
Indexing and Query Processing in RDF
Quad-Stores

By

Jyoti Leeka

Under the Supervision of

Dr. Srikanta Bedathur

Indraprastha Institute of Information Technology Delhi

December, 2017

c○Jyoti Leeka, 2017.

2

Indexing and Query Processing in RDF
Quad-Stores

By

Jyoti Leeka

Submitted

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

to the

Indraprastha Institute of Information Technology Delhi

December, 2017

4

Certificate

This is to certify that the thesis titled - “Indexing and Query Processing in RDF Quad-

Stores” being submitted by Jyoti Leeka to Indraprastha Institute of Information Technol-

ogy, Delhi, for the award of the degree of Doctor of Philosophy, is an original research

work carried out by her under my supervision. In my opinion, the thesis has reached the

standards fulfilling the requirements of the regulations relating to the degree.

The results contained in this thesis have not been submitted in part or full to any other

university or institute for the award of any degree/diploma.

Dr. Srikanta Bedathur

December, 2017

New Delhi

5

Abstract

RDF data management has received a lot of attention in the past decade due to the

widespread growth of Semantic Web and Linked Open Data initiatives. RDF data is ex-

pressed in the form of triples (as Subject - Predicate - Object), with SPARQL used for

querying it. Many novel database systems such as RDF-3X, TripleBit, etc. – store RDF

in its native form or within traditional relational storage – have demonstrated their ability

to scale to large volumes of RDF content. However, it is increasingly becoming obvious

from the knowledge representation applications of RDF that it is equally important to inte-

grate with RDF triples additional information such as source, time and place of occurrence,

uncertainty, etc. Consider an RDF fact (BarackObama, isPresidentOf, UnitedStates).

While this fact is useful for finding information regarding president of United States, it does

not provide sufficient information for answering many challenging questions like what is

the temporal validity of this fact?, where did this fact come from?, etc.

Annotations like confidence, geolocation, time, etc. can be modeled in RDF through a

techniques called reification, which is also a W3C recommendations. Reification, retains

the triple nature of RDF and associates annotations using blank nodes.

The focus of this thesis is on database aspects of storing and querying RDF graphs con-

taining annotations like confidence, etc. on RDF triples. In this thesis, we start by develop-

ing an RDF database, named RQ-RDF-3X for efficiently querying these RDF graphs con-

taining annotations over native RDF triples. Next, we noticed that more than 62% facts in

real-world RDF datasets like YAGO, DBpedia, etc. have numerical object values. Suggest-

ing the use of queries containing ORDER-BY clause on traditional graph pattern queries of

SPARQL. State-of-the-art RDF processing systems such as Virtuoso, Jena, etc. handle such

queries by first collecting the results and then sorting them in-memory based on the user-

specified function, making them not very scalable. In order to efficiently retrieve results

of top-𝑘 queries, i.e. queries returning the top-𝑘 results ordered by a user-defined scoring

function, we developed a top-k query processing database named Quark-X. In Quark-X we

propose indexing and query processing techniques for making top-𝑘 querying efficient.

Motivated by the importance of geo-spatial data in critical applications such as emer-

gency response, transportation, agriculture etc. In addition to its widespread use in knowl-

6

edge bases such as YAGO, WikiData, LinkedGeoData, etc. We developed STREAK, a

RDF data management system that is designed to support a wide-range of queries with

spatial filters including complex joins, with top-𝑘 queries over spatially enriched databases.

While developing STREAK we realized that to make effective use of this rich data, it is

crucial to efficiently evaluate queries combining topological and spatial operators – e.g.,

overlap, distance, etc. – with traditional graph pattern queries of SPARQL. While there

have been research efforts for efficient processing of spatial data in RDF/SPARQL, very

little effort has gone into building systems that can handle both complex SPARQL queries

as well as spatial filters.

We describe novel contributions of each of these engines developed below.

RQ-RDF-3X : RQ-RDF-3X presents extensions to triple-store style RDF storage en-

gines to support reification and quads. In RQ-RDF-3X, we support triple annotations by

assigning a unique identifier (R) to each (S, P, O) triple. Thus, the fundamental change

required is to support an additional field (R) that has triple identifier. The inclusion of this

additional field requires the query optimizer of the triple store being extended to be aware

of the unique characteristic of the triple identifier (R). Additionally this requires careful

re-thinking of existing indexing and query optimization approaches adopted by state-of-

the-art triple stores. In order to achieve fast performance in RQ-RDF-3X we propose an

efficient set of indices which enables RQ-RDF-3X to efficiently reduce the query process-

ing time by making use of merge joins. The set of indices are stored compactly using an

efficient compression scheme. We demonstrate experimentally that RQ-RDF-3X achieves

one to two orders of magnitude speed-up over both commercial and academic engines such

as Virtuoso, RDF-3X, and Jena-TDB on real-world datasets - YAGO and DBpedia.

Quark-X: Quark-X is an efficient top-𝑘 query processing framework for RDF quad

stores. The contributions of Quark-X include novel in-memory synopsis indexes for pred-

icates describing numerical objects. This is in the same spirit as building impact-layered

indexes in information retrieval but carefully redesigned for use for ranking in reified RDF.

Additionally, Quark-X proposes a novel Rank-Hash Join (RHJ) algorithm designed to uti-

lize the synopsis indexes, by selectively performing range scans for facts containing nu-

merical objects early on – this is crucial to the overall performance of SPARQL queries

7

which involve a large number of joins. We show experimentally that Quark-X achieves one

to two magnitude speed-up over baseline databases namely Virtuoso, Jena-TDB, SPARQL-

RANK and RDF-3X on YAGO and DBpedia datasets.

STREAK: STREAK is an efficient engine for processing top-k SPARQL queries with

spatial filters. Spatial filters are used to evaluate distance relationships between entities in

SPARQL queries. STREAK introduces various novel features such as a careful identifier

encoding strategy for spatial and non-spatial entities for reducing storage cost and for early

pruning, the use of a semantics-aware Quad-tree index that allows for early-termination

and a clever use of adaptive query processing with zero plan-switch cost. For experimental

evaluations, we focus on top-k distance join queries and demonstrate that STREAK outper-

forms popular spatial join algorithms as well as state of the art commercial systems such as

Virtuoso.

8

Contents

1 Introduction 17

1.1 Motivation . 17

1.2 Overview . 20

1.3 Contributions and Organization . 21

2 Background and Preliminaries 27

2.1 Resource Description Framework . 27

2.2 SPARQL . 29

2.2.1 Motivational Queries . 30

2.3 Datasets . 33

2.4 Related Work . 34

2.5 RDF-3X . 39

2.5.1 Storage . 40

2.5.2 Query Processing . 40

3 RQ-RDF-3X: An Efficient Quad-Store 43

3.1 Motivation . 43

3.2 Organization . 44

3.3 Related Work . 44

3.3.1 Reification Support . 45

3.3.2 N-Quads . 45

3.4 RQ-RDF-3X Framework . 46

3.4.1 Storage and Indexing in RQ-RDF-3X 46

9

3.4.2 Selectivity Estimation . 49

3.4.3 Query Translation and Optimization 52

3.5 Evaluation . 53

3.5.1 Experimental Setup . 53

3.5.2 Compared Systems . 54

3.5.3 Benchmark Queries . 55

3.5.4 Query Processing Performance . 56

3.5.5 Analysis of Results . 57

3.6 Discussion & Outlook . 61

3.6.1 Outlook . 61

4 Quark-X: An Efficient Top-𝑘 Processing Framework for RDF Quad Stores 63

4.1 Motivation . 63

4.2 Organization . 64

4.3 Preliminaries . 65

4.3.1 Running Example . 65

4.4 Related Work . 66

4.5 Indexing for Quantitative Facts . 68

4.5.1 Quantifiable Indexes . 69

4.5.2 Semantic Encoding of Identifiers 70

4.6 Query Processing . 73

4.6.1 S-index Join . 74

4.6.2 Non-quantifiable Predicate Joins 75

4.7 Update Handling . 80

4.8 Implementation Details . 81

4.9 Evaluation Framework . 82

4.9.1 Datasets . 83

4.9.2 Benchmark Query Workloads . 84

4.10 Experimental Results . 85

4.10.1 Loading of Data and Database Size 85

10

4.10.2 Query Performance . 87

4.10.3 Impact of Varying k . 92

4.11 Discussion & Outlook . 94

4.11.1 Outlook . 94

5 STREAK: An Efficient Engine for Processing Top-𝑘 SPARQL Queries with

Spatial Filters 97

5.1 Motivation . 97

5.1.1 Challenge . 98

5.1.2 Contributions . 99

5.1.3 Organization . 100

5.2 Preliminaries . 100

5.2.1 Running Example . 101

5.3 STREAK . 102

5.3.1 S-QuadTree Index for Spatial Entities 103

5.3.2 Spatial Join Algorithm in STREAK 108

5.3.3 Adaptive Query Processing for Top-𝐾 Spatial Joins 114

5.4 Evaluation Framework . 120

5.4.1 Datasets . 120

5.4.2 Benchmark Query Workloads . 121

5.5 Experimental Results . 123

5.5.1 Performance of Spatial Join Processing in STREAK 123

5.5.2 Comparison with Database Engines 125

5.5.3 Comparison with varying 𝑘 . 128

5.6 Related Work . 129

5.7 Discussion & Outlook . 133

5.7.1 Outlook . 133

6 Conclusions and Future Work 135

6.1 Future Work . 136

11

A Queries 139

A.1 RQ-RDF-3X Benchmark Queries . 139

A.1.1 YAGO . 139

A.1.2 DBpedia . 150

A.2 Quark-X Benchmark Queries . 157

A.2.1 YAGO . 157

A.2.2 DBpedia . 162

A.3 STREAK Benchmark Queries . 166

A.3.1 YAGO . 166

A.3.2 LGD . 170

Bibliography 175

12

List of Figures

1-1 LOD Cloud . 18

1-2 RDF Statement . 18

1-3 SPARQL Query in reified form . 19

1-4 SPARQL Query in N-Quads form . 20

2-1 SPARQL Query in N-Quad form . 28

2-2 SPARQL Query in reified form . 28

2-3 Example RDF Graph . 29

2-4 Example SPARQL Query . 31

2-5 Example Top-𝑘 Query . 32

2-6 Example Top-𝑘 Spatial Distance Join Query 32

2-7 Operator Tree showing SIP . 42

3-1 RQ-RDF-3X: Compression Scheme for B+-leaf entries 48

3-2 Running example in RQ-RDF-3X . 50

3-3 RQ-RDF-3X: Reified Query Reformulation 50

3-4 Find the predecessors and successors of Governor of New York who have

also won a prize . 52

3-5 RQ-RDF-3X: Query Processing Time of Benchmark Queries excluding

Dictionary build time . 58

3-6 RQ-RDF-3X: Total Query Processing Time of Benchmark Queries 59

3-7 RQ-RDF-3X, PostgreSQL, RDF-3X performance in warm cache 60

4-1 Quark-X: Running example RDF dataset containing Quantitative facts . . . 65

13

4-2 Quark-X: Running example top-𝑘 query 65

4-3 Quark-X: Summarized Index Creation . 69

4-4 Quark-X Query Processing . 75

4-5 Quark-X: Cold-cache Query Processing Performance 88

4-6 Quark-X: Warm-cache Query Processing Performance using operating sys-

tem’s cache only . 90

4-7 Quark-X: Warm-cache Query Processing Performance using engine’s own

cache . 91

4-8 Quark-X: Performance over DBpedia for Varying 𝑘 92

4-9 Quark-X: Performance over YAGO for Varying 𝑘 93

5-1 STREAK: Example RDF knowledge graph 101

5-2 STREAK: Running example query . 102

5-3 STREAK: Toy S-QuadTree . 104

5-4 STREAK: Selecting optimal set of nodes on S-QuadTree 112

5-5 STREAK: Query Processing Flow-Chart 117

5-6 STREAK: Possible Plan Choices . 118

5-7 STREAK: Effect of Sideways Information Passing 124

5-8 STREAK: S-QuadTree Vs. Sync. R-tree for Spatial Join 124

5-9 STREAK: Performance of STREAK Vs. PostgreSQL and Virtuoso 127

5-10 STREAK: Performance of STREAK Vs. PostgreSQL and Virtuoso 127

5-11 STREAK: Performance with Varying 𝑘 . 128

5-12 STREAK: Performance with Varying 𝑘 . 129

14

List of Tables

2.1 Horizontal Representation . 36

2.2 Vertical Table . 37

3.1 Summarized Characteristics of Benchmark Queries in RQ-RDF-3X 55

3.2 RQ-RDF-3X: Sizes of Datasets and Databases 56

3.3 Prevalence of Reified Entries in YAGO and DBpedia datasets 56

4.1 Quark-X: Sizes of Datasets and Databases 83

4.2 Quark-X: Characteristics of Benchmark Queries 86

4.3 Quark-X: Data Load Performance of Various Frameworks 86

5.1 STREAK: Dataset Characteristics . 121

5.2 STREAK: Characteristics of Benchmark Queries 122

5.3 STREAK: On-Disk Database Size for YAGO and LGD 126

15

16

Chapter 1

Introduction

1.1 Motivation

The Resource Description Framework (RDF) data model is the common way of represent-

ing semantically linked data on the web and SPARQL is used for querying repositories of

RDF data. Recent years have seen a tremendous growth in the size and variety of RDF data

with the availability of semantic data from disciplines as varied as network sciences [39],

biology [3], public administration [84], knowledge sharing [89], business intelligence [62],

etc. Many of these datasets already contain close to billion facts and are growing rapidly.

A big challenge posed in front of the data management community is how to access this

big RDF data efficiently.

RDF is essentially a graph of entities, where entities and connecting links are identified

by Uniform Resource Identifiers (URIs). The entities and connecting links can be searched

for by dereferencing the URIs. RDF is one of the main components of Linked Data [18].

Wikipedia defines Linked Data, shown in figure 1-1, as “a term used to describe a recom-

mended best practice for exposing, sharing, and connecting pieces of data, information,

and knowledge on the Semantic Web using URIs and RDF”. Linked Open Data cloud is

used for describing RDF datasets connected to each other through RDF links. Two entities

linked in RDF can themselves be drawn from two different datasets of Linked Open Data

cloud. This allows, for example, places in YAGO [89] dataset to be connected to geograph-

ical coordinates in Linked Geo Data (LGD) [11] dataset. Thus, linked data helps to connect

17

entities across datasets, that were not previously linked.

Figure 1-1: LOD Cloud

A fact is represented in RDF using a statement, which is at its heart, a triple repre-

senting a relationship between things – denoted by Subject(S) and Object(O) node – con-

nected through a relationship edge denoted by Predicate (P), as shown in figure 1-2. The

collection of triples taken together forms a RDF graph – visualized by representing sub-

jects and objects as nodes in the graph with predicates as labeled directed edges connecting

subject to its object. While these triples are useful for modeling dyadic relationships be-

tween entities, they are inadequate in their simple form for advanced modeling needs such

as multi-entity relationships, provenance annotations for facts [21], uncertainty associated

with automatically extracted facts [89], etc. The RDF standard offers reification [74] as a

way to model these by enabling a RDF graph to act as a metadata description of other RDF

triples.

Subject ObjectPredicate

Figure 1-2: RDF Statement

18

Reification [74] allows statements about other statements to be made using RDF’s built-

in vocabulary. In order to allow different ways of representing a statement, a statement can

be reified multiple times. A reified statement is expressed in RDF as four statements. An

RDF triple (S,P,O) with statement identifier I is expressed in reified form as:

<I> rdf:type rdf:statement.

<I> rdf:subject <S>.

<I> rdf:predicate <P>.

<I> rdf:object <O>.

Additional information e.g., name of the website from which the fact is extracted can

be associated with the above RDF statement as:

<I> <hasSource> <source>.

At the same time, another relatively simpler model called N-Quads [2] is also used quite

frequently to associate a URI of RDF graph with a triple. Triples in N-Quads documents

have an additional fourth column called context which is used for representing contextual

information such as the name of the graph that the triple is part of in the dataset. N-Quads

storing name of the graph in the context column are also known as Named Graphs [2].

An example signifying the importance of reification from YAGO [89] is given in Fig. 1-

3:

_:id_57 rdf:type rdf:statement;
rdf:subject <Ann_Richards>;
rdf:predicate <holdsPoliticalPosition>;
rdf:object <Governor_of_Texas>;
<hasSuccessor> <George_W._Bush>;
<hasPredecessor> <Bill_Clements>;
<occursSince> "1991-01-15";
<occursUntil> "1995-01-17";

<extractionSource> <http://en.wikipedia.org/wiki/Ann_Richards>.

Figure 1-3: SPARQL Query in reified form

Next we represent the same information as N-Quads below in Fig. 1-4:

The above RDF segment represents the fact that Ann Richards was the Governor of

Texas from 1991-01-15 to 1995-01-17, her predecessor was Bill Clements and she was

19

<Ann_Richards> <holdsPoliticalPosition> <Governor_of_Texas> <id_57>.
<id_57> <hasSuccessor> <George_W._Bush> <id_58>.
<id_57> <hasPredecessor> <Bill_Clements> <id_59>.
<id_57> <occursSince> "1991-01-15" <id_60>.
<id_57> <occursUntil> "1995-01-17" <id_61>.
<id_57> <extractionSource> <http://en.wikipedia.org/wiki/Ann_Richards> <

id_62>.

Figure 1-4: SPARQL Query in N-Quads form

succeeded by George W. Bush. Note that modeling each of the triples in isolation would

not convey the same information.

For querying the above RDF statements to find out the successor of Ann Richards when

she was the Governor of Texas, SPARQL query can be written in reified form as:

SELECT ?a
WHERE {

?r rdf:subject <Ann_Richards>.
?r rdf:predicate <holdsPoliticalPosition>.
?r rdf:object <Governor_of_Texas>.
?r <hasSuccessor> ?a

}

1.2 Overview

In this thesis, we focus on efficiently storing RDF data modeled using reification and N-

Quads. Reification and N-Quads allow an additional identifier to be associated with an

entire RDF statement which can then be used to add further annotations. We structure

our discussion around efficient storage of these RDF statements, and cover the following

topics:

∙ SPARQL queries over reified RDF data: We develop an efficient quad-store RQ-

RDF-3X that includes an efficient set of indexes and a smart query processor which

generates an optimal join ordering for efficiently executing reified SPARQL queries.

∙ Top-𝑘 queries over RDF quads: We propose an efficient top-𝑘 query engine for RDF

quads, which supports ranking queries over user-defined ranking functions contain-

20

ing statement-level confidence values in addition to other quantifiable values in the

database. We develop novel indexing and query processing techniques for accelerat-

ing top-𝑘 querying.

∙ Top-𝑘 spatial distance join queries over RDF quads: We consider an important SPARQL

query variant over spatially aware RDF databases (containing locations and geome-

tries), namely the Top-𝑘 Spatial Distance Join (K-SDJ) query where the traditional

top-𝑘 ranking with arbitrary ranking function on the (numerical) predicates in RDF

data is over the results of a spatial distance join between geographical entities in

the knowledge base. The resulting system, called STREAK introduces a number

of novel features including a specialized spatial index structure suitable for K-SDJ

queries over RDF quads, and query processing framework to support K-SDJ queries.

In the rest of the chapter we discuss the contributions and organization of the thesis.

1.3 Contributions and Organization

The thesis is structured around providing efficient ways to store and query graph-shaped

RDF data. We make the below mentioned technical contributions:

∙ RQ-RDF-3X: We propose a generalized storage engine RQ-RDF-3X in Chapter 3,

which can efficiently store and query additional information about triples like source,

time, space, confidence, etc. A natural question to ask is: how do existing RDF stores

store this additional information about triples. The state-of-the-art native stores such

as RDF-3X [69] and Hexastore [101] are strictly designed for storing triples, and an-

swering queries over them using SPARQL. As a result, they can incorporate only the

standard reified models in their storage model. However, this severely degrades their

query processing efficiency due to increased number of joins that need to performed

in order to answer even the simplest of queries. The N-Quads model can be stored in

these systems only after converting it to a reified form, and is thus equally inefficient

to query. Though storage of meta-facts has been addressed by Wilkinson, et al. [103]

and Alexander, et al. [6] but these techniques are extremely inefficient due to the

21

large number of self-joins required. In RQ-RDF-3X, we propose the following key

features:

– We implement the proposed framework within RDF-3X [69], a high perfor-

mance RDF engine. We attach additional information to triples with fact id —

which we assign to every fact. We present a description of the modifications

made at the indexing and query processing stage of RDF-3X.

– We devise an efficient set of indices which enable us to efficiently reduce the

query processing time by making use of merge joins. The set of indices are

stored compactly using an efficient compression scheme.

– We propose a set of queries over annotated graphs which we have used for

benchmarking the performance of the proposed engine RQ-RDF-3X. Our ex-

perimental results over YAGO [89] and DBpedia [43] show that our proposed

approach is highly scalable and efficient in comparison to PostgreSQL [78]

(which emulates Sesame style storage [27]), RDF-3X, Virtuoso [33] and Jena-

TDB [53].

∙ Quark-X: Quark-X a top-𝑘 query engine for RDF quads. A straightforward way of

storing RDF data is using the relational model which enables the use of top-k al-

gorithms designed for relational databases used for RDF data. The property table

technique [86, 60, 102] and vertically partitioned approach [4, 85] for storing RDF

data are two such techniques which can draw advantage from top-k algorithms pro-

posed for relational databases. However, many researchers have shown that these

models of storing RDF in relational databases are not efficient in handling complex

query patterns seen in SPARQL queries [101, 69, 70]. Simple triple-store model of

storing RDF in relational tables is also not effective for top-k querying since: (a)

self-joins incurred by top-k algorithms over a large table are bound to be expensive,

(b) either of the two access methods viz., the sorted or the random access [51] are not

suitable because of unsorted nature of quantifiable values in RDF and the complex

pattern matching model of SPARQL queries.

22

Quark-X overcomes these limitations by introducing a combination of adaptively

switching block-wise sorted and random accesses based on their cost estimates along

with its semantic encoding of identifiers to improve locality of reference of subjects

associated with quantifiable predicates. To the best of our knowledge, these features

are not explored until now in relational top-k processing systems as well as RDF

quad stores. We describe Quark-X in Chapter 4. Quark-X proposes the following

key features:

– The use of compact in-memory synopsis indexes –called S-indexes– in addition

to on-disk fine-grained indexes –called Q-indexes– for quantifiable predicates

involved in user-defined ranking functions. This is in the same spirit as building

impact-layered indexes in information retrieval [9, 10], but carefully redesigned

for use for ranking in reified RDF.

– Intelligent reassignment of identifiers to RDF resources so that entities associ-

ated with similar predicates and reification structures are collocated on disk.

– We propose a novel Rank-Hash Join (RHJ) algorithm designed to utilize the

synopsis indexes, by selectively performing range scans for quantifiable facts

early on – this is crucial to the overall performance of SPARQL queries which

involve a large number of joins.

– Processing of data in blocks whenever possible, which enables simultaneous

processing of multiple buckets of S-indexes to quickly generate the top-𝑘 results

or reach early-termination criterion.

– We evaluate Quark-X by comparing it with two state-of-the-art commercial

RDF management systems – Jena-TDB [53], and Virtuoso 7.2 [93](a highly

optimized RDBMS for storing RDF) as well as two academic RDF systems –

SPARQL-RANK [64] and RDF-3X [69]. We also develop a query workload,

which represents various usage patterns of SPARQL with ORDER-BY/LIMIT

over reified RDF datasets. Our performance results demonstrate that Quark-X

is significantly faster than comparable systems in both, cold as well as warm

cache settings, while needing a very small memory-footprint during query pro-

23

cessing.

∙ STREAK: STREAK is an efficient top-𝑘 spatial distance join processing engine. We

discuss STREAK in Chapter 5. A large-body of work exists in relational database re-

search for integrating geo-spatial and top-k early termination operators within generic

query processing framework. Therefore, a natural question to ask is whether those

methods can be applied in a straightforward manner for RDF/SPARQL as well. Un-

fortunately, as we delineate below, the answer to this question is in the negative,

primarily due to the schema-less nature of RDF data and the self-join heavy plans

resulting from SPARQL queries.

Consider applying one of the popular techniques, which build indexes over join-

ing (spatial) tables during an offline/pre-processing phase [75]. However, in RDF

data, there is only one large triples table, resulting in a single large spatial index

that needs to be used during many self-joins making it extremely inefficient. On the

other hand, storing RDF in a property-table form is also impractical due to a large

number of property-tables – e.g., in a real-world dataset like BTC (Billion Triples

Challenge) [28], there are 484, 586 logical tables [68].

Next, the unsorted ordering (w.r.t. the scoring function) of spatial attributes dur-

ing top-k processing prevents the straightforward application of methods that encode

spatial entities to speed up spatial-joins [61]. This is because these approaches as-

sume sorted order of spatial attributes, and hence are able to choose efficient merge

joins as much as possible. Finally, state-of-the-art query optimization techniques for

top-k queries [52] cannot be adopted as-is for spatial top-k since real-world spatial

data does not follow uniform distribution assumptions that are used during query

optimization.

STREAK’s key contributions are three-fold:

– Central to the ability of STREAK to support efficient spatial distance joins is

a novel schema-aware, in-memory index called S-QuadTree. It not only stores

the spatial intersections but also the soft-schema, in the form of characteristic

24

sets, of spatial entities in a compact manner. As we show experimentally, S-

QuadTree outperforms current spatial indexes designed for spatial distance join

by one to two orders of magnitude due to its ability to filter out entities.

– A new spatial distance join algorithm, which exploits the information stored in

S-QuadTree to smartly traverse the index structure to balance the I/O and CPU

costs during join processing.

– An adaptive query plan generation algorithm called Spatial AQP, that switches

the driver-driving plans based on the varying join statistics of spatial attributes

in different data blocks as well as the join cost reductions possible through the

early-termination feature of top-𝑘 algorithms.

We experimentally evaluate our STREAK framework by making use of two large-

scale real-world spatially aware RDF datasets – viz., YAGO [47] and LinkedGeo-

Data [11]. Due to the lack of well-established benchmark queries for K-SDJ queries

in RDF/SPARQL setting, we developed our own benchmark queries over these two

datasets which reflect some of the queries from GeoCLEF. We compare our STREAK

framework against PostgreSQL with spatial indexing and Virtuoso, a state-of-the-art

RDF/SPARQL system. Our experimental results show that STREAK is able to out-

perform these systems by one to two orders of magnitude in both cold and warm

cache settings.

25

26

Chapter 2

Background and Preliminaries

RDF data model is used for representing semantic web data. Some classical state-of-the-art

solutions [23, 27] also use the relational model for storing semantic web data in relational

databases. It is noteworthy that most of the contributions made in this thesis do not depend

on the specific data model in use. For instance, the indexing and query processing tech-

niques proposed in this thesis do not depend on the data model used, as they are based only

on the characteristics of the underlying data. However, for concreteness we use RDF data

model — a World Wide Web Consortium (W3C) recommended data model for describing

entities, often referred to as resources in W3C.

2.1 Resource Description Framework

Resource Description Framework (RDF) describes resources in triples, also known as RDF

statements or facts as <Subject(s), Predicate(p), Object(o)> triples. The entities and

the relationship between them could be any of the following:

∙ URIs (𝑈): URIs or Uniform Resource Identifiers are identifiers which are uniquely

used for identifying resources across datasets on the Web.

∙ Blank Nodes (𝐵): Blank nodes uniquely identify nodes within a graph. These nodes

are not assigned global identifiers aka URIs. Usually blank nodes are used for asso-

ciating RDF facts with existing RDF facts.

27

∙ String Literals (𝐿): Objects are denoted by string literals.

Definition 2.1.1. RDF Graph: An RDF Graph G= (S, E, O) is a triplet of starting node

(S), ending node (O) and edges (E) where

∙ Starting nodes are a finite set of URI and Blank Nodes, such that S ⊂ (U ∪ B)

∙ Ending nodes are a finite set of URI, Blank Node and Literals, such that O ⊂ (U ∪ L

∪ B)

∙ Edges are a finite set of RDF triples (s, p, o) such that E ⊂ (S x U x O).

Consider the graph shown in Figure 2-3, where URI nodes are represented by circles.

The graph shows that Toquart and Salmon Beach are located in Washington. Additionally,

floods were reported in Salmon Beach. In future, we can easily add more triples about

Salmon Beach to this graph. Such a flexibility, stems from schema-less nature of RDF. The

graph can be expressed in RDF as follows in N-Quad form as shown in Fig. 2-1:

<Salmon_Beach> <reported> <flood> <id_57>.
<id_57> <reportedBy> <Tribune> <id_58>;

<Salmon_Beach> <hasGeometry> "POINT(28.3, -80.6)" <id_59>.

Figure 2-1: SPARQL Query in N-Quad form

The same graph represented above is shown below in reified form in Fig. 2-2:

BASE <http://example.org/> .
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
_:id_57 rdf:type rdf:statement .
_:id_57 rdf:subject <Salmon_Beach> .
_:id_57 rdf:predicate <reported> .
_:id_57 rdf:object <flood> .
_:id_57 <reportedBy> <Tribune> .
<Salmon_Beach> <hasGeometry> "POINT(28.3, -80.6)".

Figure 2-2: SPARQL Query in reified form

The above statements represent RDF in Turtle format [15]. In Turtle (subject, predi-

cate, object) terms are separated by white spaces and each RDF statement is terminated

28

by a ’.’ . URIs in Turtle can be absolute or relative. An absolute URI is presented as

<http://example.org/>. Relative URIs are resolved to the current base URI. Keyword

BASE is used for denoting the base URI. Similarly keyword PREFIX denotes the prefix

URI, which is concatenated with the local part to get the URI of the RDF resource. For ex-

ample, the URI of rdf:type is <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>. For

ease of exposition, we omit BASE and PREFIX URI’s while describing RDF statements

henceforth.

Salmon Beach

reported

flood

hasConfidence

0.98

hasGeometry

(28.3, -80.6)

Toquart

isLocatedIn

Washington

hasGeometry

(28.4, -80.6)

reportedBy

Tribune

isLocatedIn

hasLivingCost

2000

floodInsuranceRate

1000

Figure 2-3: Example RDF Graph

2.2 SPARQL

SPARQL [36] is the standard query language for querying RDF. SPARQL queries support

conjunctions and disjunctions of triple patterns. Triple patterns are similar to RDF triples

barring that the resources may be variable. SPARQL’s equivalent in relational world are

select-project-join queries. The triple pattern matches that sub-graph of RDF graph, which

has terms matching the variables in the SPARQL query.

SPARQL queries have the following format:

SELECT [projection clause]

WHERE [graph pattern]

FILTER [expressions]

ORDER BY [ranking function]

29

LIMIT [number of solutions]

The SELECT clause includes a set of variables that should be instantiated from the

RDF knowledge base (variables in a SPARQL query are denoted by a “?” prefix). A graph

pattern in the WHERE clause consists of triple patterns in the following forms:

1. s p o

2. r rdf:subject s. r rdf:predicate p. r rdf:object o,

r stands for fact id (or reification id). s, p, o and r can be either bound to constants,

or unbound variables in the query. The predicates starting with prefix rdf are part of the

RDF reification vocabulary to explicitly declare the various parts of an RDF statement

identified through its identifier r. The FILTER clause limits to those results whose filter

expression evaluates to TRUE. The ORDER BY clause in the query allows a user-defined

ranking function to establish the order of bindings of the projected variables (the SELECT

clause).

Although SPARQL 1.1 standard enables a large array of possible ranking functions

to be used here, in this work we limit ourselves to convex monotonic functions involving

quantifiable (i.e., numerical) values. Examples of convex monotonic functions are: (𝑎 +

𝑏),((𝑎 * 𝑏) for 𝑎, 𝑏 > 0) The LIMIT clause controls the number of results returned.

Throughout this thesis, we use W3C’s recommended standardized SPARQL [95] query

language in its actual state, i.e., without any modifications or extensions for representing

meta facts. Next we discuss motivation behind different types of SPARQL queries we use

in this thesis.

2.2.1 Motivational Queries

In this subsection we begin by discussing motivational queries for RQ-RDF-3X, then we

move to Quark-X and finally we talk about STREAK.

First type of SPARQL query which use in this thesis is a query over quads. For exposi-

tion Figure 2-4 depicts this query type. This query finds places which have been reported to

be flooded. Obviously, the information reported may also be rumours, there is confidence

value and source information associated with the reported statement, which are projected

30

out by the SELECT clause. We propose in Chapter 3: RQ-RDF-3X, a generalized storage

engine which can efficiently answer these queries.

SELECT ?place ?newsAgency ?location
WHERE {

?reif rdf:subject ?place;
rdf:predicate :reported;
rdf:object :flood;
:reportedBy ?newsAgency.

?place :isLocatedIn ?location.
}

Figure 2-4: Example SPARQL Query

Next, we focus on efficiently evaluating top-𝑘 queries over RDF quads. We were moti-

vated by the following two observations: first, a large fraction of semantic resources such

as YAGO and DBpedia contain facts linking to quantifiable values which naturally suggests

the use of queries containing ORDER-BY. This is further amplified by the use of reification

to attach annotations such as confidence and time. Secondly, despite the SPARQL recom-

mendation of using ORDER-BY / LIMIT operators, efficient processing of top-𝑘 queries

with a user-defined ranking function within RDF/SPARQL setting have received limited

attention [64, 96].

