
Code Variants and Their Retrieval Using
Knowledge Discovery Based Approaches

by

Venkatesh Vinayakarao

Under the Supervision of

Dr. Rahul Purandare

Indraprastha Institute of Information Technology, Delhi

Indraprastha Institute of Information Technology, Delhi

April, 2018

c©Venkatesh Vinayakarao, 2018.

II

Code Variants and Their Retrieval Using
Knowledge Discovery Based Approaches

by

Venkatesh Vinayakarao

Submitted

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Indraprastha Institute of Information Technology, Delhi

April, 2018

Certificate

This is to certify that the thesis titled - “Code Variants and Their Retrieval
Using Knowledge Discovery Based Approaches” being submitted by Venkatesh
Vinayakarao to Indraprastha Institute of Information Technology, Delhi, for the award
of the degree of Doctor of Philosophy, is an original research work carried out by him under
my supervision. In my opinion, the thesis has reached the standards fulfilling the require-
ments of the regulations relating to the degree.

The results contained in this thesis have not been submitted in part or full to any other
university or institute for the award of any degree/diploma.

Dr. Rahul Purandare
Department of Computer Science
Indraprastha Institute of Information Technology, Delhi
April, 2018

IV

Acknowledgments

I would like to thank my research advisor Dr. Rahul Purandare for the continuous support
during my PhD study at IIIT-Delhi. Rahul’s support, suggestions and advice contributed
significantly to this work. The provided scientific freedom and guidance were instrumental
to the success of this thesis.

I would also like to express my gratitude to my industry mentor Dr. Aditya Nori of
Microsoft Research who provided valuable guidance, support and feedback. Time spent at
Microsoft Research, Cambridge with Aditya was invaluable for my progress as a mature
researcher.

I would like to thank Dr. Anita Sarma for her valuable inputs and continuous support
throughout my PhD work.

Discussions with the members of my research committee, Dr. Ponnurangam Kumaraguru
and Dr. Pushpendra Singh helped me a long way in shaping up my PhD. Beyond just
reviewing my PhD progress, they were present whenever I needed any advice irrespective of
whether they were professional or personal.

I would like to acknowledge my co-authors of papers published during my PhD. It was a
great experience working with all of you: Shuktika Jain, Saumya Jain, Devika Sondhi, Vishal
Raj Dutta, Prashant, Sai Prathik, Ridhi Jain, Sumit Keswani and Aditi Mittal. Thank you.

Thanks to all my previous and current lab-mates at IIIT-Delhi. Your cheerful presence in
the lab made it a very inviting place. Special thanks to my academic sisters, Dhriti Khanna,
Ridhi Jain and Devika Sondhi.

Many thanks to my friends in Delhi who supported me in my pursuit for academic
excellence. Without you guys, I would not have survived the five years of my research.
Deeply inter-twined with the PhD memories are the over the breakfast chat, gossips over
lunch, a leisurely tea and the after-dinner walks. Haroon Rashid, Rekha Tokas and Sangeet
Kochanthara deserve a special mention.

I would also like to thank Dr. Srikanta Bedathur for without him, I would not have been
in IIIT-Delhi.

Thanks to admin and support staff at IIIT-Delhi. They made my life so easy here that
I could focus only on my research.

I am a recipient of Prime Ministers Fellowship Scheme for Doctoral Research, a public-
private partnership between Science and Engineering Research Board (SERB), Department
of Science and Technology, Government of India and Confederation of Indian Industry (CII).
My gratitude to CII and SERB. Particularly, thanks to Dr. Kohli, Neha and Shalini for
supporting me with all the fellowship related queries. Thanks to Microsoft Research for
funding a part of my fellowship.

Special thanks to my mother, father and sisters for their encouragement and love through-
out these years. Throughout the tough times, you have been with me for which no words of
gratitude will be sufficient. Your dreams of seeing a “Dr.” prefix in front of my name will
soon come true.

To my dear wife Bhargavi and lovely son Tarun, not a day goes without thinking about
you. There is a special place in my heart for you. I dedicate this thesis to you.

V

List of Publications

1. Ridhi Jain, Sai Prathik Saba Bama, Venkatesh Vinayakarao and Rahul Purandare. A
Search System for Mathematical Expressions on Software Binaries. In the Proceedings
of The 15th International Conference on Mining Software Repositories (MSR 2018),
Sweden. [Chapter 6]

2. Venkatesh Vinayakarao, Anita Sarma, Rahul Purandare, Shuktika Jain and Saumya
Jain. ANNE: Improving Source Code Search using Entity Retrieval Approach. In
the Proceedings of the Tenth ACM International Conference on Web Search and Data
Mining (WSDM 2017), UK. [Chapter 5]

3. Venkatesh Vinayakarao, Rahul Purandare and Aditya Nori. Structurally Heteroge-
neous Source Code Examples from Unstructured Knowledge Sources. In the Proceed-
ings of ACM SIGPLAN Workshop on Partial Evaluation and Program Manipulation
(PEPM 2015), India. [Chapters 3 and 4]

4. Venkatesh Vinayakarao. Spotting familiar code snippet structures for program
comprehension. In the Proceedings of the 2015 10th Meeting on Foundations of
Software Engineering, (ESEC/FSE 2015), Italy. [Chapters 3 and 4]

VI

Abstract

Code variants represent alternative implementations of a code snippet, where each
alternative provides the same functionality, but has different properties that make some
of them better suited to the overall project requirements. Developers routinely need to
analyze existing code, find better reuse alternatives, and look to develop high-quality
code that meets some desired properties. However, searching for such code variants
over the web has several challenges. In this dissertation, we address this problem.

This dissertation presents new techniques to search for code variants. Classical
program analysis techniques do not scale well to analyze partial programs at web-
scale. Hence, we apply search techniques to mine code variants using human annotated
natural language descriptions found in the posts of Stack Overflow1 (SO) which is a
popular discussion forum. Here, we make four major contributions.

Unlike clones and examples, existing literature lacks a rigorous characterization
of code variants. So, as our first contribution, we present a characterization of code
variants where we discuss the code context, desired properties, and types of variants
along with implications for tool builders.

With this knowledge about variants, we propose techniques to search for variants
in SO, as our second major contribution. We propose a novel structural model for
source code which is based on developers’ perspective of similarity. To leverage the
text and code components that we index from SO, we adapt an existing state of the art
term-weighting method to propose a Multi-Component Multi-Aspect Term Frequency
- Inverse Document Frequency (MCMATF-IDF) model to retrieve code variants.

Existing text-retrieval models do not work well on source code. Expressing natural
language queries on source code is an open problem. Many query terms in natural
language have multiple surface forms in source code. We address this problem by
perceiving source code as a collection of entities. This becomes our third major con-
tribution.

Further, as a bottleneck to the success of our approaches, we notice that our work
depends on parsing code snippets in SO. We observe that only 31.3% of code snippets
in SO parse. Hence, in our fourth contribution, we apply grounded theory approach to
study these parsing problems. Based on this study, we develop a tool which increases
the code snippets that can generate Abstract Syntax Trees for 63% of the code snippets
in SO.

Overall, the ability to perform semantic search over source code snippets assisted
by developer knowledge in the form of discussion forum data opens up a new way to
solve several important problems. It can lead to improvements in a variety of software
engineering tasks and tools such as semantic clone detection, code comprehension and
defect detection. Apart from supporting software engineering applications, as future
work, we plan to explore enhancing static analysis over source code snippets using the
data from discussion forums.

1http://stackoverflow.com/

VII

Contents

1 Introduction 1
1.1 Thesis Statement . 3
1.2 Contributions . 3
1.3 Outline of Dissertation . 4

2 Background 5
2.1 Code Search . 5

2.1.1 Indexing Source Code . 7
2.1.2 Retrieval Models for Source Code . 9

3 Code Variants 13
3.1 Introduction . 13
3.2 Background and Related Work . 15

3.2.1 Background on the Types of code snippets 15
3.2.2 Redundancies in source code . 16
3.2.3 Variants: A missing link . 17

3.3 Research Methodology . 17
3.4 RQ1: What are Code Variants? Are they different from the known code

snippet types? . 19
3.5 RQ2: What are the aspects of variants that developers consider while describ-

ing variants? . 20
3.5.1 Code Context . 20
3.5.2 Desired Properties . 23

3.6 RQ3: Do Developers Seek Variants? . 27
3.6.1 Nature of Variants . 27
3.6.2 Are variants language dependent? . 31

3.7 Implications of Variant Characterization . 32
3.7.1 Tool Builders . 32
3.7.2 Researchers . 32

3.8 Threats to Validity . 33
3.9 Summary . 33

4 Towards Searching for Code Variants 35
4.1 Introduction . 35
4.2 jSense . 38

VIII

4.2.1 jSense Retrieval Model - MC-MATF 38
4.2.2 Structural Model . 39
4.2.3 Refining the Structural Model . 40

4.3 Implementation . 44
4.3.1 Building the Repository . 45
4.3.2 Querying the Repository . 46

4.4 Evaluation . 46
4.4.1 Building the Repository . 47
4.4.2 Querying the Repository . 49

4.5 Threats to Validity . 52
4.6 Related Work . 52
4.7 Summary . 54

5 Improving Code Search using Entity Retrieval 55
5.1 Introduction . 55
5.2 Motivation . 56

5.2.1 Formative Study . 56
5.2.2 Applications . 58
5.2.3 Problem Overview . 58

5.3 Definitions . 59
5.4 Approach . 60

5.4.1 Entity Discovery . 60
5.4.2 Entity Profile Construction . 61
5.4.3 Entity Linking . 62

5.5 Evaluation . 64
5.5.1 Entity Discovery . 64
5.5.2 Entity Profile Construction . 66

5.6 User Study . 67
5.6.1 Study Design . 67
5.6.2 Results . 69

5.7 Limitations and Threats . 71
5.8 Summary . 71

6 Reducing the Parsing Problems in Stack Overflow 73
6.1 Introduction . 73
6.2 Background and Terminology . 75
6.3 Research Method . 76
6.4 Data Analysis . 77

6.4.1 Issues due to Developer Behavior . 77
6.4.2 Platform Related Issues . 80
6.4.3 Language Related Issues . 81

6.5 Results . 81
6.6 Building a Classifier to Validate Results . 82
6.7 Implementation and Evaluation of Classifier 85

6.7.1 Parameter Tuning . 86

IX

6.7.2 Comparative Evaluation . 87
6.8 Validating the Study Results using the Classifier 88

6.8.1 Validation . 88
6.8.2 Effectiveness of jMechanic . 89

6.9 Related Work . 89
6.10 Threats to Validity . 90
6.11 Summary . 90

7 Conclusion and Future Work 92
7.1 Resources . 93
7.2 Future Work . 93

7.2.1 Applications of Code Variants . 93
7.2.2 Modeling Tasks as Search Problems over Source Code 94
7.2.3 Searching in Software Binaries . 95

A User Study - Searching for Variants 97

X

List of Figures

1.1 Summary of contributions of this dissertation. (1) First, we characterize a
class of code snippets called Code Variants. (2) We build jSense tool to search
for code variants. (3) We improve the search with an entity based approach in
a tool named ANNE. (4) Finally, we investigate the parsing and compilation
issues in partial programs and build a tool jMechanic to solve some of the
identified problems. 2

2.1 Growing information needs lead to technology improvement. 6
2.2 A typical IR system which takes queries and returns ranked results. Unstruc-

tured content is indexed for faster and efficient retrieval. 7
2.3 Why MATF? SO posts carry developer discussions (answers) that have 14

to 66 distinct terms and 11 to 118 terms overall in them. The distinct terms
count range from 0 to 2053. The total terms range from 0 to 8089. This figure
considers only those posts where the counts of discussions are above 10,000.
Due to the significance that posts carry due to the presence of distinct terms,
we use MATF as our retrieval model. 11

3.1 Reuse in source code happens at different levels. This work focuses on code
variants. 14

3.2 Differences between clones, simple variants and complex variants in terms of
desired properties. 29

3.3 Distribution of variants across context types and desired properties over mul-
tiple languages. Diction variants are prominent in projects of all programming
languages. 31

4.1 Overview of jSense design. This is a two step process: 1) We build a repository
of structurally heterogeneous implementations, and 2) Use this repository for
suggesting implementation choices for the identified topic. 37

4.2 A snapshot of the tool we used in our study of structural similarity is shown
here. Users categorized the given snippet into 1 to 10 types based on their
judgment. 41

4.3 We build a repository of structurally heterogeneous implementations for a
given set of topics. We use jSense retrieval model to find relevant posts from
SO. We use jSense structural model for computing code similarity. 45

XI

4.4 While de-duplicating the results, for different values of ψ, we note the corre-
sponding F1Score for each topic. We observe that a cut-off of 0.4 yields best
results. 48

5.1 Anne annotates input code snippets, line by line with natural language terms.
These annotations help keyword based search engines to address NL queries. 58

5.2 Entity discovery subsystem works on NL text using parts-of-speech (PoS)
approach. We use seed entities to discover more entities that fit into the same
grammatical sequence. 60

5.3 Entity linker subsystem works line by line on the input code, to find matching
entity profiles. Entity names whose profiles match are stamped across the
line, as shown in the example. 63

5.4 Tagged versions of the tasks (A) Enum and (B) IncDec that were provided to
the participants in the user study. 64

5.5 The goldset for evaluation is created from SO posts by mixing posts that
contain seed entities in the title with those that do not have them. 66

5.6 Code search tool used for giving feedback to student assignments. This tool
allows us to toggle tagging on and off for evaluation. 69

6.1 Overview of our study of variants. (1) We extract code snippets from SO.
(2) We attempt to parse those snippets using eclipse JDT. (3) For snippets
that do not parse, we analyze using a GT approach. (4) We propose a list of
issues that dominate while parsing. (5) We build a classifier using a training
set from our study. (6) We apply this classifier on entire SO data. (6) Thus,
we validate our theory on entire SO. 74

6.2 Discovered concepts and categories. Concepts in the Developer category are
further classified into the subcategories of Supplements, Suppresions and Sub-
stitutions. Some of the concepts are introduced intentionally by developers
for the purposes of brevity and focus. These are marked as “intentional” in
this figure. Our focus is on extraction related issues instead of curation is-
sues. We have distinguished them here. We build a classifier for three of these
concepts namely Outputs, HTML Elements and Ellipses. We show that this
helps jMechanic tool to improves on its ability to parse more snippets. 76

6.3 (a) Concepts and categories discovered using grounded theory approach. (b)
When validated against a random sample of 500 snippets, we observe strong
correlation. 80

6.4 jMechanic parse issue detection uses a classifier which learns from Mixed
MATF weights. 83

6.5 A component weight setting of 0.2 works best for our work. 86
6.6 Examples of Threshold Parameter Estimation 86
6.7 We compare the results of manual study on limited snippets with the results

of the classifier on entire SO. We find that the correlation is significant for all
the classes. Comparison with Naive Bayes shows that our classifier performs
45% better. 87

XII

List of Tables

2.1 Precision@10 of existing code search engines. 6

3.1 Code variants are discussed in defect descriptions of Apache Math, a popular
open source project. 14

3.2 Fundamental differences exist between semantic clones, code examples and
code variants. 16

3.3 Projects used to characterize variants. 18
3.4 Code contexts are primarily described using one or more of these four types.

We map defect descriptions containing variants to these types. 22
3.5 Examples of developer discussions taken from Eclipse project describing the

desired properties in code variants. 23
3.6 Discussions (with referenced defect from the issue tracker) from the dataset

capturing the following: a) the desired properties, and b) the code contexts
across variants. (S# captures the key statements from the discussion) 25

3.6 Discussions (with referenced defect from the issue tracker) from the dataset
capturing the following: a) the desired properties, and b) the code contexts
across variants. (S# captures the key statements from the discussion) 26

3.6 Discussions (with referenced defect from the issue tracker) from the dataset
capturing the following: a) the desired properties, and b) the code contexts
across variants. (S# captures the key statements from the discussion) 27

3.7 Examples of developer discussions describing the variant types.(S# captures
key statements from the discussion.) . 28

3.8 Volume of variant discussions in open source projects depends on the project
domain. Tv, Alg, RO, Dp, Dm are the counts of: total, algorithmic, RO and
pure-diction and mechanics variants respectively. 28

3.9 Summary of discussion counts per variant type. Total refers to the total
number of discussions. %v is the Total as percentage out of 1500 discussions.
%d is the percentage out of 426 variants. 30

4.1 Some examples of factorial implementations. 36
4.2 We have used four reduction rules. Here, we show two code snippets that

reduce to an identical snippet after the application of reduction rule. 43
4.3 Some examples of jSense structural representation after the application of

reductions and structure flattening. 44
4.4 A comparison of snippets retained by our approach against a developer’s hand-

picked set of implementations, for the “factorial” topic. 49

XIII

4.5 We evaluate jSense by comparing the results with a goldset. GS represents
the gold set. JSb and CEb represent the baseline versions of jSense tool and
CodeExchange CE respectively. 50

4.6 We extract implementations with an average precision of 0.92 compared to the
0.69 of CodeExchange (CE). jSense (JS) improves recall from 0.29 CodeEx-
change (CE)to 0.71 (JS). 51

4.7 Ability to differentiate the components allows MC-MATF model to outper-
form the other retrieval models. 51

5.1 P@10 of existing code search engines for NL queries containing programming
concepts. 56

5.2 Formative study on 25 real industry developers indicates that this research
will be useful. 57

5.3 Patterns and frequencies for conditional in Java snippets found in SO. 61
5.4 No. of entities discovered is related to the length of PoS patterns considered

in our approach. Longer patterns produce fewer entities that exhibit higher
level of similarity to seed entity. 65

5.5 Performance of Anne Entity Discovery module. Experiments were carried
out on a gold set with 1:1 noise and 1:3 noise. F1 indicates the F1-score and
—E— stands for the number of entities discovered. 65

5.6 Manually computed precision@4 and the top pattern discovered for some of
the entities. We use top four patterns while annotating source code. 67

5.7 Two factor design that counterbalances the treatment and the task. 67
5.8 Descriptive statistics of number of incorrect assignments found by participants. 68
5.9 Terms used to calculate correctness and completeness scores for a submission S. 68
5.10 Correctness/Completeness metrics of participants with std. deviation in

parentheses. 70
5.11 Time taken to complete (in minutes) assessment for tagged and untagged

versions. 70

6.1 Precision, Recall and F1 Score of the classifier. Our classifier gives good results
for all cases where term saliency can be observed. 86

6.2 Threshold Values and Descriptive Terms extracted using the Extended MATF
Model for Source Code. 87

6.3 Statistics on the parseable and erroneous snippets in Java tagged posts in
Stack Overflow. 88

6.4 The percentages represent the fraction of erroneous snippets that suffer from
the given issue. GT Study represents numbers from our initial study. GT
Validation shows the results from manual validation. Last column gives the
results observed after running the classifier on entire dump. 88

XIV

Glossary

ANNE : ANNotation Engine
API : Application Programming Interface
ASP : Active Server Pages
AST : Abstract Syntax Tree
ATF : Augmented Term Frequency
BM25 : Best Match 25
BRCG : Branch-Reserving Call Graph
CFG : Control Flow Graph
CII : Confederation of Indian Industries
CRF : Conditional Random Field
DARPA : Defense Advanced Research Projects Agency
GraPacc : GRaph-based, Pattern oriented, Context-sensitive Code Completion
GT : Grounded Theory
IDE : Integrated Development Environment
IDF : Inverse Document Frequency
FCA : Formal Concept Analysis
IR : Information Retrieval
JDT : Java Development Tools
KB : Knowledge Base
LRTF : Length Regulated Term Frequency
LDA : Latent Dirichlet Allocatio
LSA : Latent Semantic Analysis
LSI : Latent Semantic Index
MATF : Multi Aspect Term Frequency
MC-MATF : Multi Component Multi Aspect Term Frequency
MOSS : Measure Of Software Similarity
MUSE : Mining and Understanding Software Enclaves
NER : Named Entity Recognizer
NL : Natural Language
PA : Program Analysis
PDG : Program Dependence Graph
PoS : Parts of Speech
RITF : Relative Intra-Document Term Frequency
RO : Resource-Oriented
RQ : Research Question
SE : Software Engineering
SERB : Science and Engineering Research Board
SITIR : SIngle Trace and Information Retrieval
SO : Stack Overflow
SSI : Structural Semantic Indexing
SVD : Singular Value Decomposition
TA : Teaching Assistants

XV

TF : Term Frequency
VSM : Vector Space Model

XVI

Chapter 1

Introduction

Developers seldom write code from scratch [1, 2]. While considering code snippets for reuse,
they often have to reason among the benefits and drawbacks before making a selection.
Our work is motivated by the lack of tool support for this code reuse task. We posit that,
developers seek an alternate implementation choice that fits into the current code context
and possesses the desired properties. We call a code snippet that forms such an alternate
implementation choice, as a code variant. In this work, we characterize, and build tool
support for searching code variants.

We show that code variants are fundamentally different from other code snippet types
such as clones, simions, idioms and examples. Clones were originally defined as redundant
snippets introduced due to a copy and paste activity [3]. While syntactic clones which are
also referred to as Type I, II and III clones usually have no specific desired property in them
to replace existing code snippets, code variants are closer to semantic clones. Unfortunately,
semantic clones do not have a consistent definition. It is used in different contexts to address
a variety of snippet types such as wide-miss clones [4], interleaved clones [5], and high-level
concept clones [4]. Yet, in all these cases, semantic clones are also considered redundant
copies of code which are preferred to be refactored out of the current system. In contrast,
variants are sought by developers to replace existing snippets. On a similar note, we also
find code examples, simions and idioms to be different when compared to variants.

Although the term “variants” is used loosely by developers and researchers, literature
lacks a clear definition of variants. We use this opportunity to characterize code variants.
Code variants are closely tied to the current code context and desired properties. We inves-
tigate the code context and desired properties in more detail. We envision to support the
developers by automating the task of searching for variants. As a first step in the direction
of searching for variants, we show that a search for implementation choices can be performed
using the data from a popular discussion forum, Stack Overflow (SO).

In spite of search being the most common activity among software engineers [6], searching
for source code, unlike text retrieval, is a less explored problem. Sim et al. [7] show that
a general purpose search engine such as Google performs better for code snippet search
compared to specialized code search engines. Source code presents unique challenges in
different stages of the retrieval process such as query understanding, indexing and adapting
the retrieval models.

1

What kind of snippets
do developers search?

Automate the search
for code variants

Improving the search
with Entities

Improving the content
– Understanding

parsing issues

1

2

3

4

Figure 1.1: Summary of contributions of this dissertation. (1) First, we characterize a class of
code snippets called Code Variants. (2) We build jSense tool to search for code variants. (3)
We improve the search with an entity based approach in a tool named ANNE. (4) Finally, we
investigate the parsing and compilation issues in partial programs and build a tool jMechanic
to solve some of the identified problems.

Expressing queries for search even in Natural Language (NL) suffers from the problem
of mismatch in the NL vocabulary and source code representation. For instance, the term
“array” in NL query does not match its representation of “[]” in Java. In this work, we
present a technique to discover such mappings between syntactic forms and natural language
terms representing programming concepts. We use the questions and answers in SO to create
this mapping. We implement our approach in a tool called Anne.

While working with code snippets in SO, we observe that only 31.3% of the Java code
snippets parse into Abstract Syntax Trees (AST). We study parsing issues on Java code
snippets in SO using a grounded theory approach. Specifically, we discover the dominant
reasons that cause parsing problems. We build a classifier to validate our findings. We
implement some of our findings in a tool named jMechanic. Our tool, jMechanic, increases
the percentage of parseable Java code snippets in SO from 31.6% to 63.3%.

Through our experiments, we observe that text retrieval models do not work well for
source code. There are primarily two challenges. First, we need to index the source code
structure and semantics. Most existing text retrieval models index the words in the content.
Similarly, code search engines will be limited to using identifiers and comments if they were
to only index the tokens in source code. We propose a selective set model for indexing
the structural elements in source code snippets. We do not require the snippets to compile
without errors. The next problem is to arrive at a relevance and ranking score for this
indexed content. We use not only source code snippets in SO, but also the text in developer
discussions available surrounding the snippet in SO, to retrieve variants. Towards this end,
we take a state-of-the-art term frequency based retrieval model named Multi-Aspect Term

2

Frequency (MATF) model and adapt it to retrieve implementation choices. We call this the
Multi Component MATF model.

Our approach is inspired by the advances of two major fields of research, namely Knowl-
edge Discovery and Mining Software Repositories. Knowledge discovery refers to the field
that is concerned with mining useful knowledge from data. SO is a popular discussion forum
containing 1.47 Million Java code snippets and discussions around them. We mine SO to
construct a knowledge base containing code snippets, their structural representations and
potential topic that they implement which is inferred from the textual discussion between
users of SO. We use this knowledge base to retrieve implementation choices.

In summary, first, we identify and characterize code variants. We build a tool named
jSense to search for variants. We improve the search tool by addressing the vocabulary
mismatch problem using an entity based approach. We develop an Annotation Engine
(ANNE) as a result of this effort. Finally, as our approach depends on our ability to analyze
partial programs, we understand and resolve parsing issues and compilation issues. We
build a tool jMechanic for this purpose. Figure 1.1 summarizes the contributions of this
dissertation.

1.1 Thesis Statement

This dissertation confirms the following thesis:

Thesis Statement

Knowledge discovery based approaches can be used to search an important class
of code snippets called code variants with satisfactory precision and recall.

More precisely,

TS-1 Code variants are an important class of code snippets particularly of interest to the
software engineering community.

TS-2 Knowledge discovery driven approaches leveraging the big code available in the form
of developer discussions in forums such as Stack Overflow can be used to build search
engines for code variants with satisfactory precision and recall.

1.2 Contributions

The contributions of this work are:

1. Characterization of code variants based on inspection of developer discussions in SO
and bug reports in 15 open source projects. Specifically, we answer the following
research questions:

• What are code variants? Are they different from known forms of code snippets
such as clones, examples, idioms and simions?

3

• What are the aspects of variants that affect the search for variants?

• Do developers seek variants?

We also discuss the implications of our observation to tool builders and researchers.

2. Based on our understanding of variants, we propose an approach to search for variants.
The major contributions are the following:

• A knowledge base driven search approach to identify the given code snippet, and
show its alternative implementations.

• We investigate and adapt the state of the art information retrieval models to build
a knowledge base of code snippet structures.

• We propose an improved structural representation of source code structure to
enable us compute relevance of given snippet with the knowledge base.

3. To improve the search for source code, we propose a technique to map lines of source
code with relevant programming concepts, so as to support code search engines for NL
queries. This allows the users to query on programming concepts using NL terms, and
need not recall the exact syntactic terms or patterns.

4. Our approach to search for variants depends on AST extracted from SO posts. We
observe that only 31.3% of snippets get parsed into ASTs. To improve this aspect, we
study the parsing errors in SO. Our major contributions are:

• We answer the RQ: What are the dominant issues plaguing Java code snippets
from SO that extraction tools must address to make them parseable code snippets?

• We implement a tool named jMechanic which resolves the dominant parsing prob-
lems. Using this tool, we show that number of snippets that can be parsed from
SO can be increased from 31.6% to 63.3%

1.3 Outline of Dissertation

The rest of this dissertation is organized as follows. We give the necessary background
on code search in Chapter 2. Chapter 3 gives the characterization of variants. Chapter 4
explains our approach to search for variants. One of the challenges in searching for source
code is the mismatch of query terms in natural language and their corresponding pattern
in source code. We address this in Chapter 5. In this process, we also show a way to
apply entity retrieval on source code. Our work so far, depends on our ability to parse code
snippets in SO. In Chapter 6, we share our observations from a grounded theory study of
parsing issues in SO. We use this knowledge to increase the number of usable snippets in
SO. Finally, conclusion and future work are in Chapter 7.

4

Chapter 2

Background

With the growing volume of information and information needs, technology support to re-
trieve information has become indispensable (Figure 2.1). Ever since 300 BC., we have had
information to index in the form of libraries. The first digital library project was project
Gutenberg, established in the 1970. Google index grew to 130 Trillion pages in November
2016. As on April 2018, Google reports that it indexes more than 100,000,000 Gigabytes of
data. This data includes text, videos, images and various other formats. We focus on In-
formation Retrieval (IR) of a specific type of content, namely, source code. In 2017, Github
reached 24 Million developers and 67 Million repositories1.

2.1 Code Search

Developers are searching for source code [7, 8, 9]. Different information needs give rise to
a variety of query types. Developers issue structural queries within the IDE for naviga-
tional reasons [7]. For instance, a developer may want to know where a variable is defined.
Feature location [10] and bug localization [11] are examples of semantic information needs.
Developers also search over the web for source code examples [7].

Many popular code search tools [12, 13] depend on the user defined terms in code. Ta-
ble 2.1 shows that popular search engines fail to answer simple queries where there the query
terms do not match with code contents. To fix the inefficiencies and shortcomings in such
existing tools, a variety of approaches have been proposed. A class of techniques perform
query expansion. They enrich the user query with knowledge from sources such as Wordnet
thesaurus [14] or developer discussions in a discussion forum [15, 16]. Rahman et al. [15]
claim that natural language queries when reformulated with relevant APIs produce much
better results. Lu et al. [14] also address the issues related to the quality of the query by
expanding it with synonyms from a thesaurus.

Another class of search tools use code snippets as query. They leverage the structure of
source code to improve code search. AutoQuery [17] generates Program Dependence Graphs
(PDG) from the query code snippets. It uses this dependence information to produce more
accurate search results. Wang et al. [18] also show that dependence information in the form
of system dependence graphs can be used to improve feature location. Since many code

1https://octoverse.github.com/

5

Several retrieval
systems: Lycos, Altavista,

MSN, Baidu,
Yahoo!, Ask.com, etc.,

Royal Library of
Alexandria

300 BC.

Bibliothèque
nationale de

France

1463

British
Library

1970’s

170+ Million
Collection

Digital
Libraries

1970’s

Universal Digital
Library,

Project
Gutenberg, etc.

Google

1998

In 2016,
Google

indexed 130
Trillion pages

Figure 2.1: Growing information needs lead to technology improvement.

Table 2.1: Precision@10 of existing code search engines.

Query Krugle open HUB

declare array 10% 0%
concatenate two arrays 20% 0%
check if a String is a numeric type 0% 0%
assign to first element in an array 0% 0%

snippets on the web have parsing and compilation issues, they present challenges in analysis
and transformation. Search engines purely based on structural information [19, 20] such as
method signatures or call hierarchy have also been proposed. FaCoY [21] is a code-to-code
search engine which searches for functionally similar code snippets. Unlike many other search
engines which use text query as input, FaCoY accepts source code as input. Yet, FaCoY also
formulates a query which is auto-generated from the input code snippet. It uses Q&A posts
to find related APIs and tokens to formulate a query. We are also interested in building
a code-to-code search engine. Instead of focusing on query formulation and finding similar
snippets, we are interested in pairwise code snippet similarity. We are interested in finding
variant implementations of input code snippet.

Source code retrieval has attracted the attention of several researchers in the last
decade [22, 23, 19, 24, 25]. Literature shows that problems from more than 20 tasks [25] in
software engineering have been modeled as retrieval-based problems. Prompter [24] recom-

6

Figure 2.2: A typical IR system which takes queries and returns ranked results. Unstructured
content is indexed for faster and efficient retrieval.

mends relevant SO pages for the developer based on the current code context in the IDE.
GraPacc [26], a code completion system, is another example for retrieval-based application.

Just like text, source code has also become abundantly available. Defense Advanced
Research Projects Agency (DARPA) introduced the term “Big Code” in 2014 to refer to
the large corpus of programs, in their article, “MUSE Envisions Mining Big Code” [27].
Platforms such as GitHub2, bug repositories such as Bugzilla3, and discussion forums such
as SO carry source code snippets in large quantities.

An IR system takes a query and returns a ranked set of results using indexed content.
Figure 2.2 shows a typical IR system. Challenges and opportunities in building a retrieval
system can classified into two major groups. Firstly, we observe that due to the differences
in the nature of text and source code, indexing source code has several challenges. Secondly,
the retrieval models that work on text need to be adapted to work with source code. In this
Section, we discuss a few related challenges.

2.1.1 Indexing Source Code

Document indexing is the process of mapping terms to documents in the search corpus so
that searching is efficient. Unlike text, source code indexing is challenging for the following
reasons:

1. Very few reserved words : Source code uses very few reserved words in a highly repetitive
way. Hence, frequency based techniques on source code may not work without pre-
processing.

2. Tokenization: Parsing source code requires knowledge of the grammar. Each program-
ming language has its own grammar and hence the process becomes highly platform
dependent.

2https://github.com/
3https://www.bugzilla.org/

7

3. Structure: Structure plays a major role in the semantics. For example, extending an
existing class requires the base class to understand the behavior of the extended class.

