
REBOUND ATTACKS ON GRφSTL

Student Name: KOMAL KOCHAR

IIIT-D-MTech-CS-IS-11-001
Dec 6, 2011

Indraprastha Institute of Information Technology
3rd Floor, Library Building

NSIT Campus, Dwarka, Sector 3
New Delhi - 110078

Thesis Committee
Somitra Sanadhya (Chair)

Shishir Nagaraja
Gaurav Gupta

Submitted in partial fulfillment of the requirements
for the Degree of M.Tech. in Computer Science,

with specialization in Information Security

Abstract

Cryptographic hash Functions are widely used for a wide range of applications such as au-
thentication of information, digital signatures and protection of pass-phrases. In the last
few years, the cryptanalysis of hash functions has gained much importance within the cryp-
tographic community. In 2004 a series of attacks by Wang et al. [19, 20] have exposed
security vulnerabilities in the design of the most widely deployed SHA-1 hash function. As
a result, the US National Institute for Standards and Technology (NIST) recommended the
replacement of SHA-1 by the SHA-2 hash function family and in 2008, they announced a
call for the design of a new SHA-3 hashing algorithm.

On October 31, 2008, the “SHA-3 competition”, organised by the National Institute of
Standards and Technology (NIST), was launched [17]. 64 algorithms were submitted, out
of which, 51 were accepted for the first round of the competition. On July 24, 2009, 14
candidates were chosen by NIST to advance to the second round of the competition. One
of the candidates accepted for the second round is called Grφstl [11], developed by Praveen
Gauravaram, Lars R. Knudsen and Krystian Matusiewicz. Grφstl further advanced to the
final round along with BLAKE [2], JH, Keccak [3], Skein [10] and became one of the top 5
proposals for SHA-3.

The report breifly specifies the Grφstl family of cryptographic hash algorithms, one of the
top 5 finalists of the SHA-3 hash function competition and a well known attack named
Rebound Attack on Grφstl. The rebound attack is a freedom degrees utilization technique
that was first proposed by Mendel et al. in [15] as an analysis of round-reduced Grφstl and
Whirlpool [18]. The main idea of the rebound attack is to use the available degrees of freedom
in a collision attack to effeciently bypass the low probability parts of a truncated differential
trail. The rebound attack consists of an inbound phase with a match-in-the-middle part to
exploit the available degrees of freedom, followed by a subsequent probabilistic outbound
phase. Report discusses available rebound attacks on reduced rounds of Grφstl-256.

The report first describes a simple method to utilize the available freedom degrees. The
original idea of rebound is then applied to reduced rounds of Grφstl- 256. Report describes
attack on 4 rounds of Grφstl-256. It further explains same rebound technique applied on 5
and 6 rounds Grφstl-256. The new technique Super Sbox Cryptanalysis [12] introduced by
Thomas Peyrin and Henri Gilbert is explained in the report alongwith its application on 7
rounds of Grφstl-256.

Acknowledgments

I wish to express my sincere gratitude to Prof. Pankaj Jalote, Director at Indraprastha
Institute of Information Technology, Delhi and Security and whole Security and Privacy
Group of IIIT-Delhi for providing me an opportunity to do my project work on REBOUND
ATTACKS ON GRφSTL. This project bears on imprint of many peoples. I sincerely thank
to my project guide Dr. Somitra Sandhya, Assistant Professor at Indraprastha Institute of
Information Technology, Delhi for guidance and encouragement in carrying out this project
work. I would also like to thank all people had many interesting research discussions. Es-
pecially, thanks to Doonhoon Chang and Shuang Wu and Thomas Peyrin for answering
conceptual queries on mail. I would also like to thank all my friends for their welcome dis-
tractions in my spare time. This important distance allowed me to focus on research without
losing the fun of it. Last but not least I wish to avail myself of this opportunity, express a
sense of gratitude and love to my friends and my beloved parents for their manual support,
understanding, and simply for everything.