Figure 2-5 depicts an example top-𝑘 query over quads. This query finds places near a

flooded place which have low rates of house insurance and living cost. Again, flood news

may also be rumours, there is confidence value associated with the reported statement

which is one of the factors in the ranking function. Note that, nearness between places

in the query is ensured by their co-location within the same county (state). We propose

in Chapter 4: Quark-X, an efficient top-𝑘 query processing framework which efficiently

answers such queries.

Finally, we observed that many RDF knowledge bases — such as YAGO [47, 46, 16,

65], DBpedia [12], LinkedGeoData [11], GeoKnow [35, 37, 58], etc. – encode not only

simple relationships between entities, but also model higher-order information such as

uncertainty, spatio-temporal context, strength of relationships, and more. Querying such

knowledge bases often involves user-defined ad-hoc ranking with top-𝑘 result cut-offs.

Thus, unlike our earlier work Quark-X, the challenge we face are two-fold: first, efficiently

support sophisticated spatial querying and second, to support top-𝑘 early-termination – both

31

SELECT SELECT ?place ?anotherPlace ?newsAgency ?location
((f1(?livingCost) + f2(?insuranceRate)) * f3(?conf) as ?rank)

WHERE {
?reif rdf:subject ?place;

rdf:predicate :reported;
rdf:object :flood.
:reportedBy ?newsAgency.
:hasConfidence ?conf.

?place :isLocatedIn ?location.

?anotherPlace :hasLivingCost ?livingCost.
?anotherPlace :floodInsuranceRate ?insuranceRate.
?anotherPlace :isLocatedIn ?location.

} ORDER BY DESC(?rank) LIMIT 10

Figure 2-5: Example Top-𝑘 Query

in combination with the graph pattern query paradigm of SPARQL. Figure 2-6 depicts such

a top-𝑘 spatial distance join query. This query finds places near a flooded place which have

low rates of house insurance and living cost. Again, the flooding information reported may

also be rumours, therefore there is confidence value associated with the reported statement

which is one of the factors in the ranking function. We present in Chapter 5: STREAK, a

top-𝑘 spatial distance join querying engine which competently answers such queries.

SELECT ?place ?anotherPlace ?newsAgency ?locPlace ?locAnotherPlace
((f1(?livingCost) + f2(?insuranceRate)) * f3(?conf) as ?rank)

WHERE {
?reif rdf:subject ?place;

rdf:predicate :reported;
rdf:object :flood.
:reportedBy ?newsAgency.
:hasConfidence ?conf.

?place :hasGeometry ?geoPlace1.
?place :isLocatedIn ?locPlace

?anotherPlace :hasLivingCost ?livingCost.
?anotherPlace :floodInsuranceRate ?insuranceRate.
?anotherPlace :isLocatedIn ?locAnotherPlace.
?anotherPlace :hasGeometry ?geoPlace2.
FILTER (distance(?geoPlace1, ?geoPlace2) < 10)

} ORDER BY DESC(?rank) LIMIT 10

Figure 2-6: Example Top-𝑘 Spatial Distance Join Query

32

2.3 Datasets

In this sub-section we describe some popular real-world datasets from Linked Data domain

which we have used for evaluating the thesis:

∙ YAGO (Yet Another Great Ontology) [89]: is a high-precision knowledge-base con-

taining facts extracted from English Wikipedia and unified with Wordnet and GeoN-

ames. Entities and binary relationships constitute YAGO’s data model. In particular,

YAGO has been constructed from category system and infoboxes from Wikipedia

and taxonomy of concepts from Wordnet. YAGO contains close to 120 million facts

and more than 10 million entities. YAGO uses reification to store additional infor-

mation about facts.

∙ DBpedia [59]: DBpedia also is derived from Wikipedia, and contains over 400

million facts containing triples plus provenance information, describing 3.7 million

things. It is important to note that DBpedia uses N-Quads for modeling higher order

relationships.

Using Wikipedia search alone it is very difficult to find rivers that flow into Bay of

Bengal and are greater than 200 miles, or all German musicians who lived at the time

Beethoven was born. However, Wikipedia’s structured form DBpedia can be used to

answer such expressive queries.

∙ LGD (Linked Geo Data) [11]: LGD contains freely available collaboratively col-

lected data from Open Street Map (OSM) project. The OSM project contains a

large amount of geographical data. OSM data can be classified into three basic data

types: nodes, ways and relations. Nodes represent points, ways represent sequences

of points, relations constitute nodes and/or ways. Ways with same start and end nodes

are used to represent buildings, land use areas, etc. LGD contains approximately 2

billion triples.

33

2.4 Related Work

We next discuss the storage techniques employed by RDF storage engines. We also intro-

duce a taxonomy to classify the storage techniques into two stages namely, URI Encoding

and indexing. URI Encoding stage focuses on storing RDF resources efficiently. In this

stage instead of storing URIs directly as string, RDF databases first associate a numeri-

cal identifier to each resource and store this identifier instead. After mapping the URIs to

identifiers indexing stage focuses on efficiently storing SPO triples themselves.

1. URI Encoding stage: Uniform Resource Identifiers (URIs) used for uniquely iden-

tifying resources (Subject, Predicate, Object) are: (1) typically long in length and

thus occupy a lot of storage space [69]; (2) have string data type – which makes com-

parisons difficult [69]. Therefore, it is inefficient to store URIs as-it-is [69]. In order

to overcome this many RDF storage engines map URIs to numeric identifiers using

a dictionary. Mapping URIs using dictionary has its own advantages and disadvan-

tages. Based upon how the URI’s are processed and stored in a triple store, RDF

storage engines can be categorized in the following ways:

(a) Mapping URIs to numeric identifiers: In this URIs are mapped to integers –

such that the mapped integers are assigned in an increasing order of insertion

of RDF facts. Advantages of this approach are listed below:

∙ Numeric identifiers are of fixed length as compared to string URIs, hence

processing is faster [69].

∙ Numeric identifiers save a lot of space as they are typically shorter in com-

parison to string URIs [69].

∙ Query execution is faster – as numeric comparisons are faster as compared

to string comparisons [69].

However, this approach suffers from the overhead of additional joins which

need to be processed in order to map URIs to numeric identifiers and vice versa.

Storage engines which employ this technique are: RDF-3X [69], Sesame [26],

HexaStore [101], TripleBit [106].

34

(b) Mapping URIs to hash values: In this URI’s are mapped to hash values. As is

apparent this approach is prone to collisions between URI’s which are mapped

to the same hash value by the function. Thus unlike numeric identifiers which

are assigned in an increasing order of occurrence of resources, hash values are

assigned using a hash function and thus are liable to collision. In a manner sim-

ilar to point 1, this approach suffers from an overhead of processing additional

joins – used for mapping hash values back to URIs . The advantages of this ap-

proach are same as are outlined for numeric identifiers. Storage engine which

employ this technique is: 3store [42]. 3store uses different hash functions for

IRIs and literal values – the hash values generated by the hash function aid in

distinguishing between the two.

(c) Hybrid of URIs and numeric identifiers: Small URIs are kept as-it-is whereas

larger URIs are mapped to numeric identifiers. In this the storage medium

is used for distinguishing between the system generated numerical identifiers

and smaller string resources. This optimization helps avoid the extra join for

mapping integers to resources for smaller string resources. Such an approach is

adopted in Virtuoso [33].

Note that in this thesis in RQ-RDF-3X we adopt the approach of mapping resources

to numerical identifiers. While in Quark-X and STREAK we use semantic encoding

of entities for mapping resource to identifiers. At a high level, semantic encoding of

identifiers is based on the fact that entities in RDF exhibit a soft schema [68]. Thus

in Quark-X and STREAK we assign identifiers in an increasing order to entities

exhibiting the same schema. This helps Quark-X and STREAK collocate entities

sharing the same schema. This collocation of entities helps perform sequential disk

accesses thus improving efficiency.

2. Indexing: Based on the manner in which RDF triples are stored in RDF storage

engines, we categorize along the following dimensions:

(a) Horizontal Representation: A single table is used for storing RDF facts – here

subject, predicate and object act as attributes of the table. In order to improve

35

Subject Predicate Object
RDF-3X author Neumann
GraphLab author Yuncheng Low
Neumann worksAt MPI
..
Table 2.1: Horizontal Representation

performance appropriate indexes can be build over the table. Approaches like

RDF-3X [69], Hexastore [101] and Virtuoso [33] implement this approach –

for increasing performance, indexes are built over single virtual table. Storing

multiple permutations of indexes considerably improves performance, but these

techniques suffer from the issue of: (i) increased index scan time with increase

in the size of the table; (ii) high storage cost as these approaches store same

data in multiple redundant permutations. An example illustrating Horizontal

Representation approach is shown in Table 2.1.

Note that all three database systems viz RQ-RDF-3X, Quark-X and STREAK

proposed in this thesis adopt Horizontal Representation approach of storing

RDF facts. Efficient compression technique for indexes proposed in this thesis

in section 3.4.1 helps reduce the storage footprint.

(b) Graph-based Storage: Querying RDF graphs typically involves finding the

result sub-graph in the original graph. Existing RDF engines belonging to this

category are described below:

∙ GRIN [90]: GRIN partitions the RDF graph using Partitioning Around

Medoids (PAM) [55] clustering algorithm. In PAM first centroids are ran-

domly chosen and then clustering is done based on the distance of the other

vertices from the centroid vertices. After this centroid vertices are recom-

puted and clustering is again performed until equilibrium is reached.

∙ DOGMA [25] performs graph partitioning using GGGP graph partitioning

algorithm [54]. It partitions graphs in such a way that number of edges

crossing in between sub-graphs stored on leaf pages is minimized – this is

advantageous for queries whose sub-graphs can be found on a single page.

This approach is inefficient for queries where the resultant subgraph spans

36

Subject/Predicate author worksAt publishedIn hasWon
RDF-3X Neumann NULL VLDB bestPaperAward
Neumann NULL MPI NULL NULL
...

Table 2.2: Vertical Table

multiple pages, thus requiring all pages to be fetched from the disk. Unlike

its predecessor, GRIN, DOGMA operates on disk.

∙ chameleon-db [8]: In this, sub-graph matching algorithms are run on par-

titioned RDF graph. For efficiency, chameleon-db periodically repartitions

its database depending on the workload. Unlike DOGMA and GRIN which

are workload agnostic, chameleon-db is workload aware – such that it ad-

justs its partitions based on the query workload.

Storage approaches suggested in DOGMA and GRIN work efficiently for a

specific query workload or for certain query patterns. chameleon-db overcomes

this drawback by re-partitioning based on the query workload – but chameleon-

db’s performance is unclear(variable) for rapidly changing query patterns.

(c) Property Table: Another approach is to aggregate entities sharing the same

properties and to store them in one table as shown in Table 2.2. In Table 2.2

Subjects are stored horizontally in first column, and Predicates are stored as col-

umn names. For example, for the fact (RDF-3X, author, Neumann), RDF-3X

is stored in the first column, predicate author is the column header, and object

Neumann is stored at the row and column intersection. This approach elimi-

nates the need for Subject-Subject joins and hence this helps improve efficiency.

This approach suffers from the disadvantage of: (a) Increased space require-

ment due to the presence of NULL values (b) Queries for which property val-

ues are not specified may involve scanning the entire table (c) Storage of multi-

valued properties becomes difficult. Some of the present day frameworks which

store data in this format or its slight variants are explained below:

∙ TripleBit [106]: TripleBit’s design of property table is slightly different:

here subjects and objects are represented in rows and predicates are repre-

37

sented in columns. Values in the matrices are either 0s or 1s. Each triple is

uniquely identified by two 1s in the corresponding column.

∙ Levandoski and Mokbel [60] propose to cluster properties together and

store them in property or n-ary tables, properties which dont belong to

clusters – clustered based on co-occurrence – are stored in accordance with

column-store approach (described in (d)). Here, properties which coexist

together for a large number of subjects are grouped in one cluster. The

advantage of this approach being that it efficiently processes star-shaped

queries.

∙ A specialized form of property tables is clustered property tables. In clus-

tered property tables correlated predicates are stored in the same table and

the remaining predicates (which are not correlated with other predicates)

are stored in a separate table. Example frameworks which use this ap-

proach are: Jena2 [103] and Sesame [27].

Since exhaustive indexing is typically not done in vertical partitioning, there-

fore as compared to triples table and graph based approach, this approach suf-

fers from the disadvantage of scanning all triples, for properties which are left

unspecified.

(d) Column-store: It employs a decomposed storage schema [29]. In this approach

a separate two-column table is created for each property – in this way it resem-

bles the column-store storage approach of relational databases. This approach

works well for queries where property values are specified. The negative side

of this approach is that it degrades the performance of queries where (i). prop-

erties are unrestricted (ii). joins need to be performed across tables – as this

will slow down result retrieval in comparison to approaches which sequentially

access stored information. This approach has also been popularly described

in literature as: Vertical Partitioning [92] or horizontal (binary) stores [81] or

binary table approach. Frameworks which store RDF data in this form are:

RDF data-centric storage [60]; Abadi, et al. [4]; [85]; [5] etc. Some of the

38

frameworks using this approach are briefly described below:

∙ Abadi, et.al. in their work [4], [85], [5] suggest a column store approach

with property tables sorted by subject. Its advantage being it enables fast

processing of merge joins and hence gives efficient performance for queries

in which properties and/or subjects are specified. This approach stores

multi-valued subjects in consecutive rows of the property table. In order to

gain advantage column-oriented database systems are used as underlying

storage – the approach thus obtains benefits of compressibility and perfor-

mance of column-oriented stores.

(e) Storing Pre-computed Joins: This category contains frameworks which store

precomputed joins – some of these are given below:

∙ Groppe, et.al. [38] in their work illustrate that two triple patterns can be

joined in 6 ways (Subject-Subject, Subject-Predicate, Subject-Object,

Predicate-Predicate, PredicateObject, Object-Object). If two simple

triple query patterns are joined by a common variable then there are only 4

relevant positions (e.g. for Subject-Subject join – the relevant positions are:

Predicate and Object of both the triples), therefore the authors construct

and use 16 different indices for each join case. For all 6 join scenarios

authors use 96 different indices, which the authors show is practical from

their experimental evaluation.

2.5 RDF-3X

Next, we describe RDF-3X, the RDF data management system, that forms the basis for the

three systems we propose in this thesis. RDF-3X is used as an underlying framework for

the proposed database engines in this thesis namely, RQ-RDF-3X, Quark-X and STREAK.

RDF-3X is a RISC-style architectured state-of-the-art RDF query processing engine. In the

next sections, we focus on the storage and query processing components of RDF-3X.

39

2.5.1 Storage

RDF-3X employs a simple yet powerful solution of materializing all sorted permutations

of the schema. Materializing all possible permutations as indexes does away with the need

for physical design tuning. It achieves this by building materialized clustered indexes over

all six possible permutations of SPO. Furthermore it builds count-aggregated variants for

all three two-dimensional and all three one-dimensional projections. An important point to

note here is RDF-3X stores these indexes in a compressed format using delta compression.

As a result the total storage space required to store these materialized indexes is less than

size of the raw dataset itself. Next we explain the indexes used by RDF-3X in detail. RDF-

3X stores all SPO triples in clustered B+-trees. Individual pages in B+-trees are compressed

using delta encoding. For better compression and for efficient range scans triples are sorted

and stored lexicographically in B+-trees. An additional optimization RDF-3X employs is

to replace strings in SPO triples by integer ids using a mapping dictionary.

2.5.2 Query Processing

Translating SPARQL queries

RDF-3X first compiles a SPARQL query and constructs its query graph representation.

Each triple pattern denotes a node in the query graph. This induces a scan of RDF-3X’s

indexes with literals used for performing selections. Two nodes in the query graph are

connected if and only if they share a common query variable.

Plan Generation

RDF-3X uses a bottom-up dynamic programming based query optimizer. The query op-

timizer tries to draw maximum advantage of RDF-3X’s materialized sorted indexes by

adopting merge joins as much as possible. It generates plans which preserve interesting

orders for successive joins so that it can accelerate queries using its materialized indexes.

Only when merge joins are not possible RDF-3X’s optimizer switches to hash-based join

processing.

40

Next we discuss RDF-3X’s bottom-up dynamic programming algorithm for plan gen-

eration. RDF-3X seeds the DP-table with scans of SPO indexes. Index selection is based

on two factors namely: (1). Performing efficient range scans by matching the prefix of

the index with literals in the triple pattern; (2). Choosing indexes which are suitable for

subsequent merge joins later on. This is because the selected plan may have lower overall

cost. After seeding the DP table. The optimizer begins by considering all plan choices. It

then discards plans based on estimated execution costs to reduce the search space of plan

exploration. It does so by generating larger plans by joining optimal solutions of smaller

plans. An additional optimization which RDF-3X’s query optimizer embeds is to greedily

push down the FILTER predicates in the query plan.

Selectivity Estimation Next we describe RDF-3X’s selectivity estimation in detail. For

finding selectivities of individual triple patterns RDF-3X precomputes exact result cardi-

nalities of SPO triple patterns and stores them in a B+-tree. Thus finding selectivities now

requires one or two lookups in B+-trees – the authors of RDF-3X claim this to be insignif-

icant compared to actual query execution cost.

For estimating selectivities of joins between two triple patterns RDF-3X transforms it

as a join between one triple pattern and all triples in the database and a final selection. To

understand this better consider a join between (c1, c2, ?o1) and (?s2, c3, c4) on ?o1=?s2,

here ci’s are constants, while variables begin with a ‘?’ e.g. ?o1, ?s2, ?p2, ?o2, etc. Now

this join can be re-written in the following manner:

1. Join between (c1, c2, ?o1) and (?s2, ?p2, ?o2) on ?o1=?s2 and

2. (1) Followed by a selection on ?p2=c3 and ?o2=c4

Note that although this form is inefficient for query execution but because it is equiv-

alent to the original form, therefore it can be exploited for selectivity estimation. Note

again that we already computed (2)as described above where we found the selectivity of

individual triple patterns.

For finding (1) a triple pattern (c1, c2, ?v) needs to be joined with all the other triples

(?s2, ?p2, ?o2) in a database on either subject, object or predicate. Assuming a join on

41

either of them and let ?v1 denote the joining variable. We want to compute:

Cardinality (c1, c2, ?v) ◁▷?𝑣=?𝑣1 (?v1, ?p2, ?o2)

= | (c1, c2, ?v) ◁▷?𝑣=?𝑣1 (?v1, ?p2, ?o2) |

=
∑︀

𝑥∈(𝑐1,𝑐2,?𝑣) |x, ?p2, ?o2|

RDF-3X precomputes and stores the above join cardinality in B+-trees. Similarly join

size pre-computation is performed for triple patterns with one constant and no constant.

These materialized join cardinalities helps RDF-3X compute join selectivities between

SPO triple patterns in query graph.

Sideways Information Passing For exposition consider a query which wants to retrieve

the location of a place whose official language is English, and has been reported to be

flooded. Its operator tree is as shown in the Figure 2-7:

O P S
119

119

119

119

119

20

20

20

20

20

11

55

127

135

239

O P S
111

111

111

111

111

3

3

3

3

3

11

55

127

135

239

P S O
100

100

100

100

100

13

19

127

255

266

48

57

58

59

61

O=English,
P= Language

O=Flood,
P= reported

P=isLocatedIn

./S=S

./S=S

Figure 2-7: Operator Tree showing SIP

From Figure 2-7 notice in PSO index during scanning column S there are large gaps in

19 and 127; 127 and 255. Now if we pass this information to the other OPS indexes, then

this allows the indexes to skip large parts. This passing of information from one index to

the other – for skipping large parts of indexes – is called Sideways Information Passing.

42

Chapter 3

RQ-RDF-3X: An Efficient Quad-Store

3.1 Motivation

Given reification and N-Quad extensions to the basic triple model that is most associated

with RDF, a natural question to ask is: how do existing RDF stores cope with these ex-

tensions? In this chapter, we will restrict our discussion to native stores alone, although

similar observations can be made for relational RDF stores as well. The state-of-the-art

native stores such as RDF-3X [69] and Hexastore [101] are strictly designed for storing

triples, and answering queries over them using SPARQL. As a result, they can incorporate

only the standard reified models in their storage model. However, this severely degrades

their query processing efficiency due to increased number of joins that need to performed

in order to answer even the simplest of queries. The data in N-Quad can be stored in these

systems only after converting it to a reified form, and is thus equally inefficient to query.

To understand how reification results in a large number of joins consider a query wanting

to retrieve all predecessors of Governors of New York. Note that this is the representation

which RDF-3X uses to represent reified queries. This query can be expressed in SPARQL

as:

select ?a?b?e

where {

?r rdf:type rdf:statement.

43

?r rdf:subject ?a.

?r rdf:predicate <holdsPoliticalPosition>.

?r rdf:object <Governor_of_New_York>.

?r <hasPredecessor> ?b }

Note that the above query needs to perform 5 joins on ?r between (?r rdf:subject

?a), (?r rdf:type rdf:statement), (?r rdf:predicate <holdsPoliticalPosition>), (?r <

hasPredecessor> ?b) and (?r rdf:object <Governor_of_New_York>). Therefore,

reification results in large number of joins, in comparison to RQ-RDF-3X – described in

detail in this Chapter – which replaces them with one equivalent single join between:

?r ?a <holdsPoliticalPosition> <Governor_of_New_York> and

?r <hasPredecessor> ?b

We arrived at the above representation by assigning a unique identifier to each triple

in the database. In the above RDF query, the variable representing this identifier for the

triple (?a, holdsPoliticalPosition, Governor_of_New_York) is ?r. Thus, for retrieving

the results a single join needs to be performed between (?r ?a <holdsPoliticalPosition>

<Governor_of_New_York>) and (?r <hasPredecessor> ?b).

In a nutshell, in comparison to RDF triple-stores like RDF-3X which can query only

over reified data, RQ-RDF-3X needs to perform 3x lesser number of joins. This helps

improve query performance.

3.2 Organization

The chapter is organized as follows: Section 3.3 outlines related work. Section 3.4 de-

scribes proposed approach. Section 3.5 reviews performance and query evaluation.

3.3 Related Work

This section presents an overview of frameworks which support storage of reification and

N-Quads.

44

3.3.1 Reification Support

Some of the prominent frameworks which support reification are: Jena2 [103] and Ora-

cle [6]. Jena2’s predecessor Jena1 [103] also supported reification, but its applicability

was limited by its ability to reify each fact only once. Jena2 [103] overcame this limita-

tion by storing separate tables for asserted and reified statements. Reified statements in

Jena2 are stored in a separate property tables. The property table contains Statement URI,

rdf:subject, rdf:predicate and rdf:object as columns. None of the systems mentioned above

have reported any performance benchmarks on big-data datasets containing more than 20-

30 million triples. Additionally, reified data deteriorates the query processing efficiency

of state-of-the-art triple stores like RDF-3X, Hexastore, etc. This is due to the increased

number of joins that need to be performed in order to answer even the simplest queries.

Next we highlight the difference in RQ-RDF-3X’s compression scheme with respect to

RDF-3X, whose architecture is explained in detail in Section 2.5 of Chapter 2. The com-

pression scheme in RDF-3X allows to store only SPO triples efficiently. This is because it

uses a header byte to store the lengths of fixed byte encoded SPO triples which differ from

each other only in one value. RDF-3X completely uses all bits in its header byte and is thus

not able to accommodate size information of R. A possible extension of fixed byte encod-

ing scheme used in RDF-3X is to use two header bytes – which we show experimentally

later is not an efficient option because of increased storage space requirement and hence

decreased query processing efficiency. Extension of fixed byte encoding of RDF-3X is

shown in Fig. 3-1. RQ-RDF-3X on the other hand uses variable byte encoding in addition

to fixed byte encoding and is thus able to efficiently store S, P, O and R.

3.3.2 N-Quads

YARS2 [44, 45] stores quads in the form of <subject, predicate, object, context>. They

built 6 indices such that the indices cover all the 16 possible access patterns of quads. In a

similar manner Kowari [104] also stores RDF statements in six different orders of indexes

such that the indices cover all possible access patterns. However in contrast to YARS2,

Kowari stores the indices using AVL trees. As both YARS2 and Kowari are optimized

45

for simple lookups, therefore they do not process complex queries efficiently [69, 101].

Virtuoso[33] is another well-known quad-store.

3.4 RQ-RDF-3X Framework

We will focus on the extensions needed to triple-store style RDF storage engines to support

N-quads, by using RDF-3X [69] as the basis for our concrete implementation. Recall that

we explained the architecture of RDF-3X in detail in Section 2.5 of Chapter 2.

The fundamental change required is to support an additional field (R) that has the reifi-

cation identifier or context identifier. This requires a wide-spectrum of modifications within

the storage engine ranging from storage and index organization, selectivity estimation as

well as query planning and optimization. In the rest of this section, we describe these

modifications within the context of RDF-3X.

3.4.1 Storage and Indexing in RQ-RDF-3X

RQ-RDF-3X supports reification by assigning a unique identifier (R) to each Subject (S),

Predicate (P), Object (O) triple. This is similar to earlier proposals [103, 6], also aimed

at minimizing the explosion in triple count due to naive reification. As a consequence, only

one additional fact is required to store the meta-data associated with each fact.

The aggressive indexing strategy of RDF-3X is taken further in RQ-RDF-3X by build-

ing clustered B+-tree indexes over all 24 permutations of (S, P, O, R)-quads, in addition

to all permutations of ternary, binary and unary projections of these quads. Refer to Sec-

tion 2.5.1 regarding further details on RDF-3X’s indexing. We store these (S, P, O, R)

indexes and their ternary projections using a novel compression strategy for quads, which

can also extend easily to very large datasets.

Index Compression in RQ-RDF-3X

For ease of exposition, we represent the four values in any permutation of the (S, P, O,

R)-quad as (𝑣1, 𝑣2, 𝑣3, 𝑣4). Indexes are lexicographically sorted quads stored in clustered

46

B+-trees, whose entries are compressed to retain scalability as well as provide economy of

space.

Each B+-leaf entry comprises two parts – a header byte and zero or more value bytes.

The header byte is used as four 2-bit entries where each pair of bits encode the number of

bytes consumed by the corresponding entry. The bit pattern 11 is used to signify that the

value uses 3 or more bytes.

For storing values (𝑣1 / 𝑣2 / 𝑣3 / 𝑣4) in the quad, we first apply delta encoding with respect

to the previous quad. This is because lexicographic ordering causes most neighboring

triples to have similar values of 𝑣1 and 𝑣2 with very small differences for 𝑣3 and 𝑣4. Thus

we use delta encoding for storing only the changes between quads. When delta value needs

1 or 2 bytes, then we directly encode number of bytes consumed by an entry in the 2-bits

reserved for it in the header byte. We then store the value itself using the efficient fixed

byte encoding. While if the delta needs 3 or more bytes, we use variable byte encoding in

the third byte onwards. In variable-byte encoding an integer is encoded as a sequence of

7-bit bytes, with the remaining bit denoting 1 for last byte and a 0 for all other bytes. We

use a combination of fixed and variable byte encoding to use the header byte effectively.

Note that using only fixed byte encoding for storing values requires two header bytes,

which we show experimentally later is not an efficient option because of increased storage

requirement and hence decreased query processing efficiency.

Figure 3-1 illustrates the compression scheme, considering three different possible sce-

narios. In Figures 3-1(a) and 3-1(b), delta of 𝑣1,𝑣2 and 𝑣3 are zero, hence only 𝑣4 is stored.

Figure 3-1(c) illustrates the condition where the adjacent quads are distinct.

Aggregated Indices

For certain SPARQL queries building indices on just the ternary, binary and unary projec-

tions is sufficient. Such indexes are called aggregated indexes henceforth. For example,

consider the query

select ?a?b?e

where { ?r rdf:subject ?a.

?r rdf:predicate ?b.

47

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 1 1

0 1 0 1 0 1 0 1

(a) RQ-RDF-3X: 4v1=0, 4v2=0, 4v3=0, 4v4 <28

Header byte 4v4 <28

Header byte 216 < 4v4 <223

(b) RQ-RDF-3X: 4v1=0, 4v2=0, 4v3=0, 216 < 4v4 <223

Header byte 4v1 <28 4v2 <28 4v3 <28

4v4 <28
(c) RQ-RDF-3X: 4v1 <28, 4v2 <28, 4v3 <28, 4v4 <28

0 1 1 1 1 1 1 1

Header byte - 1 4v2

4v3(d) RDF-3X: 4v1, 4v2, 4v3, 4v4
4v4

4v1Header byte - 2

1 1

Figure 3-1: (a,b,c)Compression Scheme in RQ-RDF-3X (Leading bit 1 for last byte
and 0 for all other bytes) (d) Compression Scheme of RDF-3X for Quads with first
two header bytes

?r rdf:object ?c.

?r ?d ?e }

It finds information about the triple’s subject and predicate, along with the metadata

which is associated with the triple ?a?b?c. In order to do so, RQ-RDF-3X transforms

the query into 2 sub-queries: (i) ?r ?a ?b ?c (formed by aggregating the reified query

patterns) and (ii) ?r ?d ?e. As the query does not need to retrieve the bindings of the

variables ?c and ?d it suffices to store just the ternary projection for ?r ?a ?b ?c and

binary projection for ?r ?d ?e. In RQ-RDF-3X we have build 24 ternary projection

indices (SPR, SPO, SRP, SRO, SOR, SOP, PSR, PSO, PRS, PRO, POR, POS, RSP, RSO,

RPS, RPO, ROS, ROP, OSR, OSP, OPR, OPS, ORP, ORS), 12 binary projections indices

(SP, SR, SO, PS, PR, PO, RS, RP, RO, OS, OP, OR) and 4 unary projections indices (S,

P, R, O) for faster scans for processing queries that do not require all bindings. In these

indices, in addition to storing appropriate S,P,R,O values the count of projected values in

the dataset are also stored. These counts serve in supporting correct number of duplicates in

results and also aid in selectivity estimation as we describe below. We show experimentally

in Section 3.5 that the cost of storing these indices is not too high.

48

3.4.2 Selectivity Estimation

Accurately estimating the selectivity of query patterns is essential for query optimization.

In RQ-RDF-3X, the cardinality of simple SPARQL patterns that have one, two or three

variables can be accurately determined by using the frequency counts stored in aggregated

indexes for appropriate ternary, binary and unary projections respectively. If the query

pattern consists only of variables, then the result cardinality is simply the total number of

quads in the database.

Join Selectivity Estimation

Before we begin the join selectivity estimation in RQ-RDF-3X, we briefly recap the process

in RDF-3X (for triple pattern joins). In RDF-3X, a join between two triple patterns with

projected attributes is translated into a join between a pattern with selection and one without

selection. The triple pattern with lower cardinality is chosen for selection. Thus, the join

selectivity is estimated as the selectivity of one triple pattern with all facts in the database.

This is explained in detail with example in Section 2.5.2. When extending this approach in

RQ-RDF-3X for quads, we have to deal with four separate cases depending on the number

of variables in the query – i.e., one, two, three or four variables.

A join is evaluated in a manner similar to RDF-3X by selecting the query pattern with

least cardinality to be joined with the pattern without any selection. If the SPARQL query

pattern having lesser cardinality contains only one variable then it may be joined with either

subject, predicate, reification or object present in the other query pattern. Let us suppose

that the join is performed on subject as illustrated in figure 3-3, then the join selectivity

between two SPARQL query patterns is estimated by finding all quads where subject of the

first triple pattern is equal to the subject, predicate, reification or object of the second triple

pattern. With one the patterns containing 3 constants and the other contains no constant,

this boils down to summing the unary projections for all subjects present in the database.

However, when executed naively it leads to inaccurate cardinality estimates.

We illustrate this problem with the help of a small example: consider the dataset ex-

pressed in the form of (S,P,R,O) shown in figure 3-2:

49

< a, b, r1, c1 >
< a, b, r2, c1 >
< a, b, r3, c1 >
< a, b1, r4, c5 >
< a, d1, r5, f1 >
< a, d2, r6, f2 >
< a, d3, r8, f3 >

Figure 3-2: Example Dataset in RQ-RDF-3X

(s1, c2, c3, c4) (c2, c3, r2, c4)

(s1=r2)

(s1, c2, c3, c4) (s2, p2, r2, o2)

(s1=r2)

σ (s2=c2, p2=c3, o2=c4)

Figure 3-3: Reified Query Reformulation

Consider now the join query pattern:

(?s, b, ?r, c1) ◁▷ (?s, b1, ?r1, c5).

The actual cardinality of the above join is 3, while the procedure described above estimates

it as 7.

Recall that in RDF-3X the join selectivity between two SPARQL query patterns is

estimated by finding all quads where subject of first triple pattern is equal to the subject,

predicate or object of the second triple pattern. Also note that reification identifiers are

unique identifiers introduced by the system, which the users are unaware of and hence are

always represented by variables in the query. Thus RDF-3X’s join selectivity method does

not work with reified triples, as the estimated join cardinality will be equal to all facts in the

knowledge base. Thus in RQ-RDF-3X in order to estimate the join cardinality accurately

for triple patterns containing at least two constants we estimate the join cardinality as the

highest cardinality of the query pattern forming the edge.

