
Designing Generic Asymmetric Key
Cryptosystem with Message Paddings

by

Tarun Kumar Bansal

Indraprastha Institute of Information Technology, Delhi
and

Queensland University of Technology, Australia

Supervisors: Dr. Donghoon Chang (IIITD)
Dr. Josef Pieprzyk (QUT)
Dr. Somitra Sanadhya (IIT-Ropar, formerly at IIITD)
Dr. Xavier Boyen (QUT)

October 2017

ii

Designing Generic Asymmetric Key
Cryptosystem with Message Paddings

by

Tarun Kumar Bansal

Thesis submitted in accordance with the joint regulations

for the Degree of Doctor of Philosophy by and between

Indraprastha Institute of Information Technology, Delhi
and

Queensland University of Technology, Australia

October 2017

Keywords

Public-key cryptography, Arbitrary long message, Hybrid Encryption, Sponge,

permutation, Weakly Secure, Digital Signatures, CCA-secure, OAEP, padding.

i

ii

Abstract

RSA-OAEP is being used in PKCS #1 2.0 standard for a long time. OAEP (opti-

mal asymmetric encryption padding) provides security strength to RSA and other

deterministic one-way asymmetric primitives (trapdoor one-way permutations).

OAEP has been found to be useful in case of hybrid encryption, signcryption,

hybrid signcryption and also as randomness recovery scheme. With time, several

proposals modifying OAEP were published in the literature. These proposals

give different OAEP versions which differ regarding efficiency, provable security,

compatibility with a type of asymmetric one-way cryptosystem (deterministic or

probabilistic), extending the use of OAEP in other applications, etc.

Our work helps in understanding the development of OAEP framework and

its use. As part of our contribution, we describe a different kind of message

padding which works as an alternative of OAEP type scheme. This new message

padding scheme is based on iterated Sponge permutation structure. Usage

of famous Sponge permutation structure comes from symmetric cryptography

where iterated permutation as Sponge functions has provided a great feature

to align security and efficiency. We call our scheme Sponge based asymmetric

encryption padding (SpAEP). Our scheme achieves semantic security under chosen

ciphertext attack (IND-CCA) using any trapdoor one-way permutation in the

ideal permutation model for arbitrary length messages. This IND-CCA security is

considered as highest and strongest security notion, whereas one-wayness security

notion is weaker one. We also propose a key encapsulation mechanism for hybrid

encryption using SpAEP with any trapdoor one-way permutation. SpAEP utilizes

the permutation model efficiently in the setting of public key encryption in a

novel manner.

A primary limitation with the OAEP-type schemes is their incompatibility

with a probabilistic asymmetric one-way secure cryptosystem (e.g., ElGamal).

We study the reasons behind this limitation and are able to extend the scope of

iii

usage from deterministic (e.g., RSA) to probabilistic (e.g., ElGamal) functions

along with efficiency improvements in SpAEP. We denote new modified Sponge

based padding as SpPad–Pe where SpPad–Pe stands for Sponge based Padding

(SpPad) with asymmetric one-way cryptosystem (Pe).

The concept and techniques which are used as a base for constructing Sponge

based message padding, also result in a strongly secure generic asymmetric en-

cryption scheme using weakly secure asymmetric cryptosystem. Instead of using

specific Sponge based construction, we introduce a more generic framework to

build a CCA-secure PKE, called REAL. REAL stands for Real time CCA-secure

Encryption for Arbitrary Long Messages. An asymmetric one-way secure cryp-

tosystem, a one-time secure symmetric encryption scheme and two hash functions

are sufficient for this design. Proposed design provides streaming option without

compromising other valuable features, compared to previous works.

We exploit versatile nature of Sponge construction into another area of

cryptography known as signcryption. The aim of signcryption is to provide both

confidentiality and authentication of messages more efficiently than performing

encryption and signing independently. “Commit-then-Sign&Encrypt” (CtS&E)

composition method allows to perform encryption and signing in parallel. Parallel

execution of cryptographic algorithms decreases the computation time needed

to signcrypt a message. We put forward the application of sponge structure

based message padding as an alternative of commitment scheme in constructing

signcryption scheme. We propose a provably secure signcryption scheme using

weak asymmetric primitives such as trapdoor one-way encryption and universal

unforgeable signature. Using simple tricks, we also demonstrate how different

combinations of probabilistic/deterministic encryption and signature schemes

following weaker security requirements can be utilized without compromising the

security of the scheme. To the best of our knowledge, this is the first signcryption

scheme based on sponge structure and offers maximum security using weak

underlying asymmetric primitives along with the ability to handle long messages.

This thesis follows a step-by-step formation of efficient and secure cryptosystem,

starting from basic to complex structure. This thesis emphasizes the importance of

message pre-processing technique and its usage by providing generic and efficient

cryptosystem.

iv

Contents

Front Matter i

Keywords . i

Abstract . iii

Content . viii

List of Figures . ix

List of Tables . xi

Declaration . xiii

List of Publications . xv

Acknowledgements . xvii

1 Introduction 3

1.1 Type of Cryptographic Algorithms 4

1.1.1 Symmetric Cryptography 4

1.1.2 Asymmetric cryptography 5

1.1.3 Hash functions . 6

1.2 Motivation . 7

1.2.1 Role of message padding in development of asymmetric

encryption . 7

1.2.2 RSA OAEP . 10

1.2.3 Generic View of OAEP+ 11

1.3 Sponge function . 12

1.4 Structure of Thesis . 14

2 Preliminaries 17

2.1 Trapdoor One-way functions . 18

2.2 Public-Key Encryption . 20

2.3 Signature Schemes . 22

v

2.4 Hybrid Encryption . 24

2.4.1 Key Encapsulation Mechanism: KEM 24

2.4.2 Data Encapsulation Mechanism: DEM 24

2.4.3 (KEM+DEM) Construction 25

2.5 Sigcryption: Joint Encryption and Signing 26

2.6 SpongeWrap and Sponge Function 27

3 Sponge based CCA secure Asymmetric Encryption from trap-

door one-way permutations 31

3.1 Background . 32

3.1.1 Different versions of OAEP 32

3.1.2 Motivation . 34

3.1.3 General View of OAEP+ with Sponge 35

3.2 Contribution . 36

3.3 SpAEP: Sponge based Asymmetric Encryption Padding 39

3.3.1 Description . 39

3.3.2 CCA Security of F -SpAEP 42

3.4 Conclusion . 57

3.4.1 Subsequent scope . 57

4 Sponge based KEM with partial message recovery 59

4.1 Key encapsulation mechanism with partial message recovery: RKEM 60

4.1.1 Description . 61

4.1.2 Security notion . 61

4.1.3 Constructing RKEMs . 62

4.1.4 Contribution . 62

4.2 Sponge based key encapsulation mechanism with partial message

recovery: SpRKEM . 63

4.2.1 Description . 63

4.2.2 Security of SpRKEM . 65

4.3 Hybrid encryption based on SpRKEM 68

4.3.1 Description . 68

4.3.2 Security . 69

4.4 Conclusion . 71

4.4.1 Subsequent scope . 71

vi

5 Sponge based padding for CCA-secure Asymmetric encryption 73

5.1 Motivation . 74

5.1.1 Limitation to Trapdoor one-way permutation 74

5.1.2 Candidate solutions . 75

5.2 Contribution . 76

5.3 Sponge based padding with one-way cryptosystem 78

5.3.1 Description . 78

5.3.2 Structural difference between SpAEP and SpPad 80

5.3.3 CCA security of SpPad–Pe 81

5.4 Conclusion . 94

5.4.1 Subsequent scope . 94

6 Real time CCA-secure Encryption for Arbitrary Long messages 95

6.1 Background . 96

6.1.1 Limitation of previous works 97

6.1.2 Motivation . 100

6.1.3 One-time Symmetric Encryption 100

6.2 Contribution . 102

6.3 Real time CCA-secure Encryption for Arbitrary Long messages

(REAL) . 105

6.3.1 Generic Construction with Pe as OW : REAL-1 105

6.3.2 Generic Construction with Pe as OW-PCA : REAL-2 115

6.4 Conclusion . 123

6.4.1 Subsequent scope . 124

7 Signcryption schemes using Sponge padding 125

7.1 Introduction . 126

7.1.1 Background . 127

7.1.2 Limitation of Existing Schemes 129

7.1.3 Motivation . 130

7.2 Contributions . 131

7.3 Sponge based padding for Signcryption 133

7.3.1 Description . 133

7.3.2 Properties . 136

7.4 Parallel Signcryption: SIGNCRYPT 136

7.4.1 Description . 136

vii

7.4.2 Security of Parallel Signcryption 139

Unforgeability . 139

Indistinguishability . 155

7.4.3 Properties . 167

7.5 Extension of Parallel Signcryption 168

7.5.1 Using Probabilistic Sign 168

7.5.2 Arbitrary long messages 169

7.6 Conclusion . 171

8 Conclusions 173

8.1 Summary . 173

8.2 Future Directions . 175

Bibliography 179

viii

List of Figures

1.1 Generalization of OAEP+ . 11

1.2 Sponge function hash mode . 13

2.1 Pseudo-code of SpongeWrap and Sponge function 28

2.2 SpongeWrap and Sponge . 28

3.1 Generalization of OAEP+ to SpAEP 36

3.2 SpAEP: Sponge based Asymmetric encryption padding 40

4.1 Generic RKEM and Sponge based RKEM 63

5.1 Sponge based padding for Trapdoor one-way functions 79

6.1 Generic CCA-secure Encryption scheme with any OW cryptosystem105

7.1 SpongeWrap and Sponge function 134

7.2 Sponge based Signcryption scheme SIGNCRYPT 137

7.20 Generic Signcryption scheme SIGNCRYPTG 170

ix

x

List of Tables

3.1 Comparison between OAEP-type schemes and SpAEP 38

5.1 Comparison of CCA transformations with SpPad–Pe 77

6.1 Comparison among some techniques which results in IND-CCA

secure scheme . 98

6.2 Generic CCA transformations . 99

6.3 Comparison of Generic CCA transformations with REAL 104

7.1 Generic Signcryption schemes Based on CtS&E type composition 131

7.2 Unforgeability of SIGNCRYPT in different assumption on Sign

and Encrypt. 153

7.3 Privacy of SIGNCRYPT under different combination of Sign and

Encrypt . 167

xi

xii

Declaration

The work contained in this joint PhD thesis undertaken between Indraprastha

Institute of Information Technology and Queensland University of Technology

has not been previously submitted to meet requirements for an award at these or

any other higher education institutions. To the best of my knowledge and belief,

the thesis contains no material previously published or written by another person

except where due reference is made.

Signed: . Date: .

xiii

xiv

List of Publications

The following papers have been published or presented, and contain material

based on the content of this thesis.

1. Tarun Kumar Bansal, Donghoon Chang, and Somitra Kumar Sanadhya.

Sponge based CCA2 secure asymmetric encryption for arbitrary length

message. In Ernest Foo and Douglas Stebila, editors, Information Security

and Privacy - 20th Australasian Conference, ACISP 2015, Brisbane, QLD,

Australia, June 29 - July 1, 2015, Proceedings, volume 9144 of Lecture

Notes in Computer Science, pages 93-106. Springer, 2015.

2. Tarun Kumar Bansal, Donghoon Chang, and Somitra Kumar Sanadhya.

Sponge based CCA2 secure asymmetric encryption for arbitrary length

message (extended abstract). Full paper. International Journal of Applied

Cryptography (IJACT). Editor in Chief: Dr. Yi Mu, Dr. David Pointcheval.

Vol. 3 No. 3, pp 262-287, 2017.

xv

xvi

Acknowledgements

I am grateful to the many people who have helped me throughout my Ph.D.

journey. First, I thank my supervisors, Dr. Donghoon Chang, Dr. Josef Pieprzyk,

Dr. Xavier Boyen and Dr. Somitra Sanadhya for their guidance and support over

the years. I am not just thankful to my advisors for their patience and moral

support, but also for the hard questions which incented me to widen my research

from various perspectives.

Besides my advisors, I would like to thank the rest of my internal thesis

committee at QUT: Prof. Ed Dawson and Dr. Harry Bartlett, for their insightful

comments and encouragement.

I have had many helpful discussions with my colleagues in the Cryptology

Research Group at Indraprastha Institute of Information Technology-Delhi (II-

ITD) and Information Security Discipline of Queensland University of Technology

(QUT). I appreciate the joint funding support from IIITD and QUT during this

joint Ph.D. program.

I would like to acknowledge my mother, father, wife, both elder brothers

and sister-in-law who have supported and encouraged me. Last but not least,

I acknowledge all my friends in India and Australia who helped me during my

Ph.D. candidature and various travels.

xvii

xviii

1

;

2

Chapter 1

Introduction

Contents

1.1 Type of Cryptographic Algorithms 4

1.1.1 Symmetric Cryptography 4

1.1.2 Asymmetric cryptography 5

1.1.3 Hash functions . 6

1.2 Motivation . 7

1.2.1 Role of message padding in development of asymmetric

encryption . 7

1.2.2 RSA OAEP . 10

1.2.3 Generic View of OAEP+ 11

1.3 Sponge function . 12

1.4 Structure of Thesis . 14

Cryptology is the science and art of secret communications. Historically,

cryptology has been used by diplomatic missions and armed forces. However,

with the ease of availability and low cost of computing facilities and internet, the

domain of cryptology has shifted to non-government uses and to fulfill common

needs of individuals. Today, cryptology is used in securing access to internet

banking, secure login to websites, secure payment on shops, protecting the

integrity of data online, secure computations on cloud, etc.

3

4 Chapter 1. Introduction

Cryptology comprises of two broad types of studies - cryptography and crypt-

analysis. While cryptography deals with the design of mechanisms providing

certain security goals, cryptanalysis focuses on analyzing these designs with the

aim of finding some flaw/weakness in them and violate security goals. These

security goals include primary function of cryptographic security namely

1. Confidentiality or Privacy: only intended recipient can see the message.

2. Integrity: message has not been altered in between sender and recipient.

3. Authentication: a process of proving legitimate identity of sender/receiver.

4. Non-repudiation: sender can not deny a message which is sent by him.

5. Key exchange: a method for exchanging keys between sender and receiver.

1.1 Type of Cryptographic Algorithms

1.1.1 Symmetric Cryptography

First type of cryptography started in secret communication is symmetric cryp-

tography. In symmetric cryptographic algorithms, sender and receiver requires

the knowledge of one common key which is kept secret from other unauthorized

parties. These algorithms accept data (message or plaintext) and key as their

inputs and transform them to some other output (ciphertext). The transformed

data is then exchanged between the communicating parties. Only the autho-

rized members can recover the plaintext from this ciphertext, for the rest, this

ciphertext appears illegible. The primary goal of these algorithms is to provide

confidentiality. If the secret key is used only one time for encryption, then such

encryption is also known as one-time encryption.

Drawback of symmetric cryptography : The one major problem that held back

a general uptake of cryptography for use in business circles was that of exchanging

keys. While for many years, governments had established methods of managing

keys, business people were not interested in employing circumspect, and perhaps

even dangerous, methods of exchanging keys. In the 1960s, this became known as

the “key management” problem and it was to be another decade before a viable

solution was found.

1.1. Type of Cryptographic Algorithms 5

This key management problem led to open a new type of cryptography, known

as asymmetric cryptography or public key cryptography. Basically, in asymmetric

cryptography, all communicating parties require to have two keys, one is a publicly

known key (for encryption) and other one is a secretly owned private key (for

decryption). In this thesis, we will concentrate on asymmetric cryptographic

schemes and their provable secure design mechanism. In next section, we briefly

describe the history and origin of asymmetric cryptography.

1.1.2 Asymmetric cryptography

In 1976, Whitfield Diffie and Martin Hellman published a paper [51] describing

a method of establishing a common key in a secure manner over an insecure

channel. The method is based on exponentiation and the fact that exponents can

be multiplied in any order with the same result. However, this scheme was useful

only for establishing keys and did not actually encrypt data. The search was still

on for an encryption scheme that allowed anyone to send an enciphered message

to any other person, without pre-establishing keys, such that only the targeted

recipient could decrypt the message.

In 1978, the first publicly available method for implementing such a scheme

was published by Rivest et al. [94] and is now widely known by the first letter of

each of the authors’ names as RSA. RSA security is based on the difficulty of

factoring large numbers. RSA provides a family of trapdoor one-way permutations,

where the secret parameter works as a trapdoor to invert the output, where input

and output are of equal bit length.

The ElGamal cryptographic algorithm [57] was invented a few years after

the RSA scheme, developing from the PhD thesis of Taher ElGamal, which was

awarded in 1984. The underlying idea on which the security is based is quite

different from that of RSA. In ElGamal, the target is to determine the exponent

in an equation of the form a = bx, where a and b are known. The inventor did

not apply for a patent on his scheme. ElGamal provides a family of trapdoor

one-way functions, where the secret parameter is a trapdoor used to invert the

output, where output is of larger bit size compared to input.

All known public key schemes are far more computationally intensive than

symmetric key schemes. For example, a disadvantage of the ElGamal system is

that the encrypted message becomes much larger than plaintext, about twice the

size of the original text. Similarly, RSA is slower than DES (a symmetric key

6 Chapter 1. Introduction

based cipher) by a factor of about 1000. For this reason, public key schemes are

traditionally used only for small messages such as secret keys, whereas symmetric

key schemes are retained for sending large messages. Independent from type of

encryption, the underlying mathematical formulation needs to be based on a

finite system in order to ensure that infinite loops are avoided in computations.

A second common feature of symmetric and asymmetric encryption is the use

of both an encryption and a decryption key where data is transmitted over an

insecure channel. While many public key cryptosystem have been proposed, only

a few have withstood the test of time to remain in use today.

Irrespective of many different schemes proposed in literature, all of them use

some assumptions, security goals, etc., and each scheme is different from others

in terms of type and number of assumptions and security goals. Asymmetric

cryptography is primarily preferred for authentication, non-repudiation, and key

exchange.

1.1.3 Hash functions

A cryptographic hash function is an algorithm which processes an arbitrary length

message into a fixed-length digest or hash code. Hash functions provide one-way

cryptography since the message (or plaintext) is not recoverable from digest

(or ciphertext). Diffie and Hellman [51] identified the need for a one-way hash

function as a building block of a digital signature scheme. The first definitions,

analysis, and constructions for cryptographic hash functions can be found in the

work of Rabin [91], Yuval [102], and Merkle [76] of the late 1970s. Some design

principles for hash function are introduced and discussed in [39,46,76].

Hash functions play an important role in both symmetric and asymmetric

cryptography for providing integrity and authentication. When a hash function

is dependent on a key for its calculation then the output (or digest) is known as

message authentication codes (MAC) or tag. By the combination of MAC and

symmetric encryption, authenticated encryption (AE) algorithms are constructed

which provide both privacy and authentication simultaneously. Hash functions

along with asymmetric encryption provide digital signatures for ensuring non-

repudiation, integrity, and authentication.

For security proof, hash functions require a theoretical ideal behavior and are

considered as ideal randomized black box function also called random oracle [12,33].

In brief, a random oracle is an ideal random function that is publicly available for

1.2. Motivation 7

computation without knowing its internal structure. For each new arbitrary long

or fixed length input, the random oracle outputs a fixed length random output

from a fixed range. Security proof considering hash functions as random oracle is

described as security proof in random oracle model.

1.2 Motivation

1.2.1 Role of message padding in development of asym-

metric encryption

Asymmetric encryption has developed over four decades and still growing. Some

notable changes in asymmetric encryption are about getting higher security

from weakly secure systems, increasing efficiency of asymmetric encryption by

combining with symmetric cryptosystem and broader area of applications from

encryption to authenticated encryption.

After the introduction of RSA as a first method to build a public key en-

cryption, though RSA partially satisfies security notion of one-wayness it is not

suitable as a complete cryptosystem. This unsuitability due to the fact that

it is not semantically secure (a.k.a indistinguishability) under chosen plaintext.

Given a ciphertext c obtained from some m, an adversary can easily create a

another ciphertext c′ using public information for which the decryption m′ will

be tightly related to m. This malleable nature of RSA allows the adversary to

make predictable changes in the ciphertext and the underlying plaintext. RSA is

deterministic trapdoor one-way permutation, and thus not semantically secure.

This semantic insecurity allows an adversary to distinguish between the encryp-

tions of two different messages, simply by encrypting both values himself and

comparing the ciphertexts. A message preprocessing technique was introduced

for using RSA in practice which also provides semantic security. As part of first

standard PKCS1 v1.5, random strings are added to a message, and then this

updated message is given as an input to RSA. The resulting system is believed to

be secure and provides semantic security. This technique remains widely deployed

in many web servers and browsers. While researchers were busy in standardizing

the usage of RSA in practice, many different security notions were evolving, like

semantic security under chosen ciphertext attack (IND-CCA), which is found

to be more suitable for a practical cryptosystem. In 1994, it was realized that

8 Chapter 1. Introduction

current RSA standard PKCS1v1.5 does not satisfy this (IND-CCA) security.

Bellare and Rogaway proposed another message pre-processing technique called

“Optimal Asymmetric Encryption Padding” (OAEP) under which RSA is claimed

to be IND-CCA secure. The importance of OAEP came into effect in 1998,

when Bleichenbacher [26] showed a chosen ciphertext attacks against PKCS1

v1.5 based on the RSA Encryption. This attack compelled the research com-

munity to change the current PKCS standard and apply the OAEP technique

as PKCS1v2.0. OAEP technique of message pre-processing provides a way to

create public key encryption scheme with higher level security using weakly secure

one-way cryptosystem. With time, this message pre-processing technique in case

of asymmetric encryption also known as asymmetric message padding or simply

message padding.

It is well known that asymmetric cryptography remains suitable for exchanging

short messages or exchanging key only. A concept of hybrid encryption was intro-

duced by Cramer and Shoup [44]. Hybrid encryption is an asymmetric encryption

system but a combination of appropriate asymmetric encryption and symmetric

encryption. This hybrid encryption provides presence of a symmetric key in

encapsulated manner using asymmetric encryption without pre-establishment

of a common secret key between two parties. Hybrid encryption exploits the

efficiency of the symmetric cryptosystem to encrypt arbitrary long messages with

the encapsulated key. In hybrid encryption, asymmetric part is known as key

encapsulation mechanism (KEM) which takes the public key as input parameter

and outputs a symmetric key and its encryption as encapsulation. Symmetric

part of hybrid encryption is known as data encapsulation mechanism (DEM)

which uses symmetric key given by KEM and encrypts the input message into

a ciphertext. The final output of the system is key encapsulation and cipher-

text. RSA-OAEP played an important role as KEM candidate. OAEP allows

RSA-OAEP to be used as KEM as well.

Other than encryption, authentication is also an important aspect of cryp-

tography. As hash functions are a prime base for providing authentication in

symmetric key cryptography; similarly, digital signature schemes play an im-

portant role in providing authentication in asymmetric cryptography. Digital

signature schemes are techniques to assure an entity’s acknowledgment of having

sent a certain message. Typically, an entity has a private key and a corresponding

public key which is tied to the entity’s name. The entity generates a string

1.2. Motivation 9

called as a signature which depends on the message to sign and his private key.

The fact that the entity acknowledged, i.e. that he signed the message, can be

verified by anyone using the entity’s public key, the message, and the signature.

Data authentication and signature schemes are distinguished in the sense that in

the latter, verification can be done by anyone at any time after the generation

of the signature. Due to this property, the digital signature scheme achieves

non-repudiation property, that is, a signer cannot later deny the fact of signing.

As part of security, a prime expectation from a signature scheme is unforgeability,

where an adversary can not create a valid signature on a message. Development

of signature schemes kept running parallel along with research over asymmetric

encryption schemes. OAEP, and other padding schemes motivated by OAEP,

also played a major role in constructing secure signature schemes from one-way

cryptosystems (RSA, ElGamal).

Signing and encryption both are asymmetric operations which are costly

computation. Asymmetric cryptography took a step further by merging both

into a single system as signcryption. The aim of signcryption is to provide both

confidentiality and authentication of messages more efficiently than performing

encryption and signing independently. The reduction of the computational cost

makes signcryption more practical, and it is a preferred option for e-commerce and

e-mail applications, where both confidentiality and authentication are required.

Zheng [103] introduced the notion of signcryption in 1997. OAEP and other

different padding motivated by OAEP were found to be useful for having a secure

signcryption scheme [52, 53, 88] for achieving confidentiality and authenticity

together.

Motivation: It is quite evident that OAEP has its influence across different

areas of cryptography which makes OAEP an interesting topic of further research.

This interest has brought many research works, for instance [2, 9, 27, 28, 41,

52, 63, 65, 83, 86, 87, 98] in literature. Any improvement related to OAEP will

generate a improvement chain in many different areas of asymmetric cryptography.

With this motivation in this work, we start our journey with OAEP and its

development in efficiency and security over time. We also discuss the development

of asymmetric encryption with OAEP. We provide an alternative of OAEP and

verify its application. To start with detailed explanations of various design and

security, we provide some definitions and system design to understand rest of the

chapters.

10 Chapter 1. Introduction

1.2.2 RSA OAEP

In 1994, Bellare and Rogaway proposed a generic conversion [13], in the random

oracle model, the “Optimal Asymmetric Encryption Padding” (OAEP), which

was claimed to apply to any family of trapdoor one-way permutations, such as

RSA. The key generation produces a one-way permutation f : {0, 1}k → {0, 1}k ,

the public key. The private key is the inverse permutation f−1, which requires

a trapdoor to be actually computed. The scheme involves two hash functions

G : {0, 1}k0 → {0, 1}n+k1 and H : {0, 1}n+k1 → {0, 1}k0 ,where k = k0 +k1 +n+1.

For any message m ∈ {0, 1}n to be encrypted, instead of computing f(m), as

done with the above plain-RSA encryption, one first modifies M . For that, one

chooses a random string R ∈ {0, 1}k0 ; computes C = (M ||0k1) ⊕ G(R) and

T1 = R⊕H(C); finally, computes y = f(C||T1).
The decryption algorithm first computes P = f−1(y), granted the private

key, the trapdoor to compute f−1, and parses it as P = C||T1. Then, one

can get R = T1 ⊕ H(C), and M ′ = C ⊕ G(R), which is finally parsed into

M ′ = M ||0k1 , if the k1 least significant bits are all 0. For a long time, the

OAEP conversion has been widely believed to provide an IND-CCA encryption

scheme from any trapdoor one-way permutation. However, the sole proven result

was the semantic security against non-adaptive chosen-ciphertext attacks (a.k.a.

lunchtime attacks [79]). In 2002, Shoup [97,98] showed that it was very unlikely

that a stronger security result could be proven. However, because of the wide

belief of a strong security level, RSA-OAEP became the new PKCS #1 v2.0 for

encryption after an effective attack against the PKCS #1 v1.5 [26].

Shoup [97,98] also presents a new scheme called OAEP+, along with a proof

of security in the random oracle model. OAEP+ is essentially just as efficient

as OAEP, and has a tighter security reduction. It should be stressed that these

results do not imply that a particular instantiation of OAEP, such as RSA-OAEP,

is insecure. They simply undermine the original justification for its security. In

fact, it turns out – essentially by accident, rather than by design - that RSA-

OAEP is secure in the random oracle model; however, this fact relies on special

algebraic properties of the RSA function, and not on the security of the general

OAEP scheme.

These observations were subsequently extended in [56] to RSA-OAEP with

arbitrary encryption exponent. Fujisaki et al. [56] provided a complete security

proof of IND-CCA-security for OAEP in general, but also for RSA-OAEP in

1.2. Motivation 11

y

Trapdoor Permutation-f

l

||
M

R

G H′ H

Hash

(C||T1) T2

OAE ⊕

l0

b

⊕

b

A: OAEP+ with f ;
y

bEncryption Hash

Trapdoor Permutation-f

M

l

l0

R

Authenticated

r

b

One-Time

(OAE)

(C||T1) T2

⊕

B: General View of A

Figure 1.1: Generalization of OAEP+

particular under the RSA assumption.

1.2.3 Generic View of OAEP+

In this section we provide a general view 1 of the OAEP+ with f as the trapdoor

one way permutation in an informal way. This helps us to elaborate the basis of

the design of our work and its development as per required features. This general

view is shown in Figure 1.1. It has three parts:

1. One time Authenticated Encryption (OAE): This is a one time authenticated

encryption that uses a one time key R and generates an encoded message

C and Tag T1 of message M . Message will be padded to suitable length

according to OAE.

2. Hash: This is a deterministic hashing algorithm. The concatenation of

the outputs of OAE with a one time key R is the input of this hashing

algorithm. It outputs T2.

3. Trapdoor one way permutation: This is a trapdoor one way permutation

f : {0, 1}` → {0, 1}`, which takes the concatenation of the outputs of OAE

and Hash and produces the final encryption.

Figure 1.1 shows OAEP+ construction with f as the trapdoor one way

permutation. G,H ′ and H are the hash functions used in OAEP+. If we map

OAEP+ on our general view then the combination of G and H ′ is OAE while

1This informal general view helps in understanding our scheme.

12 Chapter 1. Introduction

H is the Hash part. G provides a kind of one time pad encryption (OTE) to

message M , H ′ provides hash tag T1 of M and H produces hash tag T2 of OTE

and tag T1.

We experience a heavy usage of hash functions in OAEP-type schemes. In

2012, a competition [80] for selecting new hash function as the SHA-3 candidate

has been completed. In the past, standard hash functions from the MD-family and

the SHA-family were based on same design model using a compression function in

iterated mode. In SHA-3 competition many new design techniques came forward,

out of which Sponge function gathered most of the attention. In the next section,

we take a look at the Sponge function and its versatility.

1.3 Sponge function

Sponge functions were introduced by Guido Bertoni, Joan Daemen, Michael

Peeters and Gilles Van Assche in ECRYPT Hash Function Workshop 2007 [20]. A

Sponge function can be used as a hash function, but can also generate an infinite

bit stream, making it suitable to work as a stream cipher or a pseudo-random bit

generator. In this section, we provide a brief description of the Sponge function to

the extent necessary for understanding its working and properties. For a complete

specification, we refer the interested reader to the original specification [19]. The

Sponge function works on a b-bit internal state, divided according to two main

parameters r and c, which are called bitrate and capacity, respectively. Initially,

the (r + c)-bit state is filled with 0s, and the message is split into r-bit blocks.

Then, the Sponge function processes the message in two phases.

In the first phase (also called the absorbing phase), the r-bit message blocks are

XORed into the state, interleaved with applications of the internal permutation.

After all message blocks have been processed, the Sponge function moves to the

second phase (also called the squeezing phase). In this phase, the first r bits of

the state are returned as part of the output, interleaved with applications of the

internal permutation. The squeezing phase is finished after the desired length of

the output digest has been produced.

1.3. Sponge function 13

⊕ ⊕⊕

PadM

0r

0c

M0 M2M1 Mn

⊕

⊕

z0 z1

π πππ ππ

Input rate

Capacity rate

Figure 1.2: Sponge function hash mode

The Sponge function can also be used in keyed mode, providing several

different functionalities. A hash-based message authentication code (MAC), a

stream cipher and an authenticated encryption (AE) scheme based on the design

methods proposed in [21] are some functionalities of Sponge, which we will use in

this work.

Due to versatility of Sponge functions, they are quite popular in new designs.

Keccak, the SHA-3 winner, is also based on a Sponge function. The popularity of

Sponge functions can be seen clearly in CAESAR [18] and PHC [4] competitions.

Performance of Keccak as SHA3 A highly optimized SHA-3 implementation

on modern Intel Core CPUs can be executed at a rate of about 13 cycles/byte

which translates, e.g., to a throughput of approximately 230 MByte/s (or about

1.84 Gbit/s) if the processor is clocked at 3 GHz. On 8 bit CPUs, which are

very popular in embedded systems, SHA-3 can be implemented at about 1110

cycles/byte. Assuming a clock frequency of 10 MHz, this results in a throughput

of about 9 kByte/s, or roughly 72 kbit/s.

Keccak turns out to be very well suited for hardware implementations. The

algorithm is considerably more efficient in hardware than SHA-2. A high-speed

parallelized architecture can easily achieve throughputs of 30 Gbit/sec or beyond

with an area of about 100,000 gate equivalences. On the other hand of the

performance spectrum, a very small serial hardware engine with less than 10,000

gate equivalences can still achieve throughputs of several 10 Mbit/sec.

Start line of Work “A possible placement of Sponge structure in general

view described in section 1.2.3”. With this thought, we started out journey of

using Sponge structure as OAEP-type padding. In OAEP-type and other similar

schemes, used H supposed to be replaced by Sponge structure based SHA-3 in

practice. Therefore, we focus on showing how we can achieve same and even

14 Chapter 1. Introduction

better properties when we replace H by SHA-3. This improvement could be

done only by exploiting structural properties of SHA-3, where SHA-3 structure

provides more features than just being a hash function. Therefore, we believe, for

efficient use of the base developed for asymmetric encryption message padding

over the years, we require to see the things in the different and more granular way.

Viewing a hash function H as an open structure (Hπ) is a different view where

an adversary is more powerful after having access to Sponge permutation π.

1.4 Structure of Thesis

This thesis is based on the incremental motivation of having better version by

gathering many features together as a step by step development.

In Chapter 1, we go through some highlights in the development of asymmetric

encryption. We observe that pre-processing of messages using message padding

(OAEP) plays an important role in development. We showed a generic view of

these padding schemes. At the end of the chapter, we conclude with a thought

of having a new message padding along with a candidate, Sponge structure, to

fulfill the generic view.

In Chapter 2, we go through some basic definitions and notations related

to asymmetric encryption that will be required throughout the work. Begining

with this chapter, we start each chapter with some introduction and motivation

which build on results and limitations of the previous chapter(s). Throughout we

work with asymmetric cryptosystem in a generic way instead of relying on an

intractable problem (discrete log problem, integer factorization, etc.).

In Chapter 3, we work on the thought, apply Sponge structure in generic view,

with which we finished in Chapter 1. We provide detailed description of Sponge

based asymmetric encryption padding (SpAEP). We also provide the security

proof of this scheme and a comparison with previous schemes. We show that

SpAEP performs better than previous proposals. Our proposed padding works

with any trapdoor one-way permutations and handles arbitrarily long messages

like hybrid encryption but as a monolithic system. At the end of the chapter, we

go through the subsequent scope of the work in term of its applicability in hybrid

1.4. Structure of Thesis 15

encryption and removing some of its limitations such as decryption overhead and

compatibility with trapdoor one-way permutation only.

Portions of this chapter have appeared in the following publication.

� Tarun Kumar Bansal, Donghoon Chang, and Somitra Kumar Sanadhya.

Sponge based CCA2 secure asymmetric encryption for arbitrary length

message. Information Security and Privacy - 20th Australasian Conference,

ACISP 2015, Brisbane, QLD, Australia, 2015, Springer, 2015.

In Chapter 4, we propose another version SpRKEM of the scheme SpAEP

which provides an extra capability to support hybrid encryption as a two-fold

system of asymmetric encryption and symmetric encryption. We also provide

the security proof of the scheme and a comparison with previous similar hybrid

encryption schemes. This SpRKEM version also helps us in finding a way to solve

a decryption overhead limitation of SpAEP.

Portions of this chapter have appeared in the following publication.

� Tarun Kumar Bansal, Donghoon Chang, and Somitra Kumar Sanadhya.

Sponge based CCA2 secure asymmetric encryption for arbitrary length

message (extended abstract). International Journal of Applied Cryptography

(IJACT), 2017. Editor in Chief: Dr. Yi Mu, Dr. David Pointcheval . (under

printing)

In Chapter 5, we target to apply some modifications in SpAEP to have another

Sponge based padding (SpPad). This SpPad is compatible with any one-way

secure cryptosystem (Pe) which includes deterministic one-way cryptosystem

(e.g. RSA) as well as probabilistic one-way cryptosystem (e.g. ElGamal). In

SpPad, we are also able to achieve lower decryption overhead compared to SpAEP.

This lower decryption overhead in SpPad–Pe also help in enabling streaming

option. We also provide security proof of SpPad–Pe. Comparison of SpPad–Pe

with previous schemes, that are also secure with any one-way secure asymmetric

cryptosystem, shows SpPad–Pe as better scheme.

At the end of this chapter, we conclude that the generic view with few

modifications, when filled with Sponge structure works securely and efficiently. In

conclusion, we also come up with the question about security of the generic view

with any generic structure instead of specific Sponge structure as basic underlying

primitive. We answer this question in next chapter.

16 Chapter 1. Introduction

In Chapter 6, we modify the generic view as per required modifications we

learn through SpPad–Pe. We achieve a generic asymmetric encryption framework,

which has all the proposed properties and security in Sponge based message

padding cryptosystem. Now we have a generic framework along with security

proof in random oracle model, which can be instantiated not only by Sponge but

also by other available structures if needed. We call this framework as “Real-time

CCA-secure Encryption of Arbitrary Long messages”(REAL). REAL performs well

when compared to previous similar works such as FO-transform [54, 55]. At

the end of the chapter, we propose a possibility of applying Sponge padding

technique in the area of signcryption. We explore more about this possibility in

next chapter.

In Chapter 7, we propose a modified version of SpPad which makes it compat-

ible with weakly secure asymmetric encryption and signature primitives to yield

a generic signcryption scheme. In signcryption, both encryption and signature

are required simultaneously. We provide security proofs for both confidentiality

and unforgeability of proposed signcryption scheme. We show that the proposed

scheme performs better than generic schemes of previous works. Proposed scheme

is the first signcryption scheme based on Sponge structure and offers maximum

security using weak underlying asymmetric primitives along with the ability to

handle long messages. We also show that the probabilistic and deterministic

nature of underlying asymmetric primitives play a crucial role in security of

signcryption scheme. With this chapter, we conclude our journey of designing

generic asymmetric key cryptosystem using message padding.

Chapter 8 provides final summary and conclusion for the topics covered in

this thesis. We propose some directions that could be used as a part of future

work.

Chapter 2

Preliminaries

Contents

2.1 Trapdoor One-way functions 18

2.2 Public-Key Encryption 20

2.3 Signature Schemes . 22

2.4 Hybrid Encryption . 24

2.4.1 Key Encapsulation Mechanism: KEM 24

2.4.2 Data Encapsulation Mechanism: DEM 24

2.4.3 (KEM+DEM) Construction 25

2.5 Sigcryption: Joint Encryption and Signing 26

2.6 SpongeWrap and Sponge Function 27

Notations: In this work, we represent k ∈ N as security parameter, where N is

the set of natural numbers. We will use the symbol |x| to denote the bit length

of a string x and x||y to denote the concatenation of strings x and y. If n is

a positive integer then the symbol {0, 1}n denotes the set of n-bit strings. We

also use symbol {0, 1}∗ to denote the set of binary strings with no fixed length.

bxcr represents first r-bit string of x where |x| ≥ r. Selecting a uniformly and

independently distributed variable x from a set X is denoted by x
$←− X.

17

18 Chapter 2. Preliminaries

Negligibility: A function negl() is negligible if for every polynomial p(n) there

exists an N ∈ N such that for all integers n > N it holds that negl(n) < 1
p(n)

.

For convenience we will use ε to denote negligible functions.

Random Oracle Model: Hash functions play an important role in construct-

ing any cryptographic scheme. For security proofs a hash function is considered

as an ideal randomised black box function, also called random oracle [12]. In

brief, random oracle is an ideal random function that is publicly available for

computation without knowing its internal structure. For each new arbitrarily

long or fixed length input, random oracle outputs a fixed length random output

from a fixed range. Security proof considering hash functions as random oracle is

denoted as security proof in random oracle model [74].

H is said to be a random oracle from a set X to set Y if for each x ∈ X the

value of H(x) is chosen randomly from Y. More precisely, Pr[H(x)=y |H(x1) =

y1, H(x2) = y2, ...H(xq) = yq] = 1
M

, where x /∈ {x1, x2, . . . xq}, y, y1, . . . , yq ∈ Y ,

|Y | = M and q is the total number of queries. If H accepts variable length input

it is considered as VIL Random Oracle.

Ideal permutation: A permutation π is a bijective function on a finite domain

D and finite range R with D = R. An ideal permutation is a permutation chosen

uniformly at random from all the available permutations. Let D = R = {0, 1}b,
then π

$←−Perm(D,D), where Perm(D,D) is the collection of all permutations on

D. Mathematically, π : D → R is a permutation, if for every y ∈ R there is one

and only one x ∈ D such that π(x) = y.

2.1 Trapdoor One-way functions

Definition 1. Family of functions. A family of functions F ={Gen, SampI,

SampR, Eval} is a tuple of four algorithms which works as follows:

� The randomised key generation algorithm “Gen” takes a security parameter

k ∈ N and outputs a pair (pk,sk) where pk is public key and sk is related

private key.

� The randomised sampling algorithm “SampI” takes input pk and returns

a random value x in a set that we call the domain of pk and denoted by

DomF(pk) and with |x| ≥ k

2.1. Trapdoor One-way functions 19

� The randomised sampling algorithm “SampR” takes input pk and returns

a random value g in a set that we call the randomness domain of pk and

denoted by COINF(pk) and with |g| ≥ k

� Evaluation algorithm “Eval” takes input pk a point x ∈ DomF(pk) and

g ∈ COINF(pk). Eval returns an output we denote by Evalpk(x; g). We

denote range of function Evalpk(x; g) by RangF(pk), i.e. RangF(pk) =

{Evalpk(x; g)|x ∈ DomF(pk), g ∈ COINF(pk)}

We say F is a family of permutations if for all values of pk COINF(pk) = ∅,
DomF(pk) = RangF(pk) and Evalpk() is a permutation on set DomF(pk).

Definition 2. Families of Trapdoor functions. F is a family of trapdoor

functions if there exists a deterministic inversion algorithm “Inv” that takes

input sk and a point y ∈ RangF(pk) and return a point x ∈ DomF(pk) such that

Evalpk(x; g) = y for all g ∈ COINF(pk).

We say F is a family of trapdoor permutations if for all values of pk COINF(pk) =

∅, DomF(pk) = RangF(pk) and Evalpk() is a permutation on set DomF(pk).

We describe definition of one-wayness.

Definition 3. (θ-one-way). Let F = {Gen, SampI, SampR,Eval} be a family

of trapdoor functions. Let d ∈ {0, 1}, k ∈ N be a security parameter. Let A be an

adversary and 0 < θ ≤ 1 be a constant. Consider the following experiment:

Expθ−one−wayF ,A (k)

1. (pk, sk)
$←− Gen(k); g

$←− COINF(pk).

2. x1||x2
$←− DomF(pk), where |x1| = dθ · |(x1||x2)|e

3. y ← Evalpk(x1||x2)

4. x
′
1 ← A(pk, y), where |x′1| ≥ |x1|

5. if x
′
1 == x1 then
Return 1

else
Return 0

We define the advantage of A as

Advθ−owF ,A (k) = Pr[Expθ−one−wayF ,A (k) = 1]

20 Chapter 2. Preliminaries

We consider that the family F is θ-one-way if Advθ−owF ,A (k) is negligible for any

adversary A whose time complexity is polynomial in k. If θ = 1 then we consider

F is family of one-way functions over entire input excluding random coins.

Asymmetric one-way cryptosystem Starting with F , an asymmetric one-

way cryptosystem Pe: (GenF ,EncF ,DecF) is obtained in the following way: the

keys (pk, sk)
$←− Gen(k), the ciphertext for message(plaintext) x ∈ DomF(pk) with

randomness g
$←− COINF(pk) is y = EncF(pk, x; g) = Evalpk(x; g) and a valid

ciphertext y ∈ RangF(pk) is decrypted by means of DecF(sk, y) = Invsk(y) = x.

If an asymmetric cryptosystem follows the minimum security requirement of

one-wayness then we treat that cryptosystem as asymmetric primitive Pe. If Pe

does not uses random coins g, we say Pe is a deterministic asymmetric encryption

otherwise it is called a probabilistic asymmetric encryption.

We denote ` as bit length of x ∈ DomF(pk), ` + cope as bit length of y ∈
RangF(pk) and λ is length of g ∈ COINS, where λ ≥ k

In case of family of trapdoor one-way permutations F , we represent permuta-

tion Evalpk(·) as function f(·) and Invsk(·) as inverse function f−1(·).

2.2 Public-Key Encryption

Description: A public-key encryption scheme Encrypt is defined by three

algorithms:

� The key generation algorithm GenEnc(1k) produces a pair (pk, sk) of public

and private keys on input 1k, where k is the security parameter.

� The encryption algorithm Encpk(m; g) = c outputs a ciphertext c for input

a message m ∈M and pk using random coins g ∈ COINS. The message and

coin spaces, M and COINS, are uniquely determined by pk.

� The decryption algorithm Decsk(c) outputs the associated message m.

We require that an asymmetric encryption scheme should satisfy the follow-

ing correctness condition: For every sufficiently large k ∈ N , for all (pk, sk)

generated by GenEnc(1k), and every m ∈ M and g ∈ COINS, we always have

Decsk(Encpk(m, g)) = m.

2.2. Public-Key Encryption 21

Security Notion: The simplest security notion for a public key encryption,

say Encrypt, is one-wayness (OW): with public data only, an adversary A
cannot recover the whole plaintext m of a given ciphertext c. We denote by

SuccOW
A,Encrypt the maximum probability of success thatA can invert the encryption

of a random plaintext m. OW is minimal security requirement for any asymmetric

cryptosystem. We consider such asymmetric cryptosystem, which follows OW, as

asymmetric primitive.

A variant of one-wayness is OW-PCA, introduced in [83], because of proba-

bilistic asymmetric one-way encryption schemes. This notion of one-wayness is

considered when adversary has access to a Plaintext checking oracle (OPC). The

goal of A is the same as for OW but she is given access to a plaintext-checking

oracle (OPC) along with other public information. OPC outputs 1 if a given

(m, c) pair is a valid message-ciphertext pair for Encrypt, otherwise it returns

0. As shown in [83], the ElGamal [57] encryption achieves OW-PCA under GDH

assumption [82]. Evidently, for asymmetric encryption scheme based on trapdoor

one-way permutation, the notion of OW and OW-PCA are the same.

A stronger security notion has also been defined. It is the so-called semantic

security (a.k.a. indistinguishability of encryptions, IND) [58]. If an attacker has

some information about the plaintext, the view of the ciphertext should not leak

any additional information. This security notion more formally considers the

advantage an adversary can gain when trying to guess, between two messages,

which one has been encrypted. In other words, an adversary is seen as a 2-stage

Turing machine (A1,A2), and the advantage AdvindEncrypt(A) should be negligible

for any adversary, where

AdvindEncrypt(A) = 2× Pr

[
(pk, sk)← GenEnc(1k), (m0,m1, s)← A1(pk),

b ∈ {0, 1}, c = Encpk(mb) : A2(m0,m1, s, c) = b

]
− 1

On the other hand, an attacker can use many kinds of attacks, depending on

the information available to him. First, in the public-key setting, the adversary

can encrypt any plaintext of his choice with the public key: this basic scenario is

called the chosen-plaintext attack, and denoted by CPA. Extended scenarios allow

the adversary a restricted or unrestricted access to various oracles. The main and

strongest one is the decryption oracle which can be accessed adaptively in the

chosen-ciphertext scenario, denoted CCA. There is the natural restriction that any

22 Chapter 2. Preliminaries

query to this oracle should be different from the challenge ciphertext. A general

study of these security notions and attacks was conducted in [11,74,92,93].

In this work, we denote an asymmetric primitive by Pe. We would like to

remind that we consider a asymmetric cryptosystem which only follows OW as

asymmetric primitive.

2.3 Signature Schemes

Description A digital signature scheme Sign consist of three algorithms:

� GenSign, the key generation algorithm which for security parameter k, on

input 1k, outputs a pair (pk,sk) of matching public and private keys;

� Sign, the signing algorithm which receives a message M and the private key

sk, and outputs a signature σ = Signsk(M);

� Ver, the verification algorithm which receives a candidate signature σ,

message M , and a public key pk, and returns an answer Verpk(σ,M) as to

whether σ is a valid (>) or invalid (⊥) signature of M with respect to pk.

We suppose signing algorithm take input of maximum `sg bits and that output

length of signing algorithm is `σ .