4. Identifier Naming : Identifiers are typically non-dictionary words (such as jSQL,
jQuery). Hence, dictionary based disambiguation techniques may not work in such
cases.

5. Ghost Terms : Many of the queried terms do not exist in code. This is because there
exists a gap between natural language (NL) description of a syntactic construct (or a
programming concept) such as “array” and its surface form in source code i.e., “[]”.

A variety of techniques have been proposed to index source code.

2.1.1.1 Indexing the Source Code Vocabulary: Comments and Identifiers

Latent Semantic Indexing (LSI) [28] is an algebraic method to capture the concepts un-
derlying the text. In this method, we start with a term-document matrix constructed by
considering each file containing the source code as a document. The terms are usually to-
kens after pre-processing for stemming and stopwords. We project it to a lower dimensional
space using a technique called Singular Value Decomposition (SVD). LSI defines a topic as
a probability distribution over the universe of all terms in the documents. This model does
not consider the correlation between the terms in the topic. In the context of source code
indexing, this model is typically used to capture the comments and user defined terms. Ba-
jracharya et al. [29] introduced a technique called Structural Semantic Indexing (SSI). SSI
leverages the idea that a code that uses similar API in a common structure is functionally
similar. For instance if two Java methods use the same API in the same order, then these two
methods are related even if they have different names. In both these techniques, the main
limitation is the inability to index syntactic patterns in source code. They cannot answer
queries like “where is a variable defined?”. Although Program Analysis (PA) techniques are
best suited to answer such queries, they do not scale and do not work with partial programs.
Partial program analysis (PPA) [30] is one attempt to extend PA in this direction.

2.1.1.2 Indexing Syntactic Structures in Source Code

Apart from the vocabulary, structure plays a key role in distinguishing the way code snippets
are written. For instance, a recursive implementation is different from an iterative imple-
mentation. Hence, indexing the syntactic structures in source code is important. In this
Section, we review two popular techniques that index syntactic patterns in source code.

Code Phrases Nguyen et al. [31] introduced code phrases as a technique to decompose
student homework submissions for effective indexing and search. It works in the context
where the document space is dense. For the same homework, there are several submissions
that vary only moderately from each other. Entire code is converted to AST. Using the
various submissions for a programming assignment, common subtrees are identified and
one by one, each subtree is removed and kept aside for indexing. The inverted index is
constructed by adding one subtree at a time so that there are fewer distinct trees in the

8

index. Identifiers are anonymized. Remaining AST’s are hashed so that they can be indexed
as strings. This approach might not scale for huge multi-file projects and non-compilable
snippets due to the fact that AST can be very large.

Document Fingerprinting Schleimer et al. [32] while implementing MOSS, discuss the
technique to efficiently hash code patterns for plagiarism detection. Capturing all possible
n-grams of code snippets is perhaps the best way to index syntactical pattern from accuracy
perspective. However, such an index will be too large to maintain. Schleimer et al. propose
a technique called Winnowing. In winnowing, a fixed number of n-grams are considered in
a window and one of them is selected for creating the hash. They show that by using the
entropy of strings being hashed, the hash size can be reduced.

These techniques show us how to index code snippets. However, the prior approach
depends on snippets to parse into AST successfully. Moreover, ASTs can be extremely large
for huge projects thereby causing scalability issues. On the other hand, winnowing works
well in a dense code situation. Dense code situation refers to a situation where semantically
same code snippets implemented in a structurally similar way are present in abundance.
Particularly in academic assignments, a dense code situation can be observed. This might
not be the case in several projects where small teams use domain specific languages.

2.1.2 Retrieval Models for Source Code

In the field of Information Retrieval (IR), retrieval models address the task of matching
queries to documents, resulting in a ranked list of relevant documents. Various retrieval mod-
els have been proposed that use techniques designed for different characteristics of queries
and documents. Typically, a retrieval model models the query and the document so as to
define a scoring function. The results are ranked based on this scoring. Existing literature
represents source code typically in a text format and applies text retrieval models to match
them. In this Section, we discuss an algebraic model named Vector Space Model (VSM) [33]
which is a popular model for retrieving text as well as source code.

Vector Space Model In VSM, we visualize query and documents as vectors. We match
query with the document vector using cosine similarity. Let the query, q be “BITS Pilani”.
Assume we have two documents, d1 containing the text, “BITS Pilani Goa Campus” and d2

be “IIIT Delhi”.
If d1 and d2 are the only two documents in our index, our dictionary has only six terms.

We lay them down in order (need not be alphabetic although that is acceptable too) and
collect the frequencies of each term to form a vector. Therefore, if our vectors are made
up of frequencies of (“BITS”, “Pilani”, “Goa”, “Campus”, “IIIT”, “Delhi”), we have, q =
(1,1,0,0,0,0), d1 = (1,1,1,1,0,0), and d2 = (0,0,0,0,1,1). Then, the cosine similarity between
the query and any document dj is computed as follows:

Similarity(q, dj) =
dj.q

||dj||||q||
(2.1)

Applying this measure of similarity in our example, we get, similarity between q and d1 as
0.71. Similarity of d2 with q is 0.

9

Statistical term weighting schemes play an important role in retrieval models because,
not all terms are significant in queries and documents. Term Frequency - Inverse Document
Frequency (TF-IDF) models solve this problem. A variety of TF-IDF models have been
proposed [34, 35, 36].

Augmented TF-IDF Augmented Term Frequency (ATF) is a simple TF-IDF model used
for retrieval [37]. ATF tf (t, p) is computed as follows:

tfA(t, p) =
f(t, p)

1 + max{f(t, P)}
(2.2)

where f(t, p) represents the raw frequency of term t in post p. Along with term frequency,
we need a factor to increase the weight of terms based on the rarity of the term in the entire
collection. A standard Inverse Document Frequency (IDF) measure is used in MATF:

idf(t) = log

(
N + 1

|P (t)|

)
(2.3)

where |P (t)| is the number of SO posts containing the term t, and N is the total number of
posts. Given that the SO dump is available, idf(t) can be pre-computed at index-time.

This formulation has the problem that it favors long posts, as the probability of term
frequency is proportional to the length of the post. Also, a change in the number of distinct
terms in the vocabulary does not affect the TF calculation in this model. Answers in SO
posts carry upto 2053 distinct terms. 14 to 66 distinct terms exist in at least 10,000 answers
each. Figure 2.3 shows the actual frequencies of answers carrying specific number of distinct
terms. It also shows the distribution of SO discussion length in terms of number of words
(not necessarily distinct).

Hence, we use the Multi-Aspect Term Frequency (MATF) [38] model. Since we deal with
source code in SO, we have adapted MATF in Section 4.2. In Section 4.4, we show that
MATF performs better than TF. Here, we give a brief background on MATF.

Multi-Aspect Term Frequency MATF formulation uses a weighted sum of two TF
formulations, one which prefers long documents and the other that works better for distinct
terms. The MATF score tfM for a query term t for an SO post p is as shown below:

tfM (t , p) = w × tfR(t , p)

1 + tfR(t , p)
+ (1 − w)× tfL(t , p)

1 + tfL(t , p)
(2.4)

Here, tfL refers to the Length Regulated TF (LRTF) component and tfR refers to RITF.
Paik [38] uses 2

1+log2(1+|Q|) as a value for the aspect weight w. Q represents the set of query
terms.

tfR(t , p) =
log2 (1 + f (t , p))

log2 (1 + Avg .tf (p))
(2.5)

and:

tfL(t , p) = f (t , p)× log2

(
1 + Avg .PL

|p|

)
(2.6)

10

0

10000

20000

30000

40000

50000

60000

70000

0 20 40 60 80 100 120 140

Term Count

C
o

u
n

t
o

f
SO

 P
o

st
s

Total Terms

Distinct Terms

Figure 2.3: Why MATF? SO posts carry developer discussions (answers) that have 14 to 66
distinct terms and 11 to 118 terms overall in them. The distinct terms count range from 0
to 2053. The total terms range from 0 to 8089. This figure considers only those posts where
the counts of discussions are above 10,000. Due to the significance that posts carry due to
the presence of distinct terms, we use MATF as our retrieval model.

Avg.PL is the average length of the posts in SO, f(t, p) denotes the raw frequency of the
term in the post, and Avg .tf (p) is the average term frequency of the document collection (all
posts in SO in our case). If there are N posts in SO and df (qi) is the number of documents
containing the query term qi in query phrase Q, we compute the similarity between query
and post by multiplying with the inverse document frequency, as follows:

SIM (Q , p) =

|Q |∑
i=1

tfM (qi , p)× log2

(
N

df (qi)

)
(2.7)

Yang and Fang [39] confirm that MATF gives consistent results throughout several text
collections.

2.1.2.1 Limitations of Text Retrieval Models on Source Code

In most existing code search engines [12, 13], queries are expressed as NL text. Many query
terms in NL have very different surface forms in source code. For example, “array” in NL
is “[]” in Java. Loop has a pattern similar to “for (;;) {}”. Thus, the query terms that
are missing in source code cause the search to fail. Few search engines [40] allow structural
queries. Yet, they cannot answer queries such as “Where is an integer array declared” or
“Get me methods that implement factorial”. Code contexts are hard to extract. Many tools
such as code completion, example recommendation, API Usage recommendations need to
understand the current code in IDE and the context in which recommendations are sought.

11

Typical ideas such as co-occurrence [41] analysis do not work well to capture such contexts.
Moreover, a variety of programming languages pose challenges in extracting the current code
context.

In summary, gaps exist between the source code representations and the assumptions
of existing retrieval models. This presents interesting space for research. In this thesis, we
leverage big code opportunities, and investigate modeling source code and designing retrieval
models to support retrieval-based applications.

12

Chapter 3

Code Variants

There are often multiple ways to implement the same requirement in source code. Different
implementation choices can result in code snippets that are functionally similar. In the
existing literature, these code snippets have been defined in multiple ways such as code
clones, examples and simions. Variants are fundamentally different from these known types
of code snippets. Currently, there is a lack of a consistent and unambiguous definition of code
variants based on their intended usage. Code variants are a specific type of code snippets
that differ from each other by at least one desired property within a given code context. We
distinguish code variants from other types of semantically similar snippets in source code,
and demonstrate the significant role that they play. We observe that about 25% to 40% of
developer discussions in a set of 15 open source projects are about variants. We characterize
variants based on code context and desired properties. We study if developers seek variants
and then report the effect of variants on developers’ seeking behavior. Our findings call for
building automated tools to search, compare, and synthesize variants.

3.1 Introduction

Programming is a creative activity with many different ways to implement the same re-
quirement. Developers often have to reason among the benefits and drawbacks of different
implementation choices before making a selection. When evaluating the choices among dif-
ferent code snippets, developers have to consider properties such as, differences in the speed
or complexity of computation, the style of coding, the library used, or licensing requirements.

Research has identified different situations where code snippets can be similar, from
being exactly the same to being similar in some dimension. Figure 3.1 presents the different
types of code similarity referred in software engineering research. Code might be exactly the
same (and repeated) at the token-level and the line level as demonstrated by the work on
naturalness of software [42]. Idioms, clones, simions, and code variants can span multiple
lines of code that are similar. Similarity can also be at a higher granularity, occurring
beyond individual programs and encompassing applications and products. Our work focuses
on (similarity of) code snippets.

We call those code snippets as variants, when they have the same behavior under a
given code context, but differ on other properties that make one snippet a better fit than

13

Code Variants

Product Line Variants

App Variants

Semantic Clones

Type I, II, III Clones,
Idioms

Redundancy in code
(line level, naturalness)

Same properties.
Introduced by
copy/paste

Different desired
properties,
same behavior
otherwise.

Increasing levels of
variance in

behavior or properties
(such as performance,

side-effects and
readability.)

Simions

Figure 3.1: Reuse in source code happens at different levels. This work focuses on code
variants.

Table 3.1: Code variants are discussed in defect descriptions of Apache Math, a popular
open source project.

Project Discussion

Apache Math [Bug#
MATH-901]

One of the reasons this variant is faster is because
it is less accurate, which may not be acceptable for
commons-math.

Apache Math [Bug#
MATH-1293]

While the jury is still out, I made another variant of
the patch ...

the other. Developers are known to remove clones and simions [43] to promote reuse and
aid maintenance. On the other hand, variants are desired and sought by the developers as
replacement to existing code without which the existing snippet misses desired properties.

We do not yet have consistent terminology or rigorous definition for these types of re-
placeable code snippets that are “a better fit” than the existing snippet. Developers loosely
use the term “variants” (see Table 3.1) to refer to alternative implementations of a code snip-
pet. We find that developers evaluate variants while discussing bugs. They use discussion
forums while searching for better implementation choices. In the absence of clear definitions
of the dimensions along which variants are similar or differ, automated tools cannot support
developers’ decision making. To the best of our knowledge, this is the first study conducted
to understand variants (that should be brought into the codebase) and their characteristics.
Our study answers the following research questions:

RQ1: What are code variants? Are they different from known forms of code snippets such
as clones, examples, idioms and simions?

RQ2: What are the aspects of variants that developers consider while describing variants?

14

RQ3: Do developers seek variants? Is there a difference in their seeking behavior based on
the nature of variants or on programming language?

Our study results indicate that variants form an important category of code snippets. A
better understanding of variants will open up a new field of research, benefiting tool builders
and researchers, which we discuss as implications.

3.2 Background and Related Work

Code variants are closely related to two major types of code snippets: 1) Semantically similar
code snippets (clones, idioms and simions), and 2) Code examples. Each of these types has
similarities and dissimilarities with variants.

3.2.1 Background on the Types of code snippets

Here, we briefly give a background on popular forms of redundancies in code, namely clones,
idioms, simions and examples. In Section 3.4, we define and distinguish variants from all
these types.

Type I, II, and III Clones Clones were originally defined as redundant snippets intro-
duced due to a copy and paste activity [3]. Syntactic clones [44, 45] are of three types.
Type-1 clones are exact copies. Type-2 clones are copies where only the identifier names
and variable types are changed. They are otherwise structurally similar. There is no single
accepted definition of Type-3 clones [44, 45]. One definition is based on the Levenshtein
distance between the pair of snippets which quantifies the minimum number of additions
and deletions of tokens to transform one snippet to other.

Semantic Clones Semantic clones appear in different varieties, such as wide-miss
clones [4], interleaved clones [5], and high-level concept clones [4]. Gabel et al.’s [5] defi-
nition of semantic clones is as follows: Two disjoint, possibly non-contiguous sequences of
program syntax S1 and S2 are semantic code clones if and only if S1 and S2 are syntactic
code clones or ρ(S1) is isomorphic to ρ(S2). Here, ρ is a Program Dependence Graph (PDG)
based transformation function. PDG captures control and data dependency in code snippets
and abstracts away other syntactic details. Elva and Leavens [46] define semantic clones as
functionally identical code fragments. Ira Baxter defines clones as segments of code that are
similar according to some (typically lexical) definition of similarity [44].

Idioms Keivanloo et al. [45] and Juergens et al. [43] indicate that code similarities may
exist beyond these clone types. Perlis [47] introduces idioms as language constructs charac-
terized by frequency of occurrence, unity of purpose, ease of recognition, and composability
of use. Allamanis and Sutton [48] define a code idiom as “a syntactic fragment that re-
curs across software projects and serves a single semantic purpose”. For example, for(int
i=0;i<n;i++) { ... }. They claim that programmers use the term idiomatic to refer to
a code snippet that is used repetitively.

15

Simions Juergens et al. [43] call the code snippets that are behaviorally similar as Simions.
Simions need not originate from copy and paste activity. They argue that simions cause
maintenance issues and therefore treat them as entities that programmers would like to
clean up in source code. They also claim that existing clone detection tools find less than
1% of simions.

Table 3.2: Fundamental differences exist between semantic clones, code examples and code
variants.

Semantic Clones Code Examples Code Variants

Definition Code snippets with no dif-
ference in properties of inter-
est within the given code con-
text. Therefore, one snippet
can replace the other.

Code snippets with an
instructive property
against an information
need.

Code variants represent alter-
native implementations suit-
able for a specific code con-
text in which one variant
must have some desired prop-
erties over the other.

Differences Clones are necessarily seman-
tically similar and have no
differences in desired proper-
ties. Hence, these snippets
are redundant. Some amount
of structural similarity is also
assumed in cases where PDG
based definitions are followed.

Neither semantic nor
syntactic similarity
warranted. Provides
instructive value as
in the usage of API
or how to implement,
and so on.

Semantically similar but has
different desired properties.

Example Two sorting implementations
of same worst-case complex-
ity where that is the only
quality that matters to devel-
opers.

Any API usage tuto-
rial. For example, in
Java, the code snippets
describing the usage of
Arrays.sort feature.

Various sorting implementa-
tions with different time com-
plexities are variants, if speed
is the only desired property.

Code Examples Developers seldom read the entire documentation before they start.
They learn from code snippets on the web or other projects [49, 50]. Code examples are
small source code fragments whose purpose is to illustrate how a programming language con-
struct, an API, or a specific function or method works [51]. Examples play a significant role
in comprehension, reuse, and bug-fixing [52]. As a result, several researchers have explored
locating [48, 53], selecting [54] and analyzing [52] examples.

Table 3.2 summarizes the differences between semantic clones, code examples and vari-
ants.

3.2.2 Redundancies in source code

Hindle et al. [42] observe that source code being a human product is repetitive. They show
that repetitions occur at n-gram level where n can be as low as 3. Juergens et al. [43] claim
that semantically similar code taken from various sources can be syntactically heterogeneous.
These snippets as we have discussed so far, appear with various names. In another study [3],
they also report that inconsistent changes to clones lead to maintenance issues which happens

16

to be the key concern while dealing with clones. We leverage these studies but find that a
definition of code variants is necessary. That is the focus of our work.

3.2.3 Variants: A missing link

Use of the term “variant” is quite popular in the development community. In the Gabel’s
dataset, originally used for clone detection, a search for the term “variant” leads to a large
number of defect reports (GIMP: 109 occurrences, GTK: 324, MySQL: 166, Postgresql: 262,
and Linux Kernel: 286). Not only developers but literature too provides several evidences
of the use of the term “variant” [55, 56]. The term “Variants” occur in at least three major
forms: 1) Code variants (focus of this chapter), 2) Program or product variants (as in product
lines and application variants) [57], and 3) Configuration variants [56] (as in tuning a product
or product configuration).

3.3 Research Methodology

Our goal is to investigate to what extent developers discuss code variants. Therefore, we
analyzed the discussions that have taken place in issue tracking repositories and SO posts. We
used a mixed methods approach, where we combined quantitative and qualitative analysis
of the developer discussions. For the qualitative analysis, we followed a similar approach
as Ma et al. [58] and manually analyzed bug reports, SO posts, and research literature to
define, identify, and classify code variants. Three graduate students with two years of Java
coding experience each, were responsible for the qualitative coding, which used negotiated
agreement to reach consensus (100% agreement), after which each student individually coded
their assignments.

We extracted 1500 bug discussions, 100 each from 15 open source projects (Table 3.3),
belonging to five different programming languages.

Programming Language Selection

When selecting the projects, we wanted to include a variety of programming languages,
domains of use, and project sizes. We selected five languages that are popular in the re-
search community of clones, idioms and examples. These languages were Java, C, Python,
Javascript, and Ruby. This set of five languages provided the diversity in terms of program-
ming language characteristics such as, being object orientated or procedural, strongly or
weakly typed, and compiled or interpreted. We selected three projects for each language.

Project Selection

Our selection of projects was guided by existing relevant research literature. We selected the
Java projects –Atmosphere and Hibernate– as they were evaluated by Allamanis et al. [59]
in their study of idioms. To add diversity in the project domains we also included Apache
Math, which is an algorithmically rich library written in Java. The three C projects: GIMP,
GTK+ and MySQL, were used by Gabel et al. [5] in their work on semantic clones. The
Python projects: Plone, SCons, and Zope, were used by Roy et al. [60] in their study of code

17

Table 3.3: Projects used to characterize variants.

Project PL LoC Domain

1 Apache Math Java 375K Mathematics
2 Atmosphere Java 68K Client-Server
3 Hibernate ORM Java 930K Domain Model Persistence
4 Gimp C 780K Image Manipulation
5 GTK+ C 880K UI Widget Toolkit
6 MySQL C 1130K Database
7 Plone Python 74K Content Management
8 SCons Python 228K Build Tool
9 Zope Python 272K Web Application Server
10 Bootstrap Javascript 37K Mobile First Projects
11 Foundation Javascript 53K Web Front End
12 Jquery Javascript 46K Client-side Scripting
13 Rails Ruby 224K Web Applications
14 Fastlane Ruby 70K Releasing Mobile Apps
15 Huginn Ruby 33K Task Agent Builder

clones. We chose the JavaScript projects: Bootstrap, Foundation and jQuery, as they were
also used by Cheung et al. [61] in their study on code clones. We pick the Ruby projects:
Rails, Fastlane and Huginn, to add diversity to our programming language selection. These
Ruby projects are among the top 10 most trending (highest stars) Ruby projects on Github.
The projects in our dataset vary from 33K (Huginn) to 1130K (MySQL) lines of code, and
include disparate domains such as, mathematics, databases and editors.

Defect Discussion Labeling

We picked 100 random defect discussions from the issue tracking repositories of each project
for analysis. The issues were selected by using a script, which took the open defect Id
range as input, and selected 100 random defect Ids. Three annotators with a programming
experience of at least two years in all the five languages, shared the task of analyzing these
defect discussions.

Annotators used negotiated agreement when labeling the discussions. Each annotator
individually analyzed the first 30 discussions in the first project assigned, to identify if
the discussions were about variants and if so, the annotator labeled the other characteristics
(context type and desired property as explained in Section 3.4). All annotators then discussed
their annotations with one another, and where needed refined the definitions and the analysis
checklist. They continued this process until they attained consensus (100% agreement).
Then, they worked individually again to complete the annotations for that project and the
other projects assigned to them.

Thus, we arrive at a dataset that includes 1500 discussions, with 300 discussions per
language.

18

3.4 RQ1: What are Code Variants? Are they different

from the known code snippet types?

As a first step towards creating a consistent terminology of whether a given snippet of code
is a code variant, we propose a formal definition of code variants. Three developers with at
least two years of Java coding experience manually inspected the code snippets discussed
in our issue repository dataset. They annotated each code snippet with its type (such as
clone, variant, simion) based on the definitions in Section 3.2. We then analyzed the code
snippets that were not clones or simions and arrived at the following formal definition of
code variants that we follow throughout this dissertation. We revised the definition until we
obtained 100% consensus on whether a discussed code snippet is a variant.

A code variant represents an alternative implementation for a given code snippet under
a specific context in which one of the two implementation choices must score better on at
least one desired property over the other. More formally, we define it is follows:

Definition 1. Let P be the set of n desired properties {p1, p2, ..., pn}. Let scorepi(ν) be a
function computing the strength of code snippet ν over any property pi. Code snippets ν1 and
ν2 are Variants if there is at least one property of interest by which ν1 is better than ν2,
or ν2 is better than ν1 in the given code context. Both ν1 and ν2 should be acceptable in the
current code context i.e., ∃i scorepi(ν1) 6= scorepi(ν2).

Note that, in a game theory parlance, the definition of variants requires them to be
pareto optimal over scorepi(ν). This definition also emphasizes on code context and desired
properties of code snippets. We adapt Kirke’s [62] definition of method context to define
code context as follows:

Definition 2. Code Context of a code snippet describes the “fit” of the snippet inside
the larger project. It captures the intent, dependencies of the surrounding code, input to the
snippet, the output from the snippet, and the states in which the system may get into.

In a variant pair, one variant is said to be preferred over the other if it has at least one
desired property when compared with the other within the given context. For brevity in the
rest of the dissertation, we use “context” to refer to code context, and “properties” to refer
to desired properties. We define desired properties as follows:

Definition 3. Multiple implementation choices may satisfy the requirements in the given
code context. Yet, each implementation choice (a code snippet) differs from one another in
ways that could be either functional or para-functional or both. These qualities that serve as
differentiators are referred to as Desired Properties.

Variants are neither clones, nor simions, nor idioms Code variants are similar to
clones in the sense that both are functionally similar set of code snippets. Variants differ
from clones for the reasons of purpose and properties in the code context. Variants are
always discussed with the intent of bringing in code snippets with desired properties. Clones
are discussed in the context of refactoring. Developers clean up clones to promote reuse.
Existence of a clone is considered as a bad smell. There is no difference between the desired
properties present in the clone instances.

19

Gabel’s definition of clone does not capture these aspects of semantic clones. We suggest
the following definition:

Definition 4. Code snippets ν1 and ν2 are Clones if neither ν1 nor ν2 score over each
other on any property of interest and thus ν1 and ν2 can replace each other in the given code
context. In other words, ∀i scorepi(ν1) = scorepi(ν2).

This definition does not depend on structural similarity at all, and instead focuses on
desired properties in a code context. This emphasis helps us differentiate variants not only
from clones, but also from simions and idioms as well. This definition applies to all types
of clones including semantic clones. Individual types put forth further restrictions. Since
the types of clones is not the focus of this chapter, we do not go deeper to define them
individually. Simions and idioms are semantically similar irrespective of the code context.

Variants are not examples Unlike other types, code examples need not be always similar
in behavior. Behavioral similarity follows from Definition 1 as a prerequisite for variants as
both snippets must be acceptable in the given code context. For instance, examples could
be instructive to explain API usage in a variety of functionally different snippets. Thus, an
example mining tool cannot be a variant mining tool. This necessitates a synthesis step to
make the example fit for use in the given context.

Variants are not bug-fixes or enhancements Let ν2 be an enhancement sought over ν1.
Even though it seems that an enhancement may add some desired property to the existing
code, we observe that the intent has changed. Moreover, the “desired” property has now
become a “required” property. As an example, ν1 and ν2 may have been (and need not
always be) variants in the earlier code context when ν1 was under development; however,
in the new context, ν2 alone is acceptable and ν1 does not fit. Same argument applies to
bug-fixes as well. A buggy-snippet does not meet the expectations of the code context, and
hence is no more a candidate for being a variant.

3.5 RQ2: What are the aspects of variants that devel-

opers consider while describing variants?

Developers use code context and desired properties to articulate about code variants (as
discussed in Section 3.4). Here we define each of these aspects by surveying relevant research
literature and then evaluate our definitions by analyzing the developer discussions.

3.5.1 Code Context

While desired properties distinguish variants, code context relates them together. As dis-
cussed in Section 3.4, code context description comprises of one or more of the following:
intent, dependencies, input/output and state. We arrived at this taxonomy based on a lit-
erature survey of 11 related research papers [63, 64, 24, 65, 2, 66, 67, 68, 69, 70, 71] and our
experiments on 15 open source projects (See Section 3.6).

20

Intent Programs are products of human desire to solve specific problems or accomplish
well-defined tasks. Hence, an understanding of the problem being solved plays an important
part in recommending variants that “fit” the purpose. Purpose includes functional and para-
functional requirements. For example, “computing factorial”, “implementing little endian
algorithm” are examples of intent. Intent specification is a hard problem [63] which goes
beyond just naming and describing the problem using natural language phrases. Nguyen et
al. [64] relate execution context and intent. Their thesis is that the intent can be captured
using API usage patterns in the code.

Dependencies Often, implementation is constrained to a specific programming language,
certain pre-built libraries, or components. Search for variants must honor these constraints.
Constraints may also include structural elements such as methods or classes as in Java. We
refer to such constraints as dependencies. For example, a REST API for financial data
may be provided by multiple providers which become variant choices. In this context, we
assume that non-REST APIs are not sought by the developers. Robillard [65] claim that
neglecting such dependencies may lead to low-quality modifications. They discuss structural
dependencies in the scope of program elements and mention methods and fields as examples.

Input/Output (IO) Input and output examples are used as context to search [2] and
synthesize [66] source code. Nix argues that the problem of synthesizing expressions map-
ping given a set of inputs to the given set of outputs (in the sub-context of repetitive text
editing) is NP-Hard. Programming-by-Example community shows steps taken in this direc-
tion with string transformation [67]. In summary, a decade old research in this area has
produced solutions for text editing and spreadsheet processing; however, synthesizing large
sized programs remains a challenge [68].

State Often, developers complain of a specific state that the system gets into. For example,
in Zope1, a developer states, “For huge transactions ZEO spends a long time (in the order
of minutes) in the call to “vote”. This makes it irresponsive for other request...”. Current
context of the code under execution includes the snapshot of its variables, the line under
execution, and the resources available at that time for the program [69]. This definition of
context is used heavily in debugging [69], program repair [70], and real-time updates [71] to
software systems. These systems use a variety of techniques such as automata and logic for
capturing and representing the context.

Next, we evaluate whether our definition of context and its types is sufficient to cover
all the variants in our dataset. We also analyze if certain context types are more dominant
than others in our dataset.

How are variants distributed across the context types?

Developers need to evaluate the fit between the code context of the variant and their program.
Therefore, it is important to understand the extent to which code context plays a part in
developers’ discussions. Table 3.6 (a) provides samples of discussions regarding the four

1https://bugs.launchpad.net/zodb/+bug/143274

21

Table 3.4: Code contexts are primarily described using one or more of these four types. We
map defect descriptions containing variants to these types.

Project Intent Dep. IO State

1 Apache Math (Java) 33 11 2 0
2 Atmosphere (Java) 24 12 2 1
3 Hibernate ORM (Java) 18 9 1 3
4 Gimp (C) 16 6 3 10
5 GTK+ (C) 23 4 4 8
6 MySQL (C) 21 3 9 9
7 Plone (Python) 19 7 8 6
8 SCons (Python) 17 10 0 3
9 Zope (Python) 20 7 4 10
10 Bootstrap (Javascript) 16 2 14 7
11 Foundation (Javascript) 14 5 13 16
12 Jquery (Javascript) 12 4 8 13
13 Rails (Ruby) 30 1 1 1
14 Fastlane (Ruby) 24 1 4 2
15 Huginn (Ruby) 14 8 13 11

Total 303 83 90 100

context types. For example, row 1 in Table 3.6 (a) shows a snippet from a discussion in
Apache Math (Defect: 785) about variants with an intent to compute continued fraction.
The discussion in Atmosphere (Defect: 2037, row 2, Table 3.6 (a)) is about the common
state of disconnect method while closing different browsers.

We were successful in classifying all the contexts in the variants into these four code
context types. Two graduate students separately classified the context in all the 441 variants,
and there were no disagreements about the context boundaries. Table 3.6 (a) shows a sample
discussion for each context type.

Observation

Our empirical findings confirm that the four context types are sufficient to cover
all the variants discussed in our dataset.

Table 3.4 presents the breakdown of the variant discussions pertaining to context types.
We observe that intent dominates in this list amounting to 52.6% (303 out of 576 contexts)
across the variant discussions, where the discussions were about the underlying functionality
of code variants. Dependency, IO and State covered 14.4%, 15.6% and 17.4% of contexts
observed in discussions, respectively.

These findings indicate that developers deliberate about the context in which variants
are to be used, and could benefit from automated tool support.

Observation

Intent was the most common context covering 52.6% of the code contexts in variant
discussions.

22

Table 3.5: Examples of developer discussions taken from Eclipse project describing the
desired properties in code variants.

Property Defect Id Developer Discussion

Algorithmic 384730 There are already some implementation of this algorithm. However, most
of them are pretty complex and slow. I would like to contribute a smaller
and simpler version compatible with the ZEST layout engine.

RO 293637 Ribbon must be licensed by each adopter. If Eclipse will provide Ribbon,
than every RCP application with Ribbon must be licensed. This violates
EPL.

Pure-Diction 196585 It is better to use the setter methods on the model classes (e.g.
TracWikiPageVersion) than having constructors with many parameters.
That way the order of the parameters does not get mixed up and the code
is easier to refactor and to read.

Mechanics 338065 Our coding conventions currently demand to declare all method parameters
as final in order to prevent parameter assignments. Meanwhile, parameter
assignments can effectively be revealed by the Eclipse tooling and by tools
like FindBugs on the CI server.

3.5.2 Desired Properties

As discussed in Definition 3, desired properties distinguish variants. Desired properties in
a variant can be classified into broadly three groups: a) Algorithmic, b) Resource-Oriented
and c) Diction.

Algorithmic Properties Algorithms play a significant part in computation and their
properties are well studied [72]. Developers seek efficient algorithms to make their code
score on para-functional attributes such as, security [73], accuracy [74], readability [51], and
scalability [5]. Sridhara et al. [75] discuss the importance of identifying high-level algorithmic
steps in source code. Patterns, signatures and structures are limited in their ability to detect
algorithms in source code [76]. Many reuse techniques [29, 77] that work at function level
focus on semantic similarity and ignore the variability across variants. Mishne et al. [76]
extract concept graphs to represent algorithmic information.