Our algorithm for selectivity estimation is described step-by-step below:

1. For estimating the selectivity of join between two quad patterns we first transform it

as a join between one quad pattern and all quad in the database and a final selection.

2. For joins on reification identifier with two constants, join cardinality is estimated to

be the highest cardinality of the query pattern forming the edge.

For finding (1) a triple pattern (c1, c2, ?v) needs to be joined with all the other triples

(?s2, ?p2, ?o2) in a database on either subject, object or predicate. Assuming a join on

50

either of them and let ?v1 denote the joining variable. We want to compute:

Cardinality (c1, c2, ?v) ◁▷?𝑣=?𝑣1 (?v1, ?p2, ?o2)

= | (c1, c2, ?v) ◁▷?𝑣=?𝑣1 (?v1, ?p2, ?o2) |

=
∑︀

𝑥∈(𝑐1,𝑐2,?𝑣) |x, ?p2, ?o2|

The pseudo-code of the algorithm is given below:

Algorithm 1 Pseudo Code for finding cardinality
Input Patterns to be joined (?a, ?b, ?c, ?d) and (?d, ?e ?f, ?g)
Output Estimated Cardinality

1: if ?d=reification then:
2: if (?a=const && ?b=const) || (?b=const && ?c=const) || (?a=const && ?c=const) then
3: card← max(cardinality(?a, ?b, ?c, ?d), cardinality(?d, ?e, ?f, ?g) ◁ determined by

using frequency counts stored with aggregated indexes
4: else
5: card← | (c1, ?b, ?c, ?v) ◁▷?𝑣=?𝑣1 (?v1, ?p2, ?o2,?r2) |
6: card←

∑︀
𝑥∈(𝑐1,?𝑏,?𝑐,?𝑣) |x, ?p2, ?o2, ?r2|

7: end if
8: end ifreturn card

To summarize, accurate cardinality estimates can be obtained for such cases by using

RDF-3X’s selectivity estimation algorithm, barring the join between input patterns con-

taining at most two variables, one of which is reification. In such exceptional cases the

estimated cardinality is equal to the highest cardinality amongst joining input patterns.

This is explained in detail with the help of an example below.

For the example given above as (?s,b,?r,c1) has a cardinality of 3 which is smaller

than 7 (estimated cardinality obtained after naive extension); therefore, RQ-RDF-3X cor-

rectly chooses 3 as the cardinality estimate, which also happens to be exact. For named

graphs the procedure is similar, with an exception in condition (ii) that the higher cardinal-

ity pattern should have 3 constants.

The join selectivity is estimated in a similar manner when the query pattern contains 2,

3 or 4 variables. The number of possible ways to join them are 12, 12 and 16 respectively.

We store the calculated selectivity in B+-trees, indexed by constants present in the query

pattern. We acknowledge that since we extended RDF-3X’s approach of storing calculated

selectivities in B+-trees therefore this technique suffers from high storage cost. Note that

although this approach incurs high storage cost, as our experiments show, this is offset by

51

superior query processing performance.

3.4.3 Query Translation and Optimization

RQ-RDF-3X transforms SPARQL queries containing reified triple patterns into tuple cal-

culus form, which is used by the optimizer to determine an optimized execution plan. The

first step in this is to identify all the quad patterns in the SPARQL query. For instance,

given the following reified query:

select ?a ?b ?c ?e ?d
where
{?r rdf:subject ?a.
?r rdf:predicate <holdsPoliticalPosition>.
?r rdf:object <Governor_of_New_York>.
?r <hasPredecessor> ?b.
?r <hasSuccessor> ?c.
?r1 rdf:subject ?c.
?r1 rdf:predicate <hasWonPrize>.
?r1 rdf:object ?e.
?r1 <extractionSource> ?d}

Figure 3-4: Find the predecessors and successors of Governor of New York who have
also won a prize

The following quad patterns are identified from the above query:

Q1: ?a, <holdsPoliticalPosition>, ?r, <Governor_of_New_York>

Q2: ?r, <hasPredecessor>, ?r2, ?b

Q3: ?r, <hasSuccessor>, ?r3, ?c

Q4: ?c, <hasWonPrize>, ?r1, ?e

Q5: ?r1, <extractionSource>, ?r4, ?d

The optimized execution plan is determined in a two stage process, not very different

from the approach taken by RDF-3X. In the first stage, all variable bindings that are not

used in other parts of the query are identified in order to project them away with the help of

aggregated indices. Naturally, for all triple matching query patterns involving just <S,P,O>,

reification can be projected out.

52

In the next stage, the optimizer retains indexes that may produce tuples in order appro-

priate for successive merge joins; and plans thus generated are pruned by the plan pruning

mechanism of RDF-3X. Based on the resulting set of plans for smaller problems (for quad

patterns), larger problems are solved using a bottom-up dynamic programming approach.

3.5 Evaluation

In this section, we evaluate the performance of RQ-RDF-3X by considering state-of-the-art

solutions for managing reified RDF data over large RDF datasets that contain significant

amount of reified content.

3.5.1 Experimental Setup

As already mentioned, RQ-RDF-3X is built on top of RDF-3X system which is written

in C/C++ and runs in single-threaded mode. All experiments we report were performed

on a server class machine Dell R650 with 2.50GHz Intel Xeon E5-2640 running Ubuntu

12.04 LTS. Additionally the machine had 2.6 TB effective storage running at RAID-5

with disk speed of 7200 rpm. Also the server has 64GB RAM. All numbers are re-

ported after running experiments 5 times and taking their average. To ensure that the

OS caches are cleared after every run, we drop all filesystem caches using echo 3 >

/proc/sys/vm/drop_caches.

We conducted experiments on two large-scale real-world datasets, YAGO [89] and DB-

pedia (3.7 dump) [43].

It is important to note that neither of these two datasets model reification in the way

it is defined in the RDF standard, choosing instead a more compact representation —

YAGO [88] uses Turtle as its native format: fact identifiers are stored in a commented

line before each fact, and DBpedia uses N-Quads. Table 3.2 provides the raw-size of these

datasets, in their native form as well as after translating them to the standard reified form.

As these numbers show, reified forms incur 20-25% more space in the raw size. Further,

Table 3.3 summarizes the amount of reified content found in these datasets. As these num-

bers show, a significant fraction of content is reified and in YAGO, these reifications are

53

quite complex with upto 10 entries taking part in a reification on an average.

3.5.2 Compared Systems

RQ-RDF-3X is compared with four state-of-the-art systems: PostgreSQL (ver. 9.1.9) [78],

RDF-3X (v0.3.7) [69], Virtuoso (ver. 06.01.3127) [33] and Jena-TDB (ver. 2.10.0) [53].

We briefly describe how these systems were set up in our evaluations:

PostgreSQL: YAGO and DBpedia were loaded from their reified form by creating two

tables: (i) a dictionary mapping each string to a unique integer id, and (ii) a four-column

table of (O, R, P, S) ordering consisting of integer ids generated from the facts table of

RQ-RDF-3X. Indexes were built on the dictionary as well as all 24 permutations of (O, R,

P, S).

Virtuoso and Jena-TDB: Both these systems are quad-stores widely used in the Semantic

Web community. They store a triple plus a graph reference per row – i.e., in named graph

semantics. We loaded YAGO by treating reification identifiers that identify each triple

uniquely as named graph ids. On the other hand, DBpedia can be loaded in named graph

format (its natural form) as well as reified form. We loaded DBpedia into Virtuoso in both

forms, and into Jena-TDB as named graphs only. Jena-TDB and Virtuoso were widely used

at the time of writing, these days Blazegraph is also more widely used.

RDF-3X: Being strictly a triple-store, RDF-3X can be loaded with only fully reified datasets

– DBpedia and YAGO were converted appropriately.

Table 3.2 also reports the resulting database sizes for each of the systems we have used.

As the table clearly shows, Virtuoso has the most compact database for both named graph

and reified forms. On the other hand, PostgreSQL lies on the other extreme with almost 6-

10 times larger database than Virtuoso. RQ-RDF-3X has the largest database size – barring

PostgreSQL – due to its very aggressive indexing.

54

Query id # TP # Joins Degree of Joins Types of Joins # R-TP

1 4 2 (3,2) (RS, OS) 1
2 5 3 (3,2,2) (RS,OS) 3
3 5 2 (3,3) (RS, OO) 2
4 4 3 (2,2,2) (RS, OO) 2
5 5 4 (2,2,2,2) (RS, SS, OS) 2
6 6 3 (3,3,2) (RS,OO,OS) 2
7 5 4 (2,2,2,2) (RS, SO) 1

(a) YAGO

Query id # TP # Joins Degree of Joins Types of Joins # R-TP

1 6 4 (3,2,2,2) (RS,OO) 3
2 2 1 (2) (RS) 1
3 4 3 (2,2,2) (RS,OO) 2
4 2 1 (2) (RS) 1
5 4 3 (2,2,2) (RS,OS) 2
6 4 3 (2,2,2) (RS,OS) 2

(b) DBpedia
Table 3.1: Summarized Characteristics of Benchmark Queries in RQ-RDF-3X

3.5.3 Benchmark Queries

The benchmark queries of RQ-RDF-3X were influenced by the SPARQL query features

that have been found to be quite important by Aluç, et al. [7]. Important features which we

consider in this work are: (a) the number of triple patterns (TP), (b) the number of joins, (c)

the degree of joins, (d) types of joins. In addition we also consider one additional feature:

the number of reified triple patterns in a query (R-TP): It denotes number of triple patterns

in the SPARQL query with which additional information is associated. Table 3.1 shows

summarized characteristics of benchmark queries. Queries in our benchmark have been

constructed keeping in mind their diversity in terms of query features such as number of

triple patterns, number of joins, degree of joins, type of joins and number of reified triple

patterns in the query.

Note that the system only supports SPARQL queries containing joins between triple

patterns. SPARQL queries containing filtering, unions and negations in pattern matches,

property paths, optionals and not exists are not supported currently by the system.

55

YAGO DBpedia-RF DBpedia-NG
Raw RDF data size(in Turtle) 18.5 - -
Raw RDF data size(in reified form) 22 57 45
PostgreSQL 493 549 -
RDF-3X 61 87 -
RQ-RDF-3X 113 190 -
Virtuoso 45 80 43
Jena-TDB 101 - 68

Table 3.2: Sizes of Datasets and Databases (in GBs)(RF: Reified Form, NG: Named
Graphs)

YAGO DBpedia
Fraction of facts with reification 31.5% 50%
Average size of reified entries 10 1

Table 3.3: Prevalence of Reified Entries

3.5.4 Query Processing Performance

For YAGO and DBpedia, we constructed a small benchmark query set consisting of queries

that use reified context. We provide the query set for DBpedia and YAGO as well as the

SQL translations of these queries in Appendix A.1.

In the same manner as RDF-3X[69], for PostgreSQL and RDF-3X we report in Fig-

ure 3-5 query execution time (excluding the compilation time). For PostgreSQL, we man-

ually translated the queries into SQL so that they are as efficient as possible. Further, to

eliminate the issues our PostgreSQL installation had in the final dictionary lookups, all

numbers we report are before the final id to string dictionary lookup. When dictionary

look-up time is included, the overall runtime of RDF-3X and RQ-RDF-3X increase by less

than 10% while PostgreSQL slowed down by an order of magnitude. We make a separate

one-on-one comparison with Virtuoso and Jena-TDB, by reporting the total query execu-

tion time(compilation and query execution time) in Figure 3-6.

Figure 3-5 and 3-6 summarizes the results of our evaluation of query processing perfor-

mance. As these results clearly demonstrate RQ-RDF-3X is significantly faster than Post-

greSQL, RDF-3X, Virtuoso and Jena-TDB. Specifically, RDF-3X turned out to be con-

sistently slowest when compared to PostgreSQL, RQ-RDF-3X, Virtuoso and Jena-TDB.

Although we gave significant advantage to Virtuoso and Jena-TDB–by loading Dbpedia

in named graph form which has smaller database size — RQ-RDF-3X outperforms these

56

systems for all queries except for Query 5 over DBpedia, where Jena-TDB is slightly faster.

We summarize the results of our query evaluation performance in comparison to Post-

greSQL and RDF-3X in warm-cache in Figure3-7. Note that similar to cold-cache the

results demonstrate the superior performance of RQ-RDF-3X in comparison with Post-

greSQL and RDF-3X in warm-cache too. Note that all these systems in warm-cache use

operating system caches. Virtuoso and Jena in comparison use their own caches. There-

fore for a fair comparison we report results in warm-cache for systems which use caching

mechanism similar to RQ-RDF-3X’s.

Note that due to logistic issues we did not do experiments on SSD’s. We believe that

SSD’s are not ideal for storing RDF graphs. This is because writes cause the SSD’s to wear

out easily. This makes SSD’s non ideal for RDF because of its pay as you go philosophy.

We acknowledge that results may be better with PostgreSQL 9.2 or later versions be-

cause PostgreSQL in these versions started supporting index-only scans.

3.5.5 Analysis of Results

RQ-RDF-3X outperforms PostgreSQL, RDF-3X, Virtuoso and Jena-TDB for almost all

queries we have considered on both YAGO and DBpedia. The performance advantange of

RQ-RDF-3X over RDF-3X is clearly due to the smaller number of star joins that it needs

to perform. RDF-3X requires 3 times more joins on DBpedia and 2 times more joins on

YAGO than other frameworks namely RQ-RDF-3X, PostgreSQL, Virtuoso and Jena-TDB.

Next, PostgreSQL has the obvious disadvantage due to the fact that its indices are non-

clustered. For Virtuoso we can not comment on its poor performance as it is closed source

and no published work describes its functionality and query optimization techniques. This

is clear when we consider the performance of Jena-TDB which has substantially more

indices (GOSP, GPOS, GSPO, OSPG, SPOG, POSG, SPO, POS, OSP; G:graph name),

and is much closer in performance to RQ-RDF-3X.

Importantly RQ-RDF-3X benefits greatly from its rich indexes, namely: OPSR, OPS,

PSO, PRSO, SPOR, POS, ORPS, RSPO, PSOR and OPSR, Particularly all queries in

YAGO and DBpedia benchmark greatly benefit from OPSR indexes, note that in addi-

57

 10

 100

 1000

 10000

 100000

 1x106

1 2 3 4 5 6

Ti
m

e
in

 m
se

c

Query Id

RQ-RDF-3X PostgreSQL RDF-3X

(a) DBPedia

 10

 100

 1000

 10000

 100000

 1x106

1 2 3 4 5 6 7

Ti
m

e
in

 m
se

c

Query Id

RQ-RDF-3X PostgreSQL RDF-3X

(b) YAGO
Figure 3-5: Query Processing Time of Benchmark Queries (in msec) – without dic-
tionary (NG:Named Graph, RF: Reified Form). Named Graph and Reified Form are
W3C recommended ways of storing additional information regarding triples.

58

 100

 1000

 10000

 100000

 1x106

1 2 3 4 5 6

Ti
m

e
in

 m
se

c

Query Id

RQ-RDF-3X
Virtuoso-NG

Virtuoso-RF
Jena-TDB-NG

(a) DBPedia

 100

 1000

 10000

 100000

 1x106

1 2 3 4 5 6 7

Ti
m

e
in

 m
se

c

Query Id

RQ-RDF-3X Virtuoso Jena-TDB-NG

(b) YAGO (Virtuoso-NG consistently outperforms Virtuoso-RF, therefore
we show results for Virtuoso-NG only)

Figure 3-6: Total Query Processing Time of Benchmark Queries (in msec)
(NG:Named Graph, RF: Reified Form). RF format retains the triple nature, while
NG format introduces quads. RF format needs to process many more joins than
NG format. RQ-RDF-3X’s choice of (1) exhaustive indexing with efficient compres-
sion technique, (2) improved query plan generation algorithm helps it outperform the
other systems in comparison.

59

1

10

100

1000

10000

100000

1 2 3 4 5 6

DBpedia (Warm Cache)

RQ-RDF-3X Postgres RDF-3X

(a) DBPedia

1

10

100

1000

10000

100000

1000000

10000000

1 2 3 4 5 6 7

YAGO (Warm Cache)

RQ-RDF-3X Postgres RDF-3X

(b) YAGO
Figure 3-7: RQ-RDF-3X, PostgreSQL, RDF-3X performance in warm cache

60

tion Query 2 also benefits from PRSO index. Query 7 of YAGO and Queries 1, 3 and 5

of DBpedia are accelerated by SPOR index. RSPO index is used for accelerating Query

4. It is noteworthy that reified information connected to triples greatly benefit from bushy

plans which the dynamic programming based query optimizer of RQ-RDF-3X generates

for all queries of YAGO and Query 1, 3, 5 and 6 of DBpedia. We can not comment on

RQ-RDF-3X’s poor performance in comparison to Jena-TDB for Query 5 because there is

no published work describing its technique and query optimization techniques.

We conclude our experimental evaluation by stating that RQ-RDF-3X efficiently sup-

ports SPARQL queries containing reification. Although SPARQL named graph queries

are not directly supported by RQ-RDF-3X, they can be easily provided by making simple

changes to RQ-RDF-3X’s query parser.

3.6 Discussion & Outlook

In this chapter, we presented RQ-RDF-3X, a reification and quad enhanced RDF-3X frame-

work for executing SPARQL queries over massive datasets containing metadata associated

with facts. We conducted preliminary experiments over YAGO and DBpedia datasets with

a set of queries over reified content. Our comparison with RDF-3X, PostgreSQL as well as

Virtuoso and Jena-TDB shows that RQ-RDF-3X is significantly faster than these systems.

Notable features of RQ-RDF-3X which cause these performance gains are: (i) exhaustive

indexing equipped with a simple yet scalable compression scheme. The proposed efficient

set of indexes enable us to efficiently reduce the query processing time by using merge

joins. (ii) a smart query processor which generates an optimal join ordering for reified and

N-Quad queries. (iii) a selectivity estimator which generates optimal selectivity estimates

for reified and N-Quad queries.

3.6.1 Outlook

One may ask whether the techniques presented in this chapter can also be implemented in a

distributed setting. One may achieve this by first partitioning the graph and then storing the

partitioned sub-graph via RQ-RDF-3X. This is similar in spirit to the solution proposed for

61

storing triples in a distributed setting, namely, H-RDF-3X [48] and SHARD [80]. However

while doing so, the classical partitioning techniques need to be made aware of the annota-

tions attached to triples, such that triples and their annotations are collocated on the same

node. Experimentally evaluating such a setup is an interesting open issue.

62

Chapter 4

Quark-X: An Efficient Top-𝑘 Processing

Framework for RDF Quad Stores

4.1 Motivation

In this chapter we focus on efficiently evaluating top-𝑘 queries over reified RDF data. We

were motivated by the following two observations: first, a large fraction of semantic re-

sources such as YAGO and DBpedia contain facts linking to quantifiable values which

naturally suggests the use of queries containing ORDER-BY. This is further amplified by

the use of reification to attach annotations such as confidence and time. Secondly, despite

the SPARQL recommendation of using ORDER-BY / LIMIT operators, efficient process-

ing of top-𝑘 queries with a user-defined ranking function within RDF/SPARQL setting have

received limited attention [64, 96].

Take, for instance, the following query from the YAGO dataset: Find the top ten leaders

of countries with the highest rate of inflation and the lowest rate of economic growth, and

yet these leaders own luxurious items e.g., jewels, private homes, sports clubs etc.. Since

information about such possessions may also be rumours, there is confidence value associ-

ated with the ownership statement which is one of the factors in the ranking function. Most

RDF processing systems handle such queries by first collecting the results and then sorting

them in-memory based on the user-specified function; this approach is not very scalable.

On the other hand, commonly used rank-join approaches also can not be effectively ap-

63

plied due to the extensive combination of joins based on ranking attributes as well as other

non-quantifiable predicates in a SPARQL query.

A straightforward way of storing RDF data is using the relational model which enables

the use of top-𝑘 algorithms designed for relational databases used for RDF data. The prop-

erty table technique [86, 60, 102] and vertically partitioned approach [4, 85] for storing

RDF data are two such techniques which can draw advantage from top-𝑘 algorithms pro-

posed for relational databases. However, many researchers have shown that these models

of storing RDF in relational databases are not efficient in handling complex query patterns

seen in SPARQL queries [101, 69, 70]. Simple triple-store model of storing RDF in rela-

tional tables is also not effective for top-𝑘 querying since: (a) self-joins incurred by top-𝑘

algorithms over a large table are bound to be expensive, (b) either of the two access meth-

ods viz., the sorted or the random access [51] are not suitable because of unsorted nature of

quantifiable values in RDF and the complex pattern matching model of SPARQL queries

(cf. Section 4.5.2).

Quark-X overcomes these limitations by introducing a combination of adaptively switch-

ing block-wise sorted and random accesses based on their cost estimates along with its se-

mantic encoding of identifiers to improve locality of reference of subjects associated with

quantifiable predicates. To the best of our knowledge, these features are not explored until

now in relational top-𝑘 processing systems as well as RDF quad stores.

4.2 Organization

The rest of this chapter is organized as follows. Section 4.3 introduces preliminaries. Sec-

tion 4.4 includes related work done in the field of RDF stores, Databases, and Information

Retrieval. Quark-X is explained in detail in Section 4.5 and 4.6 – these sections explain

Quark-X’s indexing and query processing subsystems respectively. Update management

is explained in section 4.7. Section 4.8 explains the implementation details of Quark-X.

Section 4.9 explains our evaluation framework. Section 4.10 includes our experimental

evaluation.

64

4.3 Preliminaries

4.3.1 Running Example

:contains

:isA

:noOfVictims

:Diaminopropionic acid

:NeuroToxin

164000

:Lathyrus sativus

50

:hasPrice

0.025

:hasConcentration

:hasSource

http://www.fda.gov

0.98

:hasConfidenceNon-Quantifiable Fact

Quantifiable
Fact

Non-Quantifiable Predicate

Quantifiable Predicate

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns\#>
@prefix xsd: <http://www.w3.org/2001/XMLSchema#>.
#@ <id1>
:Lathyrus_sativus :contains :Diaminopropionic_acid.
#@ <id2>
:Lathyrus_sativus :noOfVictims "164000"^^xsd:int.
#@ <id3>
:Lathyrus_sativus :hasPrice "50.0"^^xsd:double.
#@ <id4>
<id1> :hasSource <http://www.fda.gov>.
#@ <id5>
:Diaminopropionic_acid :isA :NeuroToxin.
#@ <id6>
<id5> :hasConfidence "0.98"^^xsd:double.
#@ <id7>
<id1> :hasConcentration "0.025"^^xsd:double .

Figure 4-1: Example RDF knowledge graph

SELECT ?product ?chemical ?source
((f1(?countVictims) + f2(?price)) * f3(?conc) * f4(?conf) as ?rank)

WHERE {
?product :noOfVictims ?countVictims.
?product :hasPrice ?price.
?reif rdf:subject ?product; rdf:predicate :contains; rdf:object ?

chemical.
?reif :hasConcentration ?conc.
?reif :hasSource <http://www.fda.gov>;
?reif1 rdf:subject ?chemical; rdf:predicate :isA; rdf:object ?toxin.
?reif1 :hasConfidence ?conf.

} ORDER BY DESC(?rank) LIMIT 2

Figure 4-2: Running Example Query

For ease of exposition, we use reified RDF listing shown in Figure 4-1(in a format

popularized by YAGO) as a running example throughout this chapter. For illustration, we

have used synthetic numbers for estimated affected population. The top-𝑘 SPARQL query

65

over the running example snippet that we use is given in Figure 4-2. This query finds top-2

food products which contain toxins, ranked based on number of victims, product’s cost and

toxin’s concentration in the product. The toxicity of a chemical compound has associated

confidence value which needs to be included in the ranking function.

For the rest of the chapter, we adopt the following terminology: We call the query pat-

terns containing quantifiable predicates as quantifiable query patterns, and the remaining

query patterns are called non-quantifiable query patterns (abbreviated as NQP). Subjects

of quantifiable query patterns are called quantifiable variables. The example query in Fig-

ure 4-2 has (?product <hasPrice> ?price) as a quantifiable query pattern. Also, the facts

containing quantifiable values in our knowledge base are called quantifiable facts.

4.4 Related Work

In this section, we briefly discuss and contrast our work with the related work from RDF

and relational databases as well as from information retrieval. We will limit ourselves to

the discussion on top-𝑘 query processing, and direct the interested reader to W3C recom-

mendations on supporting annotations and reification in RDF (cf. Section 4.3 in [1]), and

their usage in real-world semantic datasets such as YAGO [47].

RDF/SPARQL: Although modern RDF systems such as Virtuoso and Jena have fairly

sophisticated SPARQL query processing, their approach to top-𝑘 queries is to collect all the

results of a query, sort them or use an in-memory priority queue to compute top-𝑘 answers.

This approach is expensive as the query engine needs to process all solutions, even though

only 𝑘 of them are requested by the user.

The other approach involves early termination in an explicit manner. We are aware

of only a few such approaches in the context of SPARQL – albeit only over triple-stores

– which we discuss next. The SPARQL-RANK framework proposed by Magliacane et

al. [64] makes use of different index permutations used in native triple-stores for fast ran-

dom access during top-𝑘 processing, and applies early-termination criterion. They propose

an algorithm, which requires the left-most index used in the join plan to be sorted based

on the ranking function, and then it randomly probes the right-side index. Thus, when the

66

right-side index is large, the performance of rank join suffers. Also, the requirement for

the left-side index to be sorted based on ranking function makes it unsuitable for arbitrary

user-defined ranking functions.

In another framework introduced by Wang et al. [100], quantitative entities in the RDF

dataset are separated out into an MS-tree index. In the first step of query processing, candi-

date entities are located using the MS-tree index that are then used as seeds for performing

breadth-first (BFS) traversals over the graph to find matching sub-graphs. If the query

requires only a few highly correlated predicates, the algorithm may end up storing many

unnecessary nodes in the queue, making the retrieval of the first entity possible only after

several iterations. On the other hand, our approach does not require unrelated predicates

and entities to be stored together. However, we did not empirically compare our work with

this work as it is still unclear how to apply their BFS based candidate generation phase on

reified databases.

Relational Databases: Hash Rank-Join (HRJN) [52] and Nested Loops Rank Join

(NRJN) [49] represent the state-of-the-art relational rank-join algorithms. HRJN [52] is

based on ripple join algorithm [41]. It maintains two hash tables in-memory for storing

the input tuples seen so far, the stored input tuples are used for finding join results. These

results are in-turn fed to a priority queue, which outputs them in the order specified by

the ranking function. NRJN is similar to HRJN except that unlike HRJN it does not store

input tuples, but rather follows a nested-loop strategy. However for RDF data, SPARQL-

RANK showed experimentally that it outperformed HRJN [64]. The performance gain was

attributed to the unsorted nature of numerical attributes present in indexes build by RDF

engines. We show in a later section that we outperform SPARQL-RANK by a large margin

by targeting precisely the numerical attributes once again. Hence, we did not compare

Quark-X with algorithms like HRJN for relational databases.

Information Retrieval (IR): Block-max index structure proposed by Ding et al. [32]

is one of the effective approaches proposed in the IR community for retrieving top-𝑘 doc-

uments efficiently. The block-max index stores documents sorted by document ids in a

block-partitioned inverted index. In contrast, the identifiers in our approach are sorted by

scores. Our approach is somewhat similar to impact-layered indexes, where the posting list

67

is divided into layers such that the higher layer posting list has a lower score than the layer

below it. Additionally, top-𝑘 ranking algorithms proposed in the IR community are differ-

ent from those proposed in the RDF and relational databases community – in IR, bindings

of just one variable needs to be retrieved, whereas in relational database as well as RDF

setting, bindings of multiple variables need to be retrieved, leading to unsorted orders.

4.5 Indexing for Quantitative Facts

Quark-X pursues the exhaustive indexing approach for RDF databases made popular by

RDF-3X [69], and additionally develops an indexing framework for efficiently answering

top-𝑘 queries. This section presents the details of the indexing framework in Quark-X for

top-𝑘 processing. It consists of:

1. two indexes, an in-memory synopsis index called S-index and a bucket-ordered

quantifiable Q-index, on quantifiable facts in the database,

2. a semantic re-encoding strategy of identifiers which utilizes the information gathered

during indexing to remap the ids involved in quantifiable facts.

The index creation process, and the semantic re-encoding of identifiers is illustrated in

Figure 4-3.

Similar to most state-of-the-art RDF engines, Quark-X encodes typically long URIs

and strings in RDF as fixed-length numerical identifiers and maintains these mappings in a

dictionary structure. The size of the dictionary is further reduced by identifying frequently

occurring common maximal prefixes among URIs in the database which are encoded first

into integers. These prefixes are represented using their encodings in URIs they occur in,

and these prefix encoded strings are stored in the dictionary. For example, if the URI prefix

http://yago-knowledge.org/resource is mapped to integer 1, then the URI http://yago-

knowledge.org/resource/contains is prefix-encoded to 1/contains and then stored in the

mapping dictionary.

68

4.5.1 Quantifiable Indexes

Quark-X introduces two special indexes for quantifiable facts in the database, designed to

help in efficient early pruning of results and in preserving interesting orders.

String
Tetraodontidae
Blighia sapida
Lathyrus sativus
Solanum tuberosum
Vicia faba
Rheum rhabarbarum

String
Prunus dulcis
Anacardium occidentale
Vicia faba
Rheum rhabarbarum
Lathyrus sativus
Solanum tuberosum

Vicia faba
Rheum rhabarbarum

Lathyrus sativus
Solanum tuberosum

String
Tetraodontidae
Blighia sapida

Vicia faba
Rheum rhabarbarum
Lathyrus sativus
Solanum tuberosum

:hasPrice & :noOfVictims

Tetraodontidae
Blighia sapida

Prunus dulcis
Anacardium occidentale

String
Vicia faba
Rheum rhabarbarum
Lathyrus sativus
Solanum tuberosum

:hasPrice & :noOfVictims

Tetraodontidae
Blighia sapida

Prunus dulcis
Anacardium occidentale

S-Index

B1

B2 B3

:hasPrice

B1 B2

B3

:noOfVictims

A B

D

E

C

Entity Identifier
(Min, Max)

Lathyrus sativus
Solanum tuberosum

Vicia faba
Rheum rhabarbarum

String
Prunus dulcis
Anacardium occidentale

Bucket
(B2,B3)
(B2,B3)
(B3,B2)
(B3,B2)

Idn
1
2
3
4

Ido
44
40
38
61

B1
B1

25
22

5
6

B1
B1

49
31

7
8

Ido
25
22
44
40
38
61

Value
1350
1200
800
434
50
30

Ido
49
31
38
61
44
40

Value
350000
300000
164000
100000
35000
20000

Value
1350
1200

Value
350000
300000
164000
100000

35000
20000

800
434

50
30

(B2,B3)
(B2,B3)
(B3,B2)
(B3,B2)

B1
B1

B1
B1

5,6
(1200,1350)

1,2
(434,800)

3,4
(30,50)

7,8
(300000,350000)

3,4
(100000,164000)

1,2
(20000,35000)

:hasPrice

:noOfVictims

:hasPrice

:noOfVictims

B1

B2

B3

B1

B2

B3

Bucket:hasPrice :noOfVictims:hasPrice :noOfVictims

Figure 4-3: Summarized Index Creation (A○Raw Numerical Facts B○ Bucket Creation (Bi=Bucket) C○
Characteristic set-Bucket Mapping D○ Assign new collocated ids (Id𝑜: old identifier, Id𝑛: new identifier) E○ S-Index) 1

S-index The S-index is an in-memory synopsis index which stores for each quantifiable

predicate a statistical metadata summarizing all the entities and their associated quantifiable

values in a compact form. In particular, histogram-based information is maintained for

each quantifiable predicate to describe the value distribution. For simplicity, we employ

an equi-depth histogram over the range of values for each quantifiable predicate. We can

easily employ other forms of histograms as required. Associated with each bucket of the

histogram, we maintain:

∙ the lower and upper values, 𝑚𝑖𝑛[𝑏] and 𝑚𝑎𝑥[𝑏], defining the range of quantifiable

values covered by the bucket 𝑏,

∙ the set of subject ids associated with the quantifiable value falling within this bucket

range.

Although it is possible to store the set of subject ids as a Bloom filter, we chose not to do

so as it can not be used to maintain sorted orders within each bucket, which, as we show

later, can be used to further speed up top-𝑘 processing.

69

We illustrate the process of constructing the S-index in Figure 4-3 for our running ex-

ample data from Figure 4-1. The S-index constructed at this stage is called a temporary

S-index. In this example, the predicate :hasPrice has values in the range of [30, 1350], and

entities associated with the predicate :hasPrice have been divided into 3 buckets. Simi-

larly, the predicate :noOfVictims too has 3 buckets. For brevity, the buckets for the other

quantifiable predicates, viz., :hasConfidence and :hasConcentration, are not shown. The

semantic encoding strategy we explain next necessitates re-mapping of subject ids in the

S-index as shown in step E.

Q-Index Since S-index buckets only store upper- and lower-bounds of scores in the

bucket, we maintain an additional B+-tree index called Q-index on predicate id, bucket

number, subject id and the corresponding quantifiable value. This index is used for finding

the exact numerical values associated with a subject and a (quantifiable) predicate. Once

the candidate buckets are determined using S-index, it is quite straightforward to use Q-

index to retrieve quantifiable values in the order of their subject ids.

