapters

convert their respective sensor data formats into a collection of < timestamp, value > pairs,

represented in Java as a HashMap <DateTime, Double>. In addition to receiving sensor

data streams from these services, OpenBAN can fetch files from Dropbox that contain ground

truth labels or archived sensor data in < timestamp, value > pair format. Both UNIX epoch

and ISO8601 timestamp format are currently supported. Data adapters for other services, such

as Green Button, weather, and variable pricing and grid-load signals can be easily implemented

and integrated with OpenBAN.

3.3.2 Feature and Model Repository

The released version of OpenBAN contains all the features listed in Table 3.3. As these features

can be directly computed, they are mapped to existing mathematical library functions in Java.

52

OpenBAN also provides a simple user interface that can be used to write a piece of Python code

to extract additional feature from sensory data. All the details about each user-contributed feature

is stored in a JSON file. Similarly, details about available algorithms in each analytical engine

and their API endpoints for training and execution are also stored in a JSON file.

3.3.3 Analytics Engine

OpenBAN leverages OpenCPU [30] as its underlying analytical engines. OpenCPU is an open

computing platform which provides RESTful APIs for invoking various library functions in R, a

statistical computing language. R provides rich support for a wide variety of machine learning

and statistical algorithms. We have implemented a OpenBAN wrapper library for the underlying

machine learning algorithms in R, that handles data format issues between OpenBAN and R

functions. It has wrapper functions for regression, decision tree, neural network, SVM, naive

bayes, and k-NN algorithms. A separate HTTP API endpoint for training and executing each

of these algorithms is also included in the model repository. In addition to OpenCPU, we have

implemented our own analytics engine called OpenPy [33] for interfacing Python-based machine

learning packages, such as scikit-learn. OpenPy shares similar goals with OpenCPU and provides

RESTful APIs for invoking Python functions.

3.3.4 User Interface

We implemented a web interface for OpenBAN, as illustrated in Figure 3.4, which allows users to

interact with the system components. Using this interface, users (developers and researchers) can

create contextlets that consists of three intuitive steps: Aggregate, Analyze, and Act. Users are

authenticated using their Dropbox credentials through OAuth APIs. The current user interface

uses Dropbox as its back-end Datastore for storing a user’s App profile, Data Repo profile, and

any intermediate data generated during the analysis.

53

Figure 3.4: OpenBAN user interface showing the “Aggregate-Analyze-Act” pipeline for a sensor data
analytical application.

Data adapter instantiation: In order to integrate a sensor data service into OpenBAN, the

user first creates an instance of a particular Data adapter. Such instantiated data adapter is called

a sensor Data Repository. The user needs to provide a name and access credentials such as

user name and/or API-key, to instantiate a data adapter. Thereafter, OpenBAN connects to the

specified service, pulls a list of available sensor data streams and creates a Data Repo profile

which is stored in the user’s Dropbox account as a JSON file and is referred back whenever

OpenBAN needs to read or write the sensor data to the associated service.

Contextlet flow: After instantiating the data adapters, a user can execute the following steps

for each phase of the aggregate-analyze-act cycle:

Aggregate: In this step, the user aggregates the relevant sensor data by first selecting the train-

ing period and a set of relevant sensor data streams (that are then fetched by OpenBAN)

from the user-specified Data Repo profiles. Thereafter, the user specifies the data stream

54

that provides ground truth labels, which may possibly be stored in their Dropbox account.

Using the integrated visualization tool, the user can also plot the data.

Analyze: After aggregating various sensor data streams the user now needs to 1) select a list

of features for each sensor data stream, 2) enter the feature window size in seconds over

which the selected features are to be computed, and c) select an analytical algorithm and

specify its required parameter(s). Thereafter, the user can initiate the training process by

simply clicking on the “Train the model” button. Once a model is trained, the user can

schedule its execution over the live sensor data streams by specifying a date range and an

execution interval e.g. every 30 seconds between January 7-12, 2014 or every day at 12

am. Based on the user-specified information, OpenBAN will initiate the execution mode in

the background, as discussed in Section 3.2.5.

Act: In this final step, the user can select a list of data streams from the Data Repo profile to

which the executed model output should be communicated.

All the parameters for these three phases are packed into an App profile. The User can save an

app profile in their Dropbox as a JSON file and reload the parameters into the user interface when

required.

3.4 Experimental Applications

We developed three energy management applications on top of our prototype implementation

of OpenBAN to show the wide applicability of the proposed system. For all these applications,

we deployed OpenBAN and analytical engines, OpenCPU and OpenPy, on different virtual ma-

chines. Using OpenBAN user interface, we instantiated the required data adapters and then cre-

ated separate contextlet for each application, and deployed them in our test-bed buildings.

55

SensorAct
(collect, archive,

share and control)

OpenBAN OpenPy
(disaggregation

algorithm)

Smart meter

Tasklet

If AC is ON do…
Summary

and alerts

Contextlets

Sensor data service Context Inference Engine Analytic engine

Occupancy sensing,

Disaggregation, …

Electricity meter

readings

Appliance usage

Scheduler

Figure 3.5: Integration of SensorAct and OpenBAN systems for energy disaggregation application.

3.4.1 Energy disaggregation

We leveraged the combinatorial optimization based NILM algorithm, integrated with NILMTK [65],

to detect the refrigerator usage from whole home meter data. A disaggregation function was im-

plemented into the OpenPy analytical engine and it was registered with OpenBAN’s Algorithm

repository. We chose refrigerator as it contributes significantly to overall energy consumption

across different countries [65]. Figure 3.5 shows the deployment setup of hosting OpenBAN as a

private service with SensorAct for this disaggregation task. In this setup, a smart electricity me-

ter installed for a residential apartment was connected with SensorAct using a custom sMAP[82]

adapter. Smart meter readings were sampled at 30 seconds interval and archived in SensorAct.

We created a contextlet in OpenBAN for inferring the current status (on/off status and power

consumption) of a refrigerator. This contextlet is configured to read the smart electricity meter

readings from SensorAct, apply an energy disaggregation algorithm to identify the usage traces

of refrigerator, and then push the inferred energy usage status back to SensorAct. Further, the

contextlet was scheduled to run every 5 minutes and can provide real time refrigerator usage. An

alert was set up in SensorAct to notify any unusual refrigerator usage (based on power consump-

tion and duration) to the owner. This experimental application shows that OpenBAN’s modular

and extensible design makes it easy to integrate very specific building analytics applications such

as NILM.

56

5:00 6:00 6:30 7:30 8:305:00 6:00 6:30 7:30 8:30

0
20

0
40

0
60

0
80

0
0

20
0

40
0

60
0

80
0

Time

W
at

er
 fl

ow
 r

at
e

(c
m

3/
s)

Water usage
Sprinkler pattern

Figure 3.6: Water usage pattern for six sprinkler stations

3.4.2 Sprinkler usage policy violation

In this application, we explore the use of OpenBAN in detecting sprinkler usage compliance with

the help of the water usage trace of an entire house, as recorded by the water meter. Homeowners

can be notified of non-compliant sprinkler usage (sometimes this happens inadvertently when the

clock on sprinkler timer goes off due to electricity outage) while the utility company may use

it to analyze real-time smart water meter data to detect violators. Since sprinkler systems are

mostly automated, they generate a unique pattern when different sprinkler stations are used in

sequence. Figure 3.6 illustrates an example of sprinkler usage pattern along with other water

usage activities in the morning.

Data for this experiment has been collected from a single-family home in Los Angeles. Since

the water meter in the house was an old mechanical type, we instrumented the main water service

pipe feeding the house with a Shenitech STUF-200H ultrasound water flow sensor providing

whole-house water meter reading at 1 Hz. A custom software package [28], created for managing

diverse forms of sensor data at home, was used to collect the water flow data and upload in real-

57

time to the Xively cloud service. Our testbed household had 9 sprinkler stations scheduled to run

at 5 a.m. and 7 p.m.

For this application, we created a contextlet in OpenBAN and instantiated the Xively data

adapter. Then, we trained a SVM classifier from the Algorithm repository, on 6 months data

from June 2013 to November 2013. We chose mean, standard deviation and range

features from OpenBAN’s statistical feature repository and minute of day using temporal

Feature Repository. For all of these features, we chose a time window of 1 min. Since ground

truth information is not available, we manually annotated ground truth labels for this training

period at 1 min interval. We tested the trained SVM model with water meter readings from

the month of December. The model was able to identify the sprinkler usage events with 99%

accuracy, 96.2% F1-score and 95.2% Matthews Correlation Coefficient. Since water utilities

have now begun to install smart water meters that can easily collect water usage remotely in

near real-time, an extended version of this experiment can be used to identify customers who are

violating the sprinkler usage policy.

3.4.3 Indirect occupancy sensing

In this experiment, we show the usage of OpenBAN to infer the number of occupants in an

academic research lab from the live network traffic data. The lab is equipped with a firewall

which runs pfSense [34]. A script that invokes the Tshark network analysis tool monitored the

network traffic data such as, (i) number of connected peers; (ii) total number of TCP-out, and

TCP-in packets, and iii) activities on different standard ports. The script pushed the event logs

into SensorAct .

We collected the ground truth information using two IP cameras that take images whenever

the lab door is opened or closed. Manual observation from collected images was used to count

the total number of occupants at every 1-minute interval for 10 days. The first 5 days were used

for training. We created a contextlet for occupancy sensing in OpenBAN and selected the network

58

Monday Tuesday Wednesday

Days

O
cc

u
p

a
n

cy
 C

o
u

n
t

Observed
Predicted

0
4

8
1

2

Figure 3.7: Indirect occupancy count prediction from network activity using SVM classifier.

sensor data streams from SensorAct data adapter. We selected the features mean, min, max

and stddev from the Feature Repository and SVM classifier from Algorithm Repository. We

then used the remaining three days data (excluding 2 days of a weekend) to test the trained model.

The inferred occupancy count data was stored into Dropbox for further analysis. Figure 3.7

illustrates the difference between the predicted and the observed occupancy count. The predic-

tion accuracy of this approach was 84%. This contextlet can be scheduled at regular interval for

real-time lab occupancy information. This case study shows how OpenBAN can be useful for

developers and researchers to experiment and create new context identification methods.

3.5 System performance

We use the energy forecasting contextlet created in the previous section as a candidate application

to measure the performance of OpenBAN with in our test-bed building. Particularly, we measure

the computation time for executing the contextlet and the forecasting model under two difference

scenarios: (1) Hosting the analytics engine with in the building, (2) Hosting the analytics engine

on the cloud.

We created two contextlets for energy forecasting application with similar parameters as de-

scribed in the previous section. One of them was configured to use local analytical engine hosted

on a VM (2×2.5GHz processor, 4 GB RAM) and another was configured to use the public

OpenCPU (16×2.8GHz processor, 16 GB RAM) instance [31]. For experimental purpose, these

59

0

200

400

600

800

1000

1200

1400

1600

Fetch sensor data Feature

computation

Model execution Total

E
x

ec
u

ti
o

n
 t

im
e

(m
il

li
 s

ec
o

n
d

s)

Locally hosted Analytic Engine

Cloud hosted Analytic Engine

Figure 3.8: Comparison of execution time between local and cloud hosted analytics engine for the energy
forecasting contextlet

contextlets were scheduled to be run at every minute interval. In their each instance of execution,

they read past 1-hour smart meter readings and invoke the forecasting model which was learned

before for one month period.