Resource-oriented (RO) Properties For reasons such as licensing [78, 79], certain li-
braries, components, sub-systems, interfaces, and services are considered better or relevant.
This property has nothing to do with the syntax or semantics of the code snippet. Instead,
it is about the extraneous (non-code) elements associated with the snippet, such as the legal
constraints, and trust factors. Long [80] observes that many third-party libraries are no
longer actively maintained. He calls this the used car fiasco. He brings up more issues in
reuse, such as One size fits all and Of course it’s reusable. Moreno et al. [51] discuss the
effort to reuse the code snippet.

Diction Properties Diction refers to the style of speaking or writing as dependent upon
choice of words2. Some developers may prefer for over while to code a loop. Resulting

2http://www.dictionary.com/browse/diction

23

code is semantically the same. Naming conventions may contribute to the ranking of one
variant over the other [81]. We call such variants as diction variants. Diction variants
cover all non-algorithmic and non-resource-oriented properties, such as patterns, refactoring
needs, conventions and style. Often, programming language libraries give multiple ways
to implement the same functionality within the same resource and algorithmic constraints.
Syntactic sugars [82] are classic examples for this type of variants.

Diction variants can be further classified into two types: Pure-Diction and Mechanics.
Pure-Diction refer to those variants that differ only in the style of writing by way of using
different syntactic constructs. The loop elements such as for and while belong to this
type. Another class of Diction is made of those variants that have structural differences with
hidden properties which may case side-effects, although such side-effects are not expected
to show any behavioral differences for the current code context. An example is the use of a
different set of parameters to a method in Java.

Certain syntactic choices have distinguished benefit over the other. A recursive version of
factorial is rarely used in practical scenarios. A memoization approach avoids recomputation
and is desired especially when large inputs values are bounded so that a four byte variable
such as Java int can hold the result. Yet, the role of diction variants have been largely
ignored by the research community. In academic context, most plagiarism tools depend on
these differences to avoid marking student works as duplicate.

Absence of one or more of these properties leads to low-quality code snippet for which
developers seek replacement. This absence may introduce faults, bad smells or sub-optimal
code. Table 3.5 shows real developer discussions from Eclipse and HTTPClient projects. We
have mapped these discussions to one of the three types of properties discussed. Next, we
report our empirical findings from this exercise.

How are variants distributed across the types of desired properties?

Desired properties distinguish one variant from another. Table 3.6 provides samples of
discussions regarding the four different types of desired properties. For example, row 1 in
Table 3.6 shows a snippet of a variant discussions in MySQL (Defect: 42948) that relates
to the underlying algorithm (Algorithmic property), where developers deliberate on the
performance issues. As another example, the discussion in Atmosphere (Defect: 888, row 2
in Table 3.6) is about the management of execution threads (RO) for an application.

We were interested to see if the set of desired properties (Algorithmic, RO and Diction)
that we define in Section 3.4 are adequate in categorizing the different variant discussions in
our dataset. We mapped each variant discussion with at least one of the desired properties.
In no case, did we need a definition of an additional desired property.

Observation

Our empirical findings validate that the four types of desired properties are ade-
quate to cover all the variants discussed in the entire dataset.

Next, we investigate the distribution of variants across these different properties. Ta-
ble 3.8 lists and Table 3.9 summarizes the distribution of the variant discussions across
the different desired properties. We find that Algorithmic variants dominated in MySQL

24

accounting for 64.3% (18 out of 28: Table 3.8) of discussions. MySQL is a project about
database management, and a substantial set of discussions were about the algorithm such as,
optimizing the queries to scale over large database with discussions on indexing and caching
techniques. Overall 41.07% (175 out of 426: Table 3.9) of discussions were of Algorithmic
type.

We find that RO variants, in our dataset, are discussed only when there is a concern
regarding issues such as, licensing, library compatibility, or coding conventions. RO variants
dominated in the Fastlane project (a tool to release mobile applications) accounting for 39.3%
(11 out of 28: Table 3.8) of discussions. However, overall only 6.6% of total discussions were
about RO variants. One reason for fewer discussions about RO could be that issues regarding
licensing, library compatibility and coding conventions are functions of attributes such as,
domain and developer competence. In contrast, our study focuses on language, context,
properties, and variant types.

Diction was the dominant variant property accounting for 43.4% (185 out of 426: Ta-
ble 3.9) of discussions. Out of the 185 diction variants overall, we found 39.5% (73 out of
185: Dp in Table 3.9) Pure-Diction variants, and the rest 60.5% (112 out of 185: Dm in
Table 3.9) were of Mechanics type. Discussions about diction variants were typically regard-
ing better coding conventions and styles. Diction variants in large numbers indicate that
developers care for style. Table 3.6 (b) shows such sample discussions about style in the last
two examples (in Plone and GIMP).

Observation

43.4% of variant discussions talked about Diction which was found to be the
dominant desired property.

Table 3.6: Discussions (with referenced defect from the issue tracker) from the dataset
capturing the following: a) the desired properties, and b) the code contexts across variants.
(S# captures the key statements from the discussion)

(a) Context Excerpts from the Discussion

Intent
MATH-785

S1:The ContinuedFraction calculation can underflow in the
evaluate method, similar to the overflow case already dealt
with.
S2:The evaluation of the continued fraction has been changed
to the modified Lentz-Thompson algorithm which does not
suffer from underflow/overflow problems as the original im-
plementation.
Essence of the Discussion: Variants have a common intent
here which is to compute continued fraction.

25

Table 3.6: Discussions (with referenced defect from the issue tracker) from the dataset
capturing the following: a) the desired properties, and b) the code contexts across variants.
(S# captures the key statements from the discussion)

State
Atmosphere-2037

S1:the disconnect method is not being called for Android
Chrome when closing the browser though the android apps
panel. Only in case of changing the URL on the browser,
that method is called.
S2:It works with Firefox desktop, Firefox mobile, chrome
desktop, etc.
Essence of the Discussion: State of disconnect method
invocation on closing different browsers being discussed.

Input/Output
MATH-1143

S1:A DerivativeStructure and UnivariateDifferentiableFunc-
tion are great tools if one needs to investigate the whole func-
tion but are not convenient if one just needs derivative in a
given point.
S2:Give the derivatives in the “natural” order, which is in in-
creasing order when you have one parameter and high order
derivatives, and in parameters order when you have only first
order derivatives for all parameters.
Essence of the Discussion: Common output of derivative,
across all variants.

Dependency
MATH-1098

S1:As we will certainly not add a dependency to another
library, we could start with our own set of annotations
S2:I recommend using @Reten-
tion(RetentionPolicy.SOURCE) so the annotations don’t add
to the jar file size
Essence of the Discussion: Two variants of a function
where both do not have a dependency on another library.

(b) Desired
Prop.

Excerpts from the Discussion

Algorithmic
MySQL-42948

S1:Each of the views on which I was doing a join was doing
a full table scan of 1.2 million records instead of using the
“CustomerID” index
S2:To restore normal performance, I had to write stored pro-
cedures to create temporary tables instead of using views
Essence of the Discussion: Performance being discussed
across variants to execute a query over a large data table.

RO
Atmosphere-888

S1:Add timeout support for WebSocket to prevent thread
waiting indefinitely
S2:configure the buffer size as well
Essence of the Discussion: A variant to better manage
threads(resources).

26

Table 3.6: Discussions (with referenced defect from the issue tracker) from the dataset
capturing the following: a) the desired properties, and b) the code contexts across variants.
(S# captures the key statements from the discussion)

Pure-Diction
Plone-732

S1:The toolbar displays the “xx days ago” information during
the loading of a page as ISO date time string and then turns it
into “xx days ago” after the complete loading of the HTML.
This confuses the eye especially when the page is loaded over
a slow line or takes some time for rendering. The toolbar
should only display “xx days ago”
S2:Perhaps the toolbar or this particular toolbar items should
be hidden by default and made visible after moment.js
Essence of the Discussion: Alter the content displayed.

Mechanics
GIMP-737778

S1:Currently some GIMP editing operations are hard-coded
to use parameters specific to sRGB. To allow correct editing in
other RGB working spaces, the hard-coded sRGB parameters
must be replaced with parameters retrieved from the image’s
actual RGB working space.
S2:I personally think native support for color spaces other
than sRGB is a great thing
Essence of the Discussion: Allow passing as parameters
instead of using hard-coded values.

3.6 RQ3: Do Developers Seek Variants?

We categorized discussions as about variants if they discussed implementation choices. Our
dataset had on average 28.4% (426 out of 1500) discussions (see Total in Table 3.9) where
developers discussed about variants. The number of variant discussions (see Tv in Table 3.8)
ranged from 25% (in Plone) to 40% (in Apache Math).

Observation

In 25% to 40% of defect discussions, developers actively seek and compare variants.

While annotating discussions, we observed that the developer behavior was not same
while seeking any variant. This led us to the classification of variants based on the effort
required by the developers access variants. In this Section, we discuss this nature of variants.
Further, we analyze if the programming language affects variant seeking behavior.

3.6.1 Nature of Variants

Developers need to decide if a particular variant is better or worse (simple) or even incom-
parable (complex) to the rest. To this end, we show that variants exhibit a strict partial

27

Table 3.7: Examples of developer discussions describing the variant types.(S# captures key
statements from the discussion.)

Type Developer Discussion

Simple
GTK+
109292

S1:The function does a linear search in the array instead of a binary search. Also, even when
the model is caching iters, it doesn’t use that information but slowly converts to a path and
back.
S2:I’ve been using this patch and it’s an amazing improvement on the previous implementa-
tion, which was so slow
Essence: Discussion on faster algorithm, accepted by all(indicating no tradeoff likely).

Complex
Huginn
1940

S1:On a very low-volume instance, at some point, events simply stop to be processed. Never
delete the event with the highest ID. Put a warning next to the field where you choose the
retention period Avoid/discourage the use of InnoDB for the events table.
S2:In general, InnoDB is more reliable than MyISAM, and has better transaction support.
It’d be a shame to lose that.
Essence: Discussion is over avoiding a storage engine. Some developers are reluctant due to
reliable support.

Table 3.8: Volume of variant discussions in open source projects depends on the project
domain. Tv, Alg, RO, Dp, Dm are the counts of: total, algorithmic, RO and pure-diction and
mechanics variants respectively.

Project Tv
Simple Complex

Alg RO Dp Dm Alg RO Dp Dm

Apache Math 40 5 1 7 4 12 7 4 9
Atmosphere 28 2 7 2 6 6 3 0 5
Hibernate 25 5 3 4 7 2 5 2 2
GIMP 34 11 2 2 5 7 4 2 3
GTK+ 29 6 3 3 4 8 3 2 2
MySQL 28 12 1 4 3 6 4 1 0
Plone 25 2 3 7 2 4 3 3 2
Zope 26 10 2 2 1 6 3 1 2
SCons 25 8 0 1 5 3 2 2 5
Bootstrap 25 3 1 4 5 6 3 2 2
Foundation 27 6 3 3 4 6 3 0 3
Jquery 26 3 2 1 4 9 2 0 5
Rails 33 5 6 4 8 5 3 2 0
Fastlane 28 1 9 5 8 3 2 1 0
Huginn 27 5 6 1 4 8 4 1 2

Average 28.4 5.6 3.3 3.3 4.7 6.1 3.4 1.5 2.8

order. In this Section, we formally define two types of variants, namely simple and complex
based on their nature of exhibiting the strict partial order.

Definition 5. We refer to a set of variants as Simple if for any pair of variants (ν1, ν2)
in the set, one variant scores not less than the other (∀i scorepi(ν1) ≥ scorepi(ν2) or
∀i scorepi(ν2) ≥ scorepi(ν1)) for all desired properties in a specific code context. Also, recall
that ∃i scorepi(ν1) 6= scorepi(ν2) if ν1 and ν2 are variants.

28

ν2

ν1, ν2
ν1

ν1 ν2

(a) (b) (c)

Clones Simple Variants Complex Variants

Figure 3.2: Differences between clones, simple variants and complex variants in terms of
desired properties.

If ν1 and ν2 are simple variants in the given code context, and ν2 is stronger than ν1, we
mean that ν2 scores over ν1 on at least one desired property and is as strong as ν1 on all
the other desired properties (Figure 3.2 (b)). In practice, we may find that most efficient
solutions may suffer from issues such as, readability and licensing, and hence may not be
better on all desired properties. As an example, consider the Internet traffic monitoring
APIs, Fiddler and Titanium. A discussion on SO3 suggests that Titanium is preferred over
Fiddler given the licensing constraints. Hence code snippet containing the Titanium API is
a stronger variant than the one with Fiddler API. In this case, Titanium based code is also
a simple variant of Fiddler based code since it is easier to choose the prior over the latter.
As another example for simple variant, an O(nlogn) solution is accepted to be better than
O(n2) solution where worst-case time complexity is the desired property.

Strict Partial Order The relation over the strength of code variants (represented by the
symbol ‘>’) is a strict partial order over the set V of variants. In other words, ν1 > ν1 cannot
hold (irreflexivity) since we need at least one property by which the snippet being compared
with should differ to be called as a variant. ν2 > ν1 indicates that ν2 is a stronger variant of
ν1, and ν1 > ν2 cannot hold (antisymmetry), and ν2 6= ν1 (irreflexivity). In addition, if we
have ν3 such that ν3 > ν2, then ν3 > ν1 (transitivity).

In the case of complex variants, it might be possible for developers to apply a weight
function to choose a specific complex variant as a strong variant. Without weights or addi-
tional such preference information, it will be unclear to developers which variant to select
(Figure 3.2 (c)). Figure 3.2 (a) shows the case where ν1 and ν2 have the same properties, no
more or no less and thus they become clones.

Definition 6. We call ν1 and ν2 as Complex variants if ν1 scores over ν2 for some desired
properties, and ν2 scores over ν1 for some other desired properties. More formally, ∃i,j
((scorepi(ν1) > scorepi(ν2)) ∧ (scorepj(ν1) < scorepj(ν2)) ∧ (i 6= j)).

An example for complex variant, developers of Huginn project are seen debating over
using InnoDB or MyISAM (Table 3.7). Thus, the corresponding code snippets in this context
become complex variants.

3https://stackoverflow.com/questions/30995808

29

Table 3.9: Summary of discussion counts per variant type. Total refers to the total number
of discussions. %v is the Total as percentage out of 1500 discussions. %d is the percentage
out of 426 variants.

Type Alg RO Dp Dm Total %v %d

Simple 84 49 50 70 246 16.4% 57.7%
Complex 91 51 23 42 180 12.0% 42.3%

Total 175 100 73 112 426 28.4%

How are variants distributed across the different types of variants?

In our (discussions) dataset, developers deliberated on which variants were better suited
to the project. We found that discussions about simple variants were uncomplicated, and
typically involved cases where a developer proposed a variant in a patch, which was approved.
Table 3.7 shows an example from the GTK+ project, where the discussion is about the
computation speed. The discussion was relatively straightforward as one of the proposed
algorithm was seen as faster and was supported by one developer (S2). Such discussions
on simple variants accounted for 57.7% (246 out of 426: Table 3.9) of the total variant
discussions4.

On the other hand, developers deliberated on the pros and cons of the complex variants
with respect to the desired properties. Table 3.7 shows an example from the Huginn project,
where developers discussed the trade-off on the event processing functionality compared to
the reliability of support provided. Such discussions about complex variants occurred in
42.3% (180 out of 426: Table 3.9) of the cases of the total variant discussions.

We next analyze the kinds of discussions that occur when developers discuss the different
types of desired properties. When considering Algorithmic variants, we see that there were
on average 5.5% (84 out of 1500: Table 3.9) simple and 6.1% (91 out of 1500: Table 3.9)
complex Algorithmic variants. We find that Apache Math had the highest number of complex
RO (row 1, Table 3.8), and Fastlane had the most simple RO variant discussions (row 14).
RO variants comprised of 3.2% (49 out of 1500: Table 3.9) simple and 3.4% (51 out of 1500:
Table 3.9) complex variants. In SCons, we found no simple RO variant. In three of the
projects (MySQL, Bootstrap and Apache Math), we found only one simple RO variant. On
average, 12.3% (185 out of 1500: Dp + Dm in Table 3.9) of discussions were about diction
variants where 8% (120 out of 1500: Table 3.9) were simple and 4.3% (65 out of 1500:
Table 3.9) were complex.

Observation

Developers seek and compare variants in 28.4% of their discussions. In 42.3% of
the variant discussions, they discussed trade-offs among complex variants.

4Note that the reader should exercise caution while reading these numbers. A simple variant discussed
in a discussion may be associated with more than one desired properties. Hence, summing up the rows in
Table 3.8 is incorrect way of counting the total number of discussions annotated as about variants.

30

0

20

40

60

80

C Java JavaScript Python Ruby

Intent Dependency IO State

0

10

20

30

40

C Java JavaScript Python Ruby

Algorithmic RO Diction

#D
is

cu
ss

io
n

s
o

n
 V

ar
ia

n
ts

Figure 3.3: Distribution of variants across context types and desired properties over multiple
languages. Diction variants are prominent in projects of all programming languages.

3.6.2 Are variants language dependent?

We next analyze to see if the constructs of a programming language impact implementation
choices, and thereby the volume of variants (see Table 3.3 and 3.8).

Recall, our dataset has five programming languages, each of a different type such as
object-oriented (Java), scripting (JavaScript), and procedural (C). Python and Ruby are
popular general-purpose multi-paradigm languages.

In our dataset, we found examples where we find that the programming language played
a factor in why developers sought variants. A Rails developer while discussing a defect5

says, “... might consider reverting this commit as lambdas [a construct in Ruby to execute a
method whose definition is passed as string] are used a lot for lazy evaluation [which is not a
desired property]”. Another JQuery developer6 is concerned about the differences between
the language API, Deferred and Promise. However, when considering the entire dataset, we
do not find any statistical significance that programming language impacts the total number
of variants (Kruskal Wallis, p-value=0.3782). So, next we investigate whether language plays
a role in variants’ desired property or code context.

Figure 3.3 shows the distribution of variants across context types and desired proper-
ties grouped by language. In Figure 3.3 we see that Diction variants occur relatively more
frequently across all languages. Diction variants account for 12.3% (185 out of 1500: Ta-
ble 3.9) of all discussions and 43.4% of variant discussions. However, we did not find any

5https://github.com/rails/rails/issues/9805
6https://github.com/jquery/jquery/issues/3596

31

statistical significance (Kruskal Wallis, p-value=0.3404) to show that Diction variants are
the most affected because of language constructs. In fact, none of the desired property
types correlated with language significantly (Kruskal Wallis: Algorithmic:p-value=0.3007,
RO:p-value=0.4662).

Also, we do not find a statistically significant relationship between context types and
languages of implementation (Kruskal Wallis: Intent: p-value=0.3601, Dependency:p-
value=0.2081, IO:p-value=0.6248, State:p-value=0.5448).

Observation

We do not find significant difference between languages when comparing the vol-
ume of variants distributed across desired properties and code context.

3.7 Implications of Variant Characterization

Our characterization of variants creates opportunities for tool builders as well as researchers.

3.7.1 Tool Builders

• Developers discuss code variants in abundance, but there is a lack of relevant tools to
mine variants. Automated support that can fetch re-usable code snippets will be of
interest to developers.

• The large number of discussions about Diction variants suggest that there is often
debate about stylistic aspects of code quality. Code refactoring tools may use this as
feedback to include new stylistic or mechanical features.

• Developers need to consider the code context of variants when evaluating implemen-
tation choices. Therefore, they would benefit from automated support that can fetch
relevant variants when given a code context type.

3.7.2 Researchers

• We need metrics to enable quantitative comparison of two variants. Our definitions
5 and 6 in Section 3.6.1 are based on assigning score to variants. However, deciding
on the right metrics to assign such a score to variants is an open problem. Such
quantification of the strength of variants is important to building variant mining tools.

• Current clone detectors are incapable of identifying variants as they do not consider
the desired properties of the code. Our characterization suggests that terms that
are associated with certain properties (e.g., “optimize”, “efficiency”, “accuracy” were
associated with algorithmic variants) can be useful to classify discussions and in turn
mine variants.

• Further research to understand the “Intent” context deeper, will help to better under-
stand variants, as large number of variants belongs to this context type.

32

• Our results indicate that variants may not be dependent on language. Further research
is needed to see the feasibility and potential of a language agnostic variant mining tool.

• In the domain of education, an understanding of variants could help in building feed-
back tools for programming assignments. In a Massive Open Online Courses (MOOC)
setting, instructor can give feedback on select variants of code snippets.

• Extracting current code context for a given project has been an important step for tools
that work on source code such as plagiarism detection [31] and example recommen-
dation [24] tools. However, they focus and capture only one among the four context
types. Our observations indicate that a variant mining tool will need to focus on all
types of contexts for high recall.

3.8 Threats to Validity

Internal Validity We have used 15 open source projects for evaluation. We strive to con-
trol variability by selecting 100 random defects each from multiple projects. Other projects
and domains might give different numbers. We have selected each project from a different
domain to mitigate this threat. Also, these projects may not be representative of the entire
set of open source projects. Choosing multiple projects was an attempt to reduce this kind
of bias. However, we have controlled the bias due to project size and popularity. We have
compared variants with their nearest type of code snippets such as clones, idioms, simions
and examples. There may be more types of code snippets such as mutants. Mutants are
artificially changed code used to assess the quality of test cases. They do not fit into the
given code context. Hence, mutants are also not code variants.

External Validity Our results may not generalize to all types of code (for instance, script-
ing or functional). For evaluation, we have taken a mix of Java, C and Python projects
popularly used in clone research. Hence, our work applies to high-level imperative languages
at the least. Our results for variant mining depends on the discussion forum data. These
results may not generalize to variants that are domain specific implementations with inade-
quate developer discussions.

3.9 Summary

Code variants are fundamentally different from other structural and semantically similar
code snippets, such as simions and code clones. They appear frequently in source code
and developer discussions. Therefore, understanding code variants is important for software
development and maintenance. Currently, there are inconsistent definitions of code snippets
that are similar. To the best of our knowledge, we present the first study to characterize
and distinguish code variants from other types of code that are similar to each other. In this
work, we define code variants, classify them as simple and complex, and categorize them
into three main types based on their properties: algorithmic, diction and resource-oriented.

33

Our variant characterization presents several opportunities and challenges for tool support
and automation.

With the availability of “big code” from open source projects and discussion forums,
developers are increasingly interested in leveraging the existing implementation choices that
match specific desired properties. Hence, an understanding of code variants and their char-
acteristics can help build tools that provide automated search, including functionality such
as, comparing or ranking variants, quantify the strength of variants, and building recom-
mender systems to improve the existing development environments. In future work, we plan
to address some of the open research challenges (Section 3.7) to help in building variant
mining tools.

34

Chapter 4

Towards Searching for Code Variants

Developers often look for better choices to implement existing code. They do a web search
or ask for implementation choices in discussion forums. Developers will benefit from a tool
which can describe the behavior of the code snippet, and suggest alternative implementa-
tions. Towards this purpose, we build and use a knowledge base of familiar topics and their
implementation choices from discussion forums to show alternative implementations for a
given code snippet. We have implemented this approach in a tool called jSense. jSense
constructs a knowledge base of implementation choices from SO. Using this knowledge base,
jSense matching engine is able to identify the given input program and suggest alternative
implementation choices with a precision of 92% and recall of 71%. Apart from the jSense
tool, our major contribution includes a multi-component retrieval model and a structural
representation of source code that can be used in several code search tools. This work opens
up new possibilities for attacking a wide variety of challenging problems such as semantic
clone detection and defect localization by exploiting structural information in source code.

4.1 Introduction

The rich programming language features and the existence of several third party libraries
allow programmers to code the same requirement in multiple ways [83]. Sometimes, devel-
opers are not aware of these implementation choices [84]. Hence, they end up coding either
inefficiently or even incorrectly. Implementation choices for several programming topics are
discussed [85] in Question & Answer (Q & A) sites such as SO. Table 4.1 shows different
implementation choices for a factorial program. The first option uses recursion. However, it
uses int as the data type which can only hold up to 16!. The second example is designed
for larger input values. The third example does simple lookups on pre-computed values
assuming that the input will not be greater than 20. This implementation is used in Apache
Commons [86] library. Looking at these choices, developers can make better development
decisions. In SO, developers discuss these snippets and their relative merits. Developers
will benefit from a tool which can understand the existing snippet and mine implementation
choices for the same from such Q & A sites.

We model the problem of mining for implementation choices as a search problem over
SO where input is a code snippet and the output is a set of code snippets that are “dis-

35

Table 4.1: Some examples of factorial implementations.

Snippet Remark

public int factorial(int n) {
if (n == 0)

return 1;
else

return (n*factorial(n-1));
}

Commonly used text book imple-
mentation of factorial using re-
cursion. Fails for n >= 17.

public static BigInteger
factorial(BigInteger n) {

BigInteger result =
BigInteger.ONE;
while (!n.
equals(BigInteger.ZERO)) {
result = result.multiply(n);
n = n.subtract(BigInteger.ONE);

}
return result;

}

An iterative version of factorial
that uses BigInteger. This does
not fail for large input values.

public static long
factorial(final int n) {
if (n < 0) {
throw ...Exception(..., n);
}
if (n > 20) { throw new

ArithmeticException(
"...some msg...");

}
return FACTORIALS[n];
}

Factorial implementation taken
from Apache Commons library
avoids recomputation by doing
array look up.

tinct” implementation choices. First, we propose a novel retrieval model to extract relevant
code snippets from SO. Then, we de-duplicate code snippets to arrive at the distinct im-
plementation choices. To understand which implementation choices are distinct, we need to
understand the developer’s perspective of heterogeneity. Towards this purpose, we conduct
a user study, propose a structural model of source code (which we call jSense structural
representation) and a pairwise similarity metric over this structural model.

Web search engines such as Google1 are extensively used by developers [8, 87]. Since no
special processing is done on the search engine side, user needs to query skillfully and there
must exist web pages with phrases like “different ways of implementing” or “how to code
without using”. In a situation where the developer does not suspect his existing snippet to
be buggy, he might not query at the first place. Prompter [24] shows the usefulness of SO
data in such a context. They retrieve SO posts and not code snippets. Code search engines

1www.google.com

36

Match with
known structures

Implementation Choice - 1

Implementation Choice - 2

Structure
int loopint

loop<=
loop+ loop*

Other Factorial Implementations from Repository

Approach to build the repository
uses jSense retrieval model

Matched with factorial!

Retrieve matched snippets

Topics
…

Factorial
…

StackOverflow

Related
posts &
snippets

Structurally
heterogeneous
code snippets

Transform using jSense
structural model

Input
Manually, looking at the output, developer learns that this

snippet is an implementation of “factorial” and it is
defective for large or negative values of input, “n”.

Developer

What is this snippet
about?

Output

“Computes Factorial”

Repository

Figure 4.1: Overview of jSense design. This is a two step process: 1) We build a repository
of structurally heterogeneous implementations, and 2) Use this repository for suggesting
implementation choices for the identified topic.

such as CodeExchange [88] are useful in getting code snippets directly instead of web pages.
However, to get distinct choices, a developer needs to read several snippets. jSense can
suggest different ways of implementation for the existing code context. Thus, our work is
different from these existing works.

As an example of our approach, we implemented a system called jSense. jSense indexes
the posts tagged as Java in SO. It constructs a knowledge base (KB) of known topics and im-
plementation choices using a novel Multi-Component Multi-Aspect Term Frequency retrieval
model. While indexing, jSense uses the structural representation to eliminate duplicate im-
plementation choices. To improve the efficiency of matching the input code structure with
the structures in KB, jSense uses MinHash [89]. If a match is found, it returns the topic
which is a phrase to identify the behavior of this snippet in natural language (NL) terms
associated with the structure. It also shows all the other heterogeneous snippets from the
KB associated with that topic. Figure 4.1 gives an overview of jSense design using a shorter
and more familiar example of “factorial”.

Our Contributions Major contributions of this work are:
• Approach: A search based approach to identify the given code snippet, and show its

alternative implementations.

• Retrieval and Structural Models:

– We propose a novel retrieval model called the Multi Component Multi-Aspect
Term Frequency Model to build a knowledge base of code snippet structures.

37

– We propose an improved structural representation of source code structure to
enable us compute relevance of given snippet with the knowledge base.

• Tool: We implement and evaluate our findings using a tool named jSense.

4.2 jSense

We perceive an SO post as a combination of three heterogeneous components namely, title,
body and text. Title and body are NL components whereas code has different structure and
semantics. Therefore, we aim to adapt the MATF model to suit this context.

4.2.1 jSense Retrieval Model - MC-MATF

Here, we introduce a multi-component formulation of MATF which we refer to as MC-
MATF. SO has three key components: title, body and code in each post. To generalize, let
us assume that there are n components. We compute the MATF score for each component.
MC-MATF is a geometric mean of the individual weighted MATF scores thus computed for
each component. In the scenario that one component does not have any of the query terms,
we do not want the overall MC-MATF score to be zero. To avoid this scenario, we introduce
a smoothing parameter α. Equation 4.1 gives this formulation. We have used the ideas of
add-one or Laplace smoothing but with a much smaller value of α = 0.01.

tfMC (d , q) =

(n∏
c=1

[γctfMc(t , pc) + α]

) 1
n

(4.1)

where MATF score tfMc(t, pc) for each component is given as:

tfMc(t , pc) = wc ×
tfRc(t , pc)

1 + tfRc(t , pc)
+ (1 − wc)×

tfLc(t , pc)

1 + tfLc(t , pc)
(4.2)

MC-MATF score for a document (tfMC) The MATF score for each component is com-
puted using the tfM formulation in Equation 4.2. The parameter pc denotes a specific compo-
nent in the post such as title. We use the notation tfRc , tfLc and wc to denote component-wise
scores for RITF, LRTF and aspect weight respectively. We use the same 2

1+log2(1+|Q|) formu-
lation for the aspect weight wc as discussed in Section 2.1.2. The MC-MATF score is then
a geometric mean over the weighted MATF scores of each component.

Component Weight (γc) Different components carry different amount of term saliency in
the corpus. For instance, in the case of SO posts, developers ensure that the same question
is not asked before by searching through several titles of existing posts. Therefore, they
carefully choose relevant terms for the title. Hence, title terms should carry a higher weight
compared to the rest of the components in SO. We use γc to refer to the weight of each
component.

38

Term Frequency (tfLc , tfRc) The LRTF (tfLc) and RITF (tfRc) values correspond to the
length normalized and simple counts of terms in the document, respectively. This works for
text. However, for source code, we need to do additional processing to extract the tokens of
interest. For source code, we extract the AST and from there, we get the identifier tokens.
Each identifier is stemmed and processed for stopword removal. The resulting tokens of code
constitute the terms of the component.

We apply the standard IDF measure. We compute the similarity between query and post
vectors, as follows:

SIM(Q, p) =

|Q|∑
i=1

tfMC (qi, p)× log2

(
N

df (qi)

)
(4.3)

A reasonable TF-IDF model should satisfy Fang’s constraints [90]. Hence, we validate
MC-MATF against these constraints. TF constraint states that “Let q = w be a query
with only one term w. Assume there are two documents of same length, |d1| = |d2|. If
count(w, d1) > count(w, d2), then tf (d1 , q) > tf (d2 , q)”. The function, count(w, d1) refers
to the count of words w in document di. While proposing this constraint, they assume that
the documents are homogeneous. We extend this constraint to multi-component corpora as
follows:

• Multi-Component TF Constraint 1 : Assume |d1| = |d2|. If
∀nc=1 (count(w , c, d1) > count(w , c, d2)), then the term frequencies
tf (d1 , q) > tf (d2 , q). Here, count(w, c, dj) refers to the count of word w in a
component c of document dj.

MC-MATF satisfies this modified constraint. Similarly, the following constraint holds for
MC-MATF:

• Multi-Component TF Constraint 2 : This constraint ensures that tf increase is lesser
for larger TF values when the word count increase remains the same. For exam-
ple, a word count increase from 1 to 2 contributes more to tf than an increase from
100 to 101. Let q = w be a query with a single term w. Assume that |d1| =
|d2| = |d3| and ∀nc=1 count(w, c, d1) > 0. If ∀nc=1(count(w, c, d2) − count(w, c, d1) = 1)
and similarly ∀nc=1(count(w, c, d3) − count(w, c, d2) = 1), then we should find that
tf (d2 , q)− tf (d1 , q) > tf (d3 , q)− tf (d2 , q).

Fang et al. [90], also propose a length normalization constraint and a IDF constraint.
Since we use the standard IDF measure and MATF length normalization, those constraints
do not change.

4.2.2 Structural Model

Our aim is to index and query structural information in source code. Source code comprises
of structure expressed by the syntactic tokens. Research literature shows several ways of
representing the structure ([91, 92, 93, 31]). Some of them are very selective in the informa-
tion captured, such as Control Flow Graphs (CFG) [94]; while some are too descriptive such
as Abstract Syntax Trees (AST) [94].

39

Selective Set Method In order to find a sweet spot between achieving scalability (to
index millions of code snippets) and precision (in retrieval), a bag of tokens representation
of source code is suitable for retrieval which selects structural tokens based on the developer’s
perspective of heterogeneity.