4.5.2 Semantic Encoding of Identifiers

In traditional RDF engines the URIs and strings in the database are encoded typically in

their order of appearance in the database or hashing. Both these techniques have been

shown to be suboptimal for compressibility and, more importantly, for efficient join pro-

cessing [91]. In top-𝑘 ranking join queries, the problem is further exacerbated by the re-

quirement that identifier assignment should not only help the classical equi-join processing,

but also preserve the ordering over quantifiable values.

To address this, during S-index construction the RDF terms are re-encoded and re-

mapped in the dictionary as well as the S-index buckets. These new encodings are de-

rived through the soft-schema present in the RDF data which stems from the fact that

multiple RDF statements are used to describe the “properties” of a subject. To illustrate

this, consider the following query patterns from query given in Figure 4-2 – (?product

:noOfVictims ?countVictims), (?product :hasPrice ?price) – both the patterns describe

a food product, its price and the number of victims through the predicates :noOfVictims

70

and :hasPrice. These two predicates are also strongly correlated in the database since this

pairing of predicates holds for only food products. Many entities can likewise be uniquely

identified by the predicates connected to them. This observation has been used earlier

for improving the cardinality estimates of RDF queries [68], where they name the set of

predicates connected to an entity as its characteristic set.

The semantic encoding scheme employed by Quark-X can be understood by using a

subset of the example knowledge base shown in Figure 4-1. In that knowledge base, sub-

jects like Rheum_rhabarbarum, Vicia_faba, etc. are described by two quantifiable pred-

icates – :noOfVictims and :hasPrice. On the other hand, subjects like Prunus_dulcis,

Blighia_sapida etc. have information pertaining to just one quantifiable predicate, either

:noOfVictims or :hasPrice. Resulting in the following 3 characteristic sets: (:noOfVic-

tims and :hasPrice), (:noOfVictims) and (:hasPrice). Next we present the pseudo code

of semantic encoding scheme aka characteristic set generation algorithm of Quark-X in

Algorithm 2. The algorithm receives as input SPO index and outputs the computed char-

acteristic sets as well as the mapping between characteristic sets and subjects connected to

characteristic set. Note that the characteristic sets are precomputed by making a pass on

the data.

Algorithm 2 Pseudo Code for computing Characteristic Set
Input SPO index
Output characteristicSets, mapCharacteristicSetSubjects

1: first=true
2: characteristicSets = 𝑒𝑚𝑝𝑡𝑦𝑠𝑒𝑡
3: mapCharacteristicSetSubjects = 𝑒𝑚𝑝𝑡𝑦𝑠𝑒𝑡 ◁ map between characteristicSet and subjects in it

FOR row.s, row.p, row.o IN SPO
4: predicateSet = 𝑒𝑚𝑝𝑡𝑦𝑠𝑒𝑡
5: subjectSet = 𝑒𝑚𝑝𝑡𝑦𝑠𝑒𝑡 ◁ collect predicates connected to Subject in predicateSet
6: while (row.s == previousRow.s) or (first == true) do
7: predicateSet.add (row.p)

◁ add to characteristic set the newly found predicate set
8: characteristicSets.add(predicateSet)
9: mapCharacteristicSetSubjects.add[predicateSet].add(row.s)

10: end while

Using the temporary S-index, the subjects that have quantifiable predicates belonging to

a characteristic set are assigned their corresponding buckets (illustrated in steps A through

71

C in Figure 4-3). While doing so, subjects falling within each characteristic set are ordered

according to their predicate values, instead of subject values. Next, ids are assigned to the

sorted subjects in a manner so that subjects belonging to the same characteristic set and

bucket are allocated consecutive ids. This is shown in Figure 4-3, step D. Then the ids

present in the temporary S-index are re-mapped using the mappings generated at the end of

step D. The resulting semantically encoded S-index is shown in the step E of Figure 4-3.

Next we present the pseudo code of summarized index creation in Algorithm 3.

Algorithm 3 Pseudo Code for Summarized Index Creation
Input PSO index, characteristicSets, mapCharacteristicSetSubjects, bucketSize
Output SIndex

1: map_sub← 𝑒𝑚𝑝𝑡𝑦 ◁ map of subject TO predicate, object, bucket
2: bucket← 1
3: FOR row.p, row.s, row.o IN PSO
4: list← 𝑒𝑚𝑝𝑡𝑦 ◁ List containing bucket, predicate and object
5: FOR iter IN bucketSize
6: list.add(bucket, row.p, row.o)
7: map_sub.add(row.s,list) ◁ create a map of subjects instead
8: bucket++
9: if(row.p != previousRow.p)

10: bucket← 1
◁ Assigning identifiers to Subjects

11: Identifier← 0
12: SIndex← 𝑒𝑚𝑝𝑡𝑦 ◁ list of predicate, bucket, subject, object
13: FOR characteristicSetSubject IN mapCharacteristicSetSubjects:
14: FOR subject IN characteristicSetSubject:
15: Subject.id← identifier
16: identifier++
17: FOR predicates, subjects IN characteristicSetSubjects:
18: FOR predicate IN predicates:
19: FOR s IN subjects:
20: SIndex.add(predicate, map_sub[s][0], map_sub[s][1], map_subj[s][2])
21: Sort (SIndex) ◁ Sort in lexicographic order Predicate, Bucket, Subject, Object

1Example data manually extracted from the following two books:
1. K.R. Natarajan. India’s poison peas. Chemistry, 49(6), 1976. (obtained from the FDA Poisonous Plant Database).
2. David R. Briggs. Naturally-occurring toxicants in some nutritionally significant plant foods and fish.

72

4.6 Query Processing

Now, we turn our attention to the top-𝑘 query processing in Quark-X and describe how

our quantifiable indexes are utilized to evaluate queries efficiently. Since S-index is an

in-memory synopsis index which summarizes the quantifiable value distribution, we aim

to use it greedily for join-ahead pruning early on in the plan. The query compiler simply

extracts the quantifiable predicates from the query before generating a cost-based query

plan on non-quantitative patterns. The S-index based join-ahead pruning over quantifiable

query patterns is added subsequently so as to generate candidate ids while maintaining

interesting orders.

Note that S-index buckets are processed bucket at a time in the order of quantifiable

value, and the same sequence is retained in subsequent (non-quantifiable) joins as well. We

call this as S-index filtering of non-quantitative index, and it plays an important role in the

query evaluation pipeline we present next.

The query processing in Quark-X proceeds in three stages: first, the S-index join is per-

formed using early-termination over S-index synopsis to generate candidate ids with lower

and upper bounds on the associated quantifiable values. For exposition, S-Index join be-

tween predicates :noOfVictims and :hasPrice is shown in Figure 4-4 𝐸1′ this join gives val-

ues (3,4). Next, these candidate ids are used for join-ahead pruning over non-quantifiable

query patterns in NQP-join or non-quantifiable query pattern joins. This join ahead prun-

ing is shown in Figure 4-4 𝐸2′, where PSOR is the index over the non-quantifiable query

pattern ?reif ?product ?contains ?chemical. The join after respective pruning of indexes

is shown in Figure 4-4 𝐸 ′, with its succinct view shown in Figure 4-4 𝐸. Finally, the SQ-

index join is performed where the final list of top-𝑘 results with their complete order-by

scores is generated. Figure 4-4 𝐹 and 𝐸 shows the results of join from 𝐸 being passed to

Figure 4-4 𝐹 (aka Q-Index) for retrieving values of top-𝑘 tuples. We describe each of these

stages next.

The entire query processing flow is illustrated for our running example in Figure 4-4.

In the rest of this section, we regularly reference various named parts of this figure for the

ease of exposition.

73

4.6.1 S-index Join

Next we explain S-Index Join which we perform using neighborhood expansion [105].

Assume that the scoring function is monotonically non-increasing, and denote it by f(p,q,···)

over a set of predicates p,q,..... Let < 𝐵1
𝑝 , 𝐵

2
𝑝 , ..., 𝐵

𝑚
𝑝 > and < 𝐵1

𝑞 , 𝐵
2
𝑞 , ..., 𝐵

𝑛
𝑞 > be the

S-index buckets for predicates p and q respectively. As required by the ranking function,

these buckets are accessed in the decreasing order of their scores, and the candidate list

of join entities is generated as follows: first process the pair of first buckets from each S-

index, that is, 𝐵1
𝑝 and 𝐵1

𝑞 . If there is a common identifier among the entity inverted lists

of these two buckets, then this pair is stored as (𝐵𝑖1 , 𝐵𝑗1). The next best pair of buckets

are found by considering the combinations containing at most one next bucket from each

predicate – that is, (𝐵1
𝑝 , 𝐵

2
𝑞) and 𝐵2

𝑝 , 𝐵
1
𝑞 . These are pushed to a priority queue in order

to extract the best pair which has, at least, one common entity. The process is continued

by expanding the bucket pairs that are considered until 𝑘 candidate results are retrieved

and there is no combination of buckets in the priority queue that has a maximum score

(or minimum score for non-decreasing score function) more than the 𝑘-th result. Note

that this in itself is not an entirely novel technique – similar ideas have been explored in

distributed top-𝑘 processing [67], scan depth estimation [72], and others for enabling early

termination [51]. We use S-index in a more effective way by combining the quantifiable

value sorted candidate ids generated by the index with non-quantifiable joins. Recall that

Quark-X employs semantic encoding of identifiers (cf. Section 4.5.2), which ensures that

identifiers belonging to a characteristic set to be clustered. This works synergistically with

S-index to provide increased sequential scans on other indexes.

In our running example from Section 4.3.1, the S-index join on quantifiable predicates

:hasPrice and :noOfVictims, retrieves the following bucket pairs: 𝐿1′ = (𝐵2, 𝐵3) with

join results (1, 2) and max-score bound 28 × 106 and 𝐿2′ = (𝐵3, 𝐵2) with join result

(3, 4) with max-score bound 8.2× 106. The left-bottom block of Figure 4-4 with label 𝐸 ′
1

depicts the S-index join result 𝐿2′. Observe that the identifiers in 𝐿2′ – viz., (3, 4) – are

also present in the PSOR index (PSOR stands for an index sorted lexicographically in the

order of Predicate, Subject, Object, Reification ids) for the predicate :contains which is a

74

non-quantifiable part of the query, as illustrated in the grey block 𝐸 ′
2 of Figure 4-4. Such

a collocation significantly speeds up the query processing by preferring range-scans over

random probes.

RHJ RHJ

HALT

L1

RHJ

HALT

R

Predicate
:hasPrice
:hasPrice
:noOfVictims

Predicate
:hasPrice
:hasPrice
:noOfVictims

SQ - Index Join

NQP - Join

A

B
Step1

C D

E
Step2

F G

H
Step3

I
Output l(Top-k Results)

RHJ Execution Steps

Index-1 Index-2

tL ≥lk
tL ≥lk

tR ≥lk
tR <lk

tL <lk

lk = 0 lk =20434 lk =100030

HALT

EXIT

...

?o=?sRHJ

P=:isA, ID=191

P
191
191
191
191
191
191

P=:isA, ID=191

R1

R2

R3
103,106

:hasConfidence

R1′=(B1)

S-Index Output

Join ahead pruning

Index-1
P=:contains, ID=50

3,4

:noOfVictims

L2′=(B3, B2)

S-Index Join

Join ahead pruning

Index-2

:hasPrice

tL ≥lk

E′
1

E′
3

E′
5

If: tR ≥lk

L2

L3

L1

L2

L3

R1

R2

L1

L2

L3

R1

R2

R3

...

OR

R
103
106
107
108
112
113

S
20
43
41
44
30
56

O
205
207
196
196
204
202

P
191
191
191
191
191
191 E′

4

S
20
22
30
41
43
56

R
103
104
112
107
106
113

O
205
201
204
196
207
202

P
50
50
50
50
50
50

L1

L2

E′
2

S
1
2
3
4
5
6

O
56
30
20
43
90
53

R
36
45
21
19
42
100

Detailed RHJ Execution: Depicting AQP (Step 1 and Step2)E′

R3

Q-Index Q-Index
Bucket
B2
B2
B3

Subject
1
2
1

Value
800
434
35000

Bucket
B3
B3
B2

Subject
3
4
3

Value
50
30
164000

l=φ Update l Update l

Collocated Ids due to semantic encoding
(R)

Figure 4-4: Quark-X Query Processing (AQP: Adaptive Query Processing; Reading order
from label A to I)

4.6.2 Non-quantifiable Predicate Joins

We now turn our attention to the join processing between non-quantifiable query predicates

using the S-index join results for join-ahead pruning. Note that S-index induced score com-

putation takes place on quantifiable variables – i.e., subjects with quantifiable predicates

in the query. Therefore, by treating ordering over quantifiable variables as an interesting

order [52], we can generate rank-aware plans which can exploit the S-index results.

Generation of such plans is quite different from the classical top-𝑘 ranking systems

used in RDF commercial stores such as Virtuoso and open-source systems such as Jena.

These systems end up materializing all results of a join before generating the final ranked

list. To remedy this, we propose a novel rank-join operator called Rank-Hash Join (RHJ)

which we describe next.

75

Algorithm 4 RHJ Algorithm
1: left-bucket-no=0
2: right-bucket-no=0
3: scanLeft=true ◁ To decide whether to scan from left or right side
4: while true do
5: if scanLeft then ◁ Scan from left side
6: if not buildHashTableLeft(left-bucket-no) then ◁ left empty
7: if checkLeftHaltCond() then ◁ Halt condition satisfied
8: return false ◁ Halt and exit
9: else

10: left-bucket-no← left-bucket-no+1
11: scanLeft← true
12: end if
13: else
14: right-bucket-no← 0
15: scanLeft← false
16: end if
17: else ◁ Scan from right side
18: if not probeRight() then ◁ No tuples retrieved from right
19: if checkRightHaltCond() then
20: left-bucket-no← left-bucket-no+1
21: scanLeft← true
22: else
23: right-bucket-no← right-bucket-no+1
24: scanLeft← false
25: end if
26: else
27: hashJoinLeftRight() ◁ join & pass results to other operators
28: right-bucket-no← right-bucket-no+1
29: scanLeft← false
30: end if
31: end if
32: end while

Rank-Hash Join (RHJ) algorithm

The key idea of our Rank-Hash Join is to use the results from the S-index join step to

adaptively decide if the right-side index of the join has to be probed or to be scanned

fully. It does so in a manner similar to a classical hash-join, but differing in not requiring

the entire result of the left hand side of the join to be in hash table. Instead, RHJ needs

to maintain only the ids from a single bucket in the S-index in the hash table. Since we

process all elements in the hash-table completely before pulling the next bucket from the

underlying S-index join, it is guaranteed not to miss any results.

76

The RHJ algorithm builds hash-table on the left-side using tuples filtered through from

the S-index join stage. For retrieving tuples from right-side of the join, the following two

index choices exist: (1) index on the sorted order of joining variables, which we term as

index-1, that can enable efficient disk skips by using the ids retrieved from left hand side

of the join in a sideways information passing optimization [70], and (2) index on the sorted

order of quantifiable variables, which we term as index-2, over which we can limit the

number of pages required to be scanned by utilizing the entity ids from the underlying

S-index.

These indices are adaptively selected, triggered by a condition based on the cost cal-

culated using a cost model on these index alternatives which estimates the number of disk

pages required to be scanned.

The cost model for index-1 Due to its sorted order, the number of pages required to

be fetched from this index in the worst case is equal to the number of tuples retrieved from

left sub-plan. Hence, the number of tuples satisfying the left sub-plan is taken to be the

estimate of the cost of this candidate plan. Specifically,

𝐶1 = 𝑁 ×
∏︁
𝑖∈𝑞𝑝

𝑆𝑖 × 𝑆𝑛𝑞𝑝,

where, 𝑆𝑛𝑞𝑝 is the selectivity of the non-quantifiable predicate in the left sub-plan; 𝑆𝑖 de-

notes the selectivity of i-th quantifiable predicate in left sub-plan; 𝑁 is the number of

elements in a bucket (note that we use equi-depth buckets), and 𝑞𝑝 are the quantitative

predicates in the query.

The cost model for index-2 As a result of semantic encoding, the ids within a bucket

are stored consecutively on a disk page (or in adjacent disk pages) which can be retrieved

with only one seek. Therefore, in the worst case the number of pages required to be fetched

from this index is equal to number of buckets whose score is above l𝑘 where 𝑙𝑘 is the score

of the 𝑘-th best scoring element seen so far, i.e.,

𝐶2 = number of buckets having score greater than 𝑙𝑘.

77

After estimating the cost of each candidate plan, the query re-optimizer chooses the plan

with smallest cost amongst the two choices.

Note that, due to S-index filtering of non-quantitative index, our algorithm incurs zero-

cost for switching indexes (plans) at “materialization” points [31], i.e. decision points

where plans are changed. In RHJ, materialization points are points at which next bucket

is retrieved from leftmost index. For example in our running example, points at which

buckets L1 (left-middle with label B), L2 (middle with label E), L3 (right-middle with

label H) are retrieved from the leftmost index are materialization points. We believe, there

is only one prior work by Ilyas et al. [50] in DBMSs, which also uses adaptive query

processing(AQP) for efficient top-𝑘 retrieval. However, unlike our proposal, the state-

saving techniques proposed in [50] wastes a significant amount of already done work while

switching plans (with state-of-the-art rank join algorithms like HRJN, NRJN, etc).

Our novel RHJ algorithm borrows ideas from classical hash join and adaptive query

processing (AQP) research and applies it in the context of RDF/SPARQL processing, to

the best of our knowledge, for the first time.

RHJ Stepwise Description: Now we go through the workings of the RHJ algorithm

illustrating it step-by-step based on our running example from Section 4.3.1. We refer to

the steps illustrated in the schematic diagram in Figure 4-4, with its pseudo code shown in

Algorithm 4. In the rest of this section, we use 𝑙 to denote the list with top-𝑘 results, with

𝑙𝑘 denoting the score of the 𝑘-th result. For ease of exposition, our description is ordered

using the labels used in Figure 4-4 starting from label A at the top-left of the figure until

label I at the top-right of the figure.

A: Initialize the algorithm with 𝑙 = ∅ and 𝑙𝑘 = 0.

B: Left and right-side are joined using classical hash join where:

∙ Left side: S-index join pulls the first bucket 𝐿1′ = (𝐵2, 𝐵3), which is used as a filter

over P=:contains index, which helps create candidate result block 𝐿1.

∙ Right side: Uses index-1 as illustrated in the grey portion of the figure with label

E′
4. The index-1 (PSRO ordered index) is preferred here over the index-2 (PRSO-

ordered) alternative based on the cost considerations described above. In particular, we

observe that the ids 56 and 30 in column O, are present only in bucket 𝑅3 of index-2

78

which necessitates retrieval of all pages from 𝑅1 and 𝑅2 from disk, making it extremely

inefficient. In comparison, index-1 is used, it can utilize the sideways information

passing optimization since this index has the joining variable in sorted order. This

results in only 2 disk seeks in the worst-case (assuming tuples corresponding to 56 and

30 are stored on separate disk pages).

C: Find quantifiable values from Q-index using candidate buckets retrieved from S-index

in B.

D: The retrieved quantifiable values are aggregated using ranking function in top-middle

block with label D. The resulting 𝑘 tuples with highest score are then stored in l. The

𝑘𝑡ℎ maximum scoring element l𝑘 is passed to NQP-join stage – it helps in performing

early-termination check by verifying that, there is no combination of buckets that has a

maximum score (for descending) more than the 𝑘-th result.

E: Left and right are again joined using classical hash join in middle block with label E.

∙ Left Side: S-index Join (left-bottom block with label E′
1) pulls next bucket 𝐿2′ =

(𝐵3, 𝐵2) (shown in left-bottom with label E′
1), which is in-turn used as filter over

P=:contains index (grey block with label E′
2), which helps create block 𝐿2

∙ Right-side: Uses index-2 as illustrated in the grey block with label E′
5. Note, here

index-scan is speed-up by pulling buckets from S-index (shown in right-bottom block

with label E′
3).

We explain next the reason for choosing index-2 (PRSO). From grey block with label

E′
2, we observe block 𝐿2 requires 2 disk seeks for the two identifiers 20 and 43 when

index-1 (PSRO) – shown with label E′
4 in grey block – is used. However, using l𝑘

(score of 𝑘𝑡ℎ result), we observe that only bucket 𝑅1 (shown with label E′
5) is needed

from the right side index. Thus, it is beneficial to only scan 𝑅1 (requiring 1 disk seek)

of index-2 instead of performing a full scan on the index-1.

F: Find quantifiable values from Q-index for the new set of candidate buckets retrieved

from S-index in E.

G: The retrieved quantifiable values are again aggregated using ranking function. The

resulting 𝑘 tuples with highest score are then stored in l. The 𝑘𝑡ℎ maximum scoring

element l𝑘 is passed to NQP-join stage – which helps in performing early-termination

79

check (described in D).

H: When pulling next bucket from S-index Join, we find early-termination condition is

satisfied (as score of k-th element is greater than maximum score (t𝐿) of yet to be

retrieved buckets i.e. l𝑘>t𝐿), hence the algorithm terminates.

I: Outputs top-k scores stored in list l.

SQ - Index Join

The S-Index join stage passes bindings of entity ids along with their corresponding bucket

numbers to NQP-Join stage, for quantifiable variables appearing in sorted order in index

scans. For finding the explicit numerical values of other quantifiable variables which appear

in unsorted order in index scans, we first find their corresponding bucket numbers using S-

Index.

Using the bucket number retrieved either using the approach described above or using

S-Indexes, we find the exact numerical values using Q-Index. The obtained numerical

values are stored in a list l, and the list is in-turn used to find the score of the last element

l𝑘 with respect to the ranking function.

4.7 Update Handling

Quark-X handles updates similar to the other state-of-the-art RDF management system like

RDF-3X and similarly assumes that updates are mostly insertions, are far fewer compared

to queries and can be batched together. During batch updates, Quark-X creates differential

indexes for S-index, Q-index, and permutations of SPOR which are stored in main memory

and are merged with the main index at suitable intervals. For recovering in case of failure,

differential indexes are additionally stored in log files on disk.

During query processing, these indexes, and the main Quark-X indexes undergo merge-

join; however, being small, these incur little overhead. While re-assigned ids in main

indexes helped us in clustering together semantically similar ids on disk, thereby reducing

disk seeks, the differential indexes reside entirely in main memory and can avoid disk seek

altogether. Id-assignment is therefore not done in these indexes and is deferred until they

80

are merged with the main index at which point all ids are reassigned afresh.

4.8 Implementation Details

In this work, we assumed system architecture of a quad-store that provides with a map-

ping dictionary between ids and strings. In line with this, we have used RQ-RDF-3X [56]

as a baseline framework for our implementation. RQ-RDF-3X is a quad store with ex-

haustive clustered B+-indexing of all permutations of SPOR. RQ-RDF-3X stores all the 24

permutations over quads, many of which are superfluous to begin with, thus, we dropped

the following: 1) permutations where R appeared in the third position (e.g. SPRO) were

removed because R is always unique, therefore, a sorted order of O for SPR does not pro-

vide additional help during joins; 2) all permutations where R appeared in the first place

(except RSPO) were removed since sorted order of R, always unknown, does not give any

advantage for speeding-up range scans. But when R is a joining variable, its sorted order-

ing helps perform joins efficiently; however, only one index (RSPO) is sufficient for this

purpose.

After explaining RQ-RDF-3X, now we explain how processing data in blocks improved

query execution time of Quark-X. At the beginning of query processing, in the S-Index

join stage, the candidate set of buckets required to be retrieved is equal to the set of all

plausible buckets. Accordingly, the S-Index aggregates buckets until a fraction of 𝑘 entities

are retrieved and these aggregated buckets are then passed to the NQP-Join stage. As the

query execution proceeds, a stage comes when it is possible to restrict the candidate set of

buckets based on their score and the score of the 𝑘-th result. At this stage, we divide these

candidate set of buckets into fractions. It is evident that upon incremental processing, the

threshold score would get tighter, which helps in early termination. We also access data in

blocks during the SQ-Index join stage – where we keep materializing the results obtained

from NQP-Join until retrieving 𝑘 results. SQ-Index join then processes these materialized

results together. After 𝑘 results have been retrieved, SQ-Index join processes together

aggregate buckets passed by S-Index join stage to NQP-Join. Thus block-wise access helps

in amortizing cost of index scans over a range of results.

81

Next we explain how aggregating buckets until a fraction of 𝑘 entities are retrieved

helps in accelerating query performance with the help of an example. Consider the running

query which aims at retrieving top-10 low pricing products. For explanation we begin by

choosing 10 low priced products from S-Index of prices. Since S-Index in our running

example contains 2 elements in each bucket. Therefore we need to aggregate 5 buckets.

These products are then looked up in non-quantitative index to find the chemicals these

products contain. Now note that not all products have information pertaining to chemicals

in the knowledge base. Therefore many of these products are pruned. Choosing 10 prod-

ucts helped us perform sequential scan on the non-quantitative index to retrieve chemicals

contained in them.

Next consider we retrieved two products which also had information pertaining to

chemicals from the previous step. Therefore we opt for retrieving 8 products next from

S-Index price. Moving in this fashion for performing fast sequential scans we keep aggre-

gating S-Indexes until 𝑘 fraction of entities are retrieved.

4.9 Evaluation Framework

Quark-X is implemented in C++, compiled with g++-4.8 with -O3 optimization flag. All

experiments were conducted on a Dell R620 server with Intel Xeon E5-2640 processor @

2.5GHz, 64GB main-memory, RAID-5 hard-disk with 3TB effective size. In our exper-

imental evaluation, we report cold-cache timings after dropping filesystem caches using:

echo 3>/proc/sys/vm/drop _caches, and warm-cache numbers by repeatedly

running the query processor with the same query 5 times, and taking the average of last 3

runs.

We evaluate against two research prototypes – RDF-3X and SPARQL-RANK, and two

state-of-the-art commercial systems – Jena-TDB-2.13.0 and Virtuoso 7.2.

Among the research prototypical competitors we use, the inability of RDF-3X to com-

pute only the top-𝑘 results, and the higher number of random seeks incurred by the query

processing algorithm of SPARQL-RANK make them overall much slower in comparison

to Quark-X. Note that the overheads due to random seeks are further exacerbated in the

82

YAGO DBpedia-RF

Size of input files (in ttl) 46 GB 74 GB
of quads 473, 271, 482 668, 867, 020
of numerical quads2 containing only confidence 236, 635, 830 334, 433, 512
of numerical quads without confidence 569, 558 197, 530

Table 4.1: Sizes of Datasets and Databases (RF: Reified Form)

straight forward extension of these algorithms to quads due to the additional joins with

metadata like confidence values. On the other hand, Quark-X outperforms the commer-

cial systems which natively support quads by smartly encoding the ids using soft-schema

embedded in the data to improve locality of reference in its index scans.

4.9.1 Datasets

Despite the abundance of a number of performance benchmarks for RDF/SPARQL query

processing [40, 20, 83], our evaluation could not use them since all of them are designed

primarily for triple-stores, with no queries using reification and named-graphs in their

query set. Therefore, we decided to work with a suite of top-𝑘 queries which we de-

signed over two large real-world datasets which extensively use named-graphs or reifica-

tion. The first dataset we use is DBpedia 3.7 [19], which contains facts extracted from

Wikipedia, with provenance expressed in the form of named graph. The second dataset,

YAGO [47], contains facts extracted from Wikipedia and combined with GeoNames and

WordNet. It encodes additional information –e.g. confidence score, time, spatial location,

and provenance– with each fact using fact ids encoded as a comment before each triple in

Turtle format.

To simulate the situation where a confidence score (a real-number between 0 and 1.0) is

associated with each fact, we assigned confidence values using an exponential distribution

to all facts in the original dataset, and then we translated them into quads. Thus, YAGO

contains a total of 237, 180, 265 numerical quads – with 236, 610, 707 quads containing

only the confidence predicate and 569, 558 containing the remaining quantifiable predi-

cates. Similarly for DBpedia, out of 668, 867, 020 quads, we have 415, 131, 628 numerical

2quads containing quantifiable predicates

83

quads with 396, 144, 979 containing only confidence values that we assigned. Table 4.1

summarizes key statistics of the dataset and the size of the resulting database in Quark-X.

4.9.2 Benchmark Query Workloads

Our benchmark query set consists of a set of 11 top-𝑘 ranking queries each for DBpedia and

YAGO. These queries are designed keeping in mind the following SPARQL query features

that have been found to be quite important [7]:

∙ Shape: Based on the overall shape of the SPARQL query, we classify them as either

Star or Complex. Queries that belong to Star class have only one non-quantifiable

triple pattern, connected to other quantifiable triple patterns. On the other hand,

queries which contain more than one non-quantifiable triple pattern connected to

other quantifiable triple patterns belong to Complex class. Although this is a high-

level classification, we found them to be sufficiently useful to highlight the differ-

ences in the query performance.

∙ Number of triple patterns(# TP): helps differentiate between simple queries in-

volving no join and complex queries involving many joins.

∙ Number of quantifiable triple patterns(# Quant TP): denotes number of quantifi-

able filters which can be applied in a query [107].

∙ Number of non-quantifiable triple patterns(# Non Quant TP): The number of

non-quantifiable triple patterns in the query highlights the efficiency of a top-𝑘 for

processing non-quantifiable patterns alongside quantifiable query patterns.

∙ Count of joins(# Joins): represents number of RDF terms with same subject or

object.

∙ Join type: type of joins. Different indexes may give different performance on differ-

ent types of joins, this parameter captures this complexity e.g., SS denotes Subject-

Subject join, OS denotes Object-Subject join, etc.

84

∙ Join degree: highest degree of joins. Denotes number of triple patterns in a query

whose subject or object have same join vertex.

Additionally it includes statistical features, which includes:

∙ Result cardinalities: represents number of result tuples of a query.

∙ Filtered result selectivity: represents percentage of rows which are expected to be

returned from a query.

Table 4.2 gives details some of the important features of all 11 queries for each dataset

we have considered in this evaluation. As shown, the queries are designed so as to provide

a broad coverage of all the key features. We point to Appendix A.2 for query listing in

SPARQL. It is worth mentioning that although our framework is aimed at convex mono-

tonic ranking functions, for simplicity we use linear ranking functions in evaluation.

4.10 Experimental Results

In this section, we present the results of our performance evaluation of Quark-X against the

baseline systems we have considered. We also discuss the impact of individual components

of Quark-X on the overall performance of top-𝑘 queries. Unless stated explicitly otherwise,

the results correspond to the setting 𝑘 = 50.

4.10.1 Loading of Data and Database Size

We start by discussing the loading time – summarized in Table 4.3 – of various frame-

works. Among the systems compared, SPARQL-RANK and Jena-TDB took the longest

time to load. SPARQL-RANK operates on an older version of Jena (ARQ 2.8.9) and it

took more than 2 weeks to load DBpedia, whereas Jena-TDB-2.13.0 needed about 5 days.

Note that Quark-X is faster than RDF-3X this is because RDF-3X uses reified representa-

tion therefore Quark-X’s load times are better than RDF-3X.

The size of the database created by Quark-X was smaller than that by SPARQL-RANK

and comparable to the one created by Jena-TDB. However, it was larger than that of RDF-

3X since Quark-X uses RQ-RDF-3X as the underlying framework which creates many

85

Query
id

Shape # TP #
QuantTP

Non-
QuantTP

Join
Vertex
Count

Join
Vertex
Degree

Join Vertex
Type

Res.Card. Filtered
Result
Selectivity

1 Star 4 3 1 2 (3,2) (SS,RS) 111, 425 4.7 x 10−4

2 Star 5 4 1 2 (4,2) (SS,RS) 108, 911 4.6 x 10−4

3 Star 4 3 1 3 (2,2,2) (SS,SO,RS) 298 1.3 x 10−6

4 Star 4 3 1 3 (2,2,2) (SS,SO,RS) 396 1.67 x 10−6

5 Complex 5 2 3 4 (2,2,2,2) (SO,RS) 700 2.9 x 10−6

6 Star 3 2 1 2 (2,2) (SO,RS) 3, 902 0.16 x 10−4

7 Star 3 2 1 2 (2,2) (SO,RS) 15, 380 0.65 x 10−4

8 Complex 5 2 3 3 (3,2,2) (SS,SO,RS) 44, 063 1.9 x 10−4

9 Complex 6 2 4 3 (4,2,2) (SS,SO,RS) 12, 909 5.4 x 10−5

10 Star 3 2 1 2 (2,2) (SO,RS) 42186 1.78 x 10−4

11 Complex 4 2 2 3 (2,2,2) (SS,RS,RS) 2, 639 0.1 x 10−4

(a) YAGO

Query
id

Shape # TP #
QuantTP

Non-
QuantTP

Join
Vertex
Count

Join
Vertex
Degree

Join Vertex
Type

Res.Card. Filtered
Result
Selectivity

1 Complex 4 3 2 3 (3,2,2) (SS,SO,RS) 7763 0.23 x 10−4

2 Star 4 3 1 2 (3,2) (SS,RS) 26631 0.79 x 10−4

3 Complex 5 3 3 3 (4,2,2) (SS,SO,RS) 313 0.93 x 10−6

4 Star 4 3 1 1 (4) (SS) 861 0.29 x 10−2

5 Star 9 8 1 2 (8,2) (SS,RS) 167 0.5 x 10−6

6 Complex 5 2 3 4 (2,2,2,2) (SS,SO,RS) 21 0.06 x 10−6

7 Complex 4 2 2 3 (2,2) (RS,RS) 69282 2.07 x 10−4

8 Complex 3 1 2 1 (3) (SS) 85968 0.25
9 Complex 4 2 2 2 (3,2) (SS,SO) 293 0.14 x 10−2

10 Complex 5 3 2 3 (3,2,2) (SS,SO,RS) 293 0.87 x 10−6

11 Simple 3 1 2 1 (3) SS 182 0.0019

(b) DBpedia
Table 4.2: Quark-X: Characteristics of Benchmark Queries

Framework DBpedia YAGO
Time Size Time Size

Quark-X 13.28 hours 249 GB 7.59 hours 175 GB
Virtuoso 2.37 hours 66 GB 1.53 hours 43 GB
Jena-TDB 5 days 296 GB 3 days 132 GB
RDF-3X 14 hours 156 GB 8.75 hours 96 GB
SPARQL-RANK 18 days 326 GB 10 days 221 GB

Table 4.3: Quark-X: Data Load Performance of Various Frameworks

more clustered indexes than RDF-3X and has to build an additional Q-index. Apart from

the Q-Index, Quark-X also creates S-Indexes, but that has a comparatively smaller memory

footprint. The size of S-index for the two datasets YAGO and DBpedia is 904 MB and 1.7

GB respectively, about 2% of the size of the raw data, despite the fact that more than 50

percent of facts in two large real-world datasets which we have used for experimentation

86

(YAGO and DBpedia) are quantitative. Further, the cost of construction of Q-Index can

be amortized by removing the quantitative facts stored in POS and PSO indexes of the

underlying RDF store (RQ-RDF-3X in our case), as this information is already present in

S and Q-Indexes.