We logged the computation time for 1) fetching past 1-hour meter readings, 2) computing

the required features, 3) executing forecasting model (including the network delay), and the total

computation time, for each execution instance of the contextlets. Figure 3.8 shows the compari-

son of these parameters (averaged from 200 execution instances) between local and cloud hosted

analytical engines. Although, the total execution times are not directly comparable (because of

different hardware configurations), they show that upper time limit for each contextlet instance

which is about 700 milliseconds for cloud and 1350 milliseconds for locally hosted analytic

engines.

3.6 Related Work

Existing middleware systems related to processing sensor data streams can be broadly classified

into four categories: 1) Middlewares for building management, 2) Cloud-based IoT platforms,

3) Ubiquitous and mobile systems, and 4) General purpose analytical platforms.

60

Middlewares for building management: In the recent past, several middleware systems

have emerged from both research and commercial communities for developing sensory data-

driven building control applications. BuildingDepot [119] provides a dedicated Application-

Service for writing and hosting building control applications. However, no provision has been

given within the service to perform common sensory data processing functions. Similarly, Sen-

sorAct system, as described in Chapter 2, provides a scripting framework for scheduling periodic

and trigger based applications. But its triggers are based only on the arrival of a sensor data

event. Further, the APIs provided for reading sensor data are limited to applying only aggre-

gation functions over raw sensor data. In contrast, OpenBAN provides a centralized service for

inferring common building contexts from a multitude of sensory data and allows applications to

subscribe to the desired contextual event and perform actions thereof.

HomeOS [84] presents existing networked devices in homes as PC peripherals. Applications

can read the device status or subscribe to events of interest. In either way, the underlying layers

pass raw device data to the applications. On the other hand, BOSS [83] which is specific to

commercial buildings, provides a set of operating system services for developing portable and

fault-tolerant building control applications. It contains a time series service (TSS) for archiv-

ing, querying, and processing sensor data. TSS supports a data transformation language that

allows applications to apply a pipeline of numerical operators for data cleaning and transforming

the retrieved data. Although these operators are executed within TSS, there is a vertical flow

of data between TSS and each application. Our approach is fundamentally different in many

ways: (i) applications can read or subscribe to context of their interest instead of invoking data

request queries with a combination of numerical operators, (ii) context processing pipelines in

OpenBAN can be executed either in real-time or periodically on sensor data streams, and (iii)

OpenBAN provides a centralized service for executing context processing pipeline which in-

volves learning and executing complex machine-learning models over multitude of sensor data

streams.

61

Many commercial BMS systems, such as Trane [45], are in widespread use today. They

are deployed with a predefined fixed set of applications, e.g. HVAC and fire alarm systems.

Their archaic and closed application model makes them difficult to program and extend their

functionalities [98]. Whereas, HAS systems, such as Vera, provide a scripting framework for

extending the home automation applications. However, their controllers are limited to inferring

simple contexts by applying aggregate functions over raw sensor data, e.g., “if the garage door is

left open then notify the user”. Mango Automation [51]

IoT Platforms: A number of IoT platforms have emerged recently for interconnecting sen-

sors to the Internet and developing novel applications. Examples include Xively [55], Sen.se

[53], among others. While these IoT platforms provide good support for uploading, querying

and visualizing the time series sensor data, their inherent support for processing sensory data

is limited to applying only simple conditions and aggregation functions. For example, Xively

supports threshold-based triggers by applying simple relational operators over live sensory data

streams. The application programming framework in Sen.se allows developers to write Data

funnels which fuse multiple sensor data streams based on aggregation functions.

Nimbits takes a different approach by supporting execution of several data filters on stream-

ing sensor data (e.g. to detect faulty data) and by providing a loose integration with Wolfram

Alpha [49]. However, such loose coupling prevents the use of Wolfram Alpha for continual

real-time analytics and offers limited support for statistical machine learning capabilities. IFTTT

[22] provides support for creating home automation recipes using WeMo [48] devices. Its “if-

then” model triggers are limited to inferring contexts which are directly derivable from individual

raw sensor data. MathEngine in SensorCloud allows developers to write sophisticated analytics

scripts to process live sensor data streams on the cloud.

Mobile and Ubiquitous computing platforms: Systems for monitoring rich context infor-

mation from sensor data, proposed for domains such as mobile computing, are the closest in

spirit to OpenBAN (e.g., MobiCon [99] and Darwin phones [102]). OpenBAN shares similar

goals with Auditeur [106] for creating a context monitoring pipeline which involves a learning

62

phase and an execution phase of previously learned models. While the approach for inferring a

context from sensor data streams is similar in both buildings and mobile systems, OpenBAN pro-

vides additional support for extending the system. It allows developers to add and reuse, features

and classification algorithms to its repository.

Earlier works on “context-aware” applications for ubiquitous environments are different from

context monitoring approaches in buildings. While the former focuses on reasoning about the

environment from a knowledge repository, the latter focuses on monitoring the context from a

multitude of sensory data events. Several researchers have conducted work [66, 101] on mod-

eling, analyzing and inferring rich context information in buildings. However, all of them have

pursued a narrow goal of coupling the sensors with a particular building control application, such

as occupancy based HVAC control. Unlike them, OpenBAN seeks to create an ecosystem for de-

riving inferences in which diverse building-related applications can subscribe to contexts of their

interest computed over streaming and historical sensor data.

General purpose analytical platforms: Standalone tools such as Weka [92] and cloud-

based general purpose analytics platforms such as BigML [4] and OpenML [32] have attempted

to make complex machine learning algorithms accessible to the users. For example, Weka pro-

vides an interface for users to create data flows for common machine learning algorithms. Other

cloud-based systems provide web APIs and user interfaces for experimenting with complex ma-

chine learning algorithms. But these platforms and services are primarily designed as batch

processing engines as opposed to one that would perform a real-time continual operation on time

series sensor data. Further, all these services require features extracted from raw sensory data as

their input. Esper [15] is an in-memory Complex Event Processing (CEP) engine which provides

query-based aggregation and data fusion methods. But it is limited to applying only aggregation

functions over different time windows.

63

3.7 Summary

In this chapter, we presented OpenBAN, an open sensor data analytics middleware which fa-

cilitates the development of context-based aberration detection applications. We described the

architecture of OpenBAN that consists of (a) Data adapters to integrate multiple sensor data

repositories into the system; (b) Feature Repository that provides commonly used features that

are derived from various sensor data streams; (c) Model Repository that contains commonly used

analytics algorithms and their trained instances to infer various context information in buildings;

(d) Context Inference Engine for coordinating other components and scheduling the execution

of an analytics application flow; and (e) Analytics engines for executing the machine learning

algorithms. An implementation of OpenBAN, with these various components, has been released

as open source. Using OpenBAN user interface, users can create the Aggregate-Analyze-Act flow

for an analytics application for modern smart buildings. We developed several real-world energy

management applications to show the wide utility of OpenBAN. We also performed a preliminary

system performance evaluation and find it to be satisfactory for the intended application.

64

Chapter 4

A Scalable Aberration Detection Technique

for Smart Energy Meters

In the previous two chapters, we explained software system based solutions that enable the de-

velopment and deployment of extensible energy management applications. In this chapter, we

shift the focus to proposing novel data analytics method for identifying abnormal energy usage

for a network of buildings within a neighborhood. The proposed method leverages the oppor-

tunistically available aggregate level smart meter readings and metadata attached to the meter

identity, as collected by utilities. We proposed an unsupervised aberration detection method us-

ing partial context information which reduces false positives. Further, it gives a ranked list of

potential abnormal energy usage instances for further inspection by the building owners 1.

4.1 Background and Motivation

There has been rapid growth in energy monitoring infrastructure in several countries. For exam-

ple, by 2016, 70.8 million Advanced (smart) Metering Infrastructure (AMI) installations are done

done by the US electric utilities [110]. Aggregated level electricity usage of both residential and
1Please note that, in this chapter, we use the terms aberration, abnormal and anomaly interchangeably, consistent

with the literature[67, 88, 114], although their exact definition may differ under different context.

65

commercial buildings are measured and recorded by the smart meters at a minimum of hourly

intervals. Analyzing this massive volume of smart meter data for identifying energy wastage

events is an important enabler for reducing the energy usage for a large number of buildings.

Several automated methods have been proposed in the recent literature for identifying abnor-

mal energy usage events from the aggregated level smart energy meter data [67, 88, 114]. One

of the important drawbacks of existing anomaly detection algorithms is that various unknown

context variables, such as seasonal variations, can affect the energy consumption of buildings in

ways that appear anomalous to existing time series based anomaly detection algorithms. More-

over, the primary intuition behind these approaches is that deviation from baseline energy usage

bears a one to one relationship with anomalous events. However, this assumption has two major

flaws. First, not all deviations from baseline patterns are anomalous; energy consumption can

vary significantly based on the day of the week, the time of the year, and many other seasonal

and contextual variables. Second, not all anomalous events display markedly different energy

consumption; small deviations may still be significant when contrasted with data from other

consumers within the neighborhood.

In this chapter, we present a novel method for identifying abnormal energy usage events us-

ing partially known context information. Our approach recognizes that sensing every possible

context variable (such as occupancy or zone temperature) is technically and economically in-

feasible. Instead, we use context information which is directly available from meter readings:

timestamps and metadata attached to the meter identity. Temporal context information, extracted

from timestamps, is used for improving the anomaly detection accuracy by picking only the rel-

evant historic data for baseline estimation. This captures the effect of factors such as operating

hours (for commercial buildings) and seasonal changes (such as heating/cooling loads) on the

consumption characteristics of the buildings.

Neighborhood information (as derived from available metadata) is used for adjusting the

anomaly score to account for unknown context variables that influence historically correlated

consumption patterns in the same way. For each building or user, the neighborhood is defined

66

as the set of all other users that have similar characteristics (function, location or demography),

and are therefore likely to react and consume energy in a similar way in response to the external

conditions. The neighborhood can be predefined based on prior customer information or can be

identified through an analysis of historical energy consumption.

The proposed approach consists of three steps:

1. Split the given meter readings into disjoint sets based on available temporal context infor-

mation.

2. Within each temporal context, run an anomaly detection algorithm separately on each me-

ter’s readings.

3. Adjust the anomaly score for individual meter readings based on available neighborhood

information.

We validate the effectiveness of the proposed algorithm for both residential and commercial

buildings using energy consumption data for a year, thus capturing seasonal trends as well as

shorter-term ones. Through experiments, we show the importance of using temporal context

and neighborhood information which significantly improves the anomaly detection accuracy in

comparison with an existing anomaly detection method proposed in [67].

4.2 Definitions and Assumptions

Electric utilities install smart meters in their consumer’s buildings and record the aggregate level

electricity usage, typically sampled at a one-hour interval, on a massive scale. Our objective

is leveraging such opportunistically available large dataset for detecting abnormal energy usage

behavior and provide feedback to the consumers for further action. Note that abnormal energy

usage may happen due to several reasons such as 1) a faulty appliance consuming more electric-

ity than usual; 2) an electric component failure leading to high or low power consumption; 3)

misusage of devices by humans when not required; or 4) genuine usage (e.g. festival). In this

67

work, we are primarily targeting usage anomalies, any irregular (high or low) energy usage pat-

terns due to human mistake. e.g., lights are left on during non-working hours. Identification of

other anomalies may require retrofitting for collecting fine-grained sensor data and operational

context, which is not the focus of this work.

