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Abstract
Transform learning (TL) is currently an active research area. It has been ex-

plored in several applications including image/video denoising, compressed sensing
(CS) of magnetic resonance images (MRI), etc. and is observed to perform better
than the existing transforms. However, TL involves non-convex optimization prob-
lem with no closed form solution and hence, is solved using greedy algorithms. A
large number of variables (transform basis as well as transform coefficients) along
with the greedy-based solution makes TL computationally expensive. Also, TL
requires a large amount of training data for learning. Hence, it may run with chal-
lenges in applications where only single snapshots of short-duration signals such
as speech, music or electrocardiogram (ECG) signal are available. Thus, one uses
existing transforms that are signal independent. This motivates us to look for a
strategy to learn transform in such applications.

Among existing transforms, discrete wavelet transform provides an efficient
representation for a variety of multi-dimensional signals. Owing to this, wavelets
have been applied successfully in many applications. In addition, wavelet analysis
provides an option to choose among existing basis or to learn new basis. This
motivates us to learn wavelet transform from a given signal of interest that may
perform better than the fixed transforms in an application. The learned wavelet
transform is, hereby, called signal-matched wavelet transform. Since the translates
of the wavelet filters associated with discrete wavelet transform form the basis in l2-
space, wavelet transform learning implies learning wavelet filter coefficients. This
reduces the number of parameters required to be learned with wavelet learning
compared to the traditional transform learning. Also, the requirement of learning
fewer coefficients allows one to learn basis from a short single snapshot of signal
or from the small training data. We also show that closed form solution exists for
learning the wavelet transform unlike traditional transform learning.

Although the problem of signal-matched wavelet design/learning has been ex-
plored in the literature, there are a number of limitations. Firstly, existing methods
require full original signal to learn wavelet transforms and hence, these methods can
not be used in inverse problems, where one has access to only the degraded signal
and not to the original signal. Secondly, signal-matched wavelet transform learning
is not explored for rational wavelets, although rational wavelets are observed to be
more effective than dyadic wavelets in audio and speech signal processing. Thus,
we note that there is a need for methods to learn signal-matched wavelets that are
modular, have compactly supported filters for dyadic or rational wavelet systems,
are easily implementable in DSP hardware, and can also be learned from degraded
signals. This thesis is motivated to address these limitations and proposes a num-
ber of methods along with their utility in applications.

Specifically, we propose methods to learn dyadic as well as rational wavelet
transform using the lifting framework. The proposed method inherits all the ad-
vantages of lifting, i.e., the learned wavelet transform is always invertible, method

iv
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is modular, learned transform has compactly supported filters and hence, is DSP
hardware friendly, and the corresponding wavelet system can also incorporate non-
linear filters, if required. We show that closed form solution exists for learning the
wavelet transform with the proposed method. Also, wavelet transform can be
learned using the proposed method even when a small amount of data is present.
Since the wavelet transform is being learned from the signal itself, one may use
the learned wavelet transform in applications instead of struggling to choose from
the existing wavelet bases.

For dyadic wavelet transform learning (DWTL), we propose three methods
in different scenarios. Particularly, we propose methods to learn dyadic wavelet
transform (DWT) from 1) original signal, 2) degraded signal in inverse problems,
and 3) a class of signals. We use the learned DWT as the sparsifying transform in
the application of 1) Gaussian denoising of speech and music signals, 2) CS based
reconstruction of speech, music, and ECG signals, 3) impulse denoising of images,
and 4) CS based reconstruction of images. Extensive simulations have been carried
out that demonstrate that the learned transforms outperform the standard dyadic
wavelet transforms.

We also extend the existing theory of lifting framework from dyadic to rational
wavelets and use the extended lifting theory to learn critically sampled signal-
matched rational wavelet transform (RWT) with generic decimation ratios from a
given signal of interest. We introduce the concept of rate converters in predict and
update stages to handle variable subband sample rates. So far, signal-matched
rational wavelet learning have remained limited in use because design methods are
in general cumbersome. Since our proposed methodology exploits lifting frame-
work, we provide modular, compactly supported, DSP hardware friendly rational
wavelet transform learning (RWTL) methods. This may enhance the use of RWT
in applications which is so far restricted. We use the learned RWT as the sparsi-
fying transform in CS based reconstruction of 1-D and 2-D signals. The learned
RWT is observed to perform better than the existing dyadic as well as rational
wavelet transforms.

Apart from the wavelet transform learning methods, we propose a new multi-
level wavelet decomposition strategy for images, named as L-Pyramid wavelet de-
composition. L-Pyramid wavelet decomposition is observed to perform better in
CS based image reconstruction. In addition, we also propose weighted non-convex
minimization for CS based recovery. Detailed experiments are provided using the
weighted non-convex minimization and the learned wavelet transform for CS based
ECG signal recovery with various sensing matrices. The learned wavelet transform
along with the proposed weighted non-convex minimization method is observed to
provide much better ECG signal reconstruction as compared to existing wavelet
transforms as well as existing methods.
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Chapter 1
Introduction

1.1 Wavelet Transform Learning

Transform learning (TL) is currently an active research area and is being ex-

plored in several applications including image/video denoising, compressed sensing

of magnetic resonance images (MRI), etc. [2, 3, 4]. Transform learning has the

advantage that it adapts to signals of interest and is often observed to perform

better than the existing sparsifying transforms such as total variation (TV), dis-

crete cosine transform (DCT), and discrete wavelet transform in the above-said

applications [2, 3, 4].

In general, transform learning is posed as an optimization problem satisfy-

ing some constraints that are specific to applications. Transform domain spar-

sity of signals is a widely used constraint along with some additional constraints

on the transform to be learned, say, the minimization of Frobenius norm or the

log-determinant of transform [2]. The requirement of joint learning of both the

transform basis and the transform domain signal under the constraints renders the

optimization problem to be non-convex with no closed form solution. Thus, in

general, TL problems are solved using greedy algorithms [2]. A large number of

variables (transform basis as well as transform coefficients) along with the greedy

algorithm based solutions makes TL computationally expensive.

In general, TL requires a large amount of training data for learning. Hence,

TL may run with challenges in applications where only single snapshots of short-

duration signals such as speech, music or electrocardiogram (ECG) signal are avail-
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able because a large amount of training data required for learning transform is

absent. Hence, one uses existing transforms that are signal independent. This

motivates us to look for a strategy to learn transform in such applications.

Among existing transforms, although Fourier transform and DCT find use in

many applications, discrete wavelet transform provides an efficient representation

for a variety of multi-dimensional signals [5]. This efficient signal representation

stems from the fact that discrete wavelet transform tends to capture signal infor-

mation into a few significant coefficients. Owing to this advantage, wavelets have

been applied successfully in many applications including compression, denoising,

biomedical signal and image processing, texture analysis, pattern recognition, etc.

[6, 7, 8, 9, 10].

In addition, wavelet analysis provides an option to choose among existing basis

or to design new basis, thus motivates one to learn basis from a given signal of

interest that may perform better than the fixed basis. Since the translates of the

associated wavelet filters form the basis in l2-space (functional space for square

summable discrete-time sequences), wavelet transform learning implies learning

wavelet filter coefficients. This reduces the number of parameters required to be

learned with wavelet learning compared to the traditional transform learning. Also,

the requirement of learning fewer coefficients allows one to learn basis from a short

single snapshot of signal or from the small training data. We propose wavelet trans-

form learning with closed form solutions leading to fast implementation without

the need to look for greedy solutions.

Various attempts have been made in the past to design wavelets. One of the

early attempts was to design smooth orthogonal and compactly supported wavelet

[11] with multiresolution analysis (MRA) and to design fast wavelet transform [12,

13]. Later, the concept of wavelet was extended to the design of biorthogonal and

semi-orthogonal wavelets. Some of the examples include biorthogonal compactly

supported wavelets [14, 15] and construction of semi-orthogonal spline wavelets

[16, 17, 18, 19]. Biorthogonal wavelets allow the use of linear phase filters for

constructing symmetric wavelets.

In the above works, fixed wavelet bases are designed to represent any signal.

While one set of wavelet basis may be very effective in a particular signal process-

ing application on one signal, the same set of wavelet basis may not work that
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good for another signal or in another application. This motivated researchers to

look into multiple basis for best signal representation. For example, wavelet design

was proposed in [20] by projecting the signal onto multiple existing basis. In [21],

an algorithm is proposed to decompose any given signal into a linear expansion

of waveforms that are selected from a redundant dictionary of functions. How-

ever, the families of functions over which the signal is expanded are obtained by

the translation and dilation of some fixed known functions. In [22], a method is

proposed to search for best basis in the families of orthonormal basis constructed

with wavelet packets and the reconstruction error of the signal is minimized for

selecting the optimal basis.

In all the above works, either one or multiple existing basis are used to represent

any signal. However, all these basis are independent of the signal of interest.

Wavelet analysis provides an option to choose from existing basis or to design

new basis, which motivated researchers to design/learn wavelet basis from a given

signal of interest and/or in a particular application. Wavelet learned from a given

signal of interest is called as signal-matched wavelet.

Various researchers have attempted to design signal-matched wavelets. For

example, in [23], matched wavelet is designed in the time domain. The best ap-

proximation of the signal is found upto any desired scale with integer translates of

a valid scaling function of fixed support. The upper bound of error norm between

the actual signal and its approximation is minimized. As the minimization was

complex in the time domain, in [24], minimization is carried out in the frequency

domain assuming the signal to be band-limited. The lp norm of the error in the fre-

quency domain is minimized via a closed form solution in the frequency domain.

However, it led to a very complex solution that was difficult to solve. In [25],

matched wavelet is designed in the frequency domain. However, the method was

computationally expensive. In [26] and [27], signal-matched adaptive filterbank is

designed with constrained minimization problems in terms of coding gain criterion

that led to complicated solutions. Some methods were proposed in the literature to

design signal-matched wavelet [28, 29, 30, 31], where only analysis highpass filter

of the wavelet system is designed, while the remaining filters of the correspond-

ing wavelet filterbank were designed using the condition of perfect reconstruction.

Hence, the wavelet design is not optimal or fully matched to the given signal.
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It is observed that in the above signal-matched wavelet design methods, either

the wavelet is not fully signal-matched or the method involves computationally

expensive algorithm. Lifting [32, 33] is a powerful tool for either constructing

new customized wavelets from existing wavelets or factoring existing wavelet fil-

ters into a finite sequence of smaller filtering steps. Lifting provides several ad-

vantages for custom design/learning of wavelet such as a) wavelets can be de-

signed in the spatial domain, b) designed wavelet transform is always invertible,

c) the design is modular, and d) the design is DSP (digital signal processors)

hardware friendly from the implementation viewpoint [32]. With these advan-

tages, several researchers have explored lifting to design signal-matched wavelets

[34, 35, 36, 37, 38, 39, 40, 41, 42, 43].

The lifting technique involves alternate predict and update steps. Although it

is easy to find the predict filters, finding an update filter offers a real challenge.

One of the criteria used in the literature to find the update filters is the mini-

mization of reconstruction error of even and odd indexed samples [34]. In [35, 36],

the update first structure with the adaptation of the update step is used. The

update filter is changed based on the local gradient information such that sharp

variations in the signal get less smoothened than the more homogenous regions.

Similar update method is used in [37]. In [38], a nonseparable lifting is used on

images with regularity conditions imposed. In [39], directional interpolation is

used with coefficients of the interpolation filter to optimize to adapt to statistical

property of the image. In [40], wavelets are designed by minimizing the difference

between BWT (block wavelet transform) and KLT (Karhunen-Loève transform) of

the signal. In [41], orthogonal IIR (infinite impulse response) filterbank is designed

using allpass filter in the lifting steps. In [42], the geometry of a given image is

used to design new wavelet via lifting leading to local and anisotropic filters. In

[43], nonseparable filterbank was designed using pixel-wise adaptation according

to local image features.

In this work, we propose to learn signal-matched wavelets using lifting wherein

both predict and update stage polynomials are obtained from a given signal. We

design predict stage by minimizing the energy in the wavelet subspace domain and

update stage by minimizing the difference between signal reconstructed from the

coarser subband signal and the original signal. As stated earlier, wavelet transform
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learning requires fewer coefficients to be learned as compared to the traditional

transform learning. This motivates us to explore wavelet transform learning for

small data in this work. We also provide closed-form solutions for learning the

wavelet transform with the proposed method.

1.2 Wavelet Transform Learning in Inverse Prob-

lems

Although there exist a number of methods in the literature to design/learn wavelet

as described in the previous section, all these methods require original signal and

hence, can be used in only those set of applications where original signal is avail-

able. Compression and classification are examples of such applications. On the

other hand, these methods cannot be applied in inverse problems, where one does

not have access to the original signal. Denoising, compressed sensing (CS), deblur-

ring, inpainting, etc. are some examples of inverse problems. In these problems,

degraded signal is observed and the original signal is required to be estimated from

the observed degraded signal.

Signal reconstruction in inverse problems is often posed as sparse recovery

problem, where the signal is known to be sparse in some transform domain. In

this context, the discrete wavelet transform is extensively used as the sparsifying

transform for signal reconstruction because of its ability to efficiently represent a

signal. Researchers often face challenge in choosing a wavelet because it is not

known apriori as to which wavelet will provide the better representation of the

signal as compared to others. In general, one uses compactly supported wavelets,

either orthogonal Daubechies wavelets or biorthogonal 9/7 or 5/3 wavelets (note

that first digit denotes the length of analysis lowpass filter and second digit denotes

the length of analysis highpass filter).

As stated earlier, learned wavelet transform may provide better representation

of a given signal as compared to existing wavelets and hence, may provide better

signal reconstruction in inverse problems compared to any existing wavelet chosen

arbitrarily. To the best of our knowledge, there is no method in the literature

that addresses the problem of wavelet transform learning in inverse problems. We
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explore this problem in our work and present a method to learn wavelet transform

in inverse problems. The proposed method consists of two stages. In the first stage,

a coarse estimate of the signal is obtained using the existing wavelet transform and

in the second stage, this coarse estimate of the signal is used to learn signal-matched

wavelet. The learned wavelet transform is used as the sparsifying transform for

sparse signal recovery of the signal.

1.3 Wavelet Transform Learning for a Class of

Signals and CS based ECG Signal Recovery

As stated in the previous section, existing methods require the original signal for

learning signal-matched wavelet. However, the full original signal is not available in

applications like inverse problems and hence, we propose methods to learn wavelet

transform for signals in inverse problems. The proposed method consists of two

stages, wherein the coarse estimate of the signal is learned using one of the existing

wavelet transform in the first stage. We show that this step of coarse estimation of

the signal can be skipped if the wavelet transform is learned for a class of signals

with low variability across the signals.

There exist many signal classes that have low variability across their signals,

e.g., ECG signals and brain MRI images. For such examples, one can learn wavelet

transform matched to the class using an ensemble of signals. Since the wavelet

transform is learned for a particular class, it may provide better representation and

hence, may perform better in applications for signals of these classes compared to

existing wavelets. Also, there is no need to learn wavelets individually for different

signals of these classes and in different applications. Further, there is no need of

coarse signal estimation (in inverse problems) unlike the method described in the

previous section.

ECG signals are very vital because of their ability to diagnose cardiac diseases

that is one of the major causes of deaths as per the report of World Health Organi-

zation [44]. An estimated 17.5 million people died from cardiovascular diseases in

2012, representing 31% of all global deaths. Given the importance of ECG signal

analysis from the health perspective, we focus only on ECG signals in this thesis,
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although the proposed methods can be explored for signals of other classes, say

brain MRI, in different applications.

ECG signals are recorded by wireless body area network (WBAN) in the ap-

plication of healthcare for continuous monitoring of patients [45]. There are three

stages of operations in WBAN: sensing, communication, and processing. Out of

these three stages, communication consumes the highest amount of energy [45].

Also, these devices operate by battery. Therefore, to reduce the energy consump-

tion in transmission and hence, to increase battery life, some form of compression

is needed. CS [46] based method has been applied in ECG compression in [47]

and is shown to be a better alternative in terms of processing complexity of the

encoder as compared to the existing methods.

Many researchers have contributed in CS-based ECG reconstruction by con-

structing measurement matrices [48, 47, 49], by hardware design [50, 51, 52], and

by algorithm design for better reconstruction [49, 53, 54]. We contribute in this

work toward good quality ECG signal reconstruction in compressive transmission

or energy efficient transmission of ECG signals.

Many non-convex regularization/minimization based methods are proposed in

the literature [55, 56, 57, 58, 59] for sparse signal recovery. Non-convex regulariza-

tion strongly promotes sparsity and hence, is used to improve upon the existing l1

regularization based methods. Among non-convex methods, lp regularization based

methods are most widely used in the literature [58, 59, 60, 61] and are shown to

perform best among other methods for sparse signal recovery [57]. To the best of

our knowledge, lp regularization based methods have not been used in CS-based

ECG reconstruction. In this work, we propose to use lp regularization for CS based

reconstruction of ECG signal.

Prior information about the signal is generally used to improve sparse signal

reconstruction quality [62, 63, 64, 65, 49]. Such methods can be broadly classified

into three categories. Methods in the first category use the prior information about

the support of the signal [62, 63], while the second category of methods iteratively

estimate the support from the signal [64, 65]. The first category of methods cannot

be used in applications where one does not know the non-zero components of the

signal, while the second category has the challenge of being an iterative method

and hence, may take longer time providing trade-offs between the reconstruction
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quality and the time taken in the reconstruction. These two catergories do not

impose sparsity on the known support (non-zero component) of the signal. The

third category [49] imposes weighted sparsity on the signal, weighing different

components of the signal with different weights unlike l1 minimization that treats

all components of signal equally. These methods use the information about which

components of the signal are sparse instead of knowing the exact value at that

position. In [49], different weights were imposed on different levels of wavelet

detail coefficients. We propose a similar but simpler approach.

Because of the sparsifying ability of wavelet transform, it has been used exten-

sively in CS based reconstruction of ECG signals [66, 67, 47, 48, 49]. However,

as stated earlier, existing wavelet basis have a disadvantage of being signal inde-

pendent and wavelet transform learning has not been explored in CS-based ECG

reconstruction so far. Therefore, we propose to learn wavelet for ECG signals in

this work and use it as the sparsifying transform for CS-based recovery of ECG

signals. Since shape or characteristics of ECG signals do not vary much over time

and over different signals, we learn a single wavelet for the class of ECG signals

and name the learned wavelet as ECGlet.

In particular, for CS-based ECG signal recovery, we propose weighted non-

convex lp (WNC) minimization with ECG matched learned wavelet (ECGlet).

1.4 Rational Wavelet Transform Learning using

Lifting Framework

Most of the applications of discrete wavelet transform rely on dyadic wavelet trans-

form, where discrete wavelet transform coefficients are obtained by passing an in-

put signal through a 2-channel filterbank consisting of highpass and lowpass filters,

followed by downsampling by two. In the frequency domain, this process is equiv-

alent to the decomposition of the signal into two uniform frequency bands. As we

move to M -band wavelet system/filterbank, a signal is decomposed into M uniform

frequency bands. However, some applications, such as speech and audio signal pro-

cessing, require non-uniform frequency band decomposition [68, 69, 70]. In such

applications, rational wavelet transform (RWT) can prove to be very helpful be-
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cause RWT provides non-uniform frequency band partition of the signal spectrum.

Accordingly, decimation factors of such a rational wavelet system are different in

each branch/band and is a non-integer, i.e., the decimation factor is a rational

number [71].

RWT has also been explored in applications apart from audio and speech signal

processing. For example, RWT is applied in context-independent phonetic clas-

sification in [69]. In [72], it is used for synthesizing 10m multispectral image by

merging 10m SPOT panchromatic image and a 30m Landsat Thematic Mapper

multispectral image. Wavelet shrinkage based denoising is presented in [73] using

signal independent rational filterbank designed by [74]. RWT is used in extracting

features from images in [75] and in detection of click frauds in [76]. The rational

orthogonal wavelet transform is used to design optimum receiver based broadband

Doppler compensation structure in [77] and for broadband passive sonar detection

in [78].

A number of RWT designs have been proposed in the literature. For example,

in [79], a frequency domain approach is proposed for designing IIR (Infinite Impulse

Response) rational filterbank (or infinitely supported rational wavelets), while in

[80, 81], the method is proposed for designing overcomplete rationally decimated

FIR (Finite Impulse Response) filterbank. In [82], a design approach for complex

orthogonal rational IIR filterbank is presented. In [83], a method is proposed to

design perfect reconstruction FIR rational filterbank with regularity properties.

The design involves solving non-convex optimization problem with non-linear con-

straints. Some other designs include FIR orthonormal rational filterbank design

[68], biorthogonal FIR rational filterbank design [83], frequency response masking

technique based design of rational FIR filterbank [70] etc. However, so far RWT

designed and used in applications are meant to meet certain fixed requirements

in the frequency domain or time-domain instead of learning the transform from a

given signal of interest. For example, all the above designs are signal independent

and hence, the concept of transform learning from a given signal has not been used

so far in learning rational wavelets.

As stated earlier, lifting provides several advantages for custom wavelet de-

sign/learning. Even with the several advantages, lifting framework is used so far

only for the custom design/learning of dyadic (or M-band) wavelets [34, 42, 40, 84]
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and has not been used to learn the rational wavelet transform to the best of our

knowledge. Moreover, the existing architecture of lifting framework cannot be

extended directly to rational wavelet because of different sample/signal rates in

two subbands. However, similar to dyadic wavelet transform, the lifting frame-

work can help in learning rational wavelets from given signals in a simple modular

fashion that will also be easy to implement on hardware. Also, this may lead to

the enhanced use of rational wavelet transforms in applications, similar to dyadic

wavelets, which is so far restricted.

Motivated by the success of transform learning in applications, the flexibility

of rational wavelet transform with respect to non-uniform signal spectral splitting,

and the advantages of lifting in learning custom design wavelets, we propose to

learn rational wavelet transform from a given signal using the lifting framework

in this work. We extend the theory of lifting framework from dyadic to rational

wavelets, where dyadic wavelet is a special case. To overcome the problem of

different signal/sample rate in different bands, we introduce the concept of rate

converters in predict and update stages. We further use the extended lifting theory

to learn signal-matched rational wavelet transform from a given signal of interest,

where rational wavelets with any decimation ratio can be designed. The learned

analysis and synthesis filters are FIR in nature that can be easily implemented

in hardware. Similar to dyadic wavelet transform, closed form solution exists

for learning rational wavelet and thus, no greedy solution is required making the

proposed method computationally efficient. The learned rational wavelet transform

is explored as the sparsifying transform in CS based reconstruction of signals.

1.5 Research Contributions

The primary aim of this thesis is to provide methods to learn dyadic as well as

rational wavelet transform for a given class of signals or from a given signal, present

in the original form or the degraded form. The learned wavelet transform can be

used as the sparsifying transform in CS-based applications. Below are the salient

contributions of this thesis:

1. We present methods to learn dyadic wavelet transform using the lifting frame-

work from a given signal. FIR analysis and synthesis filters are learned that
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can be easily implemented in hardware. Unlike existing learning algorithms,

the proposed method has a closed form solution and thus, no greedy solution

is required making the proposed method computationally efficient. In addi-

tion, the proposed wavelet transform can be learned from a short snapshot

of a single signal.

2. The above proposed method requires original signal for learning dyadic wavelet

transform. However, in many applications of say inverse problems, only the

degraded signal is available instead of the original signal. Hence, we extend

the proposed method to learn dyadic wavelet transform from degraded sig-

nals in inverse problems. First, we obtain a coarse estimate of the signal

using an existing wavelet transform and then use this coarse estimate of the

signal to learn wavelet transform. The learned wavelet transform can be

used as the sparsifying transform for sparse recovery of the signal. The pro-

posed method is applied in Gaussian denoising and CS-based reconstruction

of 1-D signals, and in impulse denoising and CS based reconstruction of im-

ages. We also extend the method to learn dyadic wavelet transform for a

class of signals. We apply this concept to the class of ECG signals and used

the learned transform as the sparsifying transform along with the proposed

weighted non-convex minimization for CS-based ECG recovery.

3. The proposed method is extended to learn separable dyadic wavelet trans-

form for images. We present methods to learn separable dyadic wavelet

transform from original as well as from degraded images in inverse prob-

lems. Learned separable dyadic wavelet transform is used as the sparsifying

transform for the CS based reconstruction of images.

4. The theory of lifting is extended from dyadic wavelets to rational wavelets,

where dyadic wavelet is a special case. The concept of rate converters is

introduced in predict and update stages to handle variable subband sample

rates. Extended lifting theory is used to learn rational wavelet transform

from a given signal, where rational wavelets with any decimation ratio can

be learned. Learned rational filters are FIR that can be easily implemented

in hardware. Similar to dyadic wavelet transform, rational wavelet transform

learning has a closed form solution and transform can be learned from a short
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duration of a signal. The proposed method is extended to images by learning

separable rational wavelet transform from the images. The proposed method

is applied in the application of CS based reconstruction of 1-D signals and

images.

5. For the separable 2D wavelet transform, a new multi-level wavelet decompo-

sition strategy is proposed, named multi-level L-Pyramid wavelet decomposi-

tion and its performance is compared with the existing wavelet decomposition

in CS based image reconstruction. Also, weighted non-convex minimization

is proposed for sparse signal recovery of signals and applied in the CS-based

reconstruction of ECG signals.

The work presented in this thesis resulted in some journals and conferences

publications. These are presented at the end of the thesis.

1.6 Thesis Organization

In Chapter-2, we present some of the concepts, which are the basic building blocks

of our work. Particularly, we present existing lifting framework in dyadic wavelet,

rational wavelet and their equivalent M-band structure, polyphase representation

and perfect reconstruction condition, the theory of compressed sensing, and de-

noising concept. We also present evaluation metrics to be used throughout in our

work.

In Chapter-3, we present methods to learn dyadic wavelet transform for 1-D sig-

nals in various scenarios. Particularly, we present methods to learn dyadic wavelet

transform from original signals, from degraded signals in inverse problems, and

from a class of signals. The proposed method of dyadic wavelet transform learning

is applied in the application of denoising and compressive sensing of 1-D signals.

We also present weighted non-convex minimization along with an algorithm to

solve it. We apply weighted non-convex minimization in CS-based reconstruction

of ECG signals.

In Chapter-4, we present methods to learn separable dyadic wavelet transform

for images in two scenarios. One, when the original image is available and another

in inverse problem applications, where one has the access to only the degraded



13

image and not the original image. Use of the proposed methods is explored in

the applications of compressed sensing and impulse denoising of natural images,

where the learned separable dyadic wavelet transform are used as the sparsify-

ing transforms. We also present a new wavelet decomposition method, called as

L-Pyramid wavelet decomposition. The performance of L-Pyramid wavelet decom-

position is compared with existing R-Pyramid wavelet decomposition in CS based

image reconstruction.

In Chapter-5, we present rational wavelet transform learning using the lift-

ing framework. The existing lifting framework is extended from dyadic to rational

wavelet case and used to learn signal-matched rational wavelet transform. Variable

sample rates in the two branches of rational wavelet decomposition pose difficulty

in applying the existing lifting framework. Hence, we introduce the concept of

rate-converters to equal the rates of samples in the two branches. Thus, we ex-

tend the lifting framework from dyadic wavelet design to rational wavelet design.