i

Contents

1 Introduction 1

1.1 Overview . 1

1.2 Hash Functions . 1

1.2.1 Iterated hash function . 2

1.2.2 MD strengthening . 2

1.2.3 Compression Function . 3

1.2.4 Davies-Meyer compression function 4

1.2.5 Matyas-Meyer-Oseas compression function 4

1.2.6 Permutation based compression functions 5

1.3 Grφstl . 6

1.4 Specification of Grφstl . 7

1.4.1 The Grφstl hash function . 7

1.4.2 The Grφstl compression function . 8

1.4.3 The Grφstl output function . 9

1.5 Securirty Requirements of Hash Functions 10

1.6 Rebound Attack . 10

1.6.1 Inbound phase . 11

1.6.2 Outbound phase . 12

1.7 Prelimineries of the Rebound Attack . 12

1.7.1 Truncated differentials . 12

1.7.2 Differential Properties of SubBytes 12

1.7.3 Differential Properties of MixBytes 13

1.7.4 AddColumns and ShiftRows . 13

ii

2 Rebound Attack on Grφstl-256 14

2.1 Overview . 14

2.2 Differential Paths . 14

2.2.1 Notation . 15

2.2.2 4 round Truncated Differential Trial 15

2.3 Rebound Attack on 4 rounds Grφstl-256 . 18

2.3.1 Inbound Phase . 19

2.3.2 Outbound Phase . 20

2.4 Rebound Attack on 5 rounds Grφstl-256 . 21

2.4.1 Inbound Phase . 23

2.4.2 Outbound Phase . 23

2.5 Rebound Attack on 6 rounds Grφstl-256 . 23

2.5.1 Inbound phase . 24

2.5.2 Outbound Phase . 25

3 Extending Rebound Attack 26

3.1 Overview . 26

3.2 Super S Box View . 26

3.3 Super Sbox view of Grφstl-256 . 27

3.4 Extending Inbound Phase . 29

3.5 Attack on 7 rounds Grφstl-256 . 30

4 Conclusion and Future Work 32

iii

List of Figures

1.1 Iterated hash function . 3

1.2 Davies Meyer Scheme- block based compression function 4

1.3 Matyas-Meyer-Oseas Scheme- block based compression function 5

1.4 JH- permutation based compression function 5

1.5 Grφstl- permutation based compression function 6

1.6 The Grφstl hash function . 7

1.7 The Grφstl compression function f . 8

1.8 The Grφstl output transformation . 9

1.9 Schematic view of Rebound Attack . 11

2.1 Truncated Differential paths . 16

2.2 Rebound Attack on 4 rounds Grφstl-256 . 18

2.3 Phase 1 of the Attack on 4 rounds Grφstl-256 19

2.4 Phase 2 and 3 of the Attack on 4 rounds Grφstl-256 20

2.5 Rebound Attack on 5 rounds Grφstl-256 . 21

2.6 Truncated Differential trial for 5 rounds Grφstl-256 22

2.7 Rebound Attack on 6 rounds Grφstl-256 . 24

2.8 Inbound phase of Rebound Attack on 6 rounds Grφstl-256 25

3.1 Super Sbox view for 2 rounds AES Permutation 27

3.2 Super Sbox view of Grφstl-256 . 28

3.3 Inbound Phase with Super Sbox view for Grφstl-256 29

3.4 Rebound Attack on 7 rouunds Grφstl-256 . 31

iv

Chapter 1

Introduction

1.1 Overview

This report starts with an introduction to cryptographic hash functions. It further introduces

the important terms associated with hash functions, such as iterated hash functions, Merkle

Damgard Strengthening [4] used for iterated hash functions, block cipher based and permu-

tation based compression functions. Chapter further explains the security requirements of

hash functions that is collision resistance, preimage resistance, second preimage resistance.

It further gives a brief overview of Grφstl [11] and a well known rebound technique used to

attack the compression function used in hash functions. Rebound technique can be applied

to both block cipher based compression function and permutation based compression func-

tion. Original idea of rebound is to avail the degrees of freedom to do a collision [13] or a

semi-free-start collision attack. Rebound technique is one of the differential cryptanalytic

technique, using truncated differential trial. As Grφstl uses AES like permutation for its

compression function, rebound technique applied on Grφstl uses the differential properties

of operations of AES permutaion. Rebound technique along with an introduction to the

differential properties used for attack are explained next.

1.2 Hash Functions

Hash functions are a building block for numerous cryptographic applications. Cryptographic

hash functions are used in a variety of applications like digital signatures, authentication

schemes and message integrity. Hash function are defined as one way functions, that com-

1

preses a message of arbitrary length to a result of fixed length. Informally, a hash function

H is a function that takes an arbitrarily long message as input and outputs a fixed-length

hash value of size n bits. There are two types of hash functions keyed and unkeyed. The

keyed hash functions are often called as Message authentication code or MAC. In case of

unkeyed hash fnctions, the message digest must be securely kept so that it cannot be altered

whereas in a keyed hash function, you have to transfer the key along with the message.

The classical security requirements for one way hash functions are collision resistance and

(second)- preimage resistance. Namely, it should be impossible for an adversary to find a

collision (two distinct messages that lead to the same hash value) in less than 2n/2 hash

computations, or a (second)-preimage (a message hashing to a given challenge) in less than

2n hash computations.

1.2.1 Iterated hash function

In the literature, most of the hash functions are iterated hash functions, i.e., they are based

on an easily computable function h(·,·) from two binary sequences of respective lengths m

and l to a binary sequence of length m. The message M is split into blocks Xi of l bits or X =

(X1,X2,.....,Xn). If the length of R is not a multiple of l, X is padded using an unambiguous

padding rule. The value Hn of length m is obtained by computing iteratively

Hi = h(Hi−1,Xi) i = 1, 2, ... ,t

where H0 is a specified initial value denoted by IV . Iterated hash function along with

output transformation is shown in Fig. 1.1. The function h is called the compression

function or the hash round function. The hash result is then obtained by applying an output

transformation(basically an identity function) g to Hn, or Hash(IV,M) = H = g(Ht).

1.2.2 MD strengthening

Iterated hash functions are vulnerable to extension attacks(extending the message with an-

other block to generate its hash). Merkle and Damgard proposed an operation to be applied

on iterated structure to make hash function immune to extension attack. MD strengthening

2

Figure 1.1: Iterated hash function

makes the hash function theoretically secure. The major objective of the Merkle-Damgard

iteration is collision security preservation- showing that the Merkle-Damgard hash function

is collision secure when the underlying compression function is assumed to be also collision

secure. The preservation is achieved by applying the Merkle-Damgard-strengthening [4]: a

suffix-free message padding function used in conjunction with a fixed initialization value IV.

In Merkle-Daamgard strengthening an extra message block or padding is done to make it

collision secure. In MD strengthening, few 0 bits are added to make last block xt of message

of length l. An extra block xt+1 containing length of original message in bits is added. An

extra block addition puts restriction on the length of the message to be padded, but the

restriction is not significant in real life.

1.2.3 Compression Function

Compression function used in hash function are of two types- Block cipher based compression

function and Permutation based compression function [1, 14]. During introductory years of

hash functions, hash functions were mostly block cipher based. As block ciphers have long

been the central primitive in symmetric key cryptography, and there exists some measure

of confidence in block cipher designs, thus block cipher based design is widely used for

hash functions. Two major block cipher based design schemes are explained in following

subsections.

3

Figure 1.2: Davies Meyer Scheme- block based compression function

1.2.4 Davies-Meyer compression function

The Davies-Meyer compression function makes a simple use of the underlying block cipher E

(Fig. 1.2). The input blocks xi serve as the key to E. Thus, the block size of xi must match

the excepted key size of the specic block cipher. The previous hash-value Hi serves as the

plaintext to be handled with appropriate bit-length. The output Hi is then concatenated

with the previous output Hi1 with aid of the exclusive-or operator. The final output Ht is

dened by the iterated formula

Hi = Exi
(Hi1) ⊕ Hi1

for 1 ≤ i ≤ t, H0 = IV .