Anomaly Types

Given that anomaly events can occur at any time, we broadly characterize the common anomalies

in real-world buildings into two categories:

• Single instance anomaly: Occurrence of an anomaly event on a single instance in the

given time series of measurements. An example of single instance anomaly is a sudden

increase in the building’s energy consumption on a given day. Figure 4.1 shows the exam-

ples of single point anomalies (a few days within the black boxes) in Meter 2 and 4 as the

lighting systems were not turned off by mistake during non-operational hours, e.g. night.

• Sequence anomaly: A set of consecutive anomalous events over a short period of time.

One example of such an anomaly would be increased consumption for a given building for

an entire week. Figure 4.1 shows examples of sequence anomalies (red boxes) in Meter 1

and 4 as some devices were left on during night hours for few days.

Temporal context sets

As explained in the previous section, several types of context variables can influence energy

consumption for a user or a set of users. In order to avoid using context variables, such as

fine-grained occupancy and appliance usage patterns, that can only be measured with expensive

sensing infrastructure, we only use temporal context variables in this work. Since energy usage

events follow regular temporal patterns, we define temporal context sets which split the given

meter readings into to N disjoint temporal subsets. Figure 4.1 shows the hourly power consump-

tion of a commercial building complex for a year. It shows several temporal context changeover

68

Figure 4.1: Hourly power usage (normalized) of different buildings with in a large commercial building
complex (neighborhood) in Sweden for a year from 1st Feb 2013 to 31st Jan 2014. It shows, (a) daily and
weekly power usage cycles with seasonal variations during summer, winter and holidays, (b) examples of
single point anomaly (marked in black), and (c) examples of sequence anomaly (marked in red). X-axis
denotes the day of the year while Y-axis is hour of the day.

events including daily cycle (working and non-working hours), weekly cycle (week days and

weekends) and seasonal variations due to summer holidays, weather change and different opera-

tional modes of a building. As an example, each meter reading can be classified into one of three

temporal context sets, based on the development presented in Section 4.3.1:

• WorkingDay-BusinessHours: This set contains meter readings taken during business

hours (8 am to 5 pm) on working days (Monday to Friday).

• WorkingDay-NonBusinessHours: This set contains meter readings taken outside busi-

ness hours (5 pm to 8 am) on working days.

• Weekend: This set contains meter readings taken during weekends, when commercial

premises are unoccupied throughout the day and night, while residential buildings are

likely to have increased occupancy.

Multiple temporal context sets can also be defined for each meter reading based on the oper-

ating characteristics of a building e.g. residential vs commercial.

69

Definition of neighborhood

The neighborhood of a given building (or residence) is defined as the set of buildings (or res-

idences) that are expected to be influenced similarly by the same context variables (known or

unknown). This definition is based on available metadata. For example, the neighborhood of a

commercial building may be defined to be the set of all other buildings within the same commer-

cial complex (administrative neighbors). Alternatively, the neighborhood of a school building

may be defined to be the set of all other school buildings in the same geographical area (func-

tional neighbors).

Neighborhood information can be predefined by a domain expert based on prior customer in-

formation or can be identified through an analysis of historical energy consumption and available

metadata. As an example, authors in [120] proposed a framework for grouping the consumers

based on several contextual dimensions such as locations, communities, seasons, weather pat-

terns, and holidays. In this work, we assume that identification of neighborhood information is a

prior step of applying the proposed anomaly detection method.

Our objective is to identify potential abnormal energy usage events using aggregate (building

level) smart meter data as the input. The abnormality is quantified by computing anomaly scores

for each time period. The anomaly score computation combines metadata based neighborhood

definitions with the historical correlation between each pair of time series, in order to compute

the pairwise influence of neighbors on each other’s individual anomaly scores. In the absence

of any metadata, the default neighborhood is the set of all users, and pairwise influences are

computed purely using historical correlation.

4.3 Anomaly Detection Algorithm

In this section, we describe the algorithm developed for computing anomaly scores for energy

consumption data, and also for flagging potential events of interest. The anomaly score, as it

70

SA11 = f (M1,TC1) SA1m = f (M1,TCm)

AFi=1,…,n = h (Self anomaly scores of all the neighbours of Mi)

M2M1

SA2

AS1 AS2 ASn

Adjusted anomaly scores

SA1

Smart meter readings

SA1 = g (SA11, …, SA1m)

…

Anomaly score

adjustment

based on

neighbor

information
AS1 = p(SA1,AF1)

…

SAS

Compute Self

Anomaly Score

(SAS)

Mn

SAn

SAS

ASn = p(SAn,AFn)AS2 = p(SA2,AF2)

…

…

Figure 4.2: Logical flowchart of the proposed anomaly detection algorithm. The function f computes
self anomaly score for each meter and for each temporal context set separately followed by function g
concatenates them. Function p computes the adjusted anomaly score for each meter data based on the
available neighborhood information.

applies to this work, is a scalar in the range [0, 1] (low to high severity) that denotes the like-

lihood of a given data instance being anomalous. The proposed method consists of three steps

for computing this score: (1) split the individual meter readings into disjoint sets based on avail-

able temporal context information (Section 4.3.1); (2) apply an anomaly detection algorithm

separately on each context set and compute an initial anomaly score (Section 4.3.2); (3) adjust

the anomaly score for individual meter readings based on available neighborhood information

(Section 4.3.3). Figure 4.2 illustrates the workflow of the proposed anomaly detection method.

71

4.3.1 Splitting data based on temporal context

A suitable period of time in the available data set (for example, the past 60 days) is picked for

the analysis described in this section. The proposed algorithm computes anomaly scores for each

instance in this time period (for example, for each day in a 60 day period). It can be executed on

a rolling basis in order to provide periodic feedback to the end user. The first step in the anomaly

detection method involves splitting the given individual meter readings based on the temporal

context. As explained in Section 4.2, we use only data timestamps for this classification because

they are easily obtainable from existing metering infrastructure. Since human activity typically

follows regular temporal patterns, appliance usage is highly correlated to the temporal context.

Therefore, computation of anomaly scores based on time-classified data is expected to increase

the accuracy of the anomaly detection algorithm.

The specific definitions of temporal context for a physical installation are assumed to be pro-

vided by a domain expert. It is assumed that the number of definitions is C, and each definition

splits the data set into N disjoint subsets. For example, the building manager for a commercial

complex could define a classification with N = 3 and a periodicity of one week: WorkingDay-

BusinessHours [Mon-Fri, 8AM-5PM], WorkingDay-NonBusinessHours [Mon-Fri, 5PM-8AM],

and Holidays [Sat-Sun]. In the absence of temporal context information, it can be obtained auto-

matically by applying existing change point detection methods [77, 116]. The algorithm that we

propose thus supports the definition of multiple temporal context sets for the same set of data.

For example, the same date/time instance could be classified by the time of the day, day of the

week, or season of the year. The self-anomaly detection algorithm described in Section 4.3.2 can

be run on each temporal context set separately, and the scores can be merged later.

4.3.2 Self-anomaly score computation

After time series data from each meter has been classified according to a given temporal context

definition c ∈ {1, . . . , C} into N subsets, each subset is processed independently by an anomaly

72

Algorithm 1: Self anomaly detection algorithm
Input: XM

N,L: A multivariate time series spanning D days (split into N temporal context
sets with L slots each) and M meters

Output: Am
n,l: Self anomaly score for each time slot

1 Compute dissimilarity matrix ∆m
n using DTW function for all pairs of time slots

(xmn,i, x
m
n,j) within a given temporal class.

2 Find the optimal number of clusters P in ∆m
n using PAM.

3 Partition ∆m
n into clusters Cp, p ∈ {1, . . . , P} using the k-medoid algorithm, compute the

population of each cluster and save in S̄m
n .

4 Compute the Euclidean distance vector D̄m
n from each time slot xmn,l to the medoid of each

cluster Cp

forall xmn,l ∈ one temporal class and meter m do
5 forall p ∈ {1, . . . , P} do
6 D̄m

n (p) = Euclidean distance (xmn,l, Medoid(Cp))

7 Am∗
n,l =< D̄m

n , S̄
m
n >

8 Compute the normalized anomaly score for each xmn,l

Am
n,l =

Am∗
n,l

maxi∈tempclass(Am∗
n,l)

detection algorithm. This initial analysis, referred to as Self-anomaly detection, is summarized

in Algorithm 1. The input to the algorithm is the time series from one meter and for a single

temporal context (e.g. WorkingDay-BusinessHours), and the output is an anomaly score for

each instance in the time series. Note that the algorithm only requires historical data for this

computation and that no neighborhood information has been introduced at this point.

In this work, we denote each series of consecutive meter readings within a single context set

as a power-time cycle or time slot. For example, all meter readings between 0700 and 1800 on

a Monday would form one time slot in the WorkingDay-BusinessHours set. Let us denote the

readings from meter index m ∈ {1, . . . ,M} in a given neighborhood, and within a given time

slot, by xm(n,l,t), where n ∈ {1, . . . , N} is the index of the context set, l ∈ {1, . . . , L} is the index

of the time slot, and t ∈ {1, . . . , T} is the time index (minute or hour of the day) within the

time slot. We refer to the collective set of all measurements in a single slot xmn,l, to all the time

slots within a single context set collectively by the notation XM
n,L, and to the entire data set by the

73

notation XM
N,L. In this work, we use a classification scheme with N = 3 and a single temporal

context definition (C = 1), as described in Section 4.2.

The algorithm computes the dissimilarity matrix ∆m
n for all pairs of time slots (xmn,i, x

m
n,j),

where i, j ∈ {1, . . . , L} that belong to the same meter and the same temporal class. In order to

measure the similarity/dissimilarity between two time slots, we use the Dynamic Time Warping

(DTW) method [103]. This is a common method for finding the similarity between two time se-

ries while accounting for small differences in temporal characteristics. This method is especially

useful in the current instance because it compensates for differences in the working hours for two

buildings, and also for the shifts caused by daylight saving time (where applicable).

The next logical step is to execute a clustering algorithm on the computed dissimilarity matrix

∆m
n , thus assigning similar time slots to the same clusters. An unsupervised k-medoid clustering

algorithm based on Partitioning Around Medoids (PAM) [96] is used for this purpose. The

PAM method identifies the optimal number P of clusters in the dissimilarity matrix ∆m
n , and

the k-medoid algorithm subsequently populates the clusters. In contrast with other distance-

based clustering algorithms such as k-means, k-medoid algorithm is robust to noise and outliers.

Note that the existence of a cluster for a certain set of operating characteristics only implies that

these characteristics were observed a significant number of times in the data set. However, the

cluster itself may represent an undesirable operating condition from the perspective of a building

operator. This issue is discussed further in Section 4.5.

An anomaly score is assigned to each time slot xmn,l based on the Euclidean distance between

this time slot and the medoids of all the clusters, as described in Algorithm 1. The set of Eu-

clidean distances between time slots xmn,l and each medoid is stored in an P -sized vector D̄m
n .

The size (population) of each cluster Cp, p ∈ {1, . . . , P} is stored in a P -sized vector S̄m
n . Note

that S̄m
n is common to all instances belonging to the same temporal class for a given meter m.

The unnormalized anomaly score Am∗
n,l is then derived by the dot product between D̄m

n and S̄m
n .