The theory is developed and presented to learn generic downsampling ratios, say

(N/M,M − N/M), where M and N are any integers with N < M . The learned

rational wavelet transform is used as the sparsifying transform in the application

of CS-based reconstruction of 1-D signals. The method of learning rational wavelet

transform is extended from 1-D signal to images and is used in the application of

compressed sensing of images.

In Chapter-6, we present conclusions of all the work done and present some

directions for future work.
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Brief Background

In this chapter, we briefly present some of the important concepts, which are the

basic building blocks for this work. Particularly, we present the theory of lifting

framework for dyadic wavelet transform, rational wavelet and its equivalence to

M-band wavelet, polyphase representation and prefect reconstruction condition for

M-band wavelet, compressive sensing, and denoising. We also present evaluation

metrics and notations to be used throughout.

2.1 Lifting theory in dyadic wavelet

We present the theory of lifting in this subsection, which is so far restricted to

dyadic wavelet case.

Lifting is a technique for either factoring existing wavelet filters into a finite

sequence of smaller filtering steps or constructing new customized wavelets from

existing wavelets [33]. This design is modular, guarantees perfect reconstruction

at every stage, and supports non-linear filters. A general lifting scheme consists

of three steps: Split, Predict, and Update (Refer to Figure 2.1). These steps are

described below.

Split : In the split step, input signal is split into two disjoint sets of samples,

generally, even and odd indexed samples, labeled as xe[n] and xo[n], respectively.

The original signal can be recovered perfectly by interlacing or combining the two

sample streams. The corresponding wavelet system is called as the Lazy Wavelet

system [32] and is similar to the structure shown in Figure 2.2 with analysis filters
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Figure 2.1: Steps of lifting: Split, Predict and Update

labeled as H0(z) = Z{h0[n]}, H1(z) = Z{h1[n]} and synthesis filters as F0(z) =

Z{f0[n]}, F1(z) = Z{f1[n]}.
Predict Step: In the predict step, one of the two disjoint set of samples is

predicted from the other set of samples. For example, in Figure 2.1(a), we predict

the odd set of samples from the neighboring even samples by using the predictor

P ≡ T (z). Predict step is equivalent to applying a highpass filter on the input

signal. Predict step modifies the highpass filter of the analysis end and lowpass

filter of the synthesis end, without altering other filters, according to the following

relations:

Hnew
1 (z) = H1(z)−H0(z)T (z2), (2.1)

F new
0 (z) = F0(z) + F1(z)T (z2). (2.2)

Update Step: In the update step, predicting samples (even samples in our

case) of the predict step are updated with the predicted samples to provide the

approximate coefficients of the signal. The signal is updated with U ≡ S(z) (refer

to Figure 2.1). This step modifies the analysis lowpass filter and synthesis highpass
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Figure 2.2: Two channel dyadic wavelet system equivalent of system shown in
Figure 2.1

filter according to the following relation:

Hnew
0 (z) = H0(z) +H1(z)S(z2), (2.3)

F new
1 (z) = F1(z)− F0(z)S(z2). (2.4)

Lifting architecture shown in Figure 2.1 can be equivalently converted to dyadic

wavelet system shown in Figure 2.2 or similarly, any existing dyadic wavelet system

shown in Figure 2.2 can be equivalently broken into lifting steps as shown in Figure

2.1. As each step (predict or update) in lifting is invertible, perfect reconstruction

(PR) is guaranteed after every step.

2.2 Rational Wavelet and Equivalent M-band struc-

ture

M -band wavelet system has integral downsampling ratio, M as shown in Figure

2.3, whereas rational wavelet system has rational down-sampling ratios that allow

decomposition of input signals into non-uniform frequency bands. In general, any

ith analysis branch of a rational structure is as shown in Figure-2.4, where Gi(z)

denotes the analysis filter, qi denotes the upsampling factor, and pi denotes the

downsampling factor. For example, if pi = 3 and qi = 2, the downsampling ratio

in this branch is equal to 3/2. At the synthesis end, the order of downsampler and

upsampler are reversed.

An M -channel rational filterbank is said to be critically sampled if the following
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Figure 2.5: General 2-band rational wavelet structure

relation is satisfied
M−1∑
i=0

qi
pi

= 1. (2.5)

This is to note that, throughout this work, we consider all pi’s to be equal, espe-

cially, pi = M for all i. Also, q1 and q2 are relatively prime with each other and

with M and q1 + q2 = M for a critically sampled rational wavelet system.

In general, a given M -band wavelet system, as shown in Figure 2.3, can be

converted into an equivalent 2-band rational wavelet structure of Figure 2.5, having

downsampling ratios M
q1

and M
q2

in the two branches. For example, the analysis

filters Gj(z) and synthesis filters Fj(z) for j = 0, 1, 2, ..., q1 − 1 as shown in Figure
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2.3 can be combined using the following equations:

Gl(z) =

q1−1∑
i=0

z−iMGi(z
q1), (2.6)

Fl(z) =

q1−1∑
i=0

ziMFi(z
q1), (2.7)

where Gl(z) and Fl(z) are the corresponding analysis and synthesis lowpass filters

of the equivalent 2-band rational wavelet structure of Figure-2.5. Similarly, rest of

the filters of both sides can be combined using the following equations:

Gh(z) =

q2−1∑
i=0

z−iMGi+q1(z
q2), (2.8)

Fh(z) =

q2−1∑
i=0

ziMFi+q1(z
q2), (2.9)

where Gh(z) and Fh(z) are the corresponding higpass filters of analysis and syn-

thesis ends of Figure-2.5.

2.2.1 Polyphase Representation and Perfect Reconstruc-

tion

The polyphase representation of filters is very helpful in filterbank analysis and

design [85]. Consider the M -band critically sampled filterbank shown in Figure

2.3. Analysis filter Gi(z) can be written using type-1 polyphase representation as:

Gi(z) =
M−1∑
j=0

zjEi,j(z
M), (2.10)

where Ei,j(z) = gi(j) + gi(M + j)zM + gi(2M + j)z2M + ... and Gi(z) = Z{gi[n]}.
Synthesis filter Fi(z) can be written using type-2 polyphase representation as:

Fi(z) =
M−1∑
i=0

z−jRi,j(z
M), (2.11)
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Figure 2.6: M -band wavelet structure with PR

where Ri,j(z) = fi(j)+fi(M + j)z−M +fi(2M + j)z−2M + ... and Fi(z) = Z{fi[n]}.
The M -band filterbank of Figure-2.3 can be equivalently drawn using polyphase

matrices as shown in Figure-2.6, where

E(z) =


E0,0 E0,1 · · · E0,M−1

E1,0 E1,1 · · · E1,M−1
...

...
. . .

...

EM−1,0 EM−1,1 · · · EM−1,M−1

 , (2.12)

and

R(z) =


R0,0 R0,1 · · · R0,M−1

R1,0 R1,1 · · · R1,M−1
...

...
. . .

...

RM−1,0 RM−1,1 · · · RM−1,M−1

 . (2.13)

The below relation of polyphase matrices

R(z)E(z) = cz−n0I, (2.14)

yields the condition of perfect reconstruction (PR) stated as

x̃[n] = cx[n−M − n0], (2.15)

where c is a constant and n0 is a constant delay.
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2.3 Compressed Sensing

Classical compression method involves two steps: sensing and compression wherein,

first, an analog data is sampled at or above the Nyquist-rate and then, it is com-

pressed by an appropriate transform coding process. In general, natural signals

are sparse or compressible in some transform domain. For example, if a signal is

smooth, it is compressible in Fourier domain and if it is piece-wise smooth, it is

sparse in the wavelet domain. To understand this, let us consider a signal x of

dimension N × 1 that has been sensed by a traditional sensing technique at or

above the Nyquist rate. This signal is next transformed to a sparse signal r with

the help of sparsifying basis ψi, i = 1, 2, ..., N as below:

x = Ψr. (2.16)

A signal r is K− sparse if all but K elements are zero, whereas a signal is com-

pressible if its sorted coefficients obey the power low decay [86]

rj = Cj−q, j = 1, 2, ..., N, (2.17)

where rj represent the sorted coefficients and q represents decay power parameter.

For large value of q, the decay of coefficients is faster and correspondingly, the

signal is more compressible. In compression, some of the largest coefficients of the

transformed signal are kept and all other coefficients are discarded. These coeffi-

cients along with their location information are sent to the receiver. Having the

knowledge of the sparsifying basis and signal coefficients along with their positions

in the original signal, the signal is reconstructed back at the receiver end. Thus,

this process involves sensing the full signal, although most of the samples in the

transformed domain are to be discarded.

The above process consisting of first sensing the whole signal and then discard-

ing many of its transform domain coefficients is inefficient. Compressive sampling

or sensing [87, 46, 88] combines these two processes. Instead of sampling the signal

at or above the Nyquist rate, signal’s linear projection on some measurement basis

φi are obtained. If φi is the ith measurement basis, then ith observation of the
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projected signal is given by:

y[i] =
N−1∑
j=0

φi,jx[j], i = 0, 1, ...,M − 1, (2.18)

where M is the number of linear projections of the signal. In compact form, this

can be written as:

yM×1 =ΦM×NxN×1,

=ΦΨr

=Ar, (2.19)

where ith measurement basis is stacked as a row of the matrix Φ and A = ΦΨ. The

measurement or the sensing basis Φ can be chosen such that it satisfies Restricted

Isometry Property (RIP) [89] and coherency property [46]. Some examples of

the measurement matrices satisfying these properties are: random matrices with

entries from i.i.d. Gaussian distribution [90], random matrices with entries from

uniform Bernoulli distributions [88], and Fourier matrices [46]. In addition, several

other structured measurement matrices such as Toeplitz and circulant matrices

have also been proposed [91, 92, 93].

If the signal is sparse in some transform domain and also if the measurement

basis are incoherent with the sparsifying basis, then CS theory states that the

original signal of length N can be recovered with very high probability if the

number of linear projections M are taken such that [87]

M ≥ CK log(N/K), (2.20)

where K is the sparsity of the signal, C is some constant, and M � N in general.

Equation (2.19) represents under-determined system of linear equations with

y = Φx̂ having infinite many solutions x̂. However, if the signal is sparse in

some transform domain Ψ, (2.19) can be solved with a unique solution using l0

minimization as below:

r̃ = argmin
r
||r||0 subject to: y = Ar. (2.21)
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The above problem is NP-hard to solve. It has been shown in [94] that l1 mini-

mization

r̃ = argmin
r
||r||1 subject to: y = Ar, (2.22)

provides the same solution as l0 minimization. Here, ||v||1 denotes the l1 norm or

sum of the absolute values of the vector v. Full signal is reconstructed as: x̃ = Ψr̃.

l1 minimization is known as Basis Pursuit (BP) in literature and can be solved by

linear programming [95].

As in (2.22), in general, l1 norm is used as the sparsity promoting penalty

function, which is convex and leads to convex objective function. However, it

has been shown in the literature that non-convex penalty functions provide better

reconstruction accuracy than convex penalty functions as they induce sparsity more

effectively than convex penalty functions [96, 97]. In literature, lp (0 ≤ p < 1) norm

(Please note that lp is actually not a norm, rather it is quasi-norm, for 0 ≤ p < 1,

as it does not satisfy triangular inequality property. However, with the abuse

of notation and its popularity as lp norm in literature, we call it a norm in this

thesis.) is the most widely used non-convex function [58, 59] for CS based recovery.

Correspondingly, the resultant optimization problem using lp norm as the sparsity

promoting penalty function, is given as:

r̃ = argmin
r
||r||pp subject to: y = Ar, (2.23)

where 0 ≤ p < 1, ||r||pp = |r(1)|p + |r(2)|p + ... + |r(N)|p, and |v| is the absolute

value of the scalar v. The general optimization problem in terms of the penalty

function is given by:

r̃ = argmin
r

θ(r) subject to: y = Ar, (2.24)

where θ(.) is the sparsity promoting penalty function. For lp minimization, θ(r) =

||r||pp. The above problem can be converted to unconstrained optimization problem,

given by:

r̃ = argmin
r
||y −Ar||22 + λθ(r), (2.25)

where λ is the regularization parameter. The full signal is obtained as: x̃ = Ψr̃.
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Non-convex function as the sparsity promoting penalty function comes with

the trade-off that the resultant objective function is non-convex and leads to many

sub-optimal local minima [98]. Also, the resulting objective function is sensitive

to λ with respect to global minima [98].

Efforts are made to choose non-convex penalty function such that the overall

objective function is convex [99, 100]. However, these work use separable penalty

function of the form θ(r) =
∑

i q(ri) that does not preserve convexity of the ob-

jective function for singular A [98]. To overcome this problem, non-separable

non-convex penalty function is introduced in [57, 101] that leads to convex ob-

jective function even when A is singular. One of such penalty functions, called

generalized minimax-concave (GMC) penalty [101], is given as:

θ(r) = ||r||1 −HB(r), (2.26)

where HB(r) is the generalized Huber function given by:

HB(r) = argmin
r
||v||1 +

1

2
||B(r− v)||22. (2.27)

Here, B is a matrix/operator such that B : RN → RM . To preserve the convexity

of the objective function, B is set such that B′B = (γ/λ)A′A, γ ≤ 1, where

γ controls the non-convexity of the objective function. This non-separable non-

convex penalty function leads to the following optimization problem for sparse

signal recovery:

r̃ = argmin
r

{
||y −Ar||22 + λ||r||1 − λHB(r)

}
. (2.28)

The above optimization problem is observed to yield better performance than

convex l1 and other non-convex regularized optimization problems in the case of

signal denoising [101].

Compressive sensing has been applied on images, also called as compressive

imaging (CI). For example, let us consider an image X of dimension N1 × N2,

that is compressively sensed by a measurement matrix Φ. These measurements
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are given by

y = Φvec(X),

= Φx (2.29)

where vec(X) = x denotes the vector of length N = N1N2 of image X and the

measured signal y is of dimension M × 1, where M is the number of compressive

measurements. It has been observed that natural images, in general, are compress-

ible in DCT (discrete cosine transform) [102] and wavelet domain [103]. Hence,

DCT or wavelet can be applied as separable transforms on images and used as

sparsifying basis Ψ in (2.19) in CS-based image reconstruction.

2.4 Denoising

2.4.1 Gaussian denosing

Gaussian denoising problem can be mathematically modeled as

y = x + n, (2.30)

where x is the original signal corrupted by additive white Gaussian noise n. De-

noising problem aims to recover the approximate of the original signal x from its

noisy measurements y. Since natural signals are generally sparse in the wavelet

domain, denoising can be posed as sparse recovery problem solving l1 minimization

problem with quadratic regularization as below:

r̃ = argmin
r
||r||1 subject to ||y −Ψr||22 ≤ ε, (2.31)

where Ψ represents the sparsifying transform and r is the transform domain coef-

ficients of x. The above problem is known as basis pursuit denoising (BPDN) [95],

where ε is the measure of noise in the signal. One may use ε =
√
N + 2

√
(2Nσ)

[104], where σ is the standard deviation of noise estimated using a robust median

estimator [105]. Once r̃ is estimated, signal x can be reconstructed as x̃ = Ψr̃.
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2.4.2 Impulse denoising

We pose impulse denoising as the sparse recovery problem, where first the cor-

rupted pixels are identified using impulse noise detection algorithm and then based

on the locations of the impulse noise, sparse recovery problem is solved to denoise

the image. These two steps are described below.

2.4.2.1 Impulse Detection Algorithm

We use boundary discriminative noise detection (BDND) algorithm for impulse

denoising, which is one of the popular methods for impulse noise detection. It

classifies each pixel as corrupted or uncorrupted using a specified sized window

centered at that pixel [106]. All pixels in a window are grouped into three clusters

based on their intensity values using the following steps:

1. All pixels of a window are stored in ascending order in vector u. Median m

of u is computed. Intensity differences of adjacent pixels of u are stored in

ud.

2. Vector u is divided in two bins: pixels with intensities in [0,m) and pix-

els with intensities in (m, 255] (for 8-bit images). From ud, pixel location

with maximum intensity difference in each bin is marked. Corresponding to

these maximum intensity difference, pixel intensities of u are labeled as the

boundary values b1 and b2.

First, 21 × 21 window is considered for a pixel. If the pixel intensity lies in the

cluster [b1, b2], the pixel is considered to be uncorrupted and the process stops.

Otherwise, the process is repeated over 3 × 3 window. If the pixel falls in [b1, b2]

cluster over this smaller window, it is labeled as uncorrupted, else it is labeled as

corrupted.

2.4.2.2 Impulse Denoising using Sparse Recovery

Let us consider yuncor be the vectorized form of all the uncorrupted pixels of the

corrupted image y, which can be considered as being picked by the operator Φ.
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This can be mathematically written as:

yuncor =Φy (2.32)

≈ΦΨr,

where Ψ represents the sparsifying transform for the image and r is the transformed

coefficients of original image x requires to be recovered/denoised. This problem

is similar to compressed sensing based reconstruction [46]. Hence, we solve it by

using l1 minimization method as below:

r̃ = argmin
r

||r||1 subject to yuncor = ΦΨr. (2.33)

Denoised image is obtained as: x̃ = Ψr̃.

2.5 Evaluation metrics

In this subsection, we present relations for the metrics used in this work to evaluate

the quality of the reconstructed signal. Let us consider, x[n] be the original signal,

x is the vectorized form of x[n], x̃[n] is the reconstructed signal, and N is the

length of signal x[n].

1. Signal to Noise Ratio (SNR): SNR (in dB) is defined as below:

SNR = 10 log10

( ∑N−1
n=0 (x[n])2∑N−1

n=0 (x[n]− x̃[n])2

)
, (2.34)

2. Peak signal to Noise Ratio (PSNR): PSNR (in dB) is defined as below:

PSNR = 10 log10

(max(x))2∑N−1
n=0 (x[n]− x̃[n])2

, (2.35)

Operation max(.) picks the maximum intensity value of the image.

3. Percentage Root Mean Square Difference (PRD): PRD (in %) is defined as

below:

PRD =

∑N−1
n=0 (x[n]− x̃[n])2∑N−1

n=0 (x[n])2
× 100, (2.36)
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4. Sampling ratio (S): Sampling ratio (in %) is defined as below:

S =

⌈
M

N

⌉
∗ 100, (2.37)

where, M represents the number of compressive measurements of the signal.



Chapter 3
DWTL1: Dyadic Wavelet Transform

Learning using Lifting for 1-D

Signals

Discrete dyadic wavelet transform provides an efficient representation for a variety

of multi-dimensional signals [5]. This efficient signal representation stems from

the fact that wavelets tend to capture signal information into a few significant

coefficients. Owing to this advantage, wavelets have been applied successfully in

several applications. One of the advantage with wavelets is that there is no unique

basis. One may choose the set of basis depending upon the type of application

and signal of interest. Since the wavelet basis are not unique, it is better to learn

wavelet basis and hence, wavelet transform matched to a given signal in a particular

application. Motivated with this, we propose methods to learn signal-matched

dyadic wavelet transform (DWT) using the lifting framework in this chapter. We

call the proposed method as dyadic wavelet transform learning (DWTL). We also

explore the use of the learned transform in applications.

Section 3.1 provides theoretical contributions of our work related to 1-D signals

including various methods to learn DWT. Applications of the learned DWT are

presented in Section3.2. We summarize the work of this chapter in Section3.3.
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3.1 Theoretical Contributions

We present four theoretical contributions related to wavelet transform learning of

1-D signals. First, in Section 3.1.1, a method is presented for learning DWT when

the original signal is known. Section 3.1.2 presents the method to learn DWT in

inverse problems. Third method for DWTL is presented in Section 3.1.3 to learn

DWT for a class of signals. We also propose weighted non-convex minimization in

Section 3.1.4 along with an algorithm to solve it.

3.1.1 DWTL from original signal

Since the translates of the associated wavelet filters form the basis in l2-space,

wavelet transform learning implies learning wavelet filter coefficients.

The learning of dyadic wavelet transform or associated wavelet filters is carried

out in the lifting framework. Lifting framework is described in Chapter-2. Lifting

is modular, and guarantees perfect reconstruction [32] at every stage. It can be

effectively utilized for learning new customized wavelet filters [32]. As described

in Chapter-2, a general lifting scheme consists of three steps: Split, Predict, and

Update as shown in Figure 3.11. These steps can be equivalently converted to a

conventional 2-channel wavelet system of Figure 3.2 with analysis filters labeled as

H0(z) = Z{h0[n]}, H1(z) = Z{h1[n]} and the synthesis filters as F0(z) = Z{f0[n]},
F1(z) = Z{f1[n]}. All the three stages of lifting for DWTL are described in the

following subsections.

3.1.1.1 Split Step via Lazy Wavelet

As discussed in Chapter-2, in split step, the input signal, x[n] is split into even and

odd indexed samples xe[n] and xo[n], respectively, on analysis side (Figure 3.1) and

the original signal can be recovered perfectly by interlacing or combining these even

and odd indexed samples on synthesis side [32]. The operation of split is performed

by a wavelet system called Lazy wavelet system. We consider following filters for

Lazy wavelet system:

H0(z) = 1, H1(z) = z

1Figure 3.1 and 3.2 are reproduced from Chapter-2 for the ease of understanding.
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Figure 3.1: Split, predict and update stages of lifting
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F0(z) = 1, F1(z) = z−1 (3.1)

The above choice of wavelet system yields perfect reconstruction, i.e., x̃[n] = x[n],

where x̃[n] is the reconstructed signal. Starting with this choice of Lazy wavelet

system, we update all the filters of dyadic wavelet system (Figure 3.2) with the

help of predict and update filters, T (z) and S(z), respectively, which we learn from

the input signal. This results in the updated wavelet filters, which are learned

according to the given input signal. The predict and update filters are learned

from the signal in predict and update stages, respectively, as described below.
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3.1.1.2 Predict Stage

Once the input signal x[n] is passed through the Lazy wavelet system designed

above, we obtain xe[n] and xo[n], even and odd indexed samples of the original

signal, respectively, as:

xe[n] =x[2n] (3.2)

xo[n] =x[2n+ 1] (3.3)

where n = 0, 1, ..., N
2
− 1 and N denotes the length of the original signal x[n].

In order to learn predict polynomial/filter T (z) in Figure 3.1, we choose to

predict xo[n] from xe[n], although the reverse can be done in a similar fashion. The

predicted signal is subtracted from the odd indexed samples to obtain prediction

error as below:

d[n] =xo[n]− xe[n] ∗ t[n]

=xo[n]− p[n]

=x[2n+ 1]− p[n], (3.4)

where,

p[n] =
Lt−1∑
k=0

t[k]xe[n− k]

=
Lt−1∑
k=0

t[k]x[2n− 2k] (3.5)

where, T (z)=Z -transform of t[n], Lt is the length of the predict filter T (z), ‘∗’
denotes convolution operator and p[n] = xe[n] ∗ t[n] denotes the predicted signal.

For good prediction, the predict polynomial/filter should be chosen such that odd

indexed samples are predicted with the nearest neighboring samples only. This is

ensured by choosing the structure of T (z) as provided in Theorem-3 below:

Theorem 1. The following structure of predict filter allows odd-indexed samples

to be predicted from their nearest even-indexed samples, i.e., from their immediate



32

past and immediate future samples:

T (z) = z−(
Lt
2
−1)

Lt−1∑
i=0

t[i]zi, (3.6)

where T (z) is an even-length filter. Even length T (z) will ensure that equal number

of past and future samples are used in prediction.

Proof. On using (3.6) in (3.5), we obtain:

p[n] =
L−1∑
k=0

t[k]x[2n− Lt + 2 + 2k]. (3.7)

This is to note that the nth sample of p[n] predicts sample x[2n+1]. On expanding

(3.7), we obtain

p[n] =t[0]x[2n− Lt + 2] + ...+ t[
Lt
2
− 1]x[2n]

+ t[
Lt
2

]x[2n+ 2] + ...+ t[Lt − 1]x[2n+ Lt]. (3.8)

Thus, the sample x[2n+ 1] is predicted from its exact nearest even neighbors. For

better clarity, Figure 3.3 shows even neighboring samples that are being used to

predict odd samples with a 2-tap and 4-tap predict filter T (z). This proves the

theorem.

Next, we minimize the energy of prediction error signal (d[n]) to learn the

predict filter as below:

t̃ =argmin
t

Nd−1∑
n=0

(d[n])2

=argmin
t

Nd−1∑
n=0

(x[2n+ 1]− p[n])2,

=argmin
t

Nd−1∑
n=0

(x[2n+ 1]−
Lt−1∑
k=0

t[k]x[2n− 2k])2, (3.9)

where Nd is the length of the prediction error.
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Input signal    x[n]          x0              x1          x2               x3              x4          x5          x6             x7              x8 

 

                        a [n]        x0              x2              x4               x6               x8          x10            x12            x14            x16          

    Predict 

with 2-tap T(z) 

                         d[n]         x1                x3              x5          x7           x9         x11        x13         x15       x17 

 

                       a[n]           x0              x2           x4                 x6                x8          x10           x12           x14              x16          

   Predict 

with 4-tap T(z) 

                       d[n]          x1               x3                x5        x7           x9           x11        x13        x15         x17 

Figure 3.3: An odd sample is being predicted from its neighboring even samples
with a 2-tap and a 4-tap filter T (z)

The above equation can be written in the vector form as below:

t̃ = argmin
t
||b−At||22, (3.10)

where b(i+1) = x[2i+1], A(i+1, j+1) = x[2i−2j] ∀ i ∈ {0, 1, ..., Nd−1} and j ∈
{0, 1, ..., Lt − 1}. Here, b(.) and A(., .) denotes the entries of the column b and A,

respectively. The above formulation leads to the following closed-form solution for

t̃:

t̃ = (A′A)−1A′b, (3.11)

where A′ denotes the transpose of A.

The learned predict filter T (z) = Z(t[n]) is used to update analysis highpass

and synthesis lowpass filter using (3.12) and (3.13), respectively.

Hnew
1 (z) = H1(z)−H0(z)T (z2). (3.12)

F new
0 (z) = F0(z) + F1(z)T (z2). (3.13)

Note that H0(z), H1(z), F0(z) and F1(z) corresponds to the filters of Lazy

wavelet system considered in section 3.1.1.1, whereas Hnew
1 (z) and F new

0 (z) are the
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filters updated with the help of T (z), learned from the input signal x[n].

3.1.1.3 Update Stage

Next, the update filter S(z) is required to be learned to update even indexed

samples. To this end, detail coefficients d[n] obtained in (3.4) are passed through

the update filter S(z) as shown in Figure 3.1 and added to the even indexed samples

to obtain the updated wavelet approximate coefficients as:

a[n] =xe[n] + d[n] ∗ s[n]

=x[2n] +
Ls−1∑
k1=0

s[k]d[n− k1], (3.14)

where S(z) denotes the z-transform of update filter s[n].

Similar to the predict stage filter, we require to choose s[n] such that the

elements of the upper branch are updated using nearest neighbors only. The cor-

responding structure for s[n] is provided by Theorem-2 as below.

Theorem 2. The following structure of the update filter allows the elements of the

upper branch to be updated from nearest neighbors:

S(z) = z−(
Ls
2
−1)

Ls−1∑
i=0

s[i]z−i, (3.15)

where Ls is the length of filter S(z) or s[n]. Note that S(z) is an even-length filter

that ensures that sample update is done using equal number of past and future

samples.