From the results in Table 4.3, the performance of Virtuoso is noticeably better with

respect to loading time (using buffer size of 48 GB) and size of database created. This is

not very surprising because unlike RQ-RDF-3X (and RDF-3X) which takes an exhaustive

indexing approach, Virtuoso builds only two default indexes (PSOG and POSG), plus 3

distinct projections (SP,OP,GS) [22]. We would like to emphasize that the ideas introduced

in this chapter can be applied to other RDF quad-stores. Choosing RQ-RDF-3X is merely

to demonstrate the effectiveness of our approach. Note that Quark-X uses only a small

amount of storage (about 6% of the size of raw data for both 𝑆- and 𝑄-indexes together),

rest of the overhead is due to the underlying engine RQ-RDF-3X.

4.10.2 Query Performance

Now we turn our attention to the query processing performance in answering top-𝑘 queries,

by first presenting the cold-cache performance followed by the warm-cache performance.

In our discussion, we use aggregated speedup values computed as the geometric mean of in-

dividual query speedups for each system considered. Thus, speedup(𝑋,𝑌) =
(︁∏︀𝑛

𝑖=1

𝑌𝑄𝑖

𝑋𝑄𝑖

)︁ 1
𝑛
,

where 𝑋𝑄𝑖
denotes the time taken by the system 𝑋 for evaluating the query 𝑄𝑖 and 𝑛 is

the total number of queries in the benchmark. Workload-average benchmarks like TPC fre-

quently use geometric mean, since it normalizes the values being averaged against outliers.

Our primary comparison is against the columnar-store Virtuoso, which has been shown

to have superior performance in comparison to other RDF storage engines [22]. It is em-

bellished with many optimizations, of which vectorization and cache-consciousness are the

most relevant to our experiments. In contrast, the current implementation of Quark-X runs

in single threaded mode and does not have cache-conscious features as well as vectorized

execution modes. We believe that the use of these optimizations will significantly help in

further improving the performance of Quark-X.

87

 0.1

 1

 10

1 2 3 4 5 6 7 8 9 10 11

Ti
m

e
in

 S
ec

on
ds

Query Id

Quark-X
Virtuoso

Jena TDB
RDF-3X (no top-k)

SPARQL-RANK

(a) DBpedia

 0.1

 1

 10

1 2 3 4 5 6 7 8 9 10 11

Ti
m

e
in

 S
ec

on
ds

Query Id

Quark-X
Virtuoso

Jena TDB
RDF-3X (no top-k)

SPARQL-RANK

(b) YAGO
Figure 4-5: Cold-cache Query Processing Performance

Cold-cache Performance

The performance of each system on all benchmark queries is summarized in Figure 4-5,

which plots in logarithmic scale the average time taken, in seconds, after running the query

in cold-cache 5 times. Note that we set the time-out for queries as 30 minutes, hence, the

Y-axis is limited to 1, 800.

The first observation we can make from these numbers is that Quark-X outperforms

all other systems under consideration by a large margin. We also observe that SPARQL-

RANK is many orders of magnitude slower than even RDF-3X which does not do any

top-𝑘 processing at all, and instead materializes all the results of the query. As we al-

ready discussed in Section 4.4, this is primarily due to the query processing algorithm of

88

SPARQL-RANK which ends up using many random accesses over indexes. It is worth

mentioning that SPARQL-RANK returned incorrect results for all queries except 𝑄8, 𝑄11

of DBpedia, and 𝑄5, 𝑄6, 𝑄7, 𝑄9, 𝑄11 of YAGO, hence the results for the incorrect queries

have not been shown in Figure 4-5. For queries returning correct results, Quark-X out-

performed SPARQL-RANK over both DBpedia and YAGO, with all benchmark queries

timing out on SPARQL-RANK. In subsequent experiments, we will not report the results

over SPARQL-RANK.

Quark-X outperforms RDF-3X for all queries by 1–2 orders of magnitude. The reason

for poor performance of RDF-3X is: its inability to retrieve just the top-𝑘 results.

We can also see that Virtuoso is by far the closest in performance to Quark-X cold-

cache setting. Quark-X outperforms it by a speedup factor of 3.9 over YAGO and 7 for

DBpedia. Of all the queries, Quark-X is significantly faster for Query 𝑄11 over DBpedia

by almost two orders of magnitude over Virtuoso, demonstrating the power of S-index.

S-indexes help Quark-X skip over large portions during query evaluation.

Warm-cache Performance

We now turn our attention to warm-cache query processing performance of systems under

comparison. Jena and RDF-3X make use of only the operating system cache, whereas

Virtuoso explicitly manages its own (somewhat large) cache. Therefore, in order to have a

fair comparison, we present warm-cache results in two parts:

Mode 1: Figure 4-6 reports the results of comparison amongst Quark-X, Jena, and

RDF-3X where all the systems use only O.S. caches. It can be seen that Quark-X outper-

forms Jena and RDF-3X significantly. Specifically, over DBpedia, Quark-X outperforms

Jena by a speedup factor of about 22 and RDF-3X by a factor of 206.

Mode 2: In this mode, we compared Quark-X and Virtuoso, both using their own in-

ternal caches. We suitably modified Quark-X also to cache the working set of the database,

similar to Virtuoso. Since Quark-X does not yet use vectorization, the vector size of Vir-

tuoso is set to 1. The results of this comparison are shown in Figure 4-7, where we find

that Quark-X continues to outperform Virtuoso – by a speedup factor of 24.2 for YAGO

and 13.6 for DBpedia. Note that we do not report numbers for Virtuoso for 𝑄2 and 𝑄4 of

89

 0.001

 0.01

 0.1

 1

 10

1 2 3 4 5 6 7 8 9 10 11

Ti
m

e
in

 S
ec

on
ds

Query Id

Quark-X Jena TDB RDF-3X (no top-k)

(a) DBpedia

 0.01

 0.1

 1

 10

1 2 3 4 5 6 7 8 9 10 11

Ti
m

e
in

 S
ec

on
ds

Query Id

Quark-X Jena TDB RDF-3X (no top-k)

(b) YAGO
Figure 4-6: Warm-cache Query Processing Performance (Mode1)

DBpedia, because, somewhat surprisingly, it returned incorrect results.

Quark-X is slower than Virtuoso for queries 𝑄5, 𝑄9 and 𝑄10 over DBpedia. On further anal-

ysis, we discovered that unlike YAGO, DBpedia is highly unstructured leading to a huge

number of characteristic sets, many of which occur only once. Specifically, DBpedia con-

tains 197,530 characteristic sets and YAGO contains 86 characteristic sets of quantifiable

predicates. Large number of characteristic sets leads to fragmentation in id space – which

naturally leads to increased random accesses. For a given set of quantitative predicates of

𝑄5, 𝑄9 and 𝑄10 the Non-Quantifiable Predicate Join (NQP-Join) stage (cf. Section 4.6),

of Quark-X’s query processing engine has to look through many different characteristic set

space – which is bound to cause a significant overhead. We can mitigate this by generating

90

 0.001

 0.01

 0.1

 1

 10

1 2 3 4 5 6 7 8 9 10 11

Ti
m

e
in

 S
ec

on
ds

Query Id

Quark-X Virtuoso

(a) DBpedia

 0.01

 0.1

 1

 10

1 2 3 4 5 6 7 8 9 10 11

Ti
m

e
in

 S
ec

on
ds

Query Id

Quark-X Virtuoso

(b) YAGO
Figure 4-7: Warm-cache Query Processing Performance (Mode2)

characteristic sets with approximate overlap.

Finally, Quark-X is more than an order of magnitude superior to all the other systems even

when it retrieves all the required results e.g. for 𝑄6 of DBpedia. The good performance of

Quark-X in comparison to Virtuoso and Jena is attributed to its efficient use of S-Indexes

and reduced memory and index access due to increased data-locality induced by its novel

semantically encoded identifiers.

We also observe that the consistent poor performance of Jena in both cold as well as warm

cache is due to its exclusive use of index-based joins leading to random access patterns

during query processing.

91

 1

 10

 100

 1000

k=1 k=50 k=1000

G
eo

m
. M

ea
n

of
 E

xe
cu

tio
n

Ti
m

e
in

 S
ec

.

Quark-X
Virtuoso

Jena TDB
RDF3X (no top-k)

(a) Cold-cache

 0.01

 0.1

 1

 10

 100

k=1 k=50 k=1000

G
eo

m
. M

ea
n

of
 E

xe
cu

tio
n

Ti
m

e
in

 S
ec

.

Quark-Xown cache
Quark-XO.S. cache

Virtuosoown cache
JenaO.S. cache

RDF-3XO.S. cache

(b) Warm-cache
Figure 4-8: Quark-X: Performance over DBpedia for Varying 𝑘

4.10.3 Impact of Varying k

Next, we consider the impact of varying 𝑘. Figure 4-8 and Figure 4-9 shows the geometric

mean of all queries for each value of 𝑘 = {1, 50, 1000} in both cold- and warm-cache (the

subscript denotes, whether the system uses its own cache or O.S. cache) for DBpedia and

YAGO respectively.

One of the immediate effects that can be observed from these plots is that on increas-

ing the value of 𝑘, systems which translate URIs and strings in RDF data into integer ids

and back during final result generation are significantly affected. If the dictionary used

for this translation is inefficient, for large values of 𝑘, the system can spend significant

amount of time in its dictionary lookups during result generation. Due to this reason even

92

 1

 10

 100

 1000

k=1 k=50 k=1000

G
eo

m
. M

ea
n

of
 E

xe
cu

tio
n

Ti
m

e
in

 S
ec

.

Quark-X
Virtuoso

Jena TDB
RDF-3X (no top-k)

(a) Cold-cache

 0.01

 0.1

 1

 10

 100

k=1 k=50 k=1000

G
eo

m
. M

ea
n

of
 E

xe
cu

tio
n

Ti
m

e
in

 S
ec

.

Quark-Xown cache
Quark-XO.S. cache

Virtuosoown cache
JenaO.S. cache

RDF-3XO.S. cache

(b) Warm-cache
Figure 4-9: Quark-X: Performance over YAGO for Varying 𝑘

93

though Virtuoso and Jena evaluate and output all results still they show slight variation

with increasing value of 𝑘. Quark-X, in contrast, does not evaluate all results, thus, the

variation of Quark-X’s query processing performance is much better. Additionally, it is

noteworthy that Quark-X’s performance in warm cache using its own cache is better than

its performance using O.S. caches. This performance improvement is attributed to the elim-

ination of decompression cost in Quark-X when it uses its own cache, as decompression

is known to be beneficial for cold cache but is an unnecessary overhead for warm cache

(when caching is performed by the O.S.).

Upon incrementing 𝑘, the use of block-wise processing in Quark-X also comes into

play as follows: we process 𝑘 fraction of buckets at a time until all 𝑘 results are obtained.

As we increase 𝑘, if all top results are obtained from the initial fraction of buckets, then

we can see significant performance speedups. Only in specific queries which include many

non-quantifiable facts, this feature does not play a crucial role.

4.11 Discussion & Outlook

This chapter presented Quark-X, an efficient top-𝑘 query processing framework for RDF

quad stores. The salient features of Quark-X include its indexes, viz., (1) S-Index and

Q-Index, which provide a so far unique way to perform early-termination and join-ahead

pruning ahead of the join operator using quantifiable facts, (2) the Rank-Hash Join query

execution algorithm to adaptively choose the best index for joins at runtime, and (3) the

Semantic Encoding strategy used for increasing data locality. Through our experiments on

two large real-world datasets, Quark-X was shown to outperform existing commercial and

academic engines by 1-2 orders of magnitude.

4.11.1 Outlook

There is ample room for future research with some of the prominent research directions

discussed below:

∙ In our experiments we chose bucket size to be proportional to the block size of the

94

storage device used such as hard disk, Solid State Disks, etc. This is done to enable

join-ahead pruning of SPRO indexes using S-Index at block-wise granularity. For

future work, an interesting direction is to generalize the bucket size for memory-

resident DBMS architectures which operate at a finer granularity. Note that S-Index

enabled join-ahead pruning is applicable in this scenario without modification.

Also when different storage devices are used it may be advisable to replicate S-Index

at different granularities, thus introducing additional redundancy. Experimentally

evaluating such a setup where more than one partitioning strategy is employed is an

interesting open issue.

∙ The techniques presented in this chapter can also be used for top-𝑘 querying on tem-

poral data, albeit with careful use of S-indexes. Unlike numerical attributes, tempo-

ral attributes are expressed as (time begin, time end) intervals which requires careful

bound checking during query processing. Thus investigating Quark-X’s performance

on temporal datasets is an exciting research direction.

∙ Present work opens up fascinating avenues for future research in query optimization

for top-𝑘 queries in RDF quad stores. In Quark-X we used a heuristic based approach

for plan generation, wherein numerical predicates were pushed deep in the query

plan. Naturally the heuristic based approach may not always produce the optimal

plan. Hence the need to develop sophisticated plan generation techniques for top-𝑘

queries.

∙ Finally, one may ask whether bucketed approach presented in this work can also

be implemented in a distributed setting e.g., in a shared nothing architecture. Note

our S-indexes can be used for join-ahead pruning in a distributed environment too.

Investigations in this setting will open new research directions.

95

96

Chapter 5

STREAK: An Efficient Engine for

Processing Top-𝑘 SPARQL Queries with

Spatial Filters

5.1 Motivation

Motivated by its use in critical applications such as emergency response, transportation,

agriculture etc., geo-spatial data are part of many large-scale semantic web resources. Ef-

forts to standardize the representation of geo-spatial data and relationships between spa-

tial objects within RDF/SPARQL has resulted in GeoSPARQL standard [77], adopted by

many RDF data repositories such as LinkedGeoData [11], GeoKnow [58], etc. Even the

large-scale open-domain knowledge-bases such as YAGO [47, 65], WikiData [94], and

DBPedia [59] contain significant amounts of spatial data. To make effective use of this rich

data, it is crucial to efficiently evaluate queries combining topological and spatial operators

–e.g., overlap, distance, etc.– with traditional graph pattern queries of SPARQL.

Furthermore, modern knowledge bases contain not only simple (binary) relationships

between entities, but also model higher-order information such as uncertainty, context,

strength of relationships, and more. Querying such knowledge bases results in complex

workloads involving user-defined ad-hoc ranking, with top-𝑘 result cut-offs to help in rea-

97

soning under uncertainty and to reduce the resulting overload. Thus the geo-spatial support

is not just limited to efficient implementation of spatial operators that works well with

SPARQL graph pattern queries, but also should integrate with top-𝑘 early termination too.

We present STREAK, an efficient RDF data management system that can model higher-

order facts, support the modeling of geo-spatial objects and queries over them, enable ef-

ficient combined querying of graph pattern queries with spatial operators, expressed in the

form of a FILTER, along with top-𝑘 requirements over arbitrary user-defined ranking func-

tions, expressed in the ORDER BY — LIMIT clauses. In this chapter, we focus our attention

on a recently proposed top-𝑘 spatial distance join (K-SDJ) [79], although other spatial op-

erators are also possible within STREAK. Following are a few applications of such distance

join queries within the context of RDF databases from the GeoCLEF 2006-07 [66]:

(i) Find top wine producing regions around rivers in Europe

(ii) List car bombings near Madrid and rank them by estimated casualties

(iii) Find places near a flooded place which have low rates of house insurance.

Similarly, distance join queries over graph structured data can also be formulated in many

diverse scenarios – e.g., in a job search system one can ask for top jobs with highest wage

which match the skills and are near the location of a given candidate, which can be ex-

pressed as a SPARQL query with a spatial distance FILTER and top-𝑘 ranking on highest

wage.

5.1.1 Challenge

A large-body of work exists in relational database research for integrating geo-spatial and

top-𝑘 early termination operators within generic query processing framework. Therefore,

a natural question to ask is whether those methods can be applied in a straightforward

manner for RDF/SPARQL as well. Unfortunately, as we delineate below, the answer to

this question is in the negative, primarily due to the schema-less nature of RDF data and

the self-join heavy plans resulting from SPARQL queries.

Consider applying one of the popular techniques, which build indexes over joining

(spatial) tables during an offline/pre-processing phase [76]. However, in RDF data, there

98

is only one large triples table, resulting in a single large spatial index that needs to be used

during many self-joins making it extremely inefficient. On the other hand, storing RDF in

a property-table form is also impractical due to a large number of property-tables – e.g., in

a real-world dataset like BTC (Billion Triples Challenge) [28], there are 484, 586 logical

tables [68].

Next, the unsorted ordering (w.r.t. the scoring function) of spatial attributes during

top-𝑘 processing prevents the straightforward application of methods that encode spatial

entities to speed up spatial-joins [61]. This is because these approaches assume sorted

order of spatial attributes, and hence are able to choose efficient merge joins as much as

possible. Finally, state-of-the-art query optimization techniques for top-𝑘 queries [52] can-

not be adopted as-is for spatial top-𝑘 since real-world spatial data does not follow uniform

distribution assumptions that are used during query optimization.

5.1.2 Contributions

In this chapter, we present the design of the STREAK system, and make following key

contributions:

1. We present a novel soft-schema aware, spatial index called S-QuadTree. It not only

partitions the 2-d space to speed spatial operator evaluation, it compactly stores the inherent

soft-schema captured using characteristic sets. Experimental evaluations show that the use

of S-QuadTree results up to three orders of magnitude improvements over using state-of-

the-art spatial indexes for many benchmark queries.

2. We introduce a new spatial join algorithm, that utilizes the soft-schema stored in S-

QuadTree to select optimal set of nodes in S-QuadTree. The spatial objects enclosed/over-

lapping the 2-d partitions of these nodes are used for pruning the search space during spatial

joins.

3. We propose an adaptive query plan generation algorithm called Adaptive Process-

ing for Spatial filters or APS, that switches query plan with very low overhead. STREAK

achieves this via its cost model to ensure that entire query is processed with least cost.

We implement these features within QUARK-X [57], a top-𝑘 SPARQL processing sys-

99

tem based on RDF-3X [69, 70], resulting in a holistic system capable of efficiently handling

spatial joins. For experimental evaluation, we make use of two large real-world datasets —

(a) YAGO [47, 65], and (b) LinkedGeoData [11]. Benchmark queries were focused on K-

SDJ queries, and were a combination of a subset of queries from GeoCLEF [66] challenge

and queries we constructed using query features found important in literature [7, 57, 61].

We compare the performance of STREAK with the system obtained by replacing our S-

QuadTree based spatial join by synchronous R-tree traversal spatial join algorithm [24];

and test end-to-end system performance against PostgreSQL [78] which has in-built spatial

support and Virtuoso [93], a state-of-the-art RDF/SPARQL processing system. Our exper-

imental results show that STREAK is able to outperform these systems for most benchmark

queries by 1− 2 orders of magnitude in both cold and warm cache settings.

5.1.3 Organization

The rest of the chapter is organized as follows: Section 5.2 briefly introduces the SPARQL

query structure, and how spatial distance joins can be expressed. It also outlines a running

example query that we use throughout the chapter. Next, in Section 5.3 we describe the

key features of STREAK including S-QuadTree, node selection algorithm, and APS algo-

rithm. We describe the datasets and queries used in our evaluation in Section 5.4. Detailed

experimental results are given in Section 5.5 followed by an overview of related work in

Section 5.6.

5.2 Preliminaries

RDF consists of triples, where each triple represents relationship between subject(s) and

object(o), with name of the relationship being predicate(p). SPARQL is the standard query

language for RDF [95] and we consider SPARQL queries having the following structure:

SELECT [projection clause]

WHERE [graph pattern]

FILTER [spatial distance function]

ORDER BY [ranking function]

100

@prefix xsd: <http://www.w3.org/2001/XMLSchema#>.
#@ <id1>
:Mosel :grapeVariety :Albalonga.
#@ <id2>
:Mosel :soilType :porus_slate.
#@ <id3>
:Mosel :hasProduction "4500000000"^^xsd:double.
#@ <id4>
:Mosel :hasGeometry "POINT(28.6,77.2)".
#@ <id4>
:Moselle :pollutedBy :pesticide.
#@ <id5>
<id4> :includes ?pest.
#@ <id6>
?pest :concentration ?c.
#@ <id7>
:Moselle :hasMouth :Rhine.
#@ <id8>
:Moselle :source :Vosges_mountains.
#@ <id8>
:Moselle :hasGeometry "LINESTRING((28.3,77.5),(28.4,77.6))".

Figure 5-1: Example RDF knowledge graph: Describes pollution in wine growing regions of
Europe.

LIMIT [top-K results]

The SELECT clause retrieves results consisting of variables (denoted by “?" prefix) and

their bindings. Graph patterns in WHERE clause (also called triple patterns) are expressed

as: ⟨?s ?p ?o⟩, ⟨?r rdf:subject ?s. ?r rdf:predicate ?p. ?r rdf:object ?o⟩, where ?r

represents fact or reification identifier. Keyword prefix rdf is part of the RDF vocabulary

and helps declare parts of an RDF statement identified through its identifier ?r.

Next, the FILTER clause restricts solutions to those that satisfy the spatial predicates. In

this chapter, we focus only on the use of DISTANCE predicate for distance joins. It should

be noted that the techniques discussed in this chapter are equally applicable to all spatial

predicates defined in GeoSPARQL standard by the Open Geospatial Consortium [14]. The

ORDER BY clause helps establish the order of results using a user-defined ranking func-

tion. The LIMIT clause controls the number of results returned. Together, ORDER BY and

LIMIT form the top-𝑘 result retrieval with ad-hoc user-defined ranking function.

5.2.1 Running Example

As a running example, we use a reified RDF listing of the knowledge graph shown in

Figure 5-1. It shows a snippet which contains information about pollution in wine growing

regions of Europe. Figure 5-2 illustrates a typical top-𝑘 SPARQL query on this knowledge

graph. This query produces the details of the top-1 wine producing region situated near a

101

?wineRegion

?s

:soilType

:grapeVariety

?v

:hasProduction

?p

Spatial Join

?geoWineRegion

:hasGeometry

driver sub-query

Result: :Mosel, :Moselle, :porus slate, :Albalonga, :Vosges mountains, :Rhine

:hasGeometry

?geoRiver

:pollutedBy

:pesticide

?pestName

?river

driven sub-query

:source

?src

?m

:hasMouth

:includes

?conc
:concentration

SELECT ?wineRegion ?river ?s ?v ?src ?m
((f1(?p) * f2(?c)) as ?rank)

WHERE {
?wineRegion :grapeVariety ?v.
?wineRegion :soilType ?s.
?wineRegion :hasProduction ?p.
?wineRegion :hasGeometry ?geoWineRegion.
?reif rdf:subject ?river.
?reif rdf:predicate :pollutedBy.
?reif rdf:object :pesticide.
?reif :includes ?pestName.
?pest :concentration ?c.
?river :hasMouth ?m.
?river :source ?src.
?river :hasGeometry ?geoRiver.
FILTER(distance(?geoWineRegion,?geoRiver)<"10")

} ORDER BY DESC(?rank) LIMIT 1

Figure 5-2: Running Example Query: Finds the high-producing wine growing regions of a
given soil type and grape variety (driver sub-query) and rivers with high pollution levels and
specified mouth and source (driven sub-query), which are no more than 10kms apart (spatial
join). The results are ranked based on product of amount of wine production and the river
pollution concentration (top-𝑘).

river, ranked using a function combining its production and pollution levels.

5.3 STREAK

In this section, we describe in detail our STREAK system for processing top-𝑘 spatial join

queries. STREAK follows exhaustive indexing approach introduced by RDF-3X [69], and

extended to support reified RDF stores [56, 57]. This results in indexes over permutations

of subject, predicate, object and reification id assigned to each statement in the knowl-

edge graph. STREAK also maintains an index containing block-level summary of various

102

numerical attributes useful for top-𝑘 processing of user-specified scoring function.

Apart from these indexes, STREAK introduces a novel variant of quad-tree, a popular

in-memory spatial index structure, called S-QuadTree. It stores all the spatial entities in the

knowledge graph, and embeds the associated soft-schema information. The structure of S-

QuadTree index along with spatial entity identifier encoding are explained in Section 5.3.1.

Next, in Section 5.3.2, we present the details of the spatial join algorithm which lever-

ages S-QuadTree in a careful manner to balance the CPU and IO costs while processing the

spatial filter specified in the query. We adopt the terminology from the adaptive query pro-

cessing literature [31] and term one side of the spatial join (see Figure 5-2) as driver sub-

query, whose tuples are joined with remaining sub-query, coined driven sub-query. The

plan of the driven sub-query is chosen based on runtime statistics of driver sub-query. As

part of the spatial adaptive query processing, explained in Section 5.3.3, STREAK chooses

the driver and driven sub-query from the original query.

5.3.1 S-QuadTree Index for Spatial Entities

Underpinning STREAK is the S-QuadTree index that is designed with compactness and

efficiency in mind, to drive a dynamic query execution strategy that changes plans during

run-time. STREAK combines Z-order locality preserving layout for identifier encoding,

quad-trees [34] for spatial partitioning and indexing, and characteristics sets for capturing

the soft-schema information related to spatial objects in the corresponding partition. The in-

tuition behind combining all this information in a single index is motivated by the schema-

less, single table philosophy of the RDF. The resulting index, called the S-QuadTree index,

enables a more deeply integrated query processing strategy that helps in early pruning as

well. We illustrate the structure of S-QuadTree for our running example query in Figure 5-

3.

We note that R-Trees are a popular choice for indexing spatial data. However, with

the design of our indexes and our adaptive query processing strategy, we observed that

STREAK outperforms R-Trees in this RDF setting (validated in the experimental section).

Identifier assignment and encoding: Quad-trees recursively partition the spatial re-

103

W

R

S-QUAD TREE

C(R) = 2

W: WineRegion
R: River

Z-order : 00

Z-order : 01

Z-order: 10

Z-order : 11
0101 0111 1101 1111

0100 0110 1100 1110

0001 0011 1001 1011

0000 0010 1000 1010

1 100001 0001

level : 0 level : 2

S Z L

I-Range

Id: 1553

level : 1

Z-order: 0

E-list:1553,..

C(R) = 20 C(R) = 5

C(R) = 3 C(R) = 2 C(R) = 1

|E-list|: 50

|E-list|: 550 |E-list|: 70

|E-list|: 360

|E-list|: 120 |E-list|: 120 |E-list|: 120

aaaaaaaaaa︸ ︷︷ ︸aaaaaaaaaa︸ ︷︷ ︸aaaaa︸ ︷︷ ︸
0 000001 0001

1 111111 1101 (1536-1791)

E-list:1553,.. E-list:1553,.. E-list:1553
|E-list|: 1

W

W W W W W W

W W

RR

R R R R R

b

d f

c e

l n t v

k m s u

h j p r

g i o q

b

c d e R f

rqponmlk

NODE
ENCODING

I

Figure 5-3: Node encoding: The triangle is assigned the identifier based on (z-order = 2, local
id = 1, level = 1). S-QuadTree: where each node captures E-List, I-Range, Characteristic
Sets for River (R) and Wine (W), Cardinalities for Spatial CS for river C(R), and MBR (not
shown)

gion into four quadrants and offer a light-weight hierarchical indexing that can be easily

maintained in-memory. For each spatial entity in the dataset, we assign a unique identifier

that inherently captures its spatial characteristics within the hierarchical index. For both

points and polygons, the identifier value corresponds to the deepest node in the quad-tree

in which the object completely lies inside. For some polygons, this containing node could

be the root of the tree as well. In any case, we encode the identifier value compactly in the

following format: (S, Z, I, L).

∙ S: is the most-significant bit (MSB) of the identifier. This indicates whether the

identifier corresponds to a spatial or non-spatial entity. This allows spatial entities to

be clustered together in storage.

∙ Z: is the Z-order of the deepest-level node that completely encloses the spatial object.

This ensures that in the ID space, those spatial objects with the same Z-order prefix

are clustered together for efficient retrieval later. Thus, together S and Z help in

preserving locality.

∙ I: is the local identifier (incrementally assigned) of the object that distinguishes from

other objects within the same node. In the case of skewed datasets, when the number

of spatial objects causes an overflow in the local identifier bits, then, such identifiers

are assigned to the parent node. The algorithms specified in this chapter work even

in the above case, without any loss of generality.

104

∙ L: is the level / height of the node within the quad-trees. We limit the maximum

number of levels in the quad-tree to 10 and therefore |𝐿| is fixed to 4 bits, in this

chapter. We found that there is little benefit in partitioning a node to have more than

a million (410) quadrants. The number of bits occupied by Z is 2𝐿, and the rest of the

bits capture the local identifiers.

Naively storing the identifiers leads to a significant increase in storage space. Our

representation not only ensures that the quad-tree remains lightweight, but also enables co-

location of objects in space using S and Z bits as explained earlier. By design, we impose

equivalent hierarchies for both quad-trees and Z-curve encoding to capture the identifiers

in the above form.

For example, the triangle in Figure 5-3 is completely enclosed by node 𝑒, therefore this

polygon is assigned the z-order 2.

I-Range and E-list: During the indexing process, after generating the identifiers for

spatial objects, we capture two types of information in each and every non-empty node of

the S-QuadTree that will help to aggressively prune results during query execution.

1. I-Range: Range (min and max) of object identifiers which completely lie within the

node or any of its children. Note that the range of these objects can be identified

from the Z-order of the node.

2. E-List: Spatial objects overlapping the node but not fully contained within the node.

The E-list objects are stored within each node of the S-QuadTree as a list of Ex-

plicitly Encoded Spatial Objects. These objects overlap more that one child node

(necessarily) and therefore are assigned the Z-order of the parent node. To identify

the exact child nodes with which these objects overlap, they are explicitly stored as

E-list. Storing only the E-list objects helps save processing time – as prefix range

comparisons are faster. Typically, on the dataset we have seen, only a small number

of Explicitly Encoded Spatial Objects need to be stored for each node of the quad-

tree.

In Figure 5-3, nodes 𝑜, 𝑝, 𝑞 and 𝑟 do not completely enclose the triangle, therefore this

object (ID: 1553) is explicitly stored in their nodes. Hence, object 1553 is called an E-list

105

object in these nodes. However, the same object lies completely inside node 𝑒, and hence

this object lies in node’s I-Range (1536 — 1791).

I-Range and E-list offers two complementary ways to prune intermediate results during

processing. The role of I-Range and E-list, and the trade-offs for both during adaptive

query execution are clarified in the subsequent sections.

Characteristic Sets(CS): For completeness of the chapter, we again revisit Character-

istic Sets which were described in Chapter 4. RDF data usually has a soft-schema, stem-

ming from the fact that multiple RDF statements are used to describe the ‘properties’ of a

subject, and these statements repeat often for similar subjects. To illustrate this, consider

the following query patterns for the query given in Figure 5-2 — (?wineRegion :grape-

Variety ?v), (?wineRegion :soilType ?s), (?wineRegion :production ?p). These state-

ments describe a wine producing region’s soil, variety of grapes grown and soil type, which

it imposes through the predicates :grapeVariety, :soilType and :production. These three

predicates are also strongly correlated in the database since this pairing of predicates holds

for only wine producing regions. Other entities can likewise be uniquely identified by the

predicates connected to them. This observation has been used earlier for improving the

cardinality estimates of RDF queries [68], where they name the set of predicates connected

to an entity as its characteristic set. In general Neumann et al. [68] define for each entity s

its characteristic set 𝑆 for an RDF dataset R as:

𝑆(𝑠) = {𝑝|∃𝑜 : (𝑠, 𝑝, 𝑜) ∈ 𝑅}

They define the set of characteristic sets as:

𝑆 = {𝑆(𝑠)|∃𝑝, 𝑜 : (𝑠, 𝑝, 𝑜) ∈ 𝑅}

In order to leverage the soft-schema for efficient spatial joins, we store in each node of

quad-tree, three types of characteristic sets of all objects enclosed by that node. Note that

we don’t store the CS as is, but for space efficiency, encode them with Bloom filters – more

accurately in counting Bloom filters. Although using Bloom filters incurs false positives

it is important to note that this will not affect the correctness of results. This only results

106

in overestimation of query plan cost. Note that this may cause bad plans to be chosen we

leave the study of sensitivity of plan selection to Bloom filter configurations as future work.