Security notions. The attacker attempts to forge a signature. The probability

of achieving this is assessed via the following game between a probabilistic,

polynomial-time (PPT) attacker and a hypothetical challenger:

1. The challenger generates a key pair (sk, pk)←GenSign(1k) .

2. The attacker runsAO(1k, pk) . The attacker has access to an oracleO (which

will be described subsequently). The attacker terminates by outputting a

message m∗ and a signature σ∗.

In terms of resources, there are two types of attacks. The type of attack

specifies the power that the attacker has in the attack.

� In a no-message attack (NMA), the oracle gives no response. This is

equivalent to an attack model in which the attacker does not have access to

the oracle O. The attacker only knows public key pk of the signer.

2.3. Signature Schemes 23

� In second, known-message attacks, the attacker has access to a signature

oracle providing list of valid message/signature pairs in addition to knowl-

edge of public key of the signer. If this list contains random and uniformly

chosen messages, then the attack is termed as “random-message attack

(RMA)”. If this list contains messages chosen by adversary, the the attack

is termed as “chosen-message attack (CMA)”. A chosen message attack

seeks to emulate the normal mode of use of a signature scheme, in which an

attacker can observe signatures produced by a legitimate party, perhaps in

some adversarial chosen way. Therefore, in adaptive chosen message attack

(Ada) adversary chose messages in adaptive way.

There are two ways in which we can assess whether the attacker succeeds in

forging a signature.

� In the existential unforgeability (UF) game, the attacker is said to win if

it outputs a pair (m∗, σ∗) where Verpk(m
∗, σ∗) = > and the attacker never

queried the signature oracle with the message m∗.

� A slightly stronger notion of security is that of strong existential unforge-

ability(sUF). The attacker is said to win the strong unforgeability game if

it outputs a pair (m∗, σ∗) where Verpk(m
∗, σ∗) = > and the attacker never

queried the signature oracle with the message m∗ and received the response

σ∗.

In case of finite message space M, we may consider weaker security notion.

For success criteria, we may ask the attacker to produce a forged signature for a

randomly chosen message m∗ ←$ M . This leads to a new description for the

attack game that a probabilistic, polynomial-time attacker A is playing:

1. The challenger generates a key pair (sk, pk)← GenSign(1k) and a message

m∗ ←$M.

2. The attacker runs AO(1k, pk,m∗). The attacker has access to an oracle O .

The attacker terminates by outputting a signature s∗.

Again, we may define two success criteria for this security game:

� In the universal unforgeability (uUF) game, the attacker is said to win if

Verpk(m
∗, σ∗) = > and the attacker never queried the signature oracle with

the message m∗.

24 Chapter 2. Preliminaries

� In the strong universally unforgeability (suUF) game, the attacker is said

to win if Verpk(m
∗, σ∗) = > and the attacker never queried the signature

oracle with the message m∗ and received the response σ∗.

2.4 Hybrid Encryption

2.4.1 Key Encapsulation Mechanism: KEM

Description: (KEM). A key encapsulation mechanism is defined by KEM =

(KEM.Gen, KEM.Encap, KEM.Decap) as an ordered tuple of three algorithms.

1. A probabilistic key generation algorithm KEM .Gen. It takes as input a

security parameter k, and outputs a private/public keypair (sk, pk). As part

of the public key there is a parameter KEM.keylen that specifies the length

of the symmetric keys used by symmetric cipher.

2. A probabilistic key encapsulation algorithm PKE.Encap. It takes as input

a public key pk, and outputs a symmetric key K of length KEM.keylen,

and an encapsulation ψ.

3. A deterministic decapsulation algorithm PKE.Decap. It takes as input a

private key sk and an encapsulation ψ and outputs either a key K or the

unique error symbol ⊥.

The KEM is sound if for almost all valid keypairs (sk, pk), whenever (K,ψ) was

the output of PKE.Encap(pk), we have K = PKE.Decap(sk, ψ).

2.4.2 Data Encapsulation Mechanism: DEM

A data encapsulation mechanism (DEM) is used to encrypt long message (or

part of message) using symmetric key K generated by the KEM. The DEM

is more like a symmetric encryption scheme with a different key during each

encryption. There are two security notions for DEM. The first one is message

indistinguishability and the second one is the ciphertext integrity.

Description: Data encapsulation mechanism DEM = (DEM.Enc, DEM.Dec)

consist of a pair of two algorithms which are described next:

2.4. Hybrid Encryption 25

1. Encryption algorithm DEM.Enc takes a message M and a symmetric key K

of length DEM.keylen for the security parameter k, and outputs a ciphertext

χ = Ce||Tag.

2. Decryption algorithm DEM.Dec takes a ciphertext χ = Ce||Tag and symmetric

key K for the security parameter k, and outputs either a message M or ⊥.

Definition 4. IND-PA/INT-CTXT game for DEM: A challenger and an

adversary A = (A1,A2) play a IND-PA/INT-CTXT game for a given DEM.

Having a security parameter k, the game runs as follows.

Experiment: ExpIND−PADEM,A (k)

1. K
$←− {0, 1}k

2. (M0,M1, s)← A1(1
k)

3. d
$←− {0, 1};

4. (χ∗) = DEM.Enc(Md, K)

5. d′ ← A2(χ
∗, s)

6. return d′

A wins the game if d = d′. The

advantage of A is given as

AdvIND−PADEM (A) =| Pr[A wins]− 1
2
|

Experiment: ExpINT−CTXTDEM,A (k)

1. K
$←− {0, 1}k

2. (M, s)← ADEM.Dec(·)
1

3. (χ∗) = DEM.Enc(M,K)

4. χ′ ← ADEM.Dec(·)
2 (χ∗, s)

A wins the game if χ = χ′ is a valid ci-

phertext. The advantage of A is given

as

AdvINT−CTXTDEM (A) = Pr[A wins]

2.4.3 (KEM+DEM) Construction

Given a KEM and a DEM, where the keys output by the KEM are of correct

length for use with the DEM, i.e. DEM.keylen = KEM.keylen, we construct a

hybrid PKE scheme as follows:

� The key generation algorithm PKE.Gen is implemented using KEM.Gen.

� The encryption algorithm PKE.Enc is implemented as follows.

1. Compute a key/encapsulation pair (K,ψ) = KEM.Encap(pk).

2. Encrypt the message to obtain a ciphertext χ = DEM.EncK(m).

3. Output the ciphertext c = (ψ, χ).

� The decryption algorithm PKE.Dec is implemented as follows.

26 Chapter 2. Preliminaries

1. Parse the ciphertext to obtain (ψ, χ) = c.

2. Compute the symmetric key K = KEM .Decap(sk, ψ).

3. If K =⊥, return ⊥ and Halt.

4. Decrypt the message m = DEM .DecK(χ).

5. If m =⊥, return ⊥ and Halt, else output m

2.5 Sigcryption: Joint Encryption and Signing

Description . A signcryption scheme SignCrypt is defined by three algo-

rithms:

� Gen, the key generation algorithm which outputs a pair of keys (SDK,VEK)

for a security parameter k. SDK is the user’s sign/decrypt key, which is

kept secret, and VEK is the user’s verify/encrypt key, which is made public.

� SignEnc, the encryption and signing algorithm which, for a message M , the

public key of the receiver VEKR and private key of sender SDKS, produce a

signed ciphertext Y = SignEncSDKS ,VEKR
(M)

� VerDec, the decryption and verifying algorithm which, for signed-ciphertext

Y , the private key SDKR of the receiver and the public key VEKS of the

sender, recovers the message M = VerDecSDKR,VEKS(Y). If this algorithm

fails either to recover the message or to verify its authenticity, it returns ⊥.

Security Notions . We can combine classical security notions of signature

and encryption to form security notion of signcryption, under adaptive attacks.

Given access to public information, PUB=(VEKS,VEKR), and oracle access to the

functionalities of both sender S and receiver R, the adversary attempts to break:

1. authenticity (UF): come up with a valid signed-ciphertext of a new message,

and thus provide an “existential forgery”.

2. privacy (IND): breaks the “indistinguishability” of signed-ciphertexts.

In the security considerations the adversary may be one of S or R themselves.

So, S may want to break the privacy, or R may want to break authenticity. If a

2.6. SpongeWrap and Sponge Function 27

signcryption scheme prevents existential forgeries and guarantees indistinguisha-

bility, in attack scenarios shown in section 2.3 and section 2.2, called adaptive

attacks(AdA and CCA), we say the scheme is secure.

Definition 5. A signcryption scheme is secure if it achieves IND/UF under

adaptive attacks.

2.6 SpongeWrap and Sponge Function

Bertoni et al. [20–22] proposed the SpongeWrap and Sponge function which are

based on an iterated permutation π : {0, 1}(b=r+c) → {0, 1}b with an initial value

IV . Because iterated permutation works on fixed length block size, it requires

an injective reversible padding. This padding-unpadding function is defined and

customized as per requirement of system. A pseudo-code of SpongeWrap and

Sponge function is provided in figure 2.1. Both functions uses permutation π

of b = r + c-bit input, where r is called input rate and c is called capacity rate.

SpongeWrap works in both forward (SpongeWrap+) and inverse (SpongeWrap−)

direction therefore widely used as encryption or authenticated encryption. Sponge

function works in only forward direction, therefore preferred as hash function.

The pad− unpad function of Sponge structure can be defined in various ways.

We have taken a generic pad function uses 10∗1 injective-reversible padding; this

takes two inputs, one as input to be padded, second as input rate of π. One

more optional input to the pad function can be added as minimum output length

` = n · r required from pad depending upon system requirement, where n ∈ N
and n ≥ 1. unpad is defined as inverse process of pad.

pad(x, r, `)

=

x||1||0(`−|x|−2)||1, if|x| ≤ (`− 2)

x||1||0(r−1)||1, if |x| = `− 1

x||1||0r−((|x|+1)mod r)−1||1, otherwise

unpad(y, r, `)

if ∃ x 6= ∅ s.t. y = x||1||0z||1
where 0 ≤ z ≤ `− 3 if |x| =
` or 0 ≤ z ≤ r − 1 if |x| > `

then
return x

else
return ⊥

For security parameter k, a permutation π with parameters r and c can be

chosen as explained in [20–22]. In abstract, following relation r ≥ c ≥ 2k is

28 Chapter 2. Preliminaries

SpongeWrap+(K,M)

1. x||w = IV , where
|x| = r

2. m1||m2|| . . . ||mn =
pad(M, r, `), where
|mi| = r ∀1 ≤ i ≤ n.

3. x = x⊕K||0r−k
4. for i = 1→ n do

x||w = π(x||w)
x = x⊕mi

ci = x

5. x||w = π(x||w); T =
bxck

6. Return ci|| . . . ||cn||T

SpongeWrap−(K,C||T)

1. x||w = IV , where
|x| = r

2. c1||c2|| . . . ||cn = C,
where |ci| = r ∀1 ≤
i ≤ n.

3. x = x⊕K||0r−k
4. for i = 1→ n do

x||w = π(x||w)
mi = x⊕ ci
x = ci

5. x||w = π(x||w); T ′ =
bxck

6. if T=T’ then
Return
unpad(m1|| . . . ||mn)

else
Return ⊥

Sponge(J)

1. x||w = IV , where
|x| = r

2. j1|| . . . ||jn =
pad(J, r,∅), where
|ji| = r ∀1 ≤ i ≤ n.

3. for i = 1→ n do
x||w = π(x||w)
x = x⊕ ji

4. x||w = π(x||w)
5. Return bxck

Figure 2.1: Pseudo-code of SpongeWrap and Sponge function

followed.

A combined graphical representation of SpongeWrap and Sponge function is

shown in Figure 2.2.

π π π π π

K
m1 m2 m

n−1
m

nc1 c2 c
n−1

c
n T

IV2
IV1

c

r

r
r

k
k

Figure 2.2: 1. SpongeWrap : {SpongeWrap+, SpongeWrap−} is based on iterated
permutation π. By default, Initial Value (IV) is considered as 0 (IV=0b). During
encryption SpongeWrap+: On input message (M = m1|| . . . ||mn) and a random K,
and output C||T where C = c1|| . . . ||cn, |ci| = r ∀ 1 ≥ i ≥ n and, if authentication also
required then, |T | = k. During Decryption SpongeWrap−1: takes (K,C||T) as input
and outputs either M or ⊥.
2. Sponge function: Shown figure can be viewed as Sponge function by considering
input J = K||m1|| . . . ||me, by replacing IV2 from IV3 and considering T as only output.

We will see more about Sponge structure and its usage in this work. A glimpse

of power and importance of Sponge structure can be seen from the fact that

Sponge based hash function Keccak [23] has been selected as the winner of the

2.6. SpongeWrap and Sponge Function 29

SHA-3 competition [80], and the popularity of Sponge functions can also be seen

in CAESAR [18] and PHC [4] competitions.

30 Chapter 2. Preliminaries

Chapter 3

Sponge based CCA secure

Asymmetric Encryption from

trapdoor one-way permutations

Contents

3.1 Background . 32

3.1.1 Different versions of OAEP 32

3.1.2 Motivation . 34

3.1.3 General View of OAEP+ with Sponge 35

3.2 Contribution . 36

3.3 SpAEP: Sponge based Asymmetric Encryption Padding 39

3.3.1 Description . 39

3.3.2 CCA Security of F-SpAEP 42

3.4 Conclusion . 57

3.4.1 Subsequent scope . 57

In this chapter, we introduce a Sponge based Asymmetric Encryption Padding

scheme (SpAEP), a novel way to use the SpongeWrap [21] and the Sponge func-

tion [20] to encrypt arbitrary length messages in Asymmetric key cryptography.

In upcoming sections, first, we discuss OAEP and its development in different

versions. We further discuss the motivation of constructing SpAEP as a better

31

32
Chapter 3. Sponge based CCA secure Asymmetric Encryption from trapdoor one-way

permutations

alternative to OAEP type schemes. We describe how construction of SpAEP

is derived from generic view of OAEP+ discussed in section 1.2.3. We provide

detailed features and comparison of SpAEP with other OAEP-type schemes as

part of contribution. Security proof of proposed scheme is followed by detailed

description of SpAEP. This chapter ends with a conclusion and we also look at

some of its limitations.

3.1 Background

3.1.1 Different versions of OAEP

OAEP+ was proposed in 2001 by Shoup [97,98]. OAEP+ uses three “ideal” hash

functions of which only two functions can run in parallel. This makes OAEP+

a two pass scheme. The original OAEP construction was also two pass but the

construction was based on two “ideal” hash functions. OAEP+ is essentially just

as efficient as OAEP, and even has a tighter security reduction. Security proof of

OAEP+ is valid with any trapdoor one-way permutation, whereas OAEP security

proof is valid with some specific trapdoor one-way permutations.

In 2001, Boneh [29] proposed two much simpler padding schemes than

OAEP/OAEP+ for the RSA and Rabin trapdoor permutations that can be

CCA secure in the random oracle model. The first one is called Simple-OAEP,

or SAEP, and it is based on one “ideal” hash function while the second one is

called SAEP+ and it is based on two “ideal” hash functions. Both SAEP and

SAEP+ are single pass schemes. The main limitation of SAEP/SAEP+ is that

they restrict the message size and their security proof is valid only for the RSA

and the Rabin functions. Under similar restrictions, another scheme ZAEP is

introduced in [9] which aims to lower the ciphertext overhead by reducing the

redundancy in the scheme.

In 2003, Phan and Pointcheval [86, 87] introduced OAEP-3R which is RCCA

secure (“relaxed CCA” [87] equivalent to “replayable CCA” [35]- a slightly weaker

notion than general CCA) with any trapdoor one way permutation (f) in random

oracle model (ROM). Let “ciphertext overhead” [2] stand for the difference

between the length of ciphertext and plaintext. OAEP-3R was shown to have

only t-bit ciphertext overhead, whereas OAEP and OAEP+ have 3t-bit ciphertext

overhead, where t stands for security requirement in bits1.

1A security requirement of t-bit implies that at-least 2t queries are required to break the

3.1. Background 33

In 2008, Abe, Kiltz and Okamoto [2] showed that security reduction of

OAEP-3R forces ciphertext overhead to be 2t. A new scheme called OAEP-4X

was introduced in [2] which provides CCA security for any trapdoor one way

permutation in ROM. OAEP-4X has only t-bit ciphertext overhead which was

shown to be optimal (lowest achievable bound). In OAEP-4X, reduction of

t-bit ciphertext overhead with respect to OAEP-3R has only limited practical

application such as in a highly bandwidth constrained network. Therefore, for

general applications ciphertext overhead reduction by t bits is a less interesting

case.

The number of hash functions used in OAEP is two and these are used in a 2

round structure. OAEP+ is also 2 round structure but uses three hash functions

(two hash function can run in parallel while encryption). OAEP-3R is 3 round

structure that uses three hash functions and OAEP-4X is 4 round structure that

uses four hash functions. Each of these schemes (OAEP, OAEP+, OAEP-3R

and OAEP-4X), proven secure in ROM, requires one or more hash functions

with arbitrary size output. For example, for RSA-2048 (or RSA-3072) trapdoor

one-way permutation, minimum number of hash function with arbitrary size

output required in OAEP, OAEP+, OAEP-3R and OAEP-4X are 1, 1, 2 and 2

respectively.

Currently, no cryptographic standard specifies an instantiation for a hash

function of arbitrary size. However, some such instantiations are implicitly

required in PKCS #1 v2.1 [69] as explained next. The standardized construction

RSA-OAEP requires two random hash functions G and H with small input

size (less than the RSA modulus) but arbitrarily sized outputs. Both these

hash functions are instantiated in PKCS by the MGF1 pseudo-random number

generator [69]. On input x, MGF1 uses a hash function h in counter mode:

MGF1(x) = h(x||count0)||h(x||count1)||h(x||count2)|| . . ., where h is either SHA-

1 or SHA-2. Because MGF1 is not a regular standardized hash function, we use a

term “non-standard hash function” for such functions. These functions instantiate

a hash function of arbitrary output size by utilizing a standard fixed length hash

function such as SHA-1 or SHA-2. Similarly, in other OAEP-type schemes,

instantiation of such hash functions is done by using similar “non-standard hash

functions”.

OAEP-type schemes (OAEP, OAEP+,OAEP-3R) discussed above, work only

scheme with probability close to 1.

34
Chapter 3. Sponge based CCA secure Asymmetric Encryption from trapdoor one-way

permutations

for restricted message length (less than input size of trapdoor one-way permuta-

tion) except OAEP-4X, which can process long messages (more than input size of

trapdoor one-way permutation) as well. To encrypt lengthy messages, OAEP-4X

uses one extra hash function and a semantically secure symmetric encryption

scheme along with four hash functions. In OAEP-4X, the ability of handling long

messages is the result of utilizing the well known Tag-KEM/DEM framework [1,25].

Tag-KEM/DEM is considered a hybrid encryption scheme [1,7,43,47,61,62,67,81].

In the hybrid paradigm, an asymmetric key encapsulation mechanism (KEM)

combines with a symmetric data encapsulation mechanism (DEM). Tradition-

ally, KEM is a probabilistic algorithm that produces a random symmetric key

and an asymmetric encryption of that key as the key encapsulation. DEM is

a deterministic algorithm that takes a symmetric key, generated by KEM, and

encrypts the message under that key. In Tag-KEM/DEM framework, KEM takes

a feedback, referred to as the ‘tag’, from DEM part and then generates key

encapsulation. Final ciphertext results from concatenation of key encapsulation

and encryption of message. This traditional hybrid paradigm suffers from high

ciphertext overhead (difference between plaintext and ciphertext length) equal to

the size of asymmetric encryption of key.

3.1.2 Motivation

All the previous OAEP-based encryption schemes require a perfect random

function, i.e. a random oracle, over an arbitrary domain and/or arbitrary range.

However, in practice one has access to a random function or permutation over

a relatively small domain/range only, such as block-ciphers and hash functions.

To solve the problem of generating lengthy hash outputs, RSA-Full Domain

Hash [12,14,38] or the Mask Generation Function (MGF1) [69] in RSA-OAEP

are currently implemented with a complex construction of fixed length hashes and

counters. When a fixed length hash function is used with an input of m blocks

and the requirement is to produce an n-block output, the hash function has to

run approximately m× n times. All of the previously mentioned schemes proven

secure in ROM (OAEP, OAEP+, OAEP-3R, OAEP-4X) require one or more hash

functions with output size larger than standard sizes (e.g., SHA-1, SHA-512).

While the security analysis of these schemes treat the hash functions as random

oracles, the works [10,70] showed that the hash function instantiation proposed

in the literature for such cases are weaker than a random oracle. “Non-standard

3.1. Background 35

hash functions” (such as MGF1) are not well analyzed in literature, have complex

construction of fixed length hash functions with counter and are also proven

weaker than random oracle. This raises a question on the possibility of modifying

the OAEP framework which does not require any “non-standard hash function”

and where all the computations are performed in standardized input-output

settings.

Development of schemes from OAEP to OAEP-4X shows differences in the

number of rounds, depending upon calls to the hash functions used. OAEP

and OAEP+ are considered as 2 round structures, OAEP-3R as 3 round and

OAEP-4X as 4 round. This naturally poses a question on the possibility of further

development of the OAEP-type scheme while reducing the number of rounds.

As already remarked, OAEP-type constructions are good candidates for hybrid

encryption to construct KEMs, as in [25]. Our motivation for this work also

comes from an open problem mentioned in [1] about having a hybrid construction

from different primitives like an ideal permutation.

Interestingly, popular Sponge constructions [20] based on iterative permutation

is a suitable solution to all the problems mentioned earlier. In a Sponge function,

for an m-block input and an n-block hash output, roughly m + n calls to the

internal primitive permutation are required. Moreover, the number of permutation

calls in a Sponge function [20], used as a hash function, and SpongeWrap [21],

a modification of Sponge function used as AE, are equal in general. Therefore,

the versatility of Sponge function encourages the designers to come up with more

useful and efficient design.

3.1.3 General View of OAEP+ with Sponge

In this section, we provide Sponge instantiated version of the general view of

the OAEP+ discussed in section 1.2.3. This helps us to elaborate the basis

of the design of our proposal SpAEP scheme. This general view is shown in

Figure 3.1(a).

In this chapter, we provide f -SpAEP as an example of this general view where

the f -SpAEP scheme uses SpongeWrap as OAE and a Sponge function as Hash

part with different IV.

36
Chapter 3. Sponge based CCA secure Asymmetric Encryption from trapdoor one-way

permutations

y

bEncryption Hash

Trapdoor Permutation-f

M

l

l0

R

Authenticated

r

b

One-Time

(OAE)

(C||T1) T2

⊕

(a) Generic OAEP+ with f
y

b
Sponge

Trapdoor Permutation-f

M

l

l0

R

r

b

(C||T1) T2

⊕

SpongeWrap
Function

(b) Sponge based view of Generic OAEP+

Figure 3.1: Generalization of OAEP+ to SpAEP

3.2 Contribution

In this work, we introduce a Sponge based Asymmetric Encryption Padding scheme

(SpAEP), a novel way to use the SpongeWrap [21] and the Sponge function [20]

to encrypt arbitrary length messages in the setting of public key cryptography.

Both the functions SpongeWrap and Sponge use a public invertible permutation

as a primitive function. Number of permutation calls in both Sponge function

and SpongeWrap are generally the same for equal number of input-output data

blocks.

� We provide a new approach to construct asymmetric key cryptographic

schemes in ideal permutation model by utilizing permutations, having small-

er/practical domain, in SpAEP. All the previous public key cryptography

literature dealing with OAEP-based encryption are proven secure in Ran-

dom Oracle Model that requires hash functions (or a random function) over

an arbitrary domain.

� SpAEP uses the Sponge function and the SpongeWrap in standard input-

output settings, proposed for “Sponge functions” [19–22], as per the security

requirement. Therefore, SpAEP removes the requirement of having a “non-

standard hash function”, which is required in previous OAEP-type schemes(

OAEP, OAEP+, OAEP-3R, OAEP-4X, etc.,).

� In SpAEP, both functions (Sponge function and SpongeWrap) are used

in pipelined structure. After a fixed number of permutation calls of

3.2. Contribution 37

SpongeWrap, both functions (Sponge function and SpongeWrap) are used

in parallel fashion to speed-up the process. Therefore, we consider SpAEP

as 1 round structure in comparison to other OAEP-type schemes. However,

the functions are not parallelizable during decryption.

Features of SpAEP and comparison with other OAEP-type schemes

� Although the permutation used in Sponge is invertible, we do not use this

fact for our construction and provide inverse-freeness during both encryption

and decryption. Therefore our construction allows using permutations

which are inefficient to invert but efficient in the forward direction. That

is, computation time, implementation or memory efficiency of the forward

direction of the permutation can be exploited by a user in our design.

Moreover, our design allows using a non-invertible mapping in the Sponge

function.

� Let f be a trapdoor one-way permutation then we denote the instantiation

of our scheme with f by f -SpAEP. Our construction f -SpAEP can process

arbitrary length messages and is CCA secure when used with any trapdoor

one-way permutation.

� We provide a formal security proof of f -SpAEP in adaptively chosen ci-

phertext attack (CCA) setting in the ideal permutation model. Instead

of directly using the random oracle model based security proof of Sponge

construction, we provide a dedicated proof from scratch in ideal permutation

model to avoid multi-stage game problem [5,78]. Usage of ideal permutation

model allows stronger adversary in consideration of security proof, where

the adversary have access to both underlying permutation and function

based on this permutation. This stronger adversary in not applicable in RO

model because function is itself considered as a black-box. Although [86]

introduced an efficient scheme in ideal permutation model with full domain

permutation encryption, it is still impractical due to the hardness of having

large sized permutation (the needed size of the permutation is equal to the

size of the trapdoor one-way permutation itself). A similar problem comes

up when a scheme requires hash outputs which are different (generally

larger) than the output size of standard hash functions.

38
Chapter 3. Sponge based CCA secure Asymmetric Encryption from trapdoor one-way

permutations

OAEP [13] OAEP+ [98] OAEP-3R [86] OAEP-4X [2] SpAEP
Ciphertext-
overhead

3t 3t 2t t 2t

Function
calls

2 Hash 3 Hash 3 Hash

5 Hash, 1
Symmetric
Encryption
(E)

1 SpongeWrap,
1 Sponge func-
tion

Function
calls

Sequential or
Parallel

(Encryption)

Sequential
2 parallel, 1
sequential

Sequential Mixed Parallel

Trapdoor
Perm.-f

RSA, Rabin Any f Any f Any f Any f

Max.
Message size

with f
`− 3t `− 3t `− 2t Any Any

Table 3.1: Comparison of OAEP, OAEP+, OAEP-3R, SpAEP, OAEP-4X. The
security parameter in term of number of bits is denoted by t. That is, the number
of queries required in order to break the scheme with probability 1 is 2t. The
input-output size of trapdoor one way permutation f is denoted by `.

In Table 3.1, we compare OAEP [13], OAEP+ [98], OAEP-3R [86] and OAEP-

4X [2] with SpAEP. The ciphertext overhead values in the table are taken from

Table 1 in [2].

OAEP, OAEP+ and OAEP-3R can only handle messages of length less than

input size of trapdoor one-way permutation while OAEP-4X and SpAEP can

handle any message size.

Next we provide some comments on Table 3.1. The 2 hash function calls for

OAEP are sequential and so are the 3 hash function calls for OAEP-3R. Out of

the 3 hash function calls in OAEP+, only 2 can run in parallel. In OAEP-4X, for

messages having size less than the input size of the trapdoor one-way permutation,

4 hash function calls are required sequentially. For long messages (message size

more than input size of trapdoor one-way permutation), OAEP-4X uses 5 hash

functions (H1, H2, H3, H4, and G) and one symmetric encryption scheme (E).

Initially, only two hash function calls run in parallel (H1,G) then H2 and E

runs parallel, and then H3 and H4 runs sequentially. Overall in OAEP-4X, for

long messages, only two functions calls can run in parallel at any instant. From

Table 3.1, we can clearly see that SpAEP is more efficient in comparison to other

schemes. Although SpAEP has t-bits extra ciphertext overhead with respect to

OAEP-4X, yet as explained earlier this is a minor concern in many applications.

3.3. SpAEP: Sponge based Asymmetric Encryption Padding 39

One may argue that any improvement in OAEP-type scheme does not di-

rectly translate to an efficient public key encryption scheme because of the high

computation time of the trapdoor one-way permutation, as against the OAEP

structure. However, considering recent developments in lattice based cryptogra-

phy [17, 77, 84], one can see that the computation time of trapdoor functions can

be reduced significantly.

In summary, we are proposing an asymmetric padding scheme which is simpler

and more efficient in terms of structure and functionality than the existing

OAEP-type schemes.

3.3 SpAEP: Sponge based Asymmetric Encryp-

tion Padding

3.3.1 Description

SpAEP is a Sponge function based construction. SpAEP iterates a fixed permu-

tation π : {0, 1}r × {0, 1}c → {0, 1}r × {0, 1}c similar to the Sponge construction

and SpongeWrap [20–22].

The bit length of input and output of π, called bit rate, is b = r+ c. The term

r is called input rate and the term c is called capacity rate. The permutation π is

the only underlying cryptographic primitive used by SpAEP. For using SpAEP for

asymmetric key setting, one can use any family of trapdoor one-way permutations

F such as RSA. The resulting scheme is called F -SpAEPπ or simply F -SpAEP.

The output of the encryption function f is Y ∈ {0, 1}` and the inverse of f is

represented by f−1. The notation bxck (resp. dxek) represents the first (resp.

last) k bit of x. Figure 3.2 shows the graphical representation of SpAEP.

For security parameter k, a permutation π with parameters r and c can be

chosen as explained in [20–22]. For the scheme to be simple and compatible with

given input-output length ` of a trapdoor one-way permutation f , we assume

that ` = n ∗ r + 2k should hold for a positive integer n ≥ 1. SpAEP uses a

reversible padding function pad(·) to generate blocks of length r bits such that

|pad(x)| ≥ ` − 2r and |pad(x)| mod r = 0. For SpAEP, we use 10*1 reversible

padding and define padding and unpadding function accordingly.

40
Chapter 3. Sponge based CCA secure Asymmetric Encryption from trapdoor one-way

permutations

π π π π π

K m1 m2 m
n−1

m
n

c1 c2 c
n−1

c
n

IV2
IV1

π

π

me

cn+1 ce

m
n+1

π π πIV3
IV1

f

Y

T2

cn+1
ce

T1

SpongeWrap

Sponge

K

Ce

π π

T1

∼

∼

Figure 3.2: SpAEP with any trapdoor one way permutation f and public invertible
permutation π : {0, 1}r × {0, 1}c ← {0, 1}r × {0, 1}c. SpAEP accepts message M
and internally calls pad(M)=m1|| . . . ||mn||mn+1|| . . . ||me such that n = (` − 2k)/r,
|pad(M)| ≥ (`−2k) and |m1| = |m2| = . . . = r. The size of the trapdoor permutation-f
is denoted by ` and the size of random K and Tags T1 and T2 is k-bit. The symbol ∼O
represents taking k-bit output from r-bit input.

pad(x)
x||10((`−2k)−|x|−2)1, if|x| ≤ (`− 2k − 2)

x||10(r−1)1, if |x| = `− 2k − 1

x||1||0r−((|x|+1)mod r)−1||1, otherwise

unpad(Y)

if ∃ x 6= ∅ s.t. Y = x||1||0z||1 where

0 ≤ z ≤ `− 2k − 3 if |Y | = `− 2k OR

0 ≤ z ≤ r − 1 if |Y | > `− 2k then
return x

else
return ⊥

On input M, SpAEP internally computes pad(M) = m1|| . . . ||mn||mn+1|| . . . ||me

and produces output c1|| . . . ||cn||cn+1|| . . . ||ce along with k-bit tags T1 and T2,

where n ≥ 1, e > n. We denote Cf = c1|| . . . ||cn||T1||T2 and Ce = cn+1|| . . . ||ce.
Final output of the F-SpAEP will be Y ||Ce, where Y = f((Cf), and Ce =

cn+1|| . . . ||ce.
Encryption and Decryption in F -SpAEP are described in Algorithms 1 and

2 respectively. Note that the encryption and decryption procedures of SpAEP

use only the forward direction of the permutation. Therefore, we can have a

permutation that is more efficient in forward direction compared to its inverse.

3.3. SpAEP: Sponge based Asymmetric Encryption Padding 41

Algorithm 1: Encryption:

SpAEP − Eπ
f (M) = Y ||Ce

1 Initialization:

IV1 = 0r,IV2 = 0c,IV3 = IV2 ⊕ 1,

w = IV2, x = IV1

2 Random Nonce: K
$←− {0, 1}k

3 pad(M) = m1||m2|| . . . ||me, where

|mi| = r ∀1 ≤ i ≤ e
4 x = x⊕K||0r−k

5 for i = 1→ e do

6 (x||w) = π(x||w)

7 x = x⊕mi

8 ci = x

9 (x||w) = π(x||w); T1 = bxck
10 x = IV1 and w = IV3

11 for i = 1→ e do

12 x = x⊕ ci
13 (x||w) = π(x||w)

14 x = x⊕ T1||0r−k

15 (x||w) = π(x||w)

16 T2 = bxck ⊕K
17 Cf = c1||c2|| . . . ||cn||T1||T2;

Ce = cn+1|| . . . ||ce
18 Y = f(Cf)

19 Return: Y ||Ce

Algorithm 2: Decryption:

SpAEP −Dπ
f−1(Y ||Ce) = M or ⊥

1 Initialization:

IV1 = 0r,IV2 = 0c,IV3 = IV2 ⊕ 1

2 Cf = c1||c2|| . . . ||cn||T1||T2 = f−1(Y);

cn+1|| . . . ||ce = Ce, w = IV3, x = IV1

3 for i = 1→ e do

4 x = x⊕ ci
5 (x||w) = π(x||w)

6 x = x⊕ T1||0r−k

7 (x||w) = π(x||w); K = bxck ⊕ T2
8 x = K||0r−k; w = IV2

9 for i = 1→ e do

10 (x||w) = π(x||w)

11 mi = x⊕ ci
12 x = ci

13 (x||w) = π(x||w); T ′1 = bxck
14 if T1 = T ′1 then

15 if ∃ M s.t.

M = unpad(m1|| . . . ||me) then

16 Return: M

17 else

18 Return: ⊥

19 else

20 ⊥.

42
Chapter 3. Sponge based CCA secure Asymmetric Encryption from trapdoor one-way

permutations

3.3.2 CCA Security of F-SpAEP

Next we provide a formal proof of CCA security of F-SpAEP. As described

in Section 2.2, the experiment that the adversary A runs against the scheme

F -SpAEP is the following.

Experiment: Expind−cca−dF−SpAEPπ ,A(k)

1. (f︸︷︷︸
pk

, f−1︸︷︷︸
sk

)
$←− GenEnc(1r);

2. (M0,M1, s)← A
π(·),SpAEP−Dπ

f−1 (·),f(·);

3. Y ∗||Ce∗ ← SpAEP − Eπ
f (Md);

4. d′ ← Aπ(·),SpAEP−D
π
f−1 (·),f(·)(M0,M1, Y

∗||Ce∗, s);

5. return d′;

where SpAEP−Dπ
f−1(·) is decryption oracle and SpAEP−Eπ

f (·) is encryption

oracle.

Theorem 1. If the underlying trapdoor permutation f , generated using trapdoor

generator F , is one way, then F-SpAEP is secure against adaptive chosen cipher-

text attack in the Ideal permutation model. The success probability of adversary

A for CCA attack is

Pr[Expind−cca−dF−SpAEP,A(k) = d] ≤ 1

2
+

(q − 1)q

2b+1
+
q(q + 1)

2c
+

5qD
2k

+
qπA
2k

+ AdvowF (BA Succeeds) +
qπA

min(2k, 2c)
,

where q = qπ + qπ−1 , qπ and qπ−1 are the number of π and π−1 queries

respectively, qπA is the number of π and π−1 queries by A, qD is the number of

decryption queries and (b, c, k) are parameters of permutation π as defined earlier,

B is an adversary that finds the complete random input Cf of trapdoor-one way

permutation f given Y
$←− {0, 1}` such that Y = f(Cf), without having knowledge

of f−1. Adversary B uses A as a subroutine internally. AdvowF (BA Succeeds) is

the success advantage that a particular adversary B has in breaking the trapdoor

one-way permutation f of F . The time and space requirements of B are related

to A as follows:

Time(B) = O(Time(A) + qπA · tf + (qπA + qD) · tf);

3.3. SpAEP: Sponge based Asymmetric Encryption Padding 43

Space(B) = O(Space(A) + qπA · `). (3.1)

Here, tf is the time required to compute f , and space is measured in the number

of storage bits.

Proof. We will use Game based playing technique [15, 16]. We start from

the original CCA game as discussed in Section 3.3.2. Let ExpF−SpAEP,A Or

Expind−cca−dF−SpAEP,A(k) = d denote the event that A outputs d′ = d where d
$←− {0, 1}.

We want to show that | Pr[ExpF−SpAEP,A]|=1
2

+ negl(k). We slightly change

F -SpAEP into a sequence G0, G1, . . ., G12 such that:

Pr[ExpF−SpAEP,A]= Pr[ExpG0,A]

Pr[ExpG(i−1),A]=Pr[ExpGi,A]+negl(`) ∀1 ≤ i ≤ 11

Pr[ExpG12,A]= 1
2

Each game has the following functions:

� Encryption (Enc), Decryption(Dec): perform Encryption and Decryption,

� π, π−1: public invertible permutation and its inverse,

� πEnc: permutation π calls by encryption and decryption functions,

� πA, π−1A : permutation π, π−1 calls by adversary A.

Encryption, Decryption, πA and π−1A are public oracles, which are also accessible

to the adversary. In each game, the following sets are maintained: Iπ by π and

π−1, IEnc by πEnc and IAπ by πA and π−1A to store input-output relations.

Another set Lc : {g : g ∈ {0, 1}c} is also maintained internally by π and π−1

for storing capacity bits. The set Lc is initialized to {IV2, IV3} because IV2 is

the capacity part of the input to first π of OAE (SpongeWrap) part and IV3 is

the capacity part of the input to the first π of Hash (Sponge) part. The set Lc
is updated on every call to π. Precisely, two c-bit values are appended to Lc on

each π call. These two values are the capacity bits of the inputs and output of π.

Note that q = qπ + qπ−1 , qπ = qπA + qπEnc and qD= number of decryption

queries. Further, the encryption query has 2(e+ 1) calls to πEnc.

In each of the games G0, G1, G2, G3, G4, G5 we make small incremental

changes in the permutation to have response in some particular fashion. In games

G6, G7, we make changes in the Decryption oracle and make it independent of f .

44
Chapter 3. Sponge based CCA secure Asymmetric Encryption from trapdoor one-way

permutations

Finally, in games G8, G9, G10, G11, G12 we make changes in Encryption oracle

along with some changes in πA oracle to achieve that d of Md is independent

of all previous queries. We represent the Hash part of SpAEP as a function

Hπ(j1, j2, j3..., ji, ji+1) whose output J is such that

J ||∗ =πEnc

(
πEnc(. . . (πEnc(πEnc(j2||0c ⊕ j1)⊕ j3||0c)⊕ j4||0c) . . .⊕ ji−1||0c)

⊕ ji||0b−k
)
⊕ ji+1||0b−k

where π is b-bit permutation, j1 ∈ {0, 1}b, (j2, j3, . . . ji−1) ∈ {0, 1}r, (J, ji, ji+1) ∈
{0, 1}k and ∗ ∈ {0, 1}c.

Game G0: This game perfectly simulates the F -SpAEP.

Pr[ExpF−SpAEP,A]=Pr[ExpG0,A].

3.3. SpAEP: Sponge based Asymmetric Encryption Padding 45

Game G0: Initialize Iπ = IEnc = IAπ = ∅, IV1 = 0r IV2 = 0c, IV3 = IV2 ⊕ 1

On Encryption-Query Md

1. x = IV1 and w = IV2

2. Random Nonce: K
$←− {0, 1}k

3. pad(M) = m1||m2|| . . . ||me, where

|mi| = r ∀1 ≤ i ≤ e
4. x = x⊕K||0r−k

5. for i = 1→ e do
(x||w) = π(x||w)

x = x⊕mi

ci = x

6. (x||w) = π(x||w); T1 = bxcr
7. x = IV1 and w = IV3

8. for i = 1→ e do
x = x⊕ ci
(x||w) = π(x||w)

9. x = x⊕ T1||0r−k

10. (x||w) = π(x||w)

11. T2 = bxck ⊕K
12. Cf = c1||c2|| . . . ||cn||T1||T2
13. Ce = cn+1|| . . . ||ce
14. Y = f(Cf)

15. Return: y||Ce

On Decryption-Query Y ||Ce

1. x = IV1 and w = IV2

2. Cf = c1||c2|| . . . ||cn||T1||T2 = f−1(y);

cn+1|| . . . ||ce = Ce

3. C = c1||c2|| . . . ||cn||T1||T2||cn+1|| . . . ||ce,
where |ci| = r for 1 ≤ i ≤ e,
|T1| = |T2| = k

4. for i = 1→ e do
x = x⊕ ci
(x||w) = π(x||w)

5. x = x⊕ T1||0r−k

6. (x||w) = π(x||w); K = bxck ⊕ T2
7. x = K||0r−k; w = IV2

8. for i = 1→ e do
(x||w) = π(x||w)

mi = x⊕ ci
x = ci

9. (x||w) = π(x||w); T ′1 = bxck
10. if T1 = T ′1 then

if ∃ M s.t. M = unpad(m1|| . . . ||me)

then
Return:M

else
Return: ⊥

else
⊥.

On π-Query m, where m ∈ {0, 1}b
1. let (x||w) = m, where x ∈ {0, 1}r,

w ∈ {0, 1}c,
2. if (m, v)∈ Iπ then return v

3. v
$←− {0, 1}b

4. if ∃ m′ s.t (m′, v)∈ Iπ, then

v
$←− {0, 1}b \ {v : (∗, v) ∈ Iπ}, where

∗ ∈ {0, 1}b

5. Iπ = Iπ
⋃
{(m, v)}

6. return v;

On π−1-Query v = {v1||v2}. where

v1 ∈ {0, 1}r, v2 ∈ {0, 1}c, v ∈ {0, 1}b
1. if (m, v)∈ Iπ then return m

2. m
$←− {0, 1}b

3. if ∃ v′ s.t (m, v′)∈ Iπ, then

m
$←− {0, 1}b \ {m : (m, ∗) ∈ Iπ}, where

∗ ∈ {0, 1}b

4. Iπ = Iπ
⋃
{(m, v)}

5. return m;

On πEnc-Query m
1. v = π(m)

2. IEnc = IEnc
⋃
{(m, v)}

3. return v;

On πA-Query m
1. v = π(m)

2. IAπ = IAπ
⋃
{(m, v)}

3. return v;

On π−1A -Query v
1. m = π−1(v)

2. IAπ = IAπ
⋃
{(m, v)}

3. return v;

Figure 3.3: Game G0 of F -SpAEP

46
Chapter 3. Sponge based CCA secure Asymmetric Encryption from trapdoor one-way

permutations

Game G0 and Game G1: The response of both these games is exactly same.

In the permutation, both games choose their response randomly while excluding

the previous responses, in order to satisfy the permutation property. In G1, there

is an addition of dummy lines, shown in dash boxes, in which if random chosen

response v is already with some m′ as {m′, v} ∈ Iπ then we say bad← true.

Pr[ExpG0,A]=Pr[ExpG1,A].

Game G1 G2: Initialize Ienc = Iπ = IAπ = ∅, IV1 = 0r, IV2 = 0c, IV3 = IV2 ⊕ 1.

On π-Query m,where m ∈ {0, 1}b

1. let (x||w)=m,where x ∈ {0, 1}r,
w ∈ {0, 1}c,

2. if (m, v)∈ Iπ then return v

3. v
$←− {0, 1}b

4. if ∃ m′ s.t (m′, v)∈ Iπ, then

badb ← true and

v
$←− {0, 1}b \ {v : (∗, v) ∈ Iπ} ,

where ∗ ∈ {0, 1}b

5. Iπ = Iπ
⋃
{(m, v)}

6. return v;

On π−1-Query v, where v ∈ {0, 1}b

1. let (v1||v2)=v,where v1 ∈ {0, 1}r,
v2 ∈ {0, 1}c,

2. if (m, v)∈ Iπ then return m

3. m
$←− {0, 1}b

4. if ∃ v′ s.t (m, v′)∈ Iπ, then

badb ← true and

m
$←− {0, 1}b \ {m : (m, ∗) ∈ Iπ} ,

where ∗ ∈ {0, 1}b

5. Iπ = Iπ
⋃
{(m, v)}

6. return m;

Rest of Oracles same as G0

Figure 3.4: Game G1 and G2: G1 has dummy line, shown in dash box , along
with solid line box same as compare to G0. G2 includes dash box line but without
solid line box .

Game G1 and Game G2: In Game G2, π avoid checking of previous response.

Both G1 and G2 behave the same till badb occurs. The event badb occurs when

a collision over b-bit outputs of permutation π takes place and is corrected in G1

but not in G2. If q is the total number of queries to π and π−1, then Pr[badb] is

≤ q(q−1)
2b+1 .

|Pr[ExpG2,A]− Pr[ExpG1,A]| =Pr[badb]≤ (q−1)q
2b+1 .

Game G2 and Game G3: Output of both game G2 and G3 are the same

where the output of π is not checked for collision over previous responses. In

3.3. SpAEP: Sponge based Asymmetric Encryption Padding 47

addition, G3 maintains a new list Lc, initialized with IV2 and IV3, which stores

the capacity part of input-output of π. G3 also adds a dummy line of code, shown

in dash box, in which if output of π has collision over capacity part of previous

responses in list Lc, then badc happens as true.

|Pr[ExpG3,A] = Pr[ExpG2,A]|.

Game G3 G4 : Initialize Lc = Ienc = Iπ = IAπ = ∅, IV1 = 0r, IV2 = 0c,

IV3 = IV2 ⊕ 1.

On π-Query m, where m ∈ {0, 1}b

1. let (x||w)=m,where x ∈ {0, 1}r,
w ∈ {0, 1}c,

2. if (m, v)∈ Iπ then return v

3. v1||v2
$←− {0, 1}b,where v1 ∈ {0, 1}r,

v2 ∈ {0, 1}c,

4.
if v2 ∈ Lc

⋃
{w}, then

bad←true and

v2
$←− {0, 1}c \ Lc

⋃
{w}

5. Iπ = Iπ
⋃
{(m, v1||v2)} and

Lc = Lc
⋃
{v2, w}

6. return v = v1||v2;

On π−1-Query v. where v ∈ {0, 1}b

1. let (v1||v2)=v,where

v1 ∈ {0, 1}r, v2 ∈ {0, 1}c,
2. if (m, v)∈ Iπ then return m

3. m′||m′′ $←− {0, 1}b,where

m′ ∈ {0, 1}r, m′′ ∈ {0, 1}c,

4.
if m′′ ∈ Lc

⋃
{v2}, then

bad←true and

m′′ $←− {0, 1}c \ Lc
⋃
{v2}

5. Iπ = Iπ
⋃
{(m′||m′′, v)} and

Lc = Lc
⋃
{m′′, v2}

6. return m = m′||m′′;
Rest of Oracles same as G0

Figure 3.5: Game G3 and G4: G3 includes line of code in dash-box, but not of
solid-box. G4 includes dash-box and solid-box.

Game G3 and Game G4: In G4, if badc happens then capacity part of

output is chosen again randomly but avoiding the previous responses in Lc. Both

the games are the same till badc occurs. The event badc occurs if there is a

collision over c-bit output of permutation π. Pr[badc] is ≤ q(q+1)
2c

.

|Pr[ExpG4,A]− Pr[ExpG3,A]|=Pr[badc]≤ q(q+1)
2c

.

Game G4 and Game G5: Output of π in G4 and G5 is same. In G5, code

of π is re-written without any bad event.

|Pr[ExpG5,A] = Pr[ExpG4,A]|.

48
Chapter 3. Sponge based CCA secure Asymmetric Encryption from trapdoor one-way

permutations

Game G5: Initialize Ienc = Iπ = IAπ = ∅, IV1 = 0r, IV2 = 0c, IV3 = IV2 ⊕ 1,

Lc = {IV2, IV3}.