Proof. For the sake of simplicity, let us consider two tap predict filter that provides

the following detail coefficients:

d[n] = −t[0]x[2n] + x[2n+ 1]− t[1]x[2n+ 2] (3.16)

Once this signal is passed through the update stage filter in the update branch,

we obtain:

u[n] = d[n] ∗ s[n]. (3.17)
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With the choice of filter in (3.15), we obtain:

u[n] =s[0]d[n+
Ls
2
− 1] + s[1]d[n+

Ls
2
− 2] + ...

+ s[Ls − 2]d[n− Ls
2

+ 1] + s[Ls − 1]d[n− Ls
2

]. (3.18)

On expanding (3.18) and rearranging, we obtain

u[n] = −s[0]t[1]x[2n+ Ls] + s[0]x[2n+ Ls − 1]+

(−s[0]t[0]− s[1]t[1])x[2n+ Ls − 2] + ...+

(−s[Ls − 2]t[0]− s[Ls − 1]t[1])x[2n− Ls + 2]+

s[Ls − 1]x[2n− Ls + 1]− s[Ls − 1]t[0]x[2n− Ls] (3.19)

The above signal updates approximate coefficients, i.e., x[2n]. It can be clearly

noticed that coefficients x[2n] are updated using the nearest neighbors from x[2n+

Ls] to x[2n−Ls]. For better clarity, Figure 3.4 shows the neighboring samples that

are being used to update even samples with a 2-tap predict filter T (z) and a 2-tap

update filter S(z). This proves the theorem.

Input signal    x[n]            x0        x1        x2         x3        x4          x5         x6       x7          x8         x9        x10     x11      x12 

                      a[n]             x0                    x2                      x4                      x6                      x8               x10                  x12   

  Update 

with 2-tap filter 

 

Samples of x[n]               x0      x1           x2      x3           x4       x5          x6        x7          x8        x9       x10        x11       x12 

      in d[n] 

Figure 3.4: Even samples being updated from neighboring samples with a 2-tap
T (z) and 2-tap update filter S(z)

The updated approximate coefficients a[n] obtained above are passed through

the upper branch of the synthesis side of Figure 3.2. First, it is passed through a
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2-fold upsampler that provides:

x1u[n] =

a[n
2
] if n is a multiple of 2

0 otherwise.
(3.20)

Next, signal x1u[n] is passed through the synthesis lowpass filter fnew0 [n] that was

updated in the predict stage mentioned earlier. This provides us the signal x1[n]

(shown in Figure 3.2) reconstructed from the upper subband (branch) only and is

given by

x1[n] =x1u[n] ∗ fnew0 [n]

=

Lf0−1∑
k2=0

fnew0 [k2]x1u[n− k2], (3.21)

where Lf0 is the length of the filter fnew0 .

Since detail coefficients represent prediction error having very less energy, most

of the energy of the input signal should move to the updated (upper) branch signal.

Hence, the energy of signal x1[n] should be close to the original signal. This allows

us to define the objective function of (3.22), minimization of which via least squares

yields the solution s[n].

s̃ = argmin
s

N−1∑
n=0

(x[n]− x1[n])2. (3.22)

It can be noted from (3.14), (3.20) and (3.21), that x1[n] can be written in terms

of update filter s[n] in the above equation as follows:

x1[n] =

Lf0−1∑
k2=0

fnew0 [k2](x[n− k2] +
Ls−1∑
k1=0

s[k1]d[
n− k2 − 2k1

2
]). (3.23)

From above two equations, we obtain:

s̃ = argmin
s

N−1∑
n=0

(x[n]−
Lf0−1∑
k2=0

fnew0 [k2]x[n−k2]−
Lf0−1∑
k2=0

Ls−1∑
k1=0

fnew0 [k2]s[k1]d[
n− k2 − 2k1

2
]).

(3.24)
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The above relation can be written in matrix form as below:

s̃ = argmin
s
||b−As||22, (3.25)

where b(i+1) = x[i]−
∑Lf0−1

k2=0 fnew0 [k2]x[i−k2], A(i+1, j+1) =
∑Lf0−1

k2=0 fnew0 [k2]d[ i−k2−2j
2

])

∀ i ∈ {0, 1, ..., N − 1} and j ∈ {0, 1, ..., Ls − 1}. The above problem has following

closed form solution:

s̃ = (A′A)−1A′b. (3.26)

Please note that we use the following relation throughout the thesis:

u2[n] =

u1[nc ] if n is a multiple of c

0 otherwise,
(3.27)

where u1[n] is the signal that is upsampled by a factor of c to provide the signal

u2[n].

Once, update filter S(z) = Z(s[n]) is learned as above, the analysis lowpass

and synthesis highpass filters are updated using (3.28) and (3.29), respectively.

Hnew
0 (z) = H0(z) +H1(z)S(z2). (3.28)

F new
1 (z) = F1(z)− F0(z)S(z2). (3.29)

Note that H0(z) and F1(z) corresponds to the filters of Lazy wavelet system consid-

ered in section 3.1.1.1, H1(z) and F0(z) are analysis highpass and synthesis lowpass

filters, already updated in predict stage (section 3.1.1.2 above), and Hnew
0 (z) and

F new
1 (z) are analysis lowpass and synthesis highpass filters, which are being up-

dated with the help of S(z), learned from the input signal.

This completes the process of learning all the filters of 2-channel dyadic wavelet

system (Figure 3.2) from the input signal. These steps of learning filters of dyadic

wavelet systems are repeated in successive stages in multi-level wavelet decompo-

sition.

Note that the wavelet learned with the proposed method is matched to the input
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signal where energy in the lower branch and hence, one of the branch (or subband)

is minimized. At the same time, the update step tries to push more energy in the

other branch (subband) ensuring perfect reconstruction. This implies that signal

energy gets concentrated in the wavelet coefficients of one of the subband. Since

these steps are repeated in successive stages in multi-level wavelet decomposition,

the number of coefficients with significant magnitude decreases enforcing sparsity

with the learned matched wavelet in the lifting framework.

This is to be noted that, since the lifting scheme is modular, more number

of such predict and update stage filters can be learned and appended in order to

design higher order or larger length filters.

DWTL with Linear Phase filters

A linear phase filter is symmetric or anti-symmetric about the center weight. On

expanding filters h0[n] and h1[n] in terms of polynomials T (z) and S(z), it is noted

that the learned wavelet filters can be made linear phase, if T (z) and S(z) are

chosen appropriately. For example, the following choice of 2-tap T (z) and S(z)

leads to linear phase wavelet filters

T (z) = t[0](1 + z) and S(z) = s[0](1 + z−1). (3.30)

The above relation can be extended to Lt and Ls-tap predict and update filters,

respectively to learn larger length linear phase wavelet filters.

3.1.2 DWTL in inverse problems

In applications such as denoising, CS, deconvolution etc., the degraded signal is

present and problem is to estimate the original signal. These problems are known

as inverse problems. Mathematically, inverse problems can be written as:

y = Dx + η, (3.31)

where, y is the degraded form of the original signal x and is observed with the

observation process D in the presence of additive white Gaussian noise η. For

example, D is the identity matrix in Gaussian denoising, measurement/sensing
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matrix in CS problem and is convolution operator in deblurring problems. If the

signal is known to be sparse in some transform domain Ψ, then the original signal

can be estimated/reconstructed from the degraded form by solving the following

l1 minimization problem (or it’s equivalent form):

r̃ = min
r
||y −DΨr||22 + λ||r||1, (3.32)

where r represent the transform domain signal, λ is the regularization parameter

and original signal is estimated as x̃ = Ψr̃.

The method of DWTL presented in the previous subsection requires full orig-

inal signal to learn DWT, whereas full original signal is not accessible in inverse

problems, due to which the method cannot be applied for wavelet transform learn-

ing there. Hence, we present another method in this subsection, where we learn

DWT from degraded signals in inverse problems. The method is divided into two

stages. In stage-1, we obtain a coarse signal estimate from the observed degraded

signal using a standard wavelet. We call this a coarser estimate because the wavelet

used is not signal-matched and hence, the original signal may not be that sparse

over this wavelet compared to the signal-matched wavelet. This will impact the

reconstruction performance. In stage-2, we learn all the filters of a matched perfect

reconstruction filterbank or wavelet system. We can reconstruct/estimate original

signal from the observed signal using learned DWT as the sparsifying transform.

3.1.2.1 Stage 1: Coarser Signal Estimation

In this stage, we reconstruct a coarser estimate of the signal from it’s degraded form

y by solving (3.32). We use any standard wavelet as the sparsifying transform Ψ.

We use biorthogonal 5/3 wavelet in our experiments. The coarser approximation

of the signal is obtained as x̃ = Ψr̃ after solving (3.32). We solve the above

optimization problem using MATLAB solver spgl1 [107, 108]. We will show later

in applications section that the reconstruction accuracy with (3.32) using standard

wavelet is not good as compared to the learned wavelet transform. Hence, we call

the estimated signal x̃ as the coarser estimate of the original signal x.
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3.1.2.2 Stage 2: Wavelet Transform Learning

We use the signal reconstructed in the previous stage to learn signal-matched

wavelet system by learning predict and update filters of the lifting structure. This

is described below.

Predict Step

For learning signal-matched wavelet in lifting framework, first, we consider Lazy

wavelet with H0(z) = 1, H1(z) = z, F0(z) = 1, and F1(z) = z−1, respectively. We

start with this Lazy wavelet structure and proceed with learning the predict stage

filter T (z).

We apply coarser version of original signal x̃ estimated in Stage-1 as input

to the Lazy wavelet system and obtain even and odd sampled streams x̃e(n) and

x̃o(n), respectively as shown in Figure 3.1(a). We pass even indexed samples x̃e(n)

through the predict stage filter and write the output of the lower subband signal,

as below:

d̃[n] = x̃o[n]− x̃e[n] ∗ t[n],

= x̃[2n+ 1]−
Lt−1∑
k=0

t[k]x̃e[n− k], , (3.33)

We use (3.6) for the structure of predict filter.

Subband signal d̃ can be considered as the noisy version of detail coefficients

d that could be obtained by passing the original signal x through the learned

signal-matched analysis wavelet branch. This can be written as:

d̃ = d + η1, (3.34)

where η1 is the corresponding error.

Further, we analyze this coarser approximate signal x̃ using the same biorthogo-

nal 5/3 wavelet with which it had been reconstructed and obtain detail coefficients

(subband coefficients of highpass filtered branch) d̂. Again, this signal can be

considered as the noisy version of detail coefficients d and can be written as below:

d̂ = d + η2, (3.35)
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where η2 is the corresponding error.

From (3.34) and (3.35), we obtain:

d̂ = d̃ + η, (3.36)

where η is the error that consists of two components: 1) because we are using

approximate signal x̃ instead of the original signal x and 2) because we are using

biorthogonal 5/3 wavelet instead of the signal-matched wavelet.

On substituting for d̃ from (3.33) and (3.6) in (3.36) and writing in the matrix

form, we obtain

d̂ = At + η, (3.37)

where A is the convolution matrix consisting of even and odd indexed samples of

x̃ and t denotes the vectorized form of predict stage filter t[n] or T (z). We solve

for t in (3.37) using least squares method and substitute in (3.12) and (3.13) to

update the analysis highpass and synthesis lowpass filters and obtain new filters

Hnew
1 (z) and F new

0 (z), respectively. This ends the predict stage.

Update Stage

In the update stage, update polynomial S(z) is required to be computed. In

order to do this, we write the output of the upper subband signal using the lower

subband signal, d̃[n] as below:

a[n] = xe[n] + d̃[n] ∗ s[n], (3.38)

where s[n] is the time domain description of the update stage filter S(z). The

structure of the update filter, S(z) is provided by (3.15).

This subband signal a[n] is passed through a 2-fold upsampler that provides:

x̃1u[n] =

a[n
2
] if n is a multiple of 2

0 otherwise.
(3.39)

Next, signal x̃1u[n] is passed through the synthesis lowpass filter fnew0 [n] that

was updated in the predict stage mentioned earlier. This provides us the signal
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x̃1[n] reconstructed from the upper subband only and is given by

x̃1[n] = x̃1u[n] ∗ fnew0 [n]. (3.40)

Assuming that the original signal of interest is rich in low frequency content,

signal x̃1[n] reconstructed in the upper subband should be in close approximation

to the input signal x̃[n]. This allows us to solve for the update stage filter as below:

ŝ = argmin
s

∑
n

(x̃1[n]− x̃[n])2. (3.41)

It can be noted from (3.38), (3.39) and (3.40), that x̃1 can be written in terms

of update stage filter s[n] obtained on solving (3.41) using least squares method.

Correspondingly, analysis lowpass filter H0(z) and synthesis highpass filter F1(z)

are updated to Hnew
0 (z) and F new

1 (z) using (3.28) and (3.29), respectively. This

completes learning of all the filters of wavelet system.

Signal Reconstruction using Learned DWT

Once we have learned DWT using the above method, we can estimate the original

signal from the it’s degraded form y by solving (3.32) with learned DWT as the

sparsifying transform Ψ.

3.1.3 DWTL from a class of signals

As discussed in the previous subsection, the method presented in section3.1.1 can-

not be applied in inverse problems as the full original signal is not available. On

the other hand, the method presented in section 3.1.2 to learn DWT in inverse

problem requires coarse estimate of the signal. This increases complexity in the

overall learning method. There exist many classes of signals in nature where the

variation is very small over different signals in the class. ECG (electrocardiogram)

and brain MRI (magnetic resonance images) are two examples of such classes. We

use low variation property of such classes of signals in our work to learn DWT for

them. For this, we form an ensemble of a class of signals, for which the DWT is

to be learned. We use this ensemble of signals in the method presented in section

3.1.1 to learn DWT corresponding to this class of signals. It is assumed here that
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the ensemble captures most of the variations in the class, which is possible if the

ensemble is formed carefully.

The limitation of the proposed method is that one has to identify the class of

signal having low variation to apply this method. Although this kind of classes

can be identified using the statistical properties of the signals of the class under

consideration, we have not used this approach in this work. We would like to

explore this problem in future.

The learned DWT for a class of signals can be used as the sparsifying transform

in any application related to them. Also, the learned DWT for a particular class of

signals can be applied to any signal of the class. We present DWTL method only

for ECG signals in this work, although the same method can be extended to other

similar class of signals (having low variation in the class) as well. The proposed

method for ECG signals is presented in the next paragraph.

We consider MIT-BIH Arrhythmia ECG dataset [109] most commonly used

by the ECG community. We use 10 ECG signals (100, 102, 105, 107, 112, 115,

117, 118, 124 and 222), having several variations, of Arrhythmia database and

construct an ensemble shown in Figure 3.5. We consider only 3 seconds duration

of each signal that includes roughly 4 beats of each signal. We use this ensemble

of ECG signals as the input signal x[n] in the method presented in section 3.1.1 to

learn DWT corresponding to them. We call the learned DWT as ECGlet and use

it in CS based reconstruction of ECG signals, which is presented in section 3.2.3.

Figure 3.5: Ensemble of signals used for learning ECGlet: segment Sig(i -1) to
Sig(i) on x -axis represents the ith ECG signal.

3.1.4 Weighted Non-Convex (WNC) Minimization for CS

based recovery

As discussed in section 2sec:CS Theory, CS problem can be mathematically written

as:

y = Φx, (3.42)
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where x is the original signal of dimension N × 1, y is the compressed signal

of dimension M × 1 and Φ corresponds to the sensing/measurement matrix of

dimension M ×N .

As non-convex functions strongly promote sparsity than convex functions and

also, they generally leads to better reconstruction accuracy as compared to con-

vex functions, we can use non-convex function as the sparsity promoting penalty

function to recover full signal. Since lp (0 ≤ p < 1) norm is the most widely used

non-convex function in literature [58, 59], we use lp norm as non-convex penalty

function in this section. Correspondingly, the resultant optimization problem is

given as:

r̃ = argmin
r
||r||pp subject to: y = Ar, (3.43)

where A = ΦΨ.

Proposed weighted non-convex minimization: Since most of the signals

are rich in low frequency content, the approximate wavelet coefficients are less

sparse compared to the detail wavelet coefficients. For example, Figure 3.6a shows

one of the MIT-BIH signal (signal-100) for 5-seconds of duration while Figure 3.6b

shows its three level wavelet decomposition with approximate and detail coefficients

highlighted. It is observed that approximate coefficients contain more than 95% of

signal energy. This fact, that signal energy is concentrated in a limited number of

transform coefficients, encourages us to impose weighted sparsity on the wavelet

transform of the signal. For this, we introduce an operator Θ, defined as below:

Θr =

α1ri if ri ∈ approximate coefficients

α2ri if ri ∈ detail coefficients
(3.44)

where α1 and α2 are weights for approximate and detail coefficients, respectively.

Without loss of generality, we choose α2 = 1 and α1 = α < α2 because the

approximate coefficients are not sparse and hence, should be given less weights

compared to detail coefficients.

With the above weights, we propose to solve the following optimization problem

to reconstruct a signal:

r̃ = min
r
||Θr||pp subject to: y = Ar. (3.45)
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(a)

(b)

Figure 3.6: (a) 5-seconds of ECG signal-100 (b) Wavelet transform of the signal
in (a) with ‘db4’ wavelet.

We call the above formulation of lp minimization problem with weighting as

the weighted non-convex (WNC) minimization problem. This is to note that this

problem reduces to the conventional l1 minimization problem when α1 = α2 = 1

and p = 1. The above problem cannot be solved directly. Although iterative

reweighted least squares (IRLS) method can be used to solve it (similar to [61]), it

leads to an extra parameter that needs tuning for optimal reconstruction accuracy.

We propose a parameter free method that solves (3.45) iteratively by converting

this weighted lp norm to weighted l1 norm as described next.

The lp norm of weighted signal, Θr can be approximated to the weighted l1

norm of the signal as ||Θr(i)||pp = ||W(i)Θr(i)||1. Here, subscript i denotes the

iteration number and W(i) is the weighting matrix used in the ith iteration and is

obtained using the (i− 1)th estimate of the signal as:

W(i) = diag(|Θr(i−1)|p−11 ). (3.46)

Note that Θ is fixed for all iterations. Considering Θ to be an identity matrix that
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leads to lp minimization problem, it is known that

||r(i)||pp =
N−1∑
k=0

|r(i)(k)|p =
N−1∑
k=0

|r(i)(k)|p−1|r(i)(k)|

=
N−1∑
k=0

||r(i)(k)|p−1r(i)(k)|

∼
N−1∑
k=0

||r(i−1)(k)|p−1r(i)(k)| as n→∞

=
N−1∑
k=0

|W(i)(k, k)r(i)(k)| = ||W(i)r(i)||1, (3.47)

where ∼ denotes asymptotic equality as n→∞ or when the estimate converges to

some value. Equation (3.47) shows that lp norm can be solved using l1 norm in an

iterative manner till the solution converges. Similar relation holds with weighted

lp norm introduced in (3.45). Hence, (3.45) is solved using weighted l1 norm as

formulated below:

r̃(i) = argmin
r(i)

||W(i)Θr(i)||1 subject to: y = Ar(i), (3.48)

where, r̃(i) denotes the solution of ith iteration. Considering v(i) = W(i)Θr(i) leads

to

ṽ(i) = argmin
v
||v||1 subject to: y = AΘ−1W−1

(i) v. (3.49)

Note that Θ and W(i) are diagonal matrices and hence, their inverses can be

computed inexpensively by simply computing the inverse of the diagonal elements,

e.g. W−1
(i) = diag(1./|Θr(i)|p−1), where ‘.’ represents the element-wise operation

on the vector and diag(.) represents the diagonalization operator. we note from

(3.46) that if any diagonal entry in (i−1)th iteration estimate of Θr approaches to

zero, the corresponding entry in W−1
(i) approaches to infinity. Hence, we introduce

ε close to zero in (3.46) as below:

W(i) = diag(|Θr(i−1)|p−1 + ε). (3.50)
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Algorithm 1: Algorithm to solve weighted lp minimization problem of (3.48)

Input : Compressed measurements (y) and Sensing matrix (A), weight
matrix Θ, maxIter, ε, tol

Output: Reconstructed signal (x̃)
Initialization: initialize r̃(0) to be a zero vector, i = 1 and δ = 1.
while {i <= maxIter or δ > tol} do

1. Form matrix W(i) = diag(|Θr(i−1)|p−1 + ε),
its inverse, W−1

(i) = diag(1./(|Θr(i−1)|p−1 + ε))

2. Solve:
ṽ(i) = min

v
||v||1 subject to: y = AΘ−1W−1

(i) v.

3. Compute ˜r(i) using ˜r(i) = Θ−1W−1
(i) ṽ(i)

4. Compute δ =
||r̃(i)−r̃(i−1)||
||r̃(i−1)||

end

With the above W(i) matrix, (3.49) is solved iteratively until the solution con-

verges or until the maximum number of iterations are reached. The reconstructed

signal is obtained using x̃ = Ψ ˜r(i). Note that (3.49) can be solved by any of the ex-

isting solvers. We used MATLAB solver SPGL1 [107], [108] to solve the problem.

The complete algorithm to solve for non-convex weighted lp minimization problem

is presented in Algorithm 1.

We use WNC minimization in CS based recovery of ECG signals in section

3.2.3. We set maximum number of iterations maxIter= 10, tol = 10−4 (tolerance)

and ε = 10−4 in those experiments.

Please note that the prior knowledge about the signal can be employed in our

algorithm for better reconstruction of the signal. For example, if we know about

the support of the signal, then weighting can be done on only the known support

instead of the whole approximate coefficients.

3.2 Applications

In this section, we present the application of the proposed method of DWTL in

denoising and compressive sensing based reconstruction in Section 3.2.1 and in



48

Table 3.1: Learned wavelet filters for two signals

S.No. Input Signal Filter Coefficients

1

Speech-1
Sampling frequency:
fs =11.025 KHz

Number of samples
= 2712

9/7 Filters
h0=[0 -0.0004 0.0007 -0.1225 0.2578 0.7108

0.3126 -0.1593 0.0007 -0.0003]
h1=[ 0 0.0089 -0.0183 -0.5360 1.0016 -0.4642

0.0167 -0.0086 0 0]
5/3 Filters

h0=[0 -0.1296 0.2380 0.7336 0.2648 -0.1360]
h1=[ 0 0 0 -0.5445 1.0000 -0.5136]

2

Music-1
Sampling frequency:
fs = 11.025 KHz

Number of samples
= 10000

9/7 Filters
h0=[ 0 -0.0004 0.0007 -0.1192 0.2414 0.7091

0.3293 -0.1615 0.0008 -0.0004]
h1=[ 0 0.0090 -0.0178 -0.5569 0.9997 -0.4432

0.0181 -0.0090 0 0]
5/3 Filters

h0=[0 -0.1404 0.2791 0.7183 0.2841 -0.1413]
h1=[ 0 0 0 -0.5029 1.0000 -0.4973]

section 3.2.2, respectively. Section3.2.3 presents CS of ECG signals using the

DWTL method presented in Section 3.1.3 via weighted non-convex minimization

proposed in Section3.1.4.

3.2.1 Denoising of 1-D signals

Discrete wavelet transform has been proved to be a powerful tool for signal de-

noising. In this subsection, we apply the proposed method of DWTL presented

in section 3.1.1 for the denoising of speech and music signals. Music signals are

picked randomly from [110]. One stage and two stages of 2-tap predict and update

filters are learned (using the modular property of lifting) with and without linear

phase conditions. The resulting wavelet system corresponds to the synthesis fil-

ters of lengths 5/3 (highpass/lowpass) and 9/7 (highpass/lowpass) with one and

two stages, respectively. Analysis side filters for one speech and one music signal

are presented in Table 3.1. Since the resulting wavelet system are signal-matched

biorthogonal 5/3 and 9/7, it is appropriate to compare results with the standard

biorthogonal 5/3 and 9/7 wavelets.



49

Since this method of Section 3.1.1 requires the original signal, it cannot be

applied directly in denoising application where noisy version of the signal is present

instead of the original signal. Hence, we modify the method of 3.1.1 as presented

below.

We learn the analysis lowpass filter in the update stage considering that most

of the signal energy will move to the low frequency branch of the filterbank. This

makes the proposed scheme of matched wavelet learning suitable for signals rich

in low frequencies. However, noisy signals will be rich in high frequency content.

Thus, we use an accumulator, a discrete time counterpart of an integrator, on the

given noisy signal x(n) as below:

y[n] =
n∑
k=0

x[k] (3.51)

where x[n] = 0, when n < 0. This step converts the input noisy signal x[n] into

dominantly lowpass signal y[n]. Resulting dominantly lowpass signal y[n] is fed

as input to the above method of DWTL of section 3.1.1 and wavelet filterbank is

learned matched to this signal y[n] [30]. After denoising as discussed in the next

paragraph, we apply first difference on the successive samples of the output signal

s[n] to obtain the actual denoised signal x̂[n] according to the following relation:

x̂[n] = s[n]− s[n− 1] (3.52)

We add white Gaussian noise at 5dB SNR per sample. After learning DWT,

soft-thresholding is applied on the wavelet coefficients. We have applied 3-level

wavelet decomposition for denoising. All the subband coefficients are thresholded

using Bayes Shrink threshold strategy [6] except coarsest approximation coeffi-

cients. Table 3.2 shows the comparison of the denoised results of speech and music

signals between learned DWT and standard biorthogonal wavelets. Peak signal

to noise ratio (PSNR) is used as the performance measure for denoising. Each

experiment is performed with 30 runs and the results shown here are the average

over all runs.

Discussion: From Table 3.2, the following observations are in order:

• Signal-matched learned DWT without LP (linear phase) constraint gives
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Table 3.2: Results of Denoising

Signal
PSNR (in dB)

Noisy
DWT
9/7LP

DWT
9/7

Standard
9/7 LP

DWT
5/3LP

DWT
5/3

Standard
5/3 LP

Speech-1 12.28 13.14 14.68 14.61 13.37 12.98 14.82
Speech-2 11.85 12.24 14.08 11.84 11.85 12.11 12.76
Music-1 12.39 13.93 16.06 14.16 13.73 13.98 14.65
Music-2 11.81 12.44 14.26 11.94 12.34 12.48 12.98
Music-3 11.87 13.78 15.42 13.43 13.22 13.41 13.86

better results of denoising compared to the one with the LP constraint for

both the 5/3 and the 9/7 wavelet.

• Signal-matched 9/7 wavelet without LP constraint is working best on most

of the signals considered. The results are better compared to the standard

9/7 and 5/3 wavelets.

The above results are obvious because with linear phase condition, we are imposing

constraints on the learned wavelet and hence, it may deviate from the exact signal-

matched wavelet. However, the LP matched wavelet learning may be useful in

applications requiring linear phase conditions. This is to note that denoising results

using the standard 9/7 and 5/3 wavelets with the method of an accumulator and

first difference are observed to be inferior. Hence, these have not been included in

the text.

3.2.2 Compressive Sensing of 1-D signals

We present CS based reconstruction using the learned DWT as the sparsifying

transform in this section. We use the method presented in section 3.1.2 for DWTL.