Also once the query plan is chosen false positives cause potentially more disk blocks to be

read.

∙ Self: The CS that identifies a spatial object. For example, for the object :Mosel, its

CS is Vineyard.

∙ Incoming: The CS that are incoming towards the spatial entity. With (:Hochmosel-

brücke, :isLocatedIn, :Mosel), the incoming entity is :Hochmoselbrücke. And the

CS that identifies :Hochmoselbrücke is Bridge.

∙ Outgoing: The CS that are outgoing from the spatial entity. For (:Mosel, :isIn,

:Germany), the CS corresponding to :Germany is Country.

Nodes d and e exhibited in bottom center of the Figure 5-3 intersect spatial objects

described by characteristic sets W and R, and node f exhibited in bottom right of Figure 5-3

intersect spatial objects described by characteristic set W only. In Figure 5-3 that R and W

are the characteristic sets of river and wine, respectively. Hence, when performing spatial

join between the driver sub-query described by W and the driven sub-query described by

R, the spatial join algorithm needs to visit only the children of the nodes d and e. Thus,

storing the Characteristic Set(CS) of spatial objects within the nodes of the quad-tree helps

perform focused traversal of the quad-tree, and reducing comparisons.

Cardinalities of Spatial CS: For each characteristic set and node, we find the objects

of characteristic set that intersect with the node’s spatial extent. We refer to these charac-

teristic sets as Spatial CS. We store the cardinalities of Spatial CS in nodes of S-QuadTree.

These stored cardinalities help us estimate the cardinalities of characteristic sets which

would satisfy the spatial join constraint.

MBR: To improve performance STREAK stores in each node only the Minimum Bound-

ing Rectangle (MBR) of spatial objects associated with that node of S-QuadTree, this helps

improve performance by avoiding comparisons with unoccupied regions of nodes.

Note that this Chapter adds specific set of encoding strategies and indexes, and they

could interfere with the use of indexes and plan selection that were described in Chapter

107

4. For instance, spatial encoding may conflict with semantic encoding if implemented

together in the same system. Therefore the proposed encoding strategies do not work well

with each other and must be implemented independently.

Finally, S-QuadTree follows a space-oriented partitioning approach, therefore updates

are additions to the nodes of the quad-tree and its children, without affecting the nodes of

the S-QuadTree with which the inserted/updated spatial object does not intersect.

5.3.2 Spatial Join Algorithm in STREAK

We next discuss how STREAK employs its S-QuadTree for efficiently implementing a

spatial-join during query processing. Broadly speaking, it adopts the popular block-wise

query processing technique during which it retrieves bindings from the driver sub-query

in a block-wise manner. For every such block, it uses sideways information passing(as

also described in Chapter 4 to find candidate blocks from the driven plan based on their

spatial proximity, with which the actual spatial-join is finally performed. The S-QuadTree

is used to efficiently compute a smaller set of candidate blocks that leads to reduction in

the number of unnecessary joins. The overall process is executed in three phases which

are described below. For explanation we continue with our running example of Figure 5-3,

with driver sub-query as Wine producing region, and driven sub-query as River.

1. Obtain candidate nodes: In this stage block-wise bindings retrieved from the driver

sub-query are used to filter out spatial regions, essentially S-QuadTree nodes, that do not

contain results of the spatial join. This is done by traversing the S-QuadTree from its root

to its leaf nodes by following only nodes that satisfy both the bindings from the driver sub-

query as well as characteristic sets of the driven sub-query; we denote this set of nodes by

𝒱 . For example, at level 1, we observe that nodes 𝑐 and 𝑓 do not satisfy the join as either

W or R is missing. However, nodes 𝑑 and 𝑒 participate in the join between W and R, thus

STREAK traverses only these nodes.

We use 𝒱𝑙 to denote the nodes in 𝒱 in level 𝑙. Due to the nature of the explicitly

encoded objects associated with a node, all the spatial objects that are results of the join are

contained in 𝒱𝑙 for any level 𝑙, and in particular, in the leaf-nodes of 𝒱 (which we denote

108

by 𝒱𝐿).

Algorithm 5 Filtering driven sub-query
1: Input: Driver-SubQuery, Driven-SubQuery, S-Quadtree
2: Output: Filtered-SpatialObj
3: S = Spatial_Entities(Driver-SubQuery)
4: (I-Range, E-list) = Nearby_SpatialEntities(S, S-Quadtree)
5: for row in Driven-SubQuery do
6: if row.SpatialEntity in I-Range then
7: Filtered-SpatialObj.add(row.SpatialEntity)
8: end if
9: if row.SpatialEntity in E-list then

10: Filtered-SpatialObj.add(row.SpatialEntity)
11: end if
12: end for
13: return Filtered-SpatialObj

2. Filtering driven sub-query: The I-Range and E-list associated with a node in the

S-QuadTree, say 𝑎, store the spatial objects associated with 𝑎 and can be used for filter-

ing the driven sub-query using sideways information processing. Next we explain how

filtering is done: After obtaining satisfying spatial entities from driver sub-query, the spa-

tial entities are looked up in SQuad-tree to find nearby spatial entities which satisfy the

spatial join constraint. As spatial entities are stored with I-Range and E-list associated

with every node of SQuad-tree, therefore we use these spatial entities as filters over the

driven sub-query. The algorithm for performing filtering of driven sub-query is explained

formally in Algorithm 5. Inputs to the algorithm are Driver-SubQuery, Driven-SubQuery

and S-QuadTree. Driver-SubQuery and Driven-SubQuery are shown in Figure 5-2. Func-

tion Spatial_Entities(Driver-SubQuery) finds spatial entities in driver sub-query. Func-

tion Nearby_SpatialEntities(S, S-Quadtree) finds I-Range and E-lists of spatial entities

satisfying the spatial predicate, and stores them as tuple in (I-Range, E-list). Lines 5 to

12 iterate over all rows/tuples in Driven-Subquery to find spatial entities – denoted by

row.SpatialEntity – which are also present in either I-Range or E-list found in line 4. Data

structure Filtered-SpatialObj is a list. If row.SpatialEntity is in I-Range or E-list, then it is

added to Filtered-SpatialObj. List Filtered-SpatialObj is returned in line 13.

Note that, there may be local density variations in different nodes of the S-QuadTree.

Therefore, it is important to carefully choose the nodes in 𝒱 to be used for filtering. Going

109

forward, we first discuss the process of filtering and associated CPU and IO costs using

I-Range and E-list, which help skip entries which are retrieved from index scans of driven

sub-query. Then we describe our algorithm to choose appropriate nodes in 𝒱 that can be

used for efficient filtering. Recall from Figure 5-3 that I-Range of a node is the set of

identifiers which completely lie within that node e.g. I-Range of node ‘d’ is from 1536 to

1791. An RDF fact containing a spatial entity is skipped if it does not lie within I-range

or E-list. Thus I-Range and E-list can be used for skipping irrelevant entries in the indexes.

Note that skipping entries using I-range is faster — to understand this consider the case

when the current block does not contain values in between I-range, then a skip can be

made to the next block by skipping all irrelevant entries in between. However, skipping

using a large E-list can be expensive, as each RDF fact needs to be potentially checked for

skip. We observed that this causes high CPU overhead, as it disrupts the high cache locality

of sequential scans [70]. Therefore, we associate a CPU cost with 𝑎 that is proportional to

the cardinality of 𝐸-𝑙𝑖𝑠𝑡(𝑎).

Take for example, Figure 5-3 in which we assume that 𝒱 is the set of all nodes contain-

ing both W and R. We observe that the size of E-list at child node 𝑘 is greater than at node

𝑑. However, notice that node 𝑑 satisfies the join with estimated cardinality of C(R) being

20 whereas, its children node 𝑘 has estimated cardinality of C(R) as 2. Therefore, with

respect to fetching of blocks, it is better to filter using the I-range and E-list of 𝑘 compared

to those of 𝑑. We capture this by defining the IO cost of a node 𝑎 as the cardinality of the

characteristic set stored at 𝑎 and represent it as |𝐶𝑆(𝑎)|.

Observe that the spatial objects associated with 𝑎 are also associated with the parent

of 𝑎 – so it may not be prudent to filter using both 𝑎 and its parent. Furthermore, the IO

cost of a node decreases as the level increases whereas CPU cost increases. Therefore, it

is necessary to compute an optimal set of nodes for filtering, say 𝒱* ⊆ 𝒱 such that (a)

the nodes in 𝒱* collectively cover all spatial objects associated with nodes in 𝒱 , and (b)

have minimal IO and CPU footprints. We should mention that nodes in 𝒱* may come from

different levels, e.g., a few possibilities of 𝒱* in Figure 5-3 are {b}, {d, e}, {d, o, p, q},

{e, k}. To compute 𝒱*, first we associate a 𝑐𝑜𝑠𝑡(𝑎) with every node 𝑎 ∈ 𝒱 based on the

above discussion.

110

𝑐𝑜𝑠𝑡(𝑎) = 𝛼𝐼𝑂

IO cost⏞ ⏟
|𝐶𝑆(𝑎)|+𝛼𝐶𝑃𝑈

filtering⏞ ⏟
|𝐸-𝑙𝑖𝑠𝑡(𝑎)|

Next, for any node 𝑎, we define 𝒱*(𝑎) as the optimal set of nodes from 𝒱 in the sub-

tree rooted at 𝑎. For computing the cost of 𝒱*, we also need to take into consideration the

inherent (CPU) cost of combining the large E-lists of nodes in 𝒱*. Obviously, this cost is

0 if there is none or only one E-list in consideration and is proportional to the size of the

combined list (we keep the lists sorted) if there are two or more lists; we use 𝛼𝑚𝑒𝑟𝑔𝑒 as the

proportionality constant and denote 𝛼𝑚𝑒𝑟𝑔𝑒|𝐸-𝑙𝑖𝑠𝑡(𝑎)| by 𝜉(𝑎).

Algorithm 6 Computing optimal nodes for filtering
1: Input: candidate nodes 𝒱 , parameters 𝛼𝐼𝑂, 𝛼𝐶𝑃𝑈 , 𝛼𝑚𝑒𝑟𝑔𝑒

2: Output: optimal set of nodes 𝒱*
3: for each node 𝑎, starting from leaves, in a bottom-up fashion do
4: if 𝑎 is a leaf node then
5: Compute 𝒱*(𝑎), 𝜎*(𝑎) and 𝜉*(𝑎) using eq. 5.1
6: else
7: Compute 𝒱*(𝑎), 𝜎*(𝑎) and 𝜉*(𝑎) using eq. 5.2
8: end if
9: end for

10: return 𝒱*(𝑟)

Algorithm 6 explains how to compute the optimal set of nodes by recursively comput-

ing the values 𝒱*(𝑎) for every node 𝑎, starting from the leaf nodes, based on the following

theorem. The theorem uses two additional recursive functions 𝜎*(𝑎) and 𝜉*(𝑎). The former

represents the cost of 𝒱*(𝑎) and the latter represents
∑︀

𝑗∈𝒱*(𝑎) 𝜉(𝑗). In the following theo-

rem, 𝑟 denotes the root of the S-QuadTree, 𝛾(𝑎) denotes the children of 𝑎 that also belong

to 𝒱* and 𝜇(𝑎) stands for
∑︀

𝑗∈𝛾(𝑎) 𝜉
*(𝑗) if |𝛾(𝑎)| > 1, and is 0 otherwise.

Theorem 5.3.1. 𝒱* = 𝒱*(𝑟) can be recursively computed using recurrences 5.1 and 5.2.

Furthermore, complexity of computing this is linear in the number of nodes of the S-

QuadTree.

111

For leaf node 𝑎,

𝒱*(𝑎), 𝜎*(𝑎), 𝜉*(𝑎) =

⎧⎨⎩{}, 0, 0 : 𝑎 ̸∈ 𝒱

{𝑎}, 𝑐𝑜𝑠𝑡(𝑎), 𝜉(𝑎) : 𝑎 ∈ 𝒱
(5.1)

For non-leaf node 𝑎,

𝒱*(𝑎),

𝜎*(𝑎),

𝜉*(𝑎)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{}, 0, 0 : if 𝑎 ̸∈ 𝒱

{𝑎}

𝑐𝑜𝑠𝑡(𝑎)

𝜉(𝑎)

⎫⎪⎪⎪⎬⎪⎪⎪⎭ if 𝑐𝑜𝑠𝑡(𝑎) < 𝜇(𝑎) +
∑︁

𝑗∈𝛾(𝑎)

𝜎*(𝑗)

⋃︀
𝑗∈𝛾(𝑎) 𝒱*(𝑗)∑︀
𝑗∈𝛾(𝑎) 𝜎

*(𝑗) + 𝜇(𝑎)∑︀
𝑗∈𝛾(𝑎) 𝜉

*(𝑗)

⎫⎪⎪⎪⎬⎪⎪⎪⎭ otherwise

(5.2)

Proof. The cases for nodes not in 𝒱 are obvious and included for completeness. We will

discuss the other cases with the help of Figure 5-4. When 𝑎 is a leaf-node in 𝒱 , e.g., the

left child of 𝐸, the optimal 𝒱*(𝑎) must be {𝑎} since it is the only option. 𝜎*(𝑎) and 𝜉*(𝑎)

are accordingly assigned.

A

D1

D2

D3

D4

a

d1 d2 d3
d4

e
E

Figure 5-4: Selecting optimal 𝒱* in S-QuadTree

112

For the other cases, consider any internal node in 𝒱 , e.g., 𝑎 in Figure 5-4, with four

children. As the Figure shows, there are two possibilities for choosing 𝒱*(𝑎). Either it

contains 𝑎 (second case of recurrence 5.2), in which case it should not contain any other

node since every spatial object associated with any node in the subtree of 𝑎 is already

associated with 𝑎. Otherwise, if 𝑎 ̸∈ 𝒱*(𝑎) (third case of recurrence 5.2), then we should

select the best possible sets in each of 𝑑𝑖. The latter are nothing but 𝐷𝑖 (note that some of

them could be empty) since we have to cover all spatial objects associated with nodes in

𝒱𝐿 and, furthermore, any set of nodes in 𝑑𝑖 other than 𝐷𝑖 has a cost larger than that of 𝐷𝑖.

The cost of selecting 𝑎 in the first case would be simply 𝑐𝑜𝑠𝑡(𝑎). The cost in the second

case involves (i) the cost for selecting the 𝐷𝑖s as well as (ii) that of merging their 𝐸-𝑙𝑖𝑠𝑡s.

The cost for case (ii) is 0 if there is at most one 𝐸-𝑙𝑖𝑠𝑡 and otherwise, is proportional to the

total number of objects in all those 𝐸-𝑙𝑖𝑠𝑡s. 𝜇(𝑎) computes this exact quantity; notice that

𝜇(𝑎) = 0 if all but one 𝐷𝑖 are empty and one 𝐷𝑖 has only one node.

Since |𝛾(𝑎)| ≤ 4, 𝜇(𝑎) can be computed in constant time and so can be 𝜎*(𝑎), 𝜉*(𝑎),

𝒱*(𝑎) (assuming an efficient implementation of union operation for sets). Therefore, 𝒱* =

𝒱*(𝑟) can be computed in linear time in the number of nodes in the S-QuadTree.

Algorithm 6 gives pseudo-code of our dynamic programming algorithm that essentially

uses the recurrences in Theorem 5.3.1 to compute 𝒱* in an efficient manner. These optimal

sets of nodes are selected for each block of values retrieved from the driver sub-query to

be subsequently used for filtering.

Performing the Spatial Join: Next in order to perform spatial join STREAK retrieves

spatial objects from the driven sub-query. Naturally driven sub-query needs an optimal

plan for efficient execution. It determines the optimal plan adaptively using a technique

coined APS (explained next in Section 5.3.3). It then performs join between spatial ob-

jects retrieved from the driver and driven sub-queries using S-QuadTree starting at 𝒱* as

described below. At each level, objects retrieved from the driver and driven sub-queries —

coined driver object and driven object — can overlap with the MBR of none, one or several

nodes:

∙ Overlap with no MBR: If (i) driver object and driven objects do not overlap with

113

a common MBR, and (ii) driven object is not contained in the node overlapped by

driver object, then safely filter both driver and driven objects. This is because driver

and driven objects do not intersect with each other and hence can be excluded from

further consideration.

∙ Overlap with one or more MBRs: If (i) driver object and driven object overlaps

with a common MBR, and (ii) driven object is contained in the node overlapped by

driver object, then the algorithm recursively checks the children of the node till the

level where the diagonal length of the node’s MBR is equal to the query distance.

In brief the algorithms keeps finding whether the driver and driven objects intersect or not

till it reaches a level – where the diagonal length of the node’s MBR is equal to the query

distance.

Refinement Step: The spatial join gives pairs of candidate spatial objects, however

recall that STREAK approximated the spatial objects by minimum bounding rectangles

(MBRs), hence the distances measured need to be validated. Moving forward we pass

these candidate spatial objects to refinement step which is performed at the end of every

block-wise query execution cycle. During refinement step, STREAK validates the distance

join constraint using object’s exact representation.

5.3.3 Adaptive Query Processing for Top-𝐾 Spatial Joins

We begin by first discussing the data access choices available to STREAK. A naive way

would be to retrieve all tuples from the driver and driven sub-queries and join them. This

would naturally will be inefficient for complex queries on large datasets. Another alterna-

tive could be to join the driver and driven sub-queries in a tuple-at-a-time manner. This

would again be inefficient for complex RDF queries containing many joins because of (1)

increased number of function calls required (2) pruning performed by each join operator.

The third alternative is to use popular block-wise query execution, which amortizes access

costs over a number of tuples [109]. It is to be noted that AQP used in Quark-X 4 used

to only replace indexes in the driven sub-query with the operation tree remaining as-it-is,

114

whereas AQP used in STREAK changes the operation tree of the driven sub-query com-

pletely.

The complete block-wise query execution pipeline of STREAK is shown in Figure 5-5.

STREAK begins by accessing driver sub-query in block-wise manner, by retrieving block

𝑏𝑙𝑘. It then joins this block with the driven sub-query to find the complete score of tuples

based on the given ranking function. These scores are used to compute the threshold 𝜃,

which is the score of 𝑘th result tuple, and the algorithm stops after 𝑘 results have been

found with score above 𝜃 (for descending). Observe that the driven sub-query can joined

either block-wise (by retrieving block 𝑏𝑙𝑘′) or using full-scans. These plans, termed as

N-Plan and S-Plan respectively, are adaptively chosen at run-time based on cost-estimates

(described later).

Block-wise query processing brings in two more advantages during this phase. First,

operating at block-wise granularity offers a balance between low-overhead of selecting dif-

ferent plans for different portions of input relations (blocks), according to ranking functions,

and reasonable accuracy of cost estimation. Second, the block-wise bounds of numerical

attributes and characteristic set information stored in the nodes of the S-QuadTree enable

us to perform early termination and avoiding self-joins, respectively. The primary function

of our adaptive query plan generation algorithm, called Adaptive Processing for Spatial

filters or APS (pronounced “apps”), is thus to identify and route blocks of tuples through

customized plans based on statistical properties, relevant to the query execution strategies.

The traditional approach to query optimization involves choosing an optimal plan based

on statistics, and using that selected plan during query execution. This, however, would

end up processing and producing (1) far more intermediate results than is necessary (2) the

entire input cardinality – which is expensive. Previous top-𝑘 query optimization work [52]

attempted to solve top-𝑘 plan generation problem based on a strong assumption that each

tuple in driver sub-query is equally likely to join with tuples in driven sub-query. However,

this does not frequently hold in tightly coupled triple patterns found in SPARQL queries.

Instead, we argue that an adaptive query processing strategy (AQP) can be a better strategy

for these workloads, as for each block retrieved it will help terminate early and determine

the plan based on the selectivity of the block.

115

Challenges

Between an optimal plan selection of top-𝑘 spatial join queries with AQP and its corre-

sponding efficient execution, lies several challenges that need to be overcome.

1. In the case of top-𝑘 queries, where spatial join essentially comprises a self-join be-

tween two parts of a dataset, cost estimation is difficult.

2. Different regions of the data have distinct statistical characteristics and a single plan

for all regions performs poorly.

3. Early out feature of top-𝑘 queries requires estimation of input cardinalities of these

index scans thus making it even harder to choose an optimal plan, and in general,

poses many challenges in costing rank-join operators.

4. Given the verbose nature of RDF, finding optimal join order of SPARQL queries is

challenging because the number of possible query plans is in the order of factorial of

number of index scans required.

We will see in this section how the design of our indexes naturally enable us to devise

a more effective, adaptive execution strategy for query processing.

Plan Selection:

We address the above mentioned challenges in STREAK, by first breaking down the plan

selection problem into that of finding the least-cost for the driver plan and the driven plan.

We use an adaptive cost-based optimization approach to select the query plan which adap-

tively chooses the driven plan during query execution. Similar to commercial cost based

optimizers like SQL-Server we push filters deep in the query plan. STREAK allows us to

do spatial filtering using its S-Quad tree and numerical filtering using the early termination

condition of top-𝑘 queries. Amongst these two we choose the most selective filter. How

S-Quadtree and numerical predicates help in performing filtering is described next.

The need for adaptively choosing customized plans for driven sub-query can be well

motivated using our running example, which retrieves the top-most wine producing regions

116

Fetch block blk from Driver Plan (Wine)

UpperBound(blk)< θ
Output top-k

results

cost(S-Plan) < cost(N-Plan) Fetch block blk′ from N-Plan

No

Yes

No

Join Driver Plan & S-Plan

Join Driver Plan & N-Plan

Compute θ

Yes

UpperBound(blk′)< θ
No

Yes

Yes

(using S-Quadtree)

k results found &

k results found &

Figure 5-5: Query Processing Flow-Chart

that are located within 𝑑 𝑘𝑚𝑠 of a river. This involves a spatial join between regions

containing vineyards (driver sub-query) and rivers (driven sub-query). In our example,

the wine growing regions are the Gobi desert in China, which has no river flowing across

it, and Baden in Germany that has its vineyards directly overlooking the Rhine river. An

efficient implementation of top-𝑘 spatial distance join operator should therefore perform

spatial join with Gobi desert first, as the spatial join will help in filtering Gobi desert. We

call the driven plan generated by pushing spatial filtering using S-Quad tree deep in query

execution, as S-Plan. This is shown in Figure 5-6(B), with driver and driver sub-query

shown in Figure 5-6(C) and (D), respectively. Note that S-Plan significantly reduces query

execution time when the spatial join operator is highly selective, this is because STREAK

S-Quadtree helps perform early filtering.

Secondly, the spatial-join operator should check for early-termination first, when blocks

containing spatial regions like Baden are retrieved, as Baden is not the top-most wine grow-

ing region. Hence pushing numerical predicates deep in the query plan will help filter such

tuples. We call such a driven plan generated by pushing filtering using numerical predicates

deep in the query plan as an N-Plan, as shown in Figure 5-6(A), with its driver and driven

plans shown in Figure 5-6(C) and (E) respectively.

For top-𝑘 spatial join workloads both scenarios are highly common.

117

A

?wineRegion :hasProduction ?p

?wineRegion :grapeVariety ?v

?wineRegion :soilType ?s
Wine

Pesticide River River*Wine

B

?river :pollutedBy :pesticide

?river :hasMouth ?m

?river :source ?src

Wine

?pest :concentration ?c

?reif :includes ?pestName

Pesticide

River

APS C

D E

APSDriven
Plan

?river :pollutedBy :pesticide

?river :hasMouth ?m

?river :source ?src

River*

?reif :includes ?pestName

?pest :concentration ?c

Figure 5-6: Possible Plan Choices: (A) N-Plan, with rivers filtered first by numerical pred-
icate (pesticide concentration), (B) S-Plan, with a spatial join between vineyards and rivers
done first, (C) driver plan, (D) Plans supporting S-Plan heuristics, and (E) Plans supporting
N-Plan heuristics

STREAK then computes the cost of the two plans and routes the tuples through least

cost plan. STREAK’s block-wise query execution enables it to switch among the two plans

at runtime – with zero cost of switching plans at materialization points — points where next

blocks are retrieved and executed in driver sub-query. At these points STREAK performs the

spatial join between the newly retrieved blocks from the driver and driven plan respectively,

which means that the work done by earlier blocks does not go wasted. This helps STREAK

overcome the drawbacks of earlier top-𝑘 adaptive query processing approaches that wasted

substantial amounts of work at materialization points [52] and used limited AQP by switch-

ing only indexes at run-time [57]. In contrast, STREAK switches entire customized plans at

runtime.

Cost Model

We now discuss STREAK’s cost-model for choosing amongst driven plans. The cost func-

tion of our spatial join operator takes into account the cardinality of the spatial join. Greater

the cardinality of the spatial join, the greater we expect the number of candidate results

to be and thus higher the query execution time. We calculate the cardinality of the join

to be a product of the cardinality of spatial characteristic sets stored in the nodes of the

S-QuadTree, and the number of tuples retrieved from the driver plan (as discussed in sub-

118

section 5.3.2).

STREAK uses a simple cost model to estimate the cost of its customized N-Plan and

S-Plan. Recall that the N-Plan pushes numerical predicates deep in the query plan and uses

block-wise evaluation to achieve early-termination, while the S-Plan pushes spatial join

evaluation deep in the query plan and uses full-scans for evaluating the join. For the rest

of the section, we denote the time of execution of driven plan 𝑅 as 𝑇 (𝑅), and the result

cardinality as 𝐶(𝑅). Let 𝑅 and 𝑅𝑖 denote full and block-wise executions of S-Plan and

N-Plan, respectively. 𝑅𝑖 corresponds to 𝑅 when either (a) all blocks are retrieved, or (b)

early-termination is achieved. Putting 𝑅 and 𝑅𝑖 together, we have the following equation

where 𝑥 is the estimated number of blocks required to be retrieved before early-terminating

is achieved.

To estimate time cost,

𝑇 (𝑅) =

⎧⎨⎩𝑥.𝑇 (𝑅𝑖) : 𝑥 < 𝑅/𝑅𝑖

𝑇 (𝑅) : 𝑥 ≥ 𝑅/𝑅𝑖

(5.3)

We estimate 𝑅𝑖’s result cardinality as 𝐶(𝑅𝑖) = 𝑥.𝐶(𝑅)/𝑛𝑏, where ’𝑛𝑏’ is the number

of blocks of numerical predicate. The intuition of the equation is as follows: when number

of blocks is 1, then 𝐶(𝑅𝑖) is 𝐶(𝑅) i.e. it is equivalent to all intermediate results without

any early pruning. We assume that all buckets contribute to 𝐶(𝑅)’s results equally. So

when only a portion of them are selected, 𝐶(𝑅𝑖) is proportional to the fraction of blocks

that are selected for early termination, which is characterized by 𝑥/𝑛𝑏. To estimate ‘𝑥’, we

find all blocks whose upper bound is greater than the threshold.

We next route the tuples through the plan with the least cost, and thus at runtime seam-

lessly keep alternating between the two customized plans for each new block of tuples

retrieved from the driver sub-query. It may seem at first glance that the cost of N-Plan will

be lower than S-Plan as the cardinality of N-Plan is always less than equal to the cardinal-

ity of S-Plan. However, we found this to not be the case because repeated scans, owing to

block-wise query processing, increases the cost of N-Plan. We later show experimentally

in Section 5.5, that our proposed APS algorithm does in fact help select the least cost cus-

tomized plan, and accelerates query processing times by one to two order(s) in magnitude.

119

5.4 Evaluation Framework

STREAK is implemented in C++, compiled with g++-4.8 with -O3 optimization flag. All

experiments were conducted on a Dell R620 server with an Intel Xeon E5-2640 processor

running at 2.5GHz, with 64GB main-memory, and a RAID-5 hard-disk with an effective

size of 3TB. For all the experiments, the OS can use the remaining memory to buffer

disk pages. In our experimental evaluation, we report cold-cache timings after clearing all

filesystem caches and by repeatedly running the query processor with the same query 5

times, and taking the average of the final 3 runs. For warm cache numbers, we repeat the

same procedure but without dropping caches.

We perform a direct comparison of STREAK with other full-fledged systems by ensuring

the use of spatial indexes for the workloads used in the chapter. In Virtuoso, we employ

a two dimensional R-tree implementation for indexing the spatial data and on postgres we

have built the “gist” (generalized search tree) index for supporting spatial data. Postgres

supports varied geometry types like POINTS, POLYGONS and LINESTRINGS, while

Virtuoso only supports POINT geometries [61]. The number of results returned by Postgres

and Virtuoso is constrained by using LIMIT ‘k’ in the query.

5.4.1 Datasets

We used two widely used, real-world datasets: YAGO3 Core [65] and Linked Geo Data(LGD) [11]

for evaluating the performance of STREAK in comparison with other systems. LGD con-

tains freely available collaboratively collected data from Open Street Map project. YAGO

contains facts extracted from Wikipedia, GeoNames and WordNet. Table 5.1 shows the

characteristics of the two datasets. We observe that YAGO and LGD datasets contain 85

million and 324 million quads respectively. The size of the quad-tree used for storing

YAGO and LGD datasets, is 37 MB and 119 MB respectively, about 0.04% and 2% of size

of raw data. This is despite the fact that 50 percent of facts in LGD contain description

about spatial objects, consisting of rich suite of geometries such as POINTS, POLYGONS

and LINESTRINGS.

YAGO [65] has supplementary information like time and confidence scores attached to

120

Table 5.1: Dataset Characteristics
Dataset quads points lineStrings polygons

YAGO 85𝑀 453𝐾 0 0
LGD 30𝑀 590𝐾 2.6𝑀 264𝐾

facts, representing the confidence of the extraction algorithm in extracting facts. We extend

this to create a more realistic scenario, where a confidence score is attached to facts using

exponential and uniform distributions. We find that results with uniform distribution follow

a similar trend, so for sake of brevity we report the results only for exponential distribution.

5.4.2 Benchmark Query Workloads

Numerous performance benchmarks have been created in the recent years for processing

RDF / SPARQL queries. However, none of them cater to queries involving reification (or

named graphs), spatial and top-𝑘 evaluation. Therefore, we design a set of benchmark

queries containing query features that have been found important in literature [7, 61, 57],

namely — structural and statistical features. Note that the features used for benchmarking

STREAK are same as Quark-X described in Section 4.9.2 with the addition of the following

spatial feature:

Type: type of spatial extent e.g. polygon, line string, point, etc. This feature is

interesting because it tests the ability of the spatial database to deal with different types

spatial objects with varying complexity.

Table 5.2 shows the features of the 8 benchmark queries which we have created for

both LGD and YAGO datasets. While YAGO consists of only point objects, LGD consists

of different types of spatial objects and hence, the benchmark for LGD is more diverse

comprising spatial joins of different object types. For both data sets, it is noteworthy that

these queries provide a comprehensive coverage of all key features. For simplicity, we

present results for linear ranking function, although our system STREAK is aimed at convex

monotonic functions.

121

Query id Shape Type Left Card. Right Card. # TP #
Quant
TP

Non
Quant
TP

Join
Vertex
Count

Join Ver-
tex Type

1 Complex Point Polygon 3, 485 13, 090 6 2 4 4 (SS, RS)
2 Complex Point Point 3, 485 1, 189 6 2 4 4 (SS, RS)
3 Complex Point Point 3, 485 524 7 2 3 4 (SS, RS)
4 Complex Point Point 25, 617 524 9 2 7 4 (SS, RS)
5 Complex Point Polygon 13, 090 524 9 2 7 4 (SS, RS)
6 Complex Point LineString 13, 090 2, 601, 040 6 2 4 4 (SS, RS)
7 Complex LineString Point 3, 485 2, 601, 040 6 2 4 4 (SS, RS)
8 Complex Polygon LineString 13, 090 2, 601, 040 7 2 5 4 (SS, RS)

(a) LGD

Query id Shape Type Left Card. Right Card. # TP #
Quant
TP

Non
Quant
TP

Join
Vertex
Count

Join Vertex
Type

1 Star Point Point 24, 749 294, 969 6 2 4 2 (SS)
2 Star Point Point 106 294, 969 8 3 5 2 (SS)
3 Star Point Point 27 294, 969 7 2 5 2 (SS)
4 Star Point Point 266 294, 969 8 3 5 2 (SS)
5 Complex Point Point 164, 073 468, 041 8 2 6 6 (OS, RS)
6 Complex Point Point 3, 740 294, 969 7 2 5 3 (OS, SS, RS)
7 Complex Point Point 105 598, 063 6 2 4 3 (SS, RS)
8 Complex Point Point 64, 295 64, 295 7 3 4 5 (OS, RS, SS)

(b) YAGO
Table 5.2: Characteristics of Benchmark Queries

122

5.5 Experimental Results

In this section, we present a comprehensive experimental evaluation of STREAK along the

following dimensions: (A) the performance of spatial filter processing. Within this, we

study (i) the impact of sideways information passing and (ii) the performance of using

the S-QuadTree based join over synchronous R-tree traversal based join. (B) end-to-end

holistic performance combining all features of STREAK (C) the advantages of early-out

top-𝑘 processing in STREAK. Unless stated otherwise the results we present in this section

correspond to a default setting of 𝑘 = 100.