On π-Query m, where m ∈ {0, 1}b

1. let (x||w)=m,where x ∈ {0, 1}r,
w ∈ {0, 1}c,

2. if (m, v)∈ Iπ then return v

3. v1||v2
$←− {0, 1}b,where v1 ∈ {0, 1}r,

v2 ∈ {0, 1}c,
4. if v2 ∈ Lc

⋃
{w}, then

v2
$←− {0, 1}c \ Lc

⋃
{w}

5. Iπ = Iπ
⋃
{(m, v1||v2)} and

Lc = Lc
⋃
{v2, w}

6. return v = v1||v2;

On π−1-Query v. where v ∈ {0, 1}b

1. let (v1||v2)=v,where

v1 ∈ {0, 1}r, v2 ∈ {0, 1}c,
2. if (m, v)∈ Iπ then return m

3. m′||m′′ $←− {0, 1}b,where m′ ∈ {0, 1}r,
m′′ ∈ {0, 1}c

4. if m′′ ∈ Lc
⋃
{v2}, then

m′′
$←− {0, 1}c \ Lc

⋃
{v2}

5. Iπ = Iπ
⋃
{(m′||m′′, v)} and

Lc = Lc
⋃
{m′′, v2}

6. return m = m′||m′′;

Rest of Oracles same as G0

Figure 3.6: Game G5: same as G4 with simplified straight code

Game G5 and Game G6: Both the games are same. In Game G6 only a

dummy operation, shown as dash-box, of flag ← new is added in the Decryption

oracle to denote a new query. The query is new in the sense that neither the

query nor any part of the query during internal calls to π, of Decryption oracle,

was queried earlier by the adversary. That is, query 6∈ IAπ . In decryption oracle

there is addition of one more dummy line of badπ as true if T = T ′ happens for

flag = new.

|Pr[ExpG6,A] = Pr[ExpG5,A]|.

3.3. SpAEP: Sponge based Asymmetric Encryption Padding 49

�� ��Game G6 and G7 : Initialize Iπ = IEnc = IDec = IAπ = ∅, IV1 = 0r IV2 =

0c, IV3 = IV2 ⊕ 1, Lc = {IV2, IV3}; flag ∈ {old, new}

On Decryption-Query Y ||Ce

1. Cf = c1||c2|| . . . ||cn||T1||T2 = f−1(y); cn+1|| . . . ||ce = Ce

2. x = IV1; w = IV3; flag ← old

3. for i = 1→ e do
x = x⊕ ci
If 6 ∃ v s.t. (x||w, v) ∈ IAπ then flag ← new

(x||w) = πDec(x||w)

4. If 6 ∃ v s.t. (x⊕ T1||w, v) ∈ IAπ then flag ← new

5. (x||w) = πDec((x⊕ T1||0b−r)||w)

6. K = bxcr ⊕ T2; x = K||0b−r w = IV2

7. for i = 1→ e do

If 6 ∃ v s.t. (x||w, v) ∈ IAπ then flag ← new

(x||w) = πDec(x||w)

mi = x⊕ ci
x = ci

8. If 6 ∃ v s.t. (x||w, v) ∈ IAπ then flag ← new

9. (x||w) = πDec(x||w),T ′1 = bxcr
10. if T1 = T ′1 and flag ← new then

badπ ← true�� ��Return:M Return: ⊥

11. if T1 = T ′1 and flag ← old then

if ∃ M s.t. M = unpad(m1|| . . . ||me) then
Return:M

else
Return: ⊥

else
⊥.

Rest of oracles same as G5

Figure 3.7: Game G6 having extra lines of code as dummy, shown in dash box,
compared to G5. G6 includes

�� ��oval box not solid line box where Game G7 does

not includes
�� ��oval box but include solid line box

50
Chapter 3. Sponge based CCA secure Asymmetric Encryption from trapdoor one-way

permutations

Game G8: Initialize Ienc = Iπ = IAπ = ∅, IV1 = 0r, IV2 = 0c, IV3 = IV2 ⊕ 1.

Lc = {IV2, IV3}

On Decryption-Query Y ||Ce

1 w0 = IV2;

2 If ∃ pad(M)=m1||m2|| . . . ||me, K, after x0 = K||0r−k ⊕ IV1 such that

(x0||w0, v11||v21) ∈ IAπ ,

(xn||wn, v1e+1||v2e+1) ∈ IAπ ,

((z1e+1 ⊕G)||u2e+1 ,z1e+2||z2e+2)∈ IAπ ,

f(c1|| . . . ||ce||bv1e+1ck||T2) = Y , where G = bv1e+1cr||0r−k,
T2 = bz1e+2ck ⊕K
then return M

else Return ⊥

Rest of Oracles same as G7

Following special notations is used during Game G8 and onwards in

decryption oracle:

1. During OAE part of SpAEP, we represent input-output relation of

π’s subsequent calls for pad(M) = m1|| . . . ||me by (v1i+1
||v2i+1

) =

π(xi||wi), where xi = v1i⊕{mi}, wi = v2i 0 ≤ i ≤ e, v10 = IV1,m0 =

K, w0 = IV2, v1i , xi ∈ {0, 1}r and v2i , wi ∈ {0, 1}c. Then ci will

represent mi ⊕ v1i , where 1 ≤ i ≤ e.

2. Input-output relation of π’s subsequent call during Hash part of

SpAEP will be represented as follows: (z1i+1||z2i+1) = π(u1i ||u2i),
u1i = ci⊕ z1i , u2i = z2i , where 1 ≤ i ≤ (e+ 2), u21 = IV3, z11 = IV1,

ce+1 = T1, ce+2 = K

Figure 3.8: Game G8: Output of decryption oracle in G8 is same as G7 in
re-written form and independent from sk or f−1

Game G6 and Game G7: Both the games act similarly till badπ occurs. The

event badπ occurs in Decryption oracle when a new query results in T1 = T ′1

3.3. SpAEP: Sponge based Asymmetric Encryption Padding 51

π π π π π

K m1 m2 m
n−1

m
n

c1 c2 c
n−1

c
n

IV2
IV1

π

π

me

cn+1 ce

m
n+1

π π πIV3
IV1

f

Y

T2

cn+1
ce

T1

SpongeWrap

Sponge

K

Ce

π π

T1

∼

∼

A

C

B

Figure 3.9: f -SpAEP with three checkpoints for testing if a new query has been
made.

(mentioned in Algorithm 2 and Fig. 3.7). The badπ event occurs with probability
5qD
2k

+
qπA+qπ−1

2k
, as demonstrated below.

|Pr[ExpG7,A]− Pr[ExpG6,A]| = Pr[badπ] ≤ 5qD
2k

+
qπA + qπ−1

2k
.

Let (v1||v2) = πDec(x||w), where x,v1 ∈ {0, 1}r and w,v2 ∈ {0, 1}c. In decryp-

tion, an input is a new query to π when ((x||w), (v1||v2)) /∈ IAπ and old query when

((x||w), (v1||v2)) ∈ IAπ . If a new query (x||w) is input to π during decryption, then

π outputs v1||v2, where v2 /∈ Lc. That is, v2 is also new. Since v2 is unseen so far,

it ensures that the input to the next call of π is certainly new. Further, since v2

is new, next input x′||v2 satisfies the condition (x′||v2, ∗) /∈ IAπ , where ∗ stands

for any b bit value. Therefore one new query makes all subsequent inputs to π(·)
as new. Any new query to π implies that a ciphertext Y queried to Decryption

oracle has never been generated by the adversary. In Game G7, Decryption oracle

return ⊥ whenever adversary makes such a query.

To know if a new query has been made in SpAEP Decryption oracle, we

consider three checkpoints, called A, B and C in Figure 3.9. Next we explain the

situation when a badπ event can occur in Game G7.

In Hash-part (Sponge), if any input before A is new, then A is also new as

explained earlier. Hence a decryption query is certainly new if A is new. In the

case of checkpoints B and C, it is not possible that B is new query and C is old

query. This follows from our discussion above. Therefore we only need to check

C to determine if there is a new query in the OAE part.

52
Chapter 3. Sponge based CCA secure Asymmetric Encryption from trapdoor one-way

permutations

During encryption, let us denote the values at checkpoints A, B and C by

α,K∗||0b−k||IV2 and β respectively. Let Y ∗||Ce∗ be the target ciphertext and

C∗ = Cf∗||Ce∗ where Cf∗ = c∗1|| . . . ||c∗n||T ∗1 ||T ∗2 and Ce∗ = c∗n+1|| . . . ||c∗e such that

Y ∗ = f(Cf∗).

The following cases cover all the possible cases for new query.

1. (A new, B new, C new): The badπ event occurs only when tag T1 = T ′1
(shown in Fig. 3.7)

� : C 6= β: Then T1 = T ′1 implies collision of the outputs of π over k-bit

value. Probability of this event is qD
2k

for qD queries to Decryption

oracle

� : C=β: Then T1 = T ∗1 which means ci = c∗i for all i such that 1 ≤ i ≤ n

and K = K∗. This in turn results in T2 = T ∗2 . This leads to C = C∗,

which is not allowed because adversary can not query Y ∗ = f(C∗) to

Decryption oracle.

2. (A new, B new, C old): This case is impossible, as for Case 2.

3. (A new, B old, C new): The bad event occurs only when tag T1 = T ′1 as in

CASE-1. This happens with probability qD
2k

.

4. (A new, B old, C old):

(a) A 6= α: B and C are old queries in this case and hence K,T1 is already

known to the adversary. T2 is also fixed due to the query Y ||Ce to

the Decryption oracle. Further, bπ(A)cr= K ⊕ T2 results in T1 = T ′1,

which is a collision of output of π(A) over k-bit value. Probability of

this event is qD
2k

for qD queries to the Decryption oracle.

(b) A=α: This results in T2 = T ∗2 due to the permutation property of

π. This leads to ci = c∗i for all i such that 1 ≤ i ≤ n. If K = K∗,

then Y = Y ∗ which is not allowed. On the other hand, if K 6= K∗

and T1 = T ′1, then the OAE part results in collision over k-bits. This

is a kind of hash collision on outputs of OAE for different inputs.

Probability of such a hash collision is
qπA+qπ−1

2k
.

5. (A old, B new, C new): The bad event occurs only when Tag T1 = T ′1 as in

CASE-1,3. This happen only with probability qD
2k

.

3.3. SpAEP: Sponge based Asymmetric Encryption Padding 53

6. (A old, B new, C old): This case is impossible. It is due the fact that if B

is new, then all the subsequent inputs to πDec including C are also new.

7. (A old, B old, C new): Same as CASE-1,3,5.

8. (A old, B old, C old): The bad event can not occur in this case.

Game G7 and Game G8: Both the games are same. Game G7 and G8 both

return ⊥ when a new query is given to the Decryption oracle. In Game G8, a

message M is returned only when all the input-output relations of π, which would

be possible during the encryption of M , are already in IAπ . Game G8 iterates

over all the possible pairs of (input,output) of π ∈ IAπ . As shown in Fig. 3.8,

with help of IV1, IV2 and IV3 as starting points, the decryption simulator starts

checking IAπ and extracts a Cf and Ce for a K such that Y = f(Cf). This makes

the Decryption oracle independent of f .

On query Y ||Ce, the Decryption oracle returns a valid M only if the adversary

knows the plaintext-ciphertext pair (M,Y ||Ce); otherwise it returns ⊥.

|Pr[ExpG8,A] = Pr[ExpG7,A]|.

Game G8 and G9 : Both G8 and G9 act similarly. We start incremental

changes in Encryption oracle from Game G9. In G9, K∗ is chosen before Encryp-

tion query, after “find” stage once Md is known in game. This replacement of K∗

generation is shown in dash-box in G9 in Fig. 3.10. In both G8 and G9 a random

K∗ is used therefore,

|Pr[ExpG9,A] = Pr[ExpG8,A]|.

Game G9 and Game G10: In G9, K∗ is generated randomly. In G10, K∗

is computed using randomly generated values c∗i (1 ≤ i ≤ e) ,T ∗1 and T ∗2 . The

value of K∗ is calculated via HπEnc(IV, c∗1, c
∗
2, . . . , c

∗
e, T

∗
1) ⊕ T ∗2 . Since π is an

ideal permutation and T ∗2 is a random value, K∗ will also be random. In G10

we also mark as BadK ← true if the adversary queries K∗||0b−k||IV2 to πA or

receives response K∗||0b−k||IV2 from π−1A . In G10, BadK is a dummy event only.

Therefore, G9 and G10 are same.

|Pr[ExpG10,A] = Pr[ExpG9,A]|.

54
Chapter 3. Sponge based CCA secure Asymmetric Encryption from trapdoor one-way

permutations

Game G9 and
�� ��G10 and G11: Initialize Iπ = IEnc = IAπ = ∅,

IV1 = 0r IV2 = 0c, IV3 = IV2 ⊕ 1, Lc = {IV2, IV3},

After Find Stage (AFS): K∗ $←− {0, 1}r#

"

!

C∗||T ∗1 ||T ∗2
$←− {0, 1}e∗r+2k, Let C∗ = c∗1|| . . . ||c∗n||c∗n+1|| . . . ||c∗e, where |c∗[1,...,e]| =

r, |T ∗[1,2]| = k

K∗||∗ = πEnc(πEnc(. . . (πEnc(πEnc(c
∗
1||0c ⊕ IV) ⊕ c∗2||0c) ⊕ c∗3||0c) . . . ⊕ c∗e||0c) ⊕

T ∗1 ||0b−r)⊕ T ∗2 ||0b−r

For G9 and G10

On Encryption-Query Md

1. pad(M) = m1||m2|| . . . ||me,

where |mi| = r ∀1 ≤ i ≤ e
2. x = x⊕K∗||0r−k

3. for i = 1→ e do
(x||w) = π(x||w)

x = x⊕mi

c∗i = x

4. (x||w) = π(x||w); T ∗1 = bxck
5. x = IV1 and w = IV3

6. for i = 1→ e do
x = x⊕ c∗i
(x||w) = π(x||w)

7. x = x⊕ T ∗1 ||0r−k

8. (x||w) = π(x||w)

9. T ∗2 = bxck ⊕K∗

10. Cf∗ = c∗1||c∗2|| . . . ||c∗n||T ∗1 ||T ∗2
11. Ce∗ = c∗n+1|| . . . ||c∗e
12. Y ∗ = f(Cf∗)

13. Return: Y ∗||Ce∗

For G11

On Encryption-Query Md

1. Cf = c∗1||c∗2|| . . . ||c∗n||T ∗1 ||T ∗2
2. Ce = c∗n+1|| . . . ||c∗e
3. Y = f(Cf)

4. Return: Y ||Ce

On πA-Query m, where m ∈ {0, 1}b

1.

�
�

�

if m = K∗||0r−k||IV2 then

BadK ← true

2. v = π(m)

3. IAπ = IAπ
⋃
{(m, v)}

4. return v;

On π−1A -Query v, where v ∈ {0, 1}b

1. m = π−1(v)

2.

�
�

�

if m = K∗||0r−k||IV2 then

BadK ← true

3. IAπ = IAπ
⋃
{(m, v)}

4. return v;
rest of oracles same as G8

Figure 3.10: Game G9,10,11 of F -SpAEP

Game G10 and Game G11: In the game G11, K∗ is generated in same way

as in G10. In Encryption oracle, π is a ideal permutation which results in random

c∗i (1 ≤ i ≤ e). Therefore, in G11, the values of ci for all i are replaced by random

3.3. SpAEP: Sponge based Asymmetric Encryption Padding 55

values c∗i . Similarly T1 is replaced with T ∗1 . Due to initial random K∗, T2 = T ∗2 .

Both games G10 and G11 will behave the same way until ‘BadK ’. The BadK

event occurs when the adversary queries K∗||0b−k||IV2 to πA or receives response

K∗||0b−k||IV2 from πA−1 . In G11, K∗ is calculated using C∗, unlike C using the

K∗ as in G10. In G10, relation between c1, c2, . . . , ce is generated by K∗. However,

relation between c∗1, c
∗
2, . . . , c

∗
e does not exist in G11. This gap in the relation can

be exploited by the adversary if adversary queries K∗||0b−k||IV2 to πA or receives

response K∗||0b−k||IV2 from πA−1 .

|Pr[ExpG11,A]− Pr[ExpG10,A]| = Pr[BadK].

Game G12: Initialize Iπ = IEnc = IAπ = ∅, IV1 = 0r IV2 = 0c, IV3 =

IV2 ⊕ 1, Lc = {IV2, IV3}, Given Y ∗||Ce∗ for some random Cf∗ = f−1(Y ∗),

Let C∗ = Cf∗||Ce∗, where Cf∗ = c∗1||c∗2|| . . . ||c∗n||T ∗1 ||T ∗2 , Ce∗ = c∗n+1|| . . . ||c∗e
K∗||∗ = πEnc(πEnc(. . . (πEnc(πEnc(c

∗
1||0c⊕ IV)⊕ c∗2||0c)⊕ c∗3||0c) . . .⊕ c∗e||0c)⊕

T ∗1 ||0b−r)⊕ T ∗2 ||0b−r

On Encryption-Query Md(d
$←− {0, 1})

1. Return: y||Ce = f(Cf∗||T1||T2)||Ce∗;

On πA-Query m

1. if m = K∗||IV2 then
badK ← true

2. v = π(m)

3. IAπ = IAπ
⋃
{(m, v)}

4. return v;

On π−1A -Query v

1. m = π−1(v)

2. if m = K∗||IV2 then
badK ← true

3. IAπ = IAπ
⋃
{(m, v)}

4. return v;

Red Color text shown

hidden/unknown in Game

Figure 3.11: Game G12 of F -SpAEP

56
Chapter 3. Sponge based CCA secure Asymmetric Encryption from trapdoor one-way

permutations

Adversary BA: Given y||Ce $←− {0, 1}e∗r+2k, where y ∈ {0, 1}`. Find Cf such

that f−1(Cf) = y.

Adversary A: Initialize Iπ = IEnc = IAπ = ∅, IV1 = 0r IV2 = 0c, IV3 =

IV2 ⊕ 1, Lc = {IV2, IV3},
On Encryption-Query Md

by A

1. Return: y||Ce;

Finalization: if ∃K,T1, T2 such that ((K||0r−k ⊕ IV1)||IV2, v11||v21),
(xe||we, T1||P ||v2e+1), ((z1e+1 ⊕ T1||00r−k)||u2e+1 , (T2 ⊕K)||P ||z2e+2) ∈ IAπ and

f(c1|| . . . ||cn||T1||T2) = y, then return Cf = (c1|| . . . ||cn||T1||T2), where

P ∈ {0, 1}r−k

Figure 3.12: Adversary BA

Game G11 and Game G12: Game G12 is the final game of adversary A.

From G11, a random Y is the output of Encryption oracle for random Cf and

complete C = Cf ||Ce is unknown to adversary independent of Md. If a random

C is given to A in G12, then K∗ will be unknown to the adversary. BadK event

in G11 is same as BadK in G12.

|Pr[ExpG12,A] = Pr[ExpG11,A]|

If a random C is given to the A in G12, then K∗ will be unknown to the

adversary and C will be independent of d of Md Therefore, Pr[ExpG12,A] = 1
2
.

Given a target ciphertext Y , Adversary BA uses A as a black box, while A
uses G12.

An abstract description of adversary B is given in Fig 3.12. The probability

of BadK is as follows.

Pr[BadK] = Pr[K∗||0r−k||IV2 is queried to (πA or π−1A)]

= Pr[(K∗||0r−k||IV2 is queried to (πA or π−1A)) ∧ (IEnc ⊂ IAπ)]

+ Pr[(K∗||0r−k||IV2 is queried to (πA or π−1A)) ∧ (IEnc 6⊂ IAπ)].

3.4. Conclusion 57

(IEnc ⊂ IAπ) implies that all the input-output relations of πEnc are also known

to the adversary A via set IAπ . Therefore A knows all c∗i for 1 ≤ i ≤ e and T ∗1 .

Moreover, the adversary A learns T ∗2 if it is allowed to query K∗||0b−k||IV2.
Given Y ||Ce, if K∗||0b−k||IV2 is queried to (πA or π−1A), then it reveals C

completely. Therefore,

Pr[BadK] = Advowtpf (BA) + Pr[(K∗||0r−k||IV2 is queried to (πA

or π−1A)) ∧ (IEnc 6⊂ IAπ)].

IEnc 6⊂ IAπ implies that one of the inputs to HπEnc() is unknown to the adversary

A. It results in unknown output value from HπEnc(). Since T2 is already random

therefore K∗ remains unknown and random to A. Therefore, K∗||0r−k||IV2 query

to πA is equivalent to random guessing of K∗.

Pr[BadK]=Advowtpf (BA)+
(qπA+qπ−1)

min(2k,2c)
.

From Definition 3 and Section 2.1, if f is one-way trapdoor permutation from a

family of trapdoor one-way permutations F , then AdvowF (BA) ≤ negl(k).

The time and space complexities mentioned in Equation 3.1 are easy to verify.

This completes the proof of Theorem 1.

3.4 Conclusion

We presented a new variant, SpAEP, of OAEP using Sponge constructions that

does not require hash output of arbitrary length, whereas all previous OAEP

based encryption proven secure in random-oracle model require one or more hash

output of arbitrary length. Versatility of Sponge construction helps us to reduce

number of round function as compared to previous OAEP-type schemes (OAEP,

OAEP+, OAEP-3R, OAEP-4X, etc.,). Ability of handling long messages enables

the use of SpAEP with any trapdoor one-way permutation as hybrid encryption.

3.4.1 Subsequent scope

Subsequent scope of this work can be derived from following questions. First

question arise from development of OAEP type schemes. After being used with

fixed length trapdoor one-way cryptosystem, OAEP type padding schemes were

heavily used as KEM instantiations in hybrid encryption. Security properties

58
Chapter 3. Sponge based CCA secure Asymmetric Encryption from trapdoor one-way

permutations

and requirements for KEM are slightly different from a conventional IND-CCA

secure asymmetric encryption scheme. We would like to see if F -SpAEP can be

converted into a KEM or not; and can perform better with more features when

compared to existing hybrid encryption schemes. This interest of SpAEP as KEM

conversion is addressed in upcoming chapter 4.

Second question arises from the limitations of the F -SpAEP scheme. During

contribution and discussion, we faced primarily two limitations of SpAEP. One,

SpAEP applies to trapdoor one-way permutations only. This limitation ruled

out the usage of probabilistic one-way cryptosystem like El-Gamal cryptosystem.

Secondly, SpAEP is completely two-pass scheme during decryption, unlike encryp-

tion. In addition to this, during encryption, single pass feature of SpAEP is not

benefiting the asymmetric encryption (SpAEP − Ef (·)). This happens because

computation of asymmetric part (f) is dependent on last output of SpAEP com-

putation, which is dependent on entire message input. These two limitations add

another question to be answered and will be discussed in forthcoming chapter 5.

Chapter 4

Sponge based KEM with partial

message recovery

Contents

4.1 Key encapsulation mechanism with partial message

recovery: RKEM . 60

4.1.1 Description . 61

4.1.2 Security notion . 61

4.1.3 Constructing RKEMs 62

4.1.4 Contribution . 62

4.2 Sponge based key encapsulation mechanism with

partial message recovery: SpRKEM 63

4.2.1 Description . 63

4.2.2 Security of SpRKEM 65

4.3 Hybrid encryption based on SpRKEM 68

4.3.1 Description . 68

4.3.2 Security . 69

4.4 Conclusion . 71

4.4.1 Subsequent scope . 71

59

60 Chapter 4. Sponge based KEM with partial message recovery

In this chapter, we present a Sponge based key encapsulation mechanism with

partial message recovery (SpRKEM) using F -SpAEP which is introduced in the

previous chapter.

First, we briefly describe hybrid encryption and the benefits of key encap-

sulation mechanism with partial message recovery (RKEM) over conventional

KEM. Next, we introduce first RKEM, proposed by Bjørstad et al. [25], giving a

description and explaining its role as hybrid encryption. We discuss benefits of

SpRKEM compared to RKEM. These benefits also provide a way to eliminate

the decryption overhead of SpAEP scheme that we had discussed at the end of

the previous chapter. Finally, we describe Sponge based RKEM (SpRKEM)along

with its security proof followed by a description and security proof of a hybrid

encryption scheme using SpRKEM and DEM. At the end of this chapter, we

draw out the conclusion and derive subsequent scope of work.

4.1 Key encapsulation mechanism with partial

message recovery: RKEM

In the hybrid paradigm, an asymmetric key encapsulation mechanism (KEM)

combines with a symmetric data encapsulation mechanism (DEM). Traditionally,

KEM is a probabilistic algorithm that produces a random symmetric key and

an asymmetric encryption of that key as the key encapsulation. DEM is a

deterministic algorithm that takes a symmetric key, generated by KEM, and

encrypts the message under that key. Final ciphertext results from concatenation

of key encapsulation and encryption of message. This traditional hybrid paradigm

suffers from high ciphertext overhead (difference between plaintext and ciphertext

length) equal to the size of key-encapsulation.

In 2007, Bjørstad et al. [25] introduced KEM with partial message input/re-

covery (RKEM). This RKEM helps in significant reduction of ciphertext overhead

in hybrid constructions. In [25], for constructing RKEMs, primary focus is

given to those constructions which are randomness recoverable, as happens in

OAEP-type schemes. Therefore, [25] mentioned the use of RSA-OAEP in RKEMs

as an example. This signifies that the OAEP-type schemes are good candidates

for constructing RKEMs in practice. Therefore, any improvement in OAEP-type

schemes will also help in the efficient instantiation of the RKEMs.

4.1. Key encapsulation mechanism with partial message recovery: RKEM 61

First, we discuss the key encapsulation mechanism with partial message in-

put/recovery (RKEM) introduced by Bjørstad et al. [25]. The following description

of RKEM is similar to the definition provided in [25] due to its generic nature.

4.1.1 Description

Key encapsulation mechanism with partial message recovery(RKEM) comprises

a set of three algorithm RKEM = (RKEM.Gen, RKEM.Encap, RKEM.Decap)

run as follows:

1. RKEM.Gen generates a (public, private) key pair (sk, pk) for security pa-

rameter k. As part of pk, there are two more parameters, RKEM.mlen and

RKEM.keylen. The value RKEM.mlen specifies a finite value as size of mes-

sage data that may be stored in an encapsulation. The value RKEM.keylen

specifies symmetric key length, a fixed value proportional to the security

parameter k, needed for symmetric cipher DEM.

2. RKEM.Encap takes input message M0 of length at most RKEM.mlen along

with public key pk. The algorithm outputs a symmetric key R, of length

RKEM.keylen and an encapsulation Y .

3. RKEM.Decap, takes input Y and outputs either ⊥ or a pair (R,M0).

A primary difference between RKEM and KEM is usage of partial message

M0 as input in KEM. Conceptually, in KEM key encapsulation is computed on

an internal random value, out of that internal random value a part is taken as

symmetric key R. Bjørstad et al. realize that using a random value as full base for

key encapsulation is not required, a major part of that internal random value can

be replaced by partial message which helps in decreasing of ciphertext overhead.

4.1.2 Security notion

In terms of security, RKEM essentially needs to satisfy IND-CCA security of

regular KEM in which the adversary tries to distinguish whether a given key is

the one embedded in a specified encapsulation. In addition to IND-CCA security,

RKEM also requires an additional security requirement known as Real-or-Random

(ROR-CCA) for confidentiality of the message used as input and in this security

definition an adversary is unable to tell a valid encryption of a message from a

random ciphertext.

62 Chapter 4. Sponge based KEM with partial message recovery

A short experiment of ROR-CCA for RKEM is as follows:

Experiment: ExpROR−CCA
RKEM,A (k)

1. (pk, sk)
$←− RKEM.Gen(k)

2. (M0, s)← ARKEM.Decap(·)
1 ;

3. M1
$←− {0, 1}|M0|; d

$←− 0, 1; (R∗, Y ∗)← RKEM.Encap(Md);.

4. d′ ← ARKEM.Decap(·)
2 (R∗, Y ∗, s);

5. return d′;

A wins the game if d = d′. The advantage of A is given as

AdvROR−CCA
RKEM (A) =| Pr[A wins]− 1

2
|

4.1.3 Constructing RKEMs

Bjørstad et al. [25] show that any IND-CCA secure public key encryption scheme

can safely converted into in a RKEM.

In particular, IND-CCA secure public key encryption schemes which use a

random variable K during encryption and can recover the K during decryption

are preferred for constructing RKEMs.

These RKEMs use a CCA secure public key encryption E and a hash function

H during encapsulation. On receiving a partial message M0, the RKEM computes

encapsulation Y = E(pk,M0, K) for some randomness K and also computes a

symmetric key R = H(M0||K). The RKEM outputs (R, Y) where key R is used

by the DEM to encrypt the rest of the message M1. During decapsulation, the

RKEM takes Y as an input and outputs either ⊥ or the pair (M0, K) using the

decryption algorithm D(sk, Y). Using (M0, K), RKEM proceeds to compute

R = H(M0||K) and finally returns (M0, R). This R is used further to decrypt

the rest of the ciphertext through DEM. A abstract graphical representation is

shown in Figure 4.1a.

4.1.4 Benefits of having a KEM/DEM version of SpAEP

� SpAEP is unified system where all internal functions work together and

there is no separate session key generation in between. On the other hand,

the KEM/DEM paradigm has two components: KEM and DEM, which

4.2. Sponge based key encapsulation mechanism with partial message recovery:
SpRKEM 63

provides options to use different customized module as KEM and DEM

depending upon system requirement.

� In SpAEP, decryption cannot be performed before the complete ciphertext

is received by the recipient. On the other hand in the KEM/DEM paradigm,

a receiver can start decapsulation of the key using KEM and then can begin

performing decryption of ciphertext using DEM. This helps us in mitigating

the limitation of decryption overhead from SpAEP.

4.2 Sponge based key encapsulation mechanism

with partial message recovery: SpRKEM

In this section, we describe SpRKEM based on F -SpAEP; a graphical representa-

tion is shown in Figure 4.1b.

4.2.1 Description

SpRKEM use the same structure as that of the RKEM [25] except that it avoids

using an extra H by exploiting the Sponge structure of SpAEP. In SpRKEM,

F -SpAEP takes a partial message M0 and outputs Y and symmetric key R using

some randomness K. During decapsulation, SpRKEM takes Y as the input and

returns either (M0, R) or ⊥. This symmetric key R is actually an extended part

of SpongeWrap tag T1 output, in other words, the SpongeWrap part of SpAEP

now outputs c1|| . . . ||cn||T1||R.

R

DEM
M0

M1

CejjTag

Input M0jjM1

RKEM

IND-CCA

PKE

Hash

K

Y

(a) RKEM/DEM general view

π π π π π

K m1 m2 m
n−1

m
n

c1 c2 c
n−1

c
n

IV2

IV1

π π π π
IV3

IV1

f

Y

T2
T1

SpongeWrap

Sponge

K

π
∼

R

DEMM0

M1

CejjTag

Input M0jjM1

pad(M0) = m1jj : : : jjmn

SpRKEM

(b) SpRKEM/DEM

Figure 4.1: SpRKEM: F-SpAEP as RKEM version. RKEM requires a hash function
and IND-CCA PKE, whereas SpRKEM requires only F-SpAEP as a IND-CCAPKE.

64 Chapter 4. Sponge based KEM with partial message recovery

Why extract R like this? This idea of extracting key R comes from the

method used in RKEM, where symmetric key R is dependent on M0 and ran-

domness K through hash function H. In SpRKEM, R is also dependent on M0

and used randomness K through SpongeWrap which is also performing as a hash

function for input M0 and K.

Algorithm 3: Encapsulation:

SpRKEM.Encap(M)=(Y,R)

where |M | ≤ `− 2k − 2

1 Initialization: IV1 = 0r, IV2 = 0c,

IV3 = IV2 ⊕ 1, w = IV2, x = IV1

2 Random Nonce: K
$←− {0, 1}k

3 pad(M) = m1||m2|| . . . ||mn,

where |mi| = r ∀1 ≤ i ≤ n

4 x = x⊕K∗||0r−k

5 for i = 1→ n do

6 (x||w) = π(x||w)

7 x = x⊕mi

8 ci = x

9 (x||w) = π(x||w); T1 = bxck;
R = dxek

10 x = IV1 and w = IV3

11 for i = 1→ n do

12 x = x⊕ ci
13 (x||w) = π(x||w)

14 x = x⊕ T1||0r−k

15 (x||w) = π(x||w)

16 T2 = bxck ⊕K
17 Cf = c1||c2|| . . . ||cn||T1||T2
18 Y = f(Cf)

19 Return: Y and R

Algorithm 4: Decapsulation:

SpRKEM.Decap y, where |y| = `

1 Initialization: IV1 = 0r, IV2 = 0c,

IV3 = IV2 ⊕ 1, w = IV3, x = IV1

2 c1||c2|| . . . ||cn||T1||T2 = f−1(Y)

3 for i = 1→ n do

4 x = x⊕ ci
5 (x||w) = π(x||w)

6 x = x⊕ T1||0r−k

7 (x||w) = π(x||w); K = bxck ⊕ T2;
R = dxek

8 x = K||0r−k; w = IV2

9 for i = 1→ n do

10 (x||w) = π(x||w)

11 mi = x⊕ ci
12 x = ci

13 (x||w) = π(x||w); T ′1 = bxck
14 if T1 = T ′1 then

15 if ∃ M s.t.

M = unpad(m1|| . . . ||me)

then

16 Return: M and R

17 else

18 Return: ⊥

19 else

20 ⊥.

SpRKEM.Gen algorithm is similar to RKEM.Gen algorithm. Algorithms

SpRKEM.Encap and SpRKEM.Decap are shown in Algorithms 3 and 4 respec-

tively.

4.2. Sponge based key encapsulation mechanism with partial message recovery:
SpRKEM 65

4.2.2 Security of SpRKEM

Theorem 2. If the underlying trapdoor permutation f is one way, then SpRKEM

is IND-CCA secure in the Ideal permutation model. The advantage of adversary

A for the IND-CCA attack is

AdvIND−CCASpRKEM(A) ≤(q − 1)q

2b+1
+
q(q + 1)

2c
+

5qD
2k

+
qπA
2k

+ AdvowF (BA Succeeds) +
qπA

min(2k, 2c)
,

where q is the total number of (π and π−1) queries, qπA is the number of

π and π−1 queries by A, qD is the number of decryption queries and b, c, k are

the same as defined earlier, B is an adversary that finds the complete input Cf

of trapdoor one way permutation f given Y
$←− {0, 1}` such that Y = f(Cf),

without having knowledge of f−1. Adversary B uses A as a subroutine internally.

AdvowF (BA Succeeds) is the success advantage that a particular adversary B has

in breaking the trapdoor one-way permutation f of Family F .

Proof. The proof follows the proof for F -SpAEP. The initial Game G0 is shown

in Fig. 4.2, while the rest of the games are similar to the Games of F-SpAEP

with some obvious steps of symmetric key R generation but acting as dummy

steps.

66 Chapter 4. Sponge based KEM with partial message recovery

Game G0: Initialize Iπ = IEnc = IA = ∅, IV1 = 0r IV2 = 0c, IV3 = IV2 ⊕ 1

On Encapsulation-Query M ,

where |M | ≤ `− 2r

1. Random Nonce: K∗ $←− {0, 1}k

2. pad(M) = m1||m2|| . . . ||mn

3. x = x⊕K∗||0r−k

4. for i = 1→ n do
(x||w) = π(x||w)

x = x⊕mi

ci = x

5. (x||w) = π(x||w); T1 = bxck;
R0 = dxek

6. x = IV1 and w = IV3

7. for i = 1→ n do
x = x⊕ ci
(x||w) = π(x||w)

8. x = x⊕ T1||0r−k

9. (x||w) = π(x||w)

10. T2 = bxck ⊕K∗

11. Cf = c1||c2|| . . . ||cn||T1||T2
12. Y = f(Cf)

13. R1
$←− {0, 1}k

14. d
$←− {0, 1}

15. Return: Y and Rd

On Decapsulation-Query Y

1. Cf = c1||c2|| . . . ||cn||T1||T2 =

f−1(Y)

2. C = c1||c2|| . . . ||cn||T1||T2,
3. for i = 1→ n do

x = x⊕ ci
(x||w) = π(x||w)

4. x = x⊕ T1||0r−k

5. (x||w) = π(x||w); K = bxck ⊕ T2;
R = dxek

6. x = K||0r−k; w = IV2

7. for i = 1→ n do
(x||w) = π(x||w)

mi = x⊕ ci
x = ci

8. (x||w) = π(x||w); T ′1 = bxck
9. if T1 = T ′1 then

if ∃ M s.t.

M = unpad(m1|| . . . ||me) then
Return:M and R

else
Return: Invalid

else
Invalid.

Rest Same as G0 of SpAEP

Figure 4.2: Game G0 for IND-CCA security of SpRKEM

Theorem 3. If the underlying trapdoor permutation f is one way, then SpRKEM

is ROR-CCA secure in the Ideal permutation model. The advantage of adversary

A for ROR-CCA attack is

AdvROR−CCA
SpRKEM (A) ≤(q − 1)q

2b+1
+
q(q + 1)

2c
+

5qD
2k

+
qπA
2k

+ AdvowF (BA Succeeds) +
qπA

min(2k, 2c)
,

where q is the total number of (π and π−1) queries, qπ and qπ−1 are the number

of π and π−1 queries, qπA is the number of π queries by A, qD is the number of

4.2. Sponge based key encapsulation mechanism with partial message recovery:
SpRKEM 67

decryption queries and b, c, k are the same as defined earlier, B is an adversary that

finds the complete input Cf of trapdoor one way permutation f given y
$←− {0, 1}`

such that y = f(Cf), without having knowledge of f−1. Adversary B uses A
as a subroutine internally. Advowf (BA Succeeds) is the success advantage that a

particular adversary B has in breaking the trapdoor one-way permutation f .

Proof. The proof exactly follows the one for F -SpAEP. Initial Game G0 is shown

in Fig. 4.3, rest of the games exactly follow the games of F-SpAEP with some

obvious steps of symmetric key K generation acting as dummy steps.

Game G0: Initialize Iπ = IEnc = IDec = IA = ∅, f : {0, 1}` → {0, 1}`, IV1 =

0r IV2 = 0c, IV3 = IV2 ⊕ 1

On Encryption-Query M0,

where |M | ≤ `− 2k

1. Random Nonce: K∗ $←− {0, 1}k

2. M1
$←− {0, 1}|M0|

3. d
$←− {0, 1}

4. pad(Md) = m1||m2|| . . . ||mn,

where |mi| = bi ∀1 ≤ i ≤ n
5. x = x⊕K∗||0r−k

6. for i = 1→ n do
(x||w) = π(x||w)

x = x⊕mi

ci = x

7. (x||w) = π(x||w); T1 = bxck;
R = dxek

8. x = IV1 and w = IV3

9. for i = 1→ n do
x = x⊕ ci
(x||w) = π(x||w)

10. x = x⊕ T1||0r−k

11. (x||w) = π(x||w)

12. T2 = bxck ⊕K∗

13. Cf = c1||c2|| . . . ||cn||T1||T2
14. y = f(Cf)

15. Return: y and R

On Decryption-Query y

1. Cf = c1||c2|| . . . ||cn||T1||T2 =

f−1(y)

2. C = c1||c2|| . . . ||cn||T1||T2, where

|ci| = bi, |T1| = |T2| = r for

1 ≤ i ≤ n
3. for i = 1→ n do

x = x⊕ ci
(x||w) = π(x||w)

4. x = x⊕ T1||0r−k

5. (x||w) = π(x||w); K = bxck ⊕ T2;
R = dxek

6. x = K||0r−k; w = IV2

7. for i = 1→ n do
(x||w) = π(x||w)

mi = x⊕ ci
x = ci

8. (x||w) = π(x||w); T ′1 = bxck
9. if T1 = T ′1 then

if ∃ M s.t.

M = unpad(m1|| . . . ||me) then
Return:M and K

else
Return: Invalid

else
Invalid.

Figure 4.3: Game G0 of ROR-CCA security of SpRKEM

68 Chapter 4. Sponge based KEM with partial message recovery

The IND-CCA security notion is related to the advantage of the adversary

to determine whether a given key is indeed produced after the encapsulation

or produced randomly. On the other hand, the ROR-CCA security is related to

quantifying the advantage of an adversary to distinguish an encapsulated message

from a random encapsulated message.

4.3 Security of Hybrid PKE scheme using IND-

CCA and ROR-CCA secure SpRKEM and an

IND-PA and INT-CTXT secure DEM

4.3.1 Description

(PKE=SpRKEM+DEM) Given a SpRKEM=(SpRKEM.Gen, SpRKEM.Encap,

SpRKEM.Decap) and DEM= (DEM.Enc, DEM.Dec), as per definitions 4.2

and 2.4.2 respectively, the symmetric key output of SpRKEM is the same as the

input of the DEM. A public key encryption scheme PKE=(PKE.Gen, PKE.Enc,

PKE.Dec) with security parameter k is described as follows:

� The key generation algorithm PKE.Gen uses SpRKEM.Gen to generate a

pair of public and private keys (f, f−1) having input-output length `.

� The encryption algorithm PKE.Enc is as follows:

1. The input message M split into M0 and M1, i.e. M = M0||M1, where

|M0| = (`−2k−2−1) and |M1| = |M |−|M0| if |M | ≥ (`−2k−2−1)

else |M0| = |M | and |M1| = ∅

2. If |M1| 6= ∅ then

Compute (R, Y) = SpRKEM.Encap(M0||1)

Compute χ = DEM.EncR(M1)

else

Compute (K, y) = SpRKEM.Encap(M0||0)

χ = ∅

3. Output C = (R,χ)

� The decryption algorithm PKE.Dec is as follows:

4.3. Hybrid encryption based on SpRKEM 69

1. Parse input C = (Y ||χ), where |Y | = `.

2. Compute (R,M ′) = SpRKEM.Decap(y).

3. If (R,M ′)=⊥ then return ⊥.

4. If (M ′ = M0||1) and χ 6= ∅ then

Compute M1 = DEM.DecR(χ).

else

If (M ′ = M0||0) and χ = ∅ then M1=∅
else Return ⊥

5. If M1 6= ⊥ then Return M0||M1

else Return ⊥

4.3.2 Security

Theorem 4. Given an IND-CCA and ROR-CCA secure SpRKEM and an IND-PA

and INT-CTXT secure DEM, the Hybrid PKE composition is IND-CCA secure.

The advantage of an adversary A for IND-CCA attack for PKE scheme is given by

AdvIND−CCAPKE (A) ≤ 2 · AdvIND−CCASpRKEM(B1) + qD · AdvINT−CTXTDEM (B2)

+ 2 · AdvROR−CCA
SpRKEM (B3) + AdvIND−PADEM (B4),

where B1,B2,B3 and B4 are polynomial time adversaries, and qD is the upper

bound on the number of queries made by A to PKE.Dec.

Proof. This proof exactly follows the proof of Theorem 1 in [25].

Let Game G0 be the standard IND-CCAgame for a PKE and Adversary A is

the adversary against the PKE system. In Game i, let Gi denote the event that

d = d′. Hence,

AdvIND−CCAPKE (A) =| Pr[G0]− 1
2

Let Game 1 be same as Game 0 except that if adversary asks challenger to decrypt

a ciphertext(Y ∗, χ), where Y ∗ is equal to encapsulation part of challenge, then

it uses the key R∗ output by encapsulation SpRKEM when it decrypt χ. The

algorithms used in DEM and SpRKEM still work perfectly, and this query case

will be just a conceptual difference. Therefore,

Pr[G0] = Pr[G1].

70 Chapter 4. Sponge based KEM with partial message recovery

Game 2 remains same as Game 1 , except for computation of χ∗ of challenge

ciphertext, in which a random key R′ is used instead of R∗. We known that, there

exists a adversary B1, which can distinguish Game 2 from Game 1 as adversary

against the IND-CCA property of SpRKEM. Therefore, we have

| Pr[G1]− Pr[G2] |≤ 2 · AdvIND−CCASpRKEM(B1).

Game 3 remains same as Game 2 until the adversary asks the challenger to

decrypt a ciphertext (Y ∗, χ). Due to Y ∗, while decrypting χ by DEM using

random R∗ = R′, it simply rejects ciphertext. We know that there exists an

adversary B2, which can distinguish Game 3 from Game 2 as an adversary against

INT-CTXT property of DEM. Therefore,

| Pr[G2]− Pr[G3] |≤ qD · AdvINT−CTXTDEM (B2).

In Game 4, we start making changes in computation of encapsulation part.

We replace the M0 from a random string of equal length during encapsulation

SpRKEM, but second part of encapsulation using DEM remains same. We know

that there exists an adversary B3, which can distinguish between Game 4 and

Game 3 by acting as an adversary against the ROR-CCA property of SpRKEM.

Therefore,

| Pr[G3]− Pr[G4] |≤ 2 · AdvROR−CCA
SpRKEM (B3).

In Game 4, first part of ciphertext computation using SpRKEM is completely

random and independent of any input message and due to generation of a random

key R∗ = R′, second part of ciphertext using DEM is also random. Therefore,

the adversary in Game 4 is an adversary which is attacking the IND-PA property

of DEM. Therefore, we have

| Pr[G4]− 1
2
|≤ AdvIND−PADEM (B4).

Combining all the game equalities we have,

AdvIND−CCAPKE (A) ≤2 · AdvIND−CCASpRKEM(B1) + qD · AdvINT−CTXTDEM (B2)

+ 2 · AdvROR−CCA
SpRKEM (B3) + AdvIND−PADEM (B4).

4.4. Conclusion 71

4.4 Conclusion

Bjørstad et al. [25] suggested that any CCA-secure public key encryption scheme

that supports randomness recovery, like OAEP-based schemes, are suitable for

using Epk as part of RKEM in practice. Usage of H in RKEM is needed for

generation of symmetric key R. In SpRKEM, SpongeWrap as the OAE inherits

the property of H used in the RKEM to generate a random symmetric key R.

Therefore, since F -SpAEP has already been proven CCA secure and is randomness

recoverable also, it can directly replace both Epk and H required in the RKEM of

[25], which leads to the scheme we have introduced as SpRKEM.

4.4.1 Subsequent scope

We observe that conversion of F-SpAEP to SpRKEM+DEM is same as con-

verting from monolithic construction to hybrid construction. We found that

SpRKEM+DEM reduces the decryption overhead of F-SpAEP scheme. In

SpRKEM+DEM, encryption and decryption become single pass because SpRKEM

computations are independent of input-output of DEM during encryption/de-

cryption. It would be interesting to discuss how we can modify F -SpAEP such

that its encryption and decryption process also become single pass like in hybrid

encryption mode.

We would also like to remind an another limitation from last chapter about

usage of trapdoor one-way permutation only, which is also a limitation in proposed

SpRKEM.

Both of these limitations, decryption overhead and incompatibility with

probabilistic one-way asymmetric cryptosystem, will be discussed in details in

upcoming Chapter 5 along with a solution to remove these limitations.

72 Chapter 4. Sponge based KEM with partial message recovery

Chapter 5

Sponge based padding for

CCA-secure Asymmetric

encryption from trapdoor

one-way functions

Contents

5.1 Motivation . 74

5.1.1 Limitation to Trapdoor one-way permutation 74

5.1.2 Candidate solutions 75

5.2 Contribution . 76

5.3 Sponge based padding with one-way cryptosystem . 78

5.3.1 Description . 78

5.3.2 Structural difference between SpAEP and SpPad . . . 80

5.3.3 CCA security of SpPad–Pe 81

5.4 Conclusion . 94

5.4.1 Subsequent scope . 94

In this chapter, we discuss a modified variant of SpAEP which we denote

as SpPad. SpPad is compatible with probabilistic one-way cryptosystem also,

73

74 Chapter 5. Sponge based padding for CCA-secure Asymmetric encryption

unlike SpAEP which is compatible only with trapdoor one-way permutations

(deterministic one-way cryptosystem). Other than just trapdoor one-way permu-

tation (e.g. RSA), it is easy to describe other one-way secure cryptosystems from

any trapdoor problem. Further more, such trapdoor problems are not so rare

(Diffie-Hellman [51], Elliptic Curves [64], McEliee [75], NTRU [60], etc.).

First, we explain the reasons of usage restriction of OAEP-type schemes

with trapdoor one-way permutation only and existing solutions to remove these

restrictions. Next we provide features and benefits of SpPad, a modified SpAEP,

compared to other existing schemes. Further, we describe and explain the

modifications on SpAEP according to existing solutions to achieve SpPad. We

provide description of SpPad and then security proof of SpPad when used with

probabilistic one-way cryptosystem. Proposed SpPad is shown to be a combination

of positive outcomes from SpRKEM and SpAEP while removing some of their

existing limitations. We provide conclusion and subsequent scope of work at the

end of the chapter.