The method is applied on ECG, speech, and music signals. Sampling ratios

ranging from 10% to 90% are considered in the experiments. Sampling ratio of

100% is not included as it does not imply compressively sensed signal. Experiments

are performed for 30 independent trials for every sampling ratio. We compare

reconstruction results of the learned wavelet with those using standard wavelets.

Reconstruction performance is measured in terms of PSNR. Results are presented
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Table 3.3: Reconstruction results of music and speech signals with standard and
learned wavelets

Sampling
Ratio
(in %)

Average PSNR (in dB)
Speech 1 Music 1 Music 2

Bi5/3 db4 WTL Bi5/3 db4 WTL Bi5/3 db4 WTL
90 35.44 39.01 40.8 28.12 28.85 29.94 23.55 25.66 29.16
80 29.45 32.62 35.92 24.07 24.95 26.5 18.29 20.88 24.76
70 24.82 27.9 32.27 21.37 22.03 24.03 14.63 16.78 20.91
60 20.81 23.51 28.75 19.13 19.75 22.09 11.77 13.92 17.58
50 17.41 20.21 25.27 16.96 17.72 20.42 9.69 11.64 14.33
40 14.31 17.03 21.69 14.99 15.81 18.57 8.29 9.78 11.28
30 12.22 14.27 17.89 13.1 13.88 16.55 7.35 8.5 9.32
20 10.72 11.96 13.17 11.28 11.99 13.86 6.69 7.49 7.69
10 9.789 10.64 10.69 9.72 10.4 10.75 6.32 6.85 6.89

on average PSNR with 30 iterations as mentioned above.
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Figure 3.7: (a). Speech signal (b). Music signal 1 (c). Music signal 2

Table 3.3 presents signal reconstruction results on one speech and two music

signals. The original signals are shown in Figure 3.7. We compare the reconstruc-

tion performance of the learned DWT with standard biorthogonal 5/3 (bior2.2)

and orthogonal Daubechies-4 wavelets, shown as Bi5/3 and db4, respectively, in

the table. From Table-3.3, we observe that reconstruction results with the learned

wavelet outperform standard wavelets based signal recovery at every sampling ra-

tio.

In particular, we observe that performance with the learned wavelet is very

good at sampling rations ranging from 20% to 90%, while we obtain improved

but comparable results at 10%. Since we are learning matched wavelet in the

second stage using the coarser reconstructed signal using standard wavelet, it is



52

Table 3.4: Reconstruction results on ECG signal with standard and learned (from
full and compressively sensed signal) wavelet

Sampling Ratio
(in %)

Average PSNR (in dB)

Bi5/3 db4 coiflet4
WTL using

original
(Full) signal

WTL with
Proposed method

using compressively
sensed signal

90 50.27 50.52 51.69 51.83 51.39
80 46.19 46.58 47.23 48.33 47.97
70 43.38 43.73 44.26 45.89 45.58
60 39.7 40.73 41.28 43.71 43.4
50 35.11 36.6 36.85 41.92 41.77
40 27.58 28.65 30.37 39.66 39.74
30 22.32 23.26 23.62 33.95 33.75
20 19.22 19.71 19.9 23.31 22.9
10 16.55 17.70 17.51 16.52 16.3
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Figure 3.8: (a). Original ECG Signal (b). ECG signal reconstructed with bior2.2
(c). ECG signal reconstructed with proposed method

possible that at such lower sampling ratios, not much can be recovered in the

second refinement stage from this reconstructed signal.

It will also be interesting to look at the reconstruction results if wavelet trans-

form is learned from the original (full) signal. In Table 3.4, we present reconstruc-

tion results on ECG signal using standard wavelets bior2.2, db4 and coiflet4, the

proposed method, and perfectly matched wavelet (wavelet learned from original

signal).

From Table 3.4, we observe that the learned wavelet outperforms existing

wavelets including Coiflet-4 that is known to match best, among all standard

wavelets, with the PQRST wave of the ECG signal. In addition, we observe that



53

the performance of wavelet learned from sparsely observed data is as good as

wavelet matched to the fully available input signal. Both these results show the

efficacy of the proposed method.

In order to ascertain the quality of the reconstructed signal visually, we present

original and reconstructed results in Figure 3.8. We consider 30% compressively

sensed samples of the original signal. Figure 3.8a shows original ECG signal.

Figure 3.8b shows the signal reconstructed using bior2.2 wavelet (5/3 wavelet)

and Figure 3.8c shows the signal reconstructed with the learned wavelet. Indeed,

reconstructed signal quality is better with the learned wavelet compared to that

reconstructed using bior2.2 wavelet.

3.2.3 CS of ECG signals via weighted non-convex mini-

mization

In this subsection, we present CS based reconstruction of ECG signals via weighted

non-convex minimization proposed in Section3.1.4 using the learned DWT as the

sparsifying transform. The method proposed in Section3.1.3 is used for DWTL.

Also, various experiments with different sensing matrices, optimization method,

and wavelet transform are presented.

3.2.3.1 Dataset

We considered MIT-BIH Arrhythmia ECG dataset [109] most commonly used by

the ECG community. This data-set is captured via Holter 2-channel recorder by

Beth Israel Hospital Arrhythmia Laboratory between 1975 and 1979 and consists

of 24 hour ECG recordings of 47 subjects. Of these, a total of 48 number of half

an hour duration recordings were uploaded in the database. Here, 23 number of

recordings were from a mixed population of inpatients (about 60%) and outpatients

(about 40%) and 25 number of recordings were of clinically significant arrhythmia

subjects.

The ECG signal was recorded for modified limb lead II (MLII) channel and

modified lead V1 (sometimes V2, V4 or V5) channel. Original analog recordings

of the ECG signals were made by using Del Mar Avionics model 445 two-channel

recorders. The obtained analog signal was sampled at the sampling frequency of
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360 Hz per channel with 11-bit resolution over 10 mV voltage range.

Results in this subsection are shown over one minute recordings and similar

performance is observed on CS based reconstruction for different duration clips

owing to the repetitive patterns in ECG signals. Since QRS complexes are more

prominent in the MLII lead channel compared to the V1 lead channel [111], we

considered only MLII lead signal in all our experiments. ECG signals 100, 105,

107, 109, 112, 115, 117, 118, 119, 124 were considered for demonstrating the per-

formance of the proposed method of DWTL and WNC based ECG signal recon-

struction, while ECG signals 100, 102, 105, 107, 112, 115, 117, 118, 124 and 222

were used for offline learning of the DWT (ECGlet) as discussed in Section 3.1.3.

3.2.3.2 Results and Discussion

As described in Section 3.1.3, we from an ensemble of 10 ECG signals (100, 102,

105, 107, 112, 115, 117, 118, 124 and 222) of Arrhythmia dataset (Section 3.2.3.1)

and use the ensemble to learn DWT using the method presented in Section 3.1.1.

As the wavelet is learned from the class of ECG signal, we call the learned wavelet

as ECGlet. We use ECGlet as the sparsifying transform for the CS based recon-

struction of ECG signals. We also use WNC method proposed in Section 3.1.4. We

carry out wavelet transform learning or ECGlet learning offline using an ensemble

of some ECG signals and test in the proposed WNC based CS reconstruction on

another set of transmitted ECG signals, showing the utility of the proposed work

in real inverse problems.

The complete block-diagram of the proposed methodology is shown in Figure

3.9. Each ECG recording x is segmented into small length segments xi and com-

pressively sensed using sensing matrix Φ to obtain compressive measurements yi.

These compressively sensed segments are transmitted to the receiver. Assuming

noise-free channel, the receiver reconstructs the original signal x using the proposed

methodology.

We conducted a number of experiments on the ECG signals collected from the

Arrhythmia database as discussed in Section 3.2.3.1. First, we present the wavelet

filters of ECGlet learned on the ensemble ECG signal of Figure 3.5 using the

method presented in Section 3.1.3. Since wavelet transform is generally applied at

three-level decomposition, we learned wavelet filters at all the three successive levels
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Figure 3.9: Block diagram of the proposed WNC-ECGlet based reconstruction of
compressively transmitted ECG signals

Table 3.5: Synthesis filters along with predict/update filters at all 3 levels of wavelet
decomposition

Level 1 2 3

t[n]
t1=[-0.1333 0.7369

0.4135 -0.0181]
t2=[-0.0918 0.5593

0.6371 -0.1057]
t3=[ -0.0455 0.4656

0.6338 -0.0519]

s[n]
s1=[-0.1136 0.4135

0.1892 -0.0156]
s2=[ -0.0814 0.2785

0.3351 -0.1040]
s3=[-0.0577 0.2366

0.3636 -0.0886]

f0[n]
f01=[ 0 -0.0181 0 0.4135
1.0000 0.7369 0 -0.1333]

f02=[0 -0.1057 0 0.6371
1.0000 0.5593 0 -0.0918]

f03=[0 -0.0519 0 0.6338
1.0000 0.4656 0 -0.0455]

f1[n]

f11=[ 0 -0.0020 0 0.0544
0.1136 -0.0839 -0.4135
0.6017 -0.1892 -0.0779

0.0156 0.0367 0 -0.0021]

f12=[ 0 -0.0086 0 0.0813
0.0814 -0.0965 -0.2785
0.6123 -0.3351 -0.0956

0.1040 0.0889 0 -0.0095]

f13=[0 -0.0030 0 0.0489
0.0577 -0.1042 -0.2366
0.6522 -0.3636 -0.1024

0.0886 0.0578 0 -0.0040]

of wavelet decomposition. Table 3.5 shows 4-tap predict/update filters learned with

the proposed method along with the synthesis filters learned at all the three levels.

Figure 3.10 shows the frequency response of the corresponding synthesis filters.

We carried out a number of experiments to understand the significance of lp

norm, weighted lp norm (or weighted non-convex minimization), and ECGlet in

the context of CS-based reconstruction of ECG signals. Reconstruction accuracy

is computed in terms of SNR (Signal to Noise ratio, in dB) and PRD (Percentage

Root Mean Square Difference, in %) presented in Section 2.5. In [112], as as-

sessed by the specialists, a PRD value of less than 9% is labeled as ‘good’ quality

reconstruction and a PRD value of less than 2% is labeled as ‘very good’ quality re-

construction of ECG signals. The corresponding SNR values for ‘good’ and ‘very
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Figure 3.10: Frequency response of synthesis filters of learned wavelet transform

good’ quality reconstruction of ECG signals are 21 dB and 34 dB, respectively.

We denote good and very good quality reconstruction in every result with symbols

‘G’ and ‘VG’, respectively. In all the experiments, SNR and PRD values imply

mean SNR and mean PRD values calculated over the reconstructed ECG signals

of records 100, 105, 107, 109, 112, 115, 117, 118, 119, 124 of the dataset. Gaussian

sensing matrix has been considered in CS, unless otherwise specified, with sam-

pling ratios ranging from 90% to 20%, where expression for sampling ratio (S) is

given in Section 2.5. Experiments at each sampling ratio are carried out for 10

iterations.

Experiment-1: CS-based reconstruction of ECG signal using

non-convex lp minimization with ‘db4’ wavelet

In this experiment, we evaluate the performance of CS-based ECG reconstruction

using lp minimization of (3.43) with orthogonal ‘db4’ wavelet used as the spar-
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(a) (b)

(c) (d)

Figure 3.11: Performance of lp minimization in CS-based ECG reconstruction with 3-
level ‘db4’ wavelet; (a) SNR and (b) PRD, for a range of p-values at different sampling
ratios. (c) SNR and (d) PRD, for a range of sampling ratios at p = 0.7 and p = 1.

sifying transform (implemented with 3-level wavelet decomposition). Although

lp(0 ≤ p < 1) minimization may lead to better reconstruction accuracy compared

to l1 minimization, this may not be true for all values of p. Thus, we compare the

reconstruction performance for values of p ranging from 0 to 1 with an interval of

0.1 at sampling ratios of 50% to 90% with an interval of 10%. Results are shown

in Figure 3.11a-3.11b.

Figure 3.11a and Figure 3.11b show SNR and PRD performance curves for

different values of p at different sampling ratios. From these graphs, it is noted
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that the reconstruction accuracy is maximum and nearly constant for p between

0.6 and 0.8 at all sampling ratios considered. Hence, we consider p = 0.7 in

lp minimization with Gaussian sensing matrix in rest of the experiments. The

comparison of CS-based reconstruction with lp minimization (p = 0.7) and l1

minimization is presented in Figure 3.11c and 3.11d. Results are reported with

sampling ratios ranging from 90% to 20%. It is noted that lp minimization provides

better accuracy at sampling ratios from 80% to 30% with a fairly high improvement

at 50% to 40% sampling ratio.

Although the optimal value of p is found experimentally in this work, there exist

some works in the literature, where optimal value is obtained from the statistics

of the data [113, 114]. We would like to explore this statistical based approach for

ECG signals in the near future.

Experiment-2: CS-based ECG reconstruction using the pro-

posed weighted non-convex lp (WNC) minimization

We evaluated the CS-based reconstruction performance of the proposed weighted

non-convex lp minimization (WNC) with 3-level ‘db4’ wavelet at different sampling

ratios with α2 = 1 and α1 = α varying from 0.1 to 0.9 with an interval of 0.2. Better

reconstruction accuracy is observed in Figure 3.12 at higher sampling ratios with

the greater value of weight α. At higher sampling ratio, least accuracy is observed

at α = 0.1. This gap in accuracy is decreased as the sampling ratio is decreased

with a flip in performance after 50% sampling ratio, where performance decreases

rapidly, while better performance is observed at lower values of weight α. At 20%

sampling ratio, best accuracy is observed at α = 0.1.

These curves indicate that as the sampling ratio is decreased, i.e., less number of

samples are picked up, all approximate wavelet coefficients become important and

lesser sparsity penalty is required on the approximate wavelet coefficients. After

50% sampling ratio is crossed, the performance crosses ‘very good’ quality and

remains almost constant and high for all values of α except for α = 0.1 indicating

that sparseness is required to be imposed. The value of α becomes insignificant at

10% sampling ratio with all weight values providing the poor performance of nearly

0 dB SNR. This indicates that the number of samples picked up are too insufficient
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(a) (b)
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Figure 3.12: Effect of weight α in WNC lp minimization in CS-based ECG recon-
struction with 3-level ‘db4’ wavelet; (a) SNR and (b) PRD, with various values of
α at different sampling ratios; (c) SNR and (d) PRD comparing l1 with α = 1 to
lp with p = 0.7 and α = 0.3.

to reconstruct the good quality ECG signal and even the proposed WNC fails to

reconstruct ECG signals at 10% sampling ratio. Using these curves, we decide to

choose α = 0.3 because it provides fairly good and consistent performance at all

sampling ratios.

Next, we compared the performance of WNC with l1 (conventional CS) at all

sampling ratios in Figure 3.12c-3.12d. It is noted that WNC performs best and

provides ‘good’ quality reconstruction at all sampling ratios above 25%. At 20%

sampling ratio, the conventional CS fails completely providing an SNR of approx.
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(a) (b)

(c) (d)

Figure 3.13: Effect of different wavelets in CS based ECG reconstruction; (a) SNR
and (b) PRD, with various wavelets using conventional CS (p = α = 1); (c) SNR
and (d) PRD, with various wavelets using WNC (p = 0.7 and α = 0.3) at different
sampling ratios.

2 dB, while WNC provides an SNR of 15 dB that is about a 13 dB higher than

conventional CS indicating superior performance of WNC method.

Experiment-3: Performance comparison of ECGlet with ex-

isting standard wavelets with conventional CS and with WNC

Both the previous experiments tested WNC with ‘db4’ wavelet. Next, we evaluated

the performance of ECGlet as the sparsifying transform vis-à-vis existing standard
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wavelets in conventional CS (p = α = 1). Four standard wavelets are considered:

orthogonal ‘db4’ and ‘db10’ wavelet, bi-orthogonal ‘bior 9/7’ wavelet, and orthogo-

nal coiflet (‘coif4’) wavelet. Coiflet-4 is chosen because its shape matches the QRS

shape of the ECG signals.

Conventional CS-based reconstruction results are presented in Figure 3.13(a)

and 3.13(b). It is observed that all standard wavelet perform almost similarly, while

ECGlet shows marked improved performance with approx. 24 dB higher SNR at

30% sampling ratio compared to standard wavelets. While ECGlet reconstructs

signals with an SNR of around 12 dB at 20% sampling ratio, existing wavelets fail

to reconstruct the signals with an SNR of approx. 2 dB.

The performance with ECGlet remains ‘very good’ above 50% sampling ratio

and is ‘good’ or above beyond 25% sampling ratio. On the other hand, standard

wavelets cross ‘very good’ performance at 65% sampling ratio and ‘good’ perfor-

mance near 50% sampling ratio. This shows that ECGlet is indeed matched to

ECG signals and works as a good sparsifying basis. The performance with ECGlet

drops very rapidly after 30% sampling ratio implying that there is not enough

information in the measurements to recover ECG signals.

Qualitative reconstruction results are shown over a 3-second ECG segment

of ECG signal record-100 in Figure 3.14 at 30% sampling ratio. It is observed

that while QRS complex is not visible in reconstruction with any of the existing

wavelets, it is not only visible but looks similar to the original ECG signal with

ECGlet reconstruction.

CS-based reconstruction results with WNC are presented in Figure 3.13(c)

and 3.13(d) with best performing p and α values. Standard wavelets cover up

the performance gap with ECGlet in the WNC method as seen from these figures.

However, the performance of ECGlet still excels compared to all standard wavelets.

Interestingly, while the WNC method and the ECGlet had individually failed to

meet the ‘good’ quality mark individually at 20% sampling ratio by more than 5 dB,

this ‘good’ quality performance is met when both these are used in conjunction.

This shows that both the contributions of the paper ECGlet design and WNC

methods contribute significantly to the CS-based ECG reconstruction.



62

(a) Original ECG signal (b) reconstructed with ‘db4’ wavelet

(c) reconstructed with ‘db10’ wavelet (d) reconstructed with ‘bior 9/7’ wavelet

(e) reconstructed with ‘coif4’ wavelet (f) reconstructed with ECGlet

Figure 3.14: 3 seconds segment of ECG signal record no.100 and its reconstruction
with various wavelets from 30% measurements

Experiment-4: Comparative performance of Gauusian with

Bernoulli, and Sparse Binary Sensing matrices

So far, we focused only on CS-based ECG reconstruction with random Gaussian

sensing matrices that are popular in CS applications because they provide ease of

theoretical analysis. However, these matrices are not hardware friendly because

(1) Gaussian sensing matrices are dense having value at each matrix position, (2)

each entry is a floating point number and hence, a large amount of memory is

required to store these matrices, and (3) operations with floating point numbers

lead to increased complexity of the hardware. Also, most of the microprocessor in

WBAN applications are not capable for floating point operations. Hence, Gaussian

sensing matrix is not a good choice for CS-based reconstruction of ECG signals.

A good alternative of Gaussian matrices is Bernoulli sensing matrices [88],

used widely in CS applications because of their ease in hardware implementation

[115]. Entries in such a sensing matrix are taken from Bernoulli distribution with

either ±1 or {0, 1} values. Because of binary entries, these matrices are easy to

implement on hardware compared to Gaussian sensing matrices. Hence, we apply

the proposed WNC method with ECGlet in CS-based ECG reconstruction with
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Bernoulli sensing matrix. The accuracy of the reconstructed ECG signal in SNR

and PRD are shown with conventional CS method (p = 1, α = 1) in Figure 3.15a

and 3.15b and are shown with WNC method in Figure 3.15c and 3.15d. Results

of WNC method with Bernoulli matrix are shown with best performing p and α

values for all wavelets including learned ECGlet.

(a) (b)

(c) (d)

Figure 3.15: Accuracy of CS based ECG signal reconstruction with Bernoulli sens-
ing matrix in terms of SNR and PRD with different wavelets. (a) SNR (b) PRD,
with conventional CS (p = 1 and α = 1); (c) SNR (d) PRD, with WNC method.

From Figure 3.15, it is noted that ECGlet outperforms the existing transforms

in both the conventional CS and WNC based CS. Also, the difference in perfor-

mance is covered up by standard transforms with WNC method because WNC
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method increases the reconstruction accuracy of the existing wavelet transform by

a good amount as seen in 3.15c and 3.15d. Since the learned ECGlet is already

able to reconstruct ECG signals with good quality, the performance gain of WNC

over conventional CS is not as high with ECGlet as with existing transforms. This

again validates the superior performance of both the contributions. Overall, the

performance with Bernoulli sensing matrices is similar to that of with Gaussian

sensing matrix.

Another hardware efficient sensing matrix, namely, sparse binary matrix (SBM)

is proposed in [47]. SBM matrix contains very less non-zeros as compared to

Bernoulli sensing matrix that has 50% non-zero entries (implemented as {0,1}).
In SBM, only d element in a column are non-zero (equal to 1). Similar to [47], we

chose d = 12, implying 12% non-zero entries in the sensing matrix. Performance

results are shown with conventional CS and WNC based CS in Figure 3.16. Results

of WNC method with SBM matrix are shown with best performing p and α values

for all wavelets including learned ECGlet.

From Figure 3.16a and 3.16b, it is observed that the learned ECGlet outper-

forms all existing wavelets with conventional CS at sampling ratios lower than 70%.

At sampling ratio higher than 70%, SNR is more than 35 dB with all wavelets and

hence, reconstruction performance is sufficiently good. The reconstruction accu-

racy of the existing wavelets is enhanced by WNC method at lower sampling ratios

below 50% as seen from Figure 3.16(a) versus 3.16(c) and 3.16(b) versus 3.16(d).

Further, it is observed that best reconstruction accuracy with learned ECGlet is

achieved with p = 1 and α = 1 indicating that the performance of ECGlet renders

WNC minimization irrelevant with SBM matrices.

Next, we compared the reconstruction accuracy with Gaussian, Bernoulli and

SBM sensing matrices in one Figure 3.17. While SBM outperformed Gaussian and

Bernoulli matrices with ‘db4’ in conventional CS (Figure13 (a)-(b)), WNC method

pushed the performance with Gaussian and Bernoulli above SBM (Figure13 (c)-

(d)). In the case of ECGlet, Gaussian and Bernoulli performed above SBM with

both conventional CS and WNC CS (Figure13 (e) to (h)). Further, both ‘good’

and ‘very good’ performance bars are crossed at lower sampling ratios with ECGlet

vis-à-vis standard wavelet and with WNC method vis-à-vis conventional CS.

Clearly, WNC (Figure 13(c)-(d)), ECGlet (Figure 13(e)-(f)) and WNC-ECGlet
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(a) (b)

(c) (d)

Figure 3.16: Accuracy of CS based ECG reconstruction with ‘sparse binary matrix’
(SBM) in terms of SNR and PRD with different wavelets. (a) SNR (b) PRD, with
conventional CS (p = 1 and α = 1); (c) SNR (d) PRD, with WNC method.

(Figure 13(g)-(h)), all improved the reconstruction performance of conventional CS

(Figure 13(a)-(b)) with all the sensing matrices. Also, Gaussian and Bernoulli are

better choices of sensing matrix over SBM with WNC, ECGlet and WNC-ECGlet

in terms of reconstruction performance, however, the gap in reconstruction per-

formance is small. As the SBM sensing matrix is much easier to implement on

hardware in comparison to Gaussian and Bernoulli sensing matrices, one may

choose SBM sensing matrix implemented with WNC, ECGlet or WNC-ECGlet

over Gaussian and Bernoulli sensing matrices with slight compromise in recon-
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(a) (b)

(c) (d)

(e) (f)
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(g) (h)

Figure 3.17: Accuracy of CS-based ECG reconstruction with different sensing ma-
trices. Reconstruction accuracy in terms of (a) SNR and (b) PRD with p = 1,
α = 1 and ‘db4’ wavelet; (c) SNR and (d) PRD with WNC method and ‘db4’
wavelet; (e) SNR and (f) PRD with p = 1, α = 1 and ECGlet; (g) SNR and (h)
PRD with WNC method and ECGlet.

struction performance.

Experiment-5: Comparative performance of WNC-ECGlet

and existing methods

Lastly, we compared WNC-ECGlet with other CS-based ECG reconstruction meth-

ods. Some of these methods are based on greedy algorithms such as orthogonal

matching pursuit (OMP)[116] and iterative hard thresholding (IHT) [117] that

have been widely used in ECG reconstruction. Both these algorithms solve for

l0 minimization. On the other hand, basis pursuit solve for l1 minimization by

posing the problem as a linear program. We compared all these three methods in

Figure 3.18 with 3-level ‘db4’ wavelet as the sparsifying wavelet transform as used

generally in the literature.

We also compared WNC-ECGlet with two more methods, proposed sepcifically

for ECG reconstruction [118, 49]. In [118], distributed CS is applied by exploiting

the common support between adjacent heart beats over a period of six consecutive

heartbeats with ‘db4’ wavelet and random Gaussian sensing matrix, while [49]
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(a) (b)

(c)

Figure 3.18: Comparison of proposed scheme with others in case of Gaussian
sensing matrix in terms of: (a) SNR and (b) PRD; (c) zoomed part of results in
part (b).

used weighted l1 minimization for CS-based ECG reconstruction. In [49], sparsity

constraint is imposed only on detail coefficients.

WNC-ECGlet and methods of [118, 49] perform better than other existing

methods that fail below 50% sampling ratios. Further, WNC-ECGlet performs

consistently best at all sampling ratios. It performs above ‘good’ quality mark from

20% to 90% sampling ratio and above ‘very good’ quality mark at 50% sampling

ratio and above. The performance of [118] remains almost steady and above ‘good’

quality mark from 30% to 90% but below ‘very good’ quality mark throughout.
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The performance of [49] remains above ‘good’ quality mark from 42% and above,

but falls consistently from its peak performance at 90% sampling ratio. Overall,

WNC-ECGlet is a good choice for CS-based ECG reconstruction.

3.3 Summary

Methods are presented in this chapter to learn DWT for 1-D signals. Particularly,

three methods are presented. The first method can be used when the original

signal is available. This method can be applied in applications like compression

and classification, where one has the access of full original signal. However, this

method cannot be used in inverse problems like denoising, compressive sensing, de-

convolution etc., where the degraded signal is present instead of the original signal.

We present the second method to learn DWT in inverse problems, where coarse

estimate of the signal is obtained in the first stage and this coarse estimate is used

to learn DWT in the second stage. The third method is presented to learn DWT

for a class of signals, which can be used for a class of signals where signal charac-

teristics do not vary much in different signals of the class, e.g. ECG signals and

brain MRI. Unlike the second method, this method does not require to compute

coarse estimate of the signal. Hence, the third method is more computationally

efficient as compared to the second method. Applications of these proposed meth-

ods are also presented. Denoising and CS of ECG, music and speech signal is

presented. The first method of DWTL is used in denoising application. The sec-

ond method is used for CS of ECG, music and speech signals. The learned wavelet

transform is observed to outperform the existing dyadic wavelet transforms. Also,

it was observed that the signal reconstruction performance of the wavelet trans-

form, learned from the degraded signals is slightly inferior than the performance of

the wavelet transform learned from the original signal (assuming that the original

signal is present). This proves that the proposed method of wavelet transform

learning is as good as the wavelet transform learning method from the original sig-

nal. Extensive experiments are presented for CS based ECG reconstruction using

the third method of DWTL with various sensing matrices via proposed weighted

non-convex minimization. The learned wavelet transform along with the proposed

weighted non-convex minimization is observed to provide much better ECG sig-
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nal reconstruction as compared to existing wavelet transforms as well as existing

methods.