In order to compute the relative severity of each anomaly, the final step in the self-anomaly detec-

tion algorithm is to normalize by the maximum observed value of Am∗
n,l within the same temporal

74

Algorithm 2: Integrated anomaly detection algorithm with neighborhood comparison
Input: XM

N,L: A multivariate time series spanning D days (split into N temporal context
sets with L slots each) and M meters
Am

n,l: Self anomaly scores for each instance in XM
N,L

Output: Âm
n,l: neighborhood-adjusted anomaly score for each instance in XM

N,L

1 Am
n,l = COMPUTESELFANOMALYSCORE(xmn,l).

2 Compute the correlation matrix Cn of size M × L between the time series
{xm1

n,1, . . . , x
m1
n,L} and {xm2

n,1, . . . , x
m2
n,L} for each pair of meters (m1,m2).

3 Adjust self-anomaly score based on neighborhood
forall l ∈ {1, . . . , L} do

4 forall m ∈ {1, . . . ,M} do
5 δmn,l =

∑
k 6=m Cn(k, l)Ak

n,l

Âm
n,l = |Am

n,l − w × δmn,l|

class for a given meter m. If there are multiple context definitions (C > 1), the anomaly scores

from each one can be combined to give the collated self-anomaly score Am
n,l. The final value of

Am
n,l is fed to the neighborhood adjustment algorithm described in the next subsection.

4.3.3 Neighborhood based adjustment

After computing the initial (self) anomaly scores for each time slot xmn,l from individual meters

m, the final step in the algorithm adjusts these scores based on contemporary self-anomaly scores

within the neighborhood of m. This adjustment accounts for those unknown contextual factors

that influence energy consumption for all meters within a neighborhood in a similar way. An

adjustment δmn,l for each instance xmn,l is calculated based on the original self-anomaly score Am
n,l

and the baseline correlation of power consumption between individual members of a neighbor-

hood. The baseline correlation itself is computed using historical comparisons between each pair

of meters. As described in Algorithm 2, δmn,l is given by the correlation-weighted anomaly scores

from the same time slot (n, l), for all meters within the neighborhood of m. The neighborhood

adjusted anomaly score Âm
n,l is defined to be the absolute value of the difference between the

self-anomaly score Am
n,l and the weighted adjustment factor w× δmn,l. The parameter w is chosen

75

between 0 and 1 which decides how much importance to be for the neighborhood for seasonal ad-

justments. The optimal value for w can be chosen by a domain expert or calculated empirically,

as discussed in Section 4.5.

Intuitively, information from other meters within the neighborhood should help the anomaly

detection algorithm to differentiate between the effects of unknown contextual factors and anoma-

lous behavior for a single meter. Unknown contextual factors are expected to produce an effect on

several meters within the neighborhood. Therefore, the severity of an observed anomaly should

be reduced if multiple other meters also report high self-anomaly scores. On the other hand, the

anomalous behavior observed for a given meter but not for other meters within the neighborhood

(or vice versa) should result in high anomaly scores. Finally, low self-anomaly scores throughout

the neighborhood should result in low anomaly scores overall. We note that the definition of Âm
n,l

given in Algorithm 2 satisfies all of these requirements.

4.4 Datasets

We evaluate the proposed anomaly detection method using energy meter readings collected from

two different geographical locations. The dataset was collected from commercial and residential

buildings located in Sweden and India respectively. Thus, these two data sets represent energy

meter readings collected from buildings with different operational characteristics along with in-

fluence from diverse context factors such as weather conditions.

4.4.1 Commercial buildings

The commercial building data set used for our experiments was collected from a public school

campus in Sweden. The school consists of 10 buildings for classrooms and office spaces. These

buildings are operated on fairly regular schedules with fixed working days, holidays and daily

fixed hours work cycle. The aggregated energy usage of each building within the campus was

76

1 0.74

1

0.81

0.83

1

0.82

0.82

0.85

1

0.83

0.88

0.89

0.86

1

0.84

0.88

0.89

0.9

0.91

1

0.85

0.84

0.86

0.89

0.91

0.92

1

0.89

0.85

0.88

0.89

0.9

0.91

0.94

1

0.87

0.87

0.87

0.9

0.92

0.93

0.95

0.96

1

0.87

0.84

0.86

0.89

0.9

0.91

0.93

0.95

0.96

1

M8

M7

M10

M3

M9

M1

M2

M6

M4

M5

M
8

M
7

M
10 M
3

M
9

M
1

M
2

M
6

M
4

M
5

0.5 0.6 0.7 0.8 0.9 1.0

Pearson Correlation

Figure 4.3: The baseline correlation between 10 buildings for a year in the Sweden commercial building
data set. Meters are arranged using hierarchical clustering algorithm.

measured separately by smart energy meters. Meters were installed by a third party energy data

analytics company for real-time energy monitoring. Aggregated meter readings were sampled at

1 minute to 15 minutes interval and stored in a cloud-based data collection system for more than

a year. Figure 4.3 shows the baseline correlation among these buildings for a year.

4.4.2 Residential buildings

This data set contains meter readings from a multi-floor residential complex in India. This build-

ing complex consists of 8 floors with 3 apartments in each floor, with a total of 24 apartments

in a single building. Most residents in these apartments are working professionals who follow

regular office hours. Hence the apartments are typically not occupied during daytime but display

high activity during morning and evening. These apartments are equipped with common home

appliances such as lighting systems, refrigerator, heaters and air-conditioners. A smart meter was

77

1 0.51

1

−0.09

−0.02

1

0.33

0.04

0.34

1

0.29

0.09

0.25

0.52

1

0.38

0.17

0.35

0.53

0.68

1

0.44

0.06

0.23

0.5

0.48

0.57

1

0.53

0.16

0.09

0.26

0.12

0.33

0.53

1

0.16

−0.01

0.49

0.35

0.26

0.26

0.32

0.15

1

0.38

0.39

0.23

0.03

0.06

0.08

0.15

0.24

0.56

1

0.3

0.14

0.17

0.43

0.31

0.2

0.33

0.15

0.54

0.41

1

0.37

0.18

0.32

0.28

0.41

0.42

0.44

0.35

0.52

0.6

0.48

1

0.32

0.06

0.4

0.43

0.48

0.5

0.62

0.37

0.45

0.37

0.46

0.66

1

0.25

0.04

0.41

0.54

0.43

0.43

0.52

0.32

0.54

0.31

0.6

0.53

0.61

1

0.32

0.18

0.52

0.54

0.56

0.58

0.51

0.39

0.54

0.39

0.47

0.6

0.6

0.68

1

0.2

0.07

0.59

0.54

0.57

0.62

0.54

0.24

0.51

0.33

0.43

0.68

0.7

0.65

0.73

1

0.27

0.17

0.53

0.46

0.48

0.48

0.46

0.24

0.67

0.49

0.56

0.64

0.59

0.67

0.68

0.74

1

0.4

0.21

0.59

0.56

0.5

0.61

0.59

0.52

0.59

0.42

0.46

0.6

0.65

0.67

0.74

0.75

0.76

1

M6

M16

M1

M7

M11

M15

M5

M13

M2

M14

M3

M9

M18

M10

M4

M17

M8

M12

M
6

M
16 M
1

M
7

M
11

M
15 M
5

M
13 M
2

M
14 M
3

M
9

M
18

M
10 M
4

M
17 M
8

M
12

−1.0 −0.5 0.0 0.5 1.0

Pearson Correlation

Figure 4.4: The baseline correlation between 18 apartments for a year in the Indian residential buildings
dataset. Meters are arranged using hierarchical clustering algorithm.

installed for each apartment separately for energy monitoring. Energy meter readings are sam-

pled at 30 seconds interval and stored in an open-source meter data aggregation system. Among

the 24 apartments, we selected 18 for our analysis because there was a lot missing readings

for the remaining 6 apartments. Similar to commercial building dataset, we use data spanning

one year for our experiments, between August 2013 and July 2014, to account for the seasonal

variations. Figure 4.4 shows the baseline correlation among these apartments for a year.

4.4.3 Preprocessing and anomaly injection

The two data sets represent smart meter readings collected from different geographical locations,

weather conditions, daily/weekly usage cycles. We down sampled the meter readings to 1-hour

resolution (averaged over 1-hour window) for each data set. Because utility companies generally

collect meter readings as low as 1-hour resolution and for a valid comparison of the proposed

78

method with an existing method (See Section 4.5.1) which also used 1-hour resolution data.

Further, days which contained more than 10% of missing values were excluded from our analysis.

For the rest of the missing data (1% for commercial and 15% for residential data), the missing

values were replaced by a weighted average of the rest of the day.

Verification procedure for anomalies

Since the analysis presented in this work is based on real historical data, ground truth informa-

tion about actual anomalies is not readily available. Discussions with the owners of the com-

mercial data set were used to confirm the veracity of certain anomalies in the Swedish data.

These confirmed cases are presented in the next section. For residential data, our analysis is

restricted to identifying a particular abnormal energy usage event where one or more appliances

are operational outside usual hours. An example of such an anomaly would be the operation of

heating/cooling loads outside office hours in commercial spaces.

In summary, ground truth comparison in the Swedish data set was carried out through dis-

cussion of suspicious events (shown in Figure 4.1) with the facility managers. For the Indian

residential building data set, we surveyed the apartment owners and collected the details about

all the appliances being used and their power ratings. We manually matched the energy usage

of some of the high-power consuming appliances with changes in the raw power meter readings.

This exercise was used to model the energy ratings of the appliances. Subsequently, we injected

the signatures of ‘anomalous usage’ of the appliances (left on for few hours to few days) into the

raw power readings and marked it as ground truth for our analysis. Table 4.1 summarizes the

details about the injected anomaly events. As we use three context sets with a minimum time in-

terval of 12 hours (Section 4.3.1), the required minimum duration of a single anomaly should be

12 hours. To cover the worst case scenario, which is below 12 hours, we injected single anomaly

for 6-24 hours. As sequence anomaly occurs in consecutive time slots, we injected the sequence

anomaly for 2-3 days (required minimum no of days is two).

79

Table 4.1: Details about the injected abnormal energy usage events into the residential building dataset.

Appliance Power (kW) Anomaly type No. of instances Duration
Air conditioner 1.8 single 5 6 - 24 hours
Air conditioner 2.0 sequence 2 2 - 3 days
Room heater 2.2 single 4 6 - 24 hours
Room heater 2.2 sequence 3 2 - 3 days

4.5 Experimental Results

One of the major challenges with evaluating anomaly detection methods is the unavailability

of fine-grained ground truth data about the actual anomalies from real-world buildings. Hence

we adopt a similar evaluation method presented in [88], and analyze the computed anomaly

score case by case for known abnormal energy usage events, such as lights are not turned off

during non-working hours. Further, we employed a visual analytics method, similar to [94],

for visualizing the actual data and anomaly score in a convenient manner, and to highlight the

potential anomalies to the building owners. Therefore, our experimental results are focusing on

analyzing the signature of some known anomalies with respect to the temporal context sets and

neighborhood information.

4.5.1 Baseline Methods

We compare the performance of the proposed anomaly detection method with an existing algo-

rithm described for commercial building. Additionally, we also compare the performance of the

integrated algorithm with two simpler versions that use only self-anomaly detection method.

Self Anomaly - No Context (SANC): This is the self-anomaly detection method described

in Section 4.3.2 but without using any temporal context information. Energy meter readings were

directly fed into Algorithm (1) without splitting them into temporal context sets. We selected this

method to show the significance of using available temporal context information for improving

the anomaly scores for known anomaly events.