1.2.5 Matyas-Meyer-Oseas compression function

The Matyas-Meyer-Oseas compression function is most widely identical to Davies-Meyer

with the input x and the previous hash-value Hi interchanged (Fig. 1.3). Here, the input

blocks xi serve as plaintext to be handled and the previous hash-value Hi serve as the key

to block cipher E. Due to the possible different bit-lengths k and n a function g precedes the

key input of E. It maps the n-bit previous hash-value to a suitable k-bit key. The nal output

Ht is dened by the iterated formula

4

Figure 1.3: Matyas-Meyer-Oseas Scheme- block based compression function

Figure 1.4: JH- permutation based compression function

Hi = EGhI−1
(xi) ⊕ xi

for 1 ≤ i ≤ t, H0 = IV .

1.2.6 Permutation based compression functions

Traditionally, hash functions were constructed on existing block ciphers. But with advance-

ment the cryptography, existing confidence in security of block ciphers decreased, which

leads to introduction of permutation based hash functions. JH,one of the top 5 finalists uses

a single permutaion as compression function(Fig. 1.4) and Grφstl hash function is based on

two permutations(Fig. 1.5)

5

Figure 1.5: Grφstl- permutation based compression function

1.3 Grφstl

Informally, Grφstl can be defined as AES based hash function with permutaion based design.

Grφstl [11] is a wide-pipe Merkle-Damgrd [4] hash algorithm with an output transformation.

In Grφstl, the iterated state is wider than the final hash output, which classifies it as a type

of a wide-pipe design [5]. Grφstl processes its inputs by first calling the compression function

f iteratively, then applying a final output transformation to the state and finally truncating

the result to the desired output length. The compression function f is built out of two permu-

tations P and Q and the output transformation is designed on top of the permutation P. The

compression function of Grφstl uses two fixed 2n-bit permutations together, and produces a

2n-bit compression function. Main goal of the commpression function is to achieve collision

and preimage resistance as an ideal n-bit-wide compression function. Intermediate chaining

values in Grφstl-256 are 512 bits wide; for Grφstl-512, they are 1024 bits wide. The output

transformation processes the final chaining state, and discards half the bits of the result,

yielding an n-bit hash output.

The underlying fixed permutations of Grφstl are based closely on the structure of AES,

reusing the S-box, but expanding the size of the block to 512 bits (for Grφstl-256) or 1024

bits (for Grφstl-512).

6

Figure 1.6: The Grφstl hash function

1.4 Specification of Grφstl

Grφstl is a collection of hash functions, capable of returning message digests of any number

of bytes from 1 to 64, i.e., from 8 to 512 bits in 8-bit steps. The variant returning n bits is

called Grφstl-n. As stated earlier, Grφstl is an iterated hash function with a compression

function built from two distinct permutations (see Fig. 1.7). Grφstl is a byte-oriented SP-

network which borrows components from the AES.

Major components of Grφstl are described as follows-

1.4.1 The Grφstl hash function

The Grφstl hash functions iterate the compression function f as follows. The message M is

padded and split into l-bit message blocksm1, h2, . . ., mt, and each message block is processed

sequentially. An initial l-bit value h0 = iv is defined, and subsequently the message blocks

mi are processed as [see Fig. 1.6]

hi → f(hi−1,mi) for i = 1, . . . , t.

7

Figure 1.7: The Grφstl compression function f

1.4.2 The Grφstl compression function

The compression function f is based on two underlying l-bit permutations P and Q. It is

defined as follows:

f(h,m) = P(h
⊕

m)
⊕

Q(m)
⊕

h

The two permutations P and Q are constructed using the wide trail design strategy and

borrow components from the AES. The S-box used is identical to the one used in the block

cipher AES and the diffusion layers are constructed in a similar manner to those of the AES.

As a consequence there is a very strong confusion and diffusion in Grφstl.

The design of P and Q was inspired by the Rijndael block cipher algorithm. Thus, design

consist of a number of rounds R, which consists of a number of round transformations. In

Grφstl, a total of four round transformations are defined for each permutation [see Fig. 1.7].

These are

8

Figure 1.8: The Grφstl output transformation

1. AddRoundConstant (AC) adds different one-byte round constants to the 8 × 8 states of

P and Q.

2. The non-linear layer SubBytes (SB) applies the AES S-Box to each byte of the state

independently.

3. The cyclical permutation ShiftBytes (SH) rotates the bytes of row j left by j positions.

4. The linear diffusion layer MixBytes (MB) multiplies the state by a constant matrix.

In each round, the state is updated by round transformation Ri as follows:

Ri = MB ◦ SH ◦ SB ◦ AC

1.4.3 The Grφstl output function

Let truncn(x) be the operation that discards all but the trailing n bits of x. Then the output

transformation ψ is defined as [see Fig. 1.8]

ψ(x) = truncn(P(x)
⊕

x).

9

1.5 Securirty Requirements of Hash Functions

One major security criteria for hash functions is that they should be collision-resistant, which

means that given two distinct messages, M1 and M2, the probability that the corresponding

hashes, H(M1) and H(M2), being equal is negligible. Due to the birthday paradox, there is a

generic attack that find collisions after about 2n/2 evaluations of the hash function, where n

is the size in bits of the hash values. The attack works by randomly choosing messages and

computing their hash values until a collision occurs. Typically, with iterated hash functions,

the size of messages blocks is often larger than the size of the hash values themselves, and this

attack usually works on the compression function itself. Other important security goals for

hash functions are preimage resistance and second-preimage resistance. An attack against

preimage resistance is an attack that, given some target value y, finds a message M such that

H(M) = y. An attack against second preimage resistance, given a message M, finds another

message M1 such that H(M1) = H(M). Rebound attack explained in next sections tends to

find collisions in the Grφstl hash function.

1.6 Rebound Attack

Rebound [16] is a widely used tool in the cryptanalysis of hash functions. This was invented

during the cryptanalysis of Whirlpool [18]. It basically works on the AES- based designs.

Thus, rebound can be applied to wide range of hash functions such as Echo, Grφstl, Lane,

Skein, Twister. The idea of the Rebound attack is to divide an attack into two phases, an

inbound and outbound phase. The inbound phase is an efficient meet-in-the-middle phase,

which exploits the available degrees of freedom in the middle of a (truncated) differential

path to guarantee that the expensive part of a differential path holds. In the probabilistic

outbound phase the solutions of the inbound phase are computed backwards and forwards

to obtain an attack on the hash or compression function.