5.5.1 Performance of Spatial Join Processing in STREAK

Impact of Sideways Information Passing and Optimal Node-Selection Algorithm

The node selection algorithm determines the optimal set of nodes of the S-QuadTree in or-

der to determine the I-Range and E-list objects, which subsequently helps filter and narrow

down the driven sub-query in sideways information passing style. Note that we use S-

QuadTree by keeping it fully memory-resident (although it is serialized to disk). Therefore

we study the impact of node selection algorithm only under warm-cache setting. Figure 5-

7 shows the performance with and without the use of sideways information passing (SIP),

powered by the node selection algorithm over S-QuadTree. Specifically, these plots show

the time, in milliseconds plotted along Y-axis in log-scale, taken for completing all the

benchmark queries over YAGO and LGD datasets (X-axis).

Looking at individual queries in Fig. 5-7, we observe considerable improvement in

query execution performance for all queries over YAGO dataset as well as 𝑄6 & 𝑄8 of

LGD when SIP and node selection algorithms are enabled. This is due to the fact that these

queries are highly selective at the spatial join, making the use I-Range and E-list objects

for filtering the intermediate results from the driven plan highly effective. It can reduce the

query processing time by upto 3 orders of magnitude. On the other hand, the queries 𝑄1 to

𝑄5 in LGD have low selectivity, with very little impact of SIP in skipping irrelevant entries

from the driven plan.

123

 100

 1000

 10000

 100000

1 2 3 4 5 6 7 8

Ti
m

e
in

 m
illi

se
co

nd
s

Query Id

STREAK: Node Selection+SIP ON
Node Selection+SIP OFF

(a) LGD

 100

 1000

 10000

 100000

1 2 3 4 5 6 7 8

Ti
m

e
in

 m
illi

se
co

nd
s

Query Id

STREAK: Node Selection+SIP ON
Node Selection+SIP OFF

(b) YAGO
Figure 5-7: Effect of Sideways Information Passing

 1000

 10000

 100000

 1x106

1 2 3 4 5 6 7 8N
um

be
r o

f C
an

di
da

te
 R

es
ul

ts

Query Id

STREAK: S-Quadtree Sync R-tree

(a) LGD

 100

 1000

 10000

 100000

 1x106

1 2 3 4 5 6 7 8N
um

be
r o

f C
an

di
da

te
 R

es
ul

ts

Query Id

STREAK: S-Quadtree Sync R-tree

(b) YAGO
Figure 5-8: S-QuadTree Vs. Sync. R-tree for Spatial Join

124

Comparison of Spatial Join Algorithms

In the next set of experiments, we compare the performance of spatial join processing using

S-QuadTree as opposed to using synchronous R-tree traversal based spatial join algorithm.

Towards this, we incorporated the state of the art implementation of synchronous R-tree

traversal join algorithm released by Sowell et al. [87] into the STREAK system, and pro-

vided a run-time switch that can choose synchronous R-tree in place of S-QuadTree.

Figure 5-8 plots the number of candidate results generated by the two algorithms (along

Y-axis in log-scale) for all the benchmark queries. From these results it is immediately

apparent that S-QuadTree generates smaller number of candidates, sometimes 2 orders of

magnitude less –e.g., as in LGD 𝑄6 and YAGO 𝑄5– than sync. R-tree based method. This

can be attributed to the following advantages of S-QuadTree:

∙ The use of characteristic set information within the nodes of the S-QuadTree helps

to reduce the number intermediate results significantly in comparison to standard spatial

indexes such as R-trees.

∙ Encoded identifiers are able to achieve a limited granularity owing to the fixed size

of identifiers. These identifiers when decoded back suffer from a loss of precision, which

in-turn affects the filtering efficiency of spatial join algorithms such as Synchronous R-

tree traversal. However, STREAK owing to its use of I-Range and E-list objects is able to

overcome this situation and is thus able to filter efficiently.

∙ While both spatial join methods lack a well defined way of filtering the results in the

driven plan as it is, the use of sideways information passing with S-QuadTree significantly

reduces the cardinality of intermediate results.

5.5.2 Comparison with Database Engines

We now turn our attention to the comparison of end-to-end system performance of STREAK

with two state of the art publicly available database engines. Specifically, we compare with

(i) PostgreSQL [78]: a relational database system that has an excellent in-built support for

spatial indexing via its generalized search tree (GiST) framework; and (ii) Virtuoso [93]:

a state of the art commercial RDF processing engine that has a number of performance

125

Table 5.3: On-Disk Database Size for YAGO and LGD
Database Engines YAGO LGD

Size (GB) Size (GB)

STREAK 14 6.4
PostgreSQL 54 22
Virtuoso 11 —NA—

optimizations such as vectorization as well as cache-conscious processing specifically use-

ful for RDF/SPARQL processing. Note that our current implementation of STREAK has

neither the vectorized processing nor the cache-conscious features, although these are part

of our future work plans.

Before we discuss the query processing performance, we briefly present the effective

size of databases created by the three engines summarized in Table 5.3. As we already

mentioned in Section 5.4, Virtuoso could not be used for LGD dataset since it lacks sup-

port for varied geometry types such POINTS, POLYGONS and LINESTRINGS. At 11 GB

of database size, Virtuoso, which employs highly compressed encoding, is the most com-

pact database for YAGO. While STREAK also has a comparable database size (14 GB),

PostgreSQL on the other hand has a significantly larger database size –almost 5× larger.

Similar observations also hold for LGD between STREAK and PostgreSQL database sizes.

We summarize the comparative query processing performance of the three engines in

Figure 5-9 and Figure 5-10 for warm cache and cold cache, respectively. The Y-axis in

these plots corresponds to the end-to-end wall-clock time in milliseconds for each query,

and is plotted in log-scale.

From these results, we can observe that STREAK outperforms both PostgreSQL and

Virtuoso on all queries, by a significant margin. For a number of queries –viz., 𝑄6 −𝑄8 of

LGD and 𝑄5, 𝑄7, 𝑄8 of YAGO – PostgreSQL could not complete within its allotted time.

Virtuoso failed to complete for 𝑄5 of YAGO as well. The poor performance of PostgreSQL

can be attributed to its preference to choose nested loop joins, due to its relatively weak cost

models for RDF. For Virtuoso, however, we cannot comment on its poor performance as it

is closed source and no published work describes its functionality and query optimization

techniques.

126

 100

 1000

 10000

 100000

 1x106

1 2 3 4 5 6 7 8

Ti
m

e
in

 m
illi

se
co

nd
s

Query Id

STREAK Postgres

(a) LGD

 100

 1000

 10000

 100000

 1x106

1 2 3 4 5 6 7 8

Ti
m

e
in

 m
illi

se
co

nd
s

Query Id

STREAK Postgres Virtuoso

(b) YAGO
Figure 5-9: Performance of STREAK Vs. PostgreSQL and Virtuoso in Warm Cache

 1000

 10000

 100000

 1x106

1 2 3 4 5 6 7 8

Ti
m

e
in

 m
illi

se
co

nd
s

Query Id

STREAK Postgres

(a) LGD

 100

 1000

 10000

 100000

 1x106

1 2 3 4 5 6 7 8

Ti
m

e
in

 m
illi

se
co

nd
s

Query Id

STREAK Postgres Virtuoso

(b) YAGO
Figure 5-10: Performance of STREAK Vs. PostgreSQL and Virtuoso in Cold Cache

127

 1000

 10000

 100000

 1x106

k=1 k=10 k=50 k=100G
.M

. o
f E

xe
cu

tio
n

Ti
m

e
in

 m
se

c.

Query Id

STREAK
N-Plan

S-Plan
Postgres

LGD on Warm Cache
Figure 5-11: Performance with Varying 𝑘

5.5.3 Comparison with varying 𝑘

Finally, we briefly present the performance evaluation when 𝑘 value is varied. Figure 5-

11 and Figure 5-12 plots the geometric mean of runtime of all queries in the benchmark

for 𝑘 = {1, 10, 50, 100} in warm-cache and cold-cache scenario for LGD, respectively.

One can observe that STREAK outperforms PostgreSQL by a large margin for all values 𝑘.

PostgreSQL is unaffected by the variation in the value of 𝑘 since it simply performs the full

evaluation followed by sort in all cases.

It is noteable to see the performance of our APS algorithm in comparison to fixed plans

namely, N-Plan and S-Plan. For 𝑘 = 1, 10 the N-Plan outperforms the S-Plan; while for 𝑘 =

50, 100 the S-Plan outperforms the N-Plan. This is because of the need for scanning fewer

blocks for lower values of 𝑘, thus making N-Plan a cheap option. While many blocks need

to be scanned for larger values of 𝑘, thus making S-Plan a better option. It is noteworthy

that STREAK shows outstanding performance in comparison to both S-Plan and N-Plan,

owing to better plan selection and switching at run-time.

128

 1000

 10000

 100000

 1x106

k=1 k=10 k=50 k=100G
.M

. o
f E

xe
cu

tio
n

Ti
m

e
in

 m
se

c.

Query Id

STREAK
Numerical first

Spatial first
Postgres

LGD on Cold Cache
Figure 5-12: Performance with Varying 𝑘

5.6 Related Work

In this section, we provide a full overview of techniques that overlap with the core aspects

of STREAK. These primarily relate to RDF spatial joins, top-𝑘 joins, spatial top-𝑘 joins and

adaptive query processing.

Spatial Joins

We now look at the work done specifically on spatial joins in both relational and RDF

settings.

Parliament [14] is a spatial RDF engine built on top of Jena [53]. Parliament sup-

ports GeoSPARQL features and uses R-tree as the spatial index. Additional techniques

to enhance spatial queries, as adopted by Geo-store [97] and in RDF engine proposed by

Liagouris et al. [61] involve encoding spatial data by employing Hilbert space-filling curves

for preserving spatial locality.

Another system, S-Store [98], extends state-of-the-art RDF store gStore [108], by in-

dexing data based on their structure. Subsequently, queries are accelerated by pruning

based on both spatial and semantic constraints in the query. Yet another spatiotemporal

storage system is g𝑠𝑡-Store [99], which is an extension of gStore [108]. It processes spatial

queries using its tree-style index ST-tree, with a top-down search algorithm.

129

However, the above systems, while capable of handling spatial filters in the query, are

not directly amenable for either top-𝑘 processing or adaptive querying. They miss out fea-

tures to early-prune intermediate results and to process unsorted orders on spatial attributes

(imposed by top-𝑘 query processing), which are critical for optimizing the workloads seen

here. STREAK in stark contrast provides efficient ways of supporting top-𝑘 spatial joins

using its customized S-QuadTree and query processing algorithms. This helps STREAK

outperform state-of-the-art systems like Virtuoso by a large margin as shown experimen-

tally in sub-section 5.5.2.

Relational approaches such as Synchronous R-tree traversal [24] and TOUCH [71] ap-

ply spatial-join algorithm on hierarchical tree-like data structure. TOUCH is an in-memory

based technique, which uses R-tree traversal for evaluating spatial joins. STREAK dif-

fers from TOUCH in using identifier encoding and semantic information embedded within

the datasets for early-pruning, and by utilizing statistics stored within the spatial index to

choose the query plan at runtime for improving performance. Sync. R-tree traversal builds

R-tree indexes over the datasets participating in the spatial join. Starting from the root of the

trees, the two datasets are then synchronously traversed to check for intersections, with the

join happening at the leaf nodes. Inner node overlap and dead space are two shortcomings

in this technique, which are addressed with STREAK’s S-QuadTree that uses space-oriented

partitioning. We compare STREAK with sync. R-tree traversal in Section 5.5.

on-indexed approaches such as Plane-Sweep algorithm [30], and Partition-based Spa-

tial Merge Join(PBSM) [73] apply spatial join algorithms on non-indexed inputs. PBSM is

a disk-based algorithm, which employs grid-based partitioning of the dataset, with spatial

objects being replicated in overlapping cells of the grid. To evaluate the query, the plane-

sweep algorithm is used, which sorts the dataset in one dimension and sweeps a line across

them in the sorted dimension. PBSM suffers from data skew which increases the num-

ber of comparisons required, and plane-sweep loses locality along the second dimension.

STREAK on the other hand avoids these problem by (1) encoding identifiers and minimaly

replicating spatial objects in nodes of the S-QuadTree. Replication helps in storing spatial

objects at the finest granularity, and hence helps improve the filtering capability of spatial

join algorithms. Note that STREAK’s smart use of encoded identifiers helps achieve this at

130

the cost of minimal memory footprint (2) speeding-up comparisons using the encoded iden-

tifiers with binary search, as opposed to finding intersections amongst Minimum Bounding

Rectangles. The effectiveness of STREAK against the above approaches were captured in

Section 5.5.

Top-𝑘 Joins

Hash-based Rank Join (HRJN) [52] and Nested Loop Rank Join (NRJN) [49] are two

widely used top-𝑘 join algorithms in the relational world. HRJN accesses objects from

left (or right) side of join and joins them with tuples seen so-far from right (or left) side of

join. All join results are fed to a priority queue, which outputs the results to the users if they

are above threshold, thus producing results incrementally. Nested Loop Rank Join (NRJN)

algorithm is similar to HRJN, except that it follows a nested loop join strategy instead of

buffering join inputs. We do not compare STREAK with a general top-𝑘 join algorithms,

HRJN and NRJN, since such top-𝑘 operators for such spatial workloads have been shown

to perform poorly when compared to a block-based algorithm [79] and instead compare

with the state-of-the-art spatial top-𝑘 algorithm.

Quark-X [57] is a recently proposed top-𝑘 query processing engine, which uses sum-

marized numerical indexes for retrieving and ranking RDF facts. Quark-X showed exper-

imentally that it outperformed the other top-𝑘 query processing systems by a large mar-

gin. However, Quark-X is suited only for 1-dimensional data, as its techniques can not

be applied for multi-dimensional data (sorted order is a requisite for Quark-X). Hence, its

approach leads to many unnecessary comparison operations in the non-sorted dimension.

STREAK in contrast reduces the number of comparisons required drastically, by using its

schema-aware S-QuadTree.

Spatial Top-𝑘 Joins

Returning the top-𝑘 results on spatial queries, where the final results are ranked by using

a distance metric has been already studied by Ljosa, et al. [63]. However, such ranking

mechanism often have to be restricted to specific, pre-defined aggregation functions. In

comparison, STREAK attempts to solve a more challenging problem with the spatial con-

straint specified in the join predicate.

To the best of our knowledge, the work closely related to STREAK is done by Qi et

131

al., [79]. In this approach Qi et al., retrieve blocks of data ordered by object scores,

from input datasets, which are then spatially joined. Their approach: (1) requires data to be

sorted based on the ranking function, making it unsuitable for arbitrary user-defined ranking

function. STREAK, in contrast, does not impose any such limitation on the data. (2) only

supports spatial joins and would require non-trivial modifications for supporting complex

patterns seen in SPARQL queries [101, 69, 70]. STREAK in comparison evaluates complex

queries efficiently. (3) uses only block-wise retrieval for joining. Block-wise retrieval is

expected to be fast only if the results are found in first few block accesses. However,

such an approach suffers high overheads when blocks deep in the sorted collections need

to be retrieved. STREAK circumvents this drawback by adaptively switching between its

customized plans at run-time (described in sub-section 5.3.3). (4) incur additional index

creation cost at runtime, as they build spatial indexes at run-time. STREAK, on the other

hand, builds its spatial index S-QuadTree during pre-processing stage, thus incurring zero

index creation overhead during query processing.

Adaptive Query Processing

Eddies [13] and Content Based Retrieval (CBR) [17] are two state-of-the-art approaches

which explored AQP for switching plans during query execution. Both these approaches

use random tuples for profiling, relying on a machine-learning based solution to model

routing predictions. Our work directly contrasts ML-based approaches by using statistics

for each block of spatial data, which helps in determining the selectivity of spatial join op-

erator. By using fine-grained block-level statistics, we mitigate the errors that are typically

associated with a model-based approach, especially when there are many joins involved.

Additionally, unlike CBR, which has high routing and learning overhead, our spatial AQP

algorithm incurs a very small routing overhead, owing to cost estimate calculations for

only the customized plans. We validated this argument and found the overhead of AQP to

be very small — just 5-10% of the overall overhead. Finally, routing predictions of Eddy

and CBR depend on the model used and the size of the training datasets, while our statis-

tics based approach does not require modeling and is relatively unaffected by the training

dataset size.

132

5.7 Discussion & Outlook

This chapter introduces STREAK, an efficient top-k query processing engine with spatial

filters. The novel contributions of this work are its soft-schema aware S-QuadTree spatial

index, new spatial join algorithm which prunes the search space using its optimal node

selection algorithm, and adaptive query plan generation algorithm called APS which adap-

tively switches query plan at runtime with very low overhead. We show experimentally

that STREAK outperforms popular spatial join algorithms as well state-of-the-art end-to-

end engines like PostgreSQL and Virtuoso.

5.7.1 Outlook

The present work opens up several exciting directions for future research, some of which

are discussed below:

∙ As part of future work, an exciting direction could be to design a top-𝑘 RDF reasoner

with spatial filters. Growing volume of RDF data coupled with the need for early

termination in ranking systems entail efficiency and scalability challenges, when de-

veloping top-𝑘 reasoning systems. Therefore investigating the design of top-𝑘 RDF

reasoner with spatial filters is an attractive direction for future research.

∙ Investigating the performance of S-QuadTree in distributed networks for join-ahead

pruning and for performing the spatial join is another interesting direction for future

research.

∙ Another appealing research direction – critical for many real world applications – is

to study top-𝑘 query processing on moving objects. Although STREAK supports bulk

updates, its comprehensive evaluation with frequent in-place updates is an interesting

open issue.

133

134

Chapter 6

Conclusions and Future Work

In this thesis we presented efficient frameworks for executing SPARQL queries over RDF

datasets containing higher order relationships associated with facts. We comprehensively

tested the developed frameworks and showed their superior performance against state-of-

the-art systems over real world datasets .

RQ-RDF-3X [56] : RQ-RDF-3X presents extensions to triple-store style RDF storage

engines to support reification and quads. In RQ-RDF-3X, we support meta-knowledge

about triples by assigning a unique identifier (𝑅) to each (𝑆, 𝑃,𝑂) triple. Thus, the funda-

mental change required is to support an additional field (𝑅) that has triple identifier. The

inclusion of this additional field requires more joins, thus complicating query optimization

and increasing query execution cost. This requires careful re-thinking of existing indexing

and query optimization approaches adopted by state-of-the-art triple stores. We demon-

strate experimentally that RQ-RDF-3X achieves one to two orders of magnitude speed-up

over both commercial and academic engines such as Virtuoso [93], RDF-3X [69], and

Jena-TDB [53] on real-world datasets - YAGO and DBpedia.

QUARK-X [57]: QUARK-X is an efficient top-𝑘 query processing framework for RDF

quad stores. The contributions of QUARK-X include novel in-memory synopsis indexes

for quantifiable predicates. This is in the same spirit as building impact-layered indexes in

information retrieval but carefully redesigned for use for ranking in reified RDF. Addition-

ally, QUARK-X proposes a novel Rank-Hash Join (RHJ) algorithm designed to utilize the

synopsis indexes, by selectively performing range scans for quantifiable facts early on –

135

this is crucial to the overall performance of SPARQL queries which involve a large number

of joins. We show experimentally that QUARK-X achieves one to two magnitude speed-up

over baseline solutions on YAGO and DBpedia datasets.

STREAK: STREAK is an efficient engine for processing top-𝑘 SPARQL queries with

spatial filters. STREAK introduces various novel features such as a careful identifier en-

coding strategy for spatial and non-spatial entities for reducing storage cost and for early

pruning, the use of a semantics-aware quad-tree [82] index that allows for early-termination

and a clever use of adaptive query processing with zero plan-switch cost. It is designed to

support a wide-range of queries with spatial filters including complex joins, top-𝑘, and

higher-order relationships over spatially enriched databases. For experimental evaluations,

we focused on top-𝑘 distance join queries and demonstrated that STREAK consistently out-

performs popular spatial join algorithms as well as state of the art commercial systems such

as Virtuoso.

In summary, in this thesis we argue with empirical support that while RDF triple stores

have been optimized for traditional RDF datasets, it is becoming more and more appar-

ent that we need to support many sophisticated applications that use reification / quads.

Signifying scope for further improving the RDF data management. These applications in-

clude knowledge representation applications that were the original driving force of RDF.

Furthermore modern knowledge extraction systems such as HighLife, NELL, OpenIE etc.,

not only generate a triple but also associate confidence/context. And in some cases, the

relationships themselves have higher arity. Therefore, the storage model and query opti-

mizations we suggest in this thesis are of practical value in supporting applications built on

top of such knowledge bases.

6.1 Future Work

The problems addressed in this work are only three among many that arise in the context

of RDF data management. There are many opportunities for future research. We describe

succinctly some promising and interesting directions below.

Query Optimizer: QUARK-X uses a heuristic-based model for plan generation, in

136

which quantifiable predicates are pushed deep in the query plan. However a heuristic based

query optimizer may not always choose the optimal plan. Therefore the need for the query

optimizer to be significantly improved for top-𝑘 queries.

RDF graph reasoner: As part of the future work it will be challenging to develop a

RDF-graph reasoner which supports inference over RDF quads. Our graph reasoner would

also have support for a plethora of queries such as top-𝑘, spatial and temporal queries.

Decentralized processing: Some applications require decentralized processing, we

believe that it is possible to extend our indexing techniques into a decentralized setup.

137

138

Appendix A

Queries

A.1 RQ-RDF-3X Benchmark Queries

A.1.1 YAGO

Query 1 (SPARQL):

BASE <http://yago-knowledge.org/resource/> .

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

SELECT ?a?c

WHERE {

?r rdf:subject ?a.

?r rdf:predicate <http://yago-knowledge.org/resource/isConnectedTo>.

?r rdf:object <http://yago-knowledge.org/resource/Shenyang>.

?r <http://yago-knowledge.org/resource/byTransport> ?c.

?c <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://yago-

knowledge.org/resource/wikicategory_Airlines_established_in_1992>.

?c <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://yago-

knowledge.org/resource/wikicategory_Airlines_of_the_People’

s_Republic_of_China>

}

Query 1 (SQL):

select

d1.stringvalue,

139

d2.stringvalue

from orpsnumericyago2 n1,

orpsnumericyago2 n2,

orpsnumericyago2 n3,

orpsnumericyago2 n4,

dictionaryFull d1,

dictionaryFull d2

where

n1.predicate=(select id from dictionaryFull where

stringvalue=’"http://yago-knowledge.org/resource/

isConnectedTo"’) and

n1.object=(select id from dictionaryFull where

stringvalue=’"http://yago-knowledge.org/resource/

Shenyang"’) and

n1.reification=n2.subject and

n2.predicate=(select id from dictionaryFull where

stringvalue=’"http://yago-knowledge.org/resource/

byTransport"’) and

n2.object=n3.subject and

n3.predicate=(select id from dictionaryFull where

stringvalue=’"http://www.w3.org/1999/02/22-rdf-

syntax-ns#type"’) and

n3.object=(select id from dictionaryFull where

stringvalue=’"http://yago-knowledge.org/resource/

wikicategory_Airlines_established_in_1992"’) and

n2.object=n4.subject and

n4.predicate=(select id from dictionaryFull where

stringvalue=’"http://www.w3.org/1999/02/22-rdf-

syntax-ns#type"’) and

n4.object=(select id from dictionaryFull where

stringvalue=’"http://yago-knowledge.org/resource/

wikicategory_Airlines_of_the_People’’

s_Republic_of_China"’) and

n1.subject=d1.id and

n2.object=d2.id;

140

Query 2 (SPARQL):

BASE <http://yago-knowledge.org/resource/> .

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

SELECT ?a?b?c?e?d

WHERE {

?r rdf:subject ?a.

?r rdf:predicate <http://yago-knowledge.org/resource/

holdsPoliticalPosition>.

?r rdf:object <http://yago-knowledge.org/resource/Governor_of_New_York

>.

?r <http://yago-knowledge.org/resource/hasPredecessor> ?b.

?r <http://yago-knowledge.org/resource/hasSuccessor> ?c.

?r1 rdf:subject ?c.

?r1 rdf:predicate <http://yago-knowledge.org/resource/hasWonPrize>.

?r1 rdf:object ?e.

?r1 <http://yago-knowledge.org/resource/extractionSource> ?d

}

Query 2 (SQL):

select

d1.stringvalue,

d2.stringvalue,

d3.stringvalue,

d4.stringvalue,

d5.stringvalue

from

orpsnumericyago2 n1,

orpsnumericyago2 n2,

orpsnumericyago2 n3,

orpsnumericyago2 n4,

orpsnumericyago2 n5,

dictionaryFull d1,

dictionaryFull d2,

dictionaryFull d3,

dictionaryFull d4,

dictionaryFull d5

141

where

n1.predicate=(select id from dictionaryFull where stringvalue=

’"http://yago-knowledge.org/resource/holdsPoliticalPosition"

’) and

n1.object=(select id from dictionaryFull where stringvalue=’"

http://yago-knowledge.org/resource/Governor_of_New_York"’)

and

n1.reification=n2.subject and

n2.predicate=(select id from dictionaryFull where stringvalue=’

"http://yago-knowledge.org/resource/hasPredecessor"’) and

n1.reification=n3.subject and

n3.predicate=(select id from dictionaryFull where stringvalue=’"

http://yago-knowledge.org/resource/hasSuccessor"’) and

n3.object=n4.subject and

n4.predicate= (select id from dictionaryFull where stringvalue=

’"http://yago-knowledge.org/resource/hasWonPrize"’) and

n4.reification=n5.subject and

n5.predicate=(select id from dictionaryFull where stringvalue=’"

http://yago-knowledge.org/resource/extractionSource"’) and

n1.subject=d1.id and

n2.object=d2.id and

n3.object=d3.id and

n4.object=d4.id and

n5.object=d5.id;

Query 3 (SPARQL):

BASE <http://yago-knowledge.org/resource/> .

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

SELECT ?a?b?c?d

WHERE {

?a <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://yago-

knowledge.org/resource/wikicategory_U.S.

_Presidents_surviving_assassination_attempts>.

?a <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://yago-

knowledge.org/resource/

142

wikicategory_Politicians_with_physical_disabilities>.

?r rdf:subject ?a.

?r rdf:predicate <http://yago-knowledge.org/resource/hasWonPrize>.

?r rdf:object ?b. ?r <http://yago-knowledge.org/resource/occursSince>

?c.

?r <http://yago-knowledge.org/resource/extractionSource> ?d

}

Query 3 (SQL):

select

d1.stringvalue,

d3.stringvalue,

d4.stringvalue,

d5.stringvalue

from

orpsnumericyago2 n1,

orpsnumericyago2 n2,

orpsnumericyago2 n3,

orpsnumericyago2 n4,

orpsnumericyago2 n5,

dictionaryFull d1,

dictionaryFull d3,

dictionaryFull d4,

dictionaryFull d5

where

n1.predicate=(select id from dictionaryFull where stringvalue=’"

http://www.w3.org/1999/02/22-rdf-syntax-ns#type"’) and

n1.object=(select id from dictionaryFull where stringvalue=’"

http://yago-knowledge.org/resource/wikicategory_U.S.

_Presidents_surviving_assassination_attempts"’) and

n1.subject=n2.subject and

n2.predicate=(select id from dictionaryFull where stringvalue=’"

http://www.w3.org/1999/02/22-rdf-syntax-ns#type"’) and

n2.object=(select id from dictionaryFull where stringvalue=’"

http://yago-knowledge.org/resource/

wikicategory_Politicians_with_physical_disabilities"’) and

143

n1.subject=n3.subject and

n3.predicate=(select id from dictionaryFull where stringvalue=’"

http://yago-knowledge.org/resource/hasWonPrize"’) and

n3.reification=n4.subject and

n4.predicate=(select id from dictionaryFull where stringvalue=’"

http://yago-knowledge.org/resource/occursSince"’) and

n3.reification=n5.subject and

n5.predicate=(select id from dictionaryFull where stringvalue=’"

http://yago-knowledge.org/resource/extractionSource"’) and

n1.subject=d1.id and

n3.object=d3.id and

n4.object=d4.id and

n5.object=d5.id;

Query 4 (SPARQL):

BASE <http://yago-knowledge.org/resource/> .

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

SELECT ?a?a1?c

WHERE {

?r rdf:subject ?a.

?r rdf:predicate <http://yago-knowledge.org/resource/playsFor>.

?r rdf:object <http://yago-knowledge.org/resource/Spain_women’

s_national_football_team>.

?r <http://yago-knowledge.org/resource/occursSince> ?c.

?r1 rdf:subject ?a1.

?r1 rdf:predicate <http://yago-knowledge.org/resource/playsFor>.

?r1 rdf:object <http://yago-knowledge.org/resource/Spain_women’

s_national_football_team>.

?r1 <http://yago-knowledge.org/resource/occursSince> ?c

}

Query 4 (SQL):

select

d1.stringvalue,

d3.stringvalue,

d2.stringvalue

144

from

orpsnumericyago2 n1,

orpsnumericyago2 n2,

orpsnumericyago2 n3,

orpsnumericyago2 n4,

dictionaryFull d1,

dictionaryFull d3,

dictionaryFull d2

where

n1.predicate=(select id from dictionaryFull where stringvalue=’"

http://yago-knowledge.org/resource/playsFor"’) and

n1.object=(select id from dictionaryFull where stringvalue=’"

http://yago-knowledge.org/resource/Spain_women’’

s_national_football_team"’) and

n2.subject=n1.reification and

n2.predicate=(select id from dictionaryFull where stringvalue=’"

http://yago-knowledge.org/resource/occursSince"’) and

n3.predicate=(select id from dictionaryFull where stringvalue=’"

http://yago-knowledge.org/resource/playsFor"’) and

n3.object=(select id from dictionaryFull where stringvalue=’"

http://yago-knowledge.org/resource/Spain_women’’

s_national_football_team"’) and

n4.subject=n3.reification and

n4.predicate=(select id from dictionaryFull where stringvalue=’"

http://yago-knowledge.org/resource/occursSince"’) and

n2.object=n4.object and

n1.subject=d1.id and

n3.subject=d3.id and

n2.object=d2.id;

Query 5 (SPARQL):

BASE <http://yago-knowledge.org/resource/> .

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

SELECT ?a?c?d

WHERE {

?r rdf:subject ?a.

145

?r rdf:predicate <http://yago-knowledge.org/resource/isConnectedTo>.

?r rdf:object <http://yago-knowledge.org/resource/

Kansas_City_International_Airport>.

?r <http://yago-knowledge.org/resource/byTransport> ?c.

?a <http://yago-knowledge.org/resource/linksTo> ?b.

?r1 rdf:subject ?b.

?r1 rdf:predicate <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>.

?r1 rdf:object <http://yago-knowledge.org/resource/

wikicategory_Terrorist_attacks_on_airports>.

?r1 <http://yago-knowledge.org/resource/extractionSource> ?d

}

Query 5 (SQL):

select

d1.stringvalue,

d2.stringvalue,

d5.stringvalue

from

orpsnumericyago2 n1,

orpsnumericyago2 n2,

orpsnumericyago2 n3,

orpsnumericyago2 n4,

orpsnumericyago2 n5,

dictionaryFull d1,

dictionaryFull d2,

dictionaryFull d5

where

n1.predicate=(select id from dictionaryFull where stringvalue=’"

http://yago-knowledge.org/resource/isConnectedTo"’) and

n1.object=(select id from dictionaryFull where stringvalue=’"

http://yago-knowledge.org/resource/

Kansas_City_International_Airport"’) and

n1.reification=n2.subject and

n2.predicate=(select id from dictionaryFull where stringvalue=’"

http://yago-knowledge.org/resource/byTransport"’) and

n1.subject=n3.subject and

146

n3.predicate=(select id from dictionaryFull where stringvalue=’"

http://yago-knowledge.org/resource/linksTo"’) and

n3.object=n4.subject and

n4.predicate=(select id from dictionaryFull where stringvalue=’"

http://www.w3.org/1999/02/22-rdf-syntax-ns#type"’) and

n4.object=(select id from dictionaryFull where stringvalue=’"

http://yago-knowledge.org/resource/

wikicategory_Terrorist_attacks_on_airports"’) and

n4.reification=n5.subject and

n5.predicate=(select id from dictionaryFull where stringvalue=’"

http://yago-knowledge.org/resource/extractionSource"’) and

n1.subject=d1.id and

n2.object=d2.id and

n5.object=d5.id;

Query 6 (SPARQL):

BASE <http://yago-knowledge.org/resource/> .