80

Self Anomaly, but using Temporal Context (SATC): This is also the self-anomaly detec-

tion method described in Section 4.3.2, but now using all the available temporal context informa-

tion described in Section 4.3.1. However, it does not adjust the computed anomaly score using

available neighborhood information. We selected this method to show the significance of using

available neighborhood information for adjusting the anomaly score to factor the influence of

unknown contexts for a year.

Self Anomaly - HP (SAHP): This anomaly detection method was proposed by Bellala et

al from HP for identifying daily anomalous events for commercial buildings [67]. We chose

this method because it shares a similar idea with the self-anomaly method but without using any

temporal or neighborhood information.

The baseline and the proposed anomaly detection algorithms were implemented in R using

its built-in package libraries. Also, we developed a R-Shiny web application and released the

code in open-source [40]. We present the identified abnormal energy usage events and compare

their performance in the below sections.

4.5.2 Analysis of commercial building data

We executed the proposed anomaly detection method on the Sweden commercial building dataset.

We used a temporal context set, as discussed in Section 4.3.1, as the building exhibits fixed daily

and weekly cycle. A brief discussion with the data owner revealed that all the buildings are

from a single administrative neighborhood as the baseline correlation among these buildings is

high, as shown in Figure 4.3. Figure 4.5 illustrates the computed anomaly score of the proposed

algorithm along with all the baseline methods for a single smart meter. We selected this par-

ticular meter data as it contains many instances of single and sequence anomalies (as shown in

Figure 4.1) as compared to other meters.

81

Meter 1

Self anomaly score − No Context (SANC)

Self anomaly score − using Temporal Context (SATC)

Adjusted anomaly score − using Temporal Context and Neighbourhood (proposed)

Self anomaly score − HP (SAHP)

0
6

12
18
23

0
6

12
18
23

0
6

12
18
23

0
6

12
18
23

0
6

12
18
23

Aug−13 Sep−13 Oct−13 Nov−13 Dec−13 Jan−14 Feb−14 Mar−14 Apr−14 May−14 Jun−14 Jul−14 Aug−14

H
ou

r
of

 t
he

 d
ay

0.00

0.25

0.50

0.75

1.00

Figure 4.5: Hourly meter readings of a Sweden commercial building with computed anomaly score by
different baseline and proposed anomaly detection methods. It shows several instances of point and se-
quence anomalies and how the computed anomaly score differs using the temporal and neighborhood
information.

Single point anomaly

We consider three instances of noticeable single point anomalies in the raw power readings which

occurred on September 25, October 4 and November 14, as shown in Figure 4.5. Both SANC

and SAHP were not able to assign a high score for them, as the (total) power usage of those

anomalous days, although there was anomalous usage during night hours, is similar to other

days. However, SATC is able to assign higher score as it splits the power usage of those days

into different context sets, WorkingDay - BusinessHours and WorkingDay - NonBusinessHours.

Using the neighborhood information, proposed algorithm decreases the computed anomaly score

as the similar usage was observed in some of the other meters as well.

Sequence anomaly

We consider three instances of sequence anomalies (abnormal power consumption during week-

ends) which occurred during November, February, and May, for evaluating the performance of

the proposed anomaly detection method. We can observe that, without using any temporal con-

text information, SAHP outperforms SANC as it assigns higher anomaly score for anomalies

82

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Self anomaly score − No context (SANC)

S
el

f
an

om
al

y
sc

or
e

−
 T

em
po

ra
l C

on
te

xt
 (

S
A

T
C

)

(a)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Self anomaly score − Temporal Context (SATC)

A
dj

us
te

d
an

om
al

y
sc

or
e

(b)

Neighbourhood based adjustment weightage (%)

A
no

m
al

y
sc

or
e

di
ff

er
en

ce
 (

S
el

f−
A

dj
us

te
d)

●
●

●
● ● ● ●

●
●

●

10 20 30 40 50 60 70 80 90 100

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

0.
6

0.
8

(c)

Figure 4.6: Anomaly score comparison of (a) self anomaly score without using any context verses self
anomaly score using only the temporal context, (b) self-anomaly score only using the temporal context
verses using available neighborhood information, and (c) a violin plot (a combination of box and density
plot) shows the differences between anomaly scores (self minus adjusted), by using different adjustment
weights for the Sweden commercial building dataset.

happened during November and May. Using the temporal context information, SATC is able to

assign a higher score for all the three sequence anomalies. However, after adjustment, it assigns

a lower score for the anomaly event that happened in Feb.

83

−
0.

4
0.

0
0.

2
0.

4
0.

6
0.

8

A
no

m
al

y
sc

or
e

di
ff

er
en

ce
 (

S
el

f
−

 A
dj

us
te

d)

Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Figure 4.7: Adjusted anomaly score difference for different weights over time for the Swedish commercial
building data set. The curve with the smallest magnitude corresponds to a weight of 10% and the one
with the highest magnitude corresponds to a weight of 100%. Positive values indicate a reduction in the
anomaly score after neighborhood comparison and vice versa.

Anomaly classification

Figure 4.6a shows a scatter plot of self-anomaly scores with and without using temporal context

sets. The spread of the scores indicates the influence of the temporal context sets for adjusting

anomaly scores based on seasonal changes. Similarly, Figure 4.6b shows a scatter plot of self-

anomaly scores using temporal context and neighborhood adjusted scores, for a single meter in

the Swedish commercial complex data. This visualization also highlights the unique characteris-

tics of the proposed algorithm, by automatically classifying different classes of anomalies in the

data. The lower left corner of the figure represents nominal operating conditions when both the

self-anomaly and adjusted anomaly scores are low. The bottom right quadrant represents points

that appeared anomalous to the self-anomaly algorithm, but their severity was downgraded after

comparison with neighbors. These instances typically represent events such as festival periods

or summer vacations (for schools) and are unlikely to be actual anomalies. Instead, these points

denote the contribution of the neighborhood comparison step to the reduction of the number of

false positives in the anomaly detection algorithm.

84

The top left quadrant of the figure shows instances that did not appear anomalous at first, but

their severity was upgraded after neighborhood comparison. Complementary to the discussion

above, these points represent the contribution of the neighborhood comparison towards reducing

the false negative rate in the algorithm. Finally, the top right portion of the figure represents

points that were deemed to be highly anomalous, both by the self-anomaly detection and af-

ter neighborhood comparison. These points represent the most confidently flagged anomalous

instances and should be investigated by human supervisors on a high priority basis.

Anomaly score adjustment using neighborhood information

After computing the initial anomaly score, we assigned a different percentage of weights for

the neighbors and calculated the adjusted anomaly score. Figure 4.6c illustrates the difference

between self and the adjusted anomaly score while using different weights ranging from 10% to

100%. It is observed that up to assigning weights 60% the average difference between the self and

adjusted score is increased linearly. After that, it started to decrease for weights higher than 60%,

as shown inFigure 4.6c. Figure 4.7 shows how adjustment varies over time for different seasons

with different neighborhood weights. We can observe that higher adjustment during January for

accounting the seasonal changes. Also, there are some instances of higher adjustment during

May to account for the abnormal energy usage events which are also visible in Figure 4.5.

4.5.3 Analysis of residential building data

We executed the proposed anomaly detection algorithm over all the 24 smart meter readings

in the Indian residential building data set. We used a temporal context set, as discussed in

Section 4.3.1, as the building occupants exhibit regular daily and weekly cycle similar to the

commercial buildings. Further, all the buildings were from the same neighborhood. Figure 4.8

illustrates the computed anomaly score of the proposed algorithm and the baseline methods for

a single smart meter. We injected the anomalies, shown in Table 4.1, into one of apartment me-

85

Apartment_403_a

Self.Anomaly.Score...No.Context

Self.Anomaly.Score...using.Temporal.Context

Adjusted.Anomaly.Score...using.Temporal.Context.and.Neighbourhood

Self.Anomaly.Score...HP

0
6

12
18
23

0
6

12
18
23

0
6

12
18
23

0
6

12
18
23

0
6

12
18
23

Jan−14 Feb−14 Mar−14 Apr−14 May−14 Jun−14 Jul−14 Aug−14 Sep−14 Oct−14 Nov−14 Dec−14 Jan−15

H
ou

r
of

 t
he

 d
ay

0.00

0.25

0.50

0.75

1.00

Figure 4.8: Hourly meter readings of an Indian residential building with computed anomaly score by dif-
ferent baseline and proposed anomaly detection methods. It shows several instances of point and sequence
anomalies and how the computed anomaly score differs using the temporal and neighborhood information.

ter data. Also, we applied a temporal context set which is similar to the commercial building

experiment to account for the daily/weekly energy usage cycle.

Self anomaly score

In contrast with commercial buildings, variation in the energy usage patterns are high in residen-

tial buildings. As shown in Figure 4.4, the baseline correlation between residential apartments

was diverse. Specific to India, as shown in Figure 4.8, there is higher power consumption during

summer and winter due to the extreme weather conditions. After calculating the anomaly scores,

we set a threshold of selecting top 10% of anomalies for the analysis. Among those 14 anoma-

lies that we injected, SATC was able to assign a higher score for all of them, whereas SAHP

identified only 12 (missed those single point anomalies happened during July and August).

Anomaly score adjustment using neighborhood information

Similar to the commercial building, we assigned a different percentage of weights for the neigh-

bors and calculated the adjusted anomaly score. Figure 4.9c plots the difference between self-

anomaly score and adjusted using different percent of weights ranging from 10% to 100%. In

86

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Self anomaly score − No context (SANC)

S
el

f
an

om
al

y
sc

or
e

−
 T

em
po

ra
l C

on
te

xt
 (

S
A

T
C

)

(a)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Self anomaly score − Temporal Context (SATC)

A
dj

us
te

d
an

om
al

y
sc

or
e

(b)

Neighbourhood based adjustment weightage (%)

A
no

m
al

y
sc

or
e

di
ff

er
en

ce
 (

S
el

f−
A

dj
us

te
d)

●
●

●
●

●
●

●
●

●
●

10 20 30 40 50 60 70 80 90 100

0.
0

0.
1

0.
2

(c)

Figure 4.9: Anomaly score comparison of (a) self anomaly score without using any context verses self
anomaly score using only the temporal context, (b) self-anomaly score only using the temporal context
and using available neighborhood information, and (c) violin plot (a combination of box and density
plot) shows the differences between anomaly scores (self minus adjusted), by using different adjustment
weights for the Indian residential building dataset.

contrast with commercial buildings, the baseline correlation between the residential apartments

is diverse, as shown in Figure 4.4. Due to that the maximum adjustment factor was 0.2. It is ob-

served that the difference between the self and adjusted score is increased linearly with respect to

neighborhood weights. Figure 4.10 shows how the adjustment varies over time for different sea-

sons while using different neighborhood weights. We can observe that increase in the adjustment

during July to account for the seasonal changes during summer.

87

0.
00

0.
05

0.
10

0.
15

0.
20

A
no

m
al

y
sc

or
e

di
ff

er
en

ce
 (

S
el

f
−

 A
dj

us
te

d)

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Figure 4.10: Adjusted anomaly score difference for different percentage of weights over time for the
Indian residential building data set. The curve with the smallest magnitude corresponds to a weight of
10% and the one with the highest magnitude corresponds to a weight of 100%. Positive values indicate a
reduction in the anomaly score after neighborhood comparison.