Rebound applies to both block cipher and permutation based designs. Broadly speaking, in

the Rebound attack, the internal cipher of a hash or compression function is considered as

three sub-ciphers. Let E be a block cipher, then

E = Efw ◦ Ein ◦ Ebw.

10

Figure 1.9: Schematic view of Rebound Attack

Alternatively, for a permutation based construction, we decompose a permutation P into

three sub-permutations

P = Pfw ◦ Pin ◦ Pbw.

The rebound attack can be described by two phases (see Fig. 1.9):

1.6.1 Inbound phase

It is a meet-in-the-middle phase in Ein (or Pin), which is aided by the degrees of freedom

that are available to a hash function cryptanalyst. The combination of meet-in-the-middle

technique and exploitation of degrees of freedom leading to very efficient matches is termed as

match-in- the-middle approach. This phase usually starts with several chosen input/output

differences of Ein(or Pin) that are propogated through linear layers forward and backward.

Then, one can carry out meet-in-the-middle (MITM) match for differences and generate all

possible value pairs validating the matches. Inbound Phase is also referred as controlled

rounds as adversary can control the propogation of differences.

11

1.6.2 Outbound phase

In this second phase, truncated differentials in both forward and backward direction are used

through Efw and Ebw (or Pfw and Pbw) to obtain desired collisions or near-collisions. If the

truncated differentials have a low probability in Efw and Ebw, we can repeat the inbound

phase to obtained more starting points for the outbound phase. Outbound Phase is also re-

ferred as uncontrolled rounds as in this phase propogation of differences can’t be controlled

by adversary.

In most cases, the inbound phase can be done fast due to the MITM nature and generates

solution pairs with very low average complexity. Hence, attackers usually choose the position

of Ein(or Pin) in the differential path so that it covers a low probability portion of the trail

in order to increase the success probability of the outbound phase.

1.7 Prelimineries of the Rebound Attack

In the following, we want to briefly summarize some well known facts that will be frequently

used in the subsequent sections.

1.7.1 Truncated differentials

Knudsen [9] proposed truncated differentials as a tool in block cipher cryptanalysis. In a

standard differential attack, the full difference between two inputs/outputs is considered

whereas in the case of truncated differentials, the differences is only partially determined,

i.e. for every byte, we only check if there is a difference or not. A byte having a non-zero

difference is called active.

1.7.2 Differential Properties of SubBytes

In the attacks, few differential properties of the AES S- box are used. Most of these prop-

erties can simply be veried by computing the differential distribution tables (DDT) of the

12

S-box (or inverse S-box).

1. For a given input (or output) difference of the AES S-box, the number of possible output

(or input) differences is restricted to 127.

2. For a given input and output difference, the number of possible input values is limited to

either 2 or 4 values.

3. For a given input and output difference, there are only 2 or 4 solutions per S-box.

1.7.3 Differential Properties of MixBytes

In the case of MixBytes, we use the property of an n × n MDS matrix that, given any

bytes of input and output, the other bytes can be uniquely determined. Since MixBytes is

linear, this also holds for differences. In the following attacks, we use differential paths with

a minimum number of active S-boxes. Hence, also the number of differences in the MixBytes

transformation is minimal and every active MixBytes operation contains zero differences in

exactly 7 (3 for MixBytes) input/output bytes. It follows, that choosing a single byte differ-

ence uniquely determines all other 8 (4 for MixBytes) differences.

Hence, for a fixed position of active bytes, we get 255 possibilities for the difference propa-

gation of MixBytes [8]. These cases can be precomputed and stored in tables.

1.7.4 AddColumns and ShiftRows

AddColumns and ShiftRows are linear operations. Active Bytes after applying AddColumns

operations remains same as that before. Also in ShiftRows operation, number of active bytes

remains same in both input and output, only active bytes shifts to new bytes after applying

ShiftBytes operation.

13

Chapter 2

Rebound Attack on Grφstl-256

2.1 Overview

In the last chapter we gave an introduction to hash functions and terminology associated with

hash functions such as permutation based compression functions, Mekle Damgard strength-

ening for iterated hash functions and widepipe design. Next, we discussed a well known hash

function Grφstl based on above mentioned characteristics. Analysis of Grφstl introduced re-

bound technique explained in section 1.7.

In this chapter, we will look how simple rebound technique can be used to attack Grφstl.

Document will discuss attacks on reduced rounds of Grφstl-256 only. Chapter starts with

an introduction to differential trials and describes a way to construct 4 round differential

trial for Grφstl-256. It further discussed the way to attack 4 rounds of Grφstl using the

truncated differential trial. Same rebound technique can be applied to 5 and 6 rounds of

Grφstl-256. Same technique is used to do a collision attack on 5 rounds of Grφstl-256 and a

semi-free-start collision attack on 6 rounds of Grφstl-256(in paper [16]).

2.2 Differential Paths

As explained before, inbound phase of the rebound attack exploits the available degrees of

freedom in the middle of a (truncated) differential path to guarantee that the expensive

part of a differential path holds and in the probabilistic outbound phase the solutions of the

14

inbound phase are computed backwards and forwards to obtain an attack on the hash or

compression function. Thus, before applying rebound attack on Grφstl, we will first look

how differences propogate in the differential path. As truncated differential path is used for

rebound attack(see section 1.8.1), we just need to check for active bytes(bytes having a non

zero difference). Differential path considered for analysis is

1 → 8 → 64 → 8 → 1

2.2.1 Notation

Since only MixBytes and SubBytes have differential properties(Section 1.8.2 and 1.8.3),

these are used to denote the state. Rest two operations of the permutation, ShiftRows

and MixBytes do not have differential properties, they only have diffusion property. The

SubBytes layer of round i is denoted by SBi , its input state by SBin
i and its output state by

SBout
i . Similarly, the MixBytes layer of round i is denoted by MBi , its input state by MBin

i

and its output state by MBout
i . The first and second column show differences at the input

and output of the S-boxes (SBin
i and SBout

i), and column three and four show differences at

the input and output of the MixBytes transformations (MBin
i and MBout

i).