5.1 Motivation

5.1.1 Limitation to Trapdoor one-way permutation

From previous chapters, we can see considerable improvements have taken place

in OAEP type schemes. Some of these are lowering the security assumption

and having support for long messages with the help of symmetric encryption

schemes. However, OAEP-type schemes are usable only with deterministic one-

way cryptosystem (like RSA), and not with probabilistic one-way cryptosystem

(like ElGamal). A prime reason for this limitation is the probabilistic nature of

such one-way cryptosystem. Conceptually, in probabilistic one-way cryptosystem,

encryption function takes an input M and uses a new random coin g to produce

output Y . Any change in the randomness g will produce a different Y ′ even for

the same input M . The presence of g implies that there is not just one Y but

a set of possibilities Y such that the same M is obtained for all Y ∈ Y under

decryption. This allows a favorable condition for an adversary to chose any Y ∈ Y
as a query to decryption function resulting in the same M .

Any public key encryption scheme that is probabilistic and homomorphic will

allow the user to re-randomize a given ciphertext by using the homomorphic

property with a ciphertext. The El-Gamal encryption scheme is susceptible to

5.1. Motivation 75

such attacks, where an adversary can change a given Y to Y ′ without knowing

M , and then can receive that M by using the decryption function. This type of

attack is also known as the re-randomization attack.

Most of the probabilistic one-way cryptosystem generate the random coin g

within the encryption function instead of receiving it as an external parameter.

Further, these schemes do not return g along with M during decryption of the

ciphertext. This hidden value of g creates an uncertain mapping between Y and

M when randomness g or secret key sk are not revealed. This uncertain mapping

causes difficulty in having an efficient decryption simulation without the secret

key, which is an important step in the security proof for IND-CCA security.

5.1.2 Candidate solutions

The first generic solution to prevent the re-randomization attack was proposed by

Fujisaki and Okamoto [55] by means of the FO-transform. In brief, a random g is

generated which is explicitly dependent on M and some other random parameters.

This g can be recovered during decryption and subsequently the relation between

M and Y can be checked by re-encrypting M with g. Fujisaki and Okamoto were

able to propose a CCA-secure encryption scheme from any OW cryptosystem, but

their scheme needs a re-encryption mechanism during decryption and suffers from

high ciphertext-overhead like other hybrid schemes.

Another solution for this problem was proposed by Okamoto and Pointcheval

in [83]. Instead of handling g explicitly, they introduced two changes. Firstly, a

hash value of Y and M is generated which serves as a checksum. This hash value

becomes a part of the final ciphertext along with Y . Introduction of the hash

value in the ciphertext disallows an adversary to submit another Y ′ as part of

ciphertext to the decryption oracle as the adversary will be unable to generate the

hash of Y ′ without knowing M , where M is protected under one-way property of

the cryptosystem using some g. Secondly, they elevate the security property of

underlying one-way cryptosystem (Pe) from OW to OW-PCA. In OW-PCA, there

exists a public oracle OPC which can output 1 if given (M,Y) pair is a right

pair and 0 if it is not. Availability of this oracle helps in simulating decryption

oracle without using secret key sk for providing IND-CCA security proof. As

shown in [82], ElGamal [57] encryption achieves OW-PCA security under GDH

assumption, whereas only CDH assumption is enough for one-wayness of ElGamal.

This modification makes the system more practical by avoiding re-encryption

76 Chapter 5. Sponge based padding for CCA-secure Asymmetric encryption

mechanism during decryption. Moreover, for deterministic one-way cryptosystem

security notion of OW is equivalent to OW-PCA. Thus, if a PKE works securely

with a OW-PCA secure Pe, then that PKE also works securely with a deterministic

OW cryptosystem.

Both of the schemes discussed above proposed a hybrid encryption where

KEM part does not use OAEP-type structure. Hybrid encryption schemes suffer

from a high ciphertext overhead except for RKEM-DEM [25] or some specific

KEM constructions, but RKEM-DEM requires stronger security assumptions. In

light of existing limitation of F-SpAEP and benefits of SpRKEM over RKEM,

we investigate how integration of existing solution, to remove usage restriction

of type of one-way cryptosystem, will work with F -SpAEP. We also investigate

whether Sponge based padding can provide some enhancement in features not

only to F -SpAEP but also to the scheme REACT proposed in [83].

Another motivation of our work is to achieve “on the fly” encryption and

decryption property, with lower ciphertext-overhead along with support of proba-

bilistic one-way cryptosystem. We achieve this by merging the security assumption

given in [83] into F−SpAEP with appropriate modifications.

5.2 Contribution

This work proposes a generic framework that converts OW-PCA asymmetric

primitive (Pe) into a CCA-secure and efficient PKE. Apart from Pe, the frame-

work requires a permutation, which operates in a iterated fashion like Sponge

function [20]. This permutation behave as an ideal permutation. Encryption

scheme constructed using our framework is denoted by SpPad–Pe.

Security of SpPad–Pe is proven in ideal permutation model, unlike FO-

transform [55] and REACT [83] which used the RO model. Security results

of the scheme are similar to the FO-transform and REACT, but along with lower

ciphertext overhead and the addition of “on the fly” encryption and decryp-

tion. Note that “on the fly” computation has significant applications in memory

constrained devices and streaming applications in networks.

SpPad–Pe achieves lower ciphertext overhead compared to FO-transform and

REACT. Let us denote coPe to be ciphertext overheads of Pe having input length `.

Let k < ` be the length of random strings used in the scheme, then the ciphertext

overhead of SpPad–Pe is (coPe + 2k). The ciphertext overhead of FO-transform is

5.2. Contribution 77

Generic
Schemes

Asymmetric
Encryp-
tion

Model Re-
Encryp-
tion

Ciphertext
overhead

of other functions on the fly Enc on the fly Dec

FO [55] OW RO Yes `+ cope 2Hash + 1 SE No Yes
REACT
[83]

OW-PCA RO NO `+ cope +
k

2hash + 1 SE Yes Yes

SpAEP
(Chap.3)

OW (only
permuta-
tion)

Ideal per-
mutation
(P)

NO 2k P based 1 Hash + 1 SE Yes NO

SpPad–Pe
(This
chapter)

OW-PCA Ideal per-
mutation
(P)

NO coPe + 2k P based 1 Hash + 1 SE Yes Yes

Table 5.1: Generic CCA transformations:
“`+ cope” is output length and ` is input length of asymmetric encryption
“k” is security parameter, “SE” is Symmetric encryption
“OW” is one-wayness and “PCA”” is plaintext checking attack

(coPe + `) and that of REACT is (coPe + `+ k) due to hybrid nature of schemes.

The computation time of SpPad–Pe during encryption is lower than FO-

trasnform. Let tasym and tsym be computation time for asymmetric primitive and

symmetric cipher, and t`sym(< tsym) be the computation time of symmetric cipher

to output ` bits. The resulting computation time of FO scheme and F -SpAEP will

be tasym + tsym. On the other hand, SpPad–Pe will have max1(t`sym + tasym, tsym)

computation time. This decrease in the computation time in SpPad–Pe compared

to FO-transform might appear to be very small. However, it is significant for

very long messages. The decryption time of SpPad–Pe is similar to the scheme

REACT, where no re-encryption is required during decryption. Compared to

F-SpAEP, SpPad–Pe has lower decryption time due to the early recovery of

randomness without performing a full pass over the complete ciphertext.

SpPad–Pe also provides streaming capability, which is a useful feature, spe-

cially in broadcast systems. Once the asymmetric part is processed (encrypted/

decrypted) in SpPad–Pe the data can be streamed using the symmetric encryp-

tion/decryption. Although REACT also provides streaming during encryption as

well as decryption, the ciphertext overhead of SpPad–Pe is lower than REACT.

Our work is a direct extension of the scheme F-SpAEP, from Chapter 3,

by removing the restriction of using only trapdoor one-way permutation as F .

Now any trapdoor one-way cryptosystem (Pe) can be used. The restriction of

using only trapdoor one-way permutation as Pe is overcome by having OW-PCA

assumption on Pe, by following results of [40, 83]. Our work also results in

decreasing computation overhead during decryption and encryption which enable

1max function return a the maximal value amongst the parameters.

78 Chapter 5. Sponge based padding for CCA-secure Asymmetric encryption

us to provide “on-the-fly” computation. An early recovery of used randomness

for symmetric decryption helps in decreasing the decryption overhead.

A summary of results in provided in Table 5.1 along with comparison against

most representative CCA secure generic PKEs. The last line in the table shows our

SpPad–Pe construction. Note that it compares favorably with other constructions.

Finally, it is interesting to observe that the framework we describe in this

chapter is quite different from a regular hybrid encryption. Recall that the hybrid

encryption uses two systems, namely KEM and DEM with a clear delineation

between the two. In our framework, the two overlap.

5.3 Sponge based padding with one-way cryp-

tosystem

5.3.1 Description

Sponge based padding (SpPadπ) is based on an iterated ideal permutation

π : {0, 1}(b=r+c) → {0, 1}b with an fixed initial value IV . SpPadπ or simply

denote as SpPad uses the functionality of SpongeWrap and Sponge function

together in some dependent way, under different initial values to keep domain

separation. Initial value used for SpongeWrap is IV1||IV2 where IV1 = 0r and

IV2 = 0c. Sponge uses IV1||IV3 as initial value where IV3 = IV2 ⊕ 1. For some

fixed value k and `, where ` = n · r for n > 0 and ` ≥ r > c > k.

SpPad work always with an another function say F . This function F takes

input X and outputs Y , where |X| = `. SpPad working with F is denoted as

SpPad-F .

If we denote a one-way cryptosystem as Pe, then SpPad with trapdoor one-way

cryptosystem is denote as SpPad–Pe. The building blocks for SpPad–Pe are:

1. an asymmetric encryption scheme Pe: (Gen,Enc,Dec) of minimum input

message size ` as described in Section 2.1.

2. an ideal permutation π : {0, 1}b=r+c → {0, 1}b.

For simple understanding, we assume ` = n ∗ r for some positive integer n ≥ 1.

SpPad–Pe is defined as a triplet of the following probabilistic polynomial-time

(PPT) algorithms: 〈SpPKE.Gen, SpPKE.Enc, SpPKE.Dec〉.

5.3. Sponge based padding with one-way cryptosystem 79

• SpPKE.Gen produces a private/public key pair(pk, sk) using Gen(1k).

• SpPKE.Enc encrypts a message M under pk, and produces a cryptogram

χ = Y ||Kh||Ce||T .

This algorithm generates a random K, random coin g if needed, and takes

input message M . Using SpongeWrap on input M and K, it generates

partial output C||Tk, where Tk = T ⊕K. The C split into Cf and Ce as

C = Cf ||Ce where |Cf | = `. Enc takes Cf as input and under pk (and

random coin g, if required) outputs Y . Sponge takes Cf ||Y as input and

outputs h. Here, Sponge uses pad(Cf ||Y, r,∅). This leads to final output

of SpPKE.Enc as χ = Y ||Kh||Ce||Tk, where Kh = K ⊕ h.

Encryption pseudo-code is shown in Algorithm 5.

• SpPKE.Dec recovers a plaintext M from a ciphertext χ under sk. On

input χ = Y ||Kh||Ce||Tk, Dec outputs Cf under sk for input Y . Sponge

then uses input Cf ||Y to generate value h. K is calculated as h⊕Kh. Using

K and Cf

Ce||Tk SpongeWrap finally outputs M or ⊥.

Pseudo-code of decryption is shown in Algorithm 6 .

Graphical representation of SpPad with a trapdoor one-way function (Pe)

is provided in Figure 5.1.

π π π π π

K m1 m2 m
n−1

m
n

c1 c2 c
n−1

c
n

IV2
IV1

π

π

me

cn+1 ce

m
n+1

π π πIV3
IV1

Asym(Pe)pk

Y Kh

cn+1 ce

Tk

SpongeWrap

Sponge

g

π π

y
e+1 yj

K

Ce

Y = ()

K
T

Figure 5.1: Sponge based padding for Trapdoor one-way functions.
Dashed line in figure represents optional g used when random coins are required.

80 Chapter 5. Sponge based padding for CCA-secure Asymmetric encryption

Algorithm 5: Encryption:

SpPKE.Enc(M) =

Y ||Kh||Ce||Tk
1 Initialization: x = IV1 = 0r,

w = IV2 = 0c, IV3 = IV2 ⊕ 1,

2 Random Nonce: K
$←− {0, 1}k

3 Random coins: g
$←− COINS

4 pad(M, r, `) = m1||m2|| . . . ||me,

where |mi| = r ∀1 ≤ i ≤ e

5 x = x⊕K||0r−k

6 for i = 1→ e do

7 (x||w) = π(x||w)

8 x = x⊕mi

9 ci = x

10 (x||w) = π(x||w); T = bxck
11 Cf = c1||c2|| . . . ||cn;

Ce = cn+1|| . . . ||ce
12 Y = Encpk(C

f ; g)

13 y1|| . . . yj = pad(Cf ||y, r,∅)

14 x = IV1 and w = IV3

15 for i = 1→ j do

16 x = x⊕ yi
17 (x||w) = π(x||w)

18 h = bxck;Kh = h⊕K;

Tk = T ⊕K
19 Return: Y ||Kh||Ce||Tk

Algorithm 6: Decryption:

SpPKE.Dec(Y ||Kh||Ce||Tk) =

M or ⊥
1 Initialization: x = IV1 = 0r,

IV2 = 0c, w = IV3 = IV2 ⊕ 1

2 Cf = Decsk(Y);

3 y1|| . . . ||yj = pad(Cf ||Y, r)
4 for i = 1→ j do

5 x = x⊕ yi
6 (x||w) = π(x||w)

7 h = bxck;K = h⊕Kh;

T = Tk ⊕K
8 x = IV1 ⊕K||0r−k; w = IV2

9 c1||c2|| . . . ||cn = Cf ;

cn+1|| . . . ||ce = Ce

10 for i = 1→ e do

11 (x||w) = π(x||w)

12 mi = x⊕ ci
13 x = ci

14 (x||w) = π(x||w); T ′ = bxck
15 if T = T ′ then

16 Return:unpad(m1|| . . . ||mn)

17 else

18 Return: ⊥.

5.3.2 Structural difference between SpAEP and SpPad

Some notable differences between SpAEP of chapter 3 and SpPad are in inputs

to Sponge part and to Pe.

Conceptually, in SpAEP the entire output of SpongeWrap part is input to

Sponge part and recoverable randomness K is bound, in last step, with output

of Sponge. This binding of K in last step causes delay in recovery of K during

decryption. In SpPad, length of this input part to Sponge is shortened. Only

5.3. Sponge based padding with one-way cryptosystem 81

a part of output of SpongeWrap Cf , which is input to Pe, is taken as input in

Sponge. This enables the early recovery of randomness K during decryption

without passing over the entire ciphertext.

Regarding Pe input, SpAEP takes T and Kh also as a part of input to Pe

along with Cf . We realize that for security purposes, it is not necessary to protect

all three (T,Kh, C
f) under one-wayness of Pe, only protecting Cf is enough.

Because if Cf is known to adversary then calculating K from Kh using π is trivial.

Therefore, in SpPad only Cf gets protection under one-wayness of Pe and K is

automatically protected. Using this follow-up protection T also get protected

once Tk = T ⊕K is computed. Therefore, Kh and Tk used directly as part of

final ciphertext. This also helps in executing Enc independently from T unlike

SpAEP, which is dependent on entire plaintext.

These two modifications in SpPad help in decreasing double pass overhead

during decryption and make encryption independent from entire input compared

to SpAEP.

5.3.3 CCA security of SpPad–Pe

Now we are ready to present a security proof of CCA security of SpPad–Pe. We

assume that H, G and F are independent random oracles. Nature of proof and

bound calculation will be followed in similar manner like of F − SpAEP . The

experiment of adversary A for SpPad–Pe or simply SpPKE is as follows:

Experiment: Expind−ccaSpPad–Pe,A(k)

1. (pk, sk)
$←−Gen(1k);

2. (M0,M1, s)← Aπ(·),SpPKE.Dec(·)1 (pk);

3. d
$←− {0, 1}

4. χ∗ ← SpPKE.Enc(Md); . . . one time encryption query

5. d′ ← Aπ(·),SpPKE.Dec(·)2 (pk, χ∗, s);

6. return d′;

Theorem 5. Given a OW-PCA asymmetric encryption primitive Pe:(Gen, Enc,

Dec), an ideal permutation π : {0, 1}b=r+c → {0, 1}b, then the construction of

SpPad–Pe defined in Section 5.3.1 is IND-CCA secure. The success probability of

an adversary A is

82 Chapter 5. Sponge based padding for CCA-secure Asymmetric encryption

Pr[Expind−ccaSpPad–Pe,A(k) = d] ≤ 1

2
+

(q − 1)q

2b+1
+
q(q + 1)

2c
+

4qd
2k

+ AdvOW−PCAPe (BA Succeeds) +
qπA
2k
,

where qd is number of queries to the decryption oracle, q is total number of

queries to the π oracle and qπA is number of queries to the π oracle by adversary.

B is an adversary that finds the complete input X of Pe given y and pk such

that y = Encpk(X; g), for some randomness g if present, without knowing sk.

AdvOW−PCAPe (BA) is the success advantage that a particular adversary B has in

breaking OW-PCA security of Pe.

Proof. We will use game based playing technique [15, 16]. We start from the

original CCA game as defined in Section 2.2. ExpSpPKE,A Or Expind−ccaSpPad–Pe,A(k) = d

denote the event that A outputs d′ = d where d
$←− {0, 1}. We want to show that

|Pr[ExpSpPKE,A]|=1
2

+ negl(k). We slightly change SpPKE into a sequence G0,

G1, . . ., G12 such that:

Pr[ExpSpPKE,A]= Pr[ExpG0,A]

Pr[ExpG(i−1),A]=Pr[ExpGi,A]+negl(r) ∀1 ≤ i ≤ 11

Pr[ExpG12,A]= 1
2

� Encryption (SpPKE.Enc), Decryption(SpPKE.Dec): perform Encryption

and Decryption,

� π, π−1: public invertible permutation and its inverse,

� πEnc: permutation π calls by encryption,

� πA, π−1A : permutation π, π−1 calls by adversary A.

Encryption, Decryption, πA and π−1A are public oracles, which are also accessible

to the adversary. In each game, the following sets are maintained: Iπ by π and

π−1, Ienc by πEnc and IAπ by πA and π−1A to store input-output relations.

Another set Lc : {g : g ∈ {0, 1}c} is also maintained internally by π and π−1

for storing capacity bits. The set Lc is initialized to {IV2, IV3} because IV2 is

the capacity part of the input to first π of OAE part and IV3 is the capacity part

of the input to the first π of Hash part. The set Y is updated on every call to π.

Precisely, two c-bit values are appended to Lc on each π call. These two values

are the capacity bits of the inputs and output of π.

5.3. Sponge based padding with one-way cryptosystem 83

Note that q = qπ + qπ−1 , qπ = qπA + qπEnc and qd= number of decryption

queries.

Challenge ciphertext χ∗ has C∗, Y ∗, Cf∗, Ce∗, K∗, h∗, R∗h, g
∗, T ∗ and T ∗k as cor-

responding internal values during computation of challenge query.

In each of the games G0, G1, G2, G3, G4, G5 we make small incremental

changes in the permutation to make it ideal permutation. In games G6, G7, we

make changes in the Decryption oracle and make it independent of sk. Finally,

in games G8, G9, G10, G11, G12 we make changes in Encryption oracle along

with some changes in πA oracle to achieve that d of Md is independent of

all previous queries. We represent the Sponge part of SpPad as a function

Hπ(j1, j2, j3..., ji, ji+1) whose output J is such that

J ||∗ =πEnc

(
πEnc(. . . (πEnc(πEnc(j2||0b−r ⊕ j1)⊕ j3||0b−r)⊕ j4||0b−r) . . .

⊕ ji−1||0b−r
)
⊕ ji||0b−r)⊕ ji+1||0b−r

where π is b-bit permutation, j1 ∈ {0, 1}b, (j2, j3, . . . ji+1) ∈ {0, 1}r, J ∈ {0, 1}k

and ∗ ∈ {0, 1}b−k.

Game G0: This game perfectly simulates the SpPad–Pe.

Pr[ExpSpPKE,A]=Pr[ExpG0,A].

Game G0 to G5: Followed exactly same as in Fig. 3.4 3.5 3.6. This gives us

following bound (q−1)q
2b+1 + q(q+1)

2c
between G0 to G5.

Game G5 and Game G6: Both the games are same. In Game G6 only a

dummy operation, shown as dash-box, of flag ← new is added in the Decryption

oracle to denote a new query. The query is new in the sense that neither the

query nor any part of the query during internal calls to π, of Decryption oracle,

was queried earlier by the adversary. That is, query 6∈ IAπ . In decryption oracle

there is addition of one more dummy line of badπ as true if T = T ′ happens for

flag = new.

|Pr[ExpG6,A] = Pr[ExpG5,A]|.

84 Chapter 5. Sponge based padding for CCA-secure Asymmetric encryption

Game G0: Initialize Ienc = Iπ = IAπ = ∅, (pk, sk)← Gen(1k), IV1 = 0r, IV2 = 0c,
IV3 = IV2 ⊕ 1.

On Encryption-Query(Md)

1. K∗ $←− {0, 1}k

2. g∗ $←− COINS

3. m1||m2|| . . . ||me = M
4. x = IV1 ⊕K||0r−k, w = IV2
5. for i = 1→ n→ e do

(x||w) = πenc(x||w)
x = x⊕mi

c∗i = x

6. (x||w) = πenc(x||w); T ∗ = bxck
7. Cf∗ = c∗1||c∗2|| . . . ||c∗n;

Ce∗ = c∗n+1|| . . . ||c∗e
8. Y ∗ = Encpk(C

f∗; g∗)
9. y∗1|| . . . y∗j = Cf∗||Y ∗; x = IV1 and

w = IV3
10. for i = 1→ j do

x = x⊕ yi
(x||w) = πenc(x||w)

11. h∗ = bxck;K∗h = h∗ ⊕K∗;
T ∗k = T ∗ ⊕K∗

12. Return: Y ∗||K∗h||Ce∗||T ∗

On Decryption-
Query χ = Y ||Kh||Ce||T

1. Cf = Decsk(Y); x = IV1 and
w = IV3

2. y1|| . . . ||yj = Cf ||Y
3. for i = 1→ j do

x = x⊕ yi
(x||w) = π(x||w)

4. h = bxck;K = h⊕Kh; T = Tk ⊕K
5. x = IV1 ⊕K||0r−k; w = IV2
6. c1||c2|| . . . ||cn = Cf ;

cn+1|| . . . ||ce = Ce

7. for i = 1→ n do
(x||w) = π(x||w)
mi = x⊕ ci
x = ci

8. (x||w) = π(x||w); T ′ = bxck
9. if T == T ′ then

Return:unpad(m1|| . . . ||me)
else

Return: ⊥.

On π-Query m

1. if (m, v)∈ Iπ then return v

2. v
$←− {0, 1}b

3. if ∃ m′ s.t (m′, v)∈ Iπ, then

v
$←− {0, 1}b \ {v : (∗, v) ∈ Iπ},

where ∗ ∈ {0, 1}b
4. Iπ = Iπ

⋃
{(m, v)}

5. return v;

On π−1-Query v,

1. if (m, v)∈ Iπ then return m

2. m
$←− {0, 1}b

3. if ∃ v′ s.t (m, v′)∈ Iπ, then

m
$←− {0, 1}b \ {m : (m, ∗) ∈ Iπ},

where ∗ ∈ {0, 1}b
4. Iπ = Iπ

⋃
{(m, v)}

5. return m;

On πA-Query m

1. v = π(m)
2. IAπ = IAπ

⋃
{(m, v)}

3. return v;

On π−1A -Query v

1. m = π−1(v)
2. IAπ = IAπ

⋃
{(m, v)}

3. return v;

On πenc-Query m

1. v = π(m)
2. Ienc = Ienc

⋃
{(m, v)}

3. return v;

Figure 5.2: Game G0

5.3. Sponge based padding with one-way cryptosystem 85

Game
�� ��G6 G7 : Initialize Ienc = Iπ = IAπ = ∅, (pk, sk) ← Gen(1k),

IV1 = 0r, IV2 = 0c, IV3 = IV2 ⊕ 1. Lc = {IV2, IV3}. flag ∈ {new, old} .

On Decryption-Query χ = Y ||Kh||Ce||T

1 Cf = Decsk(Y); x = IV1 and w = IV3
2 y1|| . . . ||yj = Cf ||Y ; flag ← old

3 for i = 1→ j do
x = x⊕ yi
If{x||w, ∗} /∈ IAπ then flag ← new

(x||w) = π(x||w)

4 h = bxck;K = h⊕Kh; T = Tk ⊕K
5 x = IV1 ⊕K||0r−k; w = IV2
6 c1||c2|| . . . ||cn = Cf ; cn+1|| . . . ||ce = Ce

7 for i = 1→ e do

If{x||w, ∗} /∈ IAπ then flag ← new

(x||w) = π(x||w)
mi = x⊕ ci
x = ci

8 If{x||w, ∗} /∈ IAπ then flag ← new

9 (x||w) = π(x||w); T ′ = bxck
10 if T == T ′ and flag == new then

badπ ← true

Return:
�� ��unpad(m1|| . . . ||me) ⊥

11 if T == T ′ and flag == old then
Return:unpad(m1|| . . . ||me)

else
⊥.

Rest of Oracles same as G5

Figure 5.3: Game G6: G6 includes dummy lines, shown in dash-box,compare to
G5 along with round-box

Figure 5.4: G7: G7 includes all codes of line of G6 and also solid-box but not
round-box.

Game G6 and Game G7: In G7, if badπ happens then return ⊥. Both games

G6 and G7 act similarly till badπ occurs. The event badπ occurs in Decryption

oracle when a new query results in T1 = T ′1 (mentioned in Fig. 5.4 line 10). The

86 Chapter 5. Sponge based padding for CCA-secure Asymmetric encryption

badπ event occurs with probability 4qD
2k

.

|Pr[ExpG7,A]− Pr[ExpG6,A]| = Pr[bad] ≤ 6qD
2k

.

Let (v1||v2) = π(x||w), where x,v1 ∈ {0, 1}r and w,v2 ∈ {0, 1}c. In decryption,

an input is a new query to π when ((x||w), (v1||v2)) /∈ IAπ and old query when

((x||w), (v1||v2)) ∈ IAπ . If a new query (x||w) is input to π during decryption, then

π outputs v1||v2, where v2 /∈ Lc. That is, v2 is also new. Since v2 is unseen so far,

it ensures that the input to the next call of π is certainly new. Further, since v2

is new, next input x′||v2 satisfies the condition (x′||v2, ∗) /∈ IAπ , where ∗ stands

for any b bit value. Therefore one new query makes all subsequent inputs to π(·)
as new. Any new query to π implies that a ciphertext y queried to Decryption

oracle has never been generated by the adversary. In Game G7, Decryption oracle

return ⊥(Invalid) whenever adversary makes such a query.

To know if a new query has been made in SpPad–Pe Decryption oracle, we

consider three checkpoints, called A, B and C. A is input to last block of π in

Sponge Part, B is input of first and C is input of last π of SpongeWrap. Next we

explain the situation when a badπ event can occur in Game G7.

In Sponge-part, if any input before A is new, then A is also new as explained

earlier. Hence a decryption query is certainly new if A is new. In the case of

checkpoints B and C, it is not possible that B is new query and C is old query.

This follows from our discussion above. Therefore, we only need to check C to

determine if there is a new query in the SpongeWrap part.

During encryption, let us denote the values at checkpoints A, B and C by

α,K∗||0br−r||IV2 and β respectively. Let Y ∗||K∗h||Ce∗||T ∗k be the target ciphertext

and C∗ = Cf∗||Ce∗ where Cf∗ = c∗1|| . . . ||c∗e and Ce∗ = c∗e+1|| . . . ||c∗n such that

Y ∗ = Encpk(C
f∗, ∗), K∗h = h∗ ⊕K∗ and Y ∗ = y∗1|| . . . y∗j .

The following cases cover all the possible cases for new query.

CASE-1 (A new, B new, C new): The badπ event occurs only when tag T = T ′

(shown in Algorithm 6 and Game G7 in Fig. 5.4)

� : C 6= β: Then T = T ′ implies collision of the outputs of π over r-bit

value. Probability of this event is qd
2k

for qd queries to Decryption oracle

� : C=β: Then T = T ∗ which means ci = c∗i for all i such that 1 ≤ i ≤ n

and K = K∗. This leads to C = C∗. Now ,If A = α, this results in

5.3. Sponge based padding with one-way cryptosystem 87

Y = Y ∗ and Kh = K∗h, which is not allowed because adversary can

not this query to Decryption oracle. If A 6= α, then h is random and

probability that Kh ⊕ h = K∗ is qd/2
k.

CASE-2 (A new, B new, C old): This case is impossible. It is due to the fact that if

B is new, then all subsequent inputs to π including C are also new.

CASE-3 (A new, B old, C new): This is repetition of CASE-1.

CASE-4 (A new, B old, C old): B and C are old queries in this case and hence K

and T is already known to the adversary along with all ci for all i such

that 1 ≤ i ≤ n. Kh is also fixed due to the query Y ||Kh||Ce||Tk to the

Decryption oracle.

(a) A6= α: Further, bπ(A)ck is random value results in K ⊕Kh, which is

a collision of output of π(A) over k-bit value. Probability of this event

is qd
2k

for qd queries to the Decryption oracle.

(b) A=α: This results in h = h∗ due to the permutation property of π.

This leads to ci = c∗i for all i such that 1 ≤ i ≤ e and Y = Y ∗. Now

probability of Kh⊕K = h∗, for unknown h∗ is an random event where

SpongeWrap part results in collision over k-bits. This is a kind of hash

collision on outputs of SpongeWrap for different inputs. Probability of

such a hash collision is qd
2k

.

CASE-5 (A old, B new, C new): This is repetition of CASE-1

CASE-6 (A old, B new, C old): This case is impossible, as for CASE-2.

CASE-7 (A old, B old, C new): This is repetition of CASE-1.

CASE-8 (A old, B old, C old): The bad event can not occur in this case.

Game G7 and Game G8: Both the games are same. Game G7 and G8 both

return ⊥ when a new query is given to the Decryption oracle. In Game G8, a

message M is returned only when all the input-output relations of π, which would

be possible during the encryption of M , are already in IAπ . Game G8 iterates over

all the possible pairs of (input,output) of π ∈ IAπ . This makes the Decryption

oracle independent of Decsk.

88 Chapter 5. Sponge based padding for CCA-secure Asymmetric encryption

Game G8: Initialize Ienc = Iπ = IAπ = ∅, (pk, sk)← Gen(1k), IV1 = 0r, IV2 = 0c,
IV3 = IV2 ⊕ 1. Lc = {IV2, IV3}

On Decryption-Query χ = Y ||Kh||Ce||Tk

1 If ∃ pad(M)==m1||m2|| . . . ||me such that
after setting Y = an+1|| . . . ||aj , u21 = IV3, z11 = IV1

if {(u1i ||u2i), (z1i+1||z2i+1)} ∈ IAπ for i : 1→ n→ j such that
ai = u1i ⊕ z1i , u2i = z2i and OPC(Cf , y) = 1, where Cf = a1|| . . . ||an

then for setting K = bzjcr ⊕Kh, Cf ||Ce = c1|| . . . cn||cn+1|| . . . ||ce
x0 = K||0r−k ⊕ IV1 and w0 = IV2

if (x0||w0, v11 ||v21) ∈ IA, and
{(xi||wi), (v1i+1 ||v2i+1)} ∈ IAπ for i : 1→ n→ e and
bv1e+1cr == Tk ⊕K
where xi = ci = mi ⊕ v1i ,wi = v2i
then Return: M
else Return: ⊥

Rest of Oracles same as G7

Following special notations is used during Game G8 and onwards in decryption
oracle:

1. During SpongeWrap part of SpPad, we represent input-output relation
of π’s subsequent calls for pad(M) = m1|| . . . ||me by (v1i+1 ||v2i+1) =
π(xi||wi), where xi = v1i ⊕{mi}, wi = v2i 0 ≤ i ≤ e, v10 = IV1, m0 = K,
w0 = IV2, v1i , xi ∈ {0, 1}r and v2i , wi ∈ {0, 1}c. Then ci will represent
mi ⊕ v1i , where 1 ≤ i ≤ e.

2. Input-output relation of π’s subsequent call during Sponge part of SpPad
will be represented as follows: (z1i+1||z2i+1) = π(u1i ||u2i), u1i = ci ⊕ z1i ,
u2i = z2i ,where 1 ≤ i ≤ j, u21 = IV3, z11 = IV1, zj = h.

Figure 5.5: Game G8: Output of decryption oracle in G8 is same as G7 but
independent from sk.

5.3. Sponge based padding with one-way cryptosystem 89

On query Y ||Kh||Ce||Tk, the Decryption oracle returns a valid M only if the

adversary knows the plaintext-ciphertext pair (M,Y ||Kh||Ce||Tk); otherwise it

returns ⊥. Plaintext-checking oracle OPC confirms if Cf extracted from IAπ is a

valid pair with Y under some g or not.

|Pr[ExpG8,A] = Pr[ExpG7,A]|.

Game G8 and Game G9: We start incremental changes in Encryption oracle

from Game G9. In Game G9, K∗ is chosen before encryption query and after

“find” stage. In both case K∗ remain random therefore,

|Pr[ExpG9,A] = Pr[ExpG8,A]|.

Game G9 and Game G10: In G9, K∗ is generated randomly. In G10, K∗ is

computed using the value of randomly generated Cf∗, K∗h and subsequently ran-

dom Y ∗ from Encpk. The value ofK∗ is calculated viaHπEnc(IV1||IV2, y∗1, y∗2, . . . , y∗j)⊕
K∗h, where y∗1, y

∗
2, . . . , y

∗
j = Cf∗||Y ∗. Since π is an ideal permutation and K∗h is a

random value, K∗ will also be random. Therefore, G9 and G10 are same.

Pr[ExpG10,A] = Pr[ExpG9,A].

90 Chapter 5. Sponge based padding for CCA-secure Asymmetric encryption

Game G9 G10 :Initialize Ienc = Iπ = IAπ = ∅, (pk, sk) ← Gen(1k),

IV1 = 0r, IV2 = 0c, IV3 = IV2 ⊕ 1. flag ∈ {new, old}. Lc = {IV2, IV3}

After Find Stage(AFS): g∗ $←− COINS; K∗h
$←− {0, 1}k; Cf∗ $←− {0, 1}`, Ce∗ $←−

{0, 1}Clen(Md)−` Y ∗ $←− {0, 1}`+cope , T ∗k
$←− {0, 1}k

(y1|| . . . ||yn)||(yn+1|| . . . ||yj) = (Cf∗)||(Y ∗);
(c1|| . . . ||cn)||(cn+1|| . . . ||ce) = (Cf∗)||(Ce∗); K∗ $←− {0, 1}k

K∗||∗ = πenc(. . . πenc(πenc(y1 ⊕ IV1||IV3)⊕ y2||0c) . . .⊕ yj ||0c)⊕K∗h||0b−k

On Encryption-Query(Md)

1. m1||m2|| . . . ||mn = M

2. x = IV1 ⊕K||0r−k, w = IV2

3. for i = 1→ e do
(x||w) = πenc(x||w)

x = x⊕mi

c∗i = x

4. (x||w) = πenc(x||w); T ∗k = bxck ⊕K∗

5. Cf∗ = c∗1||c∗2|| . . . ||c∗n; Ce∗ = c∗n+1|| . . . ||c∗e
6. Y ∗ = Epk(C

f∗; g∗)

7. y∗1|| . . . y∗j = Cf∗||Y ∗; x = IV1 and w = IV3

8. for i = 1→ j do
x = x⊕ yi
(x||w) = πenc(x||w)

9. h∗ = bxck;K∗h = h∗ ⊕K∗

10. Return: Y ∗||K∗h||Ce∗||T ∗k

Rest of Oracles same as G8

Figure 5.6: Game G9 and G10: G9 includes some extra dummy variables, shown in
dash-box, during initialization after find stage. G10 includes solid-box code during
initialization in which K∗ is chosen from random C∗.

Game G10 and Game G11: In the game G11, K∗ is generated in same way

as in G10. In Encryption oracle, π is an ideal permutation which results in

random c∗i (1 ≤ i ≤ e). Therefore, in G11, the values of c∗i for all i are replaced

by random values c∗i independent π. Similarly T ∗ output of π is replaced with

random T ∗. Due to initial random K∗, K∗h is also random independent from h∗ of

π. Because now Cf∗ is totally random therefore Y ∗ is also a random string, which

5.3. Sponge based padding with one-way cryptosystem 91

can be replaced by any other random string chosen independently. Both games

G10 and G11 will behave the same way until ‘BadK ’. The BadK event occurs

when the adversary queries K∗||0b−k||IV2 to πA or receives response K∗||0b−k||IV2
from π−1A . In G11, K∗ is calculated using C∗ and Y ∗, unlike C∗ using the K∗

as in G10. In G10, relation between c∗1, c
∗
2, . . . , c

∗
n is generated by K∗. However,

relation between c∗1, c
∗
2, . . . , c

∗
n does not exist in G11. This gap in the relation can

be exploited by the adversary if adversary queries K∗||0r−k||IV2 to πA or receives

response K∗||0r−k||IV2 from π−1A .

|Pr[ExpG11,A]− Pr[ExpG10,A]| =Pr[BadK].

G11: Initialize Ienc = Iπ = IAπ = ∅, (pk, sk) ← Gen(1k), IV1 = 0r, IV2 = 0c,

IV3 = IV2 ⊕ 1. flag ∈ {new, old}. Lc = {IV2, IV3}
After Find Stage(AFS): g∗ $←− COINS; K∗h

$←− {0, 1}k; Cf∗ $←− {0, 1}`, Ce∗ $←−
{0, 1}Clen(Md)−`; Y ∗ $←− {0, 1}`+cope , T ∗k

$←− {0, 1}k

(y1|| . . . ||yn)||(yn+1|| . . . ||yj) = (Cf∗)||(Y ∗);
(c1|| . . . ||cn)||(cn+1|| . . . ||ce) = (Cf∗)||(Ce∗)
K∗||∗ = πenc(. . . πenc(πenc(y1 ⊕ IV1||IV3)⊕ y2||0c) . . .⊕ yj ||0c)⊕K∗h||0b−k

On Encryption-Query(Md)

1. Return: Y ∗||K∗h||Ce∗||T ∗k

On πA-Query m

1. If (m = K∗||0b−k) then

BadK ← true

2. v = π(m)

3. IA = IA
⋃
{(m, v)}

4. return v;

On π−1A -Query v

1. m = π−1(v)

2. If (m = K∗||0b−k) then

BadK ← true

3. IA = IA
⋃
{(m, v)}

4. return v;

Rest of Oracles same as G10

Figure 5.7: Game G11: All values of encryption oracle replaced by random
variables, if adversary does not query K∗ to πA

Game G11 and Game G12: Game G12 is the final game of adversary A.

From G11, a random Y ∗ is the output of Encryption oracle and Cf∗ of C∗ is

unknown to adversary independent of Md. Therefore, if a random χ is given to

the A in G12, then K∗ will be unknown to the adversary. BadK event in G11 is

same as Bad1K in G12.

92 Chapter 5. Sponge based padding for CCA-secure Asymmetric encryption

|Pr[ExpG12,A] = Pr[ExpG11,A]|,

If a random χ is given to the A in G12, then K∗ will be unknown to the

adversary and χ will be independent of d of Md Therefore, Pr[ExpG12,A] = 1
2
.

Given a target ciphertext Y , Adversary BA uses A as a black box, while A
uses G12.

A detailed description of the games and adversary B is given in Fig 5.8. The

probability of Bad1K is as follows.

Pr[BadK] = Pr[K∗||0b−k||IV2 is queried to (πA or π
−1
A)]

= Pr[(K∗||0b−k||IV2 is queried to (πA or π
−1
A)) ∧ (Ienc ⊂ IAπ)]

+ Pr[(K∗||0b−k||IV2 is queried to (πA or π
−1
A)) ∧ (Ienc 6⊂ IAπ)].

(IEnc ⊂ IA) implies that all the input-output relations of πEnc are also known

to the adversary A via set IA. Therefore A knows all c∗i for 1 ≤ i ≤ n and h∗.

Moreover, the adversary A learns K∗ from K∗h of challenge ciphertext.

Given Y ∗||K∗h||Ce∗||T ∗k , if K∗||0b−k||IV2 is queried to π, then it reveals C∗

completely. Therefore,

Pr[BadK] =≤ AdvOW−PCAPe (BA Succeeds) + Pr[(K∗||IV2 is queried to (πA

or π−1A)) ∧ (IEnc 6⊂ IA)].

IEnc 6⊂ IA implies that one of the inputs to HπEnc() is unknown to the adversary

A. It results in unknown output value from HπEnc(). Since K∗h is already random

therefore K∗ remains unknown and random to A. Therefore, K∗||0b−k query to

πA is equivalent to random guessing of K∗.

Pr[Bad1K] ≤ AdvOW−PCAPe (BA Succeeds)+
(qπA)

min(2k,2c)
.

This completes the proof of Theorem 5.

5.3. Sponge based padding with one-way cryptosystem 93

G12: Initialize Ienc = Iπ = IAπ = ∅, (pk, sk) ← Gen(1k), IV1 = 0r, IV2 = 0c,

IV3 = IV2 ⊕ 1. Lc = {IV2, IV3}
(AFS):K∗h

$←− {0, 1}r; Ce∗ $←− {0, 1}Clen(Md)−`; Y ∗ $←− {0, 1}`+cope ; T ∗k
$←− {0, 1}k;

where Cf = Decsk(Y)

K∗||∗ = πenc(. . . πenc(πenc(y1 ⊕ IV1||IV3)⊕ y2||0c) . . .⊕ yj ||0c)⊕K∗h||0b−k

On Encryption-Query(Md)

1. Return: Y ∗||K∗h||Ce∗||T ∗k

On πA-Query m

1. If (m = K∗||0b−k) then

BadK ← true

2. v = π(m)

3. IA = IA
⋃
{(m, v)}

4. return v;

On π−1A -Query v

1. m = π−1(v)

2. If (m = K∗||0b−k) then

BadK ← true

3. IA = IA
⋃
{(m, v)}

4. return v;

Rest of Oracles same as G11
Red color line shows lines which are not detectable by Adversary.

Adversary B: Given random Y
$←− {0, 1}`+cope , find Cf such that

Encpk(C
f ; ∗) = Y

Game G12 as Adversary A: Initialize Ienc = Iπ = IAπ = ∅, (pk, sk) ←
Gen(1k), IV1 = 0r, IV2 = 0c, IV3 = IV2 ⊕ 1. Lc = {IV2, IV3}
(AFS):K∗h

$←− {0, 1}r; Ce∗ $←− {0, 1}Clen(Md)−`; T ∗k
$←− {0, 1}k;

Rest of Oracles same as G12

Finalization: if {(u1i||u2i), (z1i+1||z2i+1)} ∈ IAπ for i : 1 → n → j such that

ai = u1i ⊕ z1i , u2i = z2i and OPC(Cf , Y) = 1, where Cf = a1|| . . . ||an,

Y = an+1|| . . . ||aj, u21 = IV3 and z11 = IV1.

then return Cf ;

Figure 5.8: Game G12 as final game, and Adversary B using G12 as Adversary
A.

94 Chapter 5. Sponge based padding for CCA-secure Asymmetric encryption

5.4 Conclusion

We presented a new variant, SpPad, of SpAEP using Sponge construction in

ideal permutation model. A different but practical security notion over trapdoor

one-way functions enables the use of SpPad with trapdoor one-way functions like

El-Gamal. In addition to streaming at encryption side, it also provides streaming

at decryption side by removing the dependency of randomness recovery from entire

ciphertext/plaintext. Overall, with the combination of versatile Sponge structure

and OW-PCA security assumption, SpPad–Pe achieves lower ciphertext overhead,

streaming at encryption and decryption, lower computation cost compared to

previous similar works.

5.4.1 Subsequent scope

With the help of Sponge structure, we have achieved lower ciphertext overhead,

“on-the-fly” encryption and decryption, stronger security (IND-CCA) from weakly

one-way secure asymmetric cryptosystem (both deterministic and probabilistic),

support for long messages, and better computation efficiency. Security proof is

based on ideal permutation model which is different from regular RO model in

practice, provide similar security with less heuristic approach. We achieved these

results in step by step manner by instantiating the “General view of OAEP+”

of section 3.1.3 with Sponge structure. The general view we adopt is generic in

nature and opens up more options to build different padding schemes for a CCA-

secure asymmetric encryption scheme from one-way cryptosystems. A question

arises about describing security of general view, with appropriate modifications to

achieve maximum properties like we obtained with specific Sponge structure. This

secure and efficient general view would be a competitive alternate option when

compared to existing generic constructions like FO-transform [55], REACT [83]

and GEM [40]. With the aim of having such generic framework, we make an

attempt to provide an answer to this question in next chapter.

Viewing versatility of Sponge structure and usage of OAEP type padding in

signcryption scheme opens up another scope of work to apply and use Sponge

structure for efficient signcryption schemes. With this aim of signcryption schemes

with Sponge structure, we carry on to next chapter.

Chapter 6

Real time CCA-secure Encryption

for Arbitrary Long messages

Contents

6.1 Background . 96

6.1.1 Limitation of previous works 97

6.1.2 Motivation . 100

6.1.3 One-time Symmetric Encryption 100

6.2 Contribution . 102

6.3 Real time CCA-secure Encryption for Arbitrary Long

messages (REAL) . 105

6.3.1 Generic Construction with Pe as OW : REAL-1 105

6.3.2 Generic Construction with Pe as OW-PCA : REAL-2 . 115

6.4 Conclusion . 123

6.4.1 Subsequent scope . 124

In this chapter, we introduce a generic framework for building CCA-secure

encryption for arbitrary long messages using a symmetric encryption scheme, a

weakly one-way secure asymmetric cryptosystem, and hash functions.

First, we explain some existing works that propose a generic framework for

CCA-secure encryption for arbitrary long messages using a symmetric encryption

scheme, a one-way secure cryptosystem, and hash functions. We elaborate some

95

96 Chapter 6. Real time CCA-secure Encryption for Arbitrary Long messages

limitations which are common in those works along with a comparison table

to provide targeted motivation. Next, we explain features and comparison of

our proposal REAL compared to existing schemes as part of our contribution.

Following a detailed description of a generic framework (REAL), we describe two

different versions of this framework (REAL-1, REAL-2) suitable to different system

requirements. We also provide security proofs of both versions. At the end of

this chapter, we conclude the chapter and discuss the scope of subsequent work.

6.1 Background

From previous chapters we know, public-key encryption of arbitrarily long mes-

sages is a very important issue. A hybrid approach that uses a combination of

PKE and symmetric encryption is a common solution. Shoup presented a generic

construction of hybrid encryption called the key/data encapsulation mechanism

(or KEM/DEM) [97]. In [1], Abe, Gennaro, and Kurosawa proposed a modifica-

tion that is called the Tag-KEM/DEM framework. Key-encapsulation mechanism

(KEM) can be implemented using either OAEP-type encryption or CCA-secure

PKE. Data encapsulation mechanism (DEM), on the other hand, is based on a

symmetric encryption algorithm (such as AES) to process long messages. Chow

et al. [37] obtained a generic and efficient transformation targeting embedded de-

vices. They proposed an identity based encryption from any identity based KEM

scheme that is secure against chosen-ciphertext attack (CCA). Another scheme

called OAEP++ (see [27,28,63]), which describes IND-CCA secure PKEs, claimed

to be computationally efficient but constructed only from any deterministic OW

asymmetric primitives.

Fujisaki and Okamoto [54] proposed a generic framework. They showed how to

convert any OW-secure PKE into a CCA-secure PKE in the random oracle model.