In this work, we define any subsequence of tokens of a compilable program as a Code
Snippet. Therefore, generally code snippets are not error-free compilable units. For example,
method definitions or just a sequence of statements are typical code snippets shared on
SO. The tokens can be structural (ζss) or user-defined (ζvoc). Examples of ζss are tokens
corresponding to loops and branches. Tokens in the variable names, method names and
comments are examples of ζvoc. A code snippet s = (e1, e2, ..., en) is a sequence of n tokens
where ei ∈ ζss ∪ ζvoc.

A structural representation τ ∈ T for a code snippet s ∈ S is obtained using a function
R : S 7→ T which maps a snippet to a desugared searchable sequence of abstracted structural
text. In other words, R is an AST reduction which converts s = (e1, e2, ..., en) to τ =
(t1, t2, ..., tm) where m <= n and ti ∈ ζst . The set of abstracted structural tokens ζst is
defined as follows:

ζst = {“loop”, “branch”, operator , nested} (4.4)

Here, “loop” refers to looping structures such as for, “branch” refers to conditionals such as
if in Java, operator refer to the canonicalized operators found in the snippet. Java allows op-
erators such as “x *= y” that can be canonicalized to “x = x * y”. Nested structural tokens
such as a loop (such as for) inside a conditional (such as if) are represented by concatenating
abstracted structural tokens governed by the regular expression (“loop”|“branch”)+operator
wherever there are loops or branches. We refer to them as nested in Equation 4.4. We
navigate the AST of the given source code and use this set of elements to synthesize a tex-
tual abstraction. Thus, we arrive at a structural representation string phrase of the input
factorial code shown in Figure 4.1 as τ = (loop<= loop+ loop*). We improve this model
in Section 4.2.3 towards building a better repository.

4.2.3 Refining the Structural Model

To understand the code similarity, we conducted a study with thirty graduate teaching
assistants from IIIT Delhi. Henceforth, we consider them as proxy to software developers.
We ensured that they have at least two years of Java coding experience. They were given
77 snippets of “Factorial”, 62 snippets of “Palindrome”, and 70 snippets of “Reversing a
String”. The choice of the topics were driven by mainly two criteria: a) All the variant
implementations of this topic should be easy to understand for the developers, and b) The
variant implementations should exist in large numbers in tutorial sites, real-world projects
and discussion forums. We wanted the focus of developers to be on the structure and not on
the algorithm or API usages. So, we looked at a popular tutorial site2 named javaTpoint and
picked three topics from their top-5 programming examples. We confirmed that the code is
used in large real-world projects (such as Apache Commons Mathematics Library [95]) and
in discussion forums (such as SO). We extracted top-30 results from CodeExchange (which

2http://www.javatpoint.com/java-programs,
http://www.javatpoint.com/factorial-program-in-java

40

Code snippet files

User judgment on
type is captured

here.

Editor to see the
file contents Preview windows

to see sample
snippet from

selected types.

Figure 4.2: A snapshot of the tool we used in our study of structural similarity is shown
here. Users categorized the given snippet into 1 to 10 types based on their judgment.

is a search tool that indexes GitHub projects), next 30 by doing a Google search for these
implementations in projects of at least 1000 lines of code, next from top-15 posts of SO.
Since these topics were picked up from a tutorial site, we also used their implementations.
Note that javaTpoint shows multiple implementation choices for implementing the same
topic. There was no preference for a specific implementation choice, project, or a specific
developer.

The developers were shown all the code snippets collected for one topic. They were asked
to pick heterogeneous examples. Figure 4.2 shows the tool which they used to classify the
snippets. They were asked specifically to classify snippets into 3 to 10 types. The code
snippets used in the study along with the developer annotations are shared on our website3.

Thirty developers annotated the data. This gave us 6270 (=(77+70+62)*30) data points
to study. Using these judgments we calculated the pairwise similarity of code snippets as the
normalized number of users who put the snippets (s1 and s2) in the same type as follows:

Similarity(s1, s2) =
|users(s1, s2)|
|users|

(4.5)

4.2.3.1 Reduction Rules

Recall that the purpose of the study was to understand the developers’ perspective of struc-
tural similarity. We seek to discover the set of rules which can reduce two code snippets to
the same structural representation if they are judged to be belonging to same group by the

3http://jsense.epizy.com

41

developers. From the study, we observed that the following reduction rules are useful for
structural comparison of code snippets.

Rule 1: Identifier and Literal Removal We observe that renaming identifiers and
literals do not cause developers to consider the snippets as different. Hence, we drop them
from the structural representation. Table 4.2 (a) shows an example where dropping n, num
and fact makes the snippets identical .

Rule 2: Idiomatic Replacements There are language supported syntactic sugars that
allow different idioms to replace each other without affecting the structure of the code. For
example, replacing while loop with a for loop does not affect developer’s score of structural
similarity (see Table 4.2 (b)).

Loop and Branches are two common idioms found in Java. Loops appear in three different
forms (for, while and do). Branches appear in three forms (if-else, switch-case and ?:).

Top-k structural elements A BigInteger based factorial implementation must be distin-
guished from an Integer based implementation and hence we see that type information plays
a significant role in structural representation of a code snippet. Method calls are typically
informative and hence we choose to include it in the set of elements we consider. Use of
different libraries provide different interesting applications which could be alternative im-
plementations. Recursion is a popular technique for repeated execution and backtracking.
Therefore, we modify Equation 4.4 as follows:

ζst = {“loop”, “branch”, operator, type,methodCall, “recursion”, nested} (4.6)

We tokenized the snippets and used the major structural elements that distinguish het-
erogeneous snippets from the others. The top-6 features turned out to be: loops, branches,
operators, types, method calls and recursion (Equation 4.6). Loops, branches and operators
are already covered in Equation 4.4. With this improved model, the definition of nested in
terms of regular expression becomes:

nested = (“loop”|“branch”)+(operator |type|methodCall |“recursion”) (4.7)

Rule 3: Merging Declarations For readability reasons, developers tend to keep one
declaration per line. Having multiple declarations in the same line, or using consecutive
lines, is just a matter of style. It does not affect the code structure. Hence, we propose a
reduction rule to canonicalize all variable declarations to one per line. Moreover, the order
of their occurrence does not matter either, as long as the declarations belong to the same
scope. So, we sort them alphabetically as part of this reduction. See Table 4.2 (c) for an
example of this reduction.

Rule 4: Stop Word Removal Removal of some tokens improves the similarity score
between snippet pairs. In Table 4.2 (d), the line System.out.println(...) does not affect
the structure, as per our study. Hence, their removal helps similarity calculation.

42

Table 4.2: We have used four reduction rules. Here, we show two code snippets that reduce
to an identical snippet after the application of reduction rule.

Before:

if (num<=1)
return 1;

else
return num *

fact(num - 1);

Before:

if (n <= 1)
return 1;

return
n * f(n - 1);

After:

if (<=)
return ;

return * (-);

(a) Removal of identifiers and literals.

Before:

int =
for (...)
{ *=
}

return

Before:

int =
while (...) {
*= }

return

After:

int =
loop (...) { *= }
return

(b) Idiomatic Replacement.

Before:

int n = 5;
int fact = 1;
for (int i=1;

i<=n;i++)
fact = fact * i;

Before:

int n, fact = 1;
n = 5;
for (int i=1;i<=n;i++)
fact = fact * i;

After:

int = =
for (int = <= ++)

= * ;

(c) Merging and Sorting Declarations.

Before:

int fact = 1;
for (int i=num;i>1;i--){
fact = fact*i;
}

System.out.println(fact);

Before:

int fact = 1;
for (int i = num; i>1; i--){
fact = fact*i;
System.out.println(fact); }

After:

int fact = 1;
for (int i = num; i>1; i--){

fact = fact*i; }

(d) Removal of lines containing println.

43

Table 4.3: Some examples of jSense structural representation after the application of reduc-
tions and structure flattening.

Snippet jSense Representation

public int factorial() {
if (n == 0)

return 1;
else

return (n*factorial(n-1));}

int branch==
branchfactorial branch−
branchrecursion branch∗

public int factorial() {
return n == 0 ? 1

: n * factorial(n - 1); }

int branch==
branchfactorial branch−
branchrecursion branch∗

public int factorial() {
int result = 1;
for (int i = 2; i <= n; i++) {

result *= i;
}
return result; }

int int loopint loop<=

loop+ loop*

There are several such stop-word tokens such as return, delimiters (;), log statements,
and comments. Hence, instead of identifying all these tokens, we follow a white-listing ap-
proach to these top-5 tokens for the structural representation to get better results. Table 4.2
(d) gives an example.

In most high level languages, some structural elements such as loops and branches are
containers defining new block for more statements. We can capture this containment by ap-
pending tokens within the block with the container token. For instance, a loop containing an
initialization shows up as: for (int i = 0; i<10; i++) { int temp = ...}. We flatten
it to loopint loop= loop< loop++ loopint loop= after applying the reduction rules.

From the study, we find that loops and branches from the reduced code are the major
containers of structural elements. Hence, we restrict flattening only to these two structural
elements. Table 4.3 shows some example code snippets and their corresponding jSense
structural representation.

4.3 Implementation

Our implementation comprises of two steps: 1) Building the repository, and 2) Querying it
for known structures. In this Section, we describe them in detail.

44

SO Data
Dump Uses jSense

Retrieval Model

Topics = { factorial,
palindrome, …}

Index

Index Builder

Code from
posts relevant

to topics

Code De-
Duplication

Uses jSense
Structural Model

Structurally
heterogeneous

snippets per topic

Convert to jSense
representation Structural

representation
of source code

Uses empirically
derived cut-off

Query Handler

Figure 4.3: We build a repository of structurally heterogeneous implementations for a given
set of topics. We use jSense retrieval model to find relevant posts from SO. We use jSense
structural model for computing code similarity.

4.3.1 Building the Repository

We consider each SO post (a single answer) with its title as one document. We used the
Porter Stemming [96] and a stopwords list comprising 173 terms4 to pre-process the terms in
the post. We used jSense Retrieval Model (see Section 4.2) to retrieve top-10 posts from SO
relevant to each query topic. Since our jSense Retrieval Model is an MATF implementation,
it can be integrated with existing IR tools such as the Lemur toolkit5. We assume that every
code snippet in the most relevant posts are relevant implementations for the given topic.
This is not always true with SO posts. However, we find it a reasonable assumption to
make. The noise in the results at this stage gets eliminated to a large extent by the next two
steps in the process. We convert the code snippets to their structural representation using
our jSense Structural Model (see Section 4.2.3). Finally, we compute pairwise similarity to
cluster code snippets. We use a cut-off (ψ) to discriminate snippets as similar or dissimilar.
We retain the first result from each cluster of similar snippets, and drop the rest. Thus
we get structurally heterogeneous code snippets per topic. We call this as the repository.
Figure 4.3 gives an overview of this sequence of steps.

Extracting Structure from Code Snippets Extracting structure as per the reduction
rules, and representing them in a searchable format is at the heart of our approach. We use
EclipseJDT6 to extract the structural elements from Java programs by navigating through
its AST. All the structural elements listed in Equation 4.6 except recursion can be extracted
by AST navigation.

While we navigate through the AST, we append the value of type (for instance, int,
char, or Student), the name of the method being invoked, and the term “recursion”, as we
encounter each of them. We separate them by space. If we encounter an operator, we check if
it is inside a loop or a branch. In the first case, for loop, we append “loop” and the operator
(for instance, loop+), and for branch, we append “branch” and the operator (branch<). For
the latter case, we just append the operator to our structure string.

To identify recursion, we search for method name within the method definition. This is
not an accurate way of detecting recursion. However, we rely on the assumption that the

4http://www.ranks.nl/stopwords
5https://www.lemurproject.org/
6http://www.eclipse.org/jdt/

45

method name would rarely appear in the method definition given that we pre-process the
snippet to strip comments.

For each topic, over the collected code snippets, we use the length of the jSense struc-
tural model (the number of tokens in them) to remove outliers. We can observe that, empty
snippets have zero length. A large code snippet of say 2000 lines of code will have propor-
tionally higher length in their corresponding jSense structural model. The intuition is that
the variants of similar features will have similar structural representation. Hence, we can
drop snippets which have jSense structural model of length two standard deviations away
from their mean length.

4.3.2 Querying the Repository

Given any Java input program, we used Eclipse JDT to extract its method definitions. We
pre-processed the code snippet by cleaning line and block comments. Next, we transform
them to their jSense structural representation. The structural representation of the input
snippet becomes the query. In the repository, for each topic, we store the corresponding
structural representations and code snippets. To calculate the relevance of input structure
to the structures in repository, we use Jaccard similarity (JS) [97] over the sets of tokens in
these structural representations (τ) as shown below in Equation 4.8:

JS(s1 , s2) =
|τ1 ∩ τ2|
|τ1 ∪ τ2|

(4.8)

Note that for input code snippet pair (s1 , s2), similarity is computed on the corresponding
structural tokens (τ1 , τ2). To preserve sequence information, we apply Equation 4.8 on
tri-grams of the structural representation.

Computing Jaccard Similarity during query time is prohibitively expensive. Hence, we
resort to an approximation. In our implementation, we approximate JS using Min-Hash [89]
technique. The approximation error (ε) can be theoretically bound to O(1√

k
) for k hash

signatures. As we increase the hashes, the approximation error reduces. To bound the
expected value of ε to a small value of E[ε] < 0.05, we use 400 hashes.

For all matching structures where the similarity is higher than a specific cut-off (same
value as ψ), we extract the corresponding code snippets and topics. It is possible that
same structural representation matches with snippets from different topics. When we get
multiple results, we use a ranked list of vocabulary items associated with each topic for
disambiguation.

The resulting topics with best match on similarity after disambiguation are shown to the
users along with the corresponding snippets as alternative implementation choices.

4.4 Evaluation

In this evaluation, our goal is to understand the effectiveness of the jSense tool. In that
process, we seek to understand the role played by the structural and retrieval models in the
overall performance of the tool. First, we empirically derive the parameters for structural
comparison and thereafter evaluate the effectiveness of our approach to build a repository.

46

We evaluate the retrieval models considering SO as a collection of posts with each post
containing three components namely title, body and code for each post. We evaluate the
overall approach by computing precision and recall for 12 topics. We compare our system
with a state of the art code search tool named CodeExchange [98, 88]. Finally, we interview
industry developers to understand the usefulness of our tool.

Experimental Setup There exists 2.7 Million posts tagged as Java in SO7. From the SO
posts, we extract all the three components namely title, body and code for every post tagged
as Java. We remove stop words and apply Porter’s [96] stemming to the text. We ignore
images and other non-text content from the SO posts that contain code snippets satisfying
the above criteria.

The code snippets embedded in SO posts are partial programs. For example, developers
may sometime leave ellipses (“...”) and only provide lines of interest. To be able to result in
code snippets that are more meaningful, we drop the code snippets that do not match the
following criteria:

• Correctness Criteria: We could extract AST out of the snippet. We should be able to
navigate the AST and extract the structural elements such as conditionals and loops
from the code snippets. It is possible that the “<code></code>” tag within which
code snippets usually appear contain just a stack trace or non-Java code.

• Adequacy Criteria: There must be at least three lines of code. The information content
in the structure of code snippets must have the capacity to discriminate one code
snippet from the other implementing a different topic.

• Usefulness Criteria: We retrieve code snippets that are either a set of lines or a sin-
gle method definition. We drop snippets if they contain class definition or multiple
methods. This improves precision in retrieving reusable snippets.

Applying these criteria results in 94,449 Java tagged SO posts which we use to build the
repository.

4.4.1 Building the Repository

We index all the 94,449 method definitions using MC-MATF. From the posts that contain
these methods, we use Mallet8 to arrive at topics. We manually review the top 500 topics list
for those topics that can potentially have code snippets implemented as a single Java method.
Thus, we found 156 potentially useful query topics. Using the associated code snippets
automatically retrieved using the jSense retrieval model, we build the jSense repository. We
also manually annotate the code snippets in SO to form the gold set. This set of snippets
act as a gold set for evaluation allowing us to compute precision and recall. We have used
single method Java snippets only as a gold set preparation strategy. Our approach and tool
can work with any code snippet.

7We use 09/2016 version of SO from
https://archive.org/download/stackexchange/stackoverflow.com-Posts.7z.

8http://mallet.cs.umass.edu/topics.php

47

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F 1
 S

co
re

s

Cut Off (Ψ)

Deep Copy Reverse String Factorial

Figure 4.4: While de-duplicating the results, for different values of ψ, we note the corre-
sponding F1Score for each topic. We observe that a cut-off of 0.4 yields best results.

On an Intel Xeon E5 workstation with 16 GB RAM and 3.2 GHz CPU, the average time
taken over 20 attempts to build the repository with 156 topics was 118 minutes. Loading the
repository without any optimization took 8 minutes. Thereafter, jSense gave a sub-second
response time for queries. These steps can be further optimized for both space and time.
Since this is a one-time offline process, optimizing it is not our focus.

De-duplication using Structural Model A key step in the process of building the
repository is to remove the structurally similar snippets from the relevant snippets retrieved
from SO. We refer to this step as de-duplication. When we match the structure of input
snippets for de-duplication, we use a threshold to cut-off (ψ) the results which are structurally
similar. Increasing ψ brings non-heterogeneous snippets. Recall suffers if we decrease ψ. For
example, on analysis of results with ψ = 0.2, we observe that not all types are important in
classifying snippets as heterogeneous. Table 4.4 shows results for various ψ values. We thus
find that ψ = 0.4 works best for our context. Figure 4.4 shows the relationship between F1

Score and ψ for three topics.
We compare our structural model with the reduced set-based model [37] over the same

set of topics. Three developers with at least two years of experience of working with Java
language manually evaluated the resulting code snippets as relevant and heterogeneous. We
have improved the precision from 83% to 92%. The inter-rator agreement was 100% in this
case which we attribute to the simplicity of the topics. This improvement is because of two
main reasons: a) the inclusion of more structural elements in the jSense model, and b) the
improved relevance of results due to MC-MATF while building the repository.

Retrieval Models - Comparison between TF, MATF and MC-MATF The quality
of snippets in our repository is a result of the effectiveness of the retrieval model. Replacing
the retrieval model affects the overall precision and recall. As shown in Table 4.7, MC-
MATF gives the best results. We attribute the performance to the ability to distribute

48

Table 4.4: A comparison of snippets retained by our approach against a developer’s hand-
picked set of implementations, for the “factorial” topic.

Cut-off (ψ) Snippet Count Precision Recall F1 Score

0.0 1 1.00 0.20 0.33
0.1 3 1.00 0.60 0.75
0.2 3 1.00 0.60 0.75
0.3 4 1.00 0.80 0.89
0.4 6 1.00 0.83 0.91
0.5 6 0.42 1.00 0.59
0.6 6 0.42 1.00 0.59
0.7 6 0.36 1.00 0.53
0.8 6 0.29 1.00 0.46
0.9 6 0.29 1.00 0.46
1.0 6 0.29 1.00 0.46

weights across the multiple components in SO. SO posts have a wide distribution of distinct
words and post length (see Section 2.1.2). Hence, MATF works better than TF in the SO
context. Table 4.5 evaluates jSense with MC-MATF on 12 short queries. We replaced them
with 30 long queries of length ranging from 5 to 20 with a mean and median of 14. We
used γbody : γcode = 2 : 1 ratio to calculate the precision and recall. The results are still
similar. MC-MATF outperforms both MATF and TF. Moreover, the results that MATF
performs better than TF justify our decision to adapt MATF. Drop in F1 scores for long
queries is consistent across retrieval models. Note that these results are after the application
of stemming and stop word removal on long queries.

4.4.2 Querying the Repository

Since the repository is built using SO data, we chose input code snippets from a different
source. We collected Java programs used in the most popular Java books. We use this as
our input dataset for evaluation. Since SO is typically used by new programming language
learners, we used top three Java books as our test dataset for code snippets. We downloaded
the code snippets from the website. The top three books from a leading online shopping site
were Head First Java, Effective Java and Java: A Beginner’s Guide. The rationale for test
data selection has no relation to the retrieval approach.

Comparison with CodeExchange To understand the overall effectiveness of the jSense
tool, we compare the tool output with the results of CodeExchange [88] (CE) which is a
code search tool. CE indexes GitHub code snippets. It expects the input to be an NL
query. In our case, we use a code snippet as the input. We extract the identifiers from the
code snippet and use them as the query (referred as CEb in Table 4.5 and Table 4.6) and
thereafter compare the results. In some queries such as “compare objects” the identifiers in
the code are not very useful for search. Therefore, to boost the results of CEb, we query
with the topic string mentioned in Table 4.5. We have reported the best results out of both

49

Table 4.5: We evaluate jSense by comparing the results with a goldset. GS represents the
gold set. JSb and CEb represent the baseline versions of jSense tool and CodeExchange CE
respectively.

Distinct Choices # Retrieved # Relevant

Topic GS JSb JS CEb CE JSb JS CEb CE JSb JS CEb CE

binary search 3 1 2 1 1 10 4 10 10 3 4 2 2
check file exists 5 2 3 2 2 10 4 10 10 8 4 6 8
compare objects 5 2 4 0 1 10 10 10 10 10 10 4 10
string to int 7 0 0 0 0 10 10 10 10 0 0 0 0
deep copy 4 2 2 1 1 10 6 10 10 9 6 9 9
factorial 7 4 5 3 4 10 10 10 10 9 10 9 9
file reading 6 2 6 1 1 10 7 10 10 8 7 6 8
keyboard input 4 2 4 1 2 10 10 10 10 10 10 7 10
merge sort 3 1 3 1 1 10 5 10 10 9 5 8 9
check palindrome 7 2 5 2 2 10 8 10 10 6 8 5 5
reverse string 7 2 5 2 2 10 10 10 10 6 10 3 3
sorting array 6 3 5 1 1 10 10 10 10 10 10 10 10

of these query formulations as CE in Table 4.5 which compares the precision and recall of
CodeExchange with jSense. We use JSb to denote a baseline jSense system with ψ = 0.2
and γ = 1 for all components. JS denotes a jSense system whose parameters are empirically
derived. When compared to CE, a well-configured jSense system improves the precision from
69% to 92%. We empirically derive ψ = 0.4. Component weights distribution at a ratio of
γtitle : γbody : γcode = 4 : 2 : 1 gives best results which reconfirms that title terms should be
more important than the body of the post. Terms in code are usually shortened identifiers
such as “fact” for “factorial”. jSense outperforms CodeExchange in all queries except the int
to string case in terms of F1 Score. All retrieval models based on the bag of words assumption
lose precision for the query, int to string which is semantically different from string to int.
In another example, query terms such as “binary” and “search” appear independently in
several posts and not necessarily in posts discussing “binary search”. Hence, CE and JSb

score poorly on precision. JS gives higher weight to terms in title thereby gains precision.
Clone detectors such as SourcererCC [99] and Deckard [74] are also based on token similarity.
However, these tools do not allow us to optimize the query as we did for CE. Moreover, CE
is a hosted tool which is already optimized for search.

User Study on Effectiveness of jSense To evaluate the usefulness of this tool, we
interviewed nine industry developers with at least two years of development experience in
leading software development organizations. In the first part of the study, we showed them
a code snippet. We asked them the following three questions: a) to explain its behavior, b)
if they would have coded the feature that way, and c) whether they find any potential bugs
or missing parts. In the second part, after gathering their answers, we showed them five
alternative implementations for the same snippet as generated by jSense from SO and asked
them the same questions again. This time around, they identified 57% more issues. 70% of
the developers said that they would have written the code differently after looking at the

50

Table 4.6: We extract implementations with an average precision of 0.92 compared to the
0.69 of CodeExchange (CE). jSense (JS) improves recall from 0.29 CodeExchange (CE)to
0.71 (JS).

Precision Recall

Topic JSb JS CEb CE JSb JS CEb CE

binary search 0.30 1.00 0.20 0.20 0.33 0.67 0.33 0.33
check file exists 0.80 1.00 0.60 0.80 0.40 0.60 0.40 0.40
compare objects 1.00 1.00 0.40 1.00 0.40 0.80 0.00 0.20
string to int 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
deep copy 0.90 1.00 0.90 0.90 0.50 0.50 0.25 0.25
factorial 0.90 1.00 0.90 0.90 0.57 0.71 0.43 0.57
file reading 0.80 1.00 0.60 0.80 0.33 1.00 0.17 0.17
keyboard input 1.00 1.00 0.70 1.00 0.50 1.00 0.25 0.50
merge sort 0.90 1.00 0.80 0.90 0.33 1.00 0.33 0.33
check palindrome 0.60 1.00 0.50 0.50 0.29 0.71 0.29 0.29
reverse string 0.60 1.00 0.30 0.30 0.29 0.71 0.29 0.29
sorting array 1.00 1.00 1.00 1.00 0.50 0.83 0.17 0.17

Average 0.73 0.92 0.58 0.69 0.37 0.71 0.24 0.29

Table 4.7: Ability to differentiate the components allows MC-MATF model to outperform
the other retrieval models.

Short Queries Long Queries

Model P R F1 P R F1

TF 0.68 0.51 0.58 0.66 0.52 0.58
MATF 0.79 0.60 0.68 0.72 0.55 0.62
MC-MATF 0.92 0.71 0.80 0.81 0.63 0.71

choices. Finally, we asked them if developers will benefit from looking at these code snippets.
All the developers agreed that looking at these implementation choices will be useful. From
this study, we conclude that identifying code snippets and showing the implementation
choices can be very useful to developers. More details on this study including the summary
of developer responses are available in Annexure 1 and on the jSense website9. Studies by
Thummalapenta [100] and Nguyen et al. [101] show that reusable code snippets exist in
abundance. Yang et al. [102] show that developers are using snippets from SO in GitHub
projects. Hence, a tool like jSense is not only useful but also effective.

9http://jsense.epizy.com

51

4.5 Threats to Validity

Internal Validity We work with code snippets in SO which are relatively short compared
to complete programs found in open source repositories such as GitHub. Structural compari-
son restricted to a method level as followed in our approach may not be effective in matching
all topics especially associated with large programs. Given the millions of code snippets and
topics discussed in SO, we find our approach useful despite its focus on such method-level
comparison. It will be interesting to try our approach to extract code snippets from sim-
ilar unstructured sources (Bugzilla, Jira, etc). These platforms may put forth extraction
challenges. However, since our approach depends only on source code, and surrounding text
describing the code, the approach by itself will not require any modification.

We have based our findings on our correlation of similarity metric (which is objective)
with developer’s perspective of heterogeneity (which is subjective). To reduce bias, we used
three subjects who were experienced developers for experimentation. Our work is based on
empirical evaluations with limited number of human subjects. It is possible that with a
different set of developers, we might get different results.

Being a data-driven approach, availability of sufficient data becomes a pre-requisite for
the approach to be successful. Multiple occurrences of the same snippet in SO discussions
is necessary to increase confidence in the results for term frequency dependent techniques.
Data in discussion forums will only grow over time and the same technique can be applied
on other similar unstructured sources (bugzilla, for example).

External Validity There may be topics for which our results may not generalize to. To
mitigate this risk, we have used topics of different types such as mathematical (factorial, HCF
and LCM), language features (locking, string handling), data structures (circular counter,
delete from array), algorithms from specialized domains (eigenfaces from image handling;
linear regression is related to Machine Learning; chromatic number is from graph theory).
The effectiveness of topics and challenges in building a useful topics list is also a bottleneck
to the impact that this tool can make. We have used Mallet for topic modeling. Advances
in topic models [103, 104] promise breakthroughs in solving this problem.

We have scoped our evaluation to Java language. Nothing in our approach except the
parser is Java specific. Thresholds such as the similarity cut-off, aspect weight and the
component weights may need to be changed for different programming languages. Given
that index building for entire SO takes less than 2 hours, the entire process of empirical
parameter estimation can be automated.

4.6 Related Work

Mining Examples Several researchers [53, 105, 106, 107] have discussed the importance
of example-centric development. Blueprint [53] performs task oriented search for example
code. XSnippet [108] focuses on searching for examples for the object instantiation task in
Java. Portfolio [109] helps in visualizing dependencies. For a given source and destination
type, PARSEWeb [110] goes beyond task oriented web search. It searches the web for method
invocation schemes. Strathcona [93], MAPO [111] and Prospector [106] use structural details

52

in code to get examples on API usages. In contrast, our work does not necessarily need to
know about dependencies, input and output types, is neither task oriented nor API usage
based.

Spotting Topics in Source Code Identifying source code behavior using NL has been
researched upon under the name of Feature Location, Topic Modeling, Code Summarization,
Code Description [75, 112, 113, 114] and Annotation. Topic models such as Latent Dirichlet
Allocation has been applied [115] on source code to leverage the user defined vocabulary.
Similar idea has been adapted in Structural semantic indexing [29] to leverage structural
information. While the first technique limits to vocabulary, the latter uses call hierarchy
information. We work on Java methods which are typically short snippets and have no
call hierarchy information. Hence, these techniques cannot be used for intra-procedural
structural search.

Structural Representations of Source Code Source code structure has been analyzed
in the form of AST, CFG and PDG [116, 117]. Each representation operates at a differ-
ent level of detail where certain syntactic or semantic elements are abstracted out. Higo et
al. [118] show the relationship between functional similarity and three program attributes
namely vocabulary, structural and method name similarity. However, in our case, we need
an approach that finds structural similarity in the snippets so that it reveals heterogene-
ity in implementation. In our work, missing call hierarchy information and method level
scope makes construction of value dependency graphs impossible. Further, we do not use
input/output values or even execute the code samples. Our approach leverages light weight
information retrieval and program analysis techniques.

Building Repositories Sourcerer [20] is closest to our work in constructing a code repos-
itory using IR techniques. Sourcerer does not group code snippets by topic which is essential
for our purpose. Indexing big code has been important for code search [119] research. Our
work leverages indexing techniques from such works so that several thousand code snippets
can be searched near real-time with a sub-second response time. We have significantly im-
proved the precision and recall of building a repository over the work of Vinayakarao et
al. [37] by using an MCMATF retrieval model. We have added three key factors namely
types, methods and recursion to our structural model.

Code Search Engines A simple web search on Google or Bing10 results in popular web-
sites that contain the vocabulary used in the query. Even the existing code search en-
gines [83, 120, 77, 105, 121] such as searchcode [13] and Krugle [12] depend on the terms
used in source code. Clues from the vocabulary used in the code may not be always useful
in recognizing the code snippet [87]. Since there are no special processing on the structure
of code snippets, a search for factorial in existing search engines does not return distinct
implementation choices. We are interested in implementation choices and not just the best
match by site reputation or text frequency.

10www.bing.com

53

4.7 Summary

jSense mines implementation choices for code snippets discussed in SO. Multi-component
nature of posts in discussion forums demand usage of specialized retrieval models. We have
adapted Multi-Aspect Term Frequency model and applied it for search on multi component
text that includes source code as one of the components. To deal with source code as one of
the components, we have proposed an improved selective set method which extracts structure
from source code, and represents it as text. These models can be used for other retrieval tasks
such as code completion and code comprehension. Hence, we have shared their implementa-
tion as well. These models and methods enable searching over partial programs of discussion
forums with a precision of 92% and recall of 71%. With ever growing volume of discussion
in these forums, the approach will become more effective in recognizing topics and mining
code snippets that serve as implementation choices. Even though we mine implementation
choices, this work is only a first step towards searching for code variants. As future work,
we plan to extract the code context, automate the understanding of desired properties and
apply this knowledge to compare the implementation choices, thereby retrieving variants.
We also plan to apply our work on programming languages of the non-imperative kind. We
look at improving the structural model to leverage the partial program analysis techniques
so that the comparison of code snippets can be even more effective.

54

Chapter 5

Improving Code Search using Entity
Retrieval

5.1 Introduction

Search has become indispensable in the modern programming context [24], where navigating
through thousands of lines of code is infeasible. Developers search for code fragments or
keywords to locate or navigate to a particular program concept, when they debug, write
code, look for code fragments to reuse, or try to understand an API usage.

Current IDE search features (e.g., Eclipse search) or code search tools (e.g., Sourcerer [20],
Portfolio [122]) work by indexing string tokens in the code as keywords. Therefore, searching
for a particular programming concept requires an understanding of the syntactic equivalents
of that concept. For example, if a developer wants to find whether her C code contains a
function that uses an integer array, she may formulate a query based on the construct “int
files[]”. However, such a query will miss the occurrences of functions that have “int
∗files” in their definitions.

Currently, queries that include natural language (NL) give poor results [123]. Table 5.1
shows that this problem exists in established web-scale code search engines as well. This
is because there is no mapping between the programming concepts and their associated
syntactic forms in code.