2.2.2 4 round Truncated Differential Trial

In this section, we will see how differences propogate across different operations of permuta-

tion and also paths which follow the differential trial(1 → 8 → 64 → 8 → 1). For this trial,

we will start with MixBytes operation of round 2 MB2. Complete trial is shown in Fig. 2.1.

1. For first column of MB2, 7 input byte differences are required to be made zero, if we

choose a single difference, all other differences of column 1 of MBout
2 can be uniquely deter-

mined. Thus we have 255 choices for fixing first byte of column1 of MBout
2 , or we can choose

first byte difference of column 1 of SBin
3 , as AddColumns operation is a linear operation.

Also differences of column 1 of MBin
2 will propogate linearly to SBout

2 as inverse ShiftBytes

is a linear operation.

15

Figure 2.1: Truncated Differential paths

16

2. Next, we move on with column 1 of MB3. Same as above, for first column of MB3,

7 input byte differences are required to be made zero, if we choose a single difference, all

other differences of column 1 of MBin
3 can be uniquely determined. Differences of column

1 of MBin
3 will propogate linearly to SBout

3 as inverse ShiftBytes is a linear operation. As

first byte of SBout
3 has already been fixed from above, we have 127 choices for fixing first

byte of column1 of MBout
3 , or we can choose first byte difference of column 1 of SBin

4 , as

InverseAddColumns operation is a linear operation.

3. Next, we start with second column of MB2, 7 input byte differences are required to be

made zero, if we choose a single difference, all other differences of column 2 of MBout
2 can be

uniquely determined. Also differences of column 2 of MBin
2 will propogate linearly to SBout

2

as inverse ShiftBytes is a linear operation. Due to differential behaviour of sbox(explained

in section 1.8.2) will have 127 choices for fixing first byte of column 2 of MBout
2 , or we can

choose first byte difference of column 2 of SBin
3 , as AddColumns operation is a linear oper-

ation.

4. Next, we move on with column 2 of MB3. Same as step 2, for second column of MB3,

7 input byte differences are required to be made zero, if we choose a single difference, all

other differences of column 2 of MBin
3 can be uniquely determined. Differences of column

2 of MBin
3 will propogate linearly to SBout

3 as inverse ShiftBytes is a linear operation. As

first byte of SBout
3 has already been fixed from above, we have 64 choices for fixing first

byte of column2 of MBout
3 , or we can choose first byte difference of column 2 of SBin

4 , as

InverseAddColumns operation is a linear operation.

5. Similarly, above 2 steps are repeated for each column. The approximate number of pos-

sible S-box dierences are halved for each additional MixBytes column. From above steps,

approximate number of choices are around 264.

In these we have found differences for SBin
2 , SBout

2 , SBin
3 , SBout

3 . It is the middle differential

path which is exploited by attacker as an inbound phase for attacking Grφstl.

17

Figure 2.2: Rebound Attack on 4 rounds Grφstl-256

2.3 Rebound Attack on 4 rounds Grφstl-256

As stated above, main idea of Rebound Attack is to start from the middle of the truncated

differential path and then propogate outwards. Thus, middle part of the differential trial

is solved for the differences and values by exploiting available degrees of freedom(Inbound

phase), and then differences and values are propgated outwards probabilistically(Outbound

phase). This attack is based on the differential path explained in the previous section. As

we have seen the truncated differential path that is used to attack 4 rounds of Grφstl has a

full active state in the middle and low active bytes on ends. The detailed path is given in

Fig. 2.2 and the sequence of active bytes between each round ri is as follows:

1 →r1 8 →r2 64 →r3 8 →r4 1

Next, we explain how the trial is being constructed. The main idea is to search for differences

according to the 4-round middle part (1 → 8 → 64 → 8 → 1) of the path. Phases of the

attack are explained in subsequent subsections.

18

Figure 2.3: Phase 1 of the Attack on 4 rounds Grφstl-256

2.3.1 Inbound Phase

The rebound attack is started with the inbound phase in round r2 and r3. It follows the

truncated differential path explained above and deterministically propagate to the full active

SubBytes layer in the middle. This phase starts with 8 input/output differences of MBout
2

and SBin
4 and propogates through linear layers and match at SB3. Inbound Phase can be

further subdivided into three phases.

1. In Phase 1, we randomly select 8 byte differences for SBin
4 and propgate backwards to

MBout
3 . The output differences will remain same as inverseAddColmns is a linear operation.

Propogating backwards and applying inverseMixBytes operation, all the 64 bytes would get

active and we will obtain 64 byte differences for MBin
3 . After applying inverseShiftBytes,

differnces will propogate linearly to SBin
3 . Next is an inverseSBox operation, which is not

linear, so we will compute all valid byte pairs for SBin
3 using SBox differential tables..ref..

Detailed trial is shown in Fig. 2.3

2. In phase 2, we will choose byte differences of SBin
3 . these byte differences will propogate

linearly to MBin
3 (inverseAddColumns is a linear operation). These difference must be cho-

sen such that each of the such that after applying inverseMixBytes, we obtain only 8 active

bytes at MBin
2 . Thus, for each column of SBin

3 (or MBout
2 inverse MixBytes table is used to

choose each byte difference of SBin
3 , such that we obtain single active byte at MBin

2 (see Fig.

2.4). For each of the 255 differences each column of inverse MixBytes table, we can choose

each byte of SBin
3 from 127 possible differences, thus probabilty of success is 127/255, that

is 1/2 approx.Thus for each column, that is 8 bytes, probability would be 2−8. Since we had

255 input differences for each column of MB2, probability of finding solution for a column is

19

Figure 2.4: Phase 2 and 3 of the Attack on 4 rounds Grφstl-256

1(1(127/255)8)255 ' 0. 62. For 8 columns, it would be (0.62)8 ' 2−5.5. Thus phase 1 needs

to be repeated 25.5 times to obtain solution following the trial.