Chapter 4
DWTL2: Dyadic Wavelet Transform

Learning for Images

It has been observed that natural images, in general, are compressible in wavelet

domain [103]. Hence, Wavelet transform is extensively applied as separable trans-

forms on images. Also, it was discussed in chapter-3 that wavelet transform does

not have unique basis and hence, it is better to learn wavelet basis from the sig-

nal itself. Various methods were presented in chapter-3 for dyadic wavelet trans-

form learning (DWTL) for 1-D signals in different situations/applications using the

lifting framework. It was also shown that the learned dyadic wavelet transform

(DWT) when used as the sparsifying transform in the application of denoising and

compressive sensing, performs better than the existing DWTs. In this chapter, we

extend the idea to images and present methods to learn separable DWT for them.

Theoretical contributions of our work related to images are presented in Section

4.1. Applications of the proposed method of separable DWTL are presented in

Section 4.2. The work of this chapter is summarized in Section 4.3.

4.1 Theoretical Contributions

Theoretical contributions of our work related to images are presented in this Sec-

tion. We present two methods to learn separable DWT in this Section. The first

method, presented in Section 4.1.1, can be used in applications where the original

image is known. The second method, presented in Section 4.1.2, can be used in
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inverse problems where the degraded image is present instead of the original image.

A new wavelet decomposition method is proposed for images, presented in Section

4.1.3.

4.1.1 DWTL from original image

We propose to learn separable DWT for the images in this Section. Since the

proposed work is on separable DWT, we require to learn wavelet for row and

column directions separately. Thus, before proceeding with the matched wavelet

learning, we present the scanning mechanism of rows and columns data in images

as used in this work.

4.1.1.1 Scanning Mechanism for Row- and Column-wise Data

As stated earlier, we require to learn matched wavelet for both the row and column

directions. One easier method can be learning matched wavelet on row- or column-

vectorized image and use the same wavelet, later, along both the columns and rows

as a separable wavelet. Instead, we propose to learn matched wavelet separately

for the row- and column-directions using the following two scanning patterns:

C5C4C3C2C1 Cn

(a) Column wise raster scanning

R1

R2

R3

R4

R5

Rm

(b) Row wise raster scanning

Figure 4.1: Raster scanning pattern
Rm denotes the mth row and Cn denotes the nth column

• Raster scanning pattern: The image is scanned according to the scanning

pattern shown in Fig. 4.1, wherein rows or columns are stacked one after the



73

C5C4C3C2C1 Cn

(a) Column wise serpentine scanning

R1

R2

R3

R4

R5

Rm

(b) Row wise serpentine scanning

Figure 4.2: Serpentine scanning pattern
Rm denotes the mth row and Cn denotes the nth column

other to obtain 1-D signal for both the directions. However, this will cause

discontinuity in the 1-D signal at the transitions when one column ends and

another starts and likewise, for the rows.

• Serpentine scanning pattern: In order to avoid this discontinuity, an alternate

way is to scan all even rows or columns in the reverse direction as shown in

Fig. 4.2.

Since serpentine scanning pattern is robust to sudden transitions at the row-

or column-endings, we use it in all our experiments.

4.1.1.2 Proposed Methodology of DWTL

With the serpentine scanning discussed above, we convert a given image into two

1-D signals: one with column-wise scanning and another with row-wise scanning.

Now, we need to learn DWT matched to these column-wise and row-wise scanned

1-D signals. Note that, we have already presented the method to learn DWT

corresponding to the 1-D signal in Section 3.1.1. We apply this method for the

column and row-wise scanned 1-D signals to learn separable DWT to be used on

images.
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4.1.2 DWTL for images in inverse problems

The proposed method in this Section is the extended form of the method presented

in Section 3.1.2 to images. The proposed methodology has two stages. In stage-1,

we obtain a coarse estimate of the image from the degraded image using a standard

wavelet. We call this a coarser estimate because the wavelet used is not matched

to the given image and hence, the original image may not be that sparse over this

wavelet compared to that with the matched wavelet (here matched wavelet for

images implies learned separable DWT). In stage-2, we learn DWT corresponding

to column-wise and row-wise scanned signal and use them as separable DWT.

One can reconstruct the full image from the observed degraded image using the

image-matched separable DWT learned in stage-2.

Mathematical formulation for the inverse problem is given by (3.31) and the

original signal can be reconstructed by solving (3.32).

4.1.2.1 Stage-1: Coarser Image Estimation

In this stage, we reconstruct a coarser estimate of the image from compressively

sensed image y by solving (3.32) and using any standard separable wavelet trans-

form as the sparsifying transform Ψ. We use biorthogonal 5/3 wavelet in our work.

The coarser approximation of the vectorized version of the image is obtained as

x̃ = Ψs̃. The coarser image is obtained as X̃.

4.1.2.2 Stage-2: Separable Dyadic Wavelet Transform Learning

We use the serpentine scanning as discussed in Section 4.1.1.1 to convert the esti-

mated image (X̃) in the previous stage to column-wise and row-wise scanned 1-D

signals, x̃c and x̃r, respectively. We use these 1-D signals to learn separable DWT.

Note that we already presented the method to learn DWT from the degraded 1-D

signal in Section 3.1.2. We use stage-2 of the method presented in Section 3.1.2

to learn DWT corresponding to the column and row-wise scanned 1-D signals.

These learned DWT are used as separable DWT for the images. This completes

the learning of image-matched separable DWT in inverse problems.
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4.1.2.3 Stage-3: Image Reconstruction using Learned Wavelet Trans-

form

Once we have learned separable DWT, we employ (3.32) on observed degraded

signal y with learned image-matched separable DWT as the sparsifying transform

Ψ and estimate sparse coefficients r̃. This is used to recover the original signal

x̃ = Ψr̃ and hence, image X̃

4.1.3 Proposed L-Pyramid Wavelet Decomposition Method

for Images

In this Section, we propose a new strategy of multi-level wavelet decomposition on

images.

A separable DWT is implemented on images by first applying the 1-D wavelet

transform along the columns and then along the rows of an image. This pro-

vides 1-level wavelet decomposition that consists of four components labeled as

LL, LH, HL, and HH, respectively. The same procedure is repeated on the LL

part of the wavelet transform k-times to obtain k-level decomposition of an image

(Fig. 4.3a). We call this decomposition as Regular Pyramid (R-Pyramid) wavelet

decomposition.

In general, k-level wavelet decomposition of an image consists of the following

components: LLk , LHi , HLi and HHi , where i = 1, 2, ..., k − 1. LHi, HLi and HHi

components are obtained by applying wavelet transform on the columns and rows

of LLi-1 component. LHi is obtained by filtering LLi-1 column-wise using a lowpass

filter and filtering it row-wise using a highpass filter. Thus, the current nomencla-

ture of labeling subbands is: first character represents operation on columns and

second character represents operation on rows, where operation implies highpass or

lowpass filtering denoted by symbols ‘H’ and ‘L’, respectively. In the conventional

2-D wavelet transform (Fig. 4.3a), wavelet decomposition is applied on LLi part

only to obtain the (i+1)th level coefficients. Since it is a separable transform, sim-

ilar to the 1-D wavelet transform wherein wavelet is applied repeatedly on lowpass

filtered branches, we propose to apply wavelet in the lowpass filtered directions of

LHi-1 and HLi-1 subbands in contrast to the conventional decomposition strategy

wherein these subbands are left unaltered. Thus, the proposed 2nd level wavelet
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LH1

HH1HL1

LH2

HH2HL2

LH3

HH3HL3

LL3

(a) 3-level R-Pyramid wavelet
decomposition

L1H1

H1H1H1L1

L1L1

(b) 1-level L-Pyramid wavelet
decomposition

H2H1

H1H1

L2L2 L2H1

H1L2 H1H2

H2L2 H2H2

L2H2

(c) 2-level L-Pyramid wavelet
decomposition

H2H1

H1H1H1H2

H2H2

L3H3

H3H3H3L3

L3L3

H2H3H2L3

L3H2

H3H2 H3H1

L3H1

H1H3H1L3

(d) 3-level L-Pyramid wavelet
decomposition

Figure 4.3: Multi-level wavelet decomposition of image

decomposition is as shown in Fig. 4.3c.

Since we apply wavelet in only one direction of LHi-1 and HLi-1 subbands, we

notate these subbands differently compared to the conventional scheme. We assign

subscript with both ‘L’ and ‘H’ symbols of every subband to denote the no. of

times wavelet has been applied in that direction. In order to understand this, let

us first consider 1-level wavelet decomposition as shown in Fig. 4.3b that is similar
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to the conventional scheme shown in Fig. 4.3a. However, the subbands are labeled

as L1L1, L1H1, H1L1, and H1H1.

In the 2nd level wavelet decomposition, wavelet is applied in both directions of

L1L1 subbands leading to L2L2, L2H2, H2L2, and H2H2 subbands. But in addition,

wavelet is applied on the columns of L1H1 yielding two subbands L2H1 and H2H1.

Also, wavelet is applied on the rows of H1L1 subband yielding two subbands H1L2

and H1H2. Applying similar strategy for the 3rd level decomposition, we obtain

subbands as shown in Fig. 4.3d. We name this wavelet decomposition as L-shaped

Pyramid (L-Pyramid) wavelet decomposition.

The efficacy of the proposed L-Pyramid wavelet decomposition is shown in

CS-based image reconstruction with orthogonal Daubechies wavelet ‘db4’ and PCI

(partial canonical identity) sensing matrix (discussed in next Section). Fig. 4.4

shows reconstruction accuracy in terms of PSNR with sampling ratios ranging from

10% to 90% averaged over 10 iterations. We compare reconstruction accuracy at

different sampling ratios with the existing R-Pyramid wavelet decomposition and

with the proposed L-Pyramid wavelet decomposition on the same three images:

‘Beads’, ‘Lena’ and ‘House’. From Fig.4.4, we note better results with L-Pyramid

wavelet decomposition compared to R-Pyramid wavelet decomposition at sampling

ratios from 90% to 30%. There is considerably less improvement at lower sampling

ratios of 20% and 10% (refer to the enlarged view in Fig.4.4). This may be due

to the reason that the number of samples acquired at such lower sampling ratios

do not contain enough information for good image reconstruction. In addition, we

note that performance is particularly improved for image ‘House’ that is rich in

low frequencies. Since the lowpass bands are repeatedly broken in all the subbands

in the proposed L-Pyramid unlike the R-Pyramid, images rich in lower frequencies

are benefited more. This, further, establishes the significance of the proposed

decomposition strategy.

4.2 Applications

Applications of the proposed method of separable DWTL is presented in this Sec-

tion. Compressive sensing of images is presented in Section 4.2.1 using partial

canonical identity (PCI) sensing matrix. Impulse denoising of the images is pre-
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Figure 4.4: CS-based reconstruction accuracy with the existing R-Pyramid and the
proposed L-Pyramid wavelet decomposition with ‘db4’ wavelet on image (a) ‘Beads’

(b) ‘Lena’ (c) ‘House’

sented in Section4.2.2. Both of these problems are posed as sparse recovery prob-

lems. Separable DWT is learned in both of these applications and the learned

separable DWT is used as the sparsifying transform for image recovery.
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4.2.1 CS of images via L-Pyramid Wavelet Decomposition

using PCI Sensing Matrix

4.2.1.1 Compressive Sensing of Images using Proposed Sensing Matrix

In this Section, first, we establish the need for a different, other than conventional,

sensing matrix. Next, we discuss the proposed matrix. And later, we present

results to show the comparison of time complexity and reconstruction performance

with the proposed matrix in CS based image reconstruction.

Context

In today’s world, size of images are increasingly large and N generally approaches

to millions of samples. This large size imaging poses challenges for CS-based

image reconstruction. The first challenge is the huge size of measurement matrix

Φ that poses problems with storage and computation. Other problems include the

design of imaging system with larger space bandwidth product (SBP) and difficult

calibration requirements [119].

In an attempt to overcome the above challenges, single pixel camera hard-

ware architecture has been proposed in [115]. It replaces the traditional camera

architecture and captures the inner product between the scene under view and

measurement basis. Thus, the camera captures one pixel at a time that is a linear

combination of all pixel samples of the image. This process is repeated M num-

ber of times with M � N . These are called the compressive measurements and

are transmitted to the receiver where full sized image is reconstructed by employ-

ing the theory of CS-based reconstruction. For more information on single pixel

camera, reader may refer to [115].

Although the above hardware architecture implements compressive imaging

(CI) nicely, it suffers with some difficulties including sensor dynamic range, A/D

quantization, and photon counting effects [115]. Also, this process is time con-

suming as one has to wait for M samples that are captured sequentially. This is

a serious problem in real-time applications, say, when one has to record a video

using the camera as the scene may change while capturing samples sequentially

of the current scene under view. Also, since M linear projections are captured

instead of N pixel samples, it “effectively” samples the image at sub-Nyquist rate
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instead of “actually” sampling it at the sub-Nyquist rate.

Proposed Use of Partial Canonical Identity (PCI) Sensing Matrix

We propose to use PCI sensing matrix that, to our understanding, is the simplest

sensing matrix proposed so far and “actually” senses the image at the sub-Nyquist

rate by capturing less number of pixels without sensing information about every

pixel [120]. This is explained as below.

Consider an image X of dimension N1×N2. Instead of sampling all the N(N =

N1N2) pixels of the image using the sensor array of the traditional camera, we

capture M samples of the image using the proposed measurement matrix Φp,

where M � N . The measurement matrix Φp has the entries shown below:

Φp
i,j =

{
1 if i ∈ {1, 2, ...,M} and j ∈ Ω

0 otherwise
, (4.1)

where Ω ⊂ {1, 2, ..., N} such that |Ω| = M and |.| denotes the cardinality of the

the set. This sensing matrix is known as partial canonical identity (PCI) matrix

because it consists of partially selected and permuted rows of the identity matrix.

The PCI sensing matrix captures only M samples of the actual image; thus,

actually sub-samples the original image. This can be accomplished by using exist-

ing cameras by switching ON only M sensors of the sensor array. This is unlike

the single pixel camera where every captured pixel is the linear combination of the

entire image pixel set. Also, in single pixel camera, one has to wait for M units of

time to sense M number of samples, whereas all M samples are sensed in one unit

of time in the case of PCI sensing matrix. Thus, PCI sensing matrix reduces the

sensing time by a factor of M in comparison to a single pixel camera.

Results using PCI Sensing Matrix

Consider a sub-sampled Lena image (original image dimension is 512×512), shown

in Fig. 4.5a, with only 50% samples captured via PCI sensing matrix. The un-

captured positions are filled with zeros. Fig. 4.5b shows the image reconstructed

from this sub-sampled image using (2.22) with standard wavelet ‘db4’ as the spar-

sifying basis. Since images are, in general, correlated in the spatial domain, full
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(a) (b)

Figure 4.5: (a) Image (with dimension 512× 512) captured using PCI sensing matrix
with 50% sampling ratio and with zeros filled at positions not sampled (b) Image

reconstructed from subsampled image using ‘db4’ wavelet as the sparsifying basis in
(2.22).

image can be reconstructed using partial samples collected through the PCI sens-

ing matrix. From Fig. 4.5b, we indeed note good reconstruction quality of the

image sensed partially with PCI sensing matrix. This makes PCI sensing matrix

as the candidate for the measurement matrix. Fig. 4.6 and 4.7 provide detailed

results.

Fig. 4.6 compares the time taken in image reconstruction from the measured

samples with sampling ratios varying from 10% to 90% using different measurement

matrices, where sampling ratio is defined as the ratio of the number of samples

captured to the total number of samples in the image (M/N). We compare the

reconstruction time taken using the PCI sensing matrix, random Gaussian matrix,

and Bernoulli random matrix with ±1 as its entries. Random Gaussian matrix is

preferred in a wide range of applications because of the ease in theoretical analy-

sis, while the Bernoulli matrix depicts the physical implementation of single pixel

camera. The image is reconstructed using equation (2.22), where we have used

standard Daubechies orthogonal wavelet ‘db4’ as the sparsifying basis. We have

used MATLAB solver spgl1 [107], [108] to solve (2.22) that implements Basis Pur-

suit (BP) [95].

Compressed sensing based reconstruction with Gaussian and Bernoulli sensing
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Figure 4.6: Time comparison in CS-based image reconstruction with different
measurement matrices on (a) Image ‘Beads’ (b) Image ‘Lena’ (c) Image ‘House’

matrices is implemented using block compressed sensing [121]. This is to note that

reconstruction with PCI sensing matrix requires only the position information of

the sampled pixels instead of the information of all entries of M×N sensing matrix

that simplifies reconstruction with PCI sensing matrix. We compare reconstruction

results on three images: ‘Beads’, ‘Lena’, and ‘House’ as shown in Fig. 4.8a, 4.8c

and 4.8h, respectively. The size of each image is 512× 512. We have chosen these

images because they exhibit different spectral properties. For example, ‘Beads’

is rich in high frequencies, ‘Lena’ contains both low and high frequency contents,

while ‘House’ is rich in low frequencies.
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Figure 4.7: Reconstruction accuracy in terms of PSNR (in dB) with different
measurement matrices on (a) Image ‘Beads’ (b) Image ‘Lena’ (c) Image ‘House’

From Fig. 4.6, we note that the reconstruction time with Gaussian and Bernoulli

sensing matrices is almost the same, whereas reconstruction time with the PCI

sensing matrix is extremely less. This huge reduction in time is owing to the

implementation simplicity of PCI sensing matrix. However, there is a trade-off

between the reconstruction time and the accuracy. Fig. 4.7 compares reconstruc-

tion accuracy of images in terms of PSNR (2.35). Results shown are averaged

over 10 iterations. From Fig. 4.7, we observe that reconstruction accuracy with

PCI sensing matrix is 2-5 dB lower than that with Bernoulli or Gaussian sensing

matrices. This gap in reconstruction accuracy is not negligible in practical applica-
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tions. Similar to this observation, comparatively inferior CS-based reconstruction

results have been noted with PCI sensing matrix in [120]. Hence, reconstruction

with PCI sensing matrix is better than Gaussian or Bernoulli (and hence, single

pixel camera) sensing matrix only in terms of time taken in reconstruction and

not in the reconstruction quality. In Section 4.2.1.2, we will show that this gap in

reconstruction accuracy can be not only bridged, but rather enhanced to a large

extent with the learned matched wavelet. Since the use of PCI sensing matrix

expedites the complete pipeline, its use is overall useful if the loss in quality can

be covered up via better signal processing methodology.

(a) Beads (b) Boat (c) Lena (d) Balloon (e) Barbara

(f) Peppers (g) Mandril (h) House (i) Building (j) Cameraman

Figure 4.8: Images used in experiments. These images are referred as Im1-Im10
in Table-4.2

4.2.1.2 Experiments and Results

In this Section, we present CS-based reconstruction results of images using image-

matched separable DWT learned from compressively sensed images. We apply

the proposed method on ten natural images shown in Fig. 4.8. Images with

different spectral contents have been selected. For example, Balloon, House and

cameraman are rich in low frequencies, Beads, Barbara and Mandrill are rich in

high frequencies, and rest of the images have varied lower and higher frequency

content.
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Table 4.1: Analysis filters along with predict/update filters at all 3 levels of wavelet
decomposition learned with image ‘Lena’ compressively sensed at a sampling ratio
of 50% with PCI sensing matrix

Column wise matched
Level 1 2 3

t[n]
[0.2875 0.2380
0.3946 0.0812]

[0.1642 0.3317
0.5096 -0.0041]

[0.1877 0.3166
0.5390 -0.0401]

s[n]
[0.1708 0.1184
0.2688 0.0039]

[0.0694 0.1763
0.3439 -0.0677]

[0.0884 0.1620
0.3615 -0.0890]

h0[n]

[-0.0139 0 -0.0770 0.1708
-0.1092 0.1184 0.8163
0.2688 -0.0996 0.0039

-0.0782 0 -0.0011]

[0.0003 0 -0.0346 0.0694
-0.1114 0.1763 0.7546
0.3439 -0.1085 -0.0677

-0.0340 0 0.0111]

[0.0035 0 -0.0411 0.0884
-0.1008 0.1620 0.7337
0.3615 -0.0969 -0.0890

-0.0397 0 0.0167]

h1[n]
[-0.0812 0 -0.3946 1.0000

-0.2380 0 -0.2875]
[0.0041 0 -0.5096 1.0000

-0.3317 0 -0.1642]
[0.0401 0 -0.5390 1.0000

-0.3166 0 -0.1877]
Row wise matched

Level 1 2 3

t[n]
[0.1987 0.3041
0.4723 0.0270]

[0.1487 0.3489
0.5114 -0.0065]

[0.2324 0.2649
0.5287 -0.0205]

s[n]
[0.0955 0.1615
0.3231 -0.0446]

[0.0586 0.1883
0.3426 -0.0691]

[0.1211 0.1302
0.3593 -0.0705]

h0[n]

[-0.0026 0 -0.0494 0.0955
-0.1140 0.1615 0.7805
0.3231 -0.1093 -0.0446

-0.0506 0 0.0089]

[0.0004 0 -0.0288 0.0586
-0.1145 0.1883 0.7499
0.3426 -0.1122 -0.0691

-0.0268 0 0.0103]

[0.0025 0 -0.0614 0.1211
-0.0935 0.1302 0.7460
0.3593 -0.0882 -0.0705

-0.0648 0 0.0164]

h1[n]
[-0.0270 0 -0.4723 1.0000

-0.3041 0 -0.1987]
[0.0065 0 -0.5114 1.0000

-0.3489 0 -0.1487]
[0.0205 0 -0.5287 1.0000

-0.2649 0 -0.2324]

Learned filter Coefficients

We learn image-matched wavelets for all the images shown in Fig. 4.8. Since

wavelet transform is generally applied at three-level decomposition on images, we

learned wavelet filters for rows and columns separately at all the three succes-

sive levels of wavelet decomposition. Table-5.2 shows the analysis filters designed

with the image ‘Lena’ compressively sensed at a sampling ratio of 50% with PCI

sensing matrix. Coefficients for filters designed are shown in Table-5.2 for both

column matched and row matched wavelets along with the coefficients of predict

and update stage filters T (z) and S(z), respectively.
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Experiment-1: Comparison of existing CS-based image reconstruction

methodology with the proposed methodology

In the application of CS-based image reconstruction, the proposed methodology of

this work has three contributions:

1. The proposed use of PCI sensing matrix : that is computationally inexpensive

compared to the existing sensing matrices (Fig. 4.6), but provides approx.

2-5 dB lower performance compared to the existing sensing matrices (Fig.

4.7).

2. Proposed L-Pyramid wavelet decomposition (Fig. 4.3d): that provides better

results in CS-based image reconstruction (Fig. 4.4) compared to the existing

R-Pyramid wavelet decomposition (Fig. 4.3a).

3. Learning of image-matched wavelets : wherein separable DWT is learned from

a compressively sensed image and is used for the reconstruction of the same.

Hence, an image is recovered by employing a wavelet matched to it.

Based on the above observations, we would like to compare the performance of

the proposed CS-based image reconstruction (with all three novelties: proposed use

of PCI sensing matrix, proposed L-Pyramid wavelet decomposition, and proposed

matched wavelet learning) with the existing CS-based reconstruction (Gaussian

sensing matrix, existing R-Pyramid wavelet decomposition, and db4 wavelet). Fig.

4.9 shows CS-based reconstruction results in terms of PSNR averaged over 10

iterations on three images ‘Beads’, ‘Lena’, and ‘House’. In addition, Fig. 4.9

also presents results of the coarse estimate obtained after stage-1 of the proposed

method, i.e., the image reconstructed with PCI sensing matrix, L-Pyramid wavelet

decomposition, and bior 5/3 wavelet.

Discussion: From Fig. 4.9 we observe that the proposed methodology performs

consistently better than the existing methodology and the coarse estimate at all

sampling ratios with the following observations:

1. As the image changes from being rich in high frequency (‘Beads’) to mid-

frequency (‘Lena’) to low frequency (‘House’) content, better and better re-

construction performance is observed with the proposed methodology com-
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Figure 4.9: CS-based reconstruction comparison of 1) the existing methodology:
Gaussian sensing matrix, R-Pyramid wavelet decomposition, and db4 wavelet; 2)

coarse estimate: PCI sensing matrix, L-Pyramid wavelet decomposition, and bior 5/3
wavelet; and 3) our proposed methodology: PCI sensing matrix, L-Pyramid wavelet

decomposition, and proposed matched-wavelet design; on image a) Beads, b) Lena, and
c) House

pared to the existing methodology. This is owing to the fact that the pro-

posed methodology works best for signals rich in low frequency contents.

2. The quality of images reconstructed with the proposed methodology is con-

sistently better in terms of PSNR than the coarse estimate. This is to note

that the difference between the coarse estimate and the proposed solution

is only in using standard bior 5/3 wavelet versus learned image-matched
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wavelet, while keeping the sensing matrix and wavelet decomposition strat-

egy as same. This further establishes the significance of the learned image-

matched wavelet vis-à-vis standard bior 5/3 wavelet in the proposed work.

3. At higher sampling ratio of 90%, performance gain with the proposed method-

ology over the existing methodology is 3 dB with ‘Beads’, 4 dB with ‘Lena’,

and 13 dB with ‘House’. Since at higher sampling ratios, most of the in-

put image samples are available upfront, hence, learned matched wavelet is

optimum. This provides very good performance and a huge improvement

over the existing methodology, particularly, for images rich in low frequency

content.

4. At lower sampling ratio of 10%, performance gain with the proposed method-

ology over the existing methodology is 6.5 dB with ‘Beads’, 9 dB with

‘Lena’, and 11 dB with ‘House’. In fact, standard methodology with stan-

dard wavelets almost fails in reconstructing images with any good quality

at very low sampling ratios, while the proposed methodology still performs

well. For visual clarity, Fig. 4.10 shows reconstructed images with the ex-

isting methodology, coarse estimate, and the proposed methodology at 10%

sampling ratio.

Experiment-2: Comparison of standard wavelets and learned matched

wavelet with PCI sensing matrix in CS-based image reconstruction

In this subsection, we present CS-based image reconstruction results using the

PCI sensing matrix and the proposed L-Pyramid wavelet decomposition. Table-

4.2 shows the comparison on reconstruction accuracy in terms of PSNR averaged

over 10 iterations obtained with standard wavelets and that obtained with image-

matched separable DWT learned from compressively sensed images. Table-4.2

shows reconstruction accuracy on all the 10 images used in the experiments along

with the average accuracy (averaged over these ten images) in the last column.

We have considered three standard wavelets: orthogonal Daubechies’ wavelets

‘db2’, ‘db4’, and biorthogonal standard 5/3 wavelet (represented as Bi 5/3 in the

table). While orthogonal wavelets are widely used in applications, biorthogonal
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Table 4.2: Reconstruction accuracy on CS-based image reconstruction with
standard wavelets and with image-matched wavelets learned from compressively

sensed images with 5/3 length filters. PCI sensing matrix and the proposed
L-Pyramid wavelet decomposition have been used to generate these results.