Similar to the anomaly characterization for the commercial building data set, Figure 4.9a

shows a scatter plot of self-anomaly scores with and without using temporal context sets. Simi-

larly, Figure 4.9b plots the self-anomaly score against the adjusted anomaly score which shows

the classification of anomaly events. In contrast with the commercial building, the scatter plot

looks narrow because of the higher variation in the baseline correlation in residential building

users.

4.6 Related Work

Several anomaly detection methods for different domains have been proposed in the literature

for identifying potential anomalous events [73]. Authors in [114] proposed an unsupervised

anomaly detection method for identifying potential abnormal energy usage days. They used

robust statistical methods based on the variability of mean and standard deviation in the power

usage. Similar to that, authors in [70] proposed a generalized extreme studentized deviate method

88

based on the variation of mean and standard deviation of the measured data. However, these

methods are limited to identify the single point anomaly events.

Authors in [74] proposed a framework for detecting energy usage outliers for smart buildings.

They used a suffix tree representation of the energy usage activities for grouping the subsequence

energy usage events and cluster them for identifying anomalous events. A similar method but

without using clustering algorithm was proposed in [67]. They use a multi-dimensional scaling

method for reducing the dimension of the dissimilarity matrix and assign density of a point using

the kNN algorithm.

Several multivariate anomaly methods have been proposed in the literature. Authors in [78]

presented a graph-based algorithm for detecting and characterizing the anomalies. Since many

real-world events are interrelated, Granger causality methods have also been used in the literature

for time series anomaly detection [109]. However, all these methods do not account the context

factors which influence the occurrence of anomaly events. An anomaly detection framework for

monitoring the Hadoop Map-reduce tasks using system-level context information was proposed

in [91]. Our proposed self-anomaly detection algorithm shares similar idea with them for using

the context information. However, the adjustments of self-anomaly scores across the meters in a

neighborhood are essential for energy domain for accounting the seasonal changes.

In contrast with all the existing methods, the proposed method uses the context information

which is collected as part of the meter data collection system. Further, we evaluate the proposed

method using a year-long data set from both commercial and residential buildings.

89

4.7 Summary

In this chapter, we described an anomaly detection methodology for energy consumption data

time series, that used information from neighboring meters to qualify its output. The neighbor-

hood for a meter (the source of each time series) could be defined a prior or could be identified

directly from the data. We showed that incorporating such information was an effective safeguard

against the identification of spurious anomalies (false positives), as well as against the omission

of real anomalies (false negatives). The generic nature of the algorithm ensures that it is effective

for a wide-range of applications, including residential and commercial complexes.

90

Chapter 5

Conclusions and Future Work

Buildings are one of the largest energy consumers around the world, accounting for over 40% of

energy usage both in developed and developing countries. They are increasingly instrumented

with novel Cyber-Physical control systems that use heterogeneous sensors and actuators for mon-

itoring, automating, and optimizing different building operations for improving energy efficiency.

Several efforts have been sought in the past decade by both research community and several sec-

tors of the government and industry to reduce the energy footprint of buildings. In this thesis,

we described the design, development, deployment and experimental validation of software sys-

tems and analytical methods towards optimizing the energy usage in buildings. We implemented

several real-world applications for identifying abnormal energy usage events ranging from rule-

based methods to complex context-aware analytics and scaling them to a network of buildings.

Further, the software systems and analytical methods presented in this thesis were released in

open-source for community use [29, 40, 42].

5.1 Summary of contributions

This thesis makes following contributions to the advancement of making buildings more energy

efficient.

91

1. Decentralized energy management system for buildings: We proposed a decentralized

and extensible middleware system architecture, called SensorAct, for energy management

in buildings. It provides flexible interfaces, in the form RESTful APIs, for integrating

the underlying heterogeneous sensing and control systems into a single platform for better

management. To ease the development of third-party applications and to extend existing

features, SensorAct architecture provides a scripting framework for automating the various

energy management functions. It also supports a rule-based mechanism for fine-grained

sensor data and control sharing for external applications and occupants. Further, the Sen-

sorAct system provides programming abstractions for developers, through RESTful APIs

and Tasklets, for accessing the underlying networked sensing systems and processing their

data, enabling the development of extensible energy monitoring applications.

2. Reusable sensor data analytics service for identifying the operational context of the

building: We proposed a reusable middleware system service, called OpenBAN, for ana-

lyzing the sensor data to infer the operational context of the building, which enables the

identification of complex context-based abnormal energy usage events. OpenBAN service

consists of a runtime environment for developing and scheduling a pipeline of process-

ing elements, called as Contextlet, for sensor data analytics. As a service, it can be in-

tegrated with other building management systems for providing extensible and scalable

sensor analytics support. In our prototype, we integrated the OpenBAN service with Sen-

sorAct system and developed a number of energy monitoring applications, such as energy

disaggregation and sprinkler usage violation, to show their combined utility.

3. Scalable anomaly detection method using readily available sensor data for a network

of buildings: We proposed a novel unsupervised method for identifying abnormal energy

usage events for a large number of buildings within a neighborhood, using only the smart

energy meter readings. The proposed approach recognized that sensing every possible

92

context variables which affect energy usages, such as occupancy and indoor climate, is

technically and economically infeasible. So we used only the readily available context

information which is directly available from meter readings and utilities, making the ap-

proach scalable for a large number of buildings. We validated the effectiveness of the pro-

posed method using real-world smart meter readings for both commercial and residential

buildings across two different geographical regions. We showed that the usage of readily

available context information improves the anomaly detection accuracy, and it outperforms

a baseline method proposed in the literature.

5.2 Future directions

In this section, we list out the limitations of software systems and analytical methods described

in this thesis and suggest some ideas for future work.

5.2.1 Vendor agnostic integration and portable building applications

The underlying sensing and control systems in the buildings are built with vendor-specific com-

munication protocols, access methods, and configurations. One of the challenges is mapping

these heterogeneous resources into a common namespace for uniform access across the building

applications. Even though these systems use some standardized communication protocols, such

as BACnet and Modbus, there is no standard way to configure them as different engineers use

different naming convention and metadata schema.

The SensorAct system described in Chapter 2 relies on developing separate Gateways to inte-

grate a specific sensing and control system, which requires tedious manual work. One approach

could be developing a vendor agnostic gateway which will automatically map the underlying

naming conventions into a common namespace which can be used by the top-layer applications.

Such a system will enable the development of a truly portable building applications which can

93

run on any building with minimal or no modification to the application code. There are some

recent research works [69] that attempt to address these challenges but still limited to specific

settings, e.g. HVAC. Another approach could be to use an ontology-based model by creating a

knowledge repository of the building subsystem components.

5.2.2 Writing secure and fault-tolerant building applications

The building energy management applications often need to condition the ambience of various

building regions, e.g., turning on or off the lighting systems based on occupancy level. So they

should be secure and fault-tolerant to the failures in building subsystems to avoid any adverse

effects. The scripting framework described in the SensorAct system provides an execution envi-

ronment for running the building applications in a sandbox. However, it assumes that the applica-

tion developer will write the code which does not create any adverse effects or race-conditions,

particularly when controlling the actuators. This can be mitigated by providing an automatic

mechanism for verifying the application code before actual deployment. The identified adverse

effects, if any, could be reported to the building administrator for further investigation. Several

formal program verification methods have been proposed in the literature which can be employed

for solving this problem.

5.2.3 Usability study

We have evaluated the software systems presented in this thesis based on real-world deployment

and experimental validation of real-world energy management applications, as a proof of con-

cept. We have also analysed the system performance to identify how much load the system can

handle for practical deployments. The usability evaluation of the system could be an interesting

future direction to identify how well users can learn and use the system. It can be targeted towards

different stakeholders of the system, namely application developers, building administrators, and

end users.

94

We can conduct a usability study to identify how easy for the developers to write the building

applications on top of the proposed scripting framework in SensorActand analytics engine in

OpenBAN, in contrast with existing legacy systems. Another interesting study could identify

how easy and useful the system is for the building administrator for performing various day-

to-day tasks. Finally, after deploying the energy management applications, we can conduct a

survey among the building occupants to identify posterior effects such as how they like and use

the applications, any behavioral changes in saving energy, and any inconveniences to them.

95

96

Bibliography

[1] Procedures for Commercial Building Energy Audits — American Soci-
ety of Heating, Refrigerating, and Air-Conditioning Engineers. https:
//www.ashrae.org/resources--publications/bookstore/
procedures-for-commercial-building-energy-audits. [Online;
accessed September 2016]. 1.1

[2] BACnet - A Data Communication Protocol for Building Automation and Control Net-
works. http://www.bacnet.org. [Online; accessed September 2016]. 2.1

[3] PG&E Pilot Yields 7.7% Energy Savings. http://www.bidgely.com/blog/
pge-pilot-yields-7-7-energy-savings/. [Online; accessed September
2016]. 1.1

[4] BigML. http://bigml.com. [Online; accessed September 2016]. 3.6

[5] Blower door testing. https://en.wikipedia.org/wiki/Blower_door. [On-
line; accessed September 2016]. 1.1

[6] Energy Savings Potential of Solid-State Lighting in General Illumination Applications.
http://www.nlb.org/index.cfm?cdid=10972&pid=10225. [Online; ac-
cessed September 2016]. 1.1

[7] DOE, Buildings Energy Data Book, Table 3.1.5. http://buildingsdatabook.
eren.doe.gov/ChapterIntro3.aspx. [Online; accessed September 2016]. (doc-
ument), 1.2

[8] CurrentCost - EnviR. http://www.currentcost.com/product-envir.
html. [Online; accessed September 2016]. 1.1

[9] Power and Energy Meters - Eaton. http://www.eaton.in/
Eaton/ProductsServices/Electrical/ProductsandServices/
PowerQualityandMonitoring/PowerandEnergyMeters/index.htm.
[Online; accessed September 2016]. 2.4.1

[10] Short-Term Energy Outlook - U.S. Energy Information Administration (EIA). https://
www.eia.gov/forecasts/steo/report/renew_co2.cfm. [Online; accessed
September 2016]. 1.1

97

[11] Energy audit. https://en.wikipedia.org/wiki/Energy_audit, . [Online;
accessed September 2016]. 1.1

[12] Energy demand management. https://en.wikipedia.org/wiki/Energy_
demand_management, . [Online; accessed September 2016]. 1.1

[13] Energy Flow Charts: Charting the Complex Relationships among Energy, Water, and Car-
bon. https://flowcharts.llnl.gov/, . [Online; accessed September 2016].
(document), 1.1, 1.1

[14] ENERGY STAR — The Simple Choice for Energy Efficiency. https://www.
energystar.gov/, . [Online; accessed September 2016]. 1.1

[15] Esper: Event Processing for Java. http://www.espertech.com/products/
esper.php. [Online; accessed September 2016]. 3.6

[16] FireSense: Firewall-Based Occupancy Sensing. https://github.com/nesl/
FireSense. [Online; accessed September 2016]. 2.5.2

[17] Flyport system on module platform. http://www.openpicus.com/site/
products. [Online; accessed September 2016]. 2.4.1

[18] Green Button Data. http://www.greenbuttondata.org. [Online; accessed
September 2016]. 3.2.1

[19] HomeSeet Inc. http://www.homeseer.com. [Online; accessed September 2016].
2.5.2

[20] Honeywell Building Solutions — BMS — Commercial Buildings. https://
buildingsolutions.honeywell.com/. [Online; accessed September 2016]. 1.2,
2.6.1

[21] 2012 International Energy Conservation Code. http://publicecodes.
cyberregs.com/icod/iecc/2012/icod_iecc_2012_cover.htm. [Online;
accessed September 2016]. 1.1