3. Phase 3 - From above phase we have obtained differences for SBin
2 . These differences will

propogate backwards linearly to SBout
2 (inverseShiftBytes being linear operation). Moving

backwards, 8 byte differences will be obtained by inverseSubBytes operation. Now it looks

like differences in SBin
2 and SBout

4 can’t be chosen anymore. But, Thomas Peyrin has made

an observation in paper [12] that differences of active bytes located at row j of SBin
2 depend

only on byte pairs of column j of SBin
4 . Thus one solution for each column of SBin

3 provides

28 valid candidates.

2.3.2 Outbound Phase

The uncontrolled phase is probabilistic. In the outbound phase, we probabilistically prop-

agate the pairs of the inbound phase outwards, to match the differences at the input and

output of the permutations. In the backward direction (from MBin
1 to SBin

1), the proba-

bility to follow the path is almost one. In the forward direction (from SBin
4 to MBout

4) the

probability for the propagation from 8 to 1 active byte through the MixBytes transformation

in round r4 is 2−8×7 = 2−56. Hence, we can construct one pair conforming to the truncated

differential path for each of P and Q with a complexity of 256.

20

Figure 2.5: Rebound Attack on 5 rounds Grφstl-256

2.4 Rebound Attack on 5 rounds Grφstl-256

The Rebound technique dissussed in section 1.7 or applied in above section can also be used

to attack 5 rounds of Grφstl-256. The collission attack on 5 rounds of the Grφstl-256 com-

pression function, explained by Kota Ideguchi and Bart Preneel in paper [13], uses same

technique. The truncated differential path used to attack has high number of active bytes

in the middle and in the end. The truncated differential path is (see Fig.2.5)

8 →r1 8 →r2 64 →r3 8 →r4 8 →r5 64

Same truncated differntial path is used for both the permutations P and Q. Both the phases-

Inbound phase and Outbound phase of rebound attack on 5 rounds of Grφstl is explained as

follows. Complete truncated differential path showing all active bytes differences after each

operation of permutation is shown in Fig. 2.6.

21

Figure 2.6: Truncated Differential trial for 5 rounds Grφstl-256

22

2.4.1 Inbound Phase

The rebound attack starts with the inbound phase in round r2 and r4. It starts from the

input of 4th round SubBytes(SBin
4) and input of 1st round MixBytes(MBout

1) and follows

the truncated differential path explained above and deterministically propagate to the full

active SubBytes layer in the middle. This phase starts with 8 input/output differences of

MBout
1 and SBin

4 and propogates through linear layers and match at SB3. The average time

complexity to generate an internal state pair which follows the path of the controlled phase

is one.

2.4.2 Outbound Phase

The remaining steps of the path are probabilistic. For the forward direction (from the SB4

to MBout
5), the probability to follow the path is almost one. For the backward direction

(from MBout
1 toSBin

1), it takes 216 computations.

2.5 Rebound Attack on 6 rounds Grφstl-256

The same rebound technique which is used for attacking 4 rounds and 5 rounds of Grφstl-256

can also be applied to attack 6 rounds. The truncated differential path used for this attack

has high number of active bytes in the middle and a low number of active bytes at the input

and output of each permutation P and Q. This is done to control degrees of freedom in

the inbound phase and the rest rounds of the trial are probabilistic. This rebound attack

on 6 rounds of Grφstl can also be used to construct semi-free-start collission for Grφstl-

256(explained by Florian Mendel in paper [16]). This attack follows the following sequence:

8 →r1 1 →r2 8 →r3 64 →r4 8 →r5 8 →r6 64

The truncated differential path followed for the attack is shown in Fig. 2.7. Phases of the

Rebound Attack are explained in the following subsections.

23

Figure 2.7: Rebound Attack on 6 rounds Grφstl-256

2.5.1 Inbound phase

The rebound attack is started with the inbound phase in round r3 and r4. It follows the

truncated differential path shown above and deterministically propagate to the full active

SubBytes layer in the middle. This phase starts with 8 input/output differences of MBout
4

and SBout
3 and propogates through linear layers and match at SB3(see Fig. 2.8). Inbound

Phase can be explained as follows:

1. Initially we randomly select 8 byte differences for SBin
5 and propgate backwards to

MBout
4 . The output differnces will remain same as inverseAddColmns is a linear operation.

Propogating backwards and applying inverseMixBytes operation, all the 64 bytes would get

active and we will obtain 64 byte differences for MBin
4 . After applying inverseShiftBytes,

differences will propogate linearly to SBout
4 . Next is an inverseSBox operation, which is not

linear, so we will compute all valid byte pairs for SBin
4 using SBox differential tables.

2. Next, we will choose byte differences of SBout
3 .and propogate in forward direction to

have 64 byte differnces at MBout
3 and these byte differences will propogate linearly to

SBin
3 (inverseAddColumns is a linear operation).

24

Figure 2.8: Inbound phase of Rebound Attack on 6 rounds Grφstl-256

3. Differences obtained in step 1 and 2 at SB3 needs to be matched to check for the existence

of SBox differential.

Form differential properties of SubBytes(see section 1.8.2), we know that for a single S-box,

the probability that a random S-box differential exists is 1/2. Moreover, for a given input

and output difference, the number of possible input values is limited to either 2 or 4 values.

Thus for each column, that is 8 bytes, probability would be 2−8. Thus, For each column,

we will try 28 non-zero differences of the according byte in (SB3) and thus, expect one valid

differential for all 8 S-boxes of that column. With two independent solutions for each S-box,

we get at least 28 pairs for one column. Hence, the average complexity to find a valid pair is

1. We repeat this for all 8 active bytes of (SB3) and get about 264 solutions for the inbound

phase.

2.5.2 Outbound Phase

In the outbound phase, the airs obtained using inbound phase are propogated probabilisti-

cally outwards so as to match the differences at the input and output of the permutations.

For the backward direction, that is for the propagation from 8 to 1 active bytes through the

MixBytes transformation, probability is 256. Hence, we can construct one pair conforming

to the truncated differential path for each of P and Q with a complexity of 256.