Pointcheval [90] obtained a similar result but using any partially trapdoor one-way

function in the random oracle model. Improved versions of the Fujisaki-Okamoto

(FO) scheme were proposed in [40,83]. These constructions reduce the ciphertext

overhead and remove the need for re-encryption during decryption. Security of

these construction is proved under the the OW-PCA assumption for underlying

asymmetric encryption, which is a slightly stronger notion than OW used in the

FO scheme.

6.1. Background 97

6.1.1 Limitation of previous works

Table 6.1 summarizes constructions of CCA-secure public key encryption schemes.

In particular, OAEP-type schemes are built from deterministic trapdoor one-way

permutations only. Hybrid encryption schemes suffer from a high ciphertext

overhead except for RKEM-DEM [25]. However, RKEM-DEM requires stronger

security assumptions. Boyen [31] described an efficient PKE with a minimum

ciphertext overhead. Moreover, the security is based on the DH assumption and

RO.

The FO transform [55] improved these works and then it is successfully

enhanced by [40, 55, 83]. These works provide different generic constructions,

where Pe can be either a trapdoor one-way permutation or a trapdoor one-way

function. Besides, the security requirements for Pe are weakened. In this work,

we focus on the works [40,55,83], which are proven in the RO model and offer

best efficiency as well as generic construction.

Fujisaki and Okamoto [55] formulated their framework (FO transform) by

using hybrid encryption efficiently. It deploys three primitives: a OW secure Pe,

an IND-CPA secure symmetric encryption, and two random oracles. Although

the design is quite efficient and requires weak security assumptions, the FO

transform also suffers from a high-ciphertext overhead equal to the output length

of asymmetric part (Pe). A similar high ciphertext overhead is a common weakness

of hybrid encryption schemes and also of generic transformations described in

[54,55,90]. The FO transform is also inherently sequential, i.e. asymmetric-key

encryption follows symmetric key encryption. More precisely, in the FO transform

complete cryptogram stream obtained from symmetric-key encryption has to

be hashed before asymmetric-key encryption. The FO transform incurs higher

computation time, especially for very long messages. This higher computation

time and sequential nature prevents the FO transform being used for streaming

(on-the-fly) encryption, where the length of message stream may not be known

in advance. Another limitation of this work is the need of re-encryption during

decryption. The re-encryption is found to be a necessary evil because of lower

security requirements. Other than the extra computation load of re-encryption,

there is an additional delay in the overall decryption process as the re-encryption

process is executed in the end, after passing over the complete ciphertext. If

the re-encryption process can be done in parallel with other operations during

decryption, then it could reduce the computation overhead.

98 Chapter 6. Real time CCA-secure Encryption for Arbitrary Long messages

Schemes Asymmetric primitive (Pe) Symmetric primitives Ciphertext
over-
head

Long
mes-
sage
sup-
port

Security
Require-
ment

Type Security
Require-
ment

Type

OAEP
Type
schemes

OAEP [13] POW Trap.Perm. (e.g.,
RSA)

RO 2 Hash 3k 7

OAEP+ [98] OW Trap.Perm. RO 3 Hash 3k 7

OAEP-3R [87] OW Trap.Perm. RO 3 Hash 2k 7

OAEP-4X [2] OW Trap.Perm. RO + IND-
CPA

5 Hash + 1
SE

k X

OAEP++ [28] OW Trap.Perm. RO + IND-
CPA

3 Hash + 1
SE

2k X

SpAEP [8] OW Trap.Perm. Ideal per-
mutation
(P)

P based 1
Hash + 1 SE

2k X

Hybrid
Encryption

Cramer-
Shoup [42]

DDH DDH based
(e.g.,ElGamal)

(KDF+TCR)
+ IND-CCA

2 Hash + 1
SE

`pe +
cope +
coS

X

Cramer-
Shoup [43]

IND-CCA
KEM

Any Pe IND-CCA SE `pe +
co∗pe +
coS

Kurosawa-
Demstad
KEM-
DEM [68]

DDH DDH based (TCR+KDF
+ MAC),+
IND-CCA

3 Hash +1
SE

`pe +
cope +
coS

X

RKEM-
DEM [25]

IND-CCA+
RoR-CCA

Any Pe IND-CCA 1 SE k +
cope +
coS

X

Miniature
CCA-PKE [31]

DDH DDH based RO 3 Hash cope 7

Generic
Construction

FO- Transfor-
mation [55]

OW Any Pe RO + IND-
CPA

2 Hash + 1
SE

`pe +
cope

X

REAL (Our
Result)

OW Any Pe RO + IND-
CPA

3 Hash + 1
SE

2k +
cope

X

Table 6.1: Comparison among some techniques results in IND-CCA secure schemes:
We compare our scheme REAL against OAEP-type schemes, hybrid encryptions schemes
and FO transform [55].Some abbreviations used in table are :
Random oracle model(RO), Partial One-wayness(POW), One-wayness(OW), chosen
plaintext attack indistinguishability(IND-CPA), chosen ciphertext attack indistinguisha-
bility(IND-CCA), Key derivative function(KDF), Target collision resistant(TCR), mes-
sage authentication code(MAC) respectively.
“Trap.Perm.” refers to underlying deterministic one-way asymmetric cryptosystem,
whereas “Any Pe” includes both deterministic and probabilistic one-way asymmetric
cryptosystem(Pe).
k is security parameter, `pe(≥ k) is input length of asymmetric primitive , coPe is
ciphertext overhead of asymmetric primitive and coS is ciphertext overhead of sym-
metric encryption (SE) primitive. We consider IND-CPA SE is length preserving while
providing value of ciphertext overhead.
co∗pe might be 0 or cope depending upon KEM.

6.1. Background 99

In [83], Okamoto et al. proposed scheme, named REACT, which overcame

the limitation of re-encryption during decryption needed in FO transform [55].

This improvement of performance is achieved at the cost of a stronger security as-

sumption, OW-PCA, on the asymmetric primitive Pe. This security assumption is

easily satisfied by ElGamal [57] encryption under GDH assumption [82]. However,

improvement in performance also increase the length of cryptogram. Moreover,

while hashing, system needs to store either complete message or ciphertext. The

hash function also needs to process both input (message) and output (ciphertext)

of symmetric primitive. This results in a high memory demand for long message

and the hash computation is equivalent to double pass.

In [40], Coron et al. focus on reducing the ciphertext overhead of the scheme

REACT from [83]. Their scheme GEM has ciphertext overhead equivalent to

the overhead of the FO transform, which is smaller than REACT [83]. The

reduction in ciphertext overhead achieved at cost of losing the “on the fly”

encryption/decryption option.

In the work [45], Cui et al. propose a generic CCA-secure scheme, named

ROC, inspired from REACT [83] and GEM [40]. The ROC scheme incurs a

lower ciphertext expansion compared with the scheme from [40,55,83]. On the

downside, ROC can process fixed length messages only and does not support

on-the-fly encryption/decryption.

Table 6.2 provides a summary of the works discussed above. In short, the

use of re-encryption and weak security assumptions are found to be inversely

proportional to each other; and ciphertext overhead, streaming option and memory

requirements vary because of using different internal functions.

schemes Asymmetric

Encryption

Re-Encryption Message length Ciphertext

overhead

of other

functions

on the fly Enc on the fly Dec

FO [55] OW-CPA Yes Unrestricted `+ cope 2Hash + 1 SE No Yes

REACT [83] OW-PCA No Unrestricted `+ cope + k 2Hash + 1 SE Yes Yes

GEM [40] OW-PCA No Unrestricted `+ cope 3Hash +1SE No Yes

ROC [45] OW-PCA No Restricted coPe + k 2 Hash No No

Table 6.2: Generic CCA transformations:
“`+ cope” is output length and ` is input length of asymmetric encryption
“k” is security parameter, “SE” is Symmetric encryption
“OW” is one-wayness, “CPA” is chosen plaintext attack and “PCA”” is plaintext
checking attack

100 Chapter 6. Real time CCA-secure Encryption for Arbitrary Long messages

6.1.2 Motivation

Our primary motivation of this work is to achieve a “real-time” encryption/de-

cryption property with a lower ciphertext overhead, which is either missing in

previous works or requires more memory. Real-Time algorithms process data

streams, in which the input is presented as a sequence of items and can be

examined in just one pass. These algorithms have limited memory available to

them (much less than the input size) and also limited processing time. These

algorithms have many applications, especially for processing long streams of data

(movies online, music etc.), where their lengths may not be known in advance.

Data streaming is one of the drivers for calling the CAESAR [18] competition.

However, the CAESAR call relates to symmetric key cryptography. The asymmet-

ric key cryptography, which has been designed to process relatively short messages,

somehow has been overlooked. Hybrid cryptography combines asymmetric with

symmetric cryptography and allows to process very long messages.

To maintain a focus on security, many works (discussed already) have been

proposed to build IND-CCA secure schemes for working with long messages under

different security models. However, the “real-time” encryption and decryption

remains an open problem, which is being addressed in the work.

Sponge instantiated version of a “Generic view of OAEP+” as described in

Section 3.1.3 has shown good results to achieve our aims. We propose a modified

version of this “Generic view of OAEP+” to achieve better result compared to

existing generic schemes.

6.1.3 One-time Symmetric Encryption

A one-time symmetric encryption scheme S = (K, S.Gen, S.Enc, S.Dec) consist

of four algorithms defined as follows:

1. One time key value generation: Scheme S requires a random secret string

K uniformly drawn from space {0, 1}k. We denote this as K
$←− {0, 1}k

or alternatively K ← K(·). The value K acts as key but K is freshly

re-sampled from its space upon each execution of S.Enc.

2. Long term key value generation: S.Gen defines a secret key Key from

secret key space, Key ← S.Gen(·). In cases where no long term key Key is

required then secret key space is ∅.

6.1. Background 101

3. Encryption: The encryption algorithm S.Enc takes as input a message M

from the message space M and outputs a ciphertext C from the ciphertext

space C. More precisely, S.EncK,Key : P→ C

Correctness condition for S is as follows: If K ← K(·) , Key ← S.Gen(·)
and C ← S.EncK,Key(M) for any M ∈ M then S.DecK,Key(C) = M . This

condition guarantees that decryption must give the same correct message M ,

when a ciphertext C is decrypted using the same (K,Key) as has been used for

encryption. Indistinguishability of encryptions (IND) for one-time encryption also

called find-guess security, is defined by the following game.

Game IND-OT()

1. d← {0, 1}

2. (m0,m1, s)← B1(1k)

3. K ← K(·); c∗ = S.EncK(md)

4. d′ ← B2(s, c∗)

S is IND-OT if and only if for any couple of PPT algorithm BotS = (B1,B2),

AdvotB,S = |2 Pr[d′ = d]− 1| = |Pr[d′ = d]− Pr[d′ 6= d]| ∈ negl(k)

The m0 and m1 generated by B1 should be in M.

Another similar notion, defined as “indistinguishability of ciphertext” or

“indistinguishability from random bits”, is as follows: Game IND$-OT()

1. d← {0, 1}

2. (m, s)← B1(1k)

3. K ← K(·); c0 = S.EncK(m)

4. c1 ← {0, 1}|c0|

5. d′ ← B2(s, cd)

S is IND$-OT if and only if for any couple of PPT algorithm B$ot
S = (B1,B2),

Adv$otB,S = |2 Pr[d′ = d]− 1| = |Pr[d′ = d]− Pr[d′ 6= d]| ∈ negl(k)

102 Chapter 6. Real time CCA-secure Encryption for Arbitrary Long messages

The m generated by B1 should be in M.

We assume |S.Enc(K,M)| = Clen(|M |) for some linear-time computable

“ciphertext length function” Clen. The scheme S is said to be length preserving

if Clen(|M |) = |M |. We require S to be secure against one-time attacks. An

adversary B has to distinguish the output of S.Enc(K,M) from a randomly chosen

bit-string of length Clen(|M |), where K is randomly chosen and the message M

is chosen by B.

We agree that this notion of “indistinguishability from random bits(IND$)”

is stronger than traditional IND, but in practice IND$ seems more practical

and typical encryption schemes seem to achieve IND$ if they achieve IND. This

argument is supported and well discussed by Rogaway in [95]. “It is easy to

verify that the ind$-notion of security implies the ind-notion, and by a tight

reduction, while ind does not imply ind$ at all. Furthermore, it usually seems to

be no extra trouble–indeed often it is slightly simpler–to directly demonstrate

that some scheme achieves ind$-security.[...] Finally, we find ind$ seems to us

conceptually simpler and easier to work with.” [95]. Moreover, in practice,

encryption schemes are supposed to give randomized output thats why nonce

based cryptography is introduced.

Although previous works have provided that their hybrid PKE schemes using

a symmetric encryption have IND-CPA security, they have suggested using a

one-time pad scheme or a pseudorandom generator over one-time session key to

use as a symmetric encryption scheme which is similar to using IND$-CPA.

6.2 Contribution

This work proposes a generic framework that converts any OW asymmetric

primitive (Pe) into a CCA-secure and efficient PKE. Apart from Pe, the framework

requires an one-time symmetric encryption (S) and three hash functions namely

generator G, hider H and final F. All hash functions are considered as random

oracles. REAL denotes encryption scheme constructed using our framework. Our

contribution overcomes the limitations, mentioned in Section 6.1.1, of previous

works [40,55,83].

Security of REAL is proven in the random oracle model. We have provided

two version namely REAL-1 and REAL-2. REAL-1 is with re-encryption mechanism

like the FO transform with OW security assumption on asymmetric primitive Pe.

6.2. Contribution 103

For REAL-2, we assume that Pe is OW-PCA secure in order to avoid re-encryption.

Security assumptions and the security of the scheme are quite similar to previously

published schemes [40,55,83]. However, our scheme handles streams of message

with a very low ciphertext overhead. Our scheme targets real-time encryption that

is applied in memory constrained devices and streaming applications in networks.

REAL-2 version should be used in case of Pe as trapdoor one-way permutations,

where no re-encryption mechanism is needed and OW-PCA assumption is same

as OW.

REAL (both REAL-1 and REAL-2) achieves a lower ciphertext overhead compared

with the schemes from [40,55,83]. Let us denote coS and coPe to be ciphertext

overheads of S and Pe, respectively. Let k be the length of random strings used

in REAL. Then the total ciphertext overhead of REAL will be coS + coPe + 2k. Due

to hybrid nature of the schemes FO transform [55], REACT [83] and GEM [40],

the ciphertext overhead of FO transform and GEM is (coS + coPe + `pe). For the

scheme REACT, the overhead is (coS + coPe + `pe + k).

During encryption, the computation time of REAL is lower than the FO

transform [55] and GEM [40]. In the FO transform, asymmetric-key encryption

has to wait until the symmetric-key encryption is completed. In REAL asymmetric

primitive operation can start just after the initial partial output of symmetric

cipher operation. Let t
`pe
asym or simply tasym be computation time of asymmetric

primitive Pe for its fixed input length `pe. Let tnsym be computation time of

symmetric cipher for input length n, and t
`pe
sym(< tnsym) be the computation time

of symmetric cipher to output `pe bits, where `pe < n. The resulting computation

time of FO transform and GEM [40] will be (tasym + tnsym). On the other hand,

REAL will have max1(tasym + t
`pe
sym, tnsym) computation time (time resulting from

computing hash functions is ignored). This decrease in the computation time in

REAL compared to [40,55] might appear to be small because in general tasym > tnsym.

However, it is significant in case of very long messages when n is sufficiently large

than `pe which results in tnsym > tasym.

If we would like to use weak assumptions on asymmetric primitive Pe, then

REAL-1 inherits re-encryption mechanism during decryption like the FO transform.

Let tasymd be computation time of asymmetric primitive during decryption. In FO,

the re-encryption is done at the end of decryption of the complete ciphertext and

cannot be computed in parallel with other operations. The resulting decryption

1max function returns a maximal value amongst the parameters.

104 Chapter 6. Real time CCA-secure Encryption for Arbitrary Long messages

computation time of FO transform will be tasymd + (tasym + tnsym). In REAL-1, re-

encryption process can be done as soon as the asymmetric decryption is completed.

This enables us to perform re-encryption process in parallel with other operations

including symmetric-key encryption. In case of REAL-1 decryption time will be

tasymd + max(tasym, t
n
sym), which is lower than for the FO transform. A lower

ciphertext overhead, lower encryption and decryption computation time and

on-the fly encryption/decryption makes REAL-1 a better candidate.

If we compare REAL-2 to the schemes GEM [83] and REACT [40], then they

have a similar decryption time and there is no need for re-encryption. REAL also

provides a streaming capability, which can be a very useful feature, specially

for broadcast systems. This feature applies because once the asymmetric part

is processed (encrypted/decrypted), data can be streamed using the symmetric

encryption/decryption. Although REACT [83] also provides streaming during

encryption as well as decryption, while GEM [40] provides during decryption, the

ciphertext overhead of REAL is lower than both [83] and [40]. If Pe is deterministic

one-way asymmetric cryptosystem with weak security assumption then REAL-2

should be chosen. OAEP++ from [28] has similar features compared to REAL-2,

but REAL-2 also provides streaming option during decryption and an overall

generic structure.

Finally, it is interesting to observe that the framework we use is quite different

from a regular hybrid encryption. Recall that the hybrid encryption uses two

systems, namely KEM and DEM with a clear delineation between the two. In

our framework, the two overlap. Table 6.3 overviews most prominent CCA-secure

generic PKEs. The last line in the table shows our REAL construction. Note that

it compares favorably with other constructions.

schemes Asymmetric
Encryption

Re-Encryption Message length Ciphertext
overhead

of other
functions

on the fly
Enc

on the fly
Dec

FO [55] OW-CPA Yes Unrestricted `+ cope 2Hash + 1 SE No Yes
REACT [83] OW-PCA No Unrestricted `+ cope + k 2Hash + 1 SE Yes Yes
GEM [40] OW-PCA No Unrestricted `+ cope 3Hash +1SE No Yes

(Our Result) REAL
OW-CPA Yes

Unrestricted coPe + 2k 3Hash + 1 SE Yes Yes
OW-PCA No

Table 6.3: Generic CCA transformations:
“`+ cope” is output length and ` is input length of asymmetric encryption
“k” is security parameter, “SE” is Symmetric encryption
“OW” is one-wayness, “CPA” is chosen plaintext attack and “PCA”” is plaintext
checking attack

6.3. Real time CCA-secure Encryption for Arbitrary Long messages (REAL) 105

6.3 Real time CCA-secure Encryption for Arbi-

trary Long messages (REAL)

In this section, we introduce our Real time CCA-secure Encryption for Arbitrary

Long messages (REAL). REAL can be used as an implementation template. A

graphical representation of REAL is shown in Fig. 6.1.

K

C

Cf
Ce

Sym

Asy

F

Ce T

H

K

G

g

pk

Kh

S

Pe

Y

Kh

y
k

k

k

M

Figure 6.1: Public key scheme REAL is constructed using One-time symmetric encryption
scheme (S) and Hash functions G, H and F, and an OW-CPA secure asymmetric primitive
Pe. S takes the arbitrary long message M and a randomly generated K as input and
then outputs C. C gets split into Cf and Ce as C = Cf ||Ce with |Cf | = `− k, where
` is input size of Pe. Hash function H takes Cf as input and its output is xored with
K to produce Kh. Hash function G takes input K and outputs random coin g. Encpk
of Pe takes Cf as input with g as random coins if needed, and outputs Y . Final hash
function F takes (Cf ||Kh||Ce||Y) as input and outputs T . Final output of REAL is
Y ||Kh||Ce||T .
Dashed line in figure represents optional g which is not required in case of deterministic
Pe or in case Pe is considered as OW-PCA secure.

6.3.1 Generic Construction with Pe as OW : REAL-1

The building blocks for REAL-1 are:

1. an OW-CPA asymmetric encryption scheme Pe: (Gen,Enc,Dec) of minimum

input message size ` as described in Section 2.1,

2. one-time symmetric encryption scheme S : (S.Enc, S.Dec) for Clen(·) ≥ `

as described in 6.1.3 and

106 Chapter 6. Real time CCA-secure Encryption for Arbitrary Long messages

3. Hash functions Generator G : {0, 1}k → COINS , Hider H : {0, 1}` → {0, 1}k

and Final F : {0, 1}∗ → {0, 1}k.(Modeled as RO)

A REAL-1 scheme is defined as a triplet of the following probabilistic polynomial-

time (PPT) algorithms: 〈GPKE.Gen, GPKE.Enc, GPKE.Dec〉.

• GPKE.Gen produces a private/public key pair(pk, sk) using Gen(1k).

• GPKE.Enc encrypts a message M of an arbitrary length and produces a

cryptogram. Encryption proceeds according to the following steps:

1. Take a message M and generate a random string K
$←− {0, 1}k.

2. C = S.Enc(K,M),

3. Split the C into Cf and Ce e.g., C = Cf ||Ce, where |Cf | = `.

4. Kh = H(Cf)⊕K, g = G(K)

5. Y = Encpk(C
f ; g)

6. T = F(Cf ||Y ||Kh||Ce)

7. Output Final ciphertext χ = (Y ||Kh||Ce||T).

• GPKE.Dec recovers a message M from a ciphertext χ and is implemented

as follows.

1. Parse the ciphertext χ to extract its parts χ = (Y ||Kh||Ce||T).

2. Cf = Decsk(Y),

3. K = H(Cf)⊕Kh; g = G(K)

4. M = S.Dec(K,Cf ||Ce)

5. T ′ = F(Cf ||Y ||Kh||Ce)

6. Y ′ = Encpk(C
f ; g)

7. If (T == T ′&Y == Y ′) then Return M else Return ⊥.

Now we are ready to present a security proof of CCA security of REAL. We

assume that H, G and F are independent Random oracles. As described in

Section 2.2, the experiment of adversary A for REAL is as follows:

6.3. Real time CCA-secure Encryption for Arbitrary Long messages (REAL) 107

Experiment: Expind−cca2REAL,A (k)

1. (pk, sk)
$←−Gen(1k);

2. (M0,M1, s)← AH(·),G(·),F(·),GPKE.Dec(·)
1 ;

3. d
$←− {0, 1}

4. χ∗ ← GPKE.Enc(Md); . . . one time encryption query

5. d′ ← AH(·),G(·),F(·),GPKE.Dec(·)
2 (χ∗, s);

6. return d′;

Theorem 6. Given a OW-CPA asymmetric encryption primitive Pe:(Gen, Enc,

Dec), a one-time secure encryption scheme S = (S.Enc, S.Dec) and random

oracles H, G and F, then the construction of REAL defined in Section 6.3.1 is

IND-CCA secure. The success probability of any adversary A is

Pr[Expind−cca2REAL,A (k) = d] ≤ 1

2
+ Adv$otB,S + SuccOWC,Pe +

qd + qg
2k

+
qd
2λ
,

where qd is number of queries to the decryption oracle and qg is number of queries

to the G oracle. B is an adversary which tries to break one-time security of S

with an advantage of AdvotB,SP1 . C is an adversary that finds the complete input

X of Pe given Y such that Y = Encpk(X; g), for some randomness g if present,

without knowing sk. SuccOWC,Pe is an success advantage that a particular adversary

C has in breaking OW-CPA security of Pe.

Proof. Each game uses the following oracles:

� GPKE.Enc and GPKE.Dec perform encryption and decryption, respectively,

� Random oracles F : {0, 1}∗ → {0, 1}k, H : {0, 1}` → {0, 1}k and G :

{0, 1}k → COINS.

� S.Enc and S.Dec are internal function access to GPKE.Enc and GPKE.Dec

respectively.

As encryption, decryption, H ,G and F are public oracles, they are accessible to

the adversary A, where HA,GA and FA are interface through which A access H

,G and F oracles. In each game, the following lists are maintained: IAH by HA, IAG
by GA, IAF by FA, IH by H, IG by G and IF by F.

108 Chapter 6. Real time CCA-secure Encryption for Arbitrary Long messages

We will use the game technique [15,16]. We start from the original CCA game

as defined in Section 2.2. ExpREAL1,A Or Expind−cca2REAL−1,A(k) = d denote the event that

A outputs d′ = d, where d
$←− {0, 1}. We want to show that Pr[ExpREAL1,A]|=1

2
+

negl(k). We slightly change REAL-1 into a sequence G0, G1, . . ., G10 such that:

Pr[ExpREAL1,A] = Pr[ExpG0,A]

Pr[ExpG(i−1),A] = Pr[ExpGi,A] + negl(k) ∀1 ≤ i ≤ 9

Pr[ExpG10,A] =
1

2

In games G0 to G5, we make changes in encryption oracle along with some

changes in H, F oracle to achieve that d of Md is independent of all previous

queries and their responses from encryption oracle. In games G6 to G10, we make

small incremental changes in the decryption oracle and make it independent of sk.

Challenge ciphertext χ∗ has C∗, Y ∗, Cf∗, Ce∗, K∗, h∗, K∗h, g
∗, T ∗ as corresponding

internal values during computation of challenge query.

Game G0: This game perfectly simulates the REAL-1.

Pr[ExpREAL1,A] = Pr[ExpG0,A].

The game G0 is the same as original CCA game of PKE.

6.3. Real time CCA-secure Encryption for Arbitrary Long messages (REAL) 109

Game G0: Initialize IF = IH = IG = IAF = IAH = IAG = ∅, (pk, sk)← Gen(1k).

On Encryption-Query(Md)

1. K∗ $←− {0, 1}k

2. C∗ = S.Enc(K∗,Md)

3. Cf∗||Ce∗ = C∗

4. K∗h = H(Cf∗)⊕K∗

5. g∗ = G(K∗)

6. Y ∗ = Encpk(C
f∗; g∗)

7. T ∗ = F(Cf∗||Y ∗||K∗h||Ce∗)
8. Return χ = (Y ∗||K∗h||Ce∗||T ∗)

On Decryption-Query χ

1. (Y ||Kh||Ce||T) = χ

2. (Cf) = Decsk(Y), C = Cf ||Ce

3. K = Kh ⊕ H(Cf); g = G(K)

4. Y ′ = Encpk(C
f ; g)

5. T ′ = F(Cf ||Y ||Kh||Ce)
6. M = S.Dec(K,C)

7. if T == T ′&Y == Y ′ then
Return M

else
Return ⊥

On F-Query Cf ||Y ||Kh||Ce

1. if ∃ T s.t. (Cf ||Y ||Kh||Ce, T) ∈ IF
then

return T

2. T
$←− {0, 1}k

3. IF = IF
⋃
{(Cf ||Y ||Kh||Ce, T)}

4. return T ;

On FA-Query Cf ||Y ||Kh||Ce

1. if ∃ T s.t. (Cf ||Y ||Kh||Ce, T) ∈ IAF
then

return T

2. T = F(Cf ||Y ||Kh||Ce)
3. IAF = IAF

⋃
{(Cf ||Y ||Kh||Ce, T)}

4. return T ;

On G-Query K

1. if ∃ g s.t. (K, g) ∈ IG then
return g

2. g
$←− {0, 1}Coins

3. IG = IG
⋃
{(K, g)}

4. return g;

On GA-Query K

1. if ∃ g s.t. (K, g) ∈ IAG then
return g

2. g = G(K)

3. IAG = IAG
⋃
{(K, g)}

4. return g;

On H-Query Cf

1. if ∃ h s.t. (Cf , h) ∈ IH then
return h

2. h
$←− {0, 1}k

3. IH = IH
⋃

(Cf ||h)

4. return h;

On HA-Query Cf

1. if ∃ h s.t. (Cf , h) ∈ IAH then
return h

2. h = H(Cf)

3. IAH = IAH
⋃
{(Cf , h)}

4. return v;

Figure 6.2: Game G0 of REAL-1

110 Chapter 6. Real time CCA-secure Encryption for Arbitrary Long messages

In Game G1: In decryption oracle, G1 adds a dummy event as FlagF ← new, if

the query to F oracle does not exists already in IAF , or (Cf ||Y ||Kh||Ce, T) /∈ IAF .

These changes are just conceptual. Therefore, Pr[ExpG1,A] = Pr[ExpG0,A]

Game G1 G2 : Initialize IF =

IH = IG = IAF = IAH =

IAG = ∅, (pk, sk) ← Gen(1k).

FlagF ∈ {old, new}

On Decryption-Query χ

1 (Y ||Kh||Ce||T) = χ;

FlagF ← old

2 (Cf) = Decsk(Y), C = Cf ||Ce

3 K = Kh ⊕ H(Cf)

4 g = G(K)

5 Y ′ = Encpk(C
f ; g)

6
If{Cf ||Y ||Kh||Ce, T} /∈ IAF then

FlagF ← new Return ⊥
7 T ′ = F(Cf ||Y ||Kh||Ce)
8 M = S.Dec(K,C)

9 IfT == T ′&Y == Y ′ then

Return M else Return ⊥

Rest of oracles same as G0

Figure 6.3: Game G1 and G2: Com-
pared to G0, G1 includes dummy lines
of code shown as dashed line. G2 in-
cludes lines of code that are in solid
line and dash line boxes.

Game G3 G4 : Initialize IF = IH =

IG = IAF = IAH = IAG = ∅, (pk, sk) ←
Gen(1k). flagpk ∈ {old, new}

On Decryption-Query χ

1 (Y ||Kh||Ce||T) = χ flagpk ← old

2 (Cf) = Decsk(Y), C = Cf ||Ce

3 K = Kh ⊕ H(Cf)

4 g = G(K)

5 If {Cf ||Y ||Kh||Ce, T} /∈ IAF then

Return ⊥

6
If {Cf ,Kh⊕K} /∈ IAH or {K, g} /∈
IAG then

flagpk ← new Return ⊥
7 Y ′ = Encpk(C

f ; g)

8 M = S.Dec(K,C)

9 IfY == Y ′ then Return M else

Return ⊥

Rest of oracles same as G0

Figure 6.4: Game G3 and G4: G3 includes
dummy lines of code shown as dashed line
as compared to G2; G4 includes lines of
code that are in solid line and dash line
boxes.

Game G2: In Game G2, decryption oracle rejects the ciphertext if FlagF is

new. Here difference between Game G1 and G2 arises when G2 rejects the

ciphertext even when G1 has accepted them. This implies in G1, even on

condition that FlagF is new, there is right matching of T and T ′. It means that

A knows an output value of the F function even without querying it. This could

happen with probability of qd
2k

, for qd number of decryption queries. Therefore,

6.3. Real time CCA-secure Encryption for Arbitrary Long messages (REAL) 111

|Pr[ExpG2,A]− Pr[ExpG1,A]| ≤ qd
2k

Game G2 and G3: Game G3 and G2 are the same except for a dummy

event, which is added in decryption oracle. This event raises a flagpk as new if

query to H or G does not belong to IAH or IAG , respectively. In decryption oracle,

re-encryption validates Y as a right encryption of Cf under a particular g, where

g is uniquely related to G(H(Cf)⊕Kh). The flag is just conceptual and does not

bring any change of A’s view.

Pr[ExpG3,A] = Pr[ExpG2,A]

Game G4: In Game G4, decryption oracle return ⊥ if flagpk is new. Here

difference between Game G4 and G3 appears when G4 is rejecting the ciphertext

even when G3 has accepted them. This implies in G3, even on condition that

flagpk is new, there is right matching of Y and Y ′. It means A either has a

right K = h ⊕ Kh for a random h value, where ({K, g} ∈ IAG ∧ {Cf , h} /∈ IAH)

or has a right g value randomly when ({Kh ⊕ h, g} /∈ IAG ∧ {Cf , h} ∈ IAH) so for

|g| = λ ≥ k

|Pr[ExpG4,A]− Pr[ExpG3,A]| ≤ (qG
2k

+ qd
2λ

)

Game G5: G5 and G4 are same except that decryption oracle runs without us-

ing sk. And decryption become independent from sk. Pr[ExpG3,A] = Pr[ExpG2,A]

Game G5: Initialize IF = IH = IG = IAF = IAH = IAG = ∅, (pk, sk)← Gen(1k).

On Decryption-Query χ

1 (Y ||Kh||Ce||T) = χ

2 if ∃T in {Cf ||Y ||Kh||Ce, T} ∈ IAF s.t

{Cf ,Kh ⊕K} ∈ IAH ,{K, g} ∈ IAG and

Y = Encpk(C
f ; g) then

Return M = S.Dec(K,C)

else
Return ⊥

Rest of oracles same as G0

Figure 6.5: Game G5: Decryption oracle outputs same as G4, but independent
from secret key sk.

112 Chapter 6. Real time CCA-secure Encryption for Arbitrary Long messages

Game G6 G7 : Initialize IF = IH = IG = IAF = IAH = IAG = ∅, (pk, sk) ←
Gen(1k).

After Find Stage(AFS): K∗ $←− {0, 1}k;K̄h
$←− {0, 1}k;T̄ $←− {0, 1}k

On Encryption-Query(Md)

1 C∗ = S.Enc(K∗,Md)

2 Cf∗||Ce∗ = C∗

3 K∗h = H(Cf∗)⊕K∗ K∗h = K̄h

4 g∗ = G(K∗)

5 Y ∗ = Encpk(C
f∗; g∗)

6 T ∗ = F(Cf∗||Y ∗||K∗h||Ce∗)
T ∗ = T̄

7 Return χ = (Y ∗||K∗h||Ce∗||T ∗)

On HA-Query Cf

(*Adversary’s query)

1 If Cf == Cf∗ then

Badf ← true Halt

2 if ∃ h s.t. (Cf , h) ∈ IAH then
return h

3 h = H(Cf)

4 IAH = IAH
⋃
{(Cf , h)}

5 return v;

On FA-Query Cf ||Y ||Kh||Ce

(*Adversary’s query)

1. If Cf == Cf∗ then

Badf ← true Halt

2. if ∃ T s.t. (Cf ||Y ||Kh||Ce, T) ∈ IAF
then

return T

3. T = F(Cf ||Y ||Kh||Ce)
4. IAF = IAF

⋃
{(Cf ||Y ||Kh||Ce, T)}

5. return T ;

Rest of oracles same as G5

Figure 6.6: Game G6 and G7: G6 includes dummy lines in dashed box compared
to G5. G7 includes dummy lines and lines in solid line boxes.

Game G6: Game G6 and G5 are same, except a dummy event is added in

HA and FA oracle in G6. This dummy event raises the event as Badf ← true

if Adversary queries Cf∗ to HA or Cf∗||∗ to FA. K∗ is chosen randomly before

the encryption query but after “find” stage (AFS). A dummy variable K̄h is

also chosen at random. These changes are just conceptual ones. Therefore,

Pr[ExpG6,A] = Pr[ExpG5,A].

6.3. Real time CCA-secure Encryption for Arbitrary Long messages (REAL) 113

Game G7: In Game G7, We halt the game if Badf ← true happens. In case

this event does not happens then K∗h and T ∗ in encryption oracle can be replaced

by any random string like K̄h and T̄ respectively. This change is then essentially

bounded by (Pr[Badf] = Pr[(Cf∗, ∗) ∈ IAH ∨ (Cf∗||∗, ∗) ∈ IAF]). Therefore,

|Pr[ExpG7,A]− Pr[ExpG6,A]| ≤ Pr[Badf].

We continue games assuming halt has not happened. Later, we will calculate

probability of Badf as a reduction to one-wayness of asymmetric encryption.

Game G8: In Game G8, some extra dummy random values C̄ = C̄f ||C̄e ∈
{0, 1}Clen(Md) are chosen along with K∗ and K∗h. These changes are just dummy

and conceptual therefore, Pr[ExpG8,A] = Pr[ExpG7,A]

Game G8 G9 : Initialize IF = IH = IG = IAF = IAH = IAG = ∅,, (pk, sk)← Gen(1k).

(AFS): K∗ $←− {0, 1}k; K∗h
$←− {0, 1}k; T ∗ $←− {0, 1}k;

g∗ = G(K∗); C̄ = C̄f ||C̄e $←− {0, 1}Clen(Md)

On Encryption-Query(Md)

1 C∗ = S.Enc(K∗,Md) C∗ = C̄

2 Cf∗||Ce∗ = C∗

3 Y ∗ = Encpk(C
f∗; g∗)

4 Return χ = (Y ∗||K∗h||Ce∗||T ∗)

Rest of oracles same as G7

Figure 6.7: Game G8 and G9: G8 has some dummy change in code compared to
G7 shown in dash box; this contains some dummy variables and replacement of
original values from random values. G9 includes lines of dash box and solid line
box.

Game G8 and G9: From G8 to G9, C∗ = S.Enc(K∗,Md) is replaced by a

random string C̄. This change is bounded by adversary B attacking the (one-time)

encryption scheme S . This transition from G8 and G9 can be understand from

Game IND$OT shown in figure 6.8. Therefore, |Pr[ExpG9,A]− Pr[ExpG8,A]| ≤
Adv$otB,S

114 Chapter 6. Real time CCA-secure Encryption for Arbitrary Long messages

Game IND$OT

1 b← {0, 1}
2 (m,σ)← B1(1k)
3 R← R(·); C0 = S.EncR(m)

4 C1 ← {0, 1}|C0|

5 b′ ← B2(σ,Cb)

B1(1k)

1 (pk, sk)← Gen(1k)

2 (M0,M1, s)← AH,G,F,GPKE.Dec
1 (pk)

3 d← {0, 1}
4 σ = (d, pk, s)

5 Return (Md, σ)

B2(σ,Cb)

1 (d, pk, s) = σ

2 Cf ||Ce = Cb

3 g
$←− COINS; Rh

$←− {0, 1}k;
T

$←− {0, 1}k

4 y ← Encpk(C
f ; g)

5 χ = y||Rh||Ce||T
6 d′ ← AH,G,F,GPKE.Decsk,χ

2 (pk, s, χ)

7 if d′ = d then
b = 0

else
b = 1

8 Return b

A1 and A2 use same oracles H ,G ,F , GPKE.Dec as in Game G8.

Figure 6.8: Game IND$OT: In-between Game G8 and G9 by Adversary B.

Game G10: C∗ is already a random string in G9 and independent from K∗,

value of g∗ can be chosen randomly independently from K∗. Now in G10, Cf∗

and Ce∗ are chosen randomly. All values for encryption oracle are computed

randomly beforehand, therefore Y ∗ is computed on Cf∗ and g∗. These changes

bring no change of the view of A and therefore are just conceptual. Therefore,

Pr[ExpG10,A] = Pr[ExpG9,A]

In G10, encryption oracle runs independent from d bit of Md. And finally

game become independent from sk and bit d. Pr[ExpG10,A] = 1
2

G10 is the final game as A for C who tries to find pre-image of a given random

Y using pk. Probability of Badf is equivalent to the probability of breaking

one-wayness of asymmetric primitive Pe , which gives Pr[Badf] ≤ SuccOWCA,Pe
This completes the proof.

6.3. Real time CCA-secure Encryption for Arbitrary Long messages (REAL) 115

Game G10: Initialize

IF = IH = IG = IAF = IAH = IAG = ∅,
(pk, sk)← Gen(1k).

(AFS): g∗ $←− COINS;K∗h
$←− {0, 1}k;

T ∗ $←− {0, 1}k Cf∗ $←−
{0, 1}`;C∗e $←− {0, 1}Clen(Md)−`; ;

Y ∗ = Encpk(C
f∗; g∗)

On Encryption-Query(Md)

1 Return χ = (Y ∗||K∗h||Ce∗||T ∗)

Rest of oracles same as G7

Figure 6.9: Game G10: G10 output is
same as G9.

Adversary C: Given Y
$←− {0, 1}`+cope

Adversary A: Initialize IF = IH =

IG = IAF = IAH = IAG = ∅, (pk, sk)←
Gen(1k).

(AFS): g∗ $←− COINS;K∗h
$←− {0, 1}k;

Ce∗ $←− {0, 1}Clen(Md)−`; T ∗ $←−
{0, 1}k; Y ∗ = Y

Rest of Oracles same as G10

Finalization: If there exists a

(Cf , h) ∈ IAH or (Cf ||∗, ∗) ∈ IAF
such that Y == Encpk(C

f ; g) for any

(K, g) ∈ IAG then return Cf ;

Figure 6.10: Adversary C using A, where
A uses oracles as simulated in G10

6.3.2 Generic Construction with Pe as OW-PCA : REAL-2

REAL-2 has similar encryption structure to REAL-1, except during decryption there

is no need for re-encryption. As we have discussed already, re-encryption is a

necessary evil in case of OW-CPA security assumption on Pe. If Pe is OW-PCA,

then this re-encryption can be avoided. The building blocks for REAL-2 are:

1. an OW-PCA asymmetric encryption scheme Pe: (Gen,Enc,Dec) of minimum

input message size (domain) ` as described in Section 2.1,

2. an one-time symmetric encryption scheme S for Clen(·) ≥ ` as described in

Section 6.1.3 and

3. hash functions F : {0, 1}∗ → {0, 1}k, H : {0, 1}` → {0, 1}k (modeled as RO).

REAL-2 is defined as a triplet of the following probabilistic polynomial-time (PPT)

algorithms: 〈GPKE.Gen, GPKE.Enc, GPKE.Dec〉.

• GPKE.Gen produces a private/public key pair(pk, sk) using Gen(1k).

116 Chapter 6. Real time CCA-secure Encryption for Arbitrary Long messages

• GPKE.Enc encrypts a message M of an arbitrary length and produces a

cryptogram. Encryption proceeds according to the following steps:

1. Take a message M and generate a random string K
$←− {0, 1}k.

2. C = S.Enc(K,M), ; g
$←− COINS.

3. Split C into Cf and Ce e.g., C = Cf ||Ce, where |Cf | = `.

4. Kh = H(Cf)⊕K

5. Y = Encpk(C
f ; g)

6. T = F(Cf ||Y ||Kh||Ce)

7. Output final ciphertext χ = (Y ||Kh||Ce||T).

• GPKE.Dec recovers a message M from a ciphertext χ and is implemented

as follows.

1. Parse the ciphertext χ to extract its parts χ = (Y ||Kh||Ce||T).

2. Cf = Decsk(Y), Cf ||Ce = C

3. K = H(Cf)⊕Kh

4. M = S.Dec(K,C)

5. T ′ = F(Cf ||Y ||Kh||Ce)

6. If (T == T ′) then Return M else Return ⊥.

A notable difference between REAL-2 and REAL-1 comes in the decryption procedure.

In REAL-2, decryption is independent from random coins. In absence of random

coins, plaintext-checking oracle (OPC) helps decryption simulator to verify right

matching of candidate (input, output) pair of Pe. In this way re-encryption step

of REAL-1 is replaced by OPC during decryption simulator in REAL-2. One more

difference is that REAL-2 has no need of G function.

6.3. Real time CCA-secure Encryption for Arbitrary Long messages (REAL) 117

Now we quickly present a security proof of CCA security of REAL-2. We assume

that H and F are independent random oracles. As described in Section 2.2, the

experiment of adversary A for GPKE is as follows:

Experiment: Expind−cca2REAL−2,A(k)

1. (pk, sk)
$←−Gen(1k);

2. (M0,M1, s)← AH(·),F(·),GPKE.Dec(·)
1 ;

3. d
$←− {0, 1}

4. χ∗ ← GPKE.Enc(Md); . . . one time encryption query

5. d′ ← AH(·),F(·),GPKE.Dec(·)
2 (χ∗, s);

6. return d′;

Theorem 7. Given a OW-PCA asymmetric encryption primitive Pe:(Gen, Enc,

Dec), a one-time secure encryption scheme S = (S.Enc, S.Dec) and random

oracles H and F, then the construction of REAL-2 defined in Section 6.3.2 is

IND-CCA secure. The success probability of an adversary A is

Pr[Expind−cca2REAL−2,A(k) = d] ≤ 1

2
+ Adv$otB,S + SuccOW−PCAC,Pe +

qd
2k
,

where qd is number of queries to the decryption oracle. B is an adversary which

tries to break one-time security of S with an advantage of Adv$otB,S. SuccOW-PCA
C,Pe

is an success advantage that a particular adversary C has in breaking OW-PCA

security of Pe.

Proof. Each game uses the following oracles:

� GPKE.Enc, GPKE.Dec perform encryption and decryption respectively,

� Random oracles F : {0, 1}∗ → {0, 1}k, H : {0, 1}` → {0, 1}k.

� S.Enc and S.Dec are internal function access to GPKE.Enc and GPKE.Dec

respectively.

As encryption, decryption, H and F are public oracles, they are accessible to the

adversary, where HA and FA are interface through which adversary A access H ,

118 Chapter 6. Real time CCA-secure Encryption for Arbitrary Long messages

and F oracles. In each game, the following Lists are maintained: IAH by HA, IAF
by FA, IH by H and IF by F

We will use game based proof technique [15,16]. We start from the original

CCA game as defined in Section 2.2. ExpREAL2,A Or Expind−cca2REAL−2,A(k) = d denote

the event that A outputs d′ = d where d
$←− {0, 1}. We want to show that

Pr[ExpREAL2,A]=1
2

+ negl(k). We slightly change REAL-2 into a sequence G0, G1,

. . ., G8 such that:

Pr[ExpREAL2,A]= Pr[ExpG0,A]

Pr[ExpG(i−1),A]=Pr[ExpGi,A]+negl(k) ∀1 ≤ i ≤ 7

Pr[ExpG8,A]= 1
2

In games G0 to G3, we make small incremental changes in the decryption

oracle and make it independent of sk.

In games G4 to G8, we make changes in encryption oracle along with some

changes in H, F oracle to achieve that d of Md is independent of all previous

queries and their responses from encryption oracle.

Challenge ciphertext χ∗ is having C∗, Y ∗, Cf∗, Ce∗, K∗, h∗, K∗h, g
∗, T ∗ as corre-

sponding internal values during computation of challenge query.

Game G0: The game G0 is the same as original CCA game of PKE. This game

perfectly simulates the REAL-2.

Pr[ExpREAL2,A] = Pr[ExpG0,A].

6.3. Real time CCA-secure Encryption for Arbitrary Long messages (REAL) 119

Game G0: Initialize IF = IH = IAF = IAH = ∅, (pk, sk)← Gen(1k).

On Encryption-

Query(Md)

1 K∗ $←− {0, 1}k;g∗ $←−
COINS

2 C∗ = S.Enc(K∗,Md)

3 Cf∗||Ce∗ = C∗

4 Y ∗ = Encpk(C
f∗; g∗)

5 K∗h = H(Cf∗)⊕K∗

6 T ∗ =

F(Cf∗||Y ∗||K∗h||Ce∗)
7 Return χ =

(Y ∗||K∗h||Ce∗||T ∗)

On Decryption-

Query χ

1 (Y ||Kh||Ce||T) = χ

2 Cf = Decsk(Y),

C = Cf ||Ce

3 T ′ =

F(Cf ||Y ||Kh||Ce)
4 K = H(Cf)⊕Kh

5 M = S.Dec(K,C)

6 if T == T ′ then
Return M

else
Return ⊥

On H-Query Cf

1 If∃ h s.t. (Cf , h) ∈ IH
then return h

2 h
$←− {0, 1}k

3 IH = IH
⋃

(Cf ||h)

4 return h;

On HA-Query Cf

1 If

∃ h s.t. (Cf , h) ∈ IAH
then return h

2 h = H(Cf)

3 IAH = IAH
⋃
{(Cf , h)}

4 return v;

On F-Query Cf ||Y ||Kh||Ce

1 if

∃ T s.t. (Cf ||Y ||Kh||Ce, T) ∈ IF
then

return T

2 T
$←− {0, 1}k

3 IF = IF
⋃
{(Cf ||Y ||Kh||Ce, T)}

4 return T ;

On FA-Query Cf ||Y ||Kh||Ce

1 if ∃ T s.t. (Cf ||Y ||Kh||Ce, T) ∈ IAF
then

return T

2 T = F(Cf ||Y ||Kh||Ce)
3 IAF = IAF

⋃
{(Cf ||Y ||Kh||Ce, T)}

4 return T ;

Figure 6.11: Game G0

Game G1: In Game G1: In decryption oracle, G1 adds a dummy event

as FlagF ← new, if the query to F oracle does not exist already in IAF , or

(Cf ||Y ||Kh||Ce, T) /∈ IAF . These changes are just conceptual. Therefore, Pr[ExpG1,A] =

Pr[ExpG0,A]

Game G2: In Game G2, decryption oracle rejects the ciphertext if FlagF is

new. Here difference between Game G1 and G2 arises when G2 rejects the

ciphertext even when G1 has accepted them. This implies in G1, even on

120 Chapter 6. Real time CCA-secure Encryption for Arbitrary Long messages

condition that FlagF is new, there is right matching of T and T ′. It means that

A knows an output value of the F function even without querying it. This could

happen with probability of qd
2k

, for qd number of decryption queries. Therefore,

|Pr[ExpG2,A]− Pr[ExpG1,A]| ≤ qd
2k

Game G1 G2 : Initialize IF =

IH = IAF = IAH = ∅, (pk, sk) ←
Gen(1k). FlagF ∈ {old, new}

On Decryption-Query χ

1 (Y ||Kh||Ce||T) = χ;

FlagF ← old

2 Cf = Decsk(Y), C = Cf ||Ce

3 If(Cf ||Y ||Kh||Ce, T) /∈ IAF then

FlagF ← new Return ⊥
4 T ′ = F(Cf ||Y ||Kh||Ce)
5 K = H(Cf)⊕Kh

6 M = S.Dec(K,C)

7 If T == T ′ then Return M else

Return ⊥

Rest of oracles are same as G0

Figure 6.12: Game G1, G2: G1 adds
dummy lines of code to G0, shown in
dash box. G2 includes dummy lines of
dash box and lines of code in solid line
box

Game G3: Initialize IF = IH =

IAF = IAH = ∅, (pk, sk)← Gen(1k).