We extract these mappings from developer discussions in SO. Programming concepts are
identical in principle to named entities [124]. They are also named and may have multiple
surface forms. First, to discover them, we infer the NL terms that refer to these entities
by using Parts of Speech (PoS) tagging and pattern matching of these sequences. Then we
extract the associated syntactic forms to create an entity knowledge base. Finally, each line
of a given source code is annotated with their associated NL terms using the knowledge base,
which then allows for regular keyword-based searches on these terms.

As a proof of concept, we have implemented our approach in a tool named Anne1:
ANNotation Engine, which includes entity knowledge bases for C and Java.

We evaluated the usefulness of the approach through a user study, in the context of Teach-
ing Assistants (TA) providing feedback on submissions to class assignments. We recruited 16

1http://tools.pag.iiitd.edu.in:8092/anne/index.html

55

Table 5.1: P@10 of existing code search engines for NL queries containing programming
concepts.

Query Krugle [12] openHUB [125]

declare array 0.1 0
concatenate two arrays 0.2 0
check if a string is a numeric type 0 0
assign to first element in an array 0 0

participants, who were currently or had been a TA for introductory CS courses. We used a
within-subject study design, where participants in the Control condition used regular code,
and those in the Experimental condition used code annotated with the programming con-
cepts (as identified by Anne). There were two tasks, one an assignment in C and the other
in Java. We found correctness scores (precision) of participants to be equivalent across the
treatment groups. This is likely because participants were TAs and had experience grading
this type of submissions. The time to search was reduced by 29% without compromising on
correctness and completeness.

Our key contribution is a technique to map lines of source code with relevant programming
concepts, so as to support code search engines for NL queries. This allows the users to query
on programming concepts using NL terms, and need not recall the exact syntactic terms or
patterns.

5.2 Motivation

In this section, we present our formative study to motivate the work, followed by a discussion
on potential applications, and a specific use case for this line of work.

5.2.1 Formative Study

As formative work, we surveyed to understand whether, and under what conditions develop-
ers use natural language terms in their search queries, and whether they face any difficulties
when querying for a programming concept by using its syntactic form. We surveyed 25
developers working in leading software development organizations. 18 of these developers
had 3 years or less experience in programming, while others had experience ranging from 3
to more than 10 years in industry. We consider the former group as novices. The survey
questions and a summary of responses are listed in Table 5.2.

Our results indicate that novice developers, developers who are starting on a new project,
or investigating code that they had not worked on for some time face difficulties in finding
the right “code” in their project. 44% participants faced situations where the code did not
match the NL term they would have used to search for that functionality. 72% participants
felt that it is difficult to search for specific code syntax in current IDEs. One participant re-
sponded: “I’d search for the patterns manually using a simple find operation.” Another said,
“I might search for [different] keywords like ‘mid’ or ‘pivot’ when searching for a particular

56

Table 5.2: Formative study on 25 real industry developers indicates that this research will
be useful.

Survey Questions and Responses

(1) Sometimes when reading a piece of code, the code snippet feels familiar but you
may not know how it is popularly called. For example, in a very simplistic case
you may be looking at a Quick Sort implementation. After reading the code, you
may understand that the code is sorting integers, yet, you may not know that this
algorithm is called “quick sort”. Have you experienced this?
Yes: 44% (11); No: 56% (14);

(2) Sometimes it is difficult to search for a specific code snippet in a project by using
existing IDEs. For example, you may want to search how a particular element is
initialized in the code. As another example, you may want to search for multiple
substring computations and return statement with increment to find the Levenshtein
distance implementation. Have you ever experienced this?
Yes: 72% (18); No: 28% (7);

(3) Let us assume a situation where a developer wants to search for a quick sort
implementation. The implementation is not available under the name “quicksort”
and hence the developer wants to find all code snippets where “increment”, and
“mid-point computation” occur. To do so, the developer opens an IDE and creates
a natural language query, “increment, mid-point computation”. The IDE then au-
tomatically understands that, for Java, increment is “ ++” or “ + 1”, and mid-point
is “/2”. It finds all methods where such constructs exist.

(3.1) How important do you consider this functionality? (>=3 on a scale of 5)

Important or Neutral: 92% (23); Not Important: 8% (2);

(3.2) How often would you need to use this functionality? (>=3 on a scale of 5)

Often: 80% (20); Not so often: 20% (5);

sort algorithm”. Unless the developers can find the correct query words, they will need to
manually examine the code.

Code search still happens through keyword search. One participant noted “[I] search the
source code files using keywords/ Mnemonics in the hope that the developer might have used
meaningful keywords in the code. Example: for the quicksort example, I might [search] for
keywords like mid or pivot”. 60% felt it to be “important” or “very important” to support
NL queries. For example, a participant mentioned: “... [search function in an IDE] was
highly useful, but it had no concept of natural language based result, which in my opinion
would have proved to be even more useful and would have led to faster search results”.

Therefore, we conclude that programmers in the industry will benefit from a technique
that maps source code lines with its associated programming concepts, which can be used
to support search engines that need NL querying.

57

Anne

Entity
Discovery

Entity Profile
Construction

Entity
Linking

Input: Set of Seed
Entities:
{collection, datatype, …}

Ouput: Set of
Discovered Entities:
{array, pointer, type, …}

A B C

I

II

IV

V

Entity Profiles:
Array  {[]}
Declare  {int = }

III

Figure 5.1: Anne annotates input code snippets, line by line with natural language terms.
These annotations help keyword based search engines to address NL queries.

5.2.2 Applications

In general, wherever there are NL queries involved in code search, our approach would be
useful. In addition to web-scale code search, NL-based search over source code occurs in
several software engineering contexts too, such as coding [24], maintenance [126], summa-
rization [112, 127] and program comprehension [128]. To evaluate our work, we have used
one scenario from academic code search related to programming assignments. Code search
for programming assignments is another real problem and TAs find our tool very useful.

5.2.3 Problem Overview

Here, we list one use case and explain how our approach solves the problem.

Problem Sarah is a TA for an introductory Java programming class that has 100 students.
She has to evaluate a programming assignment on enum which specifically requires students
to use parameterized enumeration. To assess correctness, she has to look for the syntactic pat-
tern of parameterized enums in all the 100 submissions. A keyword search on enum alone is in-
sufficient as it will match all enum declarations (e.g., enum { Mercury, Venus, ...}). Note
that parametrized enum takes the following form, enum { Mercury(9,12), ...}. There-
fore, Sarah would either have to use regex in her query (such as enum.*\{.*(.*);) or search
for occurrences of enum, and manually check each assignment to find the submissions that
did not use parameterized enum properly. Even for experienced TAs, writing regex can be a
challenging and error-prone task, especially when they have to discriminate between entities
such as type casting and parameters. Anne takes NL input as parameterized enum and lists
all occurrences and thus will help Sarah in this task.

58

Solution Figure 5.1 provides an overview of our solution to this problem. Our tool, Anne,
mines SO posts to identify terms in SO questions that pertain to programming concepts, such
as enum by using Parts of Speech (PoS) tagging. We refer to these programming concepts
as named entities. More specifically, in Step A, when given a seed entity (e.g., array), Anne
identifies other entities (such as enum, arraylist, collection, etc.) through PoS tagging.

In step B, Anne analyzes the SO posts to mine associations between the entities and their
syntactic patterns. In our scenario, Anne will create associations between the programming
concept enum, parameter with its syntactic pattern: enum { (,) }. A result of this step,
is a knowledge base of named entities and syntactical elements most associated with each
entity.

Finally, in step C, given an input source code, Anne links the relevant programming
concepts to each line of code. In our scenario, Anne tags the code lines from input source
code, enum {Mercury (9,12), Venus (10,13),...}, with parameter as inline comment.
As a result of this step, Sarah can now use keyword based search engines to locate the code
using NL terms, such as parameter.

5.3 Definitions

We define the terms that we use in the rest of the dissertation as follows.

Definition 1. Let c = (τ1, . . . , τn) be a code snippet where each τi is a syntactic token. Any
subsequence p of c is a Syntactic Pattern occurring in c.

Definition 2. Named Entities in source code is a binary relation E ⊆ P × T such that
∀ei = (pi, ti) ∈ E, ti is a NL phrase used by developers repeatedly to identify an associated
syntactic pattern pi.

We aim to map a given source code to its collection of entities. Hence, we first need to
discover these entities. A bug description, a code comment, SO title, or any NL description
of source code q, can be modeled as a sequence of terms or NL phrases (t1, . . . , tm) that
points to a set of code snippets {c1, . . . , cn}. Each code snippet ci is a collection of lines
(li1 , . . . , lio). From a large collection of such (q, c) pairs, our task is to find (p, t) pairs, where
p is a syntactic pattern, and t is a term sequence from the vocabulary of q.

Definition 3. Entity Discovery is the process of extracting candidate term sequences
that represent entities in source code. In other words, we find the set of term sequences
T = t1, . . . , tn, such that each item ti in it has at least one named entity (pj, ti) associated
with it. We extract them from the available query-code pairs (q, c).

Definition 4. The Entity Profile is a mapping ψ : T → 2P that takes term t as an input,
and returns a set P ′ of syntactic patterns, {p1, . . . , pk} associated with t.

Definition 5. Entity Linking in source code is the process of associating a named entity
e to a unit u of source code. In other words, it is a mapping ∆ : C → E, where C is the set
of source code units. In this dissertation, we use a line of code as a unit.

Note that a line of source code can contain several syntactic patterns, and each syntactic
pattern may be associated with several distinct named entities. Hence, the entity linking
process may associate several entities to a line of code.

59

Input: Set of Seed
Entities:
{collection, datatype, …}

I

Entity Discovery

PoS Type
Detection

PoS Pattern
Mining

Candidate
Entity Mining

A B C

Ordered PoS Pattern
Sequences:
NN IN DT ENTITY IN NNS:70
NN IN DT ENTITY IN NNS IN:51
DT NN IN DT ENTITY:45
NN IN DT ENTITY IN DT NN:44
…

III

Ouput: Set of
Discovered Entities:
{array, pointer, type, …}

IVPoS Types:
collection --> [NNP, NN],
datatype --> [VB, JJ, NNP, FW, NN],
…}

II

Figure 5.2: Entity discovery subsystem works on NL text using parts-of-speech (PoS) ap-
proach. We use seed entities to discover more entities that fit into the same grammatical
sequence.

5.4 Approach

Our objective is to automatically tag lines of source code with their associated named entities.
This is accomplished through three major steps: a) Entity Discovery, b) Entity Profile
Construction, and c) Entity Linking.

5.4.1 Entity Discovery

We leverage PoS tagging to discover entities from SO titles. The intuition is that developers
use similar sentence structures when they ask questions about a programming concept. For
example, some of the SO titles are in the form of: How to declare an array in Java? and How
to declare a list in Java? We exploit this similarity in sentence structures to extract entities.
Figure 5.2 gives the workflow for this step.

We need to identify the entities relevant to a programming language. We select the seed
entities from a popular tutorial site, Tutorialspoint2. Tutorialspoint groups topics related to
the programming language into a short list. For example, Java had 39 topics and C had 29
topics. Some of these topics were phrases such as type casting which we mapped to a single
word, cast in this case, with the help of a language expert. We use this list of processed
topics as the seed entities (Figure 5.2 (I)).

For each seed entity, we extract and group the SO titles that contain that entity. Next,
for each title in a group, we annotate its words with their corresponding PoS types (noun,

2We used the categories from http://www.tutorialspoint.com

60

Table 5.3: Patterns and frequencies for conditional in Java snippets found in SO.

Uni-gram
Pattern

Normalized
Frequency

n-gram
Pattern

Normalized
Frequency

(1.00 if () { 1.00
... () 0.50
if 0.65 = (()) 0.25
... (new () { 0.25
while 0.10 ...
string 0.06 ...

verbs, etc.,) by using an off-the-shelf PoS tagger (Stanford Log-linear PoS Tagger [129]).
We extract all PoS sequences for every seed entity as shown in Figure 5.2 (II).

We use the position of the seed entity and its sequence to discover other entities. This
is in accordance with research that has used PoS sequences to understand sentence struc-
tures [130]. Therefore, we identify the PoS sequence of each seed entity in all the SO titles in
which they appear. For each seed entity, we rank the PoS sequences as per their frequency
of occurrences (Figure 5.2(III)). For example, for array, the most frequent pattern was NN
IN DT ENTITY IN NNS where ENTITY is the placeholder for array. As an example, the
SO title, “How to determine type of object/NN in/IN an/DT array/ENTITY of/IN object-
s/NNS” has this frequent pattern. Same pattern appears in another title, “Get an array
of int/NN from/IN a/DT string/ENTITY of/IN numbers/NNS”. So we gather that both
array and string have the same PoS sequence. Thus we discover more entities. To tune
for precision, we use the top-most frequently occurring PoS sequence (Figure 5.2(C)). The
output of this step is a list of discovered entity names (Figure 5.2(IV)).

5.4.2 Entity Profile Construction

Our goal in this step is to link the discovered entities with their syntactic patterns, to create
a profile for each entity.

We leverage the fact that source code has repetitive syntactic patterns [42]. For instance,
an array declaration has a syntactic structure composed of a few tokens, that are repeated
across multiple source code snippets. Tu et al. [131] find that source code exhibits redun-
dancies even in local context i.e., in short snippet of code being edited by a developer. They
also show that frequency based n-gram patterns can be used to extract these redundancies.
Further, Gabel and Su [132] find that the syntactic redundancy peaks at the line level. We
leverage all these observations in finding repeating syntactic forms for entities at line-level
using n-grams.

We intend to discover these patterns (pi ∈ P ′) in source code that are associated with
specific entities (t) (e.g., array and conditional). These pattern lengths (|pi|) can vary. For
example, an array has |[]| = 2, but a conditional has |if () {| = 4. Let SOL be the set of all
SO posts tagged with a specific programming language L and containing at least one code
snippet per post. We need to identify the most appropriate n-grams that represent a specific
entity from SOL. We use the TF-IDF [133, 134] over n-grams to identify the syntactic

61

patterns that are most associated with a given entity in SOL (Table 5.3). To compute term
frequency tf(t, g) of an n-gram g, we use the SOL posts containing the entity name in title.
For IDF computation, we use all SOL posts. Since SO post titles and code snippets are
short in nature, we ignore the length normalization. Thus, we use the TF-IDF weight =
tf(t, g).log |D|

df(g)
where |D| is the total number of posts in SOL and df(g) is the number of

such posts containing the n-gram, g. Table 5.6 shows the results of these steps for a few
entities.

Controlling n-gram explosion We are interested in keywords related to programming
concepts and not user defined terms (variable or identifier names). Hence, we collect and
tokenize all code snippets from SOL, and rank distinct tokens (τi) by frequency (tf(τi)).
Tokens that are programming concepts will be ranked higher as opposed to user-defined
terms, since fewer snippets would have overlap between usages of user defined terms in SO
posts. So, we construct a list, φ(k) = {(τ1, tf(τ1)), ..., (τk, tf(τk))}, of top-k tokens with
highest frequency. The value of k needs to be large enough to contain all keywords of the
programming language. We define a filter F (φ(k)) : ci → cif which uses φ(k) to transform
every line of code snippet ci into a line cif with only the top-k uni-grams. This reduces the
total n-grams for each line of code, making the TF-IDF computation over n-grams tractable.
Table 5.3 lists the n-gram associations that we mined using this approach for one entity,
conditional.

In summary, in this step, for each entity that we discover, we identify its associated
syntactic pattern, which we call the entity profile. The collection of these entities and their
profiles serves as our entity profile knowledge base.

5.4.3 Entity Linking

Our goal in this step is to annotate every line in a given input source code snippet with
entity names of those entities that appear in that line. We use the entity profile knowledge
base for this purpose. Figure 5.3 gives an overview of this step.

We apply the same transformation F (φ(k)) as in Section 5.4.2 to every line of input code
(Figure 5.3(A)) to remove user defined terms, so that we get reduced number of tokens that
pertain to programming concepts. We start with each term being a uni-gram and continue
with cumulative aggregation into bi-grams, tri-grams, and so on, until all the n-grams are
covered.

However, not all of these n-grams represent entities. For example else == is not an
entity. Therefore, we find the n-grams that actually represent entities by using the entity
profile knowledge base. That is, we match the syntactic-patterns of an entity with that of
the source code to determine if (and which) n-grams from the source code reflect surface
forms of entities in source code.

Performing this matching is non-trivial, since n-grams are of different lengths. Therefore,
one pattern can be subsumed within another. For example, the best syntactic match for
parameter is the bi-gram (), whereas the best match for a conditional is the four-gram
if (==). However, the bi-gram () for parameter is subsumed by the four-gram if (==)

for conditional. Therefore, if a line of code contains a conditional then both n-grams will
match, where marking that line of code with both parameter and conditional is clearly wrong.

62

ScorerPreprocessor Annotator

Input: Code Snippet

Output: Annotated Code

Entity Linker

A B C

Figure 5.3: Entity linker subsystem works line by line on the input code, to find matching
entity profiles. Entity names whose profiles match are stamped across the line, as shown in
the example.

However, when we consider the code statement, if (isTrue(...)), both parameter and
conditional entities exist. Consider the example shown in Figure 5.4(B)(line 6). Anne
stamps parameter along with a loop for this reason. We call this the subsumption problem.

To alleviate the subsumption problem, we use a scoring (Figure 5.3(B)) function. It
creates a metric signifying how well an entity matches the line of code. In the first example,
the longer n-gram is a better match (conditional vs. parameter). However, shorter n-grams
are also of interest, as we see in the second example. Therefore, instead of making the entity
assignment a binary decision, we rank the n-grams using the scoring function (Equation 5.1).

Score = δwu + (1− δ)wn (5.1)

We use weights for the uni-gram and n-grams based on their TF-IDF values. Table 5.3
shows the normalized weights for an entity. Since we need to balance between the uni-gram
weights (wu) and n-gram weights (wn), we empirically identify the distribution factor δ to
be 0.6 as this gives us the best results.

Once we determine an entity for a line of code, the annotator tags the line with that
entity as an in-line comment (Figure 5.3(C)). This allows regular keyword-based searches to
search on the entities. Note, a line of code can have multiple relevant entities. However,
too many entities per line can reduce the quality of the search, as well as cause readability
issues if the end user wishes to look at the entities. In the assignments that we use for our
user study, we did not find a line of code with more than four entities, therefore, we use that

63

as our threshold. We leave finding the optimal number of entities per line of code as future
work.

5.5 Evaluation

Our evaluation goal is twofold: a) How well does Anne link entity names to lines of code
snippets? and b) How useful are these annotations? However, due to the multistage nature
of the entity linking process, we divide the first goal into two sub-goals and address them in
this section. We address the second question by conducting a user study, which we present
in Section 5.6.

1 public enum Planet{//enum,parameter
2 MERCURY (3.7), //parameter
3 VENUS (8.872),// parameter
4 EARTH (9.78), // parameter
5 MARS (3.7), // parameter
6 JUPITER (24.79),// parameter
7 SATURN (10.44),// parameter
8 URANUS (8.87), // parameter
9 NEPTUNE (11.15);// parameter

10 final double surfaceGravity;
11

12 Planet (double
13 surfaceGravity){// parameter
14 this .surfaceGravity =
15 surfaceGravity;
16 }
17 ...

(A) Enum Task

int main() {
int N,A;
scanf(”%d%d”,&N,&A);// parameter
int arr [N]; // array
int i , left , right , flag=0,sum;
for (i=0;i<N;i++) { // loop,parameter

scanf(”%d”, &arr[i]);}//array,parameter
left =0;
right=N−1; //decrement
while (left !=right){ // parameter

sum=arr[left]+arr[right]; // array
if (sum<A) // parameter,
increment,decrement

left ++; // increment
else if (sum>A) // parameter

right−−; // decrement
...

(B) IncDec Task

Figure 5.4: Tagged versions of the tasks (A) Enum and (B) IncDec that were provided to
the participants in the user study.

5.5.1 Entity Discovery

The first question we need to answer to fulfill our goal is: How well can we automatically
identify entities that represent programming terms from SO titles?

We automatically discover entities based on the position of the seed entity in the PoS
sequence in SO titles. Therefore, it is possible that some of the terms that we identify as
entities are incorrect. The discovery of entities depends on the length of the SO titles and
the PoS sequence lengths.

Of the 0.9 million posts in our dataset, 639K were questions in Java, whose answers also
contained source code snippets. The median number of terms contained in these titles was 7.
Similarly, we had 139K titles in C, associated with answers containing source code snippets;
the median for number of terms in titles was 6.

64

Table 5.4: No. of entities discovered is related to the length of PoS patterns considered in
our approach. Longer patterns produce fewer entities that exhibit higher level of similarity
to seed entity.

#PoSTerms #Entities #PoSTerms #Entities

5 10k 7 12k
6 22k 8 6k

Table 5.5: Performance of Anne Entity Discovery module. Experiments were carried out
on a gold set with 1:1 noise and 1:3 noise. F1 indicates the F1-score and —E— stands for
the number of entities discovered.

Pf
Java 1:1 Java 1:3 C 1:1 C 1:3
F1 |E| F1 |E| F1 |E| F1 |E|

2 0.76 21K 0.14 35K 0.66 12K 0.71 20K
3 0.94 5K 0.87 9K 0.74 10K 0.64 17K
4 0.82 7K 0.87 12K 0.81 6K 0.71 11K
5 0.82 5K 0.76 7K 0.87 3K 0.86 5K
6 0.94 2K 0.91 3K 0.89 1K 0.91 2K
7 0.81 696 0.78 1K 0.86 751 0.86 1K
8 0.81 524 0.78 807 0.89 376 0.89 606
9 0.51 99 0.47 136 0.77 253 0.71 402

Next we perform a sensitivity analysis using the PoS sequences around the median values
and the number of entities generated. More specifically, we evaluate PoS sequence lengths
of 5, 6, 7, and 8 in our dataset. Our findings are presented in Table 5.4.

For each sets of entities discovered, we calculated the precision of results. True positives
were manually evaluated by the first two graduate students who were experienced in Java and
C. They verified that: (1) the entity name appeared in a Java [135] or a C [136] textbook as a
term related to a programming concept or a programmatic structure, and (2) the discovered
entity had a syntactic pattern. They individually identified the true positives and compared
their results. Any differences were discussed until they both agreed about a term. If there
was disagreement that could not be resolved, then that term was dropped from the list.

From a random sample of SO titles, two experts manually extract the first 30 entities.
The first 25 entities that they agreed on (i.e., the intersection of their results) is used to
build a goldset. Stemming gives the root of the words and thus helps in precision. Classifier
separates titles with seeds from the rest. Mixer adds noise in required proportion. Our
goldset consists of all SO posts containing these 25 entities (162K posts) and thrice (a 1:3
split) that much of noise (i.e., other posts that do not contain any of these 25 entities). To
compute recall, we run Anne with five of these 25 entities as seeds. Table 5.5 gives the
F-measure and count of entities discovered. We report these values for both 1:1 and 1:3
splits. Notice that with increase in noise, the F-measure drops. We observe recall of 0.91 for
both Java and C, at a proximity of 6.

65

*Actual Values

|Java tagged Posts| = 27,64,961
|Java posts with one of 25 seeds| = 162,277

|Total Java posts in gold set| = 324554.

˖Seeds verified manually from the random sample by reading title-by-title.

Posts
with

stemmed
titles

Classifier

Posts with
seed entities

in title
(162K)

Posts
without

seed entities
in title

Mixer

324K (or
648 K)
posts

Snowball
English

Stemmer

Seed
entities (25)

(e.g., Array
Increment …)

Stemmed
seeds

Random
Sampling
(First 25
Seeds)

Java tagged
SO posts

(2.7 Million)

Figure 5.5: The goldset for evaluation is created from SO posts by mixing posts that contain
seed entities in the title with those that do not have them.

Next, we use array as the seed entity for evaluation for both Java and C on the entire
SO corpus. We discovered 20 additional entities for Java, and 18 for C, which resulted in
a precision of 0.78 for Java when considering a PoS sequence of 7 terms. For C, it gave a
precision of 0.77 when considering a PoS sequence of 6 terms.

Closest to our work are the Named Entity Recognizers (NER). Stanford NER [137] is a
popular implementation of linear chain Conditional Random Field (CRF) sequence models.
Our approach is much simpler heuristic-based approach which does not need training data.
Yet, in principle, this can be modeled as a 2-class classification problem. We trained it with
10K tokens with POS tags where each SO title is a document. Trained NER models that
we built are shared on Anne website. We get near-zero precision and recall of 0.2 on our
goldset with these models. The objective for this work is to showcase that entities can be
detected and are useful for search. Hence, we do not focus on improving the training data
or finding features for the classifier.

5.5.2 Entity Profile Construction

The evaluation question that we ask here is: How well can we map entities to their syntactic
patterns?

For each entity, we calculate the precision of the syntactic patterns (a n-gram sequence)
extracted in the entity profile construction stage. That is, we evaluate our pattern rec-
ommendation for an entity. To do this, we can analyze the top-1, top-2,..., top-n pattern
recommendations for each entity. Note, when we consider top-k recommendations, the order
in which a pattern appears does not matter, since “all” these k-patterns are linked to the
entity.

We analyzed top-1 to top-8 patterns, and found that the best precision is at top-4. This
is likely, because if we have too few recommended patterns, then we miss entities. However,
if there are too many recommended patterns, it adds noise to the process. Therefore, we
assess our recommendation by computing precision@4 (p@4) [133].

66

Table 5.6: Manually computed precision@4 and the top pattern discovered for some of the
entities. We use top four patterns while annotating source code.

Entity p@4 Pattern Entity p@4 Pattern

array 1.00 [] conditional 0.75 if () {
decrement 0.75 - - increment 0.75 + +
loop 0.50 for (; ;) parameter 0.75 ()
pointer 0.50 int * variable 0.75 int

Table 5.7: Two factor design that counterbalances the treatment and the task.

Enum IncDec

Tagged Group 1 Group 2
Untagged Group 2 Group 1

The precision of the entity profile knowledge base depends on the richness and the volume
of our data. In SO titles for C, the entity array appeared for more than 14K times. Because
of this, Anne gets perfect precision (Table 5.6). However, although some entities, such as
pointers had more than 10K occurrences, they had many associated patterns: struct *,

int *. This leads to lower precision. We evaluate the patterns for the eight entities that we
found in the user study tasks. Table 5.6 gives the p@4 for these entities, and shows the top
pattern. The average precision for these entities is 0.72. We also compute mean reciprocal
rank (MRR). MRR is computed as: MRR = 1

N

∑N
i=1

1
ranki

where N is the number of entities,

and ranki is the rank of first relevant pattern for the ith entity. MRR across Java and C for
the entity profiles turns out to be 0.71. Anne loses on longer patterns and gains on shorter
patterns primarily because of subsumption.

5.6 User Study

We evaluate the usefulness of Anne through a user study. We recruited 16 participants
who were currently a TA or had been one for programming courses. All participants had
similar background and programming language skills. They were given two real programming
assignments to grade from classes at a lead university. One assignment was from the class
taught using C, and the other assignment was from a class taught using Java.

Each submission for these assignments was annotated with the associated named entities
by using the entity profile knowledge base, which was created by using the September 2015
SO dump. We implemented a simple search tool (downloadable from Anne website) to serve
as a testbed to evaluate the usefulness of Anne in a controlled environment.

5.6.1 Study Design

We selected the tasks for the study by first analyzing all the assignments from the two classes.
We focused on assignments given earlier in the semester as these were likely to be easy to

67

Table 5.8: Descriptive statistics of number of incorrect assignments found by participants.

Enum (27 Incorrect) IncDec (15 Incorrect)
Mean Median Mean Median

Tagged 24.63 24.00 13.88 14.00
Untagged 22.38 25.50 12.00 13.00

Table 5.9: Terms used to calculate correctness and completeness scores for a submission S.

Term Description

True Positive (tp) S correctly classified as incorrect.
False Positive (fp) S wrongly classified as incorrect.
False Negative (fn) S wrongly classified as correct.
True Negative (tn) S correctly classified as correct.

evaluate. We needed the tasks in our study to be within 20 minutes, so as to allow the
study to be completed in an hour. We performed a pilot study with three graduate students
to identify the tasks to be used for the study. For the pilot, we randomly identified six
assignments (3 from each class) and their student submissions. Based on our pilot studies,
we selected the following two assignments, since the pilot participants could easily understand
the code of these two assignments, and took about 15-20 minutes to complete the task.

The first assignment (referred to as Enum) expected students to use parameterized enu-
merators when calculating the weight of a person on different planets. The second assignment
(referred to as IncDec) asked students to operate over a sorted list, while ensuring that their
algorithm had a time complexity of O(n). The former assignment was in Java and had 73
student submissions; the latter was in C and included 96 submissions. Figure 5.4 provides
snippets of a student submission for both tasks. Participants had to evaluate the correctness
of each student submission and stamp their feedback on the incorrect ones. The Enum and
IncDec tasks had 27 and 15 incorrect submissions, respectively.

We followed a two-factor, within-subject study design. We created untagged and tagged
versions for each set of submissions, where the former was used as the control condition, and
the latter as the experimental condition. We counterbalanced the order in which participants
were placed in a treatment group, as well as the task-order that was associated with a specific
treatment (Table 5.7). That is, eight participants had to evaluate assignment submissions
that were untagged as their first task, while the other eight participants evaluated the tagged
submissions as their first task. Similarly, half the times Enum appeared as a tagged version,
and as untagged for the rest.

Participants first filled out background information, and were provided a tutorial of the
tool (10 min). They were then asked to evaluate a sample assignment (on pointer usage)
to gain a hands-on understanding of the tool and the evaluation that they had to perform
(10-15 min).

They were given instruction sheets that explained the different features of Anne (see
Figure 5.6 for a snapshot of UI). This ensured that they spent their time on the task and
not on learning the tool. They were also provided with instructions on how to evaluate

68

File navigator

Highlight matches

Search across files

Files with
match

Files with
no match

Search within file

Figure 5.6: Code search tool used for giving feedback to student assignments. This tool
allows us to toggle tagging on and off for evaluation.

submissions, which included the problem statement of the assignment, an explanation of
the expected answer, and the feedback that needed to be stamped on the submission. We
used the instructions that were provided to the TAs of the (actual) classes to create these
materials.

Once they were comfortable with the tool, the experiment started. The time for each
task was fixed at 20 minutes. We conducted an exit interview, where we asked whether they
would use Anne for the next class that they TA for. Resources used in this study including
video recordings of the study are available on the Anne website.

5.6.2 Results

Subjects in Experimental condition (Stag) heavily used NL terms in their queries. For exam-
ple, for the IncDec task, one participant (P17), by using a single search query “increment
decrement”, was able to identify all the incorrect submissions. Some participants (e.g.,
P13) created more queries: “increment; decrement; increment decrement; feedback” to get
the same results. In contrast, subjects in the Control condition (Sraw) made more sophis-
ticated queries, many of which were not successful. For example, P6 tried many queries:
“left;++;++ --;binary;while <;for”, and was only able to find 13 out of the 15 incorrect sub-
missions.

Table 5.8 provides the mean and median number of the “incorrect submissions” that
participants found. Note that Enum had 27 incorrect submissions out of the 73 total sub-
missions, and IncDec had 15 incorrect submissions out of the 96 total submissions.

We evaluate the quality of the participants’ work by calculating the completeness and
correctness metrics, for each task (Enum vs. IncDec) and treatment (tagged vs. untagged).
Table 5.9 lists the terms used for these metrics. The correctness metric is calculated as the
number of correct classifications divided by the total number of classifications (tp / (tp +

69

Table 5.10: Correctness/Completeness metrics of participants with std. deviation in paren-
theses.

Correctness Completeness
Tagged Untagged Tagged Untagged

Enum 1.00(0.00) 1.00(0.00) 0.91(0.25) 0.83(0.06)
IncDec 0.98(2.79) 0.98(2.59) 0.93(0.20) 0.80(0.09)

Table 5.11: Time taken to complete (in minutes) assessment for tagged and untagged ver-
sions.

Enum IncDec
Mean Median SD Mean Median SD

Tagged 8.71 7.90 2.61 11.50 13.88 4.66
Untagged 12.90 14.78 3.43 12.98 12.80 4.12

fp)). The completeness metric is calculated as the number of true positives divided by the
total number of true positives and false negatives (tp / (tp + fn)).

Table 5.10 provides the correctness and completeness metrics along with standard devi-
ations. We observe that both Stag and Sraw obtained very similar correctness scores. This
likely occurred because after identifying the submissions, participants evaluated the code
before stamping their feedback. Since they were previously TAs and the assignment was rel-
atively simple, their evaluations were accurate. However, for the completeness metric we see
that Stag perform better than Sraw . This means that more incorrect submissions were missed
by Sraw . The experience and individual differences play a larger role when participants use
a keyword-based search, explaining the higher variance in Stag .

Next, we analyze the time to complete the task. We found that a majority of participants
in both treatments followed a two-stage process. As a first pass, participants used the
search feature to locate those submissions that did not contain the terms in which they were
interested. Then as a second pass, they manually investigated the submissions to double
check their work3 if they had time.