25

Chapter 3

Extending Rebound Attack

3.1 Overview

In the last chapter we discussed simple rebound technique applied on 4, 5 and 6 rounds of

Grφstl-256. In this chapter, we will discuss how a rebound technique can be extended such

that it can be used to attack more rounds of Grφstl-256. Rebound technique can be ex-

tended using Super Sbox technique. This is known as Super Sbox cryptanalysis, introduced

by Thomas Peyrin and Henri Gilbert [12]. Super SBox technique was introduced for AES

like permutations, and thus improved the cryptanalysis of AES, Grφstl, Echo.

Chapter starts with an intrduction to super Sbox view. Super Sbox view was introduced

by Deamen and Rijmen [6, 8]. SuperSbox view is explained for AES like permutations.

The central idea is to view two consecutive rounds of AES as application of SuperSBox. It

further explains Super Sbox cryptanalysis and rebound attack using super sbox on 7 rounds

of Grφstl-256.

3.2 Super S Box View

Super SBox concept introduced by Deamen and Rijmen [7] is used for two consecutive rounds

of AES. It represents two rounds of AES permutations using one big SBox layer. Precisely

speaking, it exchanges the order of SubBytes and ShiftBytes and represnts two rounds of

AES permutation

26

Figure 3.1: Super Sbox view for 2 rounds AES Permutation

MC ◦ ShR ◦ SB ◦ AC ◦ MC ◦ ShR ◦ SB ◦ AC(S)

as

MC ◦ ShR ◦ SB ◦ AC ◦ MC ◦ SB ◦ ShR ◦ AC(S).

The middle part SB ◦ AC ◦ MC ◦ SB is known as Super Sbox(see Fig. 3.1).

Thus two rounds of AES permutations can be represented as-

MC ◦ ShR ◦ Super-SB ◦ ShR ◦ AC(S).

3.3 Super Sbox view of Grφstl-256

As we already mentioned Super Sbox view was introduced for AES like permutations, thus

Sbox view mentioned above can be applied to Grφstl. A SuperBox of Grφstl is quite similar to

27

Figure 3.2: Super Sbox view of Grφstl-256

the SuperBox of the AES. Super Sbox for 5 rounds of Grφstl is shown in Fig 3.2. For Grφstl,

the SuperBox consists of 8 parallel S-boxes, followed by one MixBytes transformation and

another 8 parallel S-boxes: SB ◦ MB ◦ SB. As stated earlier, the SubBytes and ShiftBytes

transformations can be interchanged. Hence, a Super Box behaves like a non-linear 64-bit

S-box.

28

Figure 3.3: Inbound Phase with Super Sbox view for Grφstl-256

3.4 Extending Inbound Phase

Super Sbox view of Grφstl-256, mentioned above, can be used to extend the rebound tech-

nique explained in previous chapter. This is known as Super Sbox cryptanalysis. This idea

has already been applied in the improved attack on the Whirlpool hash function. Super

Sbox concept just extends the inbound phase of the rebound attack as outbound phase is

probabilistic, and thus can’t be improved. By considering SuperBoxes, inbound phase can

easily be extended by one full active state.

The rebound attack is started with the inbound phase in round r3 and r5. Following the

truncated differential path, it deterministically propagate to the full active SubBytes layer

in the middle. This phase starts with 8 input/output differences of MBout
5 and SBout

3 and

propogates through linear layers. Inbound Phase can be explained as follows:

1. Initially we will randomly select 8 byte differences of SB3 and propogates in forward direc-

tion through MIxBytes to get 64 byte differences for MB3 and store the resulting differences.

2. Next we randomly select 8 byte differences for MB5 and propgate backwards through

MixBytes and ShiftBytes to SB5. Propogating backwards and applying inverseMixBytes

operation, all the 64 bytes would get active and we will obtain 64 byte differences for MBin
5 .

After applying inverseShiftBytes, differences will propogate linearly to SBout
5 . Next is an

inverseSBox operation, which is not linear, so we will compute all valid byte pairs for SBin
5

using SBox differential tables.

29

3. Connect the output differences of the 8 parallel SuperBoxes (i.e. SB5) with the cor-

responding input differences of the SuperBoxes (state SB3). For each column(SuperBox)

at state SB5 , take all 264 possible values and propgates backward to state MB3 and store

the differnces and values in initial list. Now, for each SuperBox we will obtain 264 input

differences for each SuperBox in state P3 and store the resulting differences and values in

second list. Next, match the differences of initial list and second list. Since both lists have

264 entries and we have a condition on 64 bits, we get 264 × 264 × 2−64 = 264 solutions and

update the initial list. Repeat this for every column of state SB5.

4. Complete inbound phase will obtain 264 solutions with a complexity of 264 in time and

memory.

3.5 Attack on 7 rounds Grφstl-256

Same as attack on 6 rounds Grφstl-256, attack on 7 rounds Grφ-256 uses a truncated dif-

ferential path with a high number of active bytes in the middle and a low number of active

bytes at the input and output of each permutation. For the attack on 7 rounds, 2 full active

states are placed in the middle of each permutation. The improved inbound phase using the

SuperBox allows to extend the 6-round semi-free-start collission attack on Grφstl-256 by one

round. The truncated differential path is given in Fig. 8. The sequence of active bytes in

each round for both, P and Q are given as follows:

8 →r1 1 →r2 8 →r3 64 →r4 64 →r5 8 →r6 8 →r6 64

Inbound Phase of the attack is explained in section 3.4. The solutions of the inbound phase

are propagated outwards probabilisticaly, same as in the attack on 6 rounds.