On Decryption-Query χ

1 (Y ||Kh||Ce||T) = χ

2 if (Cf ||Y ||Kh||Ce, T) ∈ IAF s.t.

Epk(C
f ; ∗) == Y then

K = H(Cf)⊕Kh;

M = S.Dec(K,C); Return

M
else

Return ⊥

Rest of oracles are same as G0

Figure 6.13: Game G3: G3 output
same as G2 without using sk and does
not require FlagF anymore.

Game G2 and G3: G2 and G3 are same except that decryption oracle

runs without using sk and decryption become independent from sk. For query

Y ||Kh||Ce||T , decryption oracle looks into IAF for response T for a query (Cf ||Y ||Kh||Ce)

for some Cf . If Y = Encpk(C
f ; g) for some g then decryption oracle proceeds

forward otherwise return invalid. Condition Encpk(C
f ; ∗) == Y is simulated using

plaintext-checking oracle OPC .

Pr[ExpG3,A] = Pr[ExpG2,A]

6.3. Real time CCA-secure Encryption for Arbitrary Long messages (REAL) 121

Game G4 G5 : Initialize IF = IH = IAF = IAH = ∅,, (pk, sk)← Gen(1k).

After Find Stage(AFS): K∗ $←− {0, 1}k;g∗ $←− COINS;K̄h
$←− {0, 1}k;T̄ $←− {0, 1}k

On Encryption-Query(Md)

1 C∗ = S.Enc(K∗,Md)

2 Cf∗||Ce∗ = C∗

3 K∗h = H(Cf∗)⊕K∗ K∗h = K̄h

4 Y ∗ = Encpk(C
f∗; g∗)

5 T ∗ = F(Cf∗||Y ∗||K∗h||Ce∗) T ∗ = T̄

6 Return χ = (Y ∗||K∗h||Ce∗||T ∗)

On HA-Query Cf (*Adversary’s

query)

1 If Cf == Cf∗ then

Badf ← true Halt

2 if ∃ h s.t. (Cf , h) ∈ IAH then
return h

3 h = H(Cf)

4 IAH = IAH
⋃
{(Cf , h)}

5 return v;

On FA-Query Cf ||Y ||Kh||Ce

(*Adversary’s query)

1 If Cf == Cf∗ then

Badf ← true Halt

2 if ∃ T s.t. (Cf ||Y ||Kh||Ce, T) ∈ IAF
then

return T

3 T = F(Cf ||Y ||Kh||Ce)
4 IAF = IAF

⋃
{(Cf ||Y ||Kh||Ce, T)}

5 return T ;

Rest of oracles same as G3

Figure 6.14: Game G4 and G5: G4 adds dummy lines in dashed box compared
to G3. G5 includes dummy lines and lines in solid line box.

Game G3 and G4: Game G4 and G3 are same, except a dummy event is added

in HA and FA oracle in G4. This dummy event raises the event as Badf ← true

if adversary queries Cf∗ to HA or Cf∗||∗ to FA. K∗ and g∗ are chosen randomly

before the encryption query but after “find” stage (AFS). A dummy variable K̄h

is also chosen at random. These changes are just conceptual ones. Therefore,

Pr[ExpG4,A] = Pr[ExpG3,A].

Game G5: In Game G5, we halt the game if Badf ← true happens. In case

this event does not happens then K∗h and T ∗ in encryption oracle can be replaced

by any random string like K̄h and T̄ respectively. This change is then essentially

122 Chapter 6. Real time CCA-secure Encryption for Arbitrary Long messages

bounded by (Pr[Badf] = Pr[(Cf∗, ∗) ∈ IAH ∨ (Cf∗||∗, ∗) ∈ IAF]). Therefore,

|Pr[ExpG5,A]− Pr[ExpG4,A]| ≤ Pr[Badf].

We continue games assuming halt has not happened. Later, we will calculate

probability of Badf as a reduction to one-wayness of asymmetric encryption.

Game G6: In Game G6, some extra dummy random values C̄ = C̄f ||C̄e ∈
{0, 1}Clen(Md) are chosen along with K∗, g∗ and K∗h. These changes are just

dummy and conceptual therefore, Pr[ExpG6,A] = Pr[ExpG5,A]

Game G6 G7 : Initialize IF = IH = IAF = IAH = ∅,, (pk, sk)← Gen(1k).

(AFS): K∗ $←− {0, 1}k; g∗ $←− COINS; K∗h
$←− {0, 1}k; T ∗ $←− {0, 1}k;

C̄ = C̄f ||C̄e $←− {0, 1}Clen(Md)

On Encryption-Query(Md)

1 C∗ = S.Enc(K∗,Md) C∗ = C̄

2 Cf∗||Ce∗ = C∗

3 Y ∗ = Encpk(C
f∗; g∗)

4 Return χ = (Y ∗||K∗h||Ce∗||T ∗)

Rest of oracles same as G5

Figure 6.15: Game G6 and G7: G6 has some dummy change in code compare to
G5 shown in dash box; this box contains some dummy variables and replacement
of original values from random values. G7 includes lines of dash box and solid
line box.

Game G6 and G7: From G6 to G7, C∗ = S.Enc(K∗,Md) is replaced by a

random string C̄. This change is bounded by adversary B attacking the (one-time)

encryption scheme S . Therefore, |Pr[ExpG7,A]− Pr[ExpG6,A]| ≤ Adv$otB,S

Game G8: C∗ is already a random string in G7 and independent from K∗,

value of g∗ can be chosen randomly independently from K∗. Now in G8, Cf∗

and Ce∗ are chosen randomly. All values for encryption oracle are computed

randomly before-hand therefore Y ∗ is computed on Cf∗ and g∗. These changes

bring no change of the view of A therefore are just conceptual. Therefore,

Pr[ExpG8,A] = Pr[ExpG7,A]

6.4. Conclusion 123

Game G8: Initialize IF = IH = IAF =

IAH = ∅, (pk, sk)← Gen(1k).

(AFS): g∗ $←− COINS; K∗h
$←− {0, 1}k;

T ∗ $←− {0, 1}k Cf∗ $←− {0, 1}`; C∗e $←−
{0, 1}Clen(Md)−`; Y ∗ = Encpk(C

f∗; g∗)

On Encryption-Query(Md)

1 Return χ = (Y ∗||K∗h||Ce∗||T ∗)

Rest of Oracles same as G7

Figure 6.16: Game G8: G8 has same
output as G7 with simplified code and
ciphertext is independent from d bit of
Md

Adversary C: Given Y
$←− {0, 1}`+cope

Adversary A: Initialize IF = IH =

IAF = IAH = ∅, (pk, sk)← Gen(1k).

(AFS): g∗ $←− {0, 1}Coins; K∗h
$←−

{0, 1}k; Ce∗ $←− {0, 1}Clen(Md)−`;

T ∗ $←− {0, 1}k; Y ∗ = Y

Rest of oracles same as G8

Finalization: If there exists a

(Cf , h) ∈ IAH or (Cf ||∗, ∗) ∈ IAF such

that OPC(Cf , Y) = 1 then return Cf ;

Figure 6.17: Adversary C using A, where
A using oracle as per simulated in G8.

In G8, encryption oracle runs independent from d bit of Md. And finally game

become independent from sk and bit d. Pr[ExpG8,A] = 1
2

G8 is the final game as A for C who tries to find pre-image of a given random

Y using pk. Probability of Badf is equivalent to the probability of breaking

one-wayness of asymmetric primitive Pe , which gives Pr[Badf] ≤ SuccOW−PCA
CA,Pe

This completes the proof.

6.4 Conclusion

To convert a fixed length OW-CPAasymmetric primitive (Pe) into CCA-secure

PKE for arbitrary length messages using a padding scheme, a randomization of

the input to Pe is required. This implies that there is a need for an extra output

that enables to recover the used randomness during decryption. If we can process

that randomness as early as possible during encryption and decryption, then

real-time encryption could be achieved with a single pass.

This work describes a real-time CCA-secure asymmetric encryption scheme

(REAL). We propose two version of scheme, choice of scheme depends upon choice

of security assumption on asymmetric primitive as OW-CPA or OW-PCA. For

124 Chapter 6. Real time CCA-secure Encryption for Arbitrary Long messages

trapdoor one-way permutation OW-CPA and OW-PCA are same. REAL allows to

process/recover the randomness used at the beginning of encryption/decryption

processes which helps in having real-time encryption and decryption. Usage of

randomised one-time encryption schemes helps to reduce ciphertext-overhead;

and OW-PCA security is found to be a stronger notion but allows to avoid

re-encryption during decryption in case of probabilistic asymmetric encryption.

Our generic conversion may be seen as the best alternative to other generic works

when memory/bandwidth savings are a priority along with streaming high amount

of data.

6.4.1 Subsequent scope

Methodology and versatility of Sponge structure can be seen in other different

areas where padding scheme as message preprocessing is required. Current results

of this work provides theoretical justifications, implementation of this work can

provide more credibility to results from practical side. Using other primitives

apart from Sponge permutation, like block ciphers and compression functions,

and study their behavior under proposed setting is also an interesting line of

work.

At this point, after achieving a generic CCA-secure encryption scheme frame-

work, we move to an another area of work, signcryption, where OAEP type

padding and CCA-secure encryption are required. Signcryption is found to be a

more complex system to handle and prove its security because of extra function-

alities and security requirements. Therefore, building a signcryption scheme from

Sponge based padding can further spread the impact of this technique to another

area of cryptography.

Chapter 7

Signcryption schemes with

insider security in ideal

permutation model

Contents

7.1 Introduction . 126

7.1.1 Background . 127

7.1.2 Limitation of Existing Schemes 129

7.1.3 Motivation . 130

7.2 Contributions . 131

7.3 Sponge based padding for Signcryption 133

7.3.1 Description . 133

7.3.2 Properties . 136

7.4 Parallel Signcryption: SIGNCRYPT 136

7.4.1 Description . 136

7.4.2 Security of Parallel Signcryption 139

7.4.3 Properties . 167

7.5 Extension of Parallel Signcryption 168

7.5.1 Using Probabilistic Sign 168

125

126 Chapter 7. Signcryption schemes using Sponge padding

7.5.2 Arbitrary long messages 169

7.6 Conclusion . 171

In this chapter, we introduce a Signcryption scheme using Sponge based

message padding. First, we go through the background of signcryption, and

its composition method in which message padding has a significant role. We

discuss related works and elaborate common limitations in those works along

with a comparison table to provide targeted motivation. We provide comparison

results of our proposed signcryption scheme versus other schemes as part of

the contribution. Following better results of Sponge based message padding in

asymmetric encryption schemes, we describe our proposal of a Sponge based

padding for signcryption scheme. First, we describe the scheme in message length

restricted mode along with security proof and then using simple feed-forward

operations we change the scheme into a more generic signcryption scheme for

arbitrary long messages without compromising security. This two-step proposal

helps in understanding of the limitations and security complexity of signcryption

schemes under different assumptions on encryption and signature schemes.

7.1 Introduction

The aim of signcryption is to provide both confidentiality and authentication of

messages more efficiently in a single routine than performing encryption and sign-

ing independently. The reduction of the computational cost makes signcryption

more practical and it is a preferred option for e-commerce and e-mail applica-

tions, where both confidentiality and authentication are required. Zheng [103]

introduced the signcryption notion in 1997. He proposed a signcryption solution

that is based on El-Gamal [57] encryption and signature. As an open problem,

Zheng [103] left the design of generic signcryption schemes that are not based on

computationally intractable problems (such as RSA for instance).

The study of generic compositions of encryption and signature for constructing

signcryption schemes has been initiated by An et al. [3]. They considered different

generic methods for designing signcryption through a black-box composition of

any secure signature and public-key encryption schemes. In particular, they

showed that both “encrypt-then-sign” (EtS) and “sign-then-encrypt” (StE) lead

to secure signcryption schemes. However, the parallel signcryption approach

“sign-and-encrypt” (S&E) composition does not provide privacy since signature

7.1. Introduction 127

may reveal information about the encrypted messages. They introduced an

alternative generic method termed as “commit-then-sign-and-encrypt” (CtS&E)

that provides some security guarantee for S&E. Note that CtS&E compositions

lead to parallel signcryption.

An et al. [3] also define two types of security on a signcryption scheme, namely,

an outsider security and an insider security. The outsider security deals with

an external adversary who knows the public keys of a sender and a receiver. In

insider security model, attacks are coming from the other party that participates

in the communication. In other words, an insider adversary is either the sender

who wants to compromise the receiver confidentiality or the receiver who tries

to defeat the sender unforgeability. Since security against an insider adversary

implies security against an outsider adversary, the former is preferred.

A different security model for signcryption, which has been adopted in a

few early papers [3, 49], is the two-user setting. In this model, a single sender

interacts with a single receiver. However, as pointed out by Dent [49], security

in the two-user model does not imply security in the multi-user model, in which

either several senders communicate with the same receiver or alternatively, several

receivers obtain messages from a single sender. Hence, to ensure realistic security

concept, a multi-user security model must be adopted. The strongest security

definitions, which captures both insider confidentiality and unforgeability for the

multi-user setting, have been defined in [71]. For an overview of different security

models, see [50,73].

7.1.1 Background

In 2002, An et al. [3] presented a methodology to encrypt and sign in parallel. A

plaintext m is first transformed into a pair (c, d) made of a commitment c and

a de-commitment d in such a way that c reveals no information about m, while

the pair (c, d) allows to recover m. Once the transformation m→ (c, d) is done,

the signer signs c and encrypts d in parallel using appropriate encryption and

signature algorithms. On the receiver side, the signature on c is verified and d is

recovered from its ciphertext. Both operations can be executed in parallel. Finally,

the plaintext m is reconstructed from (c, d). Parallel execution of cryptographic

algorithms decreases the computation time needed to signcrypt a message. It is

equal to the maximum of either time required to encrypt or time needed to sign.

The methodology also provides minimum security requirements from underlying

128 Chapter 7. Signcryption schemes using Sponge padding

encryption and signature algorithms. In two-user model, An et al. [3] claim

that to provide generic chosen ciphertext (IND-gCCA) secure and existentially

unforgeable (UF-CMA) signcryption, it is enough to use any IND-CCA secure

encryption, UF-CMA secure signature scheme and a secure commitment scheme

under CtS&E composition. This IND-gCCA security is weaker than IND-CCA

secure encryption.

The work by An et al. [3] has instigated investigation into new ways to

define signcryption schemes in more generic way. Note that early works present

signcryption schemes whose security depends on specific intractable problems such

as discrete logarithm (see [103]) and integer factoring (see [72,100]). The authors

of earlier works left an open question of designing signcryption under weaker

security assumptions on encryption and signature schemes that do not relate to any

specific intractability assumption. For example, the generic trapdoor one-wayness

(OW) assumption is satisfied by the RSA encryption (when integer factorization is

intractable) and the ElGamal encryption (when the computational Diffie-Hellman

(CDH) problem is intractable). In this work, we consider cryptographic primitives

(encryption and signature) whose security assumptions are generic.

Parallel signcryption is further investigated by Pieprzyk and Pointcheval [88].

They proposed to use a (2, 2)-Shamir secret sharing (SSS) as a commitment

scheme. A plaintext m is first split into two shares (s1, s2), where any single

share reveals no information about m. The first share s1 is used as a commitment

and signed while the second s2 is encrypted. The authors of [88] proposed two

version of their scheme. The first version, called generic parallel signcryption,

provides IND-CCA and UF-CMA security for signcryption using any IND-CCA

secure encryption and UF-CMA secure signature. This result is the same as the

one obtained by [3]. The second version, called optimal parallel signcryption,

applies an asymmetric padding OAEP [13]. This signcryption algorithm provides

both IND-CCA and UF-CMA security in random oracle (RO) model assuming

any OW encryption (such as the basic RSA) and any weakly secure signature

(non-universally forgeable). Authors discuss the security of their schemes under

insider security model in [89].

Dodis et al. [52, 53] propose a different approach to perform parallel sign-

cryption. In their approach, they use a Feistel probabilistic padding, which can

be viewed as a generalization of other existing probabilistic paddings such as

OAEP, OAEP+, PSS-R, etc. These authors argue that their signcryption provides

7.1. Introduction 129

IND-CCA and strong existential unforgeability (sUF-CMA) security assuming

trapdoor one-way permutations only.

Hybrid signcryption is an attractive approach in design of signcryption schemes.

It follows the idea of hybrid encryption [1,7,25,42,47,55,62,66]. Hybrid encryption

consists of an asymmetric key encapsulation mechanism (KEM) and a symmetric

data encapsulation mechanism (DEM). The first formal treatment of security

of signcryption has been done by Dent (see [48,49]). Some other related works

can be found in [24, 36, 73, 101]. Converting a hybrid encryption scheme to a

hybrid signcryption scheme turns out to be trickier than it looks. The main

difficulty is an increased complexity of analysis that results from a more complex

adversarial model. It is necessary to consider not only straight-forward attacks

against authenticity and confidentiality of messages but also more intricate issues

such as distinction between outsider and insider attacks. Moreover, CtS&E type

compositions are always preferred as a base for constructing secure KEMs.

7.1.2 Limitation of Existing Schemes

A majority of signcryption schemes follow the sequential designs StE or EtS. Note

that all schemes for hybrid signcryption with KEM/DEM [24,36,48,49] follow

the sequential design. This design limits the efficiency in a natural way. This

limitation can be lifted easily by using the CtS&E composition method, which

performs encryption and signing in parallel. Many signcryption schemes are

built using some specific intractability assumptions (for example, intractability

of discrete logarithm [6, 71, 103]). These constructions are not generic as the

assumptions made limit the choice of underlying encryption and signature schemes.

Constructions for hybrid signcryption are generic but they require stronger security

properties from key encapsulation mechanisms (KEM) and data encapsulation

mechanism (DEM). For example, a recent generic hybrid signcryption scheme

given in [36] requires an IND-CCA secure key encapsulation mechanism, a one-

time secure symmetric-key encryption, a one-time secure message authentication

code and a strong existentially unforgeable signature scheme. These requirement

are much stronger than those needed in already available non-hybrid schemes [88].

To the best of our knowledge, there is no hybrid signcryption scheme that

claims IND-CCA security and existential unforgeability using weak security prop-

erties like one-wayness and universal-unforgeability. Most of the schemes require

existential unforgeability on underlying signature scheme which is a stronger

130 Chapter 7. Signcryption schemes using Sponge padding

assumption than universal unforgeability. A common method used in works

[52,72,88,89] is an OAEP type padding. The padding gives rise to some common

limitations such as: (1) it restricts message space, (2) it works with deterministic

one-way encryption and deterministic signature only, and (3) it provides security

in the random oracle (RO) model. Unavailability of different types of padding

schemes limits the extension of work for the CtS&E composition. Table 7.1 gives

a brief summary of generic signcryption schemes based on CtS&E.

In chapter 3, motivated by the OAEP design, we proposed another type of

padding called SpAEP.

SpAEP is based on Sponge structure, where permutation is considered as

ideal permutation, and has no restriction on maximum message space. Unlike

KEM-DEM, the SpAEP padding provides an alternative by combining symmetric

and asymmetric primitives without a strict delineation. In brief, SpAEP uses

a versatile Sponge function and SpongeWrap [20–22] in pipelined fashion and

its partial output is used as input to the asymmetric encryption scheme. This

padding provides similar security guarantees as the OAEP padding but it is more

efficient. The SpAEP padding can be used with trapdoor one-way permutations

only.

7.1.3 Motivation

A randomised padding, like OAEP, is a powerful tool, which converts weakly

secure fixed trapdoor one-way functions into public-key encryption that is secure

against strong adaptively-chosen-ciphertext attacks. The padding has been used

in signcryption as a part of the commitment scheme in the CtS&E composition.

It is known that CtS&E allows the use of weak cryptographic primitives in

generic way to achieve a strong security of signcryption. A good example of such

composition are the results of [88,89], which integrate any one-way encryption

system (such as the basic RSA) with a weakly secure signature (non-universally

forgeable signatures) into a strong chosen-ciphertext secure and existentially

unforgeable signcryption in the RO model. The limitation of functionality like

message space restriction or type of encryption scheme is inherited from the

commitment or padding scheme used.

The Sponge-based padding proposed in [8] is versatile and has been used in a

different security model for asymmetric encryption based on an ideal permutation.

This padding scheme supports arbitrarily long messages, uses small domain

7.2. Contributions 131

Schemes Model Encryption Signature Message length # of other func-
tions

Signcryption

An et al. [3] No Spe-
cific

IND-CCA UF-CMA Restricted Commitment
scheme

IND-gCCA/UF-CMA

Pieprzyk et
al. [88]

Random
Oracle

OW-CPA suUF-RMA Restricted 3 hash, 1 Secret
share scheme

IND-CCA/sUF-CMA

Dodis et
al. [53] [52]

Random
Oracle

OW-CPA sUF-CMA
Restricted 1 Hash, 1

Commitment
scheme

IND-CCA/sUF-CMA

Unrestricted 1 Hash, 1
Commit-
ment scheme,
Symmetric
encryption

Our Result
Ideal
Permutation

OW-CPA suUF-RMA
Unrestricted

OW-PCA uUF-RMA 1 SpongeWrap,
1 Sponge Func-
tion (u2 Hash)

IND-CCA/UF-CMA

Table 7.1: Generic Signcryption schemes Based on CtS&E type composition:
“IND” stands for Indistinguishability, “OW” for One-wayness, “CPA/CMA” for
Chosen plaintext/message attack, “CCA” for chosen ciphertext-attack, “UF” for
existential unforgeability, “uUF” for universal unforgeability, “suUF” for strong
uUF, and “RMA” for random message attack.
OW-CPA is more specific to trapdoor one-way permutation, OW-PCA is One-
wayness under plaintext-checking attack.

permutations, and applies “on the fly” encryption. Its running time is equivalent

to execution of a single Sponge function, which is equivalent to a hash function.

Motivated by versatility of the Sponge-based padding and by “amplification” of

security properties (as demonstrated in [88,89]), we would like to develop a generic

signcryption scheme that is secure in the ideal permutation model. We intend

to use weak asymmetric primitives such as trapdoor one-way encryption and

universal unforgeable signature. The scheme is designed to support arbitrarily

long messages.

7.2 Contributions

In this chapter, we make the following contributions:

1. We present a signcryption scheme in the ideal permutation model using

Sponge structure. First, we propose a signcryption scheme for messages

of a fixed length. Then we show how to extend the scheme so it works

for arbitrarily long messages. Using simple tricks, we demonstrate how

different combinations of probabilistic/deterministic encryption and signa-

132 Chapter 7. Signcryption schemes using Sponge padding

ture schemes following weaker security requirements can be used without

compromising security of scheme. To best of our knowledge, this is the first

Sponge based signcryption scheme. We also believe that proposed signcryp-

tion scheme is the first scheme which also allows different combination of

weakly secure encryption and signature schemes to yield a strong secure

signcryption scheme along with support of arbitrarily long messages.

2. Security requirement for encryption is one-wayness and for signature scheme

is universal unforgeability. These minimum security requirements are suf-

ficient to achieve indistinguishability and existential unforgeability secu-

rity against adaptive attacks. Such weak requirements were only fulfilled

in [88, 89], but scope of [88, 89] is limited to fixed message space and

deterministic encryption and signature schemes.

3. Apart from encryption and signature primitives, our scheme requires an

ideal permutation only. The permutation we use is based on the well-known

iterative Sponge structure. Note that after the success of KECCAK [23] in

the SHA-3 competition [80], the Sponge structure is becoming more and

more popular and can serve as a swiss army knife in cryptography.

4. Flexibility of the Sponge based padding allows to scale the system from

relatively short messages to long ones while preserving security properties.

Besides the complexity of security analysis does not increase. Note that the

usage of extra redundant data in the Sponge padding plays a important

role in supporting long messages.

The Sponge structure used for message padding resembles the padding pro-

posed in chapter 3 and 5, but differs as follows. Some extra redundant data is used

to allow usage of Sponge padding with signature to provide both unforgeability

and confidentiality. IND-CCA security proof of SignEnc is similar to security proof

of SpPad–Pe, but consider Ver also. Due to insider adversary model presence of

Ver in IND-CCA proof is like public function known to adversary also.

Some properties are naturally inherited from Sponge based padding. Sign-

cryption offers “on the fly” computation property during the signcryption and

unsigncryption processes. Implementation require use of forward permutation

only, which saves implementation effort and memory.

7.3. Sponge based padding for Signcryption 133

7.3 Sponge based padding for Signcryption

In this section, we provide Sponge based padding SpWrap, a modified SpAEP/Sp-

Pad–Pe which is suitable for signcryption.

7.3.1 Description

Sponge based padding consist two functions: SpWrap and Sponge. SpWrap and

Sponge take some of their length parameters from Encrypt and Sign used in

SIGNCRYPT.

SpWrap is based on an iterated ideal permutation π : {0, 1}(b=r+c) → {0, 1}b

with an initial value IV . Function SpWrap is a tuple of two algorithm Sp-

Wrap.Enc() and SpWrap.Dec().

On input message M from message space Msg⊂ {0, 1}∗. SpWrap.Enc() gives

output C||T using a random K from keyspace Key⊂ {0, 1}k. SpWrap.Enc() takes

input message M , IV = IV1||IV2, K and some length parameters like k, r, `sg.

Output of SpWrap.Enc() is C||T where C > M and | T |= k. SpWrap.Dec()

takes input a ciphertext C||T , IV = IV1||IV2, K and some length parameters

like k, r, `sg. Output of SpWrap.Dec() is M or ⊥.

SpWrap uses similar functioning of SpongeWrap [21], but its message padding

is a little more specific than the general injective reversible padding used in the

SpongeWrap. After applying injective-reversible padding to input message, which

is required for smooth functioning of Sponge structure, we specifically add a 0r-bit

block before specific length `sg. This addition of extra block is required during

parallel signcryption to prevent some trivial forgery attack which we will discuss

later during the proof.

134 Chapter 7. Signcryption schemes using Sponge padding

π π π π π

K m1 m2 m
e−1

m
ec1 c2 c

e−1
c
e T

IV2
IV1

Figure 7.1: SpWrapπ: SpWrapπ or simply SpWrap : {SpWrap.Enc, SpWrap.Dec}
is based on iterated permutation π. SpWrap is similar to SpongeWrap function and
works as authenticated encryption scheme. By default, Initial Value (IV) is considered
as 0 (IV=0b).
Sponge function: Shown figure can be viewed as Sponge function also by considering
input J = K||m1|| . . . ||me, replace IV2 = 0c from IV3 = 0c−1||1 and considering T as
only output.

SpWrap.Enc(K,M, IV1||IV2, r, k, `sg):
1. x = IV1; w = IV2;

2. checkin(M, r, k, `sg)=m1|| . . . ||m(n+1)

3. x = IV1 ⊕ 0(r−k)||K
4. for i = 1→ n+ 1 do

(x||w) = π(x||w)

x = x⊕mi

ci = x

5. (x||w) = π(x||w); T = bxck
6. Return: C||T = c1||c2|| . . . ||cn+1||T

SpWrap.Dec(K,C||T, IV1||IV2, r, k, `sg):
1. c1||c2|| . . . ||cn+1||T = C||T where each | ci |= r

2. x = IV1 ⊕ 0(r−k)||K; w = IV2

3. for i = 1→ n+ 1 do
(x||w) = π(x||w)

mi = x⊕ ci
x = ci

4. (x||w) = π(x||w); T ′ = bxck
5. X ′ = m1|| . . . ||mn+1;

6. if T == T ′ then
If ∃ M s.t. M =checkout(X ′, r, k, `sg) then Return:M else Return: ⊥

else
⊥

7.3. Sponge based padding for Signcryption 135

checkin(M, r, k, `sg)

1. X1||X2 = pad(M, r), where | X2 |= `sg − r
2. X1||0r||X2 = m1||m2|| . . . ||mn+1, where |mi| = r ∀1 ≤ i ≤ (n + 1) and

∃ mi = 0r such that m1|| . . .mi−1 = X1

3. return: m1||m2|| . . . ||mn+1

checkout(X, r, k, `sg)

1. if ∃X1, X2 s.t. X1||0r||X2 == X, where | X2 |= `sg − r then
X ′ = X1||X2

else
Return ⊥

2. Return: unpad(X ′, r)

pad(x, r)

X =

x||1||0r−(|x|+1mod r)−1||1
return X.

unpad(y, r)

{
if ∃ x 6= empty s.t. x||1||0z||1 = y where 0 ≤ z ≤
r − 1 then

return x

else
return ⊥

}

Sponge : Sponge which works exactly like Sponge function [20]. Sponge

function has fixed b-bit initial value IV which is different from IV of SpongeWrap.

In Sponge, we take IV = IV1||IV3 where IV3 = IV2⊕ 1. Sponge takes J ∈ {0, 1}∗

as input and output k-bit tag value h. We define the Sponge function based on π

as follows:

Sponge(IV1||IV3, J)

1. x||w = IV1||IV3 where |x| = r

2. j1||j2|| . . . ||jn = pad(J, r), where |ji| = r ∀1 ≤ i ≤ n.

3. for i = 1→ n do
x = x⊕ ji
x||w = π(x||w)

4. Return bxck

136 Chapter 7. Signcryption schemes using Sponge padding

7.3.2 Properties

One useful property of SpWrap is its bijection property. Considering a fixed IV

for SpWrap, each query to SpWrap.Enc() has a fixed chain of internal variables

because of permutation π. Therefore, every different query will have its unique

set of state values. No two different queries can have a similar whole set of state

bits. First point of difference between two queries will create diversion in set

values because of permutation π.

7.4 Parallel Signcryption: SIGNCRYPT

In this section, we describe our proposal of parallel signcryption using Sponge

function based padding. To keep this scheme simple, we start with restricted

message space and deterministic signature scheme. We remove these conditions

of message space and signature scheme in Section 7.5.

7.4.1 Description

Building blocks of Parallel Signcryption SIGNCRYPT are:

� an encryption scheme Encrypt= (GenEnc, Enc, Dec),

� a signature scheme Sign=(GenSig,Sign,Ver),

� a permutation π : {0, 1}(b=r+c) → {0, 1}b (assumed to behave like ideal permu-

tation),

� For k-bit security of parallel signcryption, π having sufficient r > c > k such

that it should provide at-least k-bit security.

� We assume ` = n ∗ r and `sg = m ∗ r for some positive integers n,m > 0.

� A public function ID which maps public key of any user A to unique r−k
2

-bit

string in compatible string format as IDA. Communicating party denoted as

sender S and receiver R. This helps in describing of multi-users of system.

� Length of Message M is `+ `sg − 2(k + 1).

Key Generation: Gen(1k) = GenSig × GenEnc(1k)

Sender S generates (sksig,pksig) ← GenSigS(1k) and

Receiver R generates (skenc,pkenc)← GenEncR(1k).

The sender keys are (skS,pkS)=(sksig,pksig) and

7.4. Parallel Signcryption: SIGNCRYPT 137

the receiver keys are (skR,pkR)=(skenc,pkenc). Accordingly, SDK=(skS,skR) and

VEK=(pkS,pkR). Using function ID, unique identities of sender S and receiver R

will be IDS and IDR respectively.

Encrypt and Sign Algorithm: SignEncSDKS,VEKR
(M)

1. ComputeK||C||T = SpWrap.Enc(M, IV1||IV2, r, k, `sg), where IV1 = IDS||IDR,

IV2 = 0c, |K| = k and r is input rate of π.

2. Parse C||T into S1||S2||T , i.e. C||T = S1||S2||T , where |S1| = `, |S2| = `sg.

3. Calculate (in parallel) Y1=EncpkR(S1), σ = SignskS(S2).

4. Calculate Kh = K ⊕ Sponge(S1||Y1), Tk = T ⊕K
5. The final output (Kh, Y1, Y2 = (S2, σ), Tk) is sent to receiver R.

Decrypt and Verify Algorithm: VerDecSDKR,VEKS
(Kh, Y1, Y2, Tk)

1. Calculate (in parallel) S1 = DecskR(Y1), >/⊥ = VerpkS(Y2 = (S2, σ)). Ver

returns either valid >, or ⊥ if signature is invalid. In case of return ⊥, the

decryption and verify algorithm VerDec returns ⊥ and stops.

2. If Ver returns >, then calculate K = Kh ⊕ Sponge(S1||Y1) and T = Tk ⊕K
3. Set C = Cf ||Ce = S1||S2; also set IV1 = IDS||IDR, IV2 = 0c.

4. Compute M ′ = SpWrap.Dec(K||C||T, IV1||IV2, r, k, `sg) Return M = M ′ if

M ′ 6= ⊥ else return ⊥.

M

T

Y1
C||T

Y2

SpWrap

SIGNCRYPT

h Kh

S1

checkin SpongeWrap Sign

Enc

Sponge

K

S2

K
Tk

Figure 7.2: Sponge based Signcryption scheme SIGNCRYPT

Structural difference between SpPad–Pe and SIGNCRYPT : If we see

closely, then overall structure of SIGNCRYPT and SpPad–Pe is similar except

two things. One is obvious inclusion Sign. Second is change in padding formation

through checkin, inclusion of a 0r block in SpWrap just before giving the output

138 Chapter 7. Signcryption schemes using Sponge padding

S2 as input for Sign. This padding change is found to be crucial for insider secure

support of Sign, which will be discussed as a part of proof.

Algorithm 7: Signcryption:

SignEncskS ,pkR(M)

1 Initialization: x = IV1 = 0r,

w = IV2 = 0c, IV3 = IV2 ⊕ 1,

2 Random Key: K
$←− {0, 1}k;

3 checkin(M, r, k, `)=m1|| . . . ||m(n+1)

4 x = IDS||IDR||K
5 for i = 1→ n+ 1 do

6 (x||w) = π(x||w)

7 x = x⊕mi

8 ci = x

9 (x||w) = π(x||w); T = bxck
10 (S1)||(S2) =

(c1|| . . . ||ce)||(ce+1|| . . . ||cn+1)

11 Y1 = EncpkR(S1), σ = SignskS(S2)

12 pad(S1||Y1)=y1|| . . . ||yj;
x = IV1;w = IV3

13 for i = 1→ j do

14 (x||w) = π((x⊕ yi)||w)

15 Kh = bxck ⊕K; Tk = T ⊕K
16 Return: (Kh, Y1, Y2 = (S2, σ), Tk)

Algorithm 8: Unsigncryption:

VerDecskR,pkS(Kh, Y1, Y2, Tk)

1 Initialization: IV1 = 0r, IV2 = 0c,

IV3 = IV2 ⊕ 1,

2 S1 = DecskR(Y1);

x = IV1, w = IV3;

3 if VerpkS(Y2 = (S2, σ)) == ⊥
then

4 Return ⊥

5 (c1|| . . . ||ce)||(ce+1|| . . . ||cn+1) =

(S1)||(S2)

6 pad(S1||Y1)=y1|| . . . ||yj;
7 for i = 1→ j do

8 (x||w) = π((x⊕ yi)||w)

9 K = bxck ⊕Kh; T = Tk ⊕K
10 x = IDS||IDR||K; w = IV2

11 for i = 1→ n+ 1 do

12 (x||w) = π(x||w)

13 mi = x⊕ ci
14 x = ci

15 (x||w) = π(x||w); T ′ = bxck
16 X ′ = m1|| . . . ||mn+1;

17 if T == T ′ then

18 if ∃ M s.t.

M = checkout(X ′, r, k, `)

then

19 Return:M

20 else

21 Return: ⊥

22 else

23 ⊥

7.4. Parallel Signcryption: SIGNCRYPT 139

7.4.2 Security of Parallel Signcryption

Security of signcryption schemes is two fold, one about IND-CCA security and

second is unforgeability under adaptive chosen message attack (UF-AdA). Before

proceeding to detailed proof of each part individually, we provide a bird’s eye

view of each proof.

Theorem 8. If the encryption scheme is OW-PCA, and the signature scheme

is deterministic uUF-RMA, then the parallel signcryption scheme described in

section 7.4 is secure(IND/UF-AdA).

Unforgeability

Proof Sketch: We are dealing with insider security model, the adversary has

a target sender ID∗S in mind and he/she knows the sender’s public key pk∗S.

The adversary has access to the signcryption oracle under sk∗S. Being working

in multi-user setting, many receivers with different receiver ids are taken into

consideration.

We make subsequent changes in permutation π such that π gives a permutation

response for each new query but r bits out of b-bit output are random. Likewise,

c bits out of b-bit output are always different for new input. The bound of these

changes will be (qπ−1)qπ
2b+1 + qπ(qπ+1)

2c
for qπ number of total queries on π. In an

abstract way this bound include collision over b and c-bit output of π.

We start making changes in SignEnc oracle. We try to make output of SignEnc

oracle as random output by using random output of π. We use the message-

signature pair list Signlist having qH elements, where messages are chosen at

random and signature are calculated based on skS∗ . Because we are working in

multi-user security model, SignEnc accepts different receiver id’s along with M .

Finally SignEnc can respond with random output of π and using pre-computed

Signlist, likewise independent of SignskS∗ . The bound of changing original response

with random response comes out to be qsc · q
A
π

2k
. This bound captures the probability

of guessing used randomness K during qsc number of signcryption queries.

We modify VerDec oracle such that, we detect existential forgery on VerDec

and show a reduction to universal forgery on Ver. Whenever we discuss a forgery

we consider IDR = ID∗R in VerDec given by adversary with target signcryptext

y∗ and related pkR∗ and skR∗ for target sender IDS∗ . For detecting a valid

forgery, we cross check set Ivd, consist input-output of π during unsigncryption,

140 Chapter 7. Signcryption schemes using Sponge padding

against a set IAπ and Iscπ consist of input-output of π maintained by adversary and

signcryption oracle respectively. Let qusc be number of unsigncryption queries

and qsc be number of signcryption queries. We show that if Ivd ⊂ Iscπ , then this

is not an existential forgery. We show if (Ivd 6⊂ Iscπ && Ivd 6⊂ IAπ) or Ivd ⊆ IAπ
then probability of having an existential forgery is negligible. The bound for

these changes comes out to be qusc
2k

+ qsc
2r

+ Advuuf-rma
Sign (k). This bound capture the

probability of producing a target collision on T or target collision on input of Ver

or creating a valid signature on random input of Sign.

During unforgeability proof this is natural to assume that encryption scheme

is following trapdoor one-wayness and its correctness condition.

Following lemma can be derived from Theorem 8:

Lemma 1. If there exists an adversary A against the UF-AdA security of

the parallel signcryption scheme with advantage Advuf-adaSignEnc(k) whose running

time is bounded by t and who makes at most qAπ queries to the permutation

π : {0, 1}b=r+c → {0, 1}b and qsc queries to the signcryption oracle and qusc

queries to the unsigncryption oracle. Then there exists an attacker B against

the uUF-RMA security of the signature scheme with advantage AdvuUF−RMA
Sign (k)

whose running time is bounded by t′ ≥ t + qsc(τ + O(1)), where τ denotes the

maximal running time of the encryption and signing algorithm, for which

Advuf-adaSigncrypt(k) ≤ Advuuf-rma
Sign (k) + (qπ−1)qπ

2b+1 + qπ(qπ+1)
2c

+ qsc · q
A
π

2k
+ qusc

2k
+ qsc

2r
,

where qπ is total number of π queries including queries by adversary, sign-

cryption and unsigncryption oracle.

Proof. We consider the similar experiment of UF-AdA as described in section 2.3.

We follow, following experiment for UF-AdA experiment for SIGNCRYPT by

Adversary A:

ExpUF−AdASIGNCRYPT,A(k):

1. (skS∗ ,pkS∗)← GenSigS∗(1
k)

2. (y∗, IDR∗)← ASignEncskS∗
(·,·),π(·)(pkS∗)

3. Mapping pkR∗ using IDR∗ , where (skR∗,pkR∗)← GenEncR∗(1
k)

4. M∗ ← VerDec(pkR∗ , skS∗ , y
∗)

5. if M∗ 6= ⊥ and (M∗, IDR∗) query never made to SignEncskS∗ (·, ·) oracle

then
Return 1

7.4. Parallel Signcryption: SIGNCRYPT 141

else
Return 0

Advantage of adversary A is given by following probability:

Advuf-adaSigncrypt(k) = Pr[ExpUF−AdASIGNCRYPT,A(k) = 1]

We use game based proof framework [16]. We are dealing with insider security

model, the adversary has a target sender ID∗S in mind and he/she knows the

sender public key pk∗S. The adversary has access to the signcryption oracle under

sk∗S. We denote the winning event of forging a signcryptext in Game Gi by Gi.

Game G0 represent original Signcryption game for UF-AdA. Adversary issues

qsc number of queries on Signcryption oracle specifying Receiver IDR in each query

using ID∗S. Adversary A’s target is to give a target ID∗R and signed ciphertext

(K∗h, Y
∗
1 , Y

∗
2 = (S2∗, σ∗), T ∗k), such that VerDecsk∗R,pk∗S(K∗h, Y

∗
1 , Y

∗
2 , T

∗
k) = M∗ 6= ⊥

where (M∗, ID∗R) should not be queried by A to SignEnc. A might ask (M, ID∗R)

or (M∗, IDR) to SignEnc. Therefore,

Pr[G0] = Pr[ExpUF−AdAG0,A (k) = 1] = Pr[ExpUF−AdASIGNCRYPT,A(k) = 1]|

From Game G0 to Game G4, we make successive changes in permutation

π. Modified π gives a permutation response for each new query such that r bits

out of b-bit output are random. Likewise, c bits out of b-bit output are always

different for new input. This helps us to exploit the permutation property of

Sponge and make an output C deterministic for a specific input K,M and IV .

Any change in any one of the four values (C,M,K, IV) will make at-least one

value random. Here “any change” implies, while establishing relation between

(C,M,K, IV), if any input-output pair of π is not defined already then essentially

one of the part is new or randomly generated.

142 Chapter 7. Signcryption schemes using Sponge padding

Game G0: Initialize Iπ = IAπ = ∅, IV1 = 0r IV2 = 0c, IV3 = IV2 ⊕ 1, (skR,pkR)←
GenEnc(1k), pk∗S , ID∗S ; | ID |∈ {0, 1}(r−k)/2

Signlist : {(Si, σi) : σi = Signsk∗S (Si) ∀1 ≤ i ≤ qH and each Si chosen randomly}.

On SignEnc-Query M, IDR

1. K
$←− {0, 1}k; x = IV1; w = IV2;

2. checkin(M, r, k, `sg)=m1|| . . . ||m(n+1)

3. x = ID∗S ||IDR||K
4. for i = 1→ n+ 1 do

(x||w) = π(x||w)

x = x⊕mi

ci = x

5. (x||w) = π(x||w); T = bxck
6. S1||S2||T =

c1|| . . . ||ce||ce+1|| . . . ||cn+1||T
7. Y1 = EncpkR(S1), σ = Signsk∗S (S2)

8. pad(S1||Y1)=y1|| . . . ||yj ;
x = IV1;w = IV3

9. for i = 1→ j do
(x||w) = π(x⊕ yi||w)

10. Kh = bxck ⊕K; Tk = T ⊕K
11. Return: (Kh, Y1, Y2 = (S2, σ), Tk)

On VerDec-Query (Kh, Y1, Y2, Tk)

1. S1 = DecskR(Y1); x = IV1, w = IV3;

2. if Verpk∗S (Y2 = (S2, σ)) == ⊥ then
Return ⊥

3. c1|| . . . ||ce||ce+1|| . . . ||cn+1 = S1||S2

4. pad(S1||Y1)=y1|| . . . ||yj ;
5. for i = 1→ j do

(x||w) = π(x⊕ yi||w)

6. K = bxck ⊕Kh; T = Tk ⊕K
7. x = ID∗S ||IDR||K; w = IV2

8. for i = 1→ n+ 1 do
(x||w) = π(x||w)

mi = x⊕ ci
x = ci

9. (x||w) = π(x||w); T ′ = bxck
10. X ′ = m1|| . . . ||mn+1;

11. if T == T ′ then
if ∃ M s.t.

M = checkout(X ′, r, k, `sg) then
Return:M

else
Return: ⊥

else
⊥

On π-Query m, where m ∈ {0, 1}b

1. let (x||w) = m, where x ∈ {0, 1}r,
w ∈ {0, 1}c,

2. if (m, v)∈ Iπ then return v

3. v
$←− {0, 1}b

4. if ∃ m′ s.t (m′, v)∈ Iπ, then

v
$←− {0, 1}b \ {v : (∗, v) ∈ Iπ}, where

∗ ∈ {0, 1}b

5. Iπ = Iπ
⋃
{(m, v)}

6. return v;

On π−1-Query v, where v ∈ {0, 1}b

1. if (m, v)∈ Iπ then return m

2. m
$←− {0, 1}b

3. if ∃ v′ s.t (m, v′)∈ Iπ, then

m
$←− {0, 1}b \ {m : (m, ∗) ∈ Iπ},

where ∗ ∈ {0, 1}b

4. Iπ = Iπ
⋃
{(m, v)}

5. return m;

On πA-Query m, where m ∈ {0, 1}b

1. v = π(m)

2. IAπ = IAπ
⋃
{(m, v)}

3. return v;

On π−1A -Query v, where v ∈ {0, 1}b

1. m = π−1(v)

2. IAπ = IAπ
⋃
{(m, v)}

3. return m;

Figure 7.3: Game G0

7.4. Parallel Signcryption: SIGNCRYPT 143

Game G1 and G2: Initialize Iπ = IAπ = ∅, IV1 = 0r IV2 = 0c, IV3 = IV2 ⊕ 1,
(skR,pkR)← GenEnc(1k), pk∗S , ID∗S ;
Signlist : {(Si, σi) : σi = Signsk∗S (Si) ∀1 ≤ i ≤ qH and each Si chosen randomly}.

On π-Query m,where m ∈ {0, 1}b

1. let (x||w)=m,where x ∈ {0, 1}r,
w ∈ {0, 1}c,

2. if (m, v)∈ Iπ then return v

3. v
$←− {0, 1}b

4. if ∃ m′ s.t (m′, v)∈ Iπ, then

bad←true and

v
$←− {0, 1}b \ {v : (∗, v) ∈ Iπ} ,

where ∗ ∈ {0, 1}b
5. Iπ = Iπ

⋃
{(m, v)}

6. return v;

On π−1-Query v, where v ∈ {0, 1}b

1. let (v1||v2)=m,where v1 ∈ {0, 1}r,
v2 ∈ {0, 1}c,

2. if (m, v)∈ Iπ then return m

3. m
$←− {0, 1}b

4. if ∃ v′ s.t (m, v′)∈ Iπ, then

bad←true and

m
$←− {0, 1}b \ {m : (m, ∗) ∈ Iπ} ,

where ∗ ∈ {0, 1}b
5. Iπ = Iπ

⋃
{(m, v)}

6. return m;
Rest of oracles are same as G0

Figure 7.4: Game G1 and Game G2: Dash-box has dummy line of code, with
respect to G0, added and shared with both G1 and G2. G1 is with solid-box and
G2 is without solid-box.

Game G1 and G2: We start making changes in permutation π. In G1, we

take response of π randomly and differently from previous responses using set Iπ.