SR
Wavelet
used Im1 Im2 Im3 Im4 Im5 Im6 Im7 Im8 Im9 Im10

Ave-
rage

90

db2 36.1 38.4 40.2 49.7 35.8 38.3 30.4 52.5 34.9 43.5 40.0
db4 37.2 39.5 41.5 51.0 37.8 38.6 30.7 55.7 35.0 45.5 41.3

Bi 5/3 35.9 37.8 39.6 49.4 35.0 37.7 29.7 52.7 34.4 43.2 39.5
DWTL 41.0 41.1 43.3 52.4 36.4 38.0 31.6 60.5 37.3 50.5 43.2

80

db2 32.3 34.6 36.5 46.3 31.8 35.0 27.1 47.5 31.4 39.0 36.2
db4 33.5 35.5 37.7 47.2 33.5 35.3 27.4 50.8 31.5 40.9 37.3

Bi 5/3 32.1 33.9 35.8 45.7 31.1 34.4 26.3 48.0 31.0 38.7 35.7
DWTL 37.2 37.5 39.7 49.0 32.4 35.0 28.3 55.8 33.8 46.1 39.5

70

db2 29.9 32.0 34.0 43.5 29.2 32.9 25.0 44.1 29.3 35.7 33.6
db4 30.9 32.8 35.1 44.5 30.7 33.1 25.3 46.9 29.3 37.5 34.6

Bi 5/3 29.5 31.3 33.3 43.1 28.5 32.3 24.3 44.4 28.8 35.2 33.1
DWTL 34.6 35.1 37.2 46.5 29.7 33.3 26.2 52.4 31.5 42.5 36.9

60

db2 27.8 30.0 31.9 41.2 27.2 31.2 23.5 41.0 27.5 33.2 31.4
db4 28.6 30.6 33.0 42.1 28.4 31.4 23.7 43.3 27.5 34.6 32.3

Bi 5/3 27.4 29.2 31.3 40.9 26.5 30.6 22.8 41.1 27.0 32.4 30.9
DWTL 32.5 33.2 35.3 44.6 27.5 32.0 24.7 49.1 29.8 39.7 34.8

50

db2 26.0 28.0 30.0 39.1 25.5 29.7 22.2 37.9 25.9 30.7 29.5
db4 26.7 28.6 30.9 39.7 26.3 29.9 22.3 39.6 25.8 31.7 30.2

Bi 5/3 25.5 27.4 29.3 38.9 24.8 29.2 21.5 37.9 25.4 29.8 29.0
DWTL 30.6 31.5 33.5 42.7 25.9 30.9 23.4 45.7 28.3 37.0 33.0

40

db2 24.1 26.1 28.0 36.5 23.9 28.0 21.0 34.7 24.1 28.1 27.5
db4 24.7 26.5 28.8 36.6 24.5 28.3 21.0 35.6 24.0 29.0 27.9

Bi 5/3 23.8 25.6 27.5 36.6 23.4 27.7 20.4 34.7 23.8 27.2 27.0
DWTL 28.8 29.8 31.8 40.3 24.4 29.9 22.3 42.3 27.0 34.4 31.1

30

db2 21.9 24.0 25.9 33.3 22.2 26.2 19.7 30.7 22.2 25.4 25.2
db4 22.5 24.3 26.4 32.7 22.5 26.4 19.7 31.0 22.1 26.0 25.4

Bi 5/3 21.8 23.7 25.5 33.7 21.8 26.0 19.2 30.7 21.9 24.7 24.9
DWTL 27.0 28.2 30.1 37.1 23.2 28.9 21.2 38.5 25.6 31.7 29.2

20

db2 18.8 21.1 22.8 28.7 19.7 23.0 17.8 25.4 19.6 21.8 21.9
db4 19.6 21.4 23.3 28.0 20.0 23.6 17.9 25.8 19.6 22.3 22.2

Bi 5/3 18.8 20.8 22.7 29.0 19.4 23.0 17.5 25.4 19.3 21.5 21.7
DWTL 25.0 26.3 28.3 33.1 22.2 27.7 20.2 34.4 24.0 28.8 27.0

10

db2 10.8 9.8 10.0 13.5 9.7 8.2 8.9 9.6 10.2 10.3 10.1
db4 11.6 10.6 11.1 14.5 10.6 9.3 9.6 10.7 10.9 11.3 11.0

Bi 5/3 11.0 10.2 10.5 13.8 10.1 8.6 9.3 10.1 10.7 10.6 10.5
DWTL 20.0 22.3 23.7 30.9 20.1 23.0 18.1 27.7 20.3 23.0 22.9

wavelets take care of boundary effects and provide better compression results as

compared to orthogonal wavelet [122], [123]. This is to note that our learned

image-matched wavelets are biorthogonal by design.

Discussion: From Table-4.2, we observe much better reconstruction accuracy

with the learned matched wavelets compared to standard wavelets in terms of

average PSNR over all the sampling ratio ranging from 90% to 10%. Orthogonal

db4 wavelet performs better than other standard wavelets but its performance

is still inferior to our learned matched wavelets. At the sampling ratio of 90%,
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 4.10: Visual comparison of CS-based image reconstruction on images sensed at
10% sampling ratio with a) the existing methodology: Gaussian sensing matrix,

R-Pyramid wavelet decomposition, and db4 wavelet; b) PCI sensing matrix, L-Pyramid
wavelet decomposition, and bior 5/3 wavelet (coarse estimate); c) proposed

methodology: PCI sensing matrix, L-Pyramid wavelet decomposition, and proposed
matched-wavelet design; (d), (e), and (f): same as (a) (b) and (c)
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learned matched wavelet provides an improvement upto 3 dB, while we observe an

improvement upto 11.5dB at 10% sampling ratio.

Further, we observe that while standard wavelets fail almost completely at

lower sampling ratio of 10% with a reconstruction PSNR of approximately 10dB

only, learned matched wavelets are able to reconstruct images with a PSNR above

20dB.

For better visual clarity, we have also shown images reconstructed from com-

pressively sensed images at 10% sampling ratio using the PCI sensing matrix with

the learned matched wavelet and standard bior 5/3 wavelet (coarse estimate) for

all ten images in Fig. 4.10. From the figure, it can be clearly noticed that the

existing wavelet bior 5/3 is not able to reconstruct full images whereas the learned

matched wavelets provide good reconstruction quality.

Experiment-3: Comparison of standard wavelet vis-à-vis learned matched

wavelet with Gaussian sensing matrix in CS-based image reconstruction

In this part, we would like to understand the performance of the proposed L-

Pyramid wavelet decomposition method and the learned matched wavelet com-

pared to the existing R-Pyramid wavelet decomposition and standard wavelet.

This performance comparison is shown with the conventional Gaussian sensing

matrix in Fig. 4.11 on three images ‘’Beads’, ‘Lena’ and ‘House’. As stated ear-

lier, the PCI sensing matrix has been introduced in this work for reducing the

hardware complexity. However, its performance is inferior to the Gaussian matrix

as noted in Section 4.2.1.1. In this experiment, we would like to see whether the

poor performance of PCI sensing matrix can be bridged with the proposed novelties

of matched wavelet learning and better multi-level decomposition strategy.

From Fig. 4.11, following observations are in order:

1. The performance of the existing methodology- CS with the conventional

regular wavelet decomposition (R-Pyramid), db4 wavelet, and the Gaussian

matrix is the least.

2. Learned matched wavelet improves the reconstruction accuracy over the ex-

isting (db4) wavelet with Gaussian sensing matrix. Further, this improve-

ment increases as the sampling ratio decreases establishing the significance
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Figure 4.11: CS-based reconstruction comparison of 1) Gaussian sensing matrix,
R-Pyramid wavelet decomposition, and db4 wavelet; 2) Gaussian sensing matrix,

L-Pyramid wavelet decomposition, and proposed matched-wavelet design; and 3) PCI
sensing matrix, L-Pyramid wavelet decomposition, and proposed matched-wavelet

design.

of the learned matched wavelet.

3. On comparing the reconstruction accuracy of the Gaussian sensing matrix

with the PCI sensing matrix (both with L-Pyramid wavelet decomposition

and the learned matched wavelet), it is observed that the Gaussian sensing

matrix mostly performs better than the PCI sensing matrix. However, recon-

struction accuracy with Gaussian is inferior at higher sampling ratio. This
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may possibly be due to the block artifacts occurring owing to the implemen-

tation of block compressed sensing with Gaussian sensing matrix. Imple-

mentation with PCI sensing matrix is simple and does not require block CS

implementation. Although block artifacts with Gaussian sensing matrix are

also present at lower sampling ratios, but reconstruction with PCI sensing

matrix at lower sampling ratio is poorer because only fewer samples (sub-

samples) of the images are present for image reconstruction. Hence, Gaussian

sensing matrix performs better.

From the above, we note that the learned matched wavelet with L-Pyramid per-

forms better than standard wavelet with R-Pyramid at all sampling ratios with

both the PCI sensing matrix and with the Gaussian sensing matrix. Further, we

may improve the reconstruction with Gaussian sensing matrix. However, there is a

trade-off on time complexity and ease of hardware implementation versus accuracy

in using PCI versus Gaussian sensing matrix. Since there is not much difference

in the reconstruction ability of the two sensing matrices, while much improved

performance is obtained with both while using learned matched wavelet and L-

Pyramid over standard wavelet and R-Pyramid, it may be worthwhile to use the

learned matched wavelet, L-Pyramid, and PCI sensing matrix. Thus, the pro-

posed methodology will provide both improved accuracy and lesser computational

time compared to the existing methodology (standard wavelet, R-Pyramid, and

Gaussian sensing matrix).

4.2.2 Impulse Denoising of Natural Images

Impulse denoising of natural images is presented in this subsection. Impulse denois-

ing is posed as a sparse recovery problem. First, an impulse detection algorithm

is employed to detect corrupted (from impulse noise) and uncorrupted pixels in

the image. Method to learn separable DWT is presented, where separable DWT is

learned using the uncorrupted pixels identified by the impulse detection algorithm.

The learned separable DWT is used as the sparsfiying transform to reconstruct full

image.
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4.2.2.1 Proposed DWTL based impulse denoising

The proposed method of impulse denoising consists of three stages. First, impulse

locations are detected using BDND algorithm described in Section 2.4.2.1. Next,

uncorrupted pixels are used to learn wavelet basis and hence, wavelet transform

for the given image. In the end, the image is denoised using the sparse recovery

method and the wavelet learned in the second stage.

Stage 1: Detection of Impulse Locations

Let us consider an unknown image X of dimension N1 × N2 and its measured

impulse noise corrupted version Xn. The BDND algorithm discussed in Section

2.4.2.1 is applied on the noisy input image Xn to locate impulse positions. These

indices are stored in set ωc, while indices of pixels identified as uncorrupted are

stored in set ωu. Next, three 1-D signals are constructed: a) the uncorrupted pixels

(belonging to ωu) of Xn are scanned row-wise using serpentine scanning shown in

Fig. 4.2b and labeled as yr; b) the uncorrupted pixels (belonging to ωu) of Xn are

scanned column-wise using serpentine scanning shown in Fig. 4.2a and labeled as

yc; and c) the uncorrupted pixels of Xn are raster scanned as shown in Fig. 4.1a

and labeled as xn,uncor. Signals yr and yc are used for learning wavelet basis for

the row-space and the column space of the image in Stage-2. Since noisy pixels will

adversely impact the learning of matched wavelet basis, noisy pixels are dropped

before basis learning. Signal xn,uncor is used for sparse recovery in Stage-3.

Stage 2: Learning Image Matched DWT

In this stage, we learn wavelet basis for the row-space and the column space of

the image, yr and yc, respectively, using the method proposed in Section 3.1.1.

This results in learned separable DWT corresponding to the image corrupted with

impulse noise. This learned separable DWT is used as the sparsifying transform

in stage-3 below for the recovery of full image or impulse denoising of the image.

Stage 3: Impulse denoising using Sparse Recovery

Once all the wavelet filters for the row-space and the column-space are learned

using Stage-2, the learned wavelet transform is used to recover the unknown image
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X. For this, we use the vector xn,uncor (picked by the operator Φ) formed in stage-1

of the pixels identified as uncorrupted and equate it to

xn,uncor =Φxn (4.2)

≈ΦΨr,

where Ψ represents the learned wavelet basis operator and r are the wavelet trans-

formed coefficients of original signal x requires to be recovered/denoised. This

problem corresponds to compressed sensing [46] and can be solved by using sparse

recovery method as below:

r̃ = argmin
r
||r||1 subject to xn,uncor = ΦΨr. (4.3)

Full image is reconstructed as: x̃ = Ψr̃.

Table 4.3: Predict/Update stage filter with analysis side filters learned with
columns of image ‘Boat’ at 90% impulse noise

t[n] 0.0281 0.4731 0.4545 0.0426]
s[n] [-0.0369 0.2900 0.2721 -0.0240]

h0[n]
[0.0016 0 0.0044 -0.0369 -0.1260 0.2900

0.7412 0.2721 -0.1260 -0.0240 0.0037 0 0.0007]
h1[n] [-0.0426 0 -0.4545 1.0000 -0.4731 0 -0.0281]

4.2.2.2 Experiments and Results

We apply the proposed method of wavelet transform learning based impulse denois-

ing on two standard test images ‘Lena’ and ‘Boat’ shown in Fig. 4.12a and 4.12g

respectively. We have considered 4-tap predict and update filters. The learned

predict and update filters along with the analysis filters (h0 and h1) obtained with

the proposed method at 90% noise ratio for ‘Boat’ are provided in Table-4.3.

We use 3-level L-Pyramid wavelet decomposition in these experiments. The

impulse denoising results are quantitatively measured in terms of PSNR and tab-

ulated in Table-4.4 and 4.5. Fixed valued impulse noise ratio of 10% to 90% is

considered.

The proposed impulse denoising is compared with simple median filtering [124]
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Table 4.4: Impulse denoising results in PSNR (dB) on ‘Lena’

Noise
ratio

(in %)

Methods used
Median filt-
ering based

Sparse recovery based

SMF ISMF [1] db4 Bi 9/7 WTL-I
10 28.2 37.8 43.7 41.3 42.4 43.9
30 25.2 29.7 37.0 35.3 36.2 37.9
50 23.2 26.0 31.1 31.0 32.0 33.8
70 17.9 19.1 26.2 26.4 27.5 30.1
90 8.1 8.5 15.7 11.0 10.3 25.6

Table 4.5: Impulse denoising results in PSNR (dB) on ‘Boat’

Noise
ratio

(in %)

Methods used
Median filt-
ering based

Sparse recovery based

SMF ISMF [1] db4 Bi 9/7 WTL-I
10 25.0 34.7 34.8 39.3 40.1 41.6
30 23.2 28.0 29.0 32.8 33.9 35.5
50 21.8 24.5 26.2 28.5 29.6 31.5
70 17.4 18.7 22.2 24.4 25.2 28.0
90 8.4 8.8 18.5 10.6 10.1 23.3

(SMF), ideal switching median filtering (ISMF), and sparse recovery based denois-

ing method [1]. ISMF assumes all the impulse noise locations to be known apriori

and applies median filtering only to the corrupted impulse locations. Thus, ISMF

indicates the best performance among all possible variants of switching median

filtering. A 7× 7 window size has been used in both SMF and ISMF.

To ascertain the performance of learned wavelet transform, results have also

been tabulated by replacing Stage-2 of the proposed method with standard or-

thogonal (db4) and biorthogonal (Bi-9/7) wavelets. From Tables 4.4 and 4.5, it is

noted that ISMF provides a huge improvement over SMF especially at lower noise

ratios. However, these results are inferior to sparse recovery based denoising meth-

ods showing the superiority of sparse recovery based methods over median filtering

based methods. Also, it is observed that the learned wavelet transform outper-

forms the method of [1] and the standard wavelet transforms at all noise ratios.

At large noise ratio of 90%, ISMF, the method of [1], and standard wavelets are

not able to retain the structure of the images, whereas learned wavelet transform
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recovers good quality of images as shown visually in Fig. 4.12.

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Figure 4.12: Qualitative comparison of denoising of images corrupted with 90% impulse
noise. First row: (a) Original Lena image, (b) Noisy image, (c) Image reconstructed with
ISMF, (d) with Bi 9/7, (e) with [1], and (e) with learned separable DWT. Second row:
similar to first row on ‘Boat’.

4.3 Summary

Methods are presented in this chapter to learn separable dyadic wavelet transform

from the images. Particularly, Two methods are presented. The first method can

be used in applications, where one has the access of full original image. The second

method can be employed in inverse problems, where the degraded image is present.

A new multi-level wavelet decomposition strategy for the images is also presented,

named as L-Pyramid wavelet decomposition. L-Pyramid wavelet decomposition

is observed to perform better than the existing wavelet decomposition strategy

in CS based image reconstruction. The applications of the proposed method of

learning separable DWT is presented in CS based image reconstruction and in

impulse denoising. Compressive sensing based image reconstruction of images is

presented using partial canonical identity (PCI) matrix as the sensing matrix. PCI

sensing matrix is observed to be much faster in terms of both sensing as well as

reconstruction of the images than existing sensing matrices but its reconstruction

performance is inferior than the existing sensing matrices when existing wavelet

transform is used. However, the use of learned wavelet transform enhances the
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capability of PCI sensing matrix and overall, PCI sensing matrix outperforms

the existing sensing matrices both in terms of time in reconstruction as well as

reconstruction quality. Impulse denoising of natural images is also explored using

the proposed method of DWTL. Impulse denoising is posed as sparse recovery

problem and the learned separable DWT is used as the sparsifying transform for

the sparse recovery of the images. The proposed method is observed to outperform

the existing methods of impulse denoising.



Chapter 5
RWTL: Rational Wavelet Transform

Learning using Lifting framework

Rational wavelet transform (RWT) can prove helpful in applications requiring non-

uniform partitioning of the signal spectrum. Speech or audio signal processing are

examples of these applications [68, 69, 70]. Decimation factors of the correspond-

ing rational filterbank (RFB) may be different in each subband and are rational

numbers [71].

As discussed in chapter-2, lifting has been shown to be a simple yet powerful

tool for custom design/learning of wavelet [32] and has several advantages. How-

ever, the lifting framework is used only for the custom design/learning of dyadic

(or M-band) wavelets [34, 42, 40, 84] and has not been explored to learn RWT

to the best of our knowledge. Moreover, the existing architecture of lifting frame-

work cannot be extended directly to rational wavelet system because of different

sample/signal rates in subband branches.

Motivated with the above discussion, we propose to use lifting framework to

learn signal-matched RWT in this chapter. For this, we extend the existing lifting

framework from dyadic to rational wavelet and then use it to learn signal-matched

RWT. As variable sample rate is present in different branches, we introduce the

concept of rate-converters to equal the rates in two branches. We use the learned

RWT as the sparsifying transform in applications.

Method to learn signal-matched RWT is presented in section5.1 for 1-D sig-

nal along with the application of the learned RWT in CS based reconstruction
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of speech, music, and ECG signals. Method to learn separable rational wavelet

transform from the images is presented in section 5.2 and the learned RWT is used

in the application of CS based reconstruction of natural images.

5.1 RWTL for 1-D signals

In this section, we propose the method of RWTL for 1-D signals along with its

application in CS based reconstruction of signals.

5.1.1 Proposed Method of RWTL

In this section, we present the proposed RWTL method of learning signal-matched

2-channel/band rational wavelet system using the lifting framework. First, we

propose the extension of 2-band dyadic Lazy wavelet transform to M -band Lazy

wavelet and find its equivalent 2-channel rational Lazy filterbank. Both these

structures will be used in the proposed work.

5.1.1.1 M -band and Rational Lazy Wavelet System

As explained earlier, a 2-band Lazy wavelet system divides an input signal into

two disjoint signals. Similarly, on the analysis side, an M -band Lazy wavelet

system divides an input signal x[n] into M disjoint sets of data samples, given by

vi[n], i = 0, 1, 2, ...,M − 1, where vi[n] = x[Mn + i]. At the synthesis end, these

M disjoint sample sets are combined or interlaced to reconstruct the signal at the

output. An M -band Lazy wavelet can be designed with the following choice of

analysis and synthesis filters in Figure-5.1:

Gi(z) =zi i = 0, 1, 2, ...,M − 1, (5.1)

Fi(z) =z−i i = 0, 1, 2, ...,M − 1. (5.2)

In order to obtain the corresponding 2-band rational Lazy wavelet system with

dilation factor M
q1

(Figure-5.2) from the M -band Lazy wavelet, we use (2.6) and



101

 
 

   
 

 
 

    

ˆ[ ]x n[ ]x n 0 ( )G z

1( )G z

2 ( )G z

1( )MG z

0 ( )F z

1( )F z

2 ( )F z

1( )MF z

M

M

M

M M

M

M

M

Figure 5.1: M -band wavelet structure

𝑥[𝑛] 𝑥 [𝑛] 

[ ]a n

[ ]d n

( )hG z

( )lG z  
 ( )hF z

( )lF z

 

2q

 

1q

    2q

 
 

1q M

M

M

M

Figure 5.2: General 2-band rational wavelet structure

(2.7) to obtain lowpass analysis and synthesis filters as:

Gl(z) =

q1−1∑
i=0

z−iMziq1 =

q1−1∑
i=0

z−iq2 ,

Fl(z) =

q1−1∑
i=0

ziMz−iq1 =

q1−1∑
i=0

ziq2 . (5.3)

Similarly, we use (2.8) and (2.9) to obtain the corresponding highpass analysis and

synthesis filters of rational Lazy wavelet as:

Gh(z) =

q2−1∑
i=0

z−iMz(i+q1)q2 = zq1q2
q2−1∑
i=0

z−iq1 ,

Fh(z) =

q2−1∑
i=0

ziMz−(i+q1)q2 = z−q1q2
q2−1∑
i=0

ziq1 . (5.4)
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a[n] ≡ x[0], ... , x [q1-1]   x[M], … , x[M+q1-1]    …  x[(k-1)M], ... , x[(k-1)M+q1-1]  x[kM], ... , x[kM+q1-1]         …  

 

 

d[n] ≡ x[q1], … , x[M-1]  x[M+q1], … , x[2M-1]  …  x[(k-1)M+q1], … , x[kM-1]        x[kM+q1], … , x[(k+1)M-1]  … 

q1 

q2 

Figure 5.3: Analysis side of rational Lazy wavelet; Each block consists of M
samples of input signal x[n] divided into a[n] and d[n].

The above filters form the rational Lazy wavelet system equivalent ofM -band Lazy

wavelet transform. To learn signal-matched rational wavelet system, we start with

the rational Lazy wavelet. This provides us initial filters Gl(z), Gh(z), Fl(z), and

Gh(z). These filters are updated according to signal characteristics to obtain the

signal-matched rational wavelet system. Analysis highpass and synthesis lowpass

filters are updated in the predict stage, whereas analysis lowpass and synthesis

highpass filters are updated in the update stage. These stages are described in the

following subsections.

5.1.1.2 Predict Stage

As discussed in section 2.1, a 2-band Lazy wavelet system divides the input signal

into two disjoint sample sets, wherein one set is required to be predicted using the

other set of samples. In the conventional 2-band lifting framework with integer

downsampling ratio of M =2 in both the branches (refer to Figure 2.1 and 2.2),

the output sample rate of xe[n] and xo[n] is equal. However, in a 2-band rational

wavelet system, the output sample rate of two branches is unequal. Hence, the

predict polynomial branch of a conventional 2-band dyadic design cannot be used.

For example, from Figure-5.2, we note that in a 2-band rational wavelet system,

higher (lower) rate branch samples used in prediction should be downsampled

(upsampled) by a factor of kp to equal the rate to the lower (higher) predicted

branch samples, defined as:

kp =
q1
q2
, (5.5)

where q1/M is the rate of ‘predicting ’ branch samples and q2/M is the rate of ‘to

be predicted ’ branch samples.

We propose to predict the lower branch samples with the help of upper branch
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samples. Here, input signal x[n] is divided into two disjoint sets, x[kM + i], i =

0, 1, ..., q1 − 1 and x[kM + j], j = q1, q1 + 1, ...,M − 1. We label these outputs as

a and d, respectively (Figure 5.3). Here, k = 0, 1, ..., L − 1, where N = LM is

the length of input signal x[n] and, without loss of generality, is assumed to be

a multiple of M . Thus, a given input signal is divided into L blocks of M size

each at the subband output of 2-channel rational Lazy wavelet system. Here, first

q1 samples of every block move to the upper branch as a block of a and next q2

samples (such that q1 + q2 = M) move to the lower branch as a block of d. Or in

other words, the rate of upper branch output is q1 samples per block and the rate

of lower branch output is q2 samples per block. Figure-5.3 shows these blocks of

outputs a and d explicitly.

This motivates us to introduce the concept of rate converter that equals the

output sample rate of the upper predicting branch to that of the lower predicted

branch to enable predict branch design. In other words, the output of upper branch

a[n] is upsampled by q2 and downsampled by q1 to match the rate of lower branch

output d[n]. It should be noted that the above downsampler and upsampler can-

not be connected consecutively. Since an upsampler introduces spectral images

in the frequency domain, it is generally preceded by a filter, also known as inter-

polator or anti-imaging filter. On the other hand, a downsampler stretches the

frequency spectrum of the signal, that’s why it is followed by a filter known as

anti-aliasing filter. Both these conditions imply that if a rate converter is required

with downsampling factor of kp = q1
q2

, a polynomial Rp(z) should be incorporated

which acts as the anti-imaging filter for the upsampler and at the same time as

the anti-aliasing filter for the downsampler. The structure of this polynomial is

Rp(z) = 1 + z−1 + ... + z−(q2−1). The placement of this polynomial is shown in

Figure 5.4. We call the complete branch with rate converter kp and polynomial

Rp(z) as the predict rate converter.

Definition 1. Predict Rate Converter: It is a combination of the polynomial

Rp(z) = 1 + z−1 + ... + z−(q2−1) preceded by a q2-fold upsampler and followed by a

q1-fold downsampler as shown in Figure-5.4.

The predict rate converter with this choice of Rp(z) will lead to an appropriate

repetition or drop of samples of a[n] such that the total number of samples in a4[n]

and d[n] in any kth block contains an equal number of samples.
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Figure 5.4: Illustration of Predict Rate Converter

Next, we present three subsections: 1) on the structure of predict stage filter

T (z), 2) how to learn T (z) from a given signal, and 3) how to update all the filters

of the corresponding 2-channel rational filterbank using the learned T (z).

Structure of predict stage filter T (z)

Once the outputs of two analysis filterbank branches are equal, lower branch sam-

ples are predicted from the upper branch samples with the help of predict stage

filter T (z). This filter is introduced after the polynomial Rp(z) as shown in Figure-

5.5. For good prediction, the current sample of input signal x contained in d[n]

should be predicted from its past and future samples. The kth block of a[n] has

preceding samples and (k+1)th block of a[n] has future samples of the kth block of

d[n] as is evident from Figure-5.3. Thus, the structure of the predict polynomial

T (z) should be chosen appropriately. This is presented with a theorem for 2-tap

T (z) as below.

Theorem 3. A 2-tap predict stage filter T (z) = zq2q1(t[0]z−q2 + t[1]) ensures that

every sample in the kth block of d[n] branch is predicted from the kth and/or the

(k + 1)th block samples of a[n].