Here we report on times to complete the task of the first phase alone, since this best
compares the two search processes. Table 5.11 reports the time (in min) to complete the
task and the standard deviation. We observe that Stag was faster. There is a bigger time
difference for the Enum task as compared to the IncDec task. This is likely because evaluating
the IncDec task was more complex, since participants analyzed the algorithm to determine
its complexity. In the Experimental treatment, participants more quickly obtained the set
of incorrect submissions, therefore, they may have spent less time in evaluating the other
correct submissions.

Next we test for statistical difference between the two treatments for the completeness
and time metrics. We perform Shapiro-Wilk test of normality (at p < 0.05) and find that

3We report correctness and completeness metrics after they finished their tasks and, therefore, include
both passes.

70

both time and completeness are normally distributed. Therefore, we use two-way ANOVA
to account for any interaction effects between task and type. For completeness, we find no
statistical significance at p < 0.05 level; F(1,29)=3.15, p=0.08. Stag had higher completeness
metrics. There was no interaction between the treatment (tagged vs. untagged) and the
task; F(1,29)=0.018; p=0.89. When using Cohen’s d, we get an effect size of 0.64 (medium).
So, we gather that tagging does not negatively affect completeness significantly.

When considering time, we see a significant difference (p < 0.05) between the two treat-
ment conditions; F(1,29)=4.50, p=0.04. Stag took less time to complete tasks. There was
no interaction between the treatment and task; F(1,29)=1.15; p=0.29. We get a Cohen’s d
value of 0.75 (medium).

In summary, participants are able to complete the tasks in much shorter time (29%
less) without compromising significantly on correctness and completeness. The post-task
interviews show that tagged search is useful.

5.7 Limitations and Threats

Our approach will be even more useful if we can discover entities with multiple terms in
their name, and also by detecting patterns across multiple lines of code. In principle, our
approach can still be used where we treat every snippet as one single line and apply the
same technique as we did for uni-gram entity names. For snippets with longer lines of code,
the number of n-grams in such long lines increase and this causes computational overhead.
Hence, we look forward to work on more efficient models to support this research.

Handling the subsumption problem where shorter patterns appear inside longer patterns
is very hard to address in a language agnostic manner. Although our scoring function
alleviates this issue, this can still impact correctness and hence needs attention in future
work.

Users may find it unintuitive to formulate queries with terms that do not appear in code.
In our case, we tagged the code with terms and thus we circumvented the issue.

We have limited the implementation and evaluation of our work to Java and C program-
ming languages. Yet, other languages, especially, markup languages and functional languages
may put forth different challenges. While our technique is statistical by nature and leverages
Information Retrieval techniques, the implementation uses language dependent techniques
for parsing, and to clean up the snippets.

5.8 Summary

In this work, we present a technique that leverages the structural similarities in how people
phrase programming questions, and the repetition of syntactic structures in source code, to
map source code lines to their programming concepts. This opens up new opportunities to
support tools and techniques that connect natural language to source code. Search engines
and IDEs can use this mapping to improve code search over NL queries. We show how such
a mapping can help in academic assignment search through our tool prototype, Anne.

Even though our approach, at least in theory, can be extended to program blocks with
multiple lines of code, it might need more sophisticated code models for syntactic matching.

71

Another interesting research direction will be to support longer NL phrases. Our approach
is predominantly language independent. We look forward to thoroughly evaluating our work
on a variety of languages, in addition to Java and C, especially in functional and scripting
languages.

72

Chapter 6

Reducing the Parsing Problems in
Stack Overflow

6.1 Introduction

With the growth in popularity of Q&A websites, they have become an attractive data source
for crowd knowledge on code snippets. Code snippets discussed in forums such as SO have
been used extensively in software engineering research [138, 139, 140]. Yang et al. [138]
extracted SO code snippets to investigate and understand the extent to which the snippets
obtained from SO are reused in GitHub projects. Yang and Hussain [139] used these snippets
to provide a study of reusable code of four popular programming languages namely C#,
Java, JavaScript and Python. Subramanian and Holmes [140] performed snippet analysis to
extract structural information from short plain-text snippets that are often found in SO.

While several such research efforts depend on parsing the code snippets extracted from
SO, a majority of the code snippets are not compilable or even parseable [141, 139] as they
are partial programs presented for discussion purpose. For example consider the code snippet
listed in Listing 6.1. It suffers from a parsing issue due to embedded HTML elements (<
and >). We posit that, with the knowledge of various kinds of such parsing issues, these
partial programs can be curated without changing their semantics. As we reduce the parsing
problems, more snippets become parseable thereby allowing the researchers to benefit more
from SO data.

More than source code extraction, curation has been of interest to the research commu-
nity [30, 142, 143]. Dagenais and Hendren [30] propose a framework for type inference and
resolving ambiguities in partial programs. GRAPA tool [143] focuses on guessing the types
so that code completion tools are benefited. Vesperin [142] curates code snippets using the
other snippets in the same discussion. These tools largely ignore the fundamental problem
of extracting code snippets from large dumps with heterogeneous data such as discussion
forums and parsing them to generate the Abstract Syntax Tree (AST). Instead of focusing
on type inferences and resolving ambiguities, we focus on the extraction part of the prob-
lem. We scope our work to understanding the dominant parsing issues. To the best of our
knowledge, this is the first systematic study to characterize the parsing issues in this context.

In this work, we ask the following Research Question (RQ):

73

public void add(K key, V val)
{
Collection<V> c = get(key);
if (c == null)
put(key, c = createCollection());

c.add(val);
}

Listing 6.1: An erroneous snippet in SO.

In
p

u
t

Stack Overflow Code Snippets

Fatal Error

…

Programmers

HTML Elements in Code
Non-Java Code
…

Natural Language
Statements

CategoriesConcepts

&

Grounded Theory

Results ClassifierClassifier

Classify &
Validate

1

Parse

Analyze

Extract

2

3

4

5
6

7

Build a Classifier
Summarize

Observations

Figure 6.1: Overview of our study of variants. (1) We extract code snippets from SO. (2) We
attempt to parse those snippets using eclipse JDT. (3) For snippets that do not parse, we
analyze using a GT approach. (4) We propose a list of issues that dominate while parsing.
(5) We build a classifier using a training set from our study. (6) We apply this classifier on
entire SO data. (6) Thus, we validate our theory on entire SO.

RQ: What are the dominant issues plaguing Java code snippets from SO that
extraction tools must address to make them parseable code snippets?

Our study involves seven major steps: (1) We extract all the text in the “code” markup in
posts tagged as Java are java code snippets. (2) We attempt to parse these snippets using a
Java compiler. (3) We analyze the erroneous snippets manually. Three programmers analyze
the results using the GT approach. We arrive at concepts, sub-categories and categories. (4)
We report the dominant issues causing parsing problems as the results of our study. (5) We
validate our findings using manual inspections. As a proof of concept that we can automate
these concepts, we use the snippets that we manually analyzed for building a classifier for
three of the concepts. This classifier takes as input a code snippet and outputs the list of
issues that may be causing parsing problems. (6) Since, our manual analysis in step 3 was on
limited snippets, we use this classifier to discover issues on all the Java snippets in SO. (7)
We summarize our observations and compare them with the results obtained from manual
GT study. We show that our theory holds and list down the dominant issues in parsing.

74

Based on this knowledge, we build a tool named jMechanic which increases the number of
clean snippets. Figure 6.1 gives an overview of our work.

Rest of the chapter is organized as follows. Section 6.2 gives the background on code
snippet parsing and relevant tools along with the relevant terminology. In Section 6.3,
we outline the Grounded Theory approach. Section 6.4 describes our data analysis with
examples we observed in the study. Section 6.8 answers our RQ on the causal factors behind
the dominant parsing issues. It provides the distribution of these issues in SO. The design
and implementation details of the classifier we used to validate our findings are in Section 6.7.
We discuss the threats to validity in Section 6.10 and related work in Section 6.9.

6.2 Background and Terminology

For most research projects [144, 145, 146] where researchers are interested in Java code
snippets from SO, they extract the posts tagged as “Java” from the SO dump1. Such posts
are assumed to contain Java code snippets. This extraction is typically a simple step of
parsing the “<code></code>” markup which is used to encase non-textual content in SO
posts. Once the code snippets are extracted from the dump using any XML parser, they
parse the code snippets using a Java compiler. One popular implementation of Java compiler
is the Eclipse Java Development Tools2 (JDT). It provides users the ability to construct
an AST from snippets. Additionally, in the event of failure in compilation, it presents
developers with errors that caused the failure. This functionality is provided by its IProblem
(org.eclipse.jdt.core.compiler) interface. Eclipse JDT produces an AST representation of
code snippet whenever possible along with the compilation errors if any. In principle, we
assume that a code snippet is erroneous if there is even one IProblem of type “Error”. To
avoid confusions over compilation and parsing errors, we use the term unclean to refer to
such erroneous snippets that do not produce an AST. For example, the unclean snippet
shown in Listing 6.1 produces the error “Syntax error on token(s), misplaced construct(s)”.
The error is due to the presence of > and < in code. As another example, the following
code produces the error, “Syntax error, varargs are only available if source level is 1.5 ” due
to the compiler version not supporting newer features:

public static void main (String... args) {

for (Char char : chars) {
System.out.println(char);

}
int k = 0;
for (int m = 0; m != M; m++) {

if (flags[m] != ’B’) {
swap(flags, k++, m);

}
}
for (Char char : chars) {

System.out.println(char);
}

}

1https://archive.org/details/stackexchange
2www.eclipse.org/jdt/

75

Developer

LanguagePlatform

ϵ HTML Elements
ϵ Non Java Lang.

Token Missing
Java version Mismatch
Misplaced/Extra Token

Output  ϵ
Natural Language  ϵ
Line Numbers  ϵ
MD/MB 
Ellipses  ϵ
Pseudocode  ϵ

Concepts

ConceptsConcepts

category

category category

Addressed in tool
Intentional

Legend

 Supplements

 Suppressions
 Substitutions
ϵ Extraction

Curation

Figure 6.2: Discovered concepts and categories. Concepts in the Developer category are fur-
ther classified into the subcategories of Supplements, Suppresions and Substitutions. Some
of the concepts are introduced intentionally by developers for the purposes of brevity and
focus. These are marked as “intentional” in this figure. Our focus is on extraction related
issues instead of curation issues. We have distinguished them here. We build a classifier for
three of these concepts namely Outputs, HTML Elements and Ellipses. We show that this
helps jMechanic tool to improves on its ability to parse more snippets.

A newer version of Eclipse JDT would not throw this error. Since, snippet consumers may
not give attention to error details, we have included this class of errors also in our study.

Researchers have largely ignored the unclean code snippets. We focus on reducing serious
and fatal parsing errors of these unclean snippets. Instead of developing a tool for curation,
our focus is on studying these erroneous snippets.

6.3 Research Method

We have adopted the Grounded Theory (GT) [147, 148] approach to address the research
questions. GT helps the researchers in uncovering common patterns through continuous data
observation. It is based on the idea that while collecting data and simultaneously analyzing
the data, a theory can be further developed or newly created. In this case, it aims to discover
the way developers write partial programs in SO.

GT consists of five steps. First, all the data is collected from the source. Second, data
is analyzed and labeled using a code that summarizes its meaning. Third, after assigning
discrete codes to the data, these codes are then grouped into concepts. Next, the relationships
between concepts are examined and classified into categories. We continue the labeling
activity until we reach a saturation. Finally, based upon these categories, a new theory is
proposed.

76

6.4 Data Analysis

We used the error message obtained through the IProblem interface of Eclipse JDT as our
initial labels. On manual inspection of the snippet, the error message and the post containing
the snippet, we associate a concept to each unclean snippet. Following the GT approach to
discover concepts, we chose the size of each sample set to be 50 randomly selected SO posts.
We refined the concepts until we reached saturation after 3 iterations (150 posts).

Our study shows that there are three major categories: 1) Developer induced issues,
2) Language specific issues, and 3) Platform (SO) induced issues. We identified 11 differ-
ent concepts from these aforementioned categories. Figure 6.2 shows these categories and
concepts.

6.4.1 Issues due to Developer Behavior

Code snippets posted by developers on discussion forums are used to enhance discussions.
Hence, we refer to them as “intentional” changes introduced in code snippets by developers in
Figure 6.2. A code snippet becomes unclean because the developer either added something
to the code snippet (Supplement), removed some tokens from the code (Suppression) or
substituted tokens with non-Java constructs (Substitution) from the snippets. We group the
concepts produced by GT under the aforementioned sub-categories.

Supplement to Code Code snippets are annotated with additional information of various
kinds. Although developers extensively use Natural Language (NL) statements around the
source code outside of the “<code></code>” block, they still find a need to adulterate
the code with useful content to make the discussion much more easier. Following are the
concepts that we discovered related to this sub-category.

Outputs Developers also add outputs from compilers and parsers to their code snippet to
provide greater context. Examples of such outputs are Stack Traces, Error Messages or the
result of an execution. Outputs form a special case of non-Java text constructs that assist
debugging or to better represent how various subroutines work together during execution.
Hence, they show up often in SO. Therefore, we chose to keep a concept dedicated to this
kind of content. Following example occurs in a post [149].

>Exception in thread "main" java.lang.NullPointer
Exception
>>at org.lwjgl.opengl.GL11.glMatrixMode(GL11.java:

2052)
>>>at game.engine.GameLoop.start(GameLoop.java:22)
>>>>at game.engine.GameLoop.main(GameLoop.java:15)

Natural Language The code snippet below [150] presents an example of developers inter-
leaving Natural Language into their code. In an SO post [150], we find the following block
of text, “...Your Implementation of PieChart goes here...” which the Java parser cannot
recognize.

77

package com.mypackage;

public class PieChart extends View {
...Your Implementation of PieChart goes here...

}

Line Numbers Line Numbers are supplements used to specify a particular sequence of
characters. The addition of line numbers to snippets presents an interesting problem. Con-
sider the first snippet [151] shown below.

1 while (true) {
2 int nBytesRead = src.read(buff);
3 if (nBytesRead < 0) {
4 break;
5 }
6 byteStream.write(buff);
7 }

Although obvious to a human that each line has a line number with it, a regular expression
based solution will not suffice. The Java compiler automatically removes all unnecessary
white spaces, so a line that begins with a number might be a perfectly valid line that
conforms to the language.

result = 10 +
7 + 20; //A valid Java line

Suppression in Code This sub-category lies vis-a-vis the previous sub-category. Devel-
opers don’t just add constructs, but also use omissions to help discuss code effectively. The
following are the concepts belonging to this sub-category.

Missing Definitions and Missing Blocks (MD/MB) The snippet shown below, from
this SO post [152] provides an example for the the case of suppression of structure. The
Developer here chooses to present code from two separate compilable units in a single snippet.

public Foo{

}
package com.company.application;
public Bar extends Foo{

private String appName = "MyFirstApp";
}

As can be seen from the snippet below, extracted from this SO post [153], suppression
of structure can also occur at the intra-compilation unit level.

import com.google.gwt.user.client.Cookies;
Cookies.setCookie(name, value);
Cookies.getCookie(name);

The missing class instantiation here leads to fatal parsing issues. Entire class definition is
irrelevant to this discussion. In another post [154] titled “What is the meaning of this line?”,

78

a developer asks “Can you explain these lines”, repeats the following line to gain focus and
also gives the full code later.

public static final int GAMEPAD_UP = 0x0040;

Ellipses An Ellipsis is a punctuation used to indicate omission. As can be seen in the
snippet from a real SO post [155], ellipses are also common in snippets. They are used as a
place-holder for code that is irrelevant to the discussion.

public class DataForward extends Service{
private Context con = getBaseContext();
private Timer timer = new Timer();
<...>
@Override
public void onStart(Intent intent, int startId) {

The omitted code may be hard to guess but are irrelevant for the current discussion context.
Following [156] is another example of ellipses:

Object[] params =;
String s = String.format("%S has %.2f euros", params);

But, not all instances of “...” is a parsing issue. For instance, the following post [156] on
variable arguments is valid in Java:

public void foo(String... args) {
}

String args[] = new String[10];
foo(args);

It is also possible that the ellipse occurred in a string literal which will also not cause parsing
problems. Such instances make it difficult to use simple regular expressions to detect the
existence of this issue.

Substitutions for Code This group of modifications are those that serve as substitutes
for code snippets themselves. This automatically makes snippets belonging to this group
erroneous, since the alternatives leave out the necessities of the language.

Pseudocode Pseudocode is a notation resembling a simplified programming language.
In this SO post [157], it is used for a high-level description of code while abstracting the
syntactical specifics.

Step 1: Initialize an empty string. (say str)
Step 2: Construct a new ’Finch’ object.
Step 3: BEGIN LOOP

Fetch ’FinchMenu’ from ’Finch’ object.
assign ’FinchMenu’ to ’str’
IF ’FinchMenu’ is "Back and forward"

Call ’RunAccelerationTest’ method with
’str’ as argument.
END IF

END LOOP

79

5
.5

3
%

7
.0

4
%

1
.0

1
%

1
1

.5
6

%

5
.0

3
%

1
.0

1
%

3
4

.6
7

%

1
5

.5
8

%

1
1

.0
6

%

5
.0

3
%

2
.5

1
%

9
%

4
.0

0
%

0
.1

5
%

1
1

.2
3

%

5
.0

8
%

1
.2

3
%

3
1

.3
8

%

1
7

.0
8

%

1
1

.6
9

%

5
.3

8
%

3
.5

4
%

Outputs Natural
Language

Line Numbers MsngDef_Blck Ellipses Pseudocode HTML
Elements

Non-Java
Language

Token Missing Java Version Misplaced /
Extra Token

Ground Truth % Validation %

LanguageDeveloper Platform

(a) Distribution of Concepts (b) Validation of GT Results

Figure 6.3: (a) Concepts and categories discovered using grounded theory approach. (b)
When validated against a random sample of 500 snippets, we observe strong correlation.

6.4.2 Platform Related Issues

Some errors that make code snippets unclean are the result of the way the data is handled
or presented by the platform, which in our case, is SO. SO dumps are XML files that contain
information such as the text, code and ID of every post. Next, we discuss the Platform
specific issues that cause unclean code.

HTML Issues The issue that arises with the code being embedded within HTML is that
in some cases, the encoding might give rise to elements not native to the language. For
example, < and > are encoded as < and >. This represents the need for a parsing stage
that decodes such HTML encodings. The code snippet below is the result of extracting the
content within the the <code></code> tags for this SO snippet [158] which also contains NL
statements.

int val = 1;
for (int i = 1; i <= n; i++) {
//Note the use of < above.

val *= i;
System.out.println(val); }

Non-Java Languages The snippet shown below is an XML snippet from an SO post [159]
which has the “Java” tag. SO does not provide separate HTML markups to distinguish
between multiple programming languages or even between actual code and any non-code
constructs such as XML configuration files or JSON files. Hence, researchers should not
assume that a snippet presented from a post tagged with the Java tag is indeed Java code.

<root>
<Massage>No privillage</Mesaage>
<result>

<schma_index>
<id>8</id>
<name>raja</name>
<schma_index>

</result>
</root>

80

6.4.3 Language Related Issues

This category of errors are aggregate of those concepts that are due to syntactic issues.

Missing Tokens In the code snippet [160] shown below, the developer does not specify
the tokens present within the if condition. As future work, we will focus on detecting and
predicting the intent of the developer for code with such missing tokens.

for(int i = 0; i<theMessage.length;i+3){
if () //Missing conditional
return ;

}

The above issue is a result of an intentional miss for the sake of emphasis or readability.

JDT Version Incompatibility of the JDT parser and the version of Java used in the
snippet too give rise to errors. For example, for the snippet from post [161], JDT version
3.5.2 gives an error on try statement with parameters. But such a statement is accepted as
a valid statement in the latest version of Java.

try
(Socket clientSocket = new Socket(ipaddress, 7420)) {

cp.updateGUI("Connection initiated...
waiting for outputs!"+"\n");

Misplaced/Extra Tokens Several errors during parsing arise due to misplaced or addi-
tion of irrelevant tokens in the code snippet. In the following example from an SO post [162],
there is an additional assignment operator after the increment operator in the loop that re-
sults in an error during parsing.

final Map<Integer, List<String>> myMap =
new HashMap<Integer, List<String>>();

for (int i = 0; i < something; i++=) {
myMap.put(i, new ArrayList<String>());

}

6.5 Results

Figure 6.3 (a) shows us the distribution of each of the discovered concepts. We find that
50.25% of the issues are caused by the Platform and 31.16% of the issues caused by the
Developer. Current works focus on issues such as namespace resolution and type inference.
But Language specific issues constitute only 19.59% of all issues. Furthermore, the issues
introduced by Developers and the Platform are not addressed by such works and thereby
make these approaches futile until such issues are resolved first. The aforementioned cate-
gorization of concepts is based on the cause of these errors. This serves to present the major
causes, identify the dominant issues and assess the extent to which existing work would help
solve the problem.

81

6.6 Building a Classifier to Validate Results

Our vision is to detect the issues identified in Section 6.4 while parsing source code snippets.
We envision a classifier which can first categorize if the snippet is clean. If not, it outputs
the concept that is most likely associated with the parsing issue in code.

We build a classifier which depends on the existence of one or more tokens to detect the
presence of an issue. This intuition does not apply to all classes. For example, existence of
a number does not mean that it is a line number. For some of the issue types, the issue is
characterized by missing tokens. For example, if () {} misses tokens inside the if condition.
Our classifier cannot detect these issues. For these kinds of issues where our classifier cannot
validate, we perform additional manual validation. Hence, we limit the scope of our classifier
to the following classes:

1. Outputs

2. Ellipses

3. HTML Elements

Ideally, we would like to cover all the listed issues. But, such a universal classifier will require
significant research effort and might not be even possible to build at the first place. Hence,
we have limited our attention to three classes. Our selection of classes is only based on the
nature of the features describing the class being token-based.

We have adapted a state of the art Term Frequency model for computing term weights.
Using training data gathered during the data analysis phase, we compute the term weights.
The top-k terms by weight for each concept define the concept. For any input code snippet to
the classifier, it computes the overall similarity score to the top-k terms of each concept. The
jMechanic classifier declares the snippet as clean if the score obtained for every concept is
below a threshold ψ. For those concepts where it finds the score > ψ, it picks the top ranking
concept by score as the reason for the parsing issue. Figure 6.4 explains the workings of the
classifier. Next we give the necessary terminology, background and explain our proposed
Extended MATF model for Source Code (TFMX).

We define any subsequence of tokens of a compilable program as a Code Snippet. There-
fore, generally code snippets are not error-free compilable units. For example, method defi-
nitions or just a sequence of statements are typical code snippets shared on SO. The tokens
can be keywords (ζkey) or user-defined (ζudt). Examples of ζkey are tokens corresponding to
the Java keywords representing loops and branches. Tokens in the variable names, method
names and comments are examples of ζudt . A code snippet s = (e1, e2, ..., en) is a sequence of
n tokens where ei ∈ ζudt ∪ ζudt . Our goal is to associate a set of issues I ⊂ i1, i2, ..., i7 to each
of the code snippets e found in SO. Here, ij refers the parsing issues that were identified in
our manual study.

We model this problem as a search problem for token sets that characterize each of
these problems on a large collection of code snippets. For each concept identified in GT,
we construct a goldset which is a mix of clean and unclean (of that specific category) code
snippets from SO posts. We maintain the same split as shown in our GT results 6.3 to make
the data representative of SO. We are inspired by the existing literature that leverage term

82

Concept-1
Training Set

Concept-2
Training Set

Concept-k
Training Set

Training Sets

package com.mypackage;
Public class PieChart extends View {

…Your Implementation goes here…
}

Classifier

Le
ar

n
 M

M
AT

F
W

ei
gh

ts

Code Snippet

Result

Issue: Concept-1 Found/Not-found
Issue: Concept-2 Found/Not-found
Issue: Concept-3 Found/Not-found

Input

Figure 6.4: jMechanic parse issue detection uses a classifier which learns from Mixed MATF
weights.

saliancy [163, 9, 22, 24] to identify relevance of documents to a query. Since code snippets
in SO have a wide distribution over length and distinct terms, we adapt the Multi Aspect
Term Frequency (MATF) [38] model (see Section 2.1.2) to determine term salience.

Extended MATF Model for Source Code (TFMX) In this work we deal with only
source code snippets as content. However, each snippets may contain two token types, ζkey
and ζudt . If MATF is applied on this content, all token types get the same weight. We are
interested in matching with user defined tokens more than keywords. Hence, we distinguish
these two as separate components. Thus we use an extended multi-component adaptation of
MATF. In the scenario that one component does not have any of the query terms, we do not
want the overall MATF score to be zero. To avoid this scenario, we introduce a smoothing
parameter α. Equation 6.1 gives this formulation. We have used the ideas of add-one or
Laplace smoothing but with a much smaller value of α = 0.01. These components are mixed
in code. Hence, we propose an extended MATF (TFMX) formulation as follows:

TFMX (d , q) =

(n∏
c=1

[γctfMc(t , pc) + α]

) 1
n

(6.1)

where MATF score tfMc(t, pc) for each component is given as:

tfMc(t , pc) = wc
tfRc(t , pc)

1 + tfRc(t , pc)
+ (1 − wc)

tfLc(t , pc)

1 + tfLc(t , pc)
(6.2)

In our case, the components in code are (c = 1) keywords and (c = 2) user defined items.
The MATF score for each component is computed using the tfMc formulation in Equa-

tion 2.4. The parameter pc denotes a specific component in the post such as title. We
use the notation tfRc , tfLc and wc to denote component-wise scores for RITF, LRTF and
aspect weight respectively. We use the same 2

1+log2(1+|Q|) formulation for the aspect weight
wc. The MATFsrcscore is then a geometric mean over the weighted MATF scores of each

83

component. use(t , c) is a boolean function which returns one if the term t should be used
in the computation for the component c, else zero.

Component Weight (γc) Different components carry different amount of term saliency in
the corpus. For instance, in the case of SO posts, developers ensure that the same question
is not asked before by searching through several titles of existing posts. Therefore, they
carefully choose relevant terms for the title. Hence, title terms should carry a higher weight
compared to the rest of the components in SO. We use γc to refer to the weight of each
component.

Term Frequency (tfLc , tfRc) The LRTF (tfLc) and RITF (tfRc) values correspond to the
length normalized and simple counts of terms in the document, respectively. This works for
text. However, for source code, we need to do additional processing to extract the tokens
of interest. For source code, we extract the AST and from there, we get the identifier
tokens. Each identifier is processed for stemming and stopwords. The resulting tokens of
code constitute the terms of the component.

We apply the standard IDF measure. We compute the similarity between query and post
vectors, as follows:

SIM(Q, p) =

|Q|∑
i=1

tfMC (qi, p)× log2

(
N

df (qi)

)
(6.3)

A reasonable TF-IDF model should satisfy Fang’s constraints [90]. Next, we validate
TFMX against these constraints. TF constraint states that “Assume |d1| = |d2|. If c(w, d1) >
c(w, d2), then tf (d1 , q) > tf (d2 , q)”. Here, c(w, d1) refers to the count of word w in document
di. While proposing this constraint, they assume that the documents are homogeneous. We
extend this constraint to mixed component corpora as follows:

• TFMX Constraint 1 : Let q = w be a query with only one term w. Assume
∀nc=1(τ(ci, d1) = τ(ci, d2)). If ∀nc=1 (τ(w, ci, d1) > τ(w, ci, d2)), then tf (d1 , q) > tf (d2 , q).
Here, τ(w, ci, dj) refers to the count of word w in component ci of document dj. τ(ci, dj)
refers to the size of the component ci in document dj.

TFMX satisfies this modified constraint. Similarly, the following constraint holds for TFMX :

• TFMX Constraint 2 : This constraint ensures that tf increase is lesser for larger TF
values when the word count increase remains the same. For example, a word count
increase from 1 to 2 contributes more to tf than an increase from 100 to 101. Let q = w
be a query with a single term w. Assume that |d1| = |d2| = |d3| and ∀nc=1 τ(w, ci, d1) >
0. If ∀nc=1(τ(w, c, d2) − τ(w, c, d1) = 1) and ∀nc=1(τ(w, c, d3) − τ(w, c, d2) = 1), then
tf (d2 , q)− tf (d1 , q) > tf (d3 , q)− tf (d2 , q).

Fang et al. [90], also propose a length normalization constraint and a IDF constraint.
Since we use the standard IDF measure and MATF length normalization, those constraints
do not change.

84

6.7 Implementation and Evaluation of Classifier

We have implemented TFMX as a standalone reusable component. We have also implemented
and shared jMechanic tool which uses TFMX to identify parsing issues in the input code
snippet. Although jMechanic itself has been implemented in Java and is used to detect
parsing issues in Java snippets, nothing in the approach or implementation makes it Java
specific. A training set of clean and unclean snippets of a specific issue is sufficient for
jMechanic to statistically learn about the characteristics of the parsing issue.

Goldset Preparation To evaluate the classifier, we construct a goldset. We prepare a
goldset containing clean snippets manually mixed with unclean snippets for each concept
identified from our study. The mix contains 10 snippets suffering from a specific issue in the
same proportion identified by our study. For example, our GT study reports that ellipses
form 5% of all erroneous snippets. So our goldset contains 10 (5%) snippets which suffer
from ellipses and 190 (95%) clean snippets. This is done to ensure that the index constructed
using TFMX model are representative of the composition of issues in entire SO.

Index Construction and Expert Curation For each distinct term in the unclean snip-
pets of the goldset thus created, we compute the TFMX -IDF score. We extract the top 15
terms ordered by this score as descriptive terms of the concept in unclean snippets. An
expert then looks at the descriptive terms and decides on the relevance of each term. The
expert may add or remove terms to arrive at the final list of descriptive terms. We then
proceed to build a classifier with these descriptive terms as features.

Classifier Design Given a code snippet, our classifier tokenizes the input code snippet
and for each known concept and checks whether any of the tokens are descriptive terms
for the given issue. The total score (S) of the snippet is the length normalized sum of the
weights (TFMX -IDF) of each of the descriptive terms multiplied by its frequency (N) in the
given snippet as shown in Equation 6.4.

S =
1

n

n∑
i=1

tfMX .IDF (6.4)

Classifier declares the snippets with score greater than threshold (S > ψ) as to suffer from
the given issue. We compute this threshold empirically.

To do so, we prepare a testset similar to the goldset with a mix of clean snippets and
erroneous snippets suffering from the issue in the ratio of 1:1. We use it to extract the
descriptive terms for different thresholds. We also compute the F1 score of our classifier for
each threshold. We find the best threshold per concept that maximizes the F1 score. Thus,
we empirically derive the threshold values.

Since each snippet can suffer from multiple issues each of which is independent of the
other, our classification task becomes a multi-label-binary classification problem. Hence our
classifier functions as a set of binary classifiers, one for every kind of issue.

85

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 0.2 0.4 0.6 0.8 1
F1

 S
co

re

Component Weight (γc)

NoStemming Stemming

Figure 6.5: A component weight setting of 0.2 works best for our work.

0

0.2

0.4

0.6

0.8

1

0.1 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

F 1
Sc

o
re

Threshold Values (γc = 0.2)

(a) Ellipses

0

0.2

0.4

0.6

0.8

1

0.1 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

F 1
Sc

o
re

Threshold Values (γc = 0.2)

(b) Outputs

Figure 6.6: Examples of Threshold Parameter Estimation

6.7.1 Parameter Tuning

We derive the component weight (γkey) and the thresholds empirically. Figure 6.5 shows
that for γkey = 0 .2 , we get the highest average F1 scores across all issues. One explanation
for this observation is that non-key terms such as “<” and “>” are usually the reason
for parsing issues and hence relatively high thresholds (downscaling the importance of key
terms) for non-key terms gives better TFMX values.

To empirically identify the optimal issue specific thresholds, we pick the threshold cor-
responding to the optimal F1 scores of a given issue. Figure 6.6 (a) and Figure 6.6 (b)
shows the change in average F1 scores as we change the threshold values for the ellipses and
pseudocode respectively.

Table 6.1: Precision, Recall and F1 Score of the classifier. Our classifier gives good results
for all cases where term saliency can be observed.

Class Precision Recall F1 Score

Ellipses 0.90 0.90 0.90
Output 1.00 0.46 0.63
HTML Elements 0.73 1.00 0.84

86

Table 6.2: Threshold Values and Descriptive Terms extracted using the Extended MATF
Model for Source Code.

Class Threshold (ψ) Top-3 Descriptive Terms

Ellipses 3.3 ... , args , string
Output 2.1 thread , ”main” , unknown
HTML Elements 1.4 <, &

0.17

0.17

0.21

0.63

0.9

0.87

0 0.2 0.4 0.6 0.8 1

Outputs

Ellipses

HTML
Elements

jMechanic Naïve Bayes

F1 Score

Figure 6.7: We compare the results of manual study on limited snippets with the results
of the classifier on entire SO. We find that the correlation is significant for all the classes.
Comparison with Naive Bayes shows that our classifier performs 45% better.