In G2, π queries simulates as random function that is for every new input, output

is random, need not to be different. So in G2 π gives random response without

cross checking it in previous input-output response list Iπ. G1 and G2 remains

identical until output of π query collides with any of the previous outputs. This

collision is denoted as bad event. Probability that random response chosen as

output of π will collide with any previous response is (qπ−1)qπ
2b+1 , where qπ is total

number of queries on π (and π−1) either from oracle calls by different oracle or

by adversary A. Therefore, |Pr[G2]− Pr[G1]| ≤ (qπ−1)qπ
2b+1

Game G3 and G4: Game G3 remains same as G2. In G3, we split up

output v of π in input-rate v1 and capacity-rate v2. We also have a set Lc initially

having element of value IV2 and IV3. Output v of π is chosen at random from

previous outputs. We mark an event as bad← true in case v2 is part of any

previous output; v2 ∈ Lc. In G4, π converted back to permutation from random

function. Now, In G4, if bad← true happens then v2 is chosen again randomly

from its set but rejecting the values already in set Lc.
So, in case of bad ← true, input-rate part of π’s output at random and

144 Chapter 7. Signcryption schemes using Sponge padding

capacity-part differently from all previous capacity-parts of outputs. In G4, π

works again as ideal permutation but permutation is happening over capacity-

parts of output. After every query, set Iπ and Lc are updated in accordance to

input-output response of π. Probability of bad← true will be qπ(qπ+1)
2c

. Therefore,

|Pr[G4]− Pr[G3]| ≤ qπ(qπ+1)
2c

Game G3 and Game G4 : Initialize Iπ = IAπ = ∅, IV1 = 0r IV2 = 0c,

IV3 = IV2 ⊕ 1, Lc = {IV2, IV3}, (skR,pkR)← GenEnc(1k), pk∗S , ID∗S ;

Signlist : {(Si, σi) : σi = SignskS (Si) ∀1 ≤ i ≤ qH and each Si chosen randomly}.

On π-Query m, where m ∈ {0, 1}b

1. let (x||w)=m,where x ∈ {0, 1}r,
w ∈ {0, 1}c,

2. if (m, v)∈ Iπ then return v

3. v1||v2
$←− {0, 1}b,where v1 ∈ {0, 1}r,

v2 ∈ {0, 1}c,

4.
if v2 ∈ Lc

⋃
{w}, then

bad←true and

v2
$←− {0, 1}c \ Lc

⋃
{w}

5. Iπ = Iπ
⋃
{(m, v1||v2)} and

Lc = Lc
⋃
{v2, w}

6. return v = v1||v2;

On π−1-Query v. where

v ∈ {0, 1}b

1. let (v1||v2)=v,where

v1 ∈ {0, 1}r, v2 ∈ {0, 1}c,
2. if (m, v)∈ Iπ then return m

3. m′||m′′ $←− {0, 1}b,where

m′ ∈ {0, 1}r, m′′ ∈ {0, 1}c,

4.
if m′′ ∈ Lc

⋃
{v2}, then

bad←true and

m′′ $←− {0, 1}c \ Lc
⋃
{v2}

5. Iπ = Iπ
⋃
{(m′||m′′, v)} and

Lc = Lc
⋃
{m′′, v2}

6. return m = m′||m′′;
Rest Oracles are same as G0

Figure 7.5: Game G3 and Game G4: Dash box shows dummy line of code added
in G3 with respect to G2. G3 is without solid-box and G4 with solid-box.

From Game G5 to G9, we start making changes in SignEnc oracle. We try to

make output of SignEnc oracle as random output by using random output of π.

We use the message-signature pair list Signlist having qH elements, where message

are chosen at random and signature are calculated based on skS∗ . In last SignEnc

can respond random output using pre-computed Signlist, likewise independent of

SignskS∗ .

Game G5, G6: G5 is same as G6 with no change. In Game G6, in SignEnc

we add a dummy random string C∗||T ∗ equivalent length of C||T , shown as

dash-box. Game G5 and G6 are same except some dummy lines are added in

7.4. Parallel Signcryption: SIGNCRYPT 145

G6 at step 4,5 in SignEnc. In these dummy lines, a random C∗||T ∗ is chosen at

random and C∗ is spitted into c∗i where 1 ≤ i ≤ n+ 1 and each |c∗i | = r

Game G5 and G6 Initialize Same as G4

On SignEnc-Query M, IDR

1. K
$←− {0, 1}k;

x = IV1 = ID∗S ||IDR||0k; w = IV2;

2. checkin(M, r, k, `sg)=m1|| . . . ||m(n+1)

3. x = ID∗S ||IDR||K

4. C∗||T ∗ $←− {0, 1}((n+1)∗r)+r

5. c∗1||c∗2|| . . . ||c∗n+1 = C∗;T ∗ = bT ∗ck
6. for i = 1→ (n+ 1) do

(x||w) = π(x||w)

x = x⊕mi

ci = x

7. (x||w) = π(x||w); T = bxck
8. S1||S2||T =

c1|| . . . ||ce||ce+1|| . . . ||cn+1||T
9. Y1 = EncpkR(S1); σ = Signsk∗S (S2);

10. pad(S1||Y1)=y1|| . . . ||yj ;
x = IV1;w = IV3

11. for i = 1→ j do
(x||w) = π(x⊕ yi||w)

12. Kh = bxck ⊕K; Tk = T ⊕K
13. Return: (Kh, Y1, Y2 = (S2, σ), Tk)

On π-Query m, where m ∈ {0, 1}b

1. let (x||w)=m,where x ∈ {0, 1}r,
w ∈ {0, 1}c,

2. if (m, v)∈ Iπ then return v

3. v1||v2
$←− {0, 1}b,where v1 ∈ {0, 1}r,

v2 ∈ {0, 1}c,
4. if v2 ∈ Lc

⋃
{w}, then

v2
$←− {0, 1}c \ Lc

⋃
{w}

5. Iπ = Iπ
⋃
{(m, v1||v2)} and

Lc = Lc
⋃
{v2, w}

6. return v = v1||v2;

On π−1-Query v. where v ∈ {0, 1}b

1. let (v1||v2)=v,where

v1 ∈ {0, 1}r, v2 ∈ {0, 1}c,
2. if (m, v)∈ Iπ then return m

3. m′||m′′ $←− {0, 1}b,where m′ ∈ {0, 1}r,
m′′ ∈ {0, 1}c

4. if m′′ ∈ Lc
⋃
{v2}, then

m′′
$←− {0, 1}c \ Lc

⋃
{v2}

5. Iπ = Iπ
⋃
{(m′||m′′, v)} and

Lc = Lc
⋃
{m′′, v2}

6. return m = m′||m′′;
Rest of Oracles same same as G0

Figure 7.6: Game G5 and G6: dash box shows added dummy line of codes in G6
compare to G5. G5 has same code as G4.

Game G6, G7: In G7, we change response of π in accordance to c∗i , such

that SpPad.Enc output C∗||T ∗ for M on K. As we already know, r-bit part

of b-bit output of π is random. Therefore, we can replace the random output

x of π with another random value mi ⊕ ci. Such a change will produce C∗||T ∗

as output response of π from its “for” loop. Now, S1||S2||T = C∗||T ∗ and

this is used for calculating encryption and signature for final output. Here,

C∗ = c1|| . . . ||ce||ce+1|| . . . ||cn+1, S
1 = c1|| . . . ||ce and S2 = ce+1|| . . . ||cn+1. We

store input-output response of π, called in SignEnc, in a set Iscπ .

146 Chapter 7. Signcryption schemes using Sponge padding

This change of response might get failed if response of fist π call using K in

SignEnc, is already defined by A query in IAπ using πA and public known IV2

and IDs. Because if first response of π using K in SignEnc goes collision free

then all successive response will be new due to permutation property. Therefore,

probability of failure of this response change in G7 for qsc number of queries is
qAπ
2k

. Therefore, |Pr[G7]− Pr[G6] |≤ qsc · q
A
π

2k
.

Game G6 ,
�� ��G7 Initialize Same as G4

On SignEnc-Query M, IDR

1. K
$←− {0, 1}k; x = IV1 = 0k; w = IV2;

2. checkin(M, r, k, `sg)=m1|| . . . ||m(n+1)

3. x = ID∗S ||IDR||K
4. C∗||T ∗x

$←− {0, 1}((n+1)∗r)+r

5. c∗1||c∗2|| . . . ||c∗n+1 = C∗; T ∗ = bT ∗x ck
6. for i = 1→ (n+ 1) do

v = x||w;

(x||w) = π(x||w)
�� ��((x = c∗i ⊕mi)||w) = π(x||w) ;

v′ = x||w; Iscπ = Iscπ
⋃
{v, v′}

x = x⊕mi

ci = x

7. (x||w) = π(x||w);T = bxck;
�� ��((T ∗x)||w) = π(x||w); T ∗ = bT ∗x ck ;

8. S1||S2||T = c1|| . . . ||ce||ce+1 . . . ||cn+1||T
9.
�� ��S1||S2||T = c∗1|| . . . ||c∗e||c∗e+1|| . . . ||c∗n+1||T ∗

10. Y1 = EncpkR(S1); σ = Signsk∗S (S2);

11. pad(S1||Y1)=y1|| . . . ||yj ; x = IV1;w = IV3

12. for i = 1→ j do
(x||w) = π(x⊕ yi||w)

13. Kh = bxck ⊕K; Tk = T ⊕K
14. Return: (Kh, Y1, Y2 = (S2, σ), Tk)

Rest of Oracles are same as G5

Figure 7.7: Game G6 and G7: G6 follows the code without oval-box, G7 follows
the code without solid box.

Game G7, G8: In G8, we chose a new message-signature pair from Signlist

at random. We replace the chosen message Si from Signlist with S2 of π loop’s

7.4. Parallel Signcryption: SIGNCRYPT 147

(SpPad) output. In G8, before start calculating SpPad and after generating

C∗||T ∗, we set S1||S2||T = C∗||T ∗. Then we replace S2 with Si of (message-

signature) pair list and then again set C∗||T ∗ = S1||S2||T . Rest code remain

same like G7. Here we replace random S2 with a random Si of Signlist and

calculating rest same as G7. Because both Si and S2 are random, therefore there

is no difference will arise in Game G7 and G8.

Game G8, G9: In G9, code remain same like G8, instead to calculate

σ = SignskS(S2 = Si) one can simple replace this operation with pre-calculated

σi for Si from Signlist. Now, SignEnc is independent of skS of Sign and later

available to Adversary B for uUF-RMA attack on Sign.

Game G8,
�� ��G9 Initialize Same as G4

On SignEnc-Query M, IDR

1. K
$←− {0, 1}k; w = IV2;

2. checkin(M, r, k, `sg)=m1|| . . . ||m(n+1)

3. C∗||T ∗ $←− {0, 1}((n+1)∗r)+k

4. c∗1||c∗2|| . . . ||c∗n+1 = C∗

5. S1||S2||T = c∗1|| . . . ||c∗e||c∗e+1|| . . . ||c∗n+1||T ∗

6. i
$←− {1 . . . qH}/I;S2 = Si; I = I

⋃
i

7. c∗1|| . . . ||c∗e||c∗e+1|| . . . ||c∗n+1 = S1||S2

8. x = ID∗S ||IDR||K
9. for i = 1→ n+ 1 do

v = x||w;

((x = c∗i ⊕mi)||w) = π(x||w);

v′ = x||w; Iscπ = Iscπ
⋃
{v, v′}

x = x⊕mi

ci = x

10. (x||w) = π(x||w); T = bxck
11. S1||S2||T = c∗1|| . . . ||c∗e||c∗e+1|| . . . ||c∗n+1||T ∗

12. Y1 = EncpkR(S1); σ = Signsk∗S (S2);
�� ��Y1 = EncpkR(S1);σ = σi;

13. pad(S1||Y1)=y1|| . . . ||yj ; x = IV1;w = IV3

14. for i = 1→ j do
(x||w) = π(x⊕ yi||w)

15. Kh = bxck ⊕K; Tk = T ⊕K
16. Return: (Kh, Y1, Y2 = (S2, σ), Tk)

Rest of oracles are same as G5

Figure 7.8: Game G8 and G9: Dash box shows dummy lines of codes added in G8
compare to G7. G8 follows code without oval-box. G9 follows code with Oval-box.

148 Chapter 7. Signcryption schemes using Sponge padding

Now onward we start making changes in VerDec oracle.

Game 10: In Game 10 we add some dummy lines which doesn’t affect

UF-CMA experiment of Game and G10 remain same as G9. In Game 10, we

modify VerDec oracle such that, we detect Existential forgery on VerDec and

show a reduction to universal forgery on Ver. Whenever we discuss a forgery we

consider IDR = ID∗R in VerDec and related pkR∗ and skR∗ for target sender IDS∗ .

We set a boolean value flag to old initially, and set it to new in case input-

output response of π during VerDec not belong to (Iπsc and IAπ) .

Here, flag is old signifies that input to VerDec is output of SignEnc for some

ith query in case of Ivd ⊂ Iπsc or all π’s input-output response already known to

adversary A in IAπ if Ivd ⊂ IAπ .

Similarly, if flag becomes new then one of the value of π in VerDec is new

w.r.t SignEnc. In case validation passed for flag==new then essentially answered

M is not queried before to SignEnc and one of the values from Kh, Y1, Y2, T is

differently used compare to any values in output of SignEnc.

A forgery assumed to be valid only when VerpkS(y2 = (S2, σ)) 6= ⊥ and

T == T ′ happens under flag==new for ID∗R. We try to detect a forgery based

on chosen at random known input of Ver.

Game 11: In Game G11, we return ⊥ in case of flag is new. Here difference

between G10 the G11 will be probability of T == T ′ in case of flag new.

In case validation passed for flag=new then essentially answered M is not

queried before to SignEnc and one of the values from π is freshly defined. This

leads to having target collision on propose T in input to VerDec. This happens

with probability of 1
2k

. Therefore, |Pr[G11]− Pr[G10]| ≤ qusc
2k

7.4. Parallel Signcryption: SIGNCRYPT 149

Game
�� ��G10 G11 : Initialize same as G4

On SignEnc-Query M, IDR

1. K
$←− {0, 1}k; w = IV2;

2. checkin(M, r, k, `sg)=m1|| . . . ||m(n+1)

3. C∗||T ∗ $←− {0, 1}((n+1)∗r)+k

4. c∗1||c∗2|| . . . ||c∗n+1 = C∗

5. S1||S2||T =

c∗1|| . . . ||c∗e||c∗e+1|| . . . ||c∗n+1||T ∗

6. i
$←− {1 . . . qH}/I;S2 = Si; I = I

⋃
i

7. c∗1|| . . . ||c∗e||c∗e+1|| . . . ||c∗n+1 = S1||S2

8. x = ID∗S ||IDR||K
9. for i = 1→ n+ 1 do

v = x||w;

((x = c∗i ⊕mi)||w) = π(x||w);

v′ = x||w; Iscπ = Iscπ
⋃
{v, v′}

x = x⊕mi

ci = x

10. (x||w) = π(x||w); T = bxck
11. S1||S2||T =

c∗1|| . . . ||c∗e||c∗e+1|| . . . ||c∗n+1||T ∗

12. Y1 = EncpkR(S1);σ = σi;

13. pad(S1||Y1)=y1|| . . . ||yj ;
x = IV1;w = IV3

14. for i = 1→ j do
(x||w) = π(x⊕ yi||w)

15. Kh = bxck ⊕K; Tk = T ⊕K
16. Return: (Kh, Y1, Y2 = (S2, σ), Tk)

On VerDec-Query (Kh, Y1, Y2, Tk)

1. S1 = DecskR(Y1);x = IV1;w = IV3;

2. if VerpkS∗ (Y2 = (S2, σ)) == ⊥ then
Return ⊥

3. c1|| . . . ||ce||ce+1|| . . . ||cn+1 = S1||S2

4. pad(S1||Y1)=y1|| . . . ||yj ; Ivd = ∅
5. for i = 1→ j do

v = x||w; (x||w) = π(x||w);

v′ = x||w; Ivd = {v, v′}
⋃
Ivd

6. K = bxck ⊕Kh; T = Tk ⊕K
7. x = ID∗S ||IDR||K; w = IV2;

flag ← old

8. for i = 1→ (n+ 1) do
v = x||w; (x||w) = π(x||w);

v′ = x||w; mi = x⊕ ci; x = ci;

Ivd = {v, v′}
⋃
Ivd

9. v = x||w; (x||w) = π(x||w);

10. v′ = x||w; T ′ = bxcr;
Ivd = {v, v′}

⋃
Ivd

11. X ′ = m1|| . . . ||mn+1;

12.
if Ivd 6⊂ Isc && Ivd 6⊂ IAπ then

flag ← new

13. if T == T ′ and flag == new then
if ∃ M s.t.

M = checkout(X ′, r, k, `sg) then�� ��Return:M Return: ⊥
else

Return: ⊥
else
⊥

14. if T == T ′ and flag == old then
if ∃ M s.t.

M = checkout(X ′, r, k, `sg) then
Return:M

else
Return: ⊥

else
⊥

Rest same as G5

Figure 7.9: Game G10 and G11: Dash-box shows dummy line of code added in
G10 compare to G9. G10 follows the code with oval-box without solid-box. G11
follows the code without oval-box with solid-box.

150 Chapter 7. Signcryption schemes using Sponge padding

Game
�� ��G12 G13 : Initialize Same as G4 with Choose a Sj

$←− {0, 1}`sg

On SignEnc-Query M, IDR

1. K
$←− {0, 1}k; w = IV2;

2. checkin(M, r, k, `sg)=m1|| . . . ||m(n+1)

3. C∗||T ∗ $←− {0, 1}((n+1)∗r)+k

4. c∗1||c∗2|| . . . ||c∗n+1 = C∗

5. S1||S2||T =

c∗1|| . . . ||c∗e||c∗e+1|| . . . ||c∗n+1||T ∗

6. i
$←− {1 . . . qH}/I;S2 = Si; I = I

⋃
i

7. c∗1|| . . . ||c∗e||c∗e+1|| . . . ||c∗n+1 = S1||S2

8. x = ID∗S ||IDR||K
9. for i = 1→ n+ 1 do

v = x||w;

((x = c∗i ⊕mi)||w) = π(x||w);

v′ = x||w; Iscπ = Iscπ
⋃
{v, v′}

x = x⊕mi

ci = x

10. (x||w) = π(x||w); T = bxck
11. S1||S2||T =

c∗1|| . . . ||c∗e||c∗e+1|| . . . ||c∗n+1||T ∗

12. If Si == Sj then Abort

13. Y1 = EncpkR(S1);σ = σi;

14. pad(S1||Y1)=y1|| . . . ||yj ;
x = IV1;w = IV3

15. for i = 1→ j do
(x||w) = π(x⊕ yi||w)

16. Kh = bxck ⊕K; Tk = T ⊕K
17. Return: (Kh, Y1, Y2 = (S2, σ), Tk)

On VerDec-Query (Kh, Y1, Y2, Tk)

1. S1 = DecskR(Y1); x = IV1;w = IV3

2. if VerpkS∗ (Y2 = (S2, σ)) == ⊥ then
Return ⊥

3.
if S2 = Sj and IDR = ID∗R then

Badsign ← true

4. c1|| . . . ||ce||ce+1|| . . . ||cn+1 = S1||S2

5. pad(S1||Y1)=y1|| . . . ||yj ; Ivd = ∅;
flag ← old

6. for i = 1→ j do
(x||w) = π(x⊕ yi||w)

7. K = bxck ⊕Kh; T = Tk ⊕K
8. x = ID∗S ||IDR||K; w = IV2;

9. for i = 1→ (n+ 1) do
v = x||w; (x||w) = π(x||w);

v′ = x||w; mi = x⊕ ci;; x = ci;

Ivd = {v, v′}
⋃
Ivd

10. v = x||w; (x||w) = π(x||w);

11. v′ = x||w; T ′ = bxcr;
Ivd = {v, v′}

⋃
Ivd

12. X ′ = m1|| . . . ||mn+1;

13. if Ivd 6⊂ Isc && Ivd 6⊂ IAπ then
flag ← new

14. if T == T ′and flag == old then

if Ivd ⊆ IAπ then

if ∃ M s.t.

M = checkout(X ′, r, k, `sg)

then

Bad← true

Return:M ⊥
else

Return: ⊥
if ∃ M s.t.

M = checkout(X ′, r, k, `sg) then
Return:M

else
Return: ⊥

else
⊥

Rest of Oracles are same as G5

Figure 7.10: Game G12 and G13: Dash-box shows added dummy line of code
in G12 compare to G11. G12 follows the code without solid-box with Oval-box.
G13 follows the code with solid-box without Oval-box.

7.4. Parallel Signcryption: SIGNCRYPT 151

In Game 12: Game G12 is same as Game G11 except some dummy lines

of code added, shown in dash boxes.

� Initially a random Sj is chosen of length `sg. In case, this Sj appears in

SignEnc during answering a query, we abort the SignEnc from answering.

probability of such happening is qH
2`sg

and this event is not helpful in forgery

because such query is not providing any information to A.

� We also mark an dummy event Badsign as true if during VerDec query

S2 == Sj and VerpkS∗ (y2) = > for IDR == ID∗R. This event signifies that

adversary has provided a valid signature on random chosen S2 for a targeted

ID of sender and receiver. Later we show, probability of such Badsign is

true is equivalent to AdvuUF−RMA
Sign,B (k).

� We also mark an event as Bad← true in case VerDec returns M if Ivd ⊆ IAπ
is true and flag is still old.

In Game G13, we return ⊥ instead of M in case Bad ← true. We check

the probability of this Bad event to be happened. This event can be possible in

either of two cases. We denote first case as Badπ and second case as Badsign, e.g,

Pr[Bad← true] = Pr[Badπ ← true] + Pr[Badsign ← true].

Probability of Badπ ← true is as follows. This is the case when adversary

has generated a valid ciphertext using individual query to πA and with help of

known message-signature pair. A could use custom K, pk∗R and values of mi so

that adaptive calls of πA will produce desired S2 with known σ and some random

T . Here, comes the part of special addition 0r string block in message padding

during checkin and checkout. This block force the A to select a particular K and

values of mi such that after producing S1 next output of πA should be equivalent

to first r-bit of S2. This is essential to pass the checkout function. Probability of

such happening is qsc
2r

for available qsc number of message-signature pairs through

SignEnc queries.

Probability of Badsign ← true is as follows. This case happens when adversary

has generated a valid ciphertext using IAπ having known individual query to πA

and without help of known message-signature pair by generating a valid signature

for random S2. This could happen as follows, adversary A ask queries to π

for some random K,pk∗R and custom mi’s in accordance to checkout function

to generate random Kh, S
1, S2 and Tk which will also validate T == T ′ upon

152 Chapter 7. Signcryption schemes using Sponge padding

verification. Now in order to pass validation of Sign, A needs to have valid

signature over Sign for random S2. Because A knows the targeted message before

generating signature, this becomes equivalent to universal forgery for random

message. Therefore, Pr[Badsign] ≤ AdvuUF-RMA
Sign (k)

Therefore,adversary needs to produce either a collision over r−bit of S2 using

π query and known (S2, σ) or in alternate way produce a valid signature over

random S2 which is output of π queries. Therefore, if adversary pass the checkout

function then essentially A produces the collision. Probability of happen such

collision is qsc
2r

+ Pr[Badsign]. Therefore, |Pr[G13]−Pr[G12]| ≤ qsc
2r

+ AdvuUF-RMA
Sign (k)

Game 14 and 13: Game G14 is same as Game G13. G14 is final ideal game

and we simplify the cases by merging Bad event with flag ← new event,

because in both events VerDec is returning ⊥. Now flag is set to new in case

(Ivd 6⊂ Isc && Ivd 6⊂ IAπ) or Ivd ⊆ IAπ and VerDec return ⊥ if flag is new. Return

of M will happen only if flag is old and validation of T passed. Now essentially,

A will get return ⊥ for all his queries except either he produces a valid signature

on any random S2 not queried before or query the output of SignEnc.

This ends the proof.

We can have following corollaries from proof of lemma 1, which are also

summarized in Table 7.2.

Corollary 1. If the encryption scheme follows OW-PCA, and the signature

scheme is uUF-RMA, then the parallel signcryption scheme is UF-AdA.

Corollary 1 is direct implication from Lemma 1. This corollary includes both

probabilistic and deterministic signature schemes and also encryption schemes.

Corollary 2 is a sub-class result from Corollary 1, where deterministic signature

scheme follows UF-AdA(or signature schemes follow sUF-AdA). This corollary

serves as a bridge for our next corollary 3.

Corollary 2. If the encryption scheme follows OW-PCA, and the signature

scheme is suUF-RMA, then the parallel signcryption scheme is UF-AdA.

Corollary 3. If the encryption scheme is deterministic and follows one-wayness,

and the signature scheme is suUF-RMA, then the parallel signcryption scheme is

sUF-AdA.

7.4. Parallel Signcryption: SIGNCRYPT 153

Corollary 2 and Corollary 3 has a difference in achieved security because

of probabilistic and deterministic nature of encryption scheme. This is mainly

because encryption scheme which follows OW-PCA includes some probabilistic

asymmetric encryption schemes which have re-randomization problem. In re-

randomization, for same input to asymmetric primitive a different value output

could be generated. In such a case and because of insider security model, adversary

attacking unforgeability of SIGNCRYPT can produce a different sign-ciphertext

for same input message which is quired earlier. For example, for a query M, IDR,

output is Kh, Y1, Y2, T for a K. Using insider knowledge and probabilistic nature

of asymmetric encryption new valid output could be K ′h, Y
′
1 , Y2, T for same K

and M, IDR. Such a valid pair is allowed as part of forgery in sUF, but not in

UF. Therefore, in corollary 2, Sign follows suUF-RMA, but overall SIGNCRYPT

follows only UF-AdA. If encryption scheme is deterministic then above attack not

valid and SIGNCRYPT can be benefited from suUF-RMA. A summary of above

discussed corollary is shown in table 7.2.

Encrypt(↓) \ Sign(→) uUF-RMA suUF-RMA

Deterministic OW-CPA UF-AdA sUF-AdA

Probabilistic OW-PCA UF-AdA UF-AdA

Table 7.2: Unforgeability of SIGNCRYPT in different assumption on Sign and
Encrypt.

154 Chapter 7. Signcryption schemes using Sponge padding

Game G14: Initialize Iscπ = I = Iπ = IAπ = ∅, IV1 = 0r IV2 = 0c, (skR,pkR)← GenEnc(1k),

pk∗S , ID∗S ;

Signlist : {(Si, σi) : σi = SignskS (Si) ∀1 ≤ i ≤ qH and each Si chosen randomly}.Choose

a Sj
$←− {0, 1}`sg

On SignEnc-Query M, IDR

1. K
$←− {0, 1}k; w = IV2;

2. checkin(M, r, k, `sg)=m1|| . . . ||m(n+1)

3. C∗||T ∗ $←− {0, 1}((n+1)∗r)+k

4. c∗1||c∗2|| . . . ||c∗n+1 = C∗

5. S1||S2||T =

c∗1|| . . . ||c∗e||c∗e+1|| . . . ||c∗n+1||T ∗

6. i
$←− {1 . . . qH}/I;S2 = Si; I = I

⋃
i

7. c∗1|| . . . ||c∗e||c∗e+1|| . . . ||c∗n+1 = S1||S2

8. x = ID∗S ||IDR||K
9. for i = 1→ n+ 1 do

v = x||w;

((x = c∗i ⊕mi)||w) = π(x||w);

v′ = x||w; Iscπ = Iscπ
⋃
{v, v′}

x = x⊕mi

ci = x

10. (x||w) = π(x||w); T = bxck
11. S1||S2||T =

c∗1|| . . . ||c∗e||c∗e+1|| . . . ||c∗n+1||T ∗

12. If Si == Sj then Abort

13. Y1 = EncpkR(S1);σ = σi;

14. pad(S1||Y1)=y1|| . . . ||yj ;
x = IV1;w = IV3

15. for i = 1→ j do
(x||w) = π(x⊕ yi||w)

16. Kh = bxck ⊕K
17. Return: (Kh, Y1, Y2 = (S2, σ), T)

On VerDec-Query (Kh, Y1, Y2, T)

1. S1 = DecskR(Y1); x = IV1;w = IV3;

2. if VerpkS (Y2 = (S2, σ)) == ⊥ then
Return ⊥

3. if S2 == Sj and IDR == ID∗R then
Badsign ← true; σ∗ = σ

4. c1|| . . . ||ce||ce+1|| . . . ||cn+1 = S1||S2

5. pad(S1||Y1)=y1|| . . . ||yj ;
6. for i = 1→ j do

(x||w) = π(x⊕ yi||w)

7. K = bxck ⊕Kh Ivd = ∅
8. x = ID∗S ||IDR||K; flag ← old

9. for i = 1→ (n+ 1) do
v = x||w;

(x||w) = π(x||w)

v′ = x||w;

mi = x⊕ ci
x = ci

Ivd = {v, v′}
⋃
Ivd

10. v = x||w; (x||w) = π(x||w);

11. v′ = x||w; T ′ = bxcr;
Ivd = {v, v′}

⋃
Ivd

12. X ′ = m1|| . . . ||mn+1;

13. if

(Ivd 6⊂ Isc && Ivd 6⊂ IAπ) or Ivd ⊆ IAπ
then
flag ← new

14. if T == T ′and flag == old then
if ∃ M s.t.

M = checkout(X ′, r, k, `sg) then
Return:M

else
Return: ⊥

else
⊥

Rest of Oracles are same as G5

Figure 7.11: Game G14: G14 same as G13 with simplified code.

7.4. Parallel Signcryption: SIGNCRYPT 155

Adversary B Initialize: Given a ID∗S and ID∗R. public/pvt key pair of R∗ as

pkR∗ and skR∗ . Public key of S∗ as pkS∗ and a Target message M∗. We also

denote M∗ as µ or Sj.

A: Initialize Iscπ = I = Iπ = IAπ = ∅, IV1 = 0r IV2 = 0c, (skR,pkR)←
GenEnc(1k), pk∗S, ID∗S;

Signlist : {(Si, σi) : σi = SignskS(Si) ∀1 ≤ i ≤ qH and each Si chosen

randomly}.

Rest of Oracles are same as G14

Finalization: If VerDec return M and Badsign ← true then return σ∗.

Figure 7.12: Adversary B over uUF-RMA

Indistinguishability

Proof Sketch: We are dealing with insider security model in the multi-user setting,

the adversary has a target receiver ID∗R in mind. The adversary knows the

receiver public key pkR and has access to the VerDec oracle under skR. Further,

we assume that an adversary A observed qusc queries to VerDec oracle. A1 has

also chosen a pair of messages M0 and M1 and a key pair (sk∗S, pk
∗
S) for ID∗S.

It receives a ciphertext (y∗1, y
∗
2, y
∗
3) under (sk∗S, pk

∗
R) of either M0 or M1. The

unknown message is denoted by Md, where d is the bit that adversary A2 wishes

to find out.

Indistinguishability proof of SIGNCRYPT follows the security proof of Sp-

Pad–Pewithout much trouble and difference. Because of insider security model

adversary knows input of Sign, which is also known in SpPad–Pe conceptually.

We make subsequent changes in permutation π such that π gives a permutation

response for each new query but r bits out of b-bit output are random. Likewise,

c bits out of b-bit output are always different for new input. This part remains

same as for unforgeability.

Modify unsigncryption oracle such that it nullifies those queries to unsigncryp-

tion oracle about which adversary does not know answer in advance with help of

π query and which can be simulated without using private key of receiver skR∗ . If

Ivdπ 6⊂ IAπ , then probability that adversary can get an answer from unsigncryption

oracle is bounded by qusc
2k

which includes target collision on T for qusc number of

unsigncryption queries. Unlike unforgeability, adversary is allowed to generate

156 Chapter 7. Signcryption schemes using Sponge padding

valid signcryptext but only those will be valid about which adversary already

knows the answer.

Modifying signcryption oracle using random response of π. This will lead to

simulate signcryption oracle to return a random response. This change will be

bounded by the probability of guessing the used randomness K by adversary or

advantage of an OW-PCA adversary to break the one-wayness (OW).

Privacy proof of scheme depends upon probabilistic or deterministic nature

of underlying signature scheme. During the proof we assume signature scheme

is deterministic and follows the correctness condition. In subsequent section we

show how we can remove this assumption on signature scheme.

Following lemma can be derived from the Theorem 8:

Lemma 2. Consider an adversary A against the IND-CCA security of the

parallel signcryption scheme with advantage AdvIND−CCASigncrypt (k) whose running

time is bounded by t and which makes at most qπ queries to permutation π :

{0, 1}b=r+c → {0, 1}b oracle and qusc queries to the un-signcryption oracle. Then

there exists an attacker B against the OW-PCA security of the public key encryp-

tion scheme with advantage AdvOW−PCAEncrypt (k) and whose running time bounded by

t′ ≤ t+ qusc(τ +O(1)), where τ denotes the maximal running time of decryption

and verification algorithms, for which

AdvIND−CCASigncrypt (k) ≤ AdvOW−PCAEncrypt (k) + (qπ−1)qπ
2b+1 + qπ(qπ+1)

2c
+ qusc

2k
+ qAπ

2k

, where qπ is total number of π queries including queries by adversary (qAπ),

signcryption and unsigncryption oracle.

Proof. (of Lemma 2) We consider the following experiment for IND-CCA experi-

ment for SIGNCRYPT by Adversary A:

Experiment: Expind−cca−dSIGNCRYPT,A(k):

1. (skR∗ ,pkR∗)← GenEncR∗(1
k)

2. (M0,M1, IDS∗)← AVerDecskR∗ (·,·),π(·)(pkR∗)

3. Mapping to pkS∗ using IDS∗ , where (skS∗ ,pkS∗)← GenSigS(1k)

4. d
$←− {0, 1}

5. y∗ ← SignEncpkR∗ ,skS∗ (Md)

6. d′ ← AVerDecskR∗ (·,·),π(·)(pkR∗ , skS∗ , pkS∗ , y
∗)

7. if d == d′ and (y∗, IDS∗) query never made to VerDecskR∗ (·, ·) oracle then
Return 1

else
Return 0

7.4. Parallel Signcryption: SIGNCRYPT 157

Advantage of adversary A is given by following probability:

AdvIND−CCASigncrypt (k) =| Pr[Expind−cca−dSIGNCRYPT,A(k) = 1|d $←− {0, 1}]− 1
2
|.

We are dealing with insider security model in the multi-user setting, the

adversary has a target receiver ID∗R in mind. The adversary knows the receiver

public key pkR and has access to the VerDec oracle under skR. Further, we assume

that an adversary A observed qusc queries to VerDec oracle. A also chosen a pair

of messages M0 and M1 and a key pair (skS, pkS) for IDS. It receives a ciphertext

(y∗1, y
∗
2, y
∗
3) under (skS, pkR) of either M0 or M1. The unknown message is denoted

by Md, where d is the bit the adversary wishes to find out. The adversary A
output a bit d′ which is equal to d with advantage ε,i.e., Pr[d′ = d]=1/2 + ε. In

the following, we use a ∗ for all internal values used in computing the challenge

signcryption.

We will use game playing techniques [15,16]. We start from original CCA game

EXPSIGNCRYPT,A or Expind−cca−dSIGNCRYPT,A(k) = 1|d $←− {0, 1} denote the event that A
outputs d′ = d where d

$←− {0, 1}. We want to show that |Pr[EXPSIGNCRYPT,A]| =
1
2

+negl(k), where negl(·) is a negligible function and negl(k) ≤ AdvIND−CCASigncrypt (k).

In each game, following set maintained: I by π, IAπ by πA and Y stores capacity

c-bit values upon each query to π.

We modify Signcrypt into a sequence of game G0, G1, . . . G12 such that:

Pr[EXF−SpAEP,A]= Pr[EXG0,A]

Pr[EXG(i−1),A]=Pr[EXGi,A]+negl(k) ∀1 ≤ i ≤ 11

Pr[EXG12,A]= 1
2

Game G0 to G5: From Game G0 to G5 it follows changes exactly same as in

Proof of Lemma 1. Therefore, |Pr[EXPG0,A]−Pr[EXPG5,A]| ≤ (qπ−1)qπ
2b+1 + qπ(qπ+1)

2c
.

In G5, game maintains an extra set Ienc which stores input-output response

of π (as πenc) during SignEnc challenge query.

158 Chapter 7. Signcryption schemes using Sponge padding

Game G5 Initialize Ienc = Iπ = IAπ = ∅, IV1 = 0r IV2 = 0c, IV3 = IV2 ⊕ 1, Lc =

{IV2, IV3}, (skS ,pkS)← GenEnc(1k), pk∗R, ID∗R;

On SignEnc-Query Md for ID∗S

1. K∗
$←− {0, 1}k;

x = IV1 = ID∗S ||ID∗R||0k; w = IV2;

2. checkin(M, r, k, `sg)=m1|| . . . ||m(n+1)

3. x = ID∗S ||ID∗R||K
4. for i = 1→ (n+ 1) do

(x||w) = πenc(x||w)

x = x⊕mi

c∗i = x

5. (x||w) = πenc(x||w); T ∗ = bxck
6. S1∗||S2∗||T ∗ =

c∗1|| . . . ||c∗e||c∗e+1|| . . . ||c∗n+1||T ∗

7. Y ∗1 = Encpk∗R(S1); σ∗ = Signsk∗S (S2∗);

8. pad(S1∗||Y ∗1)=y∗1 || . . . ||y∗j ;

x = IV1;w = IV3

9. for i = 1→ j do
(x||w) = πenc(x⊕ y∗i ||w)

10. K∗h = bxck ⊕K∗; T ∗k = T ∗ ⊕K∗

11. Return: (K∗h, Y
∗
1 , Y

∗
2 = (S2∗, σ∗), T ∗k)

On VerDec-Query (Kh, Y1, Y2, Tk)

1. S1 = DecskR∗ (y1);x = IV1;w = IV3;

2. if VerpkS (Y2 = (S2, σ)) == ⊥ then
Return ⊥

3. c1|| . . . ||ce||ce+1|| . . . ||cn+1 = S1||S2

4. y1|| . . . ||yj = pad(S1||Y1);

5. for i = 1→ j do
(x||w) = π(x⊕ yi||w)

6. K = bxck ⊕Kh; T = Tk ⊕K
7. x = IDS ||ID∗R||K; w = IV2;

8. for i = 1→ n+ 1 do
(x||w) = π(x||w)

mi = x⊕ ci
x = ci

9. (x||w) = π(x||w); T ′ = bxck
10. X ′ = m1|| . . . ||mn+1;

11. if T == T ′ then
if ∃ M s.t.

M = checkout(X ′, r, k, `sg) then
Return:M

else
Return: ⊥

else
⊥

On π-Query m, where m ∈ {0, 1}b

1. let (x||w)=m,where x ∈ {0, 1}r,
w ∈ {0, 1}c,

2. if (m, v)∈ Iπ then return v

3. v1||v2
$←− {0, 1}b,where v1 ∈ {0, 1}r,

v2 ∈ {0, 1}c,
4. if v2 ∈ Y

⋃
{w}, then

v2
$←− {0, 1}c \ Y

⋃
{w}

5. Iπ = Iπ
⋃
{(m, v1||v2)} and

Y = Y
⋃
{v2, w}

6. return v = v1||v2;

On π−1-Query v. where v ∈ {0, 1}b

1. let (v1||v2)=v,where

v1 ∈ {0, 1}r, v2 ∈ {0, 1}c,
2. if (m, v)∈ Iπ then return m

3. m′||m′′ $←− {0, 1}b,where m′ ∈ {0, 1}r,
m′′ ∈ {0, 1}c

4. if m′′ ∈ Y
⋃
{v2}, then

m′′
$←− {0, 1}c \ Y

⋃
{v2}

5. Iπ = Iπ
⋃
{(m′||m′′, v)} and

Y = Y
⋃
{m′′, v2}

6. return m = m′||m′′;
On πenc-Query m

1. v = π(m)

2. Ienc = Ienc
⋃

(m, v)

On πA-Query m

Same as G0

On π−1A -Query v

Same as G0

Figure 7.13: Game G5

7.4. Parallel Signcryption: SIGNCRYPT 159

Game G6 and G5: Both the games are same. In Game G6, a dummy

operation of flag ← new is added in the VerDec oracle to denote a new query.

The query is new in the sense that neither the query nor any part of the query

during internal calls to π was queried earlier by the adversary. That is, flag ←
new if any π’s response 6∈ IAπ . Now, code of Game G6 can check condition

T == T ′ in case of flag == new and in case of flag == old separately. If

T == T ′&& flag == new then we mark this event as badπ ← true. Because

event badπ is just dummy event and return by VerDec in G6 is not affected

therefore, |Pr[EXPG6,A]| = |Pr[EXPG5,A]|.
Game G7 and G6: In Game G7, in VerDec, we return ⊥ instead of M in

case badπ is true. Therefore,

|Pr[EXPG7,A]− Pr[EXPG6,A]| ≤ Pr[badπ ← true].

Let (v1||v2) = π(x||w), where x,v1 ∈ {0, 1}r and w,v2 ∈ {0, 1}c. In VerDec,

a input is a new query to π when ((x||w), (v1||v2)) /∈ IAπ and old query when

((x||w), (v1||v2)) ∈ IAπ . If a new query (x||w) is input to π during VerDec, then π

outputs v1||v2, where v2 /∈ Lc. That is, v2 is also new. Since v2 is unseen so far,

it ensures that the input to the next call of π is certainly new. Further, since v2

is new, next input x′||v2 satisfies the condition (x′||v2, ∗) /∈ IAπ , where ∗ stands

for any b bit value. Therefore one new query makes all subsequent inputs to

π(·) as new. We already know for any new query r-bit response of π is random.

Therefore in case of flag is new probability of T == T ′ is equivalent to collision

over k-bit T value. Therefore, Pr[badπ ← true] = qusc
2k

for qusc number of VerDec

queries. Therefore,

|Pr[EXPG7,A]− Pr[EXPG6,A]| ≤ qusc
2k

.

Now, if this bad event does not happen then G7 will return M only in case

all π response already known to A. Consecutively, A already knows the answer

of VerDec with help of π queries and available Sign,Ver and Enc functions.

160 Chapter 7. Signcryption schemes using Sponge padding

Game
�� ��G6 G7 : Initialize Ienc = Iπ = IAπ = ∅,GenEnc(1k), pk∗R, ID∗R;,

IV1 = 0r, IV2 = 0c, IV3 = IV2 ⊕ 1. Lc = {IV2, IV3}. flag ∈ {new, old} .

On Decryption-Query Kh, Y1, Y2, Tk

1 S1 = Decsk(Y1); x = IV1 and w = IV3

2 if VerpkS (Y2 = (S2, σ)) == ⊥ then
Return ⊥

3 c1|| . . . ||ce||ce+1|| . . . ||cn+1 = S1||S2;

4 pad(S1||Y1)=y1|| . . . ||yj ; flag ← old

5 for i = 1→ j do
x = x⊕ yi
If{x||w, ∗} /∈ IAπ then flag ← new

(x||w) = π(x||w)

6 h = bxck; K = h⊕Kh; T = Tk ⊕K
7 x = IDS ||IDR||K; w = IV2;

8 for i = 1→ (n+ 1) do

If{x||w, ∗} /∈ IAπ then flag ← new

(x||w) = π(x||w); mi = x⊕ ci; x = ci

9 If{x||w, ∗} /∈ IAπ then flag ← new

10 (x||w) = π(x||w); T ′ = bxck; X ′ = m1|| . . . ||mn+1;

11 if T = T ′ and flag = new then

badπ ← true

if ∃ M s.t. M = checkout(X ′, r, k, `sg) then�� ��Return:M Return ⊥
else

Return: ⊥

12 if T = T ′ and flag = old then

if ∃ M s.t. M = checkout(X ′, r, k, `sg) then
Return:M

else
Return: ⊥

else
⊥

Rest of Oracles same as G5

Figure 7.14: Game G6: G6 includes dummy lines, shown in dash-box,compare to
G5 along with round-box

Figure 7.15: G7: G7 includes all codes of line of G6 and also solid-box except
round-box.

7.4. Parallel Signcryption: SIGNCRYPT 161

Game G8: Initialize Ienc = Iπ = IAπ = ∅, GenEnc(1k), pk∗R, ID∗R;, IV1 = 0r, IV2 =

0c, IV3 = IV2 ⊕ 1. Lc = {IV2, IV3}

On Decryption-Query Kh, Y1, Y2, Tk

1 if VerpkS (Y2 = (S2, σ)) == ⊥ then
Return ⊥

2 If ∃ checkin(M, r, k, `sg)=m1||m2|| . . . ||mn+1 such that

after setting Y1 = ae+1|| . . . ||aj , u21 = IV3, z11 = IV1

if {(u1i ||u2i), (z1i+1||z2i+1)} ∈ IAπ for i : 1→ e→ j such that ai = u1i ⊕ z1i ,
u2i = z2i and OPC(S1, Y1) = 1, where S1 = a1|| . . . ||ae

then for setting K = bzjcr ⊕Kh, S1||S2 = c1|| . . . ce||ce+1|| . . . ||cn,

x0 = K||0r−k ⊕ IV1, T = Tk ⊕K and w0 = IV2

if (x0||w0, v11 ||v21) ∈ IAπ and

{(xi||wi), (v1i+1 ||v2i+1)} ∈ IAπ for i : 1→ e→ n+ 1 and

bv1n+2cr == T where xi = ci = mi ⊕ v1i ,wi = v2i

then return M

else Return ⊥
else Return ⊥

Rest of Oracles same as G7

Following special notations is begin used during Game G8 and onwards in

decryption oracle:

1. During SpongeWrap part of SpPad, we represent input-output relation

of π’s subsequent calls for pad(M) = m1|| . . . ||mn by (v1i+1 ||v2i+1) =

π(xi||wi), where xi = v1i ⊕ {mi}, wi = v2i 0 ≤ i ≤ n, v10 = IV1,m0 = K,

w0 = IV2, v1i , xi ∈ {0, 1}r and v2i , wi ∈ {0, 1}c. Then ci will represent

mi ⊕ v1i , here 1 ≤ i ≤ n.

2. Input-output relation of π’s subsequent call during Sponge part of SpPad

will be represented as follows: (z1i+1||z2i+1) = π(u1i ||u2i),u1i = ci ⊕ z1i ,
u2i = z2i ,where 1 ≤ i ≤ (j), u21 = IV3, z11 = IV1, zj = h.

Figure 7.16: Game G8: Output of decryption oracle in G8 is same as G7 but
independent from sk.

162 Chapter 7. Signcryption schemes using Sponge padding

Game G8: Both the games are same. Game G7 and G8 both return ⊥ when

a new query is given to the VerDec oracle. In Game G8, a message M is returned

only when all the input-output relations of π, which would be possible during

the encryption of M , are already in IAπ . Game G8 iterates over all the possible

pairs of (input,output) of π ∈ IAπ starting using IV1 and IV3 and tries to find a

S1 such that OPC(S1, Y 1) = 1. In positive case, it further calculate K and then

tries to find all pairs of input-output response which reaches to T via K,S1, S2.

If any of response is missing then VerDec simply rejects the query. Due to insider

model, a faithful assumption on signing algorithm we have is for same input to

signing algorithm two different signature can not be generated. We will discuss

the impact of this assumption later, after the proof.

Game G8 and Game G9: We start incremental changes in Signcryption

oracle from Game G9. In Game G9, K∗ is chosen before signcryption query and

after “find” stage. In both case K∗ remain random therefore,

|Pr[EXPG9,A] = Pr[EXPG8,A]|.

Some extra dummy variables are also chosen S1∗, S2∗, T ∗, along with K∗, after

find stage but not used. A dummy value Y ∗1 is calculated on S1∗ using Enc.