Proof. As discussed in section 5.1.1.2, on passing the input signal x[n] through the

Lazy filterbank of analysis side, we obtain approximate and detail coefficients (a

and d, respectively) in the form of blocks as shown in Figure-5.3. The kth block

of approximate and detail signals are given by:

ak[m] =a[(k − 1)q1 +m] = x[(k − 1)M +m], m = 0, 1, ..., q1 − 1,



105

Composite 
Predict branch

𝑥[𝑛] 

 

1q

    2q ( )hG z

( )lG z  
 [ ]newd n

1q 

    2q

[ ]a n

1[ ]a n

3[ ]a n

[ ]d n






M

M

( )pR z

( )T z

2[ ]a n

4[ ]a n

( )P z

Figure 5.5: Predict Rate Converter

dk[m] =d[(k − 1)q2 +m] = x[(k − 1)M + q1 +m], m = 0, 1, ...q2 − 1. (5.6)

For prediction, first the upper branch signal a[n] is passed through q2-fold upsam-

pler and polynomial Rp(z). This leads to signal a2[n], as shown in Figure-5.5, that

contains every element of a[n] repeated q2 number of times. Mathematically, the

kth block of signal a2[n] is given by:

ak2[m] = a

[
(k − 1)q1 +

⌊
m

q2

⌋ ]
, m = 0, 1, ..., q1q2 − 1, (5.7)

where b.c denotes the floor function. Predict filter T (z) is defined as a product

of two polynomials zq2q1 and t[0]z−q2 + t[1] and is applied to this signal a2[n].

Intuitively, the first polynomial zq2q1 will position the (k + 1)th block of a[n] over

the kth block of d[n] since every block of a2[n] contains q1q2 number of elements.

The second polynomial (t[0]z−q2 + t[1]) chooses two consecutive samples of a[n]

because every sample of a[n] is repeated q2 times as explained earlier. Thus, the

second term will help in choosing either both the elements of (k + 1)th block of

a[n] that are future samples of d[n] or in choosing one element of (k + 1)th block

and one of kth block of a[n]. Mathematically, this is seen as below.

On passing a2[n] through the predict filter T (z), the kth block of signal a3[n] is

obtained as:

ak3[m] = t[0]a

[
(k − 1)q1 +

⌊
m

q2

⌋
+ (q1 − 1)

]
+ t[1]a

[
(k − 1)q1 +

⌊
m

q2

⌋
+ q1

]
, (5.8)
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where m = 0, 1, ..., q1q2− 1. This signal is passed through the q1-fold downsampler

resulting in the kth block of signal a4[n] as:

ak4[m] =t[0]a

[
(k − 1)q1 +

⌊
q1m

q2

⌋
+ (q1 − 1)

]
+ t[1]a

[
(k − 1)q1 +

⌊
q1m

q2

⌋
+ q1

]
,

=t[0]a

[
kq1 − 1 +

⌊
q1m

q2

⌋ ]
+ t[1]a

[
kq1 +

⌊
q1m

q2

⌋ ]
, (5.9)

where m = 0, 1, ..., q2 − 1. The block size or the rate of a4[n] is same as that of

d[n] and hence, it predicts d[n] providing the kth block prediction error given by:

dnew,k[m] = dk[m]− ak4[m], m = 0, 1, ..., q2 − 1. (5.10)

From (5.6), (5.9), (5.10), and Figure-5.3, it can be noted that

(i) The first element of kth block of d[n], i.e., dk[0] for m = 0 is x[(k−1)M + q1]

and this sample is predicted from a[kq1 − 1] = x[(k − 1)M + q1 − 1] and

a[kq1] = x[kM ] that are the elements of the kth and (k + 1)th blocks of a[n],

respectively. Also, these are the past and future samples of x[(k−1)M + q1].

(ii) The last element of kth block, i.e., d[kq2 − 1] = x[kM − 1] for m = q2 − 1 is

predicted from x[kM + q1− 2−
⌊
q1
q2

⌋ ]
and x[kM + q1− 1−

⌊
q1
q2

⌋ ]
that are

the elements of the (k + 1)th block of a[n].

(iii) From (i) and (ii) above, it is clear that in between elements of the kth block

of d[n] will be predicted from only the kth and (k + 1)th block elements of

a[n].

In fact, d q2
q1
e elements of a block of d[n] (where d.e denotes the ceil function) are

predicted using the past and future samples, i.e., from the kth and (k + 1)th block

elements of a[n], while rest of the elements are predicted from the elements of

(k + 1)th block of a[n]. This proves Theorem-1.

Although, it is not possible to illustrate the prediction of samples in rational

wavelet similar to dyadic wavelet case (as shown in Fig. 3.3) because of the generic

sampling ratio in two branches, we present a specific case of rational wavelet with

sampling ratio of (2
3
, 1
3
) in Fig. 5.6 using 2-tap predict stage filter T (z).
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Figure 5.6: Illustration of predict in rational wavelet with sampling ratio (2
3
, 1
3
)

using 2-tap filter T (z)

We name the modified rate converter branch incorporating polynomial T (z),

shown in Figure-5.5, as the ‘Composite Predict Branch’.

This is to note that the above choice of polynomial provides the best possible

generic solution for prediction using nearest neighbors for different values of q1 and

q2. For example, if the first polynomial zq2q1 of T (z) is omitted, one may note that

samples in d[n] will be predicted from far away past samples or far away future

samples depending on the second polynomial. Thus, although T (z) can be chosen

in many ways, we choose to use the polynomial provided in Theorem-1.

The above theorem of 2-tap predict filter can be easily extended to obtain an

Np-tap filter with even Np. For example, a 4-tap T (z) can be given by

T (z) = zq2q1(t[0]z−2q2 + t[1]z−q2 + t[2] + t[3]zq2), (5.11)

that will choose four consecutive samples of a[n] and are from the immediate

neighboring blocks of d[n]. In general, an even length Np-tap filter T (z) is given

by

T (z) = zq2q1z−
Np
2
q2

Np−1∑
k=0

t[k]zkq2 . (5.12)
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Estimation of predict stage filter T (z) from a given signal

In order to learn an Np-length predict stage filter T (z), we consider the prediction

error dnew[n] shown in Figure-5.5 as below:

dnew[n] =d[n]− a4[n]

=d[n]−
Np−1∑
j=0

q2−1∑
k=0

t[j]a1[q1n− (j + k)]), (5.13)

and minimize it using the Least Squares (LS) criterion yielding the solution of T (z)

as below:

t̂ =argmin
t

Nd−1∑
n=0

(dnew[n])2

=argmin
t

Nd−1∑
n=0

(d[n]−
Np−1∑
j=0

q2−1∑
k=0

t[j]a1[q1n− (j + k)]))2 (5.14)

where Nd is the length of the difference signal dnew and t = [t[0]t[1] . . . t[Np − 1]]′

is the column vector of elements of the polynomial T (z). The above equation can

be written in the vector form as below:

t̃ = argmin
t
||b−At||22, (5.15)

where b(i+ 1) = d[i], A(i+ 1, l + 1) =
∑q2−1

k=0 a1[q1i− (l + k)] ∀ i ∈ {0, 1, ..., Nd −
1} and l ∈ {0, 1, ..., Np− 1}. The above equation can be solved using the following

closed-form solution:

t̃ = (A′A)−1A′b. (5.16)

Update of RFB filters using learned T (z)

For the dyadic wavelet design using lifting as discussed in section 2.1, predict

polynomial is used to update analysis highpass and synthesis lowpass filters using

(2.1) and (2.2). However, we require to derive similar equations for a rational

filterbank. Before we present this work, let us look at a Lemma that will be
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helpful in defining these equations.

Lemma 5.1. A structure containing a filter H(z) followed by an M-fold down-

sampler and preceded by an M-fold upsampler (Figure 5.7a) can be replaced by an

equivalent filter H̃(z) (Figure 5.7b), which is given by:

H̃(z) =
1

M

M−1∑
r=0

H(z
1
MW r

M), (5.17)

where WM = exp(−j 2π
M

).

Proof. Consider the structure in Figure 5.7a, which shows the filter H(z) followed

by an upsampler preceded by an downsampler both M fold. Let a signal v1[n] is

passed to the structure. Let Z-transform of signal be V1(z). Z-transform of the

signal obtained after passing V1(z) to M -fold upsampler is V1(z
M). This upsampled

signal is passed through the filter H(z), which gives the signal V1(z
M)H(z). Let

this signal be Ṽ1(z). This signal, when passed through the downsampler, gives us

the following signal:

V2(z) =
1

M

M−1∑
r=0

Ṽ1(z
1
MW r

M)

=
1

M

M−1∑
r=0

V1(zW
rM
M )H(z

1
MW r

M)

=
1

M

M−1∑
r=0

V1(z)H(z
1
MW r

M)

=V1(z)
1

M

M−1∑
r=0

H(z
1
MW r

M)

=V1(z)H̃(z), (5.18)

where W rM
M = 1 is used in third step above and H̃(z) = 1

M

∑M−1
r=0 H(z

1
MW r

M). This

is shown in Figure 5.7b.

The above relation (5.18) is equivalent to applying a single filter H̃(z) to the

input signal v1[n]. Hence, the two structures in Figure 5.7 are equivalent.

Next, we present Theorem-4 that provides the structure of updated analysis
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1[ ]v n 2[ ]v nM ( )H z M

(a)

1[ ]v n
2[ ]v n( )H z

(b)

Figure 5.7: Filter structure in (a) is equivalent to filter in (b)

highpass filter Gnew
h (z) using T (z) for an RFB.

Theorem 4. The analysis highpass filter of a 2-channel rational filterbank can be

updated using the predict polynomial T (z) used in the ‘composite predict branch’

via the following relation:

Gnew
h (z) = Gh(z)− 1

q1

q1−1∑
k=0

Gl(z
q2
q1W q2k

q1
)P (z

M
q1WMk

q1
), (5.19)

where P (z) = Rp(z)T (z).

Proof. Refer to Figure-5.8. Since M and q2 are relatively prime, the corresponding

downsampler and upsampler can be swapped to simplify the structure (refer Figure

5.8a). Using noble identities [85] and further simplification, we obtain the structure

in Figure 5.8b. As two downsampler or upsampler can swap each other, we obtain

the structure in Figure 5.8c. The part in red dotted rectangle in the figure can be

replaced by an equivalent filter, H̃p(z) using (5.17) of Lemma-1 and is given by:

H̃p(z) =
1

q1

q1−1∑
r=0

Gl(z
q2
q1W q2r

q1
)P (z

M
q1WMr

q1
). (5.20)

Considering the structure in Figure 5.8c, signals a4[n], d[n], and dnew[n] can be

written in Z-domain as:

A4(Z) =
1

M

M−1∑
k=0

X(z
q2
MW q2k

M )H̃p(z
1
MW k

M), (5.21)

D(Z) =
1

M

M−1∑
k=0

X(z
q2
MW q2k

M )Gh(z
1
MW k

M), (5.22)
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Figure 5.8: Illustration for the proof of Theorem-4. Structures in (a)-(e) are
equivalent of each other.
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Dnew(z) = Xl(z)−Xu(z)

=
1

M

M−1∑
k=0

X(z
q2
MW q2k

M )
[
Gh(z

1
MW k

M)− H̃p(z
1
MW k

M)
]
. (5.23)

The above relation is equivalent to applying a new filter Gnew
h (z) to the lower

branch of the rational wavelet system (Figure 5.8d) and is given by

Gnew
h (z) =Gh(z)− H̃p(z)

=Gh(z)− 1

q1

q1−1∑
k=0

Gl(z
q2
q1W q2k

q1
)P (z

M
q1WMk

q1
) (5.24)

This proves Theorem-2.

Next, the synthesis lowpass filter Fl(z) is updated to F new
l (z) as follows. First,

the analysis RFB containing Gl(z) and Gnew
h (z) is converted into an equivalent

M -band analysis filterbank structure as shown in Figure-5.1 using (2.6) and (2.8),

where lowpass filter Gl(z) is transformed to q1 upper filters of M -band analysis

filters and highpass filter Gnew
h (z) of rational wavelet transforms to M − q1(= q2)

lower filters of the M -band analysis filterbank. Next, the polyphase matrix Rnew(z)

is obtained by using (2.10), (3.33), and (2.14). On using Rnew(z) from (2.13) in

(2.11), we obtain all M updated synthesis filters of uniformly decimated filterbank.

Out of these M synthesis filters, lower M−q1 filters are unchanged, while the upper

q1 filters are updated because of the predict branch. On using these filters in (2.7),

we obtain F new
l (z).

5.1.1.3 Update Stage

In this subsection, we present the structure of update branch to be used in lifting

structure of an RFB, present the learning of the update branch polynomial from

the given signal, and the theorem for the update of corresponding filters of RFB.

Structure of update branch

In the predict stage, we used upper branch samples to predict the lower branch

samples. In the update stage, we update the upper branch samples using the
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lower branch samples. Since the output sample rate of two branches is unequal,

we require to downsample the lower branch samples by a factor of ku given by:

ku =
q2
q1
, (5.25)

before adding this signal to a[n] as shown in Figure-5.10.

Update rate 
converter

𝑥 [𝑛] 𝑥[𝑛] 

 

1q

    2q

 
 

1q  
 

2q ( )hG z

( )lG z
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[ ]a n [ ]newa n

[ ]d n





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2q 
( )uR z
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Figure 5.9: Illustration of Update Rate Converter

Composite 
Update branch
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M
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( )U z

( )uR z

3[ ]d n

2[ ]d n

4[ ]d n

Figure 5.10: Update Stage

As explained earlier, the upsampler is required to be followed by an anti-imaging

filter and downsampler should be preceded by an anti-aliasing filter. We use filter

Ru(z) = 1 + z−1 + ... + z−(q1−1) that accomplishes the same and its placement is
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shown in Figure-5.9. Similar to the predict stage, we call the update branch of

Figure-5.10 as the composite update branch that includes update rate converter,

update polynomial S(z), and a summer.

Definition 2. Update rate converter: It is a combination of the polynomial Ru(z) =

1 + z−1 + ... + z−(q1−1) preceded by a q1-fold upsampler and followed by a q2-fold

downsampler as shown in Figure-5.9.

Similar to the structure of predict stage filter T (z), the structure of update

stage filter S(z) should also be chosen carefully, so that the elements in the upper

branch samples are updated only with the nearest neighbors. Below we present

the theorem on the structure of a 2-tap update stage filter that ensures this.

Theorem 5. A 2-tap update stage filter S(z) = s[0] + s[1]z−q1 ensures that every

sample in the kth block of a[n] branch is updated from the (k−1)th and/or kth block

samples of d[n].

Proof. After passing the signal through the Lazy wavelet, blocks of output signal

can be formed as described in section 5.1.1.2. The kth block of approximation and

detail coefficients is given by

ak[m] =a[(k − 1)q1 +m] = x[(k − 1)M +m], m = 0, 1, ..., q1 − 1,

dk[m] =d[(k − 1)q2 +m] = x[(k − 1)M + q1 +m], m = 0, 1, ...q2 − 1, (5.26)

where superscript denoted the kth block. For update, first the detail coefficients

are passed through a q1-fold upsampler and the polynomial Ru(z). This leads to

signal d2[n] that contain every element of d[n] repeated q1 times. Mathematically,

kth block of signal d2[n] is given by:

dk2[m] = d

[
(k − 1)q2 +

⌊
m

q1

⌋ ]
, m = 0, 1, ..., q1q2 − 1, (5.27)

Update filter S(z) = s[0]+s[1]z−q1 is applied on this signal d2[n]. Unlike the predict

stage, we do not require advancement of any block of d2[n] because a2[n] requires

to be updated from the past and future samples of its block that are contained in

the (k−1)th and the kth blocks of d2[n] (Figure 5.3). Hence, S(z) requires only one
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polynomial (s[0] + s[1]z−q1) that chooses two consecutive samples of d[n] because

every sample of d[n] is repeated q1 times as explained earlier.

On passing d2[n] through the update stage filter S(z), we obtain

dk3[m] = s[0]d

[
(k − 1)q2 +

⌊
m

q1

⌋ ]
+ s[1]d

[
(k − 1)q2 +

⌊
m− q1
q1

⌋ ]
, (5.28)

where m = 0, 1, ..., q1q2− 1. This signal is downsampled by a factor of q2 resulting

in the kth block of d4[n] given by

dk4[m] = s[0]d

[
(k − 1)q2 +

⌊
q2m

q1

⌋ ]
+ s[1]d

[
(k − 1)q2 +

⌊
q2m− q1

q1

⌋ ]
, (5.29)

where m = 0, 1, ..., q1−1. Signal d4[n] helps with the update of signal in the upper

branch.

From (5.29), we note that

(i) The first term of the ak[m], i.e., ak[0] = x[(k − 1)M ] for m = 0 is updated

with d[(k− 1)q2] = x[(k− 1)M + q1] and d[(k− 1)q2− 1] = x[(k− 1)M − 1]

that are the elements of the kth and (k − 1)th blocks of d[n], respectively.

Also, these are the past and future samples of x[(k − 1)M ].

(ii) The last term of ak[m], i.e., a[kq1− 1] = x[(k− 1)M + q1− 1] for m = q1− 1

is updated with x

[
kM −

⌊
q2
q1

⌋
− 1

]
and x

[
kM −

⌊
q2
q1

⌋
− 2

]
that are the

elements in the kth block of detail signal.

(iii) From (i) and (ii) above, it is clear that in between elements of the kth block

of a[n] will be updated from only the (k−1)th and kth block elements of d[n].

This proves Theorem-3.

Fig. 5.11 illustrates the sample updates in rational wavelet with sampling ratio

(2
3
, 1
3
) using 2-tap update stage filter S(z). Predict stage filter T (z) is also assumed

to be 2-tap in this case.

Similar to the predict stage polynomial, the above choice of polynomial provides

the best possible generic solution for update using nearest neighbors for different

values of q1 and q2. Thus, although S(z) can be chosen in many ways, we choose

to use the polynomial provided in Theorem-3.
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Figure 5.11: Illustration of sample updates in rational wavelet with sampling ratio
(2
3
, 1
3
) using 2-tap filter S(z). Predict stage filter is also assumed to be 2-tap in

this case.

The above theorem of 2-tap update filter can be easily extended to obtain an

even length Ns-tap filter. For example, a 4-tap S(z) can be given by

S(z) = s[0]zq1 + s[1] + s[2]z−q1 + s[3]z−2q1 , (5.30)

that will choose four consecutive samples of d[n] and are from the immediate

neighboring blocks of a[n]. In general, an even length Ns-tap filter S(z) can be

defined by the following relation:

S(z) = z(
Ns
2
−1)q1

Ns−1∑
k=0

s[k]z−kq1 , (5.31)

where Ns is the length of the update stage filter, S(z) and is assumed to be even.

Learning of update stage filter S(z) from a given signal

In order to learn an Ns-length update stage filter S(z), we consider the updated

signal anew[n] shown in Figure-5.10 as below:

anew[n] =a[n] + d4[n]

=a[n] +
Ns−1∑
j=0

q1−1∑
k1=0

s[j]d1[q2n− (j + k1)] (5.32)
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On passing these approximate coefficients through an M -fold upsampler (Figure-

5.10), we obtain

v[n] =

anew
(
n
M

)
if n is a multiple of M

0 otherwise.
(5.33)

This signal v[n] is passed through the synthesis lowpass filter Fl(z) followed by a

q1-fold downsampler as shown in Figure-5.10 to obtain

xrl[n] =

Lfl−1∑
k2=0

fl[k2]v[q1n− k2]

=

Lfl−1∑
k2=0

fl[k2]
{
a[
q1n− k2
M

] +
Ns−1∑
j=0

q1−1∑
k1=0

s[j]d1[
q1q2n− q2k2 −M(j + k1)

M
]
}

(5.34)

where xrl is the reconstructed signal at the lowpass branch of synthesis side with

the same length as that of the input signal x. Lfl is the length of the synthesis

lowpass filter.

Assuming input signals to be rich in low frequency, most of the energy of

the input signal moves to lowpass branch. Hence, signal xrl[n] is assumed to be

the close approximation of the input signal x[n]. Correspondingly, the following

optimization problem is solved to learn the update stage filter S(z):

ŝ =argmin
s

N−1∑
n=0

(x[n]− xrl[n])2

=argmin
s

N−1∑
n=0

{
x[n]−

Lfl−1∑
k2=0

fl[k2]
{
a[
q1n− k2
M

] +
Ns−1∑
j=0

q1−1∑
k1=0

s[j]d1[
q1q2n− q2k2 −M(j + k1)

M
]
}}2

(5.35)

where s = [s[0]s[1] . . . s[Ns − 1]]′ is the column vector of the coefficients of poly-

nomial S(z). The above equation can be converted to the following vectorized
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form:

s̃ = argmin
s
||b−As||22, (5.36)

where we have b(i + 1) = x[i] −
∑Lfl−1

k2=0 fl[k2]a[ q1i−k2
M

], A(i + 1, l + 1)

=
∑Lfl−1

k2=0

∑q1−1
k1=0 fl[k2]d1[

q1q2i−q2k2−M(l+k1)
M

]
}
∀ i ∈ {0, 1, ..., N−1} and l ∈ {0, 1, ..., Ns−

1}. The above equation has the following closed-form solution:

s̃ = (A′A)−1A′b. (5.37)

Update of RFB filters using learned S(z)

Similar to the predict stage discussed earlier, we propose equation for the update

of analysis lowpass filter using the update stage polynomial S(z) for a rational

filterbank in Theorem-4 below.

Theorem 6. The analysis lowpass filter of a 2-channel rational filterbank can be

updated using the update polynomial S(z) used in the ‘composite update branch’

via the following relation:

Gnew
l (z) = Gl(z) +

q2−1∑
r=0

1

q2
Gh(z

q1
q2W q1r

q2
)U(z

M
q2WMr

q2
), (5.38)

where U(z) = Ru(z)S(z).

Proof. Refer to Figure-5.12. Following the similar procedure as in Theorem 2, the

update structure of Figure 5.12a can be equivalently converted to Figure 5.12c

with the filter H̃u(z) given by:

H̃u(z) =
1

q2

q2−1∑
r=0

Gh(z
q1
q2W q1r

q2
)U(z

M
q2WMr

q2
). (5.39)

Considering the structure in Figure 5.12c, signals d4[n], a[n], and anew[n] can be

written in Z-domain as:

D4(z) =
1

M

M−1∑
k=0

X(z
q1
MW q1k

M )H̃u(z
1
MW k

M), (5.40)
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A(Z) =
1

M

M−1∑
k=0

X(z
q1
MW q1k

M )Gl(z
1
MW k

M), (5.41)

Anew(z) = D4(z) + A(z)

=
1

M

M−1∑
k=0

X(z
q1
MW q1k

M )
[
H̃u(z

1
MW k

M) +Gl(z
1
MW k

M)
]
. (5.42)

The above signal is equivalent to passing the signal X(z) through an equivalent

low pass filter Gnew
l (z) of the RFB (Figure 5.12d) and is given by:

Gnew
l (z) =Gl(z) + H̃u(z)

=Gl(z) +
1

q2

q2−1∑
r=0

Gh(z
q1
q2W q1r

q2
)U(z

M
q2WMr

q2
) (5.43)

This proves the above theorem.

Similar to the predict stage, the synthesis highpass filter F new
h (z) is learned us-

ing the updated analysis lowpass filter Gnew
l (z), polyphase matrices, and equations

(2.6), (2.8), (2.9), (2.10)-(2.14).

Note that the resultant filters of the rational filterbank are learned from the

given signal because these are updated based on the predict and update stage

filters T (z) and S(z) learned from the signal using (5.14) and (5.35), respectively.

Table 5.1: Illustration of RWTL learned based on the theory developed in section
5.1.1

Sampling rate
in two branches

(
2
3
, 1
3

) (
1
2
, 1
2

) (
3
4
, 1
4

) (
2
5
, 3
5

)
(q1, q2,M) (2, 1, 3) (1, 1, 2) (3, 1, 4) (2, 3, 5)

Lazy Gl(z) 1 + z−1 1 1 + z−1 + z−2 1 + z−3

Lazy Gh(z) z2 z z3 z2 + z4 + z6

Lazy Fl(z) 1 + z 1 1 + z + z2 1 + z3

Lazy Fh(z) z−2 z−1 z−3 z−2 + z−4 + z−6

Rp(z) 1 1 1 1 + z−1 + z−2

T (z) z2(t[0]z−1 + t[1]) z(t[0]z−1 + t[1]) z3(t[0]z−1 + t[1]) z6(t[0]z−3 + t[1])

Ru(z) 1 + z−1 1 1 + z−1 + z−2 1 + z−1

S(z) s[0] + s[1]z−2 s[0] + s[1]z−1 s[0] + s[1]z−3 s[0] + s[1]z−2
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Figure 5.12: Illustration for the proof of Theorem-4. Structures in (a)-(e) are
equivalent of each other
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Figure 5.13: Signals used in the experiments

5.1.1.4 Design Examples

We present some examples of RWTL and the corresponding rational filterbank

learned with the proposed method. Table-5.1 presents parameters used for learning

RWTL with the following sampling rates in two branches:
(
2
3
, 1
3

)
,
(
1
2
, 1
2

)
,
(
3
4
, 1
4

)
,(

2
5
, 3
5

)
. The first row in table provides values of q1, q2, and M . Second to fifth

row presents Lazy wavelet of the corresponding rational filterbank structure from

which the learning is initialized. Sixth and eighth row represents polynomial Rp(z)

and Ru(z) respectively. Seventh and ninth row represents the structure of 2-tap

predict and update polynomial T (z) and S(z) respectively.

With these parameters and structure, we learn the RWTL matched to given

signals of interest. We consider four signals of different types: 1) ECG signal, 2)

speech signal, and 3) two music signals (named as music-1 and music-2). These

signals are shown in Figure-5.13. We learn RWTL with sampling rates
(
2
3
, 1
3

)
,
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Table 5.2: Coefficients of predict polynomial, update polynomial, and synthesis fil-
ters of RWTL learned with different sampling rates. fs is the sampling frequency of
the signal in kHz and N is the number of samples of the signal used in experiments.

Sampling rate
in two branches

Signal
(fs, N)

Predict/Update polynomial
and Filter coefficients

(
2
3 ,

1
3

) Music-2
(11.025, 10000)

t[n] =[0.4777 0.5101]
s[n] =[0.1751 0.1893]

fl[n] =[ 0.1707 0.3347 0.3347 0.1599]
fh[n] =[ -0.0748 -0.1466 -0.1466 0.6867

-0.1586 -0.1586 -0.0758]

(
1
2 ,

1
2

)
ECG

(0.36,3600)

t[n] =[0.5119 0.5143]
s[n] =[0.2818 0.2834]

fl[n] =[ 0.2538 0.4935 0.2526]
fh[n] =[-0.1449 -0.2818 0.7100 -0.2834 -0.1451]

(
3
4 ,

1
4

)
Music-1

(11.025, 10000)

t[n] =[0.6100 0.6109]
s[n] =[0.1496 0.1499]

fl[n] =[ 0.1447 0.2369 0.2369 0.2369 0.1445]
fh[n] =[-0.0755 -0.1236 -0.1236 -0.1236 0.6751

-0.1239 -0.1239 -0.1239 -0.0756]

(
2
5 ,

3
5

)
Speech

(11.025,2700)

t[n] =[0.7048 0.3336]
s[n] =[ 0.1430 0.4474]

fl[n] =[ 0.0652 0.0652 0 0.0652 0.1955
0.1378 0.1378 0.1955 0.1378]

fh[n] =[ -0.0137 -0.0137 0 -0.0137 0 -0.0427
-0.0715 -0.0409 -0.0427 -0.0409 -0.0288 0.1959

-0.1280 0.2572 -0.1280 0.1959 0 0 -0.0902]

(
1
2
, 1
2

)
,
(
3
4
, 1
4

)
,
(
2
5
, 3
5

)
in the two branches matched to music-1, music-2, ECG, and

speech signals, respectively. Since we learn RWTL in the lifting framework that

always satisfies PR condition, our learned wavelet system achieves PR with NMSE

(normalized mean square error) of the order of 10−19. Table-5.2 presents coefficients

of predict polynomial, update polynomial, and synthesis filters learned with the

proposed method. Figure-5.14 shows the frequency response of filters associated

with the learned RWTL.