[22] IFTTT. https://ifttt.com. [Online; accessed September 2016]. 3.6

[23] Building Management Systems - BMS — Johnson Controls. http://www.
johnsoncontrols.com/buildings/building-management. [Online; ac-
cessed September 2016]. 1.2, 2.6.1

[24] Jython. http://www.jython.org. [Online; accessed September 2016]. 2.4.2

[25] LabSense: An Extensible and Easily Configurable Energy Monitoring System. http://
nesl.ee.ucla.edu/document/show/436. [Online; accessed September 2016].
2.2.1, 2.4.1, 2.5.2

98

[26] Lua. http://www.lua.org. [Online; accessed September 2016]. 2.4.2

[27] The Modbus Organization. www.modbus.org. [Online; accessed September 2016].
2.2.1

[28] SensorActuatorManager. https://github.com/nesl/
SensorActuatorManager. [Online; accessed September 2016]. 3.4.2

[29] OpenBAN. https://github.com/nesl/OpenBAN, . [Online; accessed Septem-
ber 2016]. 3.3, 5

[30] OpenCPU. https://opencpu.org, . [Online; accessed September 2016]. 3.3.3

[31] OpenCPU - Public Server. https://www.opencpu.org/demo.html, . [Online;
accessed September 2016]. 3.5

[32] OpenML. http://openml.org, . [Online; accessed September 2016]. 3.6

[33] OpenPy. https://github.com/game-time/OpenPy, . [Online; accessed
September 2016]. 3.3.3

[34] pfSense - World’s Most Popular Open Source Firewall. http://www.pfsense.org.
[Online; accessed September 2016]. 3.4.3

[35] Play Framework - Build Modern and Scalable Web Apps with Java and Scala. https:
//www.playframework.com/. [Online; accessed September 2016]. 3.3

[36] Quartz Scheduler. http://quartz-scheduler.org. [Online; accessed September
2016]. 2.4.2, 3.3

[37] Intelligent Rack Power Distribution Units — Power Management — Raritan. http:
//www.raritan.com/products/power-distribution. [Online; accessed
September 2016]. 2.4.1

[38] Raspberry Pi. https://www.raspberrypi.org. [Online; accessed September
2016]. 2.4.2

[39] DOE, Buildings Energy Data Book, Table 2.1.5. http://buildingsdatabook.
eren.doe.gov/ChapterIntro2.aspx. [Online; accessed September 2016]. (doc-
ument), 1.2

[40] Anomaly Detection Method for Smart meters. https://github.com/
pandarasamy/anomaly_detection. [Online; accessed September 2016].
4.5.1, 5

[41] SEAI - Running an Energy Awareness Campaign. http://www.seai.ie/
EnergyMAP/Energy_Awareness/Implement_your_campaign/Running_
an_Energy_Awareness_Campaign.html. [Online; accessed September 2016].

99

1.1

[42] SensorAct VPDS v2.0. https://github.com/iiitd-ucla-pc3/
SensorActVPDS-2.0. [Online; accessed September 2016]. 2.4.2, 5

[43] Siemens Building Technologies. https://www.buildingtechnologies.
siemens.com. [Online; accessed September 2016]. 1.2, 2.6.1

[44] Smappee Offers World’s First Itemized Electricity Bill - Smappee. http://www.
smappee.com/us/blog/press-en-2015-03-11/. [Online; accessed Septem-
ber 2016]. 1.1

[45] Building Automation Systems — Controls — Trane Commercial. http:
//www.trane.com/commercial/north-america/us/en/markets/
data-centers/controls.html. [Online; accessed September 2016]. 1.2, 2.6.1,
3.6

[46] Vera - Smarter Home Control. http://getvera.com, . [Online; accessed September
2016]. 3.1.1

[47] Power/Energy Monitoring - Veris Industries. www.veris.com/category/
power-fslenergy-spcmonitoring.aspx, . [Online; accessed September 2016].
2.4.1

[48] Wemo Home Automation. http://www.belkin.com/us/wemo. [Online; accessed
September 2016]. 3.6

[49] Wolfram Alpha. http://www.wolframalpha.com. [Online; accessed September
2016]. 3.6

[50] Buildings Energy Data Book. Energy Efficiency and Renewable Energy Department,
2011. 1.1

[51] Mango M2M. http://mango.serotoninsoftware.com, 2016. [Online; ac-
cessed September 2016]. 2.6.3, 3.6

[52] Nimbits. http://www.nimbits.com, 2016. [Online; accessed September 2016].
2.6.3

[53] Sen.se. http://open.sen.se/, 2016. [Online; accessed September 2016]. 2.6.3,
3.6

[54] Simple Network Management Protocol. https://en.wikipedia.org/wiki/
Simple_Network_Management_Protocol, 2016. [Online; accessed September
2016]. 2.4.1

[55] Xively Public Cloud for the Internet of Things. http://xively.com, 2016. [Online;
accessed September 2016]. 2.6.3, 3.2.1, 3.3.1, 3.6

100

[56] Kaa. https://www.kaaproject.org/, 2018. [Online; accessed January 2018].
2.6.3

[57] openHAB . https://www.openhab.org/, 2018. [Online; accessed January 2018].
2.6.3

[58] SmartThings. https://www.smartthings.com/, 2018. [Online; accessed January
2018]. 2.6.3

[59] Karl Aberer, Manfred Hauswirth, and Ali Salehi. Global sensor networks. EPFL, Lau-
sanne, Tech. Rep, 2006. 2.6.2

[60] AEO. US Energy Information Administration. AEO2011: Annual Energy Outlook, April
2011. 1.1

[61] S. Afshari, S. Mishra, J. Wen, and R. Karlicek. An adaptive smart lighting system. In
Proceedings of the Fourth ACM Workshop on Embedded Sensing Systems for Energy-
Efficiency in Buildings, pages 201–202. ACM, 2012. 1.1, 1.2, 3.1.2

[62] Yuvraj Agarwal, Thomas Weng, and Rajesh K Gupta. The energy dashboard: improving
the visibility of energy consumption at a campus-wide scale. In Proceedings of the First
ACM Workshop on Embedded Sensing Systems for Energy-Efficiency in Buildings, pages
55–60. ACM, 2009. 1.1

[63] Yuvraj Agarwal, Rajesh Gupta, Daisuke Komaki, and Thomas Weng. Buildingdepot: an
extensible and distributed architecture for building data storage, access and sharing. In
Proceedings of the Fourth ACM Workshop on Embedded Sensing Systems for Energy-
Efficiency in Buildings, pages 64–71. ACM, 2012. 2.6.2

[64] Pandarasamy Arjunan, Nipun Batra, Haksoo Choi, Amarjeet Singh, Pushpendra Singh,
and Mani B Srivastava. Sensoract: a privacy and security aware federated middleware
for building management. In Proceedings of the Fourth ACM Workshop on Embedded
Sensing Systems for Energy-Efficiency in Buildings, pages 80–87. ACM, 2012. 2.3.1

[65] Nipun Batra, Jack Kelly, Oliver Parson, Haimonti Dutta, William Knottenbelt, Alex
Rogers, Amarjeet Singh, and Mani Srivastava. Nilmtk: An open source toolkit for non-
intrusive load monitoring. In Proceedings of the 5th international conference on Future
energy systems, pages 265–276. ACM, 2014. 1.2, 3.4.1

[66] Christian Beckel, Leyna Sadamori, and Silvia Santini. Automatic socio-economic clas-
sification of households using electricity consumption data. In Proceedings of the fourth
international conference on Future energy systems, pages 75–86. ACM, 2013. 3.2.2, 3.6

[67] Gowtham Bellala, Manish Marwah, Martin Arlitt, Geoff Lyon, and Cullen E Bash. To-
wards an understanding of campus-scale power consumption. In Proceedings of the Third
ACM Workshop on Embedded Sensing Systems for Energy-Efficiency in Buildings, pages
73–78. ACM, 2011. 1.1, 1, 4.1, 4.1, 4.5.1, 4.6

101

[68] Gowtham Bellala, Manish Marwah, Martin Arlitt, Geoff Lyon, and Cullen Bash. Follow-
ing the electrons: methods for power management in commercial buildings. In Proceed-
ings of the 18th international conference on Knowledge discovery and data mining, pages
994–1002. ACM, 2012. 1.2

[69] Arka A Bhattacharya, Dezhi Hong, David Culler, Jorge Ortiz, Kamin Whitehouse, and Eu-
gene Wu. Automated metadata construction to support portable building applications. In
Proceedings of the 2nd ACM International Conference on Embedded Systems for Energy-
Efficient Built Environments, pages 3–12. ACM, 2015. 5.2.1

[70] Abdul Samad bin Haji Ismail, Abdul Hanan Abdullah, Kamalrulnizam bin Abu Bak,
Md Asri bin Ngadi, Dahliyusmanto Dahlan, and Witcha Chimphlee. A novel method
for unsupervised anomaly detection using unlabelled data. In Proceedings of the Interna-
tional Conference on Computational Sciences and Its Applications, pages 252–260. IEEE,
2008. 4.6

[71] Christoffer A Björkskog, Giulio Jacucci, Luciano Gamberini, Tatu Nieminen, Topi
Mikkola, Carin Torstensson, and Massimo Bertoncini. Energylife: pervasive energy
awareness for households. In Proceedings of the 12th ACM international conference ad-
junct papers on Ubiquitous computing-Adjunct, pages 361–362. ACM, 2010. 1.1

[72] Robert S Brewer and Philip M Johnson. Wattdepot: An open source software ecosys-
tem for enterprise-scale energy data collection, storage, analysis, and visualization. In
Proceedings of the 1st IEEE International Conference on Smart Grid Communications
(SmartGridComm),, pages 91–95. IEEE, 2010. 2.6.2

[73] Varun Chandola, Arindam Banerjee, and Vipin Kumar. Anomaly detection: A survey.
ACM Computing Surveys (CSUR), 41(3):15, 2009. 4.6

[74] Chao Chen and Diane J Cook. Energy outlier detection in smart environments. Artificial
Intelligence and Smarter Living, 11:07, 2011. 4.6

[75] Chao Chen, Diane J Cook, and Aaron S Crandall. The user side of sustainability: Mod-
eling behavior and energy usage in the home. Pervasive and Mobile Computing, 2012.
3.1.1, 3.2.2

[76] Dong Chen, Sean Barker, Adarsh Subbaswamy, David Irwin, and Prashant Shenoy. Non-
intrusive occupancy monitoring using smart meters. In Proceedings of the 5th ACM Work-
shop on Embedded Systems For Energy-Efficient Buildings, pages 1–8. ACM, 2013. 3.1.2

[77] Jie Chen and Arjun K Gupta. Parametric statistical change point analysis: with applica-
tions to genetics, medicine, and finance. Springer, 2011. 4.3.1

[78] Haibin Cheng, Pang-Ning Tan, Christopher Potter, and Steven Klooster. A robust graph-
based algorithm for detection and characterization of anomalies in noisy multivariate time
series. In Proceedings of the IEEE International Conference on Data Mining Workshops,
pages 349–358. IEEE, 2008. 4.6

102

[79] Haksoo Choi, Supriyo Chakraborty, Zainul Charbiwala, and Mani Srivastava. Sensorsafe:
a framework for privacy-preserving management of personal sensory information. Secure
Data Management, pages 85–100, 2011. 2.2.2, 2.6.3