6.7.2 Comparative Evaluation

To test the efficiency of our classifier, we compare our classifier with a Naive Bayes Classifier
built using Weka3. We use term frequency of all distinct terms as the features provided to
the Naive Bayes classifier. Naive Bayes based classifiers are simple probabilistic classifiers.
They assume independence between terms. In spite of their simplicity, they are shown to
be effective in several studies [164, 165]. Hence, we use it as a benchmark to evaluate our
classifier performance. On the same set of clean and erroneous examples that we use to train
our classifier, we train Naive Bayes classifier as well. Figure 6.7 shows the results of this
comparative evaluation. We find that our classifier improves the F1 scores on average by
30% compared to Naive Bayes. Moreover, our classifier outperforms ZeroR by 38% on F1

score.

3https://www.cs.waikato.ac.nz/ml/weka/

87

Table 6.3: Statistics on the parseable and erroneous snippets in Java tagged posts in Stack
Overflow.

Total Erroneous Clean Non-Java

Java tagged snip-
pets in SO

1.47 M
(100%)

1.01 M
(68.4%)

0.46 M
(31.6%)

Not Com-
puted

After curation
with jMechanic

1.47 M
(100%)

0.52 M
(35.1%)

0.93 M
(63.3%)

0.02 M
(1.6%)

Table 6.4: The percentages represent the fraction of erroneous snippets that suffer from the
given issue. GT Study represents numbers from our initial study. GT Validation shows the
results from manual validation. Last column gives the results observed after running the
classifier on entire dump.

Concept GT Study GT Validation Classifier-based Validation

Ellipses 5.03 5.08 9.12
HTML 34.67 31.38 34.90
Outputs 5.53 9.23 5.85

6.8 Validating the Study Results using the Classifier

We find that 50.25% of the total issues are platform related issues and hence they dominate
the concepts. Developer issues are the next most significant category. Among, developer
issues, Missing Definitions and Missing Blocks forms the major concept covering 11.56% of
the issues. While most tools focus on type inferences and such language issues, the category
including all three concepts constitute to only 19.59% of the total issues. Figure 6.3 (a) gives
the entire distribution. This validates the need for us to focus on Developer and Platform
categories for tool building. In this preliminary work, we fix the issues marked in Figure 6.2
in a tool named jMechanic. jMechanic uses string manipulation and heuristics to reduce 3
out of the 11 issues. On running jMechanic on the entire 12/2017 SO dump4 containing 1.47
Million snippets, jMechanic is able to curate snippets so that 63.3% of the input snippets
produce an AST. Without jMechanic, only 31.6% snippets were clean (Table 6.3).

6.8.1 Validation

Manual Validation To validate our theory, we randomly sampled 500 snippets and man-
ually categorized them into the identified buckets. Figure 6.3 (b) shows the concepts and
the number of snippets from the original set used for arriving at the concepts and the cor-
responding number from the validation set. There exists a linear correlation between them.
The correlation is strong and statistically significant with Spearman co-efficient ρ = 0.98 at
p = 8.6e− 08.

4https://archive.org/details/stackexchange

88

Validating using the Classifier Manual validation was limited to 500 snippets. To
reduce the threat that another 500 snippets may give different results, we validate our
theory using our classifier on all snippets in SO. Once we train it over all the concepts, we
run it across all erroneous snippets in the SO dump with the empirically found thresholds
to validate the results. As shown in Table 6.4, the results from our study, validation and the
classifier results are off by only less than 5%. This validates our theory on the dominating
issues, for the three concepts.

6.8.2 Effectiveness of jMechanic

To know if we have captured all the dominant issues, we conducted a study over 3 researchers.
These researchers had at least two years of experience in Java coding and had authored at
least one research paper involving big data. We selected 10 unclean snippets randomly from
the goldset and showed them one by one to each of the participants. We asked them to select
the most appropriate parsing issues associated with each snippet. We listed all 11 concepts
and added an “Other. Please specify.” option. No participant selected the “Other. Please
specify.” option. We compare the user given answers with jMechanic response. At top-1
and top-3 answers, our classifier gives a precision of 80% and recall of 75% when the user
given answers were considered as ground truth. We had an inter-rator agreement of 100%.
Note that we did not capture or compare the ranking of the issues as that is not our focus.
Finally, we asked if the participants like a tool to automatically identify parsing issues, and
extract clean snippets from SO. All the participants agreed that such a tool will be useful.

There are several cases where jMechanic failed. For instance, jMechanic could not differ-
entiate between the ellipses (”...”) seen in variable arguments or varargs based snippets as
in f(Object... args) and the ellipses that developers leave to abstract the code. Several
snippets marked as code could not be identified as Outputs especially when the output con-
tained API references or similar terms. In some cases, line numbers were wrongly identified
as output. Our focus here is to show that a knowledge discovery approach can be used to
solve this problem. Our approach gives promising results to explore further in this direction.

6.9 Related Work

Characterization Studies on Code Snippets in SO Our work makes the novel
contribution of characterizing unclean code snippets. Prior characterization works such
as [166, 167, 168, 169], based on Q&A websites have been predominantly about the qual-
ity of posts. These studies aim to predict or identify good or bad posts. Works such
as [170, 171, 139] address the problem of the quality of code snippets. Nasehi et al. [170]
determine what a good code example is using a score computed from the number of upvotes
and downvotes an answer has received. Tavaloki et al. [171] tackle the problem of infeasibility
of using code snippets directly from the web. However, they do not define quality of snippets
from the perspective of parsing. The goal of the study by Yang et al. [139] is to compare the
usability rates for snippets of four programming languages. To the best of our knowledge,
our work is the first to characterize the reasons behind code snippets being unclean.

89

Code Extraction and Snippet Curation One of the largely ignored problems that
exists in existing works is the separation of code from the non-code parts of a post. Ponzanelli
et al. [172] build a H-AST that represents all the components of a post in the form of a tree-
like data structure. Their work is based on an earlier work by Bacchelli et al. [173] who
present the idea of using Island Grammars to separate structured text from unstructured
NL text. Curation of code snippets is addressed by several researchers [142, 171, 30, 143] but
without characterizing at the first place. This makes these tools unsuitable for large data
dumps. The works of Zhong et al. [143] and Dagenais et al. [30] address problems specific
to the Language category which accounts for the least of all the categories.

Classification of Code Snippets Zhang et al., [164] classify code snippets for defect
prediction. Xie and Engler [174] show that redundancy in source code lead to defects in
code. Brun and Ernst [175] make a case that program properties exist which reveal errors.
They use these properties to build a classifier to identify faulty programs without the help
of test suites. Wang et al., [176] show that program semantics can be captured into defect
prediction features. They too build a classifier for defect prediction. Yet, none of these
efforts are focused towards parsing problems. We have implemented a classifier to identify
parsing issues in code snippets.

6.10 Threats to Validity

We have studied Java code snippets only. Our findings may not generalize to other program-
ming languages. However, nothing in the approach or the classifier design is tied to Java.
Even the parsing issues such as “Natural Language” and “HTML elements” occur in code
snippets belonging to other programming languages as well.

We have worked with code snippets found in SO. We may get different results on another
discussion forum. To reduce this risk, we have supplemented our manual validation using
500 random snippets with a classifier thereby validating against the code snippets in entire
SO.

Our results may not generalize beyond the manually sampled and verified list of 500 posts.
To minimize this risk, we built and used a classifier to validate the results over the entire
SO. The validity of the parsing issues distribution depends on the accuracy of the classifier.
We have shown that the classifier is has an average F1 score of 0.8 over 3 concepts.

6.11 Summary

Parsing errors in partial programs show up in discussion forums due to three major reasons:
1) Developer behavior, 2) Syntactical issues existing in the program before they get into the
discussion forums, and 3) Platform related issues. We identify 11 major causes that together
contribute to these categories. We find that the top-3 issues leading to parsing problems
are 1) HTML Issues 2) Natural Language in Code 3) Non-Java Code. Different markups to
embed non-Java items will be useful for researchers to extract and use code. Code extractors
should focus on these issues to maximize the utility of SO. We have implemented part of

90

these findings in a tool named jMechanic. It is able to extract AST out of 63.3% of the 1.47
Million snippets in SO. We plan to improve jMechanic to parse more snippets by curating all
the issue categories. We would also like to try jMechanic on other programming languages,
especially of the non-imperative kind.

91

Chapter 7

Conclusion and Future Work

We show that code variants form an important class of code snippets. Variants are different
from known snippet types such as simions and clones. We do not only propose an unam-
biguous definition of code variants but also characterize it. Our variant characterization
presents several opportunities and challenges for tool support and automation. To automate
the search for variants, we propose jSense structural and retrieval models. Our experiments
on developers’ perspective of code similarity lead us to a structural model of source code.
Our experiments suggest that existing retrieval models do not work well with source code.
Towards this end, we propose a Multi-Component Multi Aspect Term Frequency based re-
trieval model which we call the jSense Retrieval Model. We put these ideas to mine code
variants in a tool named jSense. These models and methods enable searching over partial
programs of discussion forums with a precision of 92% and recall of 71%. With ever growing
volume of discussion in these forums, the approach will become more effective in recognizing
topics and mining code snippets that serve as implementation choices. We observe that nat-
ural language queries on source code do not fare well due to the mismatch in representation
of query terms and terms in source code. To solve this problem, we visualize source code as
a collection of entities. We discover the entities and their surface forms in source code. We
use this knowledge to improve code search. Our user studies show that this approach allows
them to search faster by 29%. Finally, as we are limited by the number of snippets that we
can parse from the web, we investigate the extent to which parsing problems exist. In SO, we
show that only 31.3% of the code snippets parse to produce an Abstract Syntax Tree. Our
grounded theory study of the issues suggests that there are primarily three kinds of issues
which are due to developers, platform and language respectively. With the insights from this
study, we are able to increase the snippets that parse, to 61%. With the ever increasing open
source code, developer discussions and bug repository content, our techniques will do even
better. This opens up all new field of research to investigate how to leverage the knowledge
around by using information retrieval techniques.

92

7.1 Resources

The project resources such as datasets, source code and related documentation can be ac-
cessed from the project website1.

7.2 Future Work

The jSense structural and retrieval models need to be extended for better precision and
recall. Our work is limited to Java snippets. We would like to experiment with non-Java
languages and languages of non-imperative kind. Apart from these, we also consider the
following future work.

7.2.1 Applications of Code Variants

We have shown a method to construct a knowledge base of code variants. Such a knowledge
base can be used to solve a wide variety of problems. Here, we list a few that form our future
plans.

7.2.1.1 Propagating Assignment Feedback

In a MOOC setting, where instructor’s time is limited and a large number of assignments
need to be assessed, distinct variants of the assignments can be selected for manual feedback.
This feedback can then be percolated to rest of the assignments where the same feedback is
applicable.

7.2.1.2 Plagiarism Detection

In an academic setting, a variant knowledge base can be leveraged for plagiarism detection.
Students who have used distinct techniques can be separated into separate clusters. This
could reduce the load on plagiarism detectors.

7.2.1.3 Detection of Semantic Clones

As discussed in Section 3.2, there is no consistent definition of semantic clones. However,
a knowledge base of variants can help semantic clone detectors to improve their precision.
They can now skip those code snippets which they earlier suspected to be a semantic clone
and refactored.

7.2.1.4 Summary

The ability to generate a knowledge base of code variants helps us to attack a wide variety of
problems that are otherwise difficult to solve using traditional program analysis techniques.

1http://vvtesh.co.in

93

7.2.2 Modeling Tasks as Search Problems over Source Code

Many software engineering and other problems can be modeled as search problems over
source code. Arnaoudova et al. [25] claim that more than 20 software engineering tasks are
addressed through IR and NLP methods. Here, we discuss some of our related ongoing work
and future plans.

7.2.2.1 Automated Programming Quizzes

As an application of our ability to search in SO which contains multiple components including
text and code, we are working on arriving at automated programming quizzes. We can
model this as a search problem over SO using MC-MATF. Majority of existing quizzes on
programming languages focus on multiple choice or short answer questions like “What is the
output of the program?” instead of questions like “When is it better to use a ‘while’ loop
instead of a ‘for’ loop?”. An initial prototype using an entity driven approach as in Anne
gives promising results [177]. Entities having similar attributes are exploited to discover
patterns. For example, developers “declare” and “add elements” to collections. Since “Set”
is a collections, we can infer that similar actions happen over them as well. Thus, Jain [177]
shows that a knowledge discovery approach can be devised to arrive at useful questions.

7.2.2.2 Bug Detection

Many defects are caused by minor deviations from their respective clean implementation.
Some examples are missing guard statements, improper looping, or a relaxed conditional.
Using a repository of correct example code snippets, we can locate the defects in any given
code snippet and suggest corrections. Similar ideas have been used in plagiarism detec-
tion [32] and programming assignment grading [31]. We take this idea to web-scale and look
to provide local (within-IDE) recommendations for correction. To accomplish the above, we
assume the availability of labeled correct solutions. Multiple such occurrences are required
to provide precise mapping of the code-contexts. We call this the dense code assumption.
In a typical classroom assignment, solutions for the same problem is submitted by many
students which creates a dense code situation. Similarly, on web-scale, same ideas are dis-
cussed at multiple places in discussion forums. These discussions can be clustered to build a
repository of correct examples for concepts such as factorial. Once we have such a repository,
structural and semantic matches can be performed to find similarity of given code against
the repository. Minor deviations are captured and reported as bugs.

7.2.2.3 Summary

Modeling software engineering tasks as search problems over source code provides promising
results. Yet, the tools and techniques for code search is still not as mature as text search. We
are hopeful that our results with MC-MATF and Selective Set Structure Indexing Methods
will help us solve more problems of similar kind.

94

7.2.3 Searching in Software Binaries

So far, we have discussed code search. Binaries too make an interesting case for search.
Specifically, we envision a tool to search for Mathematical Expressions (ME) in software
binaries. A text search for “C++ Math Library” in SO2 results in 4K posts. Developers
often search for libraries that implement a certain mathematical expression. For example, a
developer asks for a C library that implements Fast Fourier Transform in Quora3. We find
39K GitHub4 projects which use the term “math” in their documentation. According to a
study by Zhao et al. [178], users often look for resources such as code or a toolkit with
an implementation of a ME. Hence, a search system for ME in binaries will be useful to
developers. Such a search system can be used not only at development time for code reuse,
but also be used by other stakeholders such as security analysts to locate vulnerabilities and
software testers for bug detection. Search in binaries pose a very different set of challenges
and opportunities.

7.2.3.1 Challenges and Opportunities in Dealing with Binaries

Variants Programs compiled using different compilers or with different optimization levels
may result in dissimilar binaries. A program implementing x2 when compiled without opti-
mization, calls the pow function, with binary signature <pow@plt>. Whereas, an optimized
version uses mulsd to multiply the number to itself. The instructions may differ for different
compiler optimization levels such as O0, O2 and Os (provided by GNU compiler collection
and implemented in gcc and g++).

Ghost Ops Not all instances of arithmetic opcodes in a binary provide insight about ME.
Common actions such as passing arguments to a function on the stack and allocating memory
make use of arithmetic opcodes too. We call such arithmetic opcodes, that do not have an
explicit equivalent operator in source code, Ghost Ops. Hence isolating arithmetic opcodes
with an equivalent operator in a mathematical expression is a challenge. For example, the
presence of the sub instruction at assembly level need not imply that there exists a subtraction
operation in the source code.

Evaluation Ordering Compilation may result in a binary where strands of the imple-
mented expression may appear in any order. For example, a compiler may evaluate a∗b+c/d
as a ∗ b followed by c/d or c/d followed by a ∗ b before finally performing the addition op-
eration. Due to this, the order of operations in ME differ from those that surface in the
binaries. Hence, to compute similarity, a specific sequence of operations cannot be assumed.
We refer to this challenge as Evaluation Ordering.

Operand Resolution Since all operations at the assembly level are performed on registers
or on values in memory, resolving the operands to variables is not a straightforward task.
We call this challenge Operand Resolution. The resolution of operands plays a major role

2[Oct 2017] https://stackoverflow.com/
3https://www.quora.com/Are-there-any-libraries-in-C-to-implement-FFTs
4https://github.com/

95

because if expressions were to be compared purely based on structure, the expression b2−4ac
would be equal to b2 − 4ab.

7.2.3.2 Challenges and Opportunities in Dealing with Mathematical Expres-
sions

On a similar note as dealing with binaries, dealing with ME is also challenging for the
following reasons:

Specification of Expressions Content MathML [179] (henceforth referred to as Con-
tentML) provides a standardized way to capture ME. Yet, mathematical operators may
have distinct forms. For example, x ∗ y, x × y and xy represent the same expression. Con-
tentML normalizes the representations, removing ambiguity.

Types of Operations In this work, we focus on algebraic and transcendental expressions.
Algebraic expressions are those which can be represented using only algebraic operations,
which consists of addition, subtraction, multiplication and division. Transcendental expres-
sions by contrast, are those expressions that cannot be represented by a finite sequence of
algebraic operations. The operations which make up transcendental expressions include ex-
ponential, logarithm and trigonometric functions. This is a challenge because we need to
consider all the diverse ways of representing these operations and functions at the binary
level. For example, in an unoptimized version log is represented by <log@plt>, while in an
optimized version it may get replaced by some precomputed value.

A more detailed discussion of this work is presented in Ridhi et al.’s [180] paper. Going
forward, we look at developing an end-to-end search system to address these challenges.

7.2.3.3 Summary

We envision automating the creation of a KB for multiple system architectures. Apart from
the classes of operations considered, there are other classes of operations such as logical (&&
for AND, → for implies), and relational (such as ≤). Summation (

∑
) and product (

∏
) are

examples of iterative operations that require applying an expression over a range of values.
Precision can be improved by keeping track of the operands in the ME. We will address these
in our future work. Our work opens up a wide range of opportunities to attack problems on
searching domain specific (such as music, medical and finance) content in binaries. We find
that knowledge base assisted solution is promising to address such problems.

96

Appendix A

User Study - Searching for Variants
Developers/
Question

Dev1 Dev2 Dev3 Dev4 Dev5 Dev6 Dev7 Dev8 Dev9

Would you
have coded a
factorial like
that in Listing
3?

Yes Yes Yes Yes Yes No No Yes Yes

Time taken to
review the code
snippet

4 6 2 3 5 3 3 2 3

What,could
be wrong with
this exam-
ple? Can you
identify some
potentially
missing parts
in computing
factorial, or
some related
bugs?

Debug
state-
ments
are
missing

No
issues

Handle
exceptions,
n can be
large.

Better
naming
conven-
tions

Better
com-
ments
and
excep-
tions

Conven-
tions
might
be vi-
olated.
Func-
tionally
looks
ok.

I have seen
hardcoded
implemen-
tations.
This cal-
culates
everytime.

We can
cache
results
as and
when
we do
this
compu-
tation
once.

Looks
good.

After seeing
variants: (will
you still write
it this way?)

Not
Sure

No. Not Sure. Yes Don’t
know.

No No Depends
on the
re-
quire-
ment.

May be.
Depends
on require-
ment.

What changes
will you con-
sider making to
this snippet?

0! and
neg-
ative
in-
put...1

it needs
some
non-
trivial
exten-
sions...2

n cannot be
int...3

Unless
the
context
de-
mands...4

I don’t
know...5

BigInt,
neg-
ative
n.

Large n,
negative
n, zero n,
checks.

Hardcode
results.
Cache
values.
Large
n.

Exceptions,
Input val-
idations,
comments,
API usage.

Do you think
developers will
benefit from
looking at
variant imple-
mentations?

Yes Yes Less useful
for short
examples.
Large ex-
amples
won’t have
variants
available
for refer-
ence.

Yes...6 Yes Yes Yes Yes Yes. Helps
to learn
what could
potentially
go wrong.

10! and negative input should be explicitly handled. int as type might be wrong.
2it needs some non-trivial extensions. Input validation (0!), Use BigInt, Handle Exceptions, Hardcode

Results.
3n cannot be int, negative numbers as input should be validated, Recursion looks more elegant.
4Unless the context demands I will still keep it simple. There may be possible extensions but I want to

see why we need them from either requirements or program context. If nothing more is mentioned, I will
keep it as it is. Writing ”fast factorial” is a new requirement. I don’t see any difference between recursive
and iterative versions in the context of professional code.

5I don’t know. I will start with the same version and perhaps extend it later if required.
6Yes. I would certainly like to learn at least and know what could potentially go wrong.

97

Bibliography

[1] Jonathan Sillito, Frank Maurer, Seyed Mehdi Nasehi, and Chris Burns. What makes
a good code example?: A study of programming q&a in stackoverflow. In Proceedings
of the 2012 IEEE International Conference on Software Maintenance (ICSM), ICSM
’12, pages 25–34, Washington, DC, USA, 2012. IEEE Computer Society.

[2] Kathryn T. Stolee, Sebastian Elbaum, and Daniel Dobos. Solving the search for source
code. ACM Trans. Softw. Eng. Methodol., 23(3):26:1–26:45, June 2014.

[3] Elmar Juergens, Florian Deissenboeck, Benjamin Hummel, and Stefan Wagner. Do
code clones matter? ICSE ’09, pages 485–495, Washington, DC, USA, 2009. IEEE
Computer Society.

[4] Andrian Marcus and Jonathan I. Maletic. Identification of high-level concept clones
in source code. ASE ’01, pages 107–, Washington, DC, USA, 2001. IEEE Computer
Society.

[5] Mark Gabel, Lingxiao Jiang, and Zhendong Su. Scalable detection of semantic clones.
ICSE ’08, pages 321–330, New York, NY, USA, 2008.

[6] J. Singer and T. Lethbridge. What’s so great about ‘grep’? implications for program
comprehension tools. In Technical Report, National Research Council, Canada., 1997.

[7] Susan Elliott Sim, Medha Umarji, Sukanya Ratanotayanon, and Cristina V. Lopes.
How well do search engines support code retrieval on the web? ACM Trans. Softw.
Eng. Methodol., 21(1):4:1–4:25, December 2011.

[8] Caitlin Sadowski, Kathryn T. Stolee, and Sebastian Elbaum. How developers search
for code: A case study. In Proceedings of the 2015 10th Joint Meeting on Foundations
of Software Engineering, ESEC/FSE 2015, pages 191–201, New York, NY, USA, 2015.
ACM.

[9] Renuka Sindhgatta. Using an information retrieval system to retrieve source code
samples. In Proceedings of the 28th International Conference on Software Engineering,
ICSE ’06, pages 905–908, New York, NY, USA, 2006. ACM.

98

[10] Dapeng Liu, Andrian Marcus, Denys Poshyvanyk, and Vaclav Rajlich. Feature loca-
tion via information retrieval based filtering of a single scenario execution trace. In
Proceedings of the Twenty-second IEEE/ACM International Conference on Automated
Software Engineering, ASE ’07, pages 234–243, New York, NY, USA, 2007.

[11] Bunyamin Sisman and Avinash C. Kak. Assisting code search with automatic query
reformulation for bug localization. In Proceedings of the 10th Working Conference on
Mining Software Repositories, MSR ’13, pages 309–318, Piscataway, NJ, USA, 2013.
IEEE Press.

[12] krugle. http://opensearch.krugle.org. Last accesed: 23-Jan-2018, 2018.

[13] searchcode. https://searchcode.com. Last accesed: 23-Jan-2018, 2018.

[14] Meili Lu, X. Sun, S. Wang, D. Lo, and Yucong Duan. Query expansion via wordnet
for effective code search. In 2015 IEEE 22nd International Conference on Software
Analysis, Evolution, and Reengineering (SANER), pages 545–549, March 2015.

[15] Mohammad Masudur Rahman, Chanchal K. Roy, and David Lo. Rack: Code search
in the ide using crowdsourced knowledge. In Proceedings of the 39th International
Conference on Software Engineering Companion, ICSE-C ’17, pages 51–54, Piscataway,
NJ, USA, 2017. IEEE Press.

[16] Raphael Sirres, Tegawendé F. Bissyandé, Dongsun Kim, David Lo, Jacques Klein,
Kisub Kim, and Yves Le Traon. Augmenting and structuring user queries to support
efficient free-form code search. In Proceedings of the 40th International Conference on
Software Engineering, ICSE ’18, pages 945–945, New York, NY, USA, 2018. ACM.

[17] Shaowei Wang, David Lo, and Lingxiao Jiang. Autoquery: Automatic construction
of dependency queries for code search. Automated Software Engg., 23(3):393–425,
September 2016.

[18] Xiaoyin Wang, David Lo, Jiefeng Cheng, Lu Zhang, Hong Mei, and Jeffrey Xu Yu.
Matching dependence-related queries in the system dependence graph. In Proceedings
of the IEEE/ACM International Conference on Automated Software Engineering, ASE
’10, pages 457–466, New York, NY, USA, 2010. ACM.

[19] Hitesh Sajnani, Vaibhav Saini, Jeffrey Svajlenko, Chanchal K. Roy, and Cristina V.
Lopes. Sourcerercc: Scaling code clone detection to big-code. In Proceedings of the
38th International Conference on Software Engineering, ICSE ’16, pages 1157–1168,
New York, NY, USA, 2016.

[20] Sushil Bajracharya, Trung Ngo, Erik Linstead, Yimeng Dou, Paul Rigor, Pierre Baldi,
and Cristina Lopes. Sourcerer: A search engine for open source code supporting
structure-based search. In Companion to the 21st ACM SIGPLAN Symposium on
Object-oriented Programming Systems, Languages, and Applications, OOPSLA ’06,
pages 681–682, New York, NY, USA, 2006.

99

[21] Kisub Kim, Dongsun Kim, Tegawendé F. Bissyandé, Eunjong Choi, Li Li, Jacques
Klein, and Yves Le Traon. Facoy: A code-to-code search engine. In Proceedings of
the 40th International Conference on Software Engineering, ICSE ’18, pages 946–957,
New York, NY, USA, 2018. ACM.

[22] Veselin Raychev, Martin Vechev, and Andreas Krause. Predicting program properties
from big code. In Proceedings of the 42Nd Annual ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages, POPL ’15, pages 111–124, New York,
NY, USA, 2015.

[23] Pliny. http://pliny.rice.edu/.

[24] Luca Ponzanelli, Gabriele Bavota, Massimiliano Di Penta, Rocco Oliveto, and Michele
Lanza. Mining stackoverflow to turn the ide into a self-confident programming
prompter. In Proceedings of the 11th Working Conference on Mining Software Repos-
itories, MSR 2014, pages 102–111, New York, NY, USA, 2014.

[25] Venera Arnaoudova, Sonia Haiduc, Andrian Marcus, and Giuliano Antoniol. The use of
text retrieval and natural language processing in software engineering. In Proceedings
of the 37th International Conference on Software Engineering - Volume 2, ICSE ’15,
pages 949–950, Piscataway, NJ, USA, 2015. IEEE Press.

[26] Anh Tuan Nguyen, Hoan Anh Nguyen, Tung Thanh Nguyen, and Tien N. Nguyen.
Grapacc: A graph-based pattern-oriented, context-sensitive code completion tool. In
Proceedings of the 34th International Conference on Software Engineering, ICSE ’12,
pages 1407–1410, Piscataway, NJ, USA, 2012. IEEE Press.

[27] DARPA. Muse envisions mining “big code to improve software reliability and con-
struction, 2014. http://www.darpa.mil/news-events/2014-03-06a.

[28] G. W. Furnas, S. Deerwester, S. T. Dumais, T. K. Landauer, R. A. Harshman, L. A.
Streeter, and K. E. Lochbaum. Information retrieval using a singular value decomposi-
tion model of latent semantic structure. In Proceedings of the 11th Annual International
ACM SIGIR Conference on Research and Development in Information Retrieval, SI-
GIR ’88, pages 465–480, New York, NY, USA, 1988.

[29] Sushil K. Bajracharya, Joel Ossher, and Cristina V. Lopes. Leveraging usage similarity
for effective retrieval of examples in code repositories. In Proceedings of the Eighteenth
ACM SIGSOFT International Symposium on Foundations of Software Engineering,
FSE ’10, pages 157–166, New York, NY, USA, 2010.

[30] Barthélémy Dagenais and Laurie Hendren. Enabling static analysis for partial java
programs. In Proceedings of the 23rd ACM SIGPLAN Conference on Object-oriented
Programming Systems Languages and Applications, OOPSLA ’08, pages 313–328, New
York, NY, USA, 2008.

100

[31] Andy Nguyen, Christopher Piech, Jonathan Huang, and Leonidas Guibas. Codewebs:
Scalable homework search for massive open online programming courses. In Proceedings
of the 23rd International Conference on World Wide Web, WWW ’14, pages 491–502,
New York, NY, USA, 2014.

[32] Saul Schleimer, Daniel S. Wilkerson, and Alex Aiken. Winnowing: Local algorithms
for document fingerprinting. In Proceedings of the 2003 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’03, pages 76–85, New York, NY, USA,
2003.

[33] G. Salton, A. Wong, and C. S. Yang. A vector space model for automatic indexing.
Commun. ACM, 18(11):613–620, November 1975.

[34] Giacomo Domeniconi, Gianluca Moro, Roberto Pasolini, and Claudio Sartori. A study
on term weighting for text categorization: A novel supervised variant of tf.idf. In
Proceedings of 4th International Conference on Data Management Technologies and
Applications, DATA 2015, pages 26–37, Portugal, 2015. SCITEPRESS - Science and
Technology Publications, Lda.

[35] Amit Singhal, Chris Buckley, and Mandar Mitra. Pivoted document length normal-
ization. In Proceedings of the 19th Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval, SIGIR ’96, pages 21–29, New
York, NY, USA, 1996. ACM.

[36] Hui Fang, Tao Tao, and Chengxiang Zhai. Diagnostic evaluation of information re-
trieval models. ACM Trans. Inf. Syst., 29(2):7:1–7:42, April 2011.

[37] Venkatesh Vinayakarao, Rahul Purandare, and Aditya V. Nori. Structurally hetero-
geneous source code examples from unstructured knowledge sources. In Proceedings
of the 2015 Workshop on Partial Evaluation and Program Manipulation, PEPM ’15,
pages 21–26, 2015.

[38] Jiaul H. Paik. A novel tf-idf weighting scheme for effective ranking. In Proceedings
of the 36th International ACM SIGIR Conference on Research and Development in
Information Retrieval, SIGIR ’13, pages 343–352, New York, NY, USA, 2013. ACM.

[39] Peilin Yang and Hui Fang. A reproducibility study of information retrieval models. In
Proceedings of the 2016 ACM International Conference on the Theory of Information
Retrieval, ICTIR ’16, pages 77–86, New York, NY, USA, 2016. ACM.

[40] J. Cordeiro, B. Antunes, and P. Gomes. Context-based recommendation to support
problem solving in software development. In Recommendation Systems for Software
Engineering (RSSE), 2012 Third International Workshop on, pages 85–89, June 2012.

[41] Zhiyuan Cai, Kaiqi Zhao, Kenny Q. Zhu, and Haixun Wang. Wikification via link co-
occurrence. In Proceedings of the 22Nd ACM International Conference on Conference
on Information & Knowledge Management, CIKM ’13, pages 1087–1096, New
York, NY, USA, 2013.

101

[42] Abram Hindle, Earl T. Barr, Zhendong Su, Mark Gabel, and Premkumar Devanbu.
On the naturalness of software. In Proceedings of the 34th International Conference
on Software Engineering, ICSE ’12, pages 837–847, Piscataway, NJ, USA, 2012. IEEE
Press.

[43] Elmar Juergens, Florian Deissenboeck, and Benjamin Hummel. Code similarities be-
yond copy & paste. CSMR ’10, pages 78–87, Washington, DC, USA, 2010. IEEE
Computer Society.

[44] Rainer Koschke. Survey of research on software clones. In Duplication, Redundancy,
and Similarity in Software, 23.07. - 26.07.2006, 2006.

[45] I. Keivanloo, C. K. Roy, and J. Rilling. Sebyte: A semantic clone detection tool for
intermediate languages. ICPC ’12, pages 247–249, June 2012.

[46] Rochelle Elva and Gary T. Leavens. JSCTracker: A semantic clone detection tool for
Java code. Technical Report CS-TR-12-04, Computer Science, University of Central
Florida, Orlando, Florida, March 2012.

[47] Alan J. Perlis and Spencer Rugaber. Programming with idioms in apl. SIGAPL APL
Quote Quad, 9(4):232–235, May 1979.

[48] Miltiadis Allamanis and Charles Sutton. Mining idioms from source code. FSE 2014,
pages 472–483, New York, NY, USA, 2014.

[49] Oleksandr Panchenko, Hasso Plattner, and Alexander Zeier. What do developers search
for in source code and why. SUITE ’11, pages 33–36, New York, NY, USA, 2011.