30

Figure 3.4: Rebound Attack on 7 rouunds Grφstl-256

31

Chapter 4

Conclusion and Future Work

In this report, we have focussed on the cryptanalysis of Grφstl-256. As Grφstl uses an AES

like permutaion, thus standard differential attack or linear attack is out of scope. Crypt-

analysis of Grφstl introduced Rebound attacks. The rebound attack consists of inbound

and outbound phases. Using the techniques described in this thesis, we can find right pairs

for truncated differential path. In this document we have presented a variety of results of

rebound attacks on SHA-3 candidate Grφstl. As Grφstl uses two strong permutations with

wide trial design, thus the available degrees of freedom is limited. Thus, only single inbound

and outbound phases are possible in the rebound attack on Grφstl. We have considered only

Grφstl-256 in the document. Rebound attacks on reduced rounds of Grφstl-256 has been

discussed. Simple rebound technique is used to attack 4, 5 and 6 rounds Grφstl-256. Super

Sbox technique improved the cryptanalysis of Grφstl, so as to apply rebound technique on

more number of rounds. Attack on 7 rounds of Grφstl-256 is discussed by using simple

concept of Super boxes initially given for AES permutations. Report has focussed rebound

attacks on Grφstl. Similar techniques can also be applied to hash functions using AES per-

mutation as compression function. Future work might be applying similar techniques on

hash functions based on block based compression functions.

32

Bibliography

[1] Ross Anderson. The classification of hash functions, 1993.

[2] Jean-Philippe Aumasson, Luca Henzen, Willi Meier, and Raphael C.-W. Phan. Sha-3

proposal blake. Submission to NIST (Round 3), 2010.

[3] Guido Bertoni, Joan Daemen, Michal Peeters, and Gilles Van Assche. Keccak specifi-

cations, 2009.

[4] Jean-Sébastien Coron, Yevgeniy Dodis, Cécile Malinaud, and Prashant Puniya. Merkle–

Damg̊ard revisited: How to construct a hash function. pages 430–??, 2005.

[5] Joan Daemen and Vincent Rijmen. The wide trail design strategy. In Proceedings of

the 8th IMA International Conference on Cryptography and Coding, pages 222–238,

London, UK, 2001. Springer-Verlag.

[6] Joan Daemen and Vincent Rijmen. The design of Rijndael: AES — the Advanced

Encryption Standard. Springer-Verlag, 2002.

[7] Joan Daemen and Vincent Rijmen. Two-round aes differentials, 2006.

[8] Joan Daemen and Vincent Rijmen. Understanding two-round differentials in aes. In

SCN’06, pages 78–94, 2006.

[9] Joan Daemen and Vincent Rijmen. Plateau characteristics. IET information security,

1:11 – 18, 2007.

[10] Niels Ferguson, Stefan Lucks, Bruce Schneier, Doug Whiting, Mihir Bellare, Tadayoshi

Kohno, Jon Callas, and Jesse Walker. The skein hask function family, 2009.

[11] Praveen Gauravaram, Lars R. Knudsen, Krystian Matusiewicz, Florian Mendel, Chris-

tian Rechberger, Martin Schläffer, and Thomsen Søren S. Grøstl - a sha-3 candidate. In

33

Helena Handschuh, Stefan Lucks, Bart Preneel, and Phillip Rogaway, editors, Symmet-

ric Cryptography, number 09031 in Dagstuhl Seminar Proceedings, Dagstuhl, Germany,

2009. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany.

[12] Henri Gilbert and Thomas Peyrin. Super-sbox cryptanalysis: Improved attacks for

aes-like permutations. IACR Cryptology ePrint Archive, 2009:531, 2009.

[13] Kota Ideguchi, Elmar Tischhauser, and Bart Preneel. Improved collision attacks on

the reduced-round grøstl hash function. In Mike Burmester, Gene Tsudik, Spyros S.

Magliveras, and Ivana Ilic, editors, ISC, volume 6531 of Lecture Notes in Computer

Science, pages 1–16. Springer, 2010.

[14] Lars Knudsen and Bart Preneel. Hash functions based on block ciphers and quaternary

codes. In Advances in Cryptology ASIACRYPT, pages 77–90. Springer Verlag, 1996.

[15] Florian Mendel, Christian Rechberger, Martin Schläffer, and Søren S. Thomsen. The

rebound attack: Cryptanalysis of reduced whirlpool and grøstl. In Orr Dunkelman, ed-

itor, FSE, volume 5665 of Lecture Notes in Computer Science, pages 260–276. Springer,

2009.

[16] Florian Mendel, Christian Rechberger, Martin Schlffer, and Sren S. Thomsen. Rebound

attacks on the reduced grstl hash function. In CT-RSA’10, pages 350–365, 2010.

[17] Bart Preneel. Information security and cryptology. chapter The State of Hash Functions

and the NIST SHA-3 Competition, pages 1–11. Springer-Verlag, Berlin, Heidelberg,

2009.

[18] Vincent Rijmen and Paulo S. L. M. Barreto. The WHIRLPOOL hash function. World-

Wide Web document, 2001.

[19] Xiaoyun Wang, Yiqun Lisa Yin, and Hongbo Yu. Finding collisions in the full sha-1.

In International Crytology Conference, pages 17–36, 2005.

[20] Xiaoyun Wang and Hongbo Yu. How to break md5 and other hash functions. In

EUROCRYPT, pages 19–35, 2005.

34

	Introduction
	Overview
	Hash Functions
	Iterated hash function
	MD strengthening
	Compression Function
	Davies-Meyer compression function
	Matyas-Meyer-Oseas compression function
	Permutation based compression functions

	Grstl
	Specification of Grstl
	The Grstl hash function
	The Grstl compression function
	The Grstl output function

	Securirty Requirements of Hash Functions
	Rebound Attack
	Inbound phase
	Outbound phase

	Prelimineries of the Rebound Attack
	Truncated differentials
	Differential Properties of SubBytes
	Differential Properties of MixBytes
	AddColumns and ShiftRows

	Rebound Attack on Grstl-256
	Overview
	Differential Paths
	Notation
	4 round Truncated Differential Trial

	Rebound Attack on 4 rounds Grstl-256
	Inbound Phase
	Outbound Phase

	Rebound Attack on 5 rounds Grstl-256
	Inbound Phase
	Outbound Phase

	Rebound Attack on 6 rounds Grstl-256
	Inbound phase
	Outbound Phase

	Extending Rebound Attack
	Overview
	Super S Box View
	Super Sbox view of Grstl-256
	Extending Inbound Phase
	Attack on 7 rounds Grstl-256

	Conclusion and Future Work