7.4. Parallel Signcryption: SIGNCRYPT 163

Game G9 G10 :Initialize

Ienc = Iπ = IAπ = ∅, GenEnc(1k),

pk∗R, ID∗R;, IV1 = 0r, IV2 = 0c,

IV3 = IV2 ⊕ 1. Lc = {IV2, IV3}

After Find Stage(AFS): K∗h
$←−

{0, 1}k; S1∗ $←− {0, 1}`, S2∗ $←−
{0, 1}`sg

Y ∗1 = Enc(S1∗), T ∗ $←− {0, 1}k

y1|| . . . ||ye||ye+1|| . . . ||yj = S1∗||Y ∗1 ;

K∗ $←− {0, 1}k

K∗||∗ = πenc(. . . πenc(πenc(y1 ⊕
IV1||IV3) ⊕ y2||0c) . . . ⊕ yj ||0c) ⊕
K∗h||0b−k

On Encryption-Query(Md)

1. K∗ $←− {0, 1}k;
x = IV1 = ID∗S ||ID∗R||0k;
w = IV2;

2.

checkin(M, r, k, `sg)=m1|| . . . ||m(n+1)

3. x = ID∗S ||ID∗R||K
4. for i = 1→ (n+ 1) do

(x||w) = πenc(x||w)

x = x⊕mi

c∗i = x

5. (x||w) = πenc(x||w);

T ∗ = bxck
6. S1∗||S2∗||T ∗ =

c∗1|| . . . ||c∗e||c∗e+1|| . . . ||c∗n+1||T ∗

7. Y ∗1 = Encpk∗R(S1);

σ∗ = Signsk∗S (S2∗);

8. pad(S1∗||Y ∗1)=y∗1|| . . . ||y∗j ;
x = IV1;w = IV3

9. for i = 1→ j do
(x||w) = πenc(x⊕ y∗i ||w)

10. K∗h = bxck ⊕K∗; T ∗k = T ⊕K
11. Return:

(K∗h, Y
∗
1 , Y

∗
2 = (S2∗, σ∗), T ∗k)

Rest of Oracles same as G8

Figure 7.17: Game G9 and G10: G9
includes some extra dummy variables,
shown in dash-box, during initializa-
tion after find stage. G10 includes
solid-box code during initialization in
which K∗ is chosen from random C∗.

G11: Initialize Ienc = Iπ = IAπ =

∅, GenEnc(1k), pk∗R, ID∗R;, IV1 =

0r, IV2 = 0c, IV3 = IV2 ⊕ 1. Lc =

{IV2, IV3}
(AFS): K∗h

$←− {0, 1}k; S1∗ $←− {0, 1}`,
S2∗ $←− {0, 1}`sg

Y ∗1 = Enc(S1∗),σ∗ = Signsk∗S (S2∗),

T ∗k
$←− {0, 1}k

y1|| . . . ||ye||ye+1|| . . . ||yj = S1∗||Y ∗1 ;

K∗||∗ = πenc(. . . πenc(πenc(y1 ⊕
IV1||IV3) ⊕ y2||0c) . . . ⊕ yj ||0c) ⊕
K∗h||0b−k

On Encryption-Query(Md)

1. Return:

(K∗h, Y
∗
1 , Y

∗
2 = (S2∗, σ∗), T ∗k)

On πA-Query m

1. If (m = ID∗S ||ID∗R||K∗||IV2)
then BadK ← true

2. v = π(m)

3. IAπ = IAπ
⋃
{(m, v)}

4. return v;

On π−1A -Query v

1. m = π−1(v)

2. If (m = ID∗S ||ID∗R||K∗||IV2)
then BadK ← true

3. IAπ = IAπ
⋃
{(m, v)}

4. return v;

Rest of Oracles same as G10

Figure 7.18: Game G11: All values of
encryption oracle replaced by random
variables, if adversary does not query
K∗ to πA

164 Chapter 7. Signcryption schemes using Sponge padding

Game G9 and Game G10: In G9, K∗ is generated randomly. In G10, K∗

is computed using the value of randomly generated S1∗), K∗h and Y ∗1 . The value

of K∗ is calculated via HπEnc(IV1||IV2, y∗1, y∗2, . . . , y∗j)⊕K∗h, where y∗1, y
∗
2, . . . , y

∗
j =

S1∗||Y ∗1 . Here, Hπenc(∗) represent Sponge function with IV = IV1||IV2 using

permutation πenc. Since π is an ideal permutation and K∗h is a random value, K∗

will also be random. Therefore, G9 and G10 are same.

|Pr[EXPG10,A] = Pr[EXPG9,A]|.

.

Game 11: In Game 10, during signcryption (K∗h, S
1∗, S2∗, T ∗) was calculated

using K∗ and r-bit random output of π. In Game 11, we directly allocate

random K∗h, S
1∗, S2∗, T ∗k values to signcryption oracle. Earlier in Game 10, during

signcryption (K∗h, S
1∗, S2∗, T ∗k) has a relation with K∗, whereas in G11 there is

no relation between (K∗h, S
1∗, S2∗, T ∗k) and K∗. This gap can be exploited only if

K∗ is known to adversary A and queried ID∗S||ID∗R||K∗||IV2 to π. We mark this

query by A to π as BadK ← true.

Therefore, |Pr[EXPG11,A]−Pr[EXPG10,A]| ≤ Pr[BadK ← true]. If this BadK

event does not happen then essentially K∗h, S
1∗, S2∗, T ∗k will be random and also

independent from Md.

Game G12 is the final game of adversary A. It is same as G11, if BadK does

not happen then essentially S1∗ remains unknown to adversary along with K∗.

BadK event in G11 is same as Bad1K in G12. Because sign-ciphertext is random

and independent of Md, therefore

|Pr[EXPG12,A] = Pr[EXPG11,A] = 1
2
|

7.4. Parallel Signcryption: SIGNCRYPT 165

G12: Initialize Ienc = Iπ = IAπ = ∅,
GenEnc(1k), pk∗R, ID∗R;, IV1 = 0r, IV2 =

0c, IV3 = IV2 ⊕ 1. Lc = {IV2, IV3}
(AFS): K∗h

$←− {0, 1}k; S1∗ $←− {0, 1}`,
S2∗ $←− {0, 1}`sg

Y ∗1 = Encpk(S
1∗),σ∗ = Signsk∗S (S2∗),

T ∗k
$←− {0, 1}k

y1|| . . . ||ye||ye+1|| . . . ||yj = S1∗||Y ∗1 ;

K∗||∗ = πenc(. . . πenc(πenc(y1 ⊕
IV1||IV3)⊕y2||0c) . . .⊕yj ||0c)⊕K∗h||0b−k

On Encryption-Query(Md)

1. Return:

(K∗h, Y
∗
1 , Y

∗
2 = (S2∗, σ∗), T ∗k)

On πA-Query m

1. If (m = ID∗S ||ID∗R||K∗||IV2) then

BadK ← true

2. v = π(m)

3. IAπ = IAπ
⋃
{(m, v)}

4. return v;

On π−1A -Query v

1. m = π−1(v)

2. If (m = ID∗S ||ID∗R||K∗||IV2) then

BadK ← true

3. IAπ = IAπ
⋃
{(m, v)}

4. return v;

Rest of Oracles same as G11
Red color line shows lines which are not detectable by Ad-

versary.

Adversary C: Given random Y1
$←−

{0, 1}`+cope , find S1 such that

OPC(S1, Y1) = 1

Game G12 as Adversary A:

Initialize Ienc = Iπ = IAπ = ∅,
GenEnc(1k), pk∗R, ID∗R;, IV1 =

0r, IV2 = 0c, IV3 = IV2 ⊕ 1.

Lc = {IV2, IV3}
(AFS): K∗h

$←− {0, 1}k; σ∗ =

Signsk∗S (S2∗), T ∗k
$←− {0, 1}k, Y ∗1 =

Y1

Rest of Oracles same as G12

Finalization: if

{(u1i ||u2i), (z1i+1||z2i+1)} ∈ IAπ
for i : 1 → e → j such

that ai = u1i ⊕ z1i , u2i = z2i
and OPC(S1, Y1) = 1,

where S1 = a1|| . . . ||ae,
Y1 = ae+1|| . . . ||aj, u21 = IV3

and z11 = IV1.

then return S1;

Figure 7.19: Game G12 as final game, and Adversary C using G12 as Adversary A

166 Chapter 7. Signcryption schemes using Sponge padding

The probability of Bad1K is as follows.

Pr[Bad1K] = Pr[ID∗S||ID∗R||K∗||IV2 is queried to (πA or π
−1
A)]

= Pr[(ID∗S||ID∗R||K∗||IV2 is queried to (πA or π
−1
A)) ∧ (Ienc ⊂ IAπ)]

+ Pr[(ID∗S||ID∗R||K∗||IV2 is queried to (πA or π
−1
A)) ∧ (Ienc 6⊂ IAπ)].

(IEnc ⊂ IAπ) implies that all the input-output relations of πEnc are also known

to the adversary A via set IAπ . Therefore A knows all y∗i for 1 ≤ i ≤ e and h∗.

Moreover, the adversary A learns K∗ from K∗h of challenge ciphertext.

Given (K∗h, Y
∗
1 , Y

∗
2 = (S2∗, σ∗), T ∗), if ID∗S||ID∗R||K∗||IV2 is queried to π, then

it reveals S1∗ completely. Therefore,

Pr[Bad2] ≤ AdvOW−PCAEncrypt (BA) + Pr[(K∗||IV2 is queried to (πA

or π−1A)) ∧ (IEnc 6⊂ IAπ)].

IEnc 6⊂ IAπ implies that one of the inputs to HπEnc() is unknown to the adversary

A. It results in unknown output value from HπEnc(). Since K∗h is already random

therefore K∗ remains unknown and random to A. ID∗ and IV2 are public,

therefore, ID∗S||ID∗R||K∗||IV2 query to πA is equivalent to random guessing of

K∗.

Pr[Bad2]≤ AdvOW−PCAEncrypt (BA)+
(qπA+qπ−1)

min(2k,2c)
.

The last game G12 can be used to simulate adversary B for simulating

adversary A’s queries. Here adversary tries to recover first k-bits from input to

Enc on given random y and other public information.

Following proof of Lemma 2, we can have following corollaries

Corollary 4. If the encryption scheme is OW-PCA, and the signature scheme is

deterministic, then the parallel signcryption scheme is IND-CCA.

This corollary 4 follows directly from lemma 2.

Corollary 5. If the encryption scheme is deterministic OW-CPA and the signature

scheme is deterministic, then the parallel signcryption scheme is IND-CCA.

7.4. Parallel Signcryption: SIGNCRYPT 167

Sign(↓) \ Encrypt(→) OW-PCA

Deterministic
uUF-RMA IND-CCA
suUF-RMA IND-CCA

Probabilistic
uUF-RMA 7

suUF-RMA IND-CCA

Table 7.3: Privacy of SIGNCRYPT under different combination of Sign and
Encrypt

This corollary 5 follows a subclass result of corollary 4, where deterministic

OW-CPA secure encryption scheme also follows OW-PCA.

Next, corollary 6 is an another representation of corollaries 4 and 5, where we

say only suUF-RMA signature scheme are valid for security. Because deterministic

uUF-RMA secure scheme also follows suUF-RMA.

Corollary 6. If the encryption scheme is deterministic OW-CPA and the signature

scheme suUF-RMA, then the parallel signcryption scheme is IND-CCA.

Corollary 2 and 4 together gives Theorem 8. Corollary 3 and 6 together

gives following Theorem 9.

A summary of corollaries related to privacy proof of SIGNCRYPT is summarized

in table 7.3.

A gap in results, where probabilistic Sign following uUF-RMA does not provide

security to SIGNCRYPT will be addressed in next section.

Theorem 9. If the encryption scheme is deterministic OW-CPA, and the signature

scheme is suUF-RMA, then the parallel signcryption scheme is secure(IND/sUF-

AdA).

Proof of this theorem follows exactly the proof of theorem 8, except that we

now assume that Sign is suUF-RMA secure and Encrypt is also deterministic

OW-CPA.

7.4.3 Properties

From efficiency point of view, this scheme is significantly optimal since only

one SpWrap function call is required before parallel encryption and signature

processes. Only one call to Sponge function is required after encryption and

signature for small amount of data. The reverse process achieves same kind of

optimality. Security requirements of this basic scheme, the encryption Encrypt

168 Chapter 7. Signcryption schemes using Sponge padding

and the signature scheme Sign are weak which also make this proposal superior

to other available schemes.

7.5 Extension of Parallel Signcryption

In previous Section 7.4, we see two limitation of SIGNCRYPT. First, not supporting

probabilistic Sign where same input can give two or more different signatures,

for IND-CCA security. Second, there is a restriction on the maximum message

length. In this section, we discuss how to extend usage of Parallel Signcryption

SIGNCRYPT in case of probabilistic Sign and in case for arbitrary long messages.

7.5.1 Using Probabilistic Sign

Probabilistic Sign: This case is not supported in proposed scheme, because we

assumed Sign is deterministic and for same input two different signatures are not

considered. In cases, where a probabilistic Sign scheme needs to be used then

IND-CCA security of SIGNCRYPT will no longer valid under proposed scenario.

Because now insider adversary can simply produce another signature σ on S2∗,

of challenge signed-ciphertext, and submit K∗h, Y
∗
1 , Y2 = (S2∗, σ), T ∗ to VerDec.

This will leads to knowing d bit of Md with probability 1 without violating the

IND-CCA experiment. This case can be handled easily in two ways.

Solution-1 Changing IND-CCAexperiment to IND-gCCA [3]: Consider challenged signed-

ciphertext K∗h, Y
∗
1 , Y2 = (S2∗, σ∗), T ∗ as two parts. First as ciphertext

K∗h, Y
∗
1 , S

2∗, T ∗ and second as signature σ∗. Imposing a restriction on

adversary, attacking IND-CCAsecurity, that not only challenged signed-

ciphertext can not be queried to decryption oracle but also those queries

are prohibited which result in same as challenged ciphertext K∗h, Y
∗
1 , S

2∗, T ∗.

A query to VerDec having challenge ciphertext K∗h, Y
∗
1 , S

2∗, T ∗ could be

determined easily by using public key of sender as verification key.

This change in IND-CCA experiment is similar to IND-gCCA proposed in [3].

An et al. [3] proposed this IND-gCCAnotion specifically for signcryption

in more formal way to avoid trivial attack discussed above. By following

the IND-gCCA security experiment we can propose another corollary from

Lemma 2 as follows.

7.5. Extension of Parallel Signcryption 169

Corollary 7. If the encryption scheme is OW-PCA and the signature

scheme is unforgeable, then the parallel signcryption scheme is IND-gCCA.

This corollary can be combined with other proposed corollaries from

Lemma 1 and different new results can be claimed.

Solution-2 Include σ also as part of input in Sponge: This solution follows similar

concept as we have followed in case of proposing SpPad–Pe over F−SpAEP .

This inclusion of σ in Sponge will bind the σ with a particular K, S2, like

in case of Y1. Now, above discussed attack will not work, because different

σ will lead to different K. This change is more simple compared to IND-

gCCA security notion requirement. This change is not included initially

in proposed scheme with the intension to keep proof simple and straight.

Inclusion and reason of this proposed change helps in understanding about

IND-gCCAand Y1, σ as input to Sponge.

7.5.2 Arbitrary long messages

Arbitrary long message can be supported in SIGNCRYPT without any major

structure modification. Earlier S1||S2||T = C||T when |C||T | = ` + `sg + k. If

|C||T | > ` + `sg + k, then S1||Ce||S2||T = C||T , where |S1| = `, |S2| = `sg and

final output of SIGNCRYPT is (Kh, Y1, C
e, Y2 = (S2, σ), Tk).

Caution: This is essential that if C||T > `+`sg+k then S1||Ce||S2||T = C||T ,

“not” as S1||S2||Ce||T = C||T , where S1 is input of Enc and S2 is input of Sign.

This requirement of perform signing on last part of data arises in signcryption

to prevent trivial forgery attack by insider adversary. In cases where Sign is

performed on data subsequent to Enc data, like S1||S2||Ce||T = C||T , then

adversary can replace Ce and accordingly T using πA, sk and pk of Enc. This

modification will lead to a trivial forgery.

From the proof of SpPad–Pe we already knows that Ce as part of output will

not affect the IND-CCA security of the scheme. In regards to unforgeability, with

above mentioned caution, scheme can safely use the Sign. Unforgeability proof of

the scheme in case of long messages will follow exactly like of Lemma 1.

With this proposed change from Solution 2 and support of long message, we

call SIGNCRYPTG as generic version of SIGNCRYPT. Graphical representation of

Generic Signcryption is shown in Fig 7.20.

170 Chapter 7. Signcryption schemes using Sponge padding

M

T

Y1
C||T

Y2 = (σ, S2)

SpWrap

SIGNCRYPT

h Kh

S1

checkin SpongeWrap

Sign

Enc

Sponge

K

S2

Ce

σ

K
Tk

Figure 7.20: Signcryption scheme SIGNCRYPTG: Input message is passed to
SpWrap, which uses checkin and SpongeWrap function, along with random
K. SpWrap outputs C||T . C||T further split into S1||Ce||S2||T . Asymmetric
encryption scheme Enc take S1 as input and outputs Y1. Signature scheme Sign
take S2 as input and output Y2 which consist of (S2, σ), where σ is signature.
Sponge function take Y1, S

1 and σ as input and outputs h, which further gets
xored with K to produce Kh. Final output will be Kh, Y1, C

e, Y2, Tk, where
Tk = T ⊕K.

Theorem 8 can be modified for SIGNCRYPTG as follows:

Theorem 10. If the encryption scheme is OW-PCA, and the signature scheme

is (uUF-RMA,suUF-RMA), then the parallel signcryption SIGNCRYPTG scheme

is secure (IND-CCA/(UF,sUF)-AdA).

Proof Sketch: If we follow the same proof of Lemma 1, we can clearly see

after game G5, output of π is random. Following random π, output h of Sponge

is also random. Even if adversary tries to use another σ for same S2, it will

result in change of h that leads to random K and Tk, and adversary need to

produce target collision over that T or K. This case already included in proof

when Ivd 6⊂ Isc & Ivd 6⊂ IAπ .

For IND-CCA security of SIGNCRYPTG, we can follow the same proof of

Lemma 2 including extra cases when Encrypt and Sign is probabilistic. In

order to get information about Md, now adversary tries to produce different Y ′1
for same S1∗ or different σ for same S2∗. Either of these cases will change the

value of K∗, which reduces the problem again to having collision on T or having

knowledge of S1. This results in same bound on IND-CCA2 as for SIGNCRYPT.

Therefore, regarding IND-CCA of SIGNCRYPTG, addition of Sponge function

is a dummy operation compare to SIGNCRYPT for outputting T , but its usage

protect σ of Sign and outputs Y1 of Encrypt by making them dependent on a

7.6. Conclusion 171

particular K. This dependency provides IND-CCA security for SIGNCRYPTG in

similar way of SIGNCRYPT.

7.6 Conclusion

Combination of encryption and signature scheme yields a signcryption scheme.

Extra burden of satisfying both privacy and unforgeability against insider at-

tackers increases the complexity of proving the system secure and efficient. This

complexity brings limitation of signcryption scheme in terms of needed security

assumption, security achievement and efficiency to balance each other. Message

pre-processing is found to be an attractive way to build a secure and efficient

signcryption scheme. Already existing message pre-processing techniques are

found to be inflexible which disallow their improvement in different case scenarios

such as long message length, different type of underlying encryption and signature

schemes, insider security, efficient computation in parallel, etc.

Versatile nature of Sponge structure enable us to modify message pre-processing

efficiently. Proposed Sponge based message pre-processing helps us to build a

secure signcryption scheme achieving higher security level using weak secure

encryption and signature scheme. We also found probabilistic or deterministic

nature of signature scheme plays an important role in privacy of signcryption

scheme but same is not true in case of unforgeability of scheme with respect to

underlying encryption scheme. Finally, we are able to find a signcryption scheme

that can perform efficiently without compromising its security. Proposed scheme

is highly customizable as it allows to use weakly secure and different type of

underlying encryption and signature schemes.

172 Chapter 7. Signcryption schemes using Sponge padding

Chapter 8

Conclusions

Contents

8.1 Summary . 173

8.2 Future Directions . 175

We now summarize the thesis and discuss some possible future research

directions.

8.1 Summary

To convert any weakly secure asymmetric one-way (OW) cryptosystem (Pe) into

highly secure PKE which provides indistinguishability against chosen ciphertext

attacks (IND-CCA), a basic functionality we require is to randomize the input of

Pe and also provide some extra output to recover the used randomness. A message

pre-processing serves the purpose of randomizing the input to Pe. This message

pre-processing is also known as message padding for asymmetric encryption. First

such example was “optimal asymmetric encryption padding” (OAEP). OAEP was

found to be useful with RSA, where RSA is deterministic one-way asymmetric

primitive (trapdoor one-way permutations). RSA-OAEP has been used in PKCS

#1 2.0 standard for a long time. OAEP was found to be quite useful in case

of hybrid encryption, signcryption, hybrid signcryption and also as randomness

recovery scheme. With time, several schemes were proposed which modified this

OAEP. These proposals give different OAEP versions which differ in efficiency,

173

174 Chapter 8. Conclusions

provable security, compatibility with a type of asymmetric one-way cryptosystem

(permutation or functions), extending the use of OAEP in other applications,

etc. A typical OAEP structure uses some hash functions, working on different

input-output setting, in a multi-round Feistel type structure. For having long

message support in the asymmetric scheme, a symmetric encryption scheme is

combined with OAEP type padding.

In this work, we show that instead of having many different functions to build

such an OAEP type scheme, we just require any ideal primitive using which we

could build a one-time secure encryption scheme to randomize the input of Pe

and a hash function to bind the used randomness. We consider this framework

as a generic framework for OAEP-type schemes.

We used Sponge permutation to instantiate the generic framework. Using

Sponge permutation, we built a one-time secure encryption scheme and a hash

function as a part of padding scheme. We called this padding scheme “Sponge

based asymmetric encryption padding” (SpAEP). The versatile and modular

nature of Sponge structure allowed us to achieve properties like low ciphertext

overhead and support for arbitrary long messages without any additional effort.

We are also able to propose a key encapsulation mechanism for hybrid encryption

using SpAEP with any trapdoor one-way permutation. SpAEP utilizes the

permutation model efficiently in the setting of public key encryption in a novel

manner.

Probabilistic nature of the asymmetric one-way primitive (e.g., ElGamal) was

found to be incompatible with the OAEP-type schemes, and same happens with

SpAEP. Modularity of Sponge structure allowed us to modify the SpAEP into new

modified Sponge based padding as SpPad–Pe where SpPad–Pe stands for Sponge

based Padding (SpPad) with asymmetric one-way cryptosystem (Pe). SpPad

found to be compatible with both deterministic (e.g., RSA) and probabilistic

(e.g., ElGamal) functions along with further efficiency improvement compare to

SpAEP.

We found the generic structure of OAEP-type scheme, consist of a one-time

authentication encryption scheme and a hash function, results in generic strongly

secure asymmetric encryption schemes using weakly secure asymmetric one-way

cryptosystem. Instead of using specific Sponge based construction we successfully

introduced a more generic framework to build a CCA-secure PKE, called REAL.

REAL stands for Real time CCA-secure Encryption for Arbitrary Long Messages.

8.2. Future Directions 175

An asymmetric one-way primitive, a one-time secure symmetric encryption scheme

and two hash functions are sufficient for this design. Proposed design provides

the streaming option without compromising other valuable features, compared to

previous works.

We exploit versatile nature of Sponge construction into another area of cryp-

tography known as signcryption, where “Commit-then-Sign&Encrypt”(CtS&E)

composition method allows to perform encryption and signing in parallel. We

put forward the application of Sponge structure based message padding as an

alternative commitment scheme in constructing signcryption schemes. Versatile

nature of Sponge structure enables us to modify message pre-processing efficiently.

This efficient message padding helps us to achieve a secure signcryption scheme

having higher security level using weak secure encryption and signature scheme.

We also found nature of signature scheme as probabilistic or deterministic plays

an important role in the privacy of signcryption scheme, same is also true in the

case of unforgeability when considering nature of encryption scheme. In the end,

we were able to find a highly customizable signcryption scheme that can perform

efficiently without compromising its security under different nature of encryption

and signature schemes.

8.2 Future Directions

As a future work it is worthwhile to investigate following directions:

1. Ideal model to standard model : In this thesis, we consider an ideal permu-

tation model for security proof purpose. A practical gap of theory and

practice arise when these ideal objects (here ideal permutation) needs to

be instantiated. A performance and security gap happens because these

instantiated versions do not achieve full ideal behavior that was consid-

ered during security proof. For more practical scheme, a scheme proved

in standard model is preferred, but these scheme have their own complex

nature. A recent proposal of the notion of a public-seed pseudorandom

permutation (psPRP) for security assumption on permutations in standard

model is proposed in [99].

A formalization of the schemes proposed in this work under psPRP as-

sumption on used permutation could provide more practically oriented

176 Chapter 8. Conclusions

results. These results could bring the results of this thesis closer to practical

instantiations, whereas current results of thesis provide theoretical ground.

2. IND-CCA secure PKEs can be designed using different approaches. There

are three approaches that deserve our attention. The first applies identity-

based-encryption (IBE) techniques, which allow to transform a selective-

ID CPA-secure IBE into a CCA-secure PKE [30, 32, 34, 37]. The second

approach is based on the concept of lossy trapdoor function introduced

by Peikert [85] and further extended by Rosen and Segev [96]. The third

approach uses verifiable broadcast encryption, which is proposed by Hanaoka

and Kurosawa [59].

Most of the proposed schemes under these approaches use a specific asym-

metric one-way trapdoor cryptosystem like those based on discrete log

problems. A generic approach and importance of message pre-processing

through message padding could also provide a fruitful direction to this

research work. Just as the modularity of Sponge structure has allowed

us to use a common padding for both encryption and signature scheme

in signcryption, similar facts could also be exploited in aforementioned

approaches to construct IND-CCA-secure PKEs.

3. Security of PKE schemes under different security scenarios namely “Selective

opening attack”, “Key dependent message security” and “Leakage resilient

public key cryptography” have provided a broad scope of applicability.

Instead of designing a scheme for specific traditional security scenarios, such

schemes are preferred which can withstand attack models mentioned before.

This helps in having a scheme with multi-faced security and applications.

Behavior of security and performance of the schemes proposed in this thesis

can also be studied under these attack models. It would be interesting to

see if the proposed schemes can also withstand these attack models.

4. Redundancy free approach: A common practice in constructing IND-CCA

secure scheme is to have a redundancy string which helps in rejecting

invalid ciphertexts. Presence of redundancy string in form of MAC, some

constant string or in any other form provides an easier way to construct the

scheme, simpler security proof and more robust system. However, presence

of redundancy string introduces ciphertext overhead which is found to be

8.2. Future Directions 177

non-favorable for constrained bandwidth networks. In case of redundancy

free approach, every ciphertext is a valid ciphertext which brings difficulty

in simulating decryption function correctly in IND-CCA-security proof. A

few works [9, 31, 86] have been done where a IND-CCA secure scheme is

proposed without using any redundancy string.

It would be interesting to see if the schemes proposed in this thesis could

be converted into a redundancy free scheme without losing security and

efficiency features.

178 Chapter 8. Conclusions

Bibliography

[1] M. Abe, R. Gennaro, and K. Kurosawa. Tag-KEM/DEM: A New Framework

for Hybrid Encryption. J. of Cryptology, 21(1):97–130, 2008.

[2] M. Abe, E. Kiltz, and T. Okamoto. Chosen Ciphertext Security with

Optimal Ciphertext Overhead. IEICE Transactions, 93-A(1):22–33, 2010.

[3] J. H. An, Y. Dodis, and T. Rabin. On the security of joint signature and

encryption. In EUROCRYPT 2002, Amsterdam, The Netherlands. Springer,

2002.

[4] J.-P. Aumasson. Password Hashing Competition (PHC), 2014. https:

//password-hashing.net/index.html.

[5] P. Baecher, C. Brzuska, and A. Mittelbach. Reset Indifferentiability and

Its Consequences. In ASIACRYPT 2013, Bengaluru, India. Springer, 2013.

[6] J. Baek, R. Steinfeld, and Y. Zheng. Formal proofs for the security of

signcryption. In PKC 2002, Paris, France. Springer, 2002.

[7] J. Baek, W. Susilo, J. K. Liu, and J. Zhou. A New Variant of the Cramer-

Shoup KEM Secure against Chosen Ciphertext Attack. In ACNS 2009,

Paris-Rocquencourt, France. Springer, 2009.

[8] T. K. Bansal, D. Chang, and S. K. Sanadhya. Sponge Based CCA2 Secure

Asymmetric Encryption for Arbitrary Length Message. In ACISP 2015,

Brisbane, QLD, Australia. Springer, 2015.

[9] G. Barthe, D. Pointcheval, and S. Z. Béguelin. Verified security of

redundancy-free encryption from Rabin and RSA. In CCS’12, Raleigh, NC,

USA. ACM, 2012.

179

https://password-hashing.net/index.html
https://password-hashing.net/index.html

180 BIBLIOGRAPHY

[10] M. Bellare, A. Boldyreva, and A. Palacio. An uninstantiable random-oracle-

model scheme for a hybrid-encryption problem. In EUROCRYPT 2004,

Interlaken,Switzerland. Springer, 2004.

[11] M. Bellare, A. Desai, D. Pointcheval, and P. Rogaway. Relations Among

Notions of Security for Public-Key Encryption Schemes. In CRYPTO 1998,

Santa Barbara, California, USA. Springer, 1998.

[12] M. Bellare and P. Rogaway. Random Oracles Are Practical: A Paradigm

for Designing Efficient Protocols. In ACM-CCS 1993, Fairfax, Virginia,

USA. ACM, 1993.

[13] M. Bellare and P. Rogaway. Optimal Asymmetric Encryption. In EURO-

CRYPT 1994, Perugia, Italy,. Springer, 1994.

[14] M. Bellare and P. Rogaway. The exact security of digital signatures - how

to sign with RSA and rabin. In EUROCRYPT 1996, Saragossa, Spain.

Springer, 1996.

[15] M. Bellare and P. Rogaway. Code-Based Game-Playing Proofs and the

Security of Triple Encryption, 2004. http://eprint.iacr.org/2004/331.

[16] M. Bellare and P. Rogaway. The Security of Triple Encryption and a

Framework for Code-Based Game-Playing Proofs. In EUROCRYPT 2006,

St. Petersburg, Russia. Springer, 2006.

[17] R. Bendlin, S. Krehbiel, and C. Peikert. How to Share a Lattice Trapdoor:

Threshold Protocols for Signatures and (H)IBE. In ACNS 2013, Banff, AB,

Canada. Springer, 2013.

[18] D. Bernstein. Competition for Authenticated Encryption: Security, Appli-

cability, and Robustness(CAESAR), 2017. https://competitions.cr.yp.

to/caesar.html.

[19] G. Bertoni, J. Daemen, M. Peeters, and G. V. Assche. The Sponge Functions

Corner. http://sponge.noekeon.org/.

[20] G. Bertoni, J. Daemen, M. Peeters, and G. V. Assche. Sponge functions,

2007. ECRYPT Hash Function Workshop.

http://eprint.iacr.org/2004/331
https://competitions.cr.yp.to/caesar.html
https://competitions.cr.yp.to/caesar.html
http://sponge.noekeon.org/

BIBLIOGRAPHY 181

[21] G. Bertoni, J. Daemen, M. Peeters, and G. V. Assche. Duplexing the

Sponge: Single-Pass Authenticated Encryption and Other Applications. In

SAC 2011, Toronto, ON, Canada. Springer, 2011.

[22] G. Bertoni, J. Daemen, M. Peeters, and G. V. Assche. Permutation-based

encryption, authentication and authenticated encryption, 2012. Directions

in Authenticated Ciphers.

[23] G. Bertoni, J. Daemen, M. Peeters, and G. V. Assche. Keccak. In EURO-

CRYPT 2013, Athens, Greece. Springer, 2013.

[24] T. E. Bjørstad and A. W. Dent. Building Better Signcryption Schemes

with Tag-KEMs. In PKC 2006, New York, NY, USA. Springer, 2006.

[25] T. E. Bjørstad, A. W. Dent, and N. P. Smart. Efficient KEMs with Partial

Message Recovery. In Cryptography and Coding 2007, Cirencester, UK.

Springer, 2007.

[26] D. Bleichenbacher. Chosen ciphertext attacks against protocols based on

the RSA encryption standard PKCS #1. In CRYPTO 1998, Santa Barbara,

California, USA. Springer, 1998.

[27] A. Boldyreva. Strengthening security of RSA-OAEP. In CT-RSA 2009,

San Francisco, CA, USA. Springer, 2009.

[28] A. Boldyreva, H. Imai, and K. Kobara. How to strengthen the security of

RSA-OAEP. IEEE Trans. Information Theory, 56(11):5876–5886, 2010.

[29] D. Boneh. Simplified OAEP for the RSA and Rabin Functions. In CRYPTO

2001, Santa Barbara, California, USA. Springer, 2001.

[30] D. Boneh and J. Katz. Improved efficiency for cca-secure cryptosystems

built using identity-based encryption. In CT-RSA 2005, San Francisco,

CA, USA. Springer, 2005.

[31] X. Boyen. Miniature CCA2 PK encryption: Tight security without redun-

dancy. In ASIACRYPT 2007, Kuching, Malaysia. Springer, 2007.

[32] X. Boyen, Q. Mei, and B. Waters. Direct chosen ciphertext security from

identity-based techniques. In ACM-CCS 2005, Alexandria, VA, USA. ACM,

2005.

182 BIBLIOGRAPHY

[33] R. Canetti, O. Goldreich, and S. Halevi. The random oracle methodology,

revisited. J. ACM, 2004.

[34] R. Canetti, S. Halevi, and J. Katz. Chosen-ciphertext security from identity-

based encryption. In EUROCRYPT 2004,Switzerland. Springer, 2004.

[35] R. Canetti, H. Krawczyk, and J. B. Nielsen. Relaxing Chosen-Ciphertext

Security. In CRYPTO 2003, Santa Barbara, California, USA. Springer,

2003.

[36] D. Chiba, T. Matsuda, J. C. N. Schuldt, and K. Matsuura. Efficient generic

constructions of signcryption with insider security in the multi-user setting.

In ACNS 2011, Nerja, Spain. Springer, 2011.

[37] S. S. M. Chow, J. K. Liu, and J. Zhou. Identity-based online/offline key

encapsulation and encryption. In ASIACCS ’11, Hong Kong, China. ACM,

2011.

[38] J. Coron. On the Exact Security of Full Domain Hash. In CRYPTO 2000,

Santa Barbara, California, USA. Springer, 2000.

[39] J. Coron, Y. Dodis, C. Malinaud, and P. Puniya. Merkle-damg̊ard revisited:

How to construct a hash function. In CRYPTO 2005, Santa Barbara,

California, USA. Springer, 2005.

[40] J. Coron, H. Handschuh, M. Joye, P. Paillier, D. Pointcheval, and C. Tymen.

GEM: A generic chosen-ciphertext secure encryption method. In CT-RSA

2002,San Jose, CA, USA. Springer, 2002.

[41] J. Coron, M. Joye, D. Naccache, and P. Paillier. Universal padding schemes

for RSA. In CRYPTO 2002, Santa Barbara, California, USA. Springer,

2002.

[42] R. Cramer and V. Shoup. A practical public key cryptosystem provably

secure against adaptive chosen ciphertext attack. In CRYPTO 1999, Santa

Barbara, California, USA. Springer, 1999.

[43] R. Cramer and V. Shoup. Design and Analysis of Practical Public-Key

Encryption Schemes Secure against Adaptive Chosen Ciphertext Attack.

IACR Cryptology ePrint Archive, 2001. http://eprint.iacr.org/2001/

108.

http://eprint.iacr.org/2001/108
http://eprint.iacr.org/2001/108

BIBLIOGRAPHY 183

[44] R. Cramer and V. Shoup. Design and analysis of practical public-key

encryption schemes secure against adaptive chosen ciphertext attack. SIAM

J. Comput., 33(1):167–226, 2003.

[45] Y. Cui, K. Kobara, and H. Imai. A generic conversion with optimal

redundancy. In CT-RSA 2005,San Francisco, CA, USA. Springer, 2005.

[46] I. Damg̊ard. A design principle for hash functions. In CRYPTO 1989,

Santa Barbara, California, USA. Springer, 1989.

[47] A. W. Dent. A Designer’s Guide to KEMs. In Cryptography and Coding,

Cirencester, UK. Springer, 2003.

[48] A. W. Dent. Hybrid signcryption schemes with insider security. In ACISP

2005, Brisbane, Australia. Springer, 2005.

[49] A. W. Dent. Hybrid signcryption schemes with outsider security. In ISC

2005, Singapore. Springer, 2005.

[50] A. W. Dent and Y. Zheng, editors. Practical Signcryption. Information

Security and Cryptography. Springer, 2010.

[51] W. Diffie and M. E. Hellman. New directions in cryptography. IEEE Trans.

Information Theory, 1976.

[52] Y. Dodis, M. J. Freedman, S. Jarecki, and S. Walfish. Versatile padding

schemes for joint signature and encryption. In ACM-CCS 2004, Washington,

DC, USA. ACM, 2004.

[53] Y. Dodis, M. J. Freedman, and S. Walfish. Parallel signcryption with oaep,

pss-r, and other feistel paddings, 2003. http://eprint.iacr.org/2003/

043.

[54] E. Fujisaki and T. Okamoto. Secure integration of asymmetric and sym-

metric encryption schemes. In CRYPTO 1999, Santa Barbara, California,

USA. Springer, 1999.

[55] E. Fujisaki and T. Okamoto. Secure integration of asymmetric and sym-

metric encryption schemes. J. Cryptology, 26(1):80–101, 2013.

http://eprint.iacr.org/2003/043
http://eprint.iacr.org/2003/043

184 BIBLIOGRAPHY

[56] E. Fujisaki, T. Okamoto, D. Pointcheval, and J. Stern. RSA-OAEP is

secure under the RSA assumption. In J. Kilian, editor, CRYPTO 2001,

Santa Barbara, California, USA. Springer, 2001.

[57] T. E. Gamal. A public key cryptosystem and a signature scheme based on

discrete logarithms. IEEE Trans. Information Theory, 31(4):469–472, 1985.

[58] S. Goldwasser and S. Micali. Probabilistic encryption. J. Comput. Syst.

Sci., 28(2):270–299, 1984.

[59] G. Hanaoka and K. Kurosawa. Efficient chosen ciphertext secure public

key encryption under the computational diffie-hellman assumption. In

ASIACRYPT 2008, Melbourne, Australia. Springer, 2008.

[60] J. Hoffstein, J. Pipher, and J. H. Silverman. NTRU: A ring-based public

key cryptosystem. In ANTS, 1998, Oregon, USA. Springer, 1998.

[61] D. Hofheinz and E. Kiltz. Secure Hybrid Encryption from Weakened Key

Encapsulation. In CRYPTO 2007, Santa Barbara, CA, USA. Springer,

2007.

[62] E. Kiltz. Chosen-Ciphertext Security from Tag-Based Encryption. In TCC

2006, New York, NY, USA. Springer, 2006.

[63] K. Kobara and H. Imai. OAEP++ : A very simple way to apply OAEP to

deterministic OW-CPA primitives, 2002. http://eprint.iacr.org/2002/

130.

[64] N. Koblitz. Elliptic curve cryptosystems. Mathematics of Computation,

48(177):203–209, 1987.

[65] Y. Komano and K. Ohta. Efficient universal padding techniques for multi-

plicative trapdoor one-way permutation. In CRYPTO 2003, Santa Barbara,

California, USA. Springer, 2003.

[66] K. Kurosawa and Y. Desmedt. A New Paradigm of Hybrid Encryption

Scheme. In CRYPTO 2004, Santa Barbara, California, USA. Springer,

2004.

http://eprint.iacr.org/2002/130
http://eprint.iacr.org/2002/130

BIBLIOGRAPHY 185

[67] K. Kurosawa and Y. Desmedt. A new paradigm of hybrid encryption

scheme. In CRYPTO 2004, Santa Barbara, California, USA. Springer,

2004.

[68] K. Kurosawa and L. T. Phong. Kurosawa-desmedt key encapsulation

mechanism, revisited. In AFRICACRYPT 2014, Marrakesh, Morocco.

Springer, 2014.

[69] R. Laboratories. PKCS #1 v2.1: RSA cryptography standard, 2002.

[70] G. Leurent and P. Q. Nguyen. How Risky Is the Random-Oracle Model?

In CRYPTO 2009, Santa Barbara, CA, USA. Springer, 2009.

[71] B. Libert and J. Quisquater. Efficient signcryption with key privacy from

gap diffie-hellman groups. In PKC 2004, Singapore. Springer, 2004.

[72] J. Malone-Lee and W. Mao. Two birds one stone: Signcryption using RSA.

In CT-RSA 2003, San Francisco, CA, USA. Springer, 2003.

[73] T. Matsuda, K. Matsuura, and J. C. N. Schuldt. Efficient constructions

of signcryption schemes and signcryption composability. In INDOCRYPT

2009, New Delhi, India. Springer, 2009.

[74] U. M. Maurer, R. Renner, and C. Holenstein. Indifferentiability, Impos-

sibility Results on Reductions, and Applications to the Random Oracle

Methodology. In TCC 2004, Cambridge, MA, USA. Springer, 2004.

[75] R. J. McEliece. A public-key cryptosystem based on algebraic. Coding Thv,

4244:114–116, 1978.

[76] R. C. Merkle. Secrecy, Authentication, and Public Key Systems. PhD thesis,

1979.

[77] D. Micciancio and C. Peikert. Trapdoors for Lattices: Simpler, Tighter,

Faster, Smaller. In EUROCRYPT 2012, Cambridge, UK. Springer, 2012.

[78] A. Mittelbach. Salvaging Indifferentiability in a Multi-stage Setting. In

EUROCRYPT 2014, Copenhagen, Denmark. Springer, 2014.

[79] M. Naor and M. Yung. Public-key cryptosystems provably secure against

chosen ciphertext attacks. In STOC 1990, Baltimore, Maryland, USA.

ACM, 1990.

186 BIBLIOGRAPHY

[80] NIST. SHA3 Hash function competition, 2007. http://csrc.nist.gov/

groups/ST/hash/sha-3/index.html, Last Visited 02-Jan-2017.

[81] T. Okamoto. Authenticated Key Exchange and Key Encapsulation in the

Standard Model. In ASIACRYPT 2007, Kuching, Malaysia. Springer, 2007.

[82] T. Okamoto and D. Pointcheval. The gap-problems: a new class of problems

for the security of cryptographic schemes. In PKC 2001, Cheju Island,

Korea. Springer, 2001.

[83] T. Okamoto and D. Pointcheval. REACT: rapid enhanced-security asym-

metric cryptosystem transform. In CT-RSA 2001, San Francisco, CA, USA.

Springer, 2001.

[84] C. Peikert. Lattice Cryptography for the Internet. In PQCrypto 2014,

Waterloo, ON, Canada. Springer, 2014.

[85] C. Peikert and B. Waters. Lossy trapdoor functions and their applications.

In ACM Symposium on Theory of Computing, Victoria, British Columbia,

Canada. ACM, 2008.

[86] D. H. Phan and D. Pointcheval. Chosen-Ciphertext Security without

Redundancy. In ASIACRYPT 2003, Taipei, Taiwan. Springer, 2003.

[87] D. H. Phan and D. Pointcheval. OAEP 3-Round: A Generic and Secure

Asymmetric Encryption Padding. In ASIACRYPT 2004, Jeju Island, Korea.

Springer, 2004.

[88] J. Pieprzyk and D. Pointcheval. Parallel authentication and public-key

encryption. In ACISP 2003, Wollongong, Australia. Springer, 2003.

[89] J. Pieprzyk and D. Pointcheval. Parallel signcryption. In Practical Sign-

cryption, pages 175–192. Springer, 2010.

[90] D. Pointcheval. Chosen-ciphertext security for any one-way cryptosystem.

In PKC 2000, Melbourne, Victoria, Australia. Springer, 2000.

[91] M. O. Rabin. Digitalized signatures. In FOCS 1978, New York, USA.

Academic Press, 1978.

http://csrc.nist.gov/groups/ST/hash/sha-3/index.html
http://csrc.nist.gov/groups/ST/hash/sha-3/index.html

BIBLIOGRAPHY 187

[92] C. Rackoff and D. R. Simon. Non-Interactive Zero-Knowledge Proof of

Knowledge and Chosen Ciphertext Attack. In CRYPTO 1991, Santa

Barbara, California, USA,. Springer, 1991.

[93] T. Ristenpart, H. Shacham, and T. Shrimpton. Careful with Composition:

Limitations of the Indifferentiability Framework. In EUROCRYPT 2011,

Tallinn, Estonia. Springer, 2011.

[94] R. L. Rivest, A. Shamir, and L. M. Adleman. A method for obtaining

digital signatures and public-key cryptosystems. Commun. ACM, 1978.

[95] P. Rogaway. Nonce-based symmetric encryption. In FSE 2004, Delhi, India.

Springer, 2004.

[96] A. Rosen and G. Segev. Chosen-ciphertext security via correlated products.

In TCC 2009, San Francisco, CA, USA. Springer, 2009.

[97] V. Shoup. A proposal for an ISO standard for public key encryption. IACR

Cryptology ePrint Archive, 2001.

[98] V. Shoup. OAEP Reconsidered. J. Cryptology, 15(4):223–249, 2002.

[99] P. Soni and S. Tessaro. Public-seed pseudorandom permutations. In

EUROCRYPT 2017, Paris, France. Springer, 2017.

[100] R. Steinfeld and Y. Zheng. A signcryption scheme based on integer factor-

ization. In ISW 2000, Wollongong, NSW, Australia. Springer, 2000.

[101] C. H. Tan. Signcryption scheme in multi-user setting without random

oracles. In IWSEC 2008, Kagawa, Japan. Springer, 2008.

[102] G. Yuval. How to swindle RABIN. Cryptologia, 3(3):187–191, 1979.

[103] Y. Zheng. Digital signcryption or how to achieve cost(signature & encryp-

tion)<<cost(signature) + cost(encryption). In CRYPTO 1997, London,

UK. Springer, 1997.

	Front Matter
	Keywords
	Abstract
	Content
	List of Figures
	List of Tables
	Declaration
	List of Publications
	Acknowledgements

	Introduction
	Type of Cryptographic Algorithms
	Symmetric Cryptography
	Asymmetric cryptography
	Hash functions

	Motivation
	Role of message padding in development of asymmetric encryption
	RSA OAEP
	Generic View of OAEP+

	Sponge function
	Structure of Thesis

	Preliminaries
	Trapdoor One-way functions
	Public-Key Encryption
	Signature Schemes
	Hybrid Encryption
	Key Encapsulation Mechanism: KEM
	Data Encapsulation Mechanism: DEM
	(KEM+DEM) Construction

	Sigcryption: Joint Encryption and Signing
	SpongeWrap and Sponge Function

	Sponge based CCA secure Asymmetric Encryption from trapdoor one-way permutations
	Background
	Different versions of OAEP
	Motivation
	General View of OAEP+ with Sponge

	Contribution
	SpAEP: Sponge based Asymmetric Encryption Padding
	Description
	CCA Security of F -SpAEP

	Conclusion
	Subsequent scope

	Sponge based KEM with partial message recovery
	Key encapsulation mechanism with partial message recovery: RKEM
	Description
	Security notion
	Constructing RKEMs
	Contribution

	Sponge based key encapsulation mechanism with partial message recovery: SpRKEM
	Description
	Security of SpRKEM

	Hybrid encryption based on SpRKEM
	Description
	Security

	Conclusion
	Subsequent scope

	Sponge based padding for CCA-secure Asymmetric encryption
	Motivation
	Limitation to Trapdoor one-way permutation
	Candidate solutions

	Contribution
	Sponge based padding with one-way cryptosystem
	Description
	Structural difference between SpAEP and SpPad
	CCA security of SpPad–Pe

	Conclusion
	Subsequent scope

	Real time CCA-secure Encryption for Arbitrary Long messages
	Background
	Limitation of previous works
	Motivation
	One-time Symmetric Encryption

	Contribution
	Real time CCA-secure Encryption for Arbitrary Long messages (REAL)
	Generic Construction with Pe as OW : REAL-1
	Generic Construction with Pe as OW-PCA : REAL-2

	Conclusion
	Subsequent scope

	Signcryption schemes using Sponge padding
	Introduction
	Background
	Limitation of Existing Schemes
	Motivation

	Contributions
	Sponge based padding for Signcryption
	Description
	Properties

	Parallel Signcryption: SIGNCRYPT
	Description
	Security of Parallel Signcryption
	Unforgeability
	Indistinguishability

	Properties

	Extension of Parallel Signcryption
	Using Probabilistic Sign
	Arbitrary long messages

	Conclusion

	Conclusions
	Summary
	Future Directions

	Bibliography