[50] Naiyana Sahavechaphan and Kajal Claypool. Xsnippet: Mining for sample code.
OOPSLA ’06, pages 413–430, New York, NY, USA, 2006.

[51] Laura Moreno, Gabriele Bavota, Massimiliano Di Penta, Rocco Oliveto, and Andrian
Marcus. How can i use this method? ICSE ’15, pages 880–890, Piscataway, NJ, USA,
2015.

[52] Jonathan Sillito, Frank Maurer, Seyed Mehdi Nasehi, and Chris Burns. What makes
a good code example?: A study of programming q&a in stackoverflow. In Proceedings
of the 2012 IEEE International Conference on Software Maintenance (ICSM), ICSM
’12, pages 25–34, Washington, DC, USA, 2012. IEEE Computer Society.

[53] Joel Brandt, Mira Dontcheva, Marcos Weskamp, and Scott R. Klemmer. Example-
centric programming: Integrating web search into the development environment. In
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI
’10, pages 513–522, New York, NY, USA, 2010. ACM.

[54] Collin McMillan, Denys Poshyvanyk, and Mark Grechanik. Recommending source
code examples via api call usages and documentation. RSSE ’10, pages 21–25, New
York, NY, USA, 2010.

102

[55] Babak Salamat, Todd Jackson, Andreas Gal, and Michael Franz. Orchestra: Intrusion
detection using parallel execution and monitoring of program variants in user-space.
EuroSys ’09, pages 33–46, New York, NY, USA, 2009.

[56] Saurav Muralidharan, Amit Roy, Mary Hall, Michael Garland, and Piyush Rai.
Architecture-adaptive code variant tuning. ASPLOS ’16, pages 325–338, New York,
NY, USA, 2016.

[57] Julia Rubin and Marsha Chechik. A framework for managing cloned product variants.
In Proceedings of the 2013 International Conference on Software Engineering, ICSE
’13, pages 1233–1236, Piscataway, NJ, USA, 2013.

[58] W. Ma, L. Chen, X. Zhang, Y. Zhou, and B. Xu. How do developers fix cross-project
correlated bugs? a case study on the github scientific python ecosystem. In 2017
IEEE/ACM 39th International Conference on Software Engineering (ICSE), pages
381–392, May 2017.

[59] Miltiadis Allamanis and Charles Sutton. Mining source code repositories at massive
scale using language modeling. In Proceedings of the 10th Working Conference on
Mining Software Repositories, MSR ’13, pages 207–216, Piscataway, NJ, USA, 2013.
IEEE Press.

[60] Chanchal K. Roy and James R. Cordy. Are scripting languages really different? In
Proceedings of the 4th International Workshop on Software Clones, IWSC ’10, pages
17–24, New York, NY, USA, 2010. ACM.

[61] Wai Ting Cheung, Sukyoung Ryu, and Sunghun Kim. Development nature matters:
An empirical study of code clones in javascript applications. Empirical Software En-
gineering, 21(2):517–564, 2016.

[62] Jens Krinke. Effects of context on program slicing. J. Syst. Softw., 79(9):1249–1260,
September 2006.

[63] Nancy G. Leveson. Intent specifications: An approach to building human-centered
specifications. IEEE Trans. Softw. Eng., 26(1):15–35, January 2000.

[64] Anh Tuan Nguyen, Tung Thanh Nguyen, Hoan Anh Nguyen, Ahmed Tamrawi,
Hung Viet Nguyen, Jafar Al-Kofahi, and Tien N. Nguyen. Graph-based pattern-
oriented, context-sensitive source code completion. ICSE ’12, pages 69–79, Piscataway,
NJ, USA, 2012.

[65] Martin P. Robillard. Topology analysis of software dependencies. ACM Trans. Softw.
Eng. Methodol., 17(4):18:1–18:36, 2008.

[66] Robert P. Nix. Editing by example. ACM Trans. Program. Lang. Syst., 7(4):600–621,
October 1985.

103

[67] Rishabh Singh and Sumit Gulwani. Learning semantic string transformations from
examples. Proc. VLDB Endow., 5(8):740–751, April 2012.

[68] Martin C. Rinard. Example-driven program synthesis for end-user programming: Tech-
nical perspective. Commun. ACM, 55(8):96–96, August 2012.

[69] Tom Bergan, Dan Grossman, and Luis Ceze. Symbolic execution of multithreaded
programs from arbitrary program contexts. OOPSLA ’14, pages 491–506, New York,
NY, USA, 2014.

[70] Aritra Dhar, Rahul Purandare, Mohan Dhawan, and Suresh Rangaswamy. Clotho:
Saving programs from malformed strings and incorrect string-handling. ESEC/FSE
2015, pages 555–566, New York, NY, USA, 2015.

[71] Jérémy Buisson and Fabien Dagnat. Recaml: Execution state as the cornerstone of
reconfigurations. SIGPLAN Not., 45(9):27–38, September 2010.

[72] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. In-
troduction to Algorithms, Third Edition. The MIT Press, 3rd edition, 2009.

[73] Hossain Shahriar and Mohammad Zulkernine. Mitigating program security vulner-
abilities: Approaches and challenges. ACM Comput. Surv., 44(3):11:1–11:46, June
2012.

[74] Lingxiao Jiang, Ghassan Misherghi, Zhendong Su, and Stephane Glondu. Deckard:
Scalable and accurate tree-based detection of code clones. In Proceedings of the 29th
International Conference on Software Engineering, ICSE ’07, pages 96–105, Washing-
ton, DC, USA, 2007. IEEE Computer Society.

[75] Giriprasad Sridhara, Lori Pollock, and K. Vijay-Shanker. Automatically detecting and
describing high level actions within methods. In Proceedings of the 33rd International
Conference on Software Engineering, ICSE ’11, pages 101–110, New York, NY, USA,
2011. ACM.

[76] Gilad Mishne and Maarten de Rijke. Source code retrieval using conceptual similarity.
RIAO ’04, pages 539–554, Paris, France, France, 2004.

[77] Shaowei Wang, David Lo, and Lingxiao Jiang. Active code search: Incorporating user
feedback to improve code search relevance. In Proceedings of the 29th ACM/IEEE
International Conference on Automated Software Engineering, ASE ’14, pages 677–
682, New York, NY, USA, 2014.

[78] Yuhao Wu, Yuki Manabe, Tetsuya Kanda, Daniel M. German, and Katsuro Inoue. A
method to detect license inconsistencies in large-scale open source projects. MSR ’15,
pages 324–333, Piscataway, NJ, USA, 2015.

104

[79] Thomas A. Alspaugh, Hazeline U. Asuncion, and Walt Scacchi. Analyzing software
licenses in open architecture software systems. In Proceedings of the 2009 ICSE Work-
shop on Emerging Trends in Free/Libre/Open Source Software Research and Develop-
ment, FLOSS ’09, pages 54–57, Washington, DC, USA, 2009. IEEE Computer Society.

[80] John Long. Software reuse antipatterns. SIGSOFT Softw. Eng. Notes, 26(4):68–76,
July 2001.

[81] Miltiadis Allamanis, Earl T. Barr, Christian Bird, and Charles Sutton. Suggesting
accurate method and class names. In Proceedings of the 2015 10th Joint Meeting on
Foundations of Software Engineering, ESEC/FSE 2015, pages 38–49, New York, NY,
USA, 2015. ACM.

[82] Justin Pombrio and Shriram Krishnamurthi. Resugaring: Lifting evaluation sequences
through syntactic sugar. SIGPLAN Not., 49(6):361–371, June 2014.

[83] Mukund Raghothaman, Yi Wei, and Youssef Hamadi. SWIM: synthesizing what i
mean: code search and idiomatic snippet synthesis. In Proceedings of the 38th In-
ternational Conference on Software Engineering, ICSE 2016, Austin, TX, USA, May
14-22, 2016, pages 357–367, 2016.

[84] Mohammad Gharehyazie, Baishakhi Ray, and Vladimir Filkov. Some from here, some
from there: Cross-project code reuse in github. In Proceedings of the 14th International
Conference on Mining Software Repositories, MSR ’17, pages 291–301, Piscataway, NJ,
USA, 2017. IEEE Press.

[85] D. Yang, P. Martins, V. Saini, and C. Lopes. Stack overflow in github: Any snip-
pets there? In 2017 IEEE/ACM 14th International Conference on Mining Software
Repositories (MSR), pages 280–290, May 2017.

[86] Apache Commons. https://commons.apache.org/. Last accesed: 23-Jan-2018, 2018.

[87] Mukund Raghothaman, Yi Wei, and Youssef Hamadi. Swim: Synthesizing what i
mean: Code search and idiomatic snippet synthesis. In Proceedings of the 38th In-
ternational Conference on Software Engineering, ICSE ’16, pages 357–367, New York,
NY, USA, 2016. ACM.

[88] Lee Martie, André van der Hoek, and Thomas Kwak. Understanding the impact of
support for iteration on code search. In Proceedings of the 2017 11th Joint Meeting
on Foundations of Software Engineering, ESEC/FSE 2017, pages 774–785, New York,
NY, USA, 2017. ACM.

[89] A. Z. Broder. On the resemblance and containment of documents. In Proceedings.
Compression and Complexity of SEQUENCES 1997 (Cat. No.97TB100171), pages
21–29, Jun 1997.

105

[90] Hui Fang, Tao Tao, and ChengXiang Zhai. A formal study of information retrieval
heuristics. In Proceedings of the 27th Annual International ACM SIGIR Conference
on Research and Development in Information Retrieval, SIGIR ’04, pages 49–56, New
York, NY, USA, 2004. ACM.

[91] Wei Le and Shannon D. Pattison. Patch verification via multiversion interprocedural
control flow graphs. In Proceedings of the 36th International Conference on Software
Engineering, ICSE 2014, pages 1047–1058, New York, NY, USA, 2014. ACM.

[92] Rylan Cottrell, Robert J. Walker, and Jörg Denzinger. Semi-automating small-scale
source code reuse via structural correspondence. In Proceedings of the 16th ACM SIG-
SOFT International Symposium on Foundations of Software Engineering, SIGSOFT
’08/FSE-16, pages 214–225, New York, NY, USA, 2008. ACM.

[93] Reid Holmes and Gail C. Murphy. Using structural context to recommend source code
examples. In Proceedings of the 27th International Conference on Software Engineer-
ing, ICSE ’05, pages 117–125, New York, NY, USA, 2005.

[94] Alfred V. Aho and Jeffrey D. Ullman. Principles of Compiler Design (Addison-Wesley
Series in Computer Science and Information Processing). Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 1977.

[95] Apache Commons Mathematics Library. http://commons.apache.org/proper/

commons-math/. Last accesed: 23-Jan-2018, 2018.

[96] M. F. Porter. Readings in information retrieval. chapter An Algorithm for Suffix
Stripping, pages 313–316. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,
1997.

[97] Jiawei Han, Micheline Kamber, and Jian Pei. Data Mining: Concepts and Techniques.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 3rd edition, 2011.

[98] L. Martie, T. D. LaToza, and A. v. d. Hoek. Codeexchange: Supporting reformulation
of internet-scale code queries in context (t). In 2015 30th IEEE/ACM International
Conference on Automated Software Engineering (ASE), pages 24–35, Nov 2015.

[99] Cristina V. Lopes, Petr Maj, Pedro Martins, Vaibhav Saini, Di Yang, Jakub Zitny,
Hitesh Sajnani, and Jan Vitek. Déjàvu: A map of code duplicates on github. Proc.
ACM Program. Lang., 1(OOPSLA):84:1–84:28, October 2017.

[100] Suresh Thummalapenta. Exploiting code search engines to improve programmer pro-
ductivity. In Companion to the 22Nd ACM SIGPLAN Conference on Object-oriented
Programming Systems and Applications Companion, OOPSLA ’07, pages 921–922,
New York, NY, USA, 2007. ACM.

106

[101] Anh Tuan Nguyen, Hoan Anh Nguyen, and Tien N. Nguyen. A large-scale study
on repetitiveness, containment, and composability of routines in open-source projects.
In Proceedings of the 13th International Conference on Mining Software Repositories,
MSR ’16, pages 362–373, New York, NY, USA, 2016. ACM.

[102] Di Yang, Pedro Martins, Vaibhav Saini, and Cristina Lopes. Stack overflow in github:
Any snippets there? In Proceedings of the 14th International Conference on Mining
Software Repositories, MSR ’17, pages 280–290, Piscataway, NJ, USA, 2017. IEEE
Press.

[103] Bei Shi, Wai Lam, Shoaib Jameel, Steven Schockaert, and Kwun Ping Lai. Jointly
learning word embeddings and latent topics. In Proceedings of the 40th International
ACM SIGIR Conference on Research and Development in Information Retrieval, SI-
GIR ’17, pages 375–384, New York, NY, USA, 2017. ACM.

[104] Rolf Jagerman, Carsten Eickhoff, and Maarten de Rijke. Computing web-scale topic
models using an asynchronous parameter server. In Proceedings of the 40th Interna-
tional ACM SIGIR Conference on Research and Development in Information Retrieval,
SIGIR ’17, pages 1337–1340, New York, NY, USA, 2017. ACM.

[105] Suresh Thummalapenta and Tao Xie. Spotweb: Detecting framework hotspots via
mining open source repositories on the web. In Proceedings of the 2008 International
Working Conference on Mining Software Repositories, MSR ’08, pages 109–112, New
York, NY, USA, 2008. ACM.

[106] David Mandelin, Lin Xu, Rastislav Bod́ık, and Doug Kimelman. Jungloid mining:
Helping to navigate the api jungle. In Proceedings of the 2005 ACM SIGPLAN Con-
ference on Programming Language Design and Implementation, PLDI ’05, pages 48–61,
New York, NY, USA, 2005. ACM.

[107] Reid Holmes. Do developers search for source code examples using multiple facts? In
Proceedings of the 2009 ICSE Workshop on Search-Driven Development-Users, Infras-
tructure, Tools and Evaluation, SUITE ’09, pages 13–16, Washington, DC, USA, 2009.
IEEE Computer Society.

[108] Naiyana Sahavechaphan and Kajal Claypool. Xsnippet: Mining for sample code. In
Proceedings of the 21st Annual ACM SIGPLAN Conference on Object-oriented Pro-
gramming Systems, Languages, and Applications, OOPSLA ’06, pages 413–430, New
York, NY, USA, 2006. ACM.

[109] Collin McMillan, Mark Grechanik, Denys Poshyvanyk, Qing Xie, and Chen Fu. Portfo-
lio: Finding relevant functions and their usage. In Proceedings of the 33rd International
Conference on Software Engineering, ICSE ’11, pages 111–120, New York, NY, USA,
2011. ACM.

107

[110] Suresh Thummalapenta and Tao Xie. Parseweb: A programmer assistant for reusing
open source code on the web. In Proceedings of the Twenty-second IEEE/ACM In-
ternational Conference on Automated Software Engineering, ASE ’07, pages 204–213,
New York, NY, USA, 2007. ACM.

[111] Tao Xie and Jian Pei. Mapo: Mining api usages from open source repositories. In
Proceedings of the 2006 International Workshop on Mining Software Repositories, MSR
’06, pages 54–57, New York, NY, USA, 2006. ACM.

[112] Giriprasad Sridhara, Emily Hill, Divya Muppaneni, Lori Pollock, and K. Vijay-
Shanker. Towards automatically generating summary comments for java methods.
In Proceedings of the IEEE/ACM International Conference on Automated Software
Engineering, ASE ’10, pages 43–52, New York, NY, USA, 2010.

[113] Andrea Lucia, Massimiliano Penta, Rocco Oliveto, Annibale Panichella, and Sebas-
tiano Panichella. Labeling source code with information retrieval methods: An empir-
ical study. Empirical Softw. Engg., 19(5):1383–1420, October 2014.

[114] Adrian Kuhn, Stéphane Ducasse, and Tudor Gı́rba. Semantic clustering: Identifying
topics in source code. Inf. Softw. Technol., 49(3):230–243, March 2007.

[115] Lauren R. Biggers, Cecylia Bocovich, Riley Capshaw, Brian P. Eddy, Letha H. Etzkorn,
and Nicholas A. Kraft. Configuring latent dirichlet allocation based feature location.
Empirical Softw. Engg., 19(3):465–500, June 2014.

[116] Chao Liu, Chen Chen, Jiawei Han, and Philip S. Yu. Gplag: Detection of software
plagiarism by program dependence graph analysis. In Proceedings of the 12th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD
’06, pages 872–881, New York, NY, USA, 2006.

[117] George K. Baah, Andy Podgurski, and Mary Jean Harrold. The probabilistic program
dependence graph and its application to fault diagnosis. In Proceedings of the 2008
International Symposium on Software Testing and Analysis, ISSTA ’08, pages 189–200,
New York, NY, USA, 2008.

[118] Yoshiki Higo and Shinji Kusumoto. How should we measure functional sameness from
program source code? an exploratory study on java methods. In Proceedings of the
22Nd ACM SIGSOFT International Symposium on Foundations of Software Engineer-
ing, FSE 2014, pages 294–305, New York, NY, USA, 2014.

[119] Collin McMillan, Mark Grechanik, Denys Poshyvanyk, Chen Fu, and Qing Xie. Ex-
emplar: A source code search engine for finding highly relevant applications. IEEE
Trans. Softw. Eng., 38(5):1069–1087, September 2012.

[120] David Shepherd, Kostadin Damevski, Bartosz Ropski, and Thomas Fritz. Sando: An
extensible local code search framework. In Proceedings of the ACM SIGSOFT 20th
International Symposium on the Foundations of Software Engineering, FSE ’12, pages
15:1–15:2, New York, NY, USA, 2012.

108

[121] Collin McMillan, Mark Grechanik, Denys Poshyvanyk, Qing Xie, and Chen Fu. Port-
folio: A search engine for finding functions and their usages. In Proceedings of the 33rd
International Conference on Software Engineering, ICSE ’11, pages 1043–1045, New
York, NY, USA, 2011. ACM.

[122] Collin Mcmillan, Denys Poshyvanyk, Mark Grechanik, Qing Xie, and Chen Fu. Portfo-
lio: Searching for relevant functions and their usages in millions of lines of code. ACM
Trans. Softw. Eng. Methodol., 22(4):37:1–37:30, October 2013.

[123] Björn Hartmann, Daniel MacDougall, Joel Brandt, and Scott R. Klemmer. What
would other programmers do: Suggesting solutions to error messages. In Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems, CHI ’10, pages
1019–1028, New York, NY, USA, 2010.

[124] Doug Downey, Matthew Broadhead, and Oren Etzioni. Locating complex named enti-
ties in web text. In Proceedings of the 20th International Joint Conference on Artifical
Intelligence, IJCAI’07, pages 2733–2739, San Francisco, CA, USA, 2007. Morgan Kauf-
mann Publishers Inc.

[125] Openhub. https://www.openhub.net/, (accessed 2016-07-30).

[126] Lori L. Pollock, K. Vijay-Shanker, Emily Hill, Giriprasad Sridhara, and David Shep-
herd. Natural language-based software analyses and tools for software maintenance.
In Andrea De Lucia and Filomena Ferrucci, editors, ISSSE, volume 7171 of Lecture
Notes in Computer Science, pages 94–125. Springer, 2011.

[127] Paul W. McBurney and Collin McMillan. Automatic documentation generation via
source code summarization of method context. In Proceedings of the 22Nd International
Conference on Program Comprehension, ICPC 2014, pages 279–290, New York, NY,
USA, 2014.

[128] A. Marcus, A. Sergeyev, V. Rajlich, and J. I. Maletic. An information retrieval ap-
proach to concept location in source code. pages 214–223, Nov 2004.

[129] Kristina Toutanova, Dan Klein, Christopher D. Manning, and Yoram Singer. Feature-
rich part-of-speech tagging with a cyclic dependency network. In Proceedings of the
2003 Conference of the North American Chapter of the Association for Computational
Linguistics on Human Language Technology - Volume 1, NAACL ’03, pages 173–180,
Stroudsburg, PA, USA, 2003. Association for Computational Linguistics.

[130] Xiaowen Ding, Bing Liu, and Lei Zhang. Entity discovery and assignment for opinion
mining applications. In Proceedings of the 15th ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining, KDD ’09, pages 1125–1134, New
York, NY, USA, 2009.

[131] Zhaopeng Tu, Zhendong Su, and Premkumar Devanbu. On the localness of software.
In Proceedings of the 22Nd ACM SIGSOFT International Symposium on Foundations
of Software Engineering, FSE 2014, pages 269–280, New York, NY, USA, 2014.

109

[132] Mark Gabel and Zhendong Su. A study of the uniqueness of source code. In Pro-
ceedings of the Eighteenth ACM SIGSOFT International Symposium on Foundations
of Software Engineering, FSE ’10, pages 147–156, New York, NY, USA, 2010.

[133] Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze. Introduction to
Information Retrieval. Cambridge University Press, New York, NY, USA, 2008.

[134] Peter C. Rigby and Martin P. Robillard. Discovering essential code elements in infor-
mal documentation. In Proceedings of the 2013 International Conference on Software
Engineering, ICSE ’13, pages 832–841, Piscataway, NJ, USA, 2013. IEEE Press.

[135] H. Schildt. Java: The Complete Reference, Ninth Edition. The Complete Reference.
McGraw-Hill Education, 2014.

[136] B.W. Kernighan and D.M. Ritchie. The C Programming Language. Prentice-Hall
software series. Prentice Hall, 1988.

[137] Jenny Rose Finkel, Trond Grenager, and Christopher Manning. Incorporating non-
local information into information extraction systems by gibbs sampling. ACL ’05,
pages 363–370, Stroudsburg, PA, USA, 2005. Association for Computational Linguis-
tics.

[138] Di Yang, Pedro Martins, Vaibhav Saini, and Cristina Lopes. Stack overflow in github:
Any snippets there? In Proceedings of the 14th International Conference on Mining
Software Repositories, MSR ’17, pages 280–290, Piscataway, NJ, USA, 2017. IEEE
Press.

[139] Di Yang, Aftab Hussain, and Cristina Videira Lopes. From query to usable code:
An analysis of stack overflow code snippets. In Proceedings of the 13th International
Conference on Mining Software Repositories, MSR ’16, pages 391–402, New York, NY,
USA, 2016. ACM.

[140] S. Subramanian and R. Holmes. Making sense of online code snippets. In 2013 10th
Working Conference on Mining Software Repositories (MSR), pages 85–88, May 2013.

[141] Valerio Terragni, Yepang Liu, and Shing-Chi Cheung. Csnippex: Automated synthesis
of compilable code snippets from q&a sites. In ISSTA, 2016.

[142] H. Sanchez and J. Whitehead. Source code curation on stackoverflow: The vesperin
system. In 2015 IEEE/ACM 37th IEEE International Conference on Software Engi-
neering, volume 2, pages 661–664, May 2015.

[143] Hao Zhong and Xiaoyin Wang. Boosting complete-code tool for partial program. In
Proceedings of the 32Nd IEEE/ACM International Conference on Automated Software
Engineering, ASE 2017, pages 671–681, Piscataway, NJ, USA, 2017. IEEE Press.

110

[144] Suresh Thummalapenta and Tao Xie. Parseweb: A programmer assistant for reusing
open source code on the web. In Proceedings of the Twenty-second IEEE/ACM In-
ternational Conference on Automated Software Engineering, ASE ’07, pages 204–213,
New York, NY, USA, 2007. ACM.

[145] Barthelemy Dagenais and Martin P. Robillard. Semdiff: Analysis and recommendation
support for api evolution. In Proceedings of the 31st International Conference on
Software Engineering, ICSE ’09, pages 599–602, Washington, DC, USA, 2009. IEEE
Computer Society.

[146] Siddharth Subramanian and Reid Holmes. Making sense of online code snippets. In
Proceedings of the 10th Working Conference on Mining Software Repositories, MSR
’13, pages 85–88, Piscataway, NJ, USA, 2013. IEEE Press.

[147] Klaas-Jan Stol, Paul Ralph, and Brian Fitzgerald. Grounded theory in software engi-
neering research: A critical review and guidelines. In Proceedings of the 38th Interna-
tional Conference on Software Engineering, ICSE ’16, pages 120–131, New York, NY,
USA, 2016. ACM.

[148] Pavan Soni. The Discovery of Grounded Theory (Glaser and Strauss, 1967). 03 2015.

[149] StackOverflow. Stacktrace in stackoverflow. 2012.

[150] StackOverflow. Non java text in stackoverflow. https://stackoverflow.com/

questions/31457777. Last accesed: 27-Jan-2018, 2015.

[151] StackOverflow. Line numbers in stackoverflow. https://stackoverflow.com/

questions/42202. Last accesed: 27-Jan-2018, 2012.

[152] StackOverflow. Multiple blocks in stackoverflow. https://stackoverflow.com/

questions/23069036. Last accesed: 27-Jan-2018, 2014.

[153] StackOverflow. Missing definitions in stackoverflow. https://stackoverflow.com/

questions/2097265. Last accesed: 27-Jan-2018, 2010.

[154] Stackoverflow. https://stackoverflow.com/questions/5152372. Last accesed: 27-
Jan-2018, 2017.

[155] StackOverflow. Ellipses in stackoverflow. https://stackoverflow.com/questions/

7024879. Last accesed: 27-Jan-2018, 2011.

[156] StackOverflow. Ellipses and variable arguments in stackoverflow. https://

stackoverflow.com/questions/1656901. Last accesed: 27-Jan-2018, 2015.

[157] StackOverflow. Psudocode in stackoverflow. https://stackoverflow.com/

questions/13954276/. Last accesed: 27-Jan-2018, 2013.

[158] StackOverflow. Html elemens in stackoverflow. https://stackoverflow.com/

questions/22655193. Last accesed: 27-Jan-2018, 2014.

111

[159] StackOverflow. Non java statements in stackoverflow. https://stackoverflow,com/
questions/8905028. Last accesed: 7-Feb=2018, 2012.

[160] StackOverflow. Missing tokens in stackoverflow. https://stackoverflow.com/

questions/30409192. Last accesed: 27-Jan-2018, 2015.

[161] StackOverflow. Java version issue in stack overflow. https://stackoverflow.com/

questions/26214693. Last accesed: 27-Jan-2018, 2014.

[162] StackOverflow. Extra tokens in stackoverflow. https://stackoverflow.com/

questions/13631663. Last accesed: 27-Jan-2018, 2012.

[163] Lori L. Pollock, K. Vijay-Shanker, Emily Hill, Giriprasad Sridhara, and David Shep-
herd. Natural language-based software analyses and tools for software maintenance.
In Andrea De Lucia and Filomena Ferrucci, editors, ISSSE, volume 7171 of Lecture
Notes in Computer Science, pages 94–125. Springer, 2011.

[164] Feng Zhang, Quan Zheng, Ying Zou, and Ahmed E. Hassan. Cross-project defect
prediction using a connectivity-based unsupervised classifier. In Proceedings of the
38th International Conference on Software Engineering, ICSE ’16, pages 309–320, New
York, NY, USA, 2016. ACM.

[165] Thomas Fritz, Andrew Begel, Sebastian C. Müller, Serap Yigit-Elliott, and Manuela
Züger. Using psycho-physiological measures to assess task difficulty in software devel-
opment. In Proceedings of the 36th International Conference on Software Engineering,
ICSE 2014, pages 402–413, New York, NY, USA, 2014. ACM.

[166] Denzil Correa and Ashish Sureka. Chaff from the wheat: Characterization and mod-
eling of deleted questions on stack overflow. In Proceedings of the 23rd International
Conference on World Wide Web, WWW ’14, pages 631–642, New York, NY, USA,
2014. ACM.

[167] Fabio Calefato, Filippo Lanubile, Maria Concetta Marasciulo, and Nicole Novielli.
Mining successful answers in stack overflow. In Proceedings of the 12th Working Con-
ference on Mining Software Repositories, MSR ’15, pages 430–433, Piscataway, NJ,
USA, 2015. IEEE Press.

[168] Jiwoon Jeon, W. Bruce Croft, Joon Ho Lee, and Soyeon Park. A framework to predict
the quality of answers with non-textual features. In SIGIR, 2006.

[169] Luca Ponzanelli, Andrea Mocci, Alberto Bacchelli, Michele Lanza, and David Fuller-
ton. Improving low quality stack overflow post detection. 2014 IEEE International
Conference on Software Maintenance and Evolution, pages 541–544, 2014.

[170] Seyed Mehdi Nasehi, Jonathan Sillito, Frank Maurer, and Chris Burns. What makes a
good code example?: A study of programming q&a in stackoverflow. 2012 28th IEEE
International Conference on Software Maintenance (ICSM), pages 25–34, 2012.

112

[171] MohammadReza Tavakoli, Abbas Heydarnoori, and Mohammad Ghafari. Improving
the quality of code snippets in stack overflow. In SAC, 2016.

[172] Luca Ponzanelli, Andrea Mocci, and Michele Lanza. Stormed: Stack overflow ready
made data. 2015 IEEE/ACM 12th Working Conference on Mining Software Reposi-
tories, pages 474–477, 2015.

[173] Alberto Bacchelli, Anthony Cleve, Michele Lanza, and Andrea Mocci. Extract-
ing structured data from natural language documents with island parsing. 2011
26th IEEE/ACM International Conference on Automated Software Engineering (ASE
2011), pages 476–479, 2011.

[174] Yichen Xie and Dawson Engler. Using redundancies to find errors. IEEE Trans. Softw.
Eng., 29(10):915–928, October 2003.

[175] Yuriy Brun and Michael D. Ernst. Finding latent code errors via machine learning over
program executions. In Proceedings of the 26th International Conference on Software
Engineering, ICSE ’04, pages 480–490, Washington, DC, USA, 2004. IEEE Computer
Society.

[176] Song Wang, Taiyue Liu, and Lin Tan. Automatically learning semantic features for
defect prediction. In Proceedings of the 38th International Conference on Software
Engineering, ICSE ’16, pages 297–308, New York, NY, USA, 2016.

[177] Shuktika Jain. Automated generation of programming language quizzes. In Proceedings
of the 2015 10th Joint Meeting on Foundations of Software Engineering, ESEC/FSE
2015, pages 1051–1053, New York, NY, USA, 2015.

[178] Jin Zhao, Min-Yen Kan, and Yin Leng Theng. Math information retrieval: user re-
quirements and prototype implementation. In Proceedings of the 8th ACM/IEEE-CS
joint conference on Digital libraries, pages 187–196. ACM, 2008.

[179] Content Markup. https://www.w3.org/TR/MathML3/chapter4.html. Last accesed:
23-Jan-2018, 2018.

[180] Ridhi Jain, Sai Prathik, Venkatesh Vinayakarao, and Rahul Purandare. A search
system for mathematical expressions on software binaries. In Proceedings of the 15th
International Conference on Mining Software Repositories, MSR ’18, pages 487–491,
New York, NY, USA, 2018. ACM.

113

	Introduction
	Thesis Statement
	Contributions
	Outline of Dissertation

	Background
	Code Search
	Indexing Source Code
	Retrieval Models for Source Code

	Code Variants
	Introduction
	Background and Related Work
	Background on the Types of code snippets
	Redundancies in source code
	Variants: A missing link

	Research Methodology
	RQ1: What are Code Variants? Are they different from the known code snippet types?
	RQ2: What are the aspects of variants that developers consider while describing variants?
	Code Context
	Desired Properties

	RQ3: Do Developers Seek Variants?
	Nature of Variants
	Are variants language dependent?

	Implications of Variant Characterization
	Tool Builders
	Researchers

	Threats to Validity
	Summary

	Towards Searching for Code Variants
	Introduction
	jSense
	jSense Retrieval Model - MC-MATF
	Structural Model
	Refining the Structural Model

	Implementation
	Building the Repository
	Querying the Repository

	Evaluation
	Building the Repository
	Querying the Repository

	Threats to Validity
	Related Work
	Summary

	Improving Code Search using Entity Retrieval
	Introduction
	Motivation
	Formative Study
	Applications
	Problem Overview

	Definitions
	Approach
	Entity Discovery
	Entity Profile Construction
	Entity Linking

	Evaluation
	Entity Discovery
	Entity Profile Construction

	User Study
	Study Design
	Results

	Limitations and Threats
	Summary

	Reducing the Parsing Problems in Stack Overflow
	Introduction
	Background and Terminology
	Research Method
	Data Analysis
	Issues due to Developer Behavior
	Platform Related Issues
	Language Related Issues

	Results
	Building a Classifier to Validate Results
	Implementation and Evaluation of Classifier
	Parameter Tuning
	Comparative Evaluation

	Validating the Study Results using the Classifier
	Validation
	Effectiveness of jMechanic

	Related Work
	Threats to Validity
	Summary

	Conclusion and Future Work
	Resources
	Future Work
	Applications of Code Variants
	Modeling Tasks as Search Problems over Source Code
	Searching in Software Binaries

	User Study - Searching for Variants