Although we presented RWTL method from original signals above, the method

can be extended to learn RWT in inverse problems and from a class of signals

similar to what we have proposed in section 3.1.2 and 3.1.3, respectively, for dyadic

wavelet transform.
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Figure 5.14: Frequency response of synthesis filters presented in Table-5.2.

5.1.2 Application

Application of the proposed method of rational wavelet transform is presented in

this section.

5.1.2.1 Application in Compressed Sensing based reconstruction

In this section, we explore the performance of the learned RWTL in the applications

of Compressed Sensing (CS)-based reconstruction of 1-D signals.

As discussed before, CS problem aims to recover a full signal from a small
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number of its linear measurement [87, 46], y given below:

y = Φx, (5.44)

where x is the original signal of size N × 1, compressively measured as y of size

M × 1 by the measurement matrix Φ of size M ×N .

Full signal x is reconstructed from compressive measurements by solving the

following optimization problem:

r̃ = min
r
||r||1 subject to y = ΦΨr, (5.45)

where x = Ψr. As wavelets are extensively used as the sparsifying transforms

[46], we consider Ψ as the wavelet transform above and r is wavelet transform

coefficients of x. The above problem is known as basis pursuit (BP) [95] and we

used SPGL1 solver to solve the above problem. Full signal is reconstructed as

x̃ = Ψr̃.

Table-5.3 presents CS-based reconstruction performance of RWTL with dif-

ferent sampling rates on the four signals shown in Figure-5.13. Reconstruction

performance is measured via PSNR (peak signal to noise ratio) presented in 2.5.

Measurement matrix Φ is Gaussian and sampling ratio (SR) is varied from 10% to

90% with a difference of 10%, where sampling ratio was defined in 2.5. Three-level

wavelet transform decomposition has been used for all the experiments. Results

are averaged over 50 independent trials.

RWTL with the following sampling rate are considered:
(
2
3
, 1
3

)
,
(
1
3
, 2
3

)
and

(
3
4
, 1
4

)
and are represented as RWTL

(
2
3
, 1
3

)
, RWTL

(
1
3
, 2
3

)
and RWTL

(
3
4
, 1
4

)
, respectively.

The original signal x is not available in the compressed sensing application, while

the proposed method requires the signal for learning matched rational wavelet.

Thus, we propose to sample one-third of the data fully (at 100% sampling ratio) to

learn signal-matched RWT. Next, we apply the learned RWT for the reconstruction

of the rest of the data sampled at lower compressive sensing ratio. One may also

use an approach, similar to the one presented in section 3.1.2 for RWTL in inverse

problems.
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Table 5.3: CS based signal reconstruction performance of RWTL on different sig-
nals. Rational wavelet is learned from one-third of the data samples. Results are
averaged over 50 independent trails.

Signal
Sampling

ratio (in %)
90 80 70 60 50 40 30

Music-1

db2 28.3 23.9 21.0 18.5 16.6 15.1 13.8

db4 31.2 26.2 22.5 19.8 17.6 15.8 14.2

Bi 5/3 28.7 23.6 20.1 17.4 15.5 14.0 12.9

Bi 9/7 33.2 28.0 24.1 20.8 18.2 16.1 14.4

S
(

2
3
, 1
)

29.6 24.4 20.6 17.6 15.4 13.8 12.5

S
(

1
3
, 1
)

24.8 20.8 18.2 16.3 14.8 13.7 12.8

S
(

3
4
, 1
)

29.2 24.0 20.6 17.9 15.8 14.2 12.9

RWTL
(

2
3
, 1
3

)
33.3 28.7 25.4 22.6 19.9 17.7 15.6

RWTL
(

1
3
, 2
3

)
27.6 23.6 20.8 18.6 16.7 15.0 13.6

RWTL
(

3
4
, 1
4

)
32.7 27.8 24.3 21.3 18.9 16.8 15.1

Music-2

db2 29.7 26.1 23.9 22.0 20.4 18.9 17.5

db4 30.0 26.4 24.1 22.3 20.7 19.1 17.6

Bi 5/3 29.4 25.9 23.5 21.6 19.9 18.4 16.9

Bi 9/7 30.3 26.8 24.5 22.6 21.0 19.4 17.8

S
(

2
3
, 1
)

29.4 26.0 23.7 21.8 20.2 18.6 17.1

S
(

1
3
, 1
)

29.2 25.7 23.4 21.6 20.0 18.5 17.2

S
(

3
4
, 1
)

29.4 25.9 23.5 21.6 19.9 18.2 16.8

RWTL
(

2
3
, 1
3

)
30.6 27.1 24.8 23.1 21.5 20.0 18.5

RWTL
(

1
3
, 2
3

)
30.2 26.9 24.8 23.3 22.0 20.8 19.6

RWTL
(

3
4
, 1
4

)
30.1 26.5 24.1 22.2 20.5 18.9 17.5

ECG

db2 49.7 45.9 42.9 39.5 34.6 27.0 21.2

db4 50.1 46.4 43.6 40.6 36.1 27.4 21.1

Bi 5/3 49.8 45.9 42.8 39.4 34.1 25.9 20.7

Bi 9/7 50.9 47.1 44.2 41.2 37.3 29.4 21.8

S
(

2
3
, 1
)

46.8 42.9 39.6 35.0 28.2 23.3 20.4

S
(

1
3
, 1
)

49.0 45.6 43.3 41.1 38.6 35.3 30.7
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S
(

3
4
, 1
)

47.5 42.1 36.2 29.5 24.4 21.5 19.6

RWTL
(

2
3
, 1
3

)
50.1 45.9 42.6 38.6 33.1 26.7 22.9

RWTL
(

1
3
, 2
3

)
47.9 44.5 42.4 40.5 38.3 35.6 32.1

RWTL
(

3
4
, 1
4

)
48.3 43.1 37.2 30.1 25.5 22.7 20.7

Speech

db2 41.7 36.2 31.9 28.5 25.4 22.4 20.1

db4 44.7 39.2 34.3 30.1 26.4 23.2 20.6

Bi 5/3 42.2 36.6 32.1 28.1 24.6 21.5 19.2

Bi 9/7 46.4 41.0 36.4 32.1 28.0 24.0 21.2

S
(

2
3
, 1
)

43.4 37.6 32.5 28.4 25.1 22.1 19.9

S
(

1
3
, 1
)

38.3 33.5 30.2 27.4 25.2 22.8 20.6

S
(

3
4
, 1
)

43.6 38.0 32.8 28.4 25.2 22.4 20.2

RWTL
(

2
3
, 1
3

)
43.6 39.1 35.7 32.4 29.1 25.7 22.9

RWTL
(

1
3
, 2
3

)
39 35.1 32.2 29.5 27.2 25 22.7

RWTL
(

3
4
, 1
4

)
42.2 37.1 32.8 29.1 25.9 23.3 20.9

The reconstruction performance is compared with standard orthogonal Daubechies

wavelets db2 and db4, and standard bi-orthogonal wavelets, bior5/3 and bior9/7

(labeled as Bi 5/3 and Bi 9/7, respectively). The performance is also compared

with overcomplete rational wavelets designed in [79]. For fair comparison, we con-

sider the same sampling rate in the low frequency branch for these overcomplete

rational wavelets as used in proposed RWTL in Table-III, i.e., we use overcomplete

rational wavelets [79] with sampling rates:
(
2
3
, 1
)
,
(
1
3
, 1
)

and
(
3
4
, 1
)
, represented as

S
(
2
3
, 1
)
, S
(
1
3
, 1
)

and S
(
3
4
, 1
)
.

From Table 5.3, it is observed that Bi 9/7 performs best among the existing

wavelets used. Also, the overcomplete rational wavelet
(
1
3
, 1
)

performs better than

the existing wavelets on ECG signal at all sampling ratios less than 60%, while

these perform comparable or inferior in performance to the existing wavelets on

music and speech signals.

On the other hand, the proposed RWTL perform better, with an improvement

of upto 1.8 dB of PSNR, in comparison to existing wavelets for music signals.

Particularly, RWTL with
(
2
3
, 1
3

)
performs better on music-1 signal for all the sam-

pling ratios. RWTL with
(
2
3
, 1
3

)
performs better on music-2 signal from 90% to
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70% sampling ratio beyond which
(
1
3
, 2
3

)
performs better. On ECG signal, existing

wavelet Bi 9/7 performs better than all other wavelets at higher sampling ratios

from 90% to 60%. At 50% sampling ratio, overcomplete rational wavelet
(
1
3
, 1
)

outperforms all existing and proposed rational wavelets. Below 50% sampling ra-

tio, RWTL with
(
1
3
, 2
3

)
performs better than all existing as well as overcomplete

rational wavelets with an improvement of upto 10 dB than existing wavelets and

upto 1.4 dB than overcomplete rational wavelets. Similarly, in case of speech sig-

nal, Bi 9/7 performs better than all other wavelets from sampling ratio 90% to

70%. Below 70% sampling ratio, RWTL with
(
2
3
, 1
3

)
outperforms all existing as

well as overcomplete rational with an improvement of upto 1.7 dB.

Further, this is to note that at higher sampling ratios, PSNR of the recon-

structed ECG and speech signals is high at around 40 dB and 30 dB, respectively,

with different wavelets. Hence, the reconstructed signal appears almost similar to

the original signal. The quality of the reconstructed signal deteriorates with de-

creasing sampling ratios, where the proposed RWTL performs best with as much

as 10 dB improvement. Overall, the performance of rational matched wavelets is

superior at lower sampling ratios in compressive sensing application. In this work,

we have not explored the problem of choosing the optimal sampling rate of learned

wavelet for a particular signal or in a particular application. This remains an open

problem and can be explored in the future.

5.2 RWTL for images

In this section, we extend the concept of RWTL proposed in section5.1.1 from

1-D signal to 2-D images. Specifically, we present method for separable RWTL

and apply the learned separable RWT as the sparsifying transform in CS based

reconstruction of natural images.

5.2.1 Proposed method of RWTL for images

We learn separable RWT for images using the method similar to the one pro-

posed in section 4.1.1. First, we convert the given image to two 1-D signals using

the serpentine scanning discussed in section 4.1.1.1. We obtain one column-wise
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scanned and another row-wise scanned signals. We learn RWT corresponding to

these column-wise and row-wise scanned signals using the method proposed in the

previous section. Thus, we obtain separable RWT for the given image which can

be used as the sparsifying transform in the applications.

5.2.2 Applications

5.2.2.1 CS based Image Reconstruction using RWTL via Non-Separable

Regularization

In this section, we learn RWT in the application of CS based reconstruction of the

images. The method proposed in the previous subsection for RWTL for images can

not be applied in CS application directly as that method requires the full image,

which is not available in CS applications. Hence, we use a method similar to the one

proposed in section 4.1.2 for learning separable RWT in inverse problems. This is

described in the rest part of this section. Please note that, here we learn separable

RWT with downsampling factor of
(
3
2
, 3
1

)
in two branches. The similar method

can be applied for learning rational wavelet transform with other downsampling

factor as well with the help of the theory presented in section 5.1.1.

Similar to the method proposed in section 4.1.2, the proposed method is divided

into three stages. In the first stage, we obtain the coarse estimate of the image. We

use this coarse estimate of the image to learn separable RWT in the second stage.

The learned separable RWT is used as the sparsifying transform in the third stage

for the reconstruction of full image. All these three stages are described below.

Also, we use recently proposed non-separable non-convex regularization (discussed

in section 2.3) for CS based reconstruction in stage-1 and stage-3.

Stage-1: Coarse Estimation of Image

In this stage, we obtain a coarse estimate of the image from compressive measure-

ments y using one of the existing wavelets (we chose 9/7 biorthogonal wavelet) in

equation (2.28).
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Stage 2: Learning of separable RWT

Next, we learn the separable RWT for row and column spaces of a given image

separately. The method is identical for row and column space and hence, we

present the formulation for only one of the spaces (here column space is used) for

RWT with downsampling factor of
(
3
2
, 3
1

)
in two branches (see Figure 5.15).

Rational Lazy wavelet system For learning rational wavelet transform with

downsampling factor of
(
3
2
, 3
1

)
in two branches, we start with rational Lazy wavelet

with Gl(z) = 1 + z−1, Gh(z) = z2, Fl(z) = 1 + z, and Fh(z) = z2, respectively,

in Figure 5.15. The output of Lazy wavelet provides two sets of disjoint samples,

where 2
3

of the samples constitute a[n] and 1
3

samples constitute d[n].

Learning predict polynomial We feed the column space of the coarse esti-

mated image X̃ as input to the rational Lazy wavelet in Figure 5.16 and obtain

a[n] and d[n] as output. Signal a[n] is passed through the predict polynomial

T (z) = t1z + t2z
2 followed by downsampler to obtain the predicted signal.

This predicted signal is subtracted from d[n] to obtain prediction error dnew[n]

as below:

dnew[n] = d[n]− a[2n] ∗ t[2n], (5.46)
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where t[n] denotes predict polynomial T (z) in the time domain. We consider this

prediction error/new detail coefficients as the noisy version of the actual detail

coefficients that could be obtained if one has access to the original signal because

we obtained these from the coarse estimate of the input image. Mathematically,

it can be written as:

d̂[n] =dnew[n] + η[n],

=d[n]− a[2n] ∗ t[2n] + η[n], (5.47)

where η is assumed to follow Gaussian distribution. Writing the above relation in

matrix form, we obtain:

d̂− d = At + η, (5.48)

The above equation has closed form solution and is solved using least squares to

learn T (z). The analysis highpass filter is updated using T (z) (using (5.19)):

Gnew
h (z) = Gh(z)−

1∑
k=0

Gl(z
1
2W 2k

2 )T (z
3
2
W 3k

2 ), (5.49)

where Wr = e−j
2π
r . Synthesis lowpass filter is updated using polyphase decompo-

sition matrices with the condition of perfect reconstruction filterbank as discussed

in section 5.1.1.2.

Learning update polynomial The updated detail coefficients dnew[n] are
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passed through the rate converter, which is a combination of upsampler and poly-

nomial 1 + z−1 as shown in Figure 5.17. The resultant signal is passed through

S(z) = s1 + s2z
−2 and added to a[n] in the upper branch to obtain updated ap-

proximate coefficients, anew[n]. The updated approximate coefficients are passed

through synthesis lowpass branch to obtain the signal xu[n] (Figure 5.17). As

highpass (lower) branch captures small energy of signal (only prediction error),

most of the energy of the input signal lies in the lowpass branch. Hence, signal

xu[n] should be in close approximation to the input signal x[n]. Thus, we minimize

energy of the difference of these two signals to learn S(z) as:

s̃ = min
s

N−1∑
n=0

(x[n]− xu[n])2, (5.50)

The learned S(z) is used to update analysis lowpass filter as (using (5.38)):

Gnew
l (z) = Gl(z) +Gh(z

2)S(z3). (5.51)

Synthesis highpass filter is updated using the perfect reconstruction condition as

discussed in section 5.1.1.3. This completes all steps of learning RWT for the

column space of a given image. Likewise, this step is repeated for the row space and

hence, RWT is learned for a given image that can be implemented as a separable

transform.

Stage 3: Image Reconstruction using the learned RWT

The learned RWT obtained in the previous stage is used as the sparsifying trans-

form Ψ in non-separable non-convex optimization of (2.28) to reconstruct full

image.

Experiments and Results

We applied the proposed methodology of CS based image reconstruction using

RWTL and non-separable non-convex regularization on 36 natural images of dataset

[126]. All these images were of equal size 321 × 481. We used the partial canon-

ical identity matrix (PCI), discussed in section 4.2.1.1, as the sensing matrix Φ.
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Table 5.4: Mean PSNR (in dB) performance on a dataset of 36 natural images of CS
based reconstruction

Transform
used

Sampling ratio (in %)
90 80 70 60 50 40 30 20 10

db4
W 32.6 30.6 29.0 27.5 26.1 24.6 23.0 20.8 11.5

W+D 32.1 30.1 28.3 26.8 25.4 24.0 22.7 21.3 19.8

db10
W 32.7 30.8 29.2 27.8 26.4 24.9 23.4 21.3 12.0

W+D 32.3 30.3 28.7 27.2 25.8 24.4 23.0 21.5 19.8

sym10
W 32.8 30.9 29.3 27.8 26.4 24.9 23.3 21.1 11.5

W+D 32.3 30.3 28.6 27.0 25.6 24.2 22.8 21.4 19.8

Bi 9/7
W 33.0 31.1 29.5 28.1 26.7 25.2 23.6 21.3 10.6

W+D 32.5 30.5 28.8 27.3 26.0 24.6 23.3 21.8 20.0
DCT 31.8 30.4 29.0 27.8 26.6 25.4 24.1 22.8 21.1

MB [125] 35.1 33.2 31.5 30.0 28.5 27.0 25.3 23.2 14.6
RWTL+D
proposed

33.0 31.5 30.2 29.0 27.8 26.6 25.5 24.2 22.2

MB with
RWTL+D
proposed

35.7 33.8 32.2 30.6 29.1 27.6 25.9 23.9 15.9
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Figure 5.18: Plot for sorted magnitude of wavelet coefficients

We used γ = 0.8, as suggested by authors in [101], and λ = 0.05 in all of our

experiments.

We compared the reconstruction performance of RWTL with those of orthog-

onal Daubechies db4, db10, bi-orthogonal Bi 9/7, Sym10 wavelets, and discrete

cosine transform (DCT). We considered 3-level L-Pyramid wavelet transform de-

composition, discussed in section 4.1.3, with all the wavelets. We plot the sorted

magnitude of coefficients with dyadic Bi 9/7 wavelet and learned RWT in Figure
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5.18. We observe that the decay of wavelet coefficients alone is not that steep.

Hence, we apply DCT on the wavelet approximate coefficients, shown as Bi9/7+D

and RWTL+D in Figure 5.18. This step enhances the sparsity of the coefficients

and RWTL+D coefficients are observed to decay much faster than those of Bi

9/7+D.

Table-5.4 shows the CS based reconstruction performance of different trans-

forms considered in terms of peak signal to noise ratio (PSNR, in dB) at sampling

ratios from 90% to 10%. Because of the enhanced sparsity of DCT applied to

approximate wavelet coefficients, we consider existing wavelet alone (W) as well

as DCT applied to wavelet approximate coefficients (W+D) for image reconstruc-

tion. We also compare the performance with the recently proposed method of

multi-basis [125], which uses multiple sparsifying basis for image reconstruction.

We consider all the existing transform basis used in this paper for multi-basis

method, shown as MB [125] in Table. We also use RWTL+D along with other

transforms in multi-basis method, shown as MB with RWTL+D in Table.

It is observed from Table-1 that: 1) W+D outperforms W at lower sampling ra-

tios, 2) RWTL+D outperforms all existing transforms and the MB method at lower

sampling ratios, 3) MB with RWTL+D outperforms other existing transforms and

MB method [125] at higher sampling ratios. Figure 5.19 shows the visual qual-

ity of one of the reconstructed images from the dataset, compressively sensed at

10% sampling ratio. The figure indicates superior performance of RWTL+D in

preserving sharp details of the image compared to other transforms.

(a) (b) (c) (d) (e)

Figure 5.19: Qualitative results on one image; a) Original image; Image reconstructed
from 10% compressive measurements using b) Bi9/7+DCT c) DCT d) Multibases e)
RWTL+DCT
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5.3 Summary

Methods for rational wavelet transform learning for 1-D and 2-D signals (images)

are presented using the lifting framework in this chapter. Lifting theory is extended

from dyadic to rational wavelet and the extended lifting theory is used to learn

RWT from a given signal, where rational wavelets with any decimation ratio can

be learned. Output sample rates in the two branches of analysis filterbank of the

rational wavelet transform is different that makes the lifting methodology difficult

to be used directly for rational wavelets. Hence, we introduced the concept of rate

converter, which equals the rate in the two branches. Learned rational filters are

FIR that can be easily implemented in hardware. The proposed method of RWTL

has closed-form solution and the transform can be learned from a short duration

of signal. The learned RWT for 1-D signal has been applied in the application

of CS based reconstruction and is observed to perform better than the existing

dyadic as well as rational wavelet transforms. Further, the concept of RWTL

is extended from 1-D signal to images to learn separable RWT for the images.

The learned separable rational wavelet transform is used in the application of CS

based reconstruction of natural images and is observed to perform better than the

existing dyadic wavelet transform.



Chapter 6
Conclusion and Future Work

6.1 Conclusion

Methods to learn signal-matched dyadic and rational wavelet transforms from orig-

inal as well as degraded signals are presented in this work. Lifting framework is

used in the proposed methods, where both predict and update stage filters are

learned from the given signal itself. The learned signal-matched wavelet transform

inherits all the advantages of lifting framework, i.e., the learned wavelet transform

is always invertible, the method is modular, and the corresponding wavelet system

can also incorporate nonlinear filters, if required. The proposed methods can be

used to learn wavelet transform from a small duration of the signal. Closed form

solution is derived for learning the wavelet transform with the proposed meth-

ods and hence, no greedy solution is required. Thus the proposed methods are

computationally efficient.

Three Methods are presented to learn DWT. The first method requires full

original signal to design/learn wavelet. Since this method cannot be applied in

inverse problems, where only the degraded signal is available instead of the original

signal, we propose the second method for learning DWT in inverse problems. In

this method, first, we obtain a coarse estimate of the signal using an existing

wavelet transform and then use it to learn DWT matched to the signal. The

learned DWT can be used as the sparsifying transform for sparse signal recovery of

the signals. The proposed method is applied in CS based reconstruction of music,

speech, and ECG signals, and is observed to outperform the existing wavelets.
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Also, it is observed that the reconstruction performance of the wavelet transform

learned from the degraded signals is only slightly inferior to the performance of the

wavelet transform learned from the original signals. This proves that the proposed

method of learning DWT from degraded signal is as good as the learning the same

from the original signal.

We also present methods to learn wavelet transform for a class of signals where

signals of the class show similarity or low variability from one to another signal.

ECG and brain MRI are two examples of such classes of signals. The method

is proposed to learn a class-specific matched wavelet off-line from an ensemble of

signals and can be used for any signal of the class. Thus, the learned wavelet is

not required to be learned again for any single signal or from degraded signals

in inverse problems, reducing the computational needs of learning the transform.

The method is explored for the class of ECG signals in CS-based reconstruction.

Detailed experiments are provided using the learned wavelet transform and the

proposed weighted non-convex minimization for CS-based ECG signal recovery

with various sensing matrices. The learned wavelet transform along with the pro-

posed weighted non-convex minimization method is observed to provide better

ECG signal reconstruction as compared to the existing wavelet transforms as well

as the existing methods.

The proposed method of DWTL is extended to images to learn separable DWT

from 1) original image and 2) degraded images in inverse problems. The proposed

method is applied in CS based recovery of natural images. In CS application,

partial canonical identity matrix is used as the sensing matrix for images that

is observed to perform much faster compared to the existing sensing matrices

and hence, is suited for time-bound real-time reconstruction based applications.

Although there is a slight degradation in performance with the proposed sensing

matrix but that is easily covered up by the learned separable DWT. A new multi-

level L-Pyramid wavelet decomposition strategy is proposed that is observed to

outperform the existing multi-level wavelet decomposition strategy. Overall, the

proposed work with different sensing matrices, new wavelet decomposition strategy,

and the learned DWT provides much better reconstruction results with ease of

hardware implementation in CS application of images compared to the existing

methodology.
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The proposed method of separable wavelet transform learning is also applied

in impulse denoising of images. First, corrupted pixels are identified from images

using impulse noise detection algorithm. Second, uncorrupted pixels are utilized

to learn wavelet transform matched to the given image. The learned transform is

used as the sparsifying transform for the sparse recovery based impulse denoising

of images. The learned transform is observed to perform better than the existing

wavelet transforms and as well as other existing methods, both quantitatively and

qualitatively.

The method of learning rational wavelet transform using the lifting framework

has also been presented. The existing theory of lifting framework is extended from

dyadic to rational wavelets. The extended lifting theory is used to learn critically

sampled signal-matched rational wavelet transform for any general decimation ra-

tio. The concept of rate converters is introduced to handle variable sample rates

of subbands. Similar to the dyadic wavelet transform, the learned signal-matched

rational wavelet inherits all the advantages of lifting framework. The learned anal-

ysis and synthesis filters are FIR and are easily implementable on hardware, thus

making rational wavelet transform easily usable in applications. As a proof of

concept, the learned rational wavelet transform is applied in the CS-based recon-

struction of 1-D signals and is observed to perform better compared to the existing

dyadic as well as rational wavelets.

The method of rational wavelet transform learning has been extended from

1-D signals to images to learn separable rational wavelet transform. The learned

rational wavelet transform is used as the sparsifying transform for CS based recon-

struction of images. Recently, non-separable non-convex regularization is proposed

in the literature, which has been observed to yield better performance than convex

l1 and other non-convex regularized optimization problems in the case of signal

denoising. We used this regularization for CS based reconstruction of images. The

proposed methodology is applied on natural images and is shown to perform better

than existing transforms and methods.

6.2 Future work

Some of the future directions of the work are as follows.
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• Optimal sampling ratio in two branches of rational wavelet transform: Al-

though the learned rational wavelet transform is observed to perform better

in the CS based reconstruction, it is not known apriori as to what sampling

ratios in the two branches of the rational wavelet transform are optimal for

a given signal in a particular application. This can be explored in future.

• Non-separable wavelet transform learning: Discrete wavelet transform is

largely applied on images as separable wavelet transform. In that case, the

wavelet transform is able to provide efficient representation for the structure

present in the horizontal and vertical directions. However, separable wavelet

transform are not capable to efficiently represent the structures present in

any random directions, which can be compactly represented by non-separable

wavelet transform. Hence, non-separable dyadic as well as rational wavelet

transform learning can be explored using the lifting framework.

• Extension to higher dimensional signals: Wavelet transform is widely used

as the sparsifying transform in three dimensional signals like video, MRI or

hyper-spectral images. The proposed method of wavelet transform learn-

ing can be extended to three dimensional signals as 3-D wavelet transform

learning and can be used in various applications. Also, the proposed L-

Pyramid wavelet decomposition on images can also be extended from 2-D

to 3-D L-Pyramid wavelet decomposition and can be explored in different

applications.

• The optimal length of the predict and update stage filters for dyadic and

rational wavelet transforms remains an open problem. We would like to

address this problem in future. We would also like to explore statistical-

based approaches to find the optimal value of p for CS based ECG signal

recovery.
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