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

SELECT ?a?d

WHERE {

?a <http://yago-knowledge.org/resource/hasGender> <http://yago-

knowledge.org/resource/male>.

?a <http://yago-knowledge.org/resource/playsFor> <http://yago-

knowledge.org/resource/Birmingham_Excelsior_F.C.>.

?r rdf:subject ?a.

?r rdf:predicate <http://yago-knowledge.org/resource/wasBornOnDate>.

?r rdf:object ?c.

?r <http://yago-knowledge.org/resource/happenedIn> ?e.

?e <http://yago-knowledge.org/resource/hasMotto> "Forward".

?r <http://yago-knowledge.org/resource/extractionSource> ?d

}

Query 6 (SQL):

select

d1.stringvalue,

d6.stringvalue

147

from

dictionaryFull d5,

orpsnumericyago2 n1,

orpsnumericyago2 n2,

orpsnumericyago2 n3,

orpsnumericyago2 n4,

orpsnumericyago2 n5,

orpsnumericyago2 n6,

dictionaryFull d1,

dictionaryFull d6

where

n1.predicate=(select id from dictionaryFull where stringvalue=’"

http://yago-knowledge.org/resource/hasGender"’) and

n1.object=(select id from dictionaryFull where stringvalue=’"

http://yago-knowledge.org/resource/male"’) and

n1.subject=n2.subject and

n2.predicate=(select id from dictionaryFull where stringvalue=’"

http://yago-knowledge.org/resource/playsFor"’) and

n2.object=(select id from dictionaryFull where stringvalue=’"

http://yago-knowledge.org/resource/Birmingham_Excelsior_F.C.

"’) and

n1.subject=n3.subject and

n3.predicate=(select id from dictionaryFull where stringvalue=’"

http://yago-knowledge.org/resource/wasBornOnDate"’) and

n3.reification=n4.subject and

n4.predicate=(select id from dictionaryFull where stringvalue=’"

http://yago-knowledge.org/resource/happenedIn"’) and

n4.object=n5.subject and

n5.predicate=(select id from dictionaryFull where stringvalue=’"

http://yago-knowledge.org/resource/hasMotto"’) and

n5.object=d5.id and

d5.stringvalue=’"Forward"’ and

n3.reification=n6.subject and

n6.predicate=(select id from dictionaryFull where stringvalue=’"

http://yago-knowledge.org/resource/extractionSource"’) and

n1.subject=d1.id and

148

n6.object=d6.id;

Query 7 (SPARQL):

BASE <http://yago-knowledge.org/resource/> .

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

SELECT ?b?c

WHERE {

?r rdf:subject <http://yago-knowledge.org/resource/Al-Qaeda>.

?r rdf:predicate <http://yago-knowledge.org/resource/participatedIn>.

?r rdf:object ?b.

?r <http://yago-knowledge.org/resource/extractionSource> ?c.

?b <http://yago-knowledge.org/resource/happenedIn> ?d.

?d <http://yago-knowledge.org/resource/isLocatedIn> ?e.

?e <http://yago-knowledge.org/resource/isLocatedIn> <http://yago-

knowledge.org/resource/Asia>

}

Query 7 (SQL):

select

d1.stringvalue,

d2.stringvalue

from

orpsnumericyago2 n1,

orpsnumericyago2 n2,

orpsnumericyago2 n3,

orpsnumericyago2 n4,

orpsnumericyago2 n5,

dictionaryFull d1,

dictionaryFull d2

where

n1.subject=(select id from dictionaryFull where stringvalue=’"

http://yago-knowledge.org/resource/Al-Qaeda"’) and

n1.predicate=(select id from dictionaryFull where stringvalue=’"

http://yago-knowledge.org/resource/participatedIn"’) and

n1.reification=n2.subject and

n2.predicate=(select id from dictionaryFull where stringvalue=’"

149

http://yago-knowledge.org/resource/extractionSource"’) and

n1.object=n3.subject and

n3.predicate=(select id from dictionaryFull where stringvalue=’"

http://yago-knowledge.org/resource/happenedIn"’) and

n3.object=n4.subject and n4.predicate=(select id from

dictionaryFull where stringvalue=’"http://yago-knowledge.org

/resource/isLocatedIn"’) and

n4.object=n5.subject and

n5.predicate=(select id from dictionaryFull where stringvalue=’"

http://yago-knowledge.org/resource/isLocatedIn"’) and

n5.object=(select id from dictionaryFull where stringvalue=’"

http://yago-knowledge.org/resource/Asia"’) and

n1.object=d1.id and

n2.object=d2.id;

A.1.2 DBpedia

Query 1 (SPARQL):

BASE <http://yago-knowledge.org/resource/> .

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

SELECT ?a?b?d

WHERE {

?r rdf:subject <http://dbpedia.org/resource/Family_of_Barack_Obama>.

?r rdf:predicate <http://dbpedia.org/ontology/wikiPageExternalLink>.

?r rdf:object ?a. ?r <context> ?c.

?r1 rdf:subject <http://dbpedia.org/resource/Family_of_Barack_Obama>.

?r1 rdf:predicate <http://dbpedia.org/property/members>.

?r1 rdf:object ?b.

?r1 <context> ?c.

?r2 rdf:subject <http://dbpedia.org/resource/Family_of_Barack_Obama>.

?r2 rdf:predicate <http://xmlns.com/foaf/0.1/depiction>.

?r2 rdf:object ?d.

?r2 <context> ?c

}

Query 1 (SQL):

select

150

dict1.stringVal,

dict3.stringVal,

dict5.stringVal

from

dbpedianumeric d1,

dbpedianumeric d2,

dbpedianumeric d3,

dbpedianumeric d4,

dbpedianumeric d5,

dbpedianumeric d6,

dictionary dict1,

dictionary dict3,

dictionary dict5

where

d1.subject=(select id from dictionary where md5(stringVal)=md5(’

"http://dbpedia.org/resource/Family_of_Barack_Obama"’)) and

d1.predicate=(select id from dictionary where md5(stringVal)=md5

(’"http://dbpedia.org/ontology/wikiPageExternalLink"’)) and

d1.reification=d2.subject and

d2.predicate=(select id from dictionary where md5(stringVal)=md5

(’"context"’)) and d2.object=d4.object and

d3.subject=(select id from dictionary where md5(stringVal)=md5(’

"http://dbpedia.org/resource/Family_of_Barack_Obama"’)) and

d3.predicate=(select id from dictionary where md5(stringVal)=md5

(’"http://dbpedia.org/property/members"’)) and

d3.reification=d4.subject and

d4.predicate=(select id from dictionary where md5(stringVal)=md5

(’"context"’)) and

d1.object=dict1.id and

d3.object=dict3.id and

d5.subject=(select id from dictionary where md5(stringVal)=md5(’

"http://dbpedia.org/resource/Family_of_Barack_Obama"’)) and

d5.predicate=(select id from dictionary where md5(stringVal)=md5

(’"http://xmlns.com/foaf/0.1/depiction"’)) and

d5.reification=d6.subject and

d6.predicate=(select id from dictionary where md5(stringVal)=md5

151

(’"context"’)) and d6.object=d2.object and

dict5.id=d5.object;

Query 2 (SPARQL):

BASE <http://yago-knowledge.org/resource/> .

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

SELECT ?a?b?c

WHERE {

?r rdf:subject ?a.

?r rdf:predicate ?b.

?r rdf:object <http://dbpedia.org/resource/Category:

Buildings_and_structures_in_Massac_County,_Illinois>.

?r <context> ?c

}

Query 2 (SQL):

select dict1.stringVal, dict2.stringVal, dict3.stringVal from

dbpedianumeric d1, dbpedianumeric d2, dictionary dict1, dictionary

dict2, dictionary dict3 where d1.object=(select id from dictionary

where md5(stringVal)=md5(’"http://dbpedia.org/resource/Category:

Buildings_and_structures_in_Massac_County,_Illinois"’)) and d1.

reification=d2.subject and d2.predicate=(select id from dictionary

where md5(stringVal)=md5(’"context"’)) and d1.subject=dict1.id and

d1.predicate=dict2.id and d2.object=dict3.id;

Query 3 (SPARQL):

BASE <http://yago-knowledge.org/resource/> .

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

SELECT ?a?b?c

WHERE {

?r rdf:subject <http://dbpedia.org/resource/George_Lyle_Ashe>.

?r rdf:predicate <http://dbpedia.org/property/religion>.

?r rdf:object ?b.

?r <context> ?a.

?r1 rdf:subject <http://dbpedia.org/resource/George_Lyle_Ashe>.

?r1 rdf:predicate <http://dbpedia.org/property/placeOfBirth>.

152

?r1 rdf:object ?c.

?r1 <context> ?a

}

Query 3 (SQL):

select

dict2.stringVal,

dict1.stringVal,

dict3.stringVal

from

dbpedianumeric d1,

dbpedianumeric d2,

dbpedianumeric d3,

dbpedianumeric d4,

dictionary dict1,

dictionary dict2,

dictionary dict3

where

d1.subject=(select id from dictionary where md5(stringVal)=md5(’

"http://dbpedia.org/resource/George_Lyle_Ashe"’)) and

d1.predicate=(select id from dictionary where md5(stringVal)=md5

(’"http://dbpedia.org/property/religion"’)) and

d1.reification=d2.subject and

d2.predicate=(select id from dictionary where md5(stringVal)=md5

(’"context"’)) and

d3.subject=(select id from dictionary where md5(stringVal)=md5(’

"http://dbpedia.org/resource/George_Lyle_Ashe"’)) and

d3.predicate=(select id from dictionary where md5(stringVal)=md5

(’"http://dbpedia.org/property/placeOfBirth"’)) and

d3.reification=d4.subject and

d4.predicate=(select id from dictionary where md5(stringVal)=md5

(’"context"’)) and

d2.object=d4.object and

d2.object=dict2.id and

d1.object=dict1.id and

d3.object=dict3.id;

153

Query 4 (SPARQL):

BASE <http://yago-knowledge.org/resource/> .

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

SELECT ?a?b?c

WHERE {

?r rdf:subject ?a.

?r rdf:predicate ?b.

?r rdf:object ?c.

?r <context> <http://dbpedia.org/data/Plasmodium_hegneri.xml>

}

Query 4 (SQL):

select

dict1.stringVal,

dict2.stringVal,

dict3.stringVal

from

dbpedianumeric d1,

dbpedianumeric d2,

dictionary dict1,

dictionary dict2,

dictionary dict3

where

d1.reification=d2.subject and

d2.predicate=(select id from dictionary where md5(stringVal)=md5

(’"context"’)) and

d2.object=(select id from dictionary where md5(stringVal)=md5(’"

http://dbpedia.org/data/Plasmodium_hegneri.xml"’)) and

d1.subject=dict1.id and

d1.predicate=dict2.id and

d1.object=dict3.id;

Query 5 (SPARQL):

BASE <http://yago-knowledge.org/resource/> .

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

154

SELECT ?a?b

WHERE {

?r rdf:subject <http://dbpedia.org/resource/United_States_Navy_SEALs>.

?r rdf:predicate <http://dbpedia.org/property/battles>.

?r rdf:object ?a.

?r <context> <http://dbpedia.org/data/United_States_Navy_SEALs.xml>.

?r1 rdf:subject ?a.

?r1 rdf:predicate <http://dbpedia.org/property/battles>.

?r1 rdf:object ?b.

?r1 <context> <http://dbpedia.org/data/War_on_Terror.xml>

}

Query 5 (SQL):

select

dict1.stringVal,

dict3.stringVal

from

dbpedianumeric d1,

dbpedianumeric d2,

dbpedianumeric d3,

dbpedianumeric d4,

dictionary dict1,

dictionary dict3

where

d1.subject=(select id from dictionary where md5(stringVal)=md5(’

"http://dbpedia.org/resource/United_States_Navy_SEALs"’))

and

d1.predicate=(select id from dictionary where md5(stringVal)=md5

(’"http://dbpedia.org/property/battles"’)) and

d1.object=d3.subject and

d1.reification=d2.subject and

d2.predicate=(select id from dictionary where md5(stringVal)=md5

(’"context"’)) and

d2.object=(select id from dictionary where md5(stringVal)=md5(’"

http://dbpedia.org/data/United_States_Navy_SEALs.xml"’)) and

d3.predicate=(select id from dictionary where md5(stringVal)=md5

155

(’"http://dbpedia.org/property/battles"’)) and

d3.reification=d4.subject and

d4.predicate=(select id from dictionary where md5(stringVal)=md5

(’"context"’)) and

d4.object=(select id from dictionary where md5(stringVal)=md5(’"

http://dbpedia.org/data/War_on_Terror.xml"’)) and

d1.object=dict1.id and

d3.object=dict3.id;

Query 6 (SPARQL):

BASE <http://yago-knowledge.org/resource/> .

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

SELECT ?a?b?c

WHERE {

?r rdf:subject ?a.

?r rdf:predicate <http://dbpedia.org/property/knownFor>.

?r rdf:object ?b.

?r <context> <http://dbpedia.org/data/Marienetta_Jirkowsky.xml>.

?r1 rdf:subject ?a.

?r1 rdf:predicate <http://dbpedia.org/ontology/knownFor>.

?r1 rdf:object ?c.

?r1 <context> <http://dbpedia.org/data/Berlin_Wall.xml>

}

Query 6 (SQL):

select

dict1.stringVal,

dict2.stringVal,

dict3.stringVal

from

dbpedianumeric d1,

dbpedianumeric d2,

dbpedianumeric d3,

dbpedianumeric d4,

dictionary dict1,

dictionary dict2,

156

dictionary dict3

where

d1.predicate=(select id from dictionary where md5(stringVal)=md5

(’"http://dbpedia.org/property/knownFor"’)) and

d1.reification=d2.subject and

d2.predicate=(select id from dictionary where md5(stringVal)=md5

(’"context"’)) and

d2.object=(select id from dictionary where md5(stringVal)=md5(’"

http://dbpedia.org/data/Marienetta_Jirkowsky.xml"’)) and

d1.subject=d3.subject and

d3.predicate=(select id from dictionary where md5(stringVal)=md5

(’"http://dbpedia.org/ontology/knownFor"’)) and

d3.reification=d4.subject and

d4.predicate=(select id from dictionary where md5(stringVal)=md5

(’"context"’)) and

d4.object=(select id from dictionary where md5(stringVal)=md5(’"

http://dbpedia.org/data/Berlin_Wall.xml"’)) and

d1.subject=dict1.id and

d1.object=dict2.id and

d3.object=dict3.id;

A.2 Quark-X Benchmark Queries

A.2.1 YAGO

Query 1:

BASE <http://yago-knowledge.org/resource/> .

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

SELECT ?place?location

WHERE {

?r rdf:subject ?place.

?r rdf:predicate <http://yago-knowledge.org/resource/isLocatedIn>.

?r rdf:object ?location.

?r <http://yago-knowledge.org/resource/hasConfidence> ?conf.

?place <http://yago-knowledge.org/resource/hasNumberOfPeople> ?

numberOfPeople.

157

?place <http://yago-knowledge.org/resource/hasPopulationDensity> ?

populationDensity

} ORDER BY ASC((5+?numberOfPeople +?populationDensity) * (1+?conf))

LIMIT 50

Query 2:

BASE <http://yago-knowledge.org/resource/> .

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

SELECT ?place?location

WHERE {

?r rdf:subject ?place.

?r rdf:predicate <http://yago-knowledge.org/resource/isLocatedIn>.

?r rdf:object ?location.

?r <http://yago-knowledge.org/resource/hasConfidence> ?Conf.

?place <http://yago-knowledge.org/resource/hasNumberOfPeople> ?

numberOfPeople.

?place <http://yago-knowledge.org/resource/hasPopulationDensity> ?

populationDensity.

?place <http://yago-knowledge.org/resource/hasArea> area

} ORDER BY ASC((389000006+?numberOfPeople+?populationDensity +?area) *

(1+?Conf)) LIMIT 50

Query 3:

BASE <http://yago-knowledge.org/resource/> .

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

SELECT ?a?owns

WHERE {

?r rdf:subject ?a.

?r rdf:predicate <http://yago-knowledge.org/resource/owns>.

?r rdf:object ?owns.

?r <http://yago-knowledge.org/resource/hasConfidence> ?conf.

?owns <http://yago-knowledge.org/resource/hasHeight> ?height.

?a <http://yago-knowledge.org/resource/hasArea> ?area

} ORDER BY ASC((389000197+?height+?area) * (1+?conf)) LIMIT 50

Query 4:

158

BASE <http://yago-knowledge.org/resource/> .

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

SELECT ?a?owns

WHERE {

?r rdf:subject ?a.

?r rdf:predicate <http://yago-knowledge.org/resource/owns>.

?r rdf:object ?owns.

?r <http://yago-knowledge.org/resource/hasConfidence> ?conf.

?owns <http://yago-knowledge.org/resource/hasHeight> ?height.

?a <http://yago-knowledge.org/resource/hasNumberOfPeople> ?

numberOfPeople

} ORDER BY ASC((197+?height+?numberOfPeople) * (1+?conf)) LIMIT 50

Query 5:

BASE <http://yago-knowledge.org/resource/> .

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

SELECT ?a?b?c?location

WHERE {

?r rdf:subject ?a.

?r rdf:predicate <http://yago-knowledge.org/resource/owns>.

?r rdf:object ?b.

?r <http://yago-knowledge.org/resource/hasConfidence> ?conf.

?b <http://yago-knowledge.org/resource/isConnectedTo> ?c.

?c <http://yago-knowledge.org/resource/isLocatedIn> ?location.

?location <http://yago-knowledge.org/resource/hasExpenses> ?elevation

} ORDER BY ASC(?elevation * (1+?conf)) LIMIT 50

Query 6:

BASE <http://yago-knowledge.org/resource/> .

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

SELECT ?event?place

WHERE {

?r rdf:subject ?event.

?r rdf:predicate <http://yago-knowledge.org/resource/happenedIn>.

?r rdf:object ?place.

?r <http://yago-knowledge.org/resource/hasConfidence> ?conf.

159

?place <http://yago-knowledge.org/resource/hasInflation> ?inflation

} ORDER BY ASC((1+?inflation) * (1+?conf)) LIMIT 50

Query 7:

BASE <http://yago-knowledge.org/resource/> .

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

SELECT ?person?book

WHERE {

?r rdf:subject ?person.

?r rdf:predicate <http://yago-knowledge.org/resource/created>.

?r rdf:object ?book.

?r <http://yago-knowledge.org/resource/hasConfidence> ?conf.

?book <http://yago-knowledge.org/resource/hasPages> ?pages

} ORDER BY ASC((1+?pages) * (1+?conf)) LIMIT 50

Query 8:

BASE <http://yago-knowledge.org/resource/> .

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

SELECT ?person?book?personInfluenced

WHERE {

?r rdf:subject ?person.

?r rdf:predicate <http://yago-knowledge.org/resource/created>.

?r rdf:object ?book. ?r <http://yago-knowledge.org/resource/

hasConfidence> ?conf.

?person <http://yago-knowledge.org/resource/hasGender> <http://yago-

knowledge.org/resource/male>.

?person <http://yago-knowledge.org/resource/influences> ?

personInfluenced.

?book <http://yago-knowledge.org/resource/hasPages> ?pages

} ORDER BY ASC((1+?pages) * (1+?conf)) LIMIT 50

Query 9:

BASE <http://yago-knowledge.org/resource/> .

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

SELECT ?person?book?personInfluenced

WHERE {

160

?r rdf:subject ?person.

?r rdf:predicate <http://yago-knowledge.org/resource/created>.

?r rdf:object ?book.

?r <http://yago-knowledge.org/resource/hasConfidence> ?conf.

?person <http://yago-knowledge.org/resource/hasGender> <http://yago-

knowledge.org/resource/male>.

?person <http://yago-knowledge.org/resource/influences> ?

personInfluenced.

?book <http://yago-knowledge.org/resource/hasPages> ?pages.

?person <http://yago-knowledge.org/resource/isMarriedTo> ?f

} ORDER BY ASC((1+?pages) * (1+?conf)) LIMIT 50

Query 10:

BASE <http://yago-knowledge.org/resource/> .

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

SELECT ?person?b

WHERE {

?r rdf:subject ?person.

?r rdf:predicate <http://yago-knowledge.org/resource/created>.

?r rdf:object ?b.

?r <http://yago-knowledge.org/resource/hasConfidence> ?conf.

?b <http://yago-knowledge.org/resource/hasDuration> ?duration

} ORDER BY ASC((21601+?duration) * (1+?conf)) LIMIT 50

Query 11:

BASE <http://yago-knowledge.org/resource/> .

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

SELECT ?person?residesIn?c

WHERE {

?r rdf:subject ?person.

?r rdf:predicate ?residesIn.

?r rdf:object <http://yago-knowledge.org/resource/Mumbai>.

?r <http://yago-knowledge.org/resource/hasConfidence> ?conf.

?r1 rdf:subject ?person.

?r1 rdf:predicate ?c.

?r1 rdf:object <http://yago-knowledge.org/resource/male>.

161

?r1 <http://yago-knowledge.org/resource/hasConfidence> ?conf1

} ORDER BY ASC((1+?conf) * (1+?conf1)) LIMIT 50

A.2.2 DBpedia

Query 1:

BASE <http://yago-knowledge.org/resource/> .

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

SELECT ?person ?birthPlace ?country

WHERE {

?person <http://dbpedia.org/ontology/birthPlace> ?birthPlace.

?person <http://dbpedia.org/ontology/height> ?height.

?person <http://dbpedia.org/property/weightLb> ?weight.

?r rdf:subject ?birthPlace.

?r rdf:predicate <http://dbpedia.org/ontology/country>.

?r rdf:object ?country.

?r <http://yago-knowledge.org/resource/hasConfidence> ?conf

} ORDER BY ASC((?height+?weight+2) * (1+?conf)) LIMIT 50

Query 2:

BASE <http://yago-knowledge.org/resource/> .

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

SELECT ?a ?country

WHERE {

?r rdf:subject ?a.

?r rdf:predicate <http://dbpedia.org/ontology/country>.

?r rdf:object ?country.

?r <http://yago-knowledge.org/resource/hasConfidence> ?conf.

?a <http://dbpedia.org/ontology/elevation> ?elevation.

?a <http://dbpedia.org/ontology/area> ?area

} ORDER BY ASC((?elevation+?area+1151) * (1+?conf)) LIMIT 50

Query 3:

BASE <http://yago-knowledge.org/resource/> .

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

SELECT ?product ?vehicle ?bodyStyle ?depiction

WHERE {

162

?product <http://dbpedia.org/property/related> ?vehicle.

?vehicle <http://dbpedia.org/ontology/bodyStyle> ?bodyStyle.

?vehicle <http://dbpedia.org/ontology/fuelCapacity> ?fuelCapacity.

?r rdf:subject ?bodyStyle.

?r rdf:predicate <http://xmlns.com/foaf/0.1/depiction>.

?r rdf:object ?depiction.

?r <http://yago-knowledge.org/resource/hasConfidence> ?Conf.

?vehicle <http://dbpedia.org/ontology/height> ?height

} ORDER BY ASC((?fuelCapacity+?height+2) * (1+?Conf)) LIMIT 50

Query 4:

BASE <http://yago-knowledge.org/resource/> .

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

SELECT ?airport ?city

WHERE {

?airport <http://dbpedia.org/ontology/city> ?city.

?airport <http://dbpedia.org/ontology/elevation> ?elevation.

?airport <http://dbpedia.org/ontology/runwayLength> ?runwayLength.

?airport <http://dbpedia.org/property/width> ?width

} ORDER BY ASC((?elevation+?runwayLength+?width+1152)) LIMIT 50

Query 5:

BASE <http://yago-knowledge.org/resource/> .

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

SELECT ?spaceVehicle ?discoverer

WHERE {

?spaceVehicle <http://dbpedia.org/ontology/orbitalPeriod> ?

orbitalPeriod.

?spaceVehicle <http://dbpedia.org/ontology/apoapsis> ?apoapsis.

?spaceVehicle <http://dbpedia.org/ontology/periapsis> ?periapsis.

?spaceVehicle <http://dbpedia.org/ontology/absoluteMagnitude> ?

absoluteMagnitude.

?spaceVehicle <http://dbpedia.org/ontology/averageSpeed> ?averageSpeed

.

?spaceVehicle <http://dbpedia.org/ontology/mass> ?mass.

?r rdf:subject ?spaceVehicle.

163

?r rdf:predicate <http://dbpedia.org/ontology/discoverer>.

?r rdf:object ?discoverer.

?spaceVehicle <http://dbpedia.org/ontology/escapeVelocity> ?

escapeVelocity.

?r <http://yago-knowledge.org/resource/hasConfidence> ?conf

} ORDER BY ASC((?orbitalPeriod + ?apoapsis + ?periapsis + ?

absoluteMagnitude + ?averageSpeed + ?mass + ?escapeVelocity) * ?

conf) LIMIT 50

Query 6:

BASE <http://yago-knowledge.org/resource/> .

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

SELECT ?place ?city ?country ?h

WHERE {

?place <http://dbpedia.org/property/populationTotal> ?populationTotal.

?place <http://dbpedia.org/property/city> ?city.

?city <http://dbpedia.org/ontology/isPartOf> ?country.

?r rdf:subject ?country.

?r rdf:predicate <http://dbpedia.org/ontology/country>.

?r rdf:object ?h.

?r <http://yago-knowledge.org/resource/hasConfidence> ?conf

} ORDER BY ASC((?populationTotal+1001) * (1+?conf)) LIMIT 50

Query 7:

BASE <http://yago-knowledge.org/resource/> .

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

SELECT ?movie ?producer ?birthPlace

WHERE {

?r rdf:subject ?movie.

?r rdf:predicate <http://dbpedia.org/property/producer>.

?r rdf:object ?producer.

?r <http://yago-knowledge.org/resource/hasConfidence> ?conf.

?r1 rdf:subject ?producer.

?r1 rdf:predicate <http://dbpedia.org/ontology/birthPlace>.

?r1 rdf:object ?birthPlace.

?r1 <http://yago-knowledge.org/resource/hasConfidence> ?conf1

164

} ORDER BY ASC((1+?conf) * (1+?conf1)) LIMIT 50

Query 8:

BASE <http://yago-knowledge.org/resource/> .

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

SELECT ?movie ?director ?starring

WHERE {

?movie <http://dbpedia.org/ontology/director> ?director.

?movie <http://dbpedia.org/ontology/starring> ?starring.

?movie <http://dbpedia.org/ontology/runtime> ?runtime

} ORDER BY ASC(?runtime) LIMIT 50

Query 9:

BASE <http://yago-knowledge.org/resource/> .

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

SELECT ?a ?d ?nationality

WHERE {

?a <http://dbpedia.org/property/losses> ?losses.

?a <http://dbpedia.org/property/wins> ?wins.

?a <http://dbpedia.org/property/after> ?d.

?d <http://dbpedia.org/ontology/nationality> ?nationality

} ORDER BY ASC(?losses+?wins+2) LIMIT 50

Query 10:

BASE <http://yago-knowledge.org/resource/> .

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

SELECT ?a ?d ?n

WHERE {

?a <http://dbpedia.org/property/losses> ?losses.

?a <http://dbpedia.org/property/wins> ?wins.

?r rdf:subject ?a.

?r rdf:predicate <http://dbpedia.org/property/after>.

?r rdf:object ?d.

?r <http://yago-knowledge.org/resource/hasConfidence> ?conf.

?d <http://dbpedia.org/ontology/nationality> ?n

} ORDER BY ASC((?losses+?wins+2) * (1+?conf)) LIMIT 50

165

Query 11:

BASE <http://yago-knowledge.org/resource/> .

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

SELECT ?televisionShow ?b ?c

WHERE {

?televisionShow ?b <http://dbpedia.org/ontology/TelevisionShow>.

?televisionShow ?c <http://dbpedia.org/resource/Color>.

?televisionShow <http://dbpedia.org/ontology/runtime> ?runtime

} ORDER BY ASC(?runtime) LIMIT 50

A.3 STREAK Benchmark Queries

A.3.1 YAGO

Query 1:

BASE <http://yago-knowledge.org/resource/> .

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

SELECT ?place ?nplace ?loc1 ?loc2

WHERE {

?place <http://yago-knowledge.org/resource/hasPopulationDensity> ?

popul.

?place <http://yago-knowledge.org/resource/hasGeometry> ?long.

?place <http://yago-knowledge.org/resource/isLocatedIn> ?loc1.

?nplace <http://yago-knowledge.org/resource/isLocatedIn> ?loc2.

?nplace <http://yago-knowledge.org/resource/hasGeometry> ?nlong.

?nplace <http://yago-knowledge.org/resource/hasNumberOfPeople> ?popul1

.

FILTER((?long, ?nlong) < 50)

} ORDER BY ASC(?popul + ?popul1) LIMIT k

Query 2:

BASE <http://yago-knowledge.org/resource/> .

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

SELECT ?place ?nplace ?loc1 ?loc2

WHERE {

166

?place <http://yago-knowledge.org/resource/hasPopulationDensity> ?

popul.

?place <http://yago-knowledge.org/resource/hasEconomicGrowth> ?

ecoGrowth.

?place <http://yago-knowledge.org/resource/hasGeometry> ?long.

?place <http://yago-knowledge.org/resource/isLocatedIn> ?loc1.

?nplace <http://yago-knowledge.org/resource/isLocatedIn> ?loc2.

?nplace <http://yago-knowledge.org/resource/hasGeometry> ?nlong.

?nplace <http://yago-knowledge.org/resource/hasNumberOfPeople> ?popul1

.

FILTER((?long, ?nlong) < 50)

} ORDER BY ASC(?popul + ?popul1 + ?ecoGrowth) LIMIT k

Query 3:

BASE <http://yago-knowledge.org/resource/> .

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

SELECT ?place ?nplace ?loc1 ?loc2 ?connection

WHERE {

?place <http://yago-knowledge.org/resource/hasEconomicGrowth> ?

ecoGrowth.

?connection <http://yago-knowledge.org/resource/isConnectedTo> ?place.

?place <http://yago-knowledge.org/resource/hasGeometry> ?long.

?place <http://yago-knowledge.org/resource/isLocatedIn> ?loc1.

?nplace <http://yago-knowledge.org/resource/isLocatedIn> ?loc2.

?nplace <http://yago-knowledge.org/resource/hasGeometry> ?nlong.

?nplace <http://yago-knowledge.org/resource/hasNumberOfPeople> ?popul1

.

FILTER((?long, ?nlong) < 50)

} ORDER BY ASC(?popul1 + ?ecoGrowth) LIMIT k

Query 4:

BASE <http://yago-knowledge.org/resource/> .

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

SELECT ?place ?nplace ?loc1 ?loc2 ?birthPlace

WHERE {

?place <http://yago-knowledge.org/resource/hasPopulationDensity> ?

167

popul.

?place <http://yago-knowledge.org/resource/hasEconomicGrowth> ?

ecoGrowth.

?place <http://yago-knowledge.org/resource/hasNeighbor> ?birthPlace.

?place <http://yago-knowledge.org/resource/hasGeometry> ?long.

?place <http://yago-knowledge.org/resource/isLocatedIn> ?loc1.

?nplace <http://yago-knowledge.org/resource/isLocatedIn> ?loc2.

?nplace <http://yago-knowledge.org/resource/hasGeometry> ?nlong.

?nplace <http://yago-knowledge.org/resource/hasNumberOfPeople> ?popul1

.

FILTER((?long, ?nlong) < 50)

} ORDER BY ASC(?popul + ?popul1 + ?ecoGrowth) LIMIT k

Query 5:

BASE <http://yago-knowledge.org/resource/> .

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

SELECT ?d?location?nplace?a?b?person

WHERE {

?r rdf:subject ?b.

?r rdf:predicate <http://yago-knowledge.org/resource/diedIn>.

?r rdf:object ?a.

?r <http://yago-knowledge.org/resource/hasConfidence> ?conf.

?a <http://yago-knowledge.org/resource/isLocatedIn> ?d.

?d <http://yago-knowledge.org/resource/hasGeometry> ?long.

?r1 rdf:subject ?person.

?r1 rdf:predicate <http://yago-knowledge.org/resource/wasBornIn>.

?r1 rdf:object ?nplace.

?nplace <http://yago-knowledge.org/resource/isLocatedIn> ?location.

?r1 <http://yago-knowledge.org/resource/hasConfidence> ?popul1.

?location <http://yago-knowledge.org/resource/hasGeometry> ?nlong.

FILTER((?long, ?nlong) < 50)

} ORDER BY ASC(?popul1 + ?conf) LIMIT k

Query 6:

BASE <http://yago-knowledge.org/resource/> .

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

168

SELECT ?b?nplace?a?loc2

WHERE {

?r rdf:subject ?a.

?r rdf:predicate <http://yago-knowledge.org/resource/happenedIn>.

?r rdf:object ?b.

?r <http://yago-knowledge.org/resource/hasConfidence> ?conf.

?b <http://yago-knowledge.org/resource/hasGeometry> ?long.

?b <http://yago-knowledge.org/resource/hasInflation> ?d.

?nplace <http://yago-knowledge.org/resource/isLocatedIn> ?loc2.

?nplace <http://yago-knowledge