[80] Xingchen Chu, B Durnota, Rajkumar Buyya, et al. Open sensor web architecture: Core
services. In Proceedings of the fourth International Conference on Intelligent Sensing and
Information Processing, pages 98–103. IEEE, 2006. 2.6.2

[81] S. Darby. The effectiveness of feedback on energy consumption. A Review for DEFRA of
the Literature on Metering, Billing and direct Displays, 486, 2006. 1.1, 3.1.2

[82] Stephen Dawson-Haggerty, Xiaofan Jiang, Gilman Tolle, Jorge Ortiz, and David Culler.
smap: a simple measurement and actuation profile for physical information. In Proc. of
SenSys, pages 197–210. ACM, 2010. 2.4.1, 3.3.1, 3.4.1

[83] Stephen Dawson-Haggerty, Andrew Krioukov, Jay Taneja, Sagar Karandikar, Gabe Fierro,
Nikita Kitaev, and David Culler. Boss: building operating system services. In Proceedings
of the 10th USENIX Symposium on Networked Systems Design and Implementation (NSDI
13), pages 443–457, 2013. 2.6.2, 3.1.1, 3.1.3, 3.6

[84] Colin Dixon, Ratul Mahajan, Sharad Agarwal, AJ Brush, Bongshin Lee, Stefan Saroiu,
and Paramvir Bahl. An operating system for the home. In Proceedings of the 9th USENIX
conference on Networked Systems Design and Implementation, pages 25–25. USENIX
Association, 2012. 2.6.2, 3.1.1, 3.6

[85] V.L. Erickson and A.E. Cerpa. Occupancy based demand response hvac control strategy.
In Proceedings of the 2nd ACM Workshop on Embedded Sensing Systems for Energy-
Efficiency in Building, pages 7–12. ACM, 2010. 1.1, 3.1.2

[86] V.L. Erickson, MA Carreira-Perpinan, and A.E. Cerpa. Observe: Occupancy-based sys-
tem for efficient reduction of hvac energy. In Proceedings of the 10th International Con-
ference on Information Processing in Sensor Networks, pages 258–269. IEEE, 2011. 1.1,
1.2, 3.1.1, 3.1.2

[87] M. Evans, B. Shui, and S. Somasundaram. Country report on building energy codes in
india. Technical report, Pacific Northwest National Laboratory (PNNL), Richland, WA
(US), 2009. 1.1

[88] Romain Fontugne, Jorge Ortiz, Nicolas Tremblay, Pierre Borgnat, Patrick Flandrin, Ken-
suke Fukuda, David Culler, and Hiroshi Esaki. Strip, bind, and search: a method for
identifying abnormal energy consumption in buildings. In Proceedings of the 12th inter-
national conference on Information processing in sensor networks, pages 129–140. ACM,
2013. 1.1, 1.2, 1, 4.1, 4.5

[89] GeSI. SMART 2020: Enabling the low carbon economy in the information age. Climate
Group, 2008. 1.1

103

[90] William I Grosky, Aman Kansal, Suman Nath, Jie Liu, and Feng Zhao. Senseweb: An
infrastructure for shared sensing. Multimedia, IEEE, 14(4):8–13, 2007. 2.6.2

[91] Manish Gupta, Abhishek B Sharma, Haifeng Chen, and Guofei Jiang. Context-aware time
series anomaly detection for complex systems. In SDM 13 Workshop on Data Mining for
Service and Maintenance, page 14, 2013. 4.6

[92] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reutemann, and
Ian H Witten. The weka data mining software: an update. ACM SIGKDD Explorations
Newsletter, 11(1):10–18, 2009. 3.6

[93] George William Hart. Nonintrusive appliance load monitoring. Proceedings of the IEEE,
80(12):1870–1891, 1992. 1.2, 3.1.2

[94] Halldór Janetzko, Florian Stoffel, Sebastian Mittelstädt, and Daniel A Keim. Anomaly
detection for visual analytics of power consumption data. Computers & Graphics, 38:
27–37, 2014. 4.5

[95] Xiaofan Jiang. A High-Fidelity Energy Monitoring and Feedback Architecture for Reduc-
ing Electrical Consumption in Buildings. PhD dissertation, UC Berkeley 2010. 2.6.2

[96] Leonard Kaufman and Peter J Rousseeuw. Finding groups in data: an introduction to
cluster analysis, volume 344. John Wiley & Sons, 2009. 8

[97] Wilhelm Kleiminger, Christian Beckel, Thorsten Staake, and Silvia Santini. Occupancy
detection from electricity consumption data. In Proceedings of the 5th ACM Workshop on
Embedded Systems For Energy-Efficient Buildings, pages 1–8. ACM, 2013. 3.1.2, 3.2.2

[98] Andrew Krioukov, Gabe Fierro, Nikita Kitaev, and David Culler. Building application
stack (bas). In Proc. of BuildSys, pages 72–79. ACM, 2012. 2.1, 3.1.1, 3.6

[99] Youngki Lee, SS Iyengar, Chulhong Min, Younghyun Ju, Seungwoo Kang, Taiwoo Park,
Jinwon Lee, Yunseok Rhee, and Junehwa Song. Mobicon: a mobile context-monitoring
platform. Communications of the ACM, 55(3):54–65, 2012. 3.6

[100] J. Lu, D. Birru, and K. Whitehouse. Using simple light sensors to achieve smart daylight
harvesting. In Proceedings of the 2nd ACM Workshop on Embedded Sensing Systems for
Energy-Efficiency in Building, pages 73–78. ACM, 2010. 1.1

[101] J. Lu, T. Sookoor, V. Srinivasan, G. Gao, B. Holben, J. Stankovic, E. Field, and K. White-
house. The smart thermostat: using occupancy sensors to save energy in homes. In
Proceedings of the 8th ACM Conference on Embedded Networked Sensor Systems, pages
211–224. ACM, 2010. 1.2, 3.1.1, 3.1.2, 3.2.2, 3.6

[102] Emiliano Miluzzo, Cory T Cornelius, Ashwin Ramaswamy, Tanzeem Choudhury, Zhi-
gang Liu, and Andrew T Campbell. Darwin phones: the evolution of sensing and infer-
ence on mobile phones. In Proceedings of the 8th international conference on Mobile

104

systems, applications, and services, pages 5–20. ACM, 2010. 3.6

[103] Meinard Müller. Dynamic time warping. Information retrieval for music and motion,
pages 69–84, 2007. 8

[104] Balakrishnan Narayanaswamy, Bharathan Balaji, Rajesh Gupta, and Yuvraj Agarwal.
Data driven investigation of faults in hvac systems with model, cluster and compare (mcc).
In Proceedings of the 1st ACM Conference on Embedded Systems for Energy-Efficient
Buildings, pages 50–59. ACM, 2014. 1.1

[105] R. Newton, L. Girod, M. Craig, S. Madden, and G. Morrisett. WaveScript: A Case-Study
in Applying a Distributed Stream-Processing Language. system, 1(2008/1):31, 2008. 2.2.2

[106] Shahriar Nirjon, Robert F Dickerson, Philip Asare, Qiang Li, Dezhi Hong, John A
Stankovic, Pan Hu, Guobin Shen, and Xiaofan Jiang. Auditeur: A mobile-cloud service
platform for acoustic event detection on smartphones. In Proceeding of the 11th annual
international conference on Mobile systems, applications, and services, pages 403–416.
ACM, 2013. 3.6

[107] Los Angeles Department of Water and Power. New watering sched-
ule. http://www.ladwpnews.com/go/doc/1475/881355/
New-Watering-Schedule-Now-in-Effect-for-LADWP-Customers.
[Online; accessed July 2013]. 3.1.2

[108] James Pierce and Eric Paulos. Beyond energy monitors: interaction, energy, and emerg-
ing energy systems. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, pages 665–674. ACM, 2012. 1.1

[109] Huida Qiu, Yan Liu, Niranjan A Subrahmanya, and Weichang Li. Granger causality for
time-series anomaly detection. In Proceedings of the 12th International Conference on
Data Mining, pages 1074–1079. IEEE Computer Society, 2012. 4.6

[110] IEE Report. Utility-scale smart meter deployments: A foundation for expanded
grid benefits. http://www.edisonfoundation.net/iee/Documents/IEE_
SmartMeterUpdate_0813.pdf, 2013. [Online; accessed January 2015]. 4.1

[111] Anthony Rowe, Mario E Berges, Gaurav Bhatia, Ethan Goldman, Raj Rajkumar, James H
Garrett, Jos MF Moura, and Lucio Soibelman. Sensor andrew: Large-scale campus-wide
sensing and actuation. IBM Journal of Research and Development, 55(1.2):6–1, 2011.
2.6.2

[112] A. Schoofs, D.T. Delaney, G.M.P. O’Hare, and A.G. Ruzzelli. COPOLAN: non-invasive
occupancy profiling for preliminary assessment of HVAC fixed timing strategies. In Pro-
ceedings of the 3rd ACM Workshop on Embedded Sensing Systems for Energy-Efficiency
in Building. ACM, 2011. 1.1, 3.1.2

[113] James Scott, AJ Bernheim Brush, John Krumm, Brian Meyers, Michael Hazas, Stephen

105

Hodges, and Nicolas Villar. Preheat: controlling home heating using occupancy predic-
tion. In Proceedings of the 13th international conference on Ubiquitous computing, pages
281–290. ACM, 2011. 3.1.2

[114] John E Seem. Using intelligent data analysis to detect abnormal energy consumption in
buildings. Energy and Buildings, 39(1):52–58, 2007. 1.1, 1.2, 1, 4.1, 4.6

[115] Rayman Preet Singh, Srinivasan Keshav, and Tim Brecht. A cloud-based consumer-centric
architecture for energy data analytics. In Proceedings of the fourth international confer-
ence on Future energy systems, pages 63–74. ACM, 2013. 2.6.2, 3.1.1

[116] Xiuyao Song, Mingxi Wu, Christopher Jermaine, and Sanjay Ranka. Statistical change
detection for multi-dimensional data. In Proceedings of the 13th international conference
on Knowledge discovery and data mining, pages 667–676. ACM, 2007. 4.3.1

[117] L.V. Thanayankizil, S.K. Ghai, D. Chakraborty, and D.P. Seetharam. Softgreen: Towards
energy management of green office buildings with soft sensors. In Communication Sys-
tems and Networks (COMSNETS), 2012 Fourth International Conference on, pages 1–6.
IEEE, 2012. 3.1.2

[118] Thomas Weng, Bharathan Balaji, Seemanta Dutta, Rajesh Gupta, and Yuvraj Agarwal.
Managing plug-loads for demand response within buildings. In Proceedings of the Third
ACM Workshop on Embedded Sensing Systems for Energy-Efficiency in Buildings, pages
13–18. ACM, 2011. 1.2

[119] Thomas Weng, Anthony Nwokafor, and Yuvraj Agarwal. Buildingdepot 2.0: An inte-
grated management system for building analysis and control. In Proceedings of the 5th
ACM Workshop on Embedded Systems For Energy-Efficient Buildings, pages 1–8. ACM,
2013. 3.1.1, 3.6

[120] Tri Kurniawan Wijaya, Tanuja Ganu, Dipanjan Chakraborty, Karl Aberer, and Deva P
Seetharam. Consumer segmentation and knowledge extraction from smart meter and sur-
vey data. In Proceedings of the SIAM International Conference on Data Mining (SDM14).
SIAM, 2014. 4.2

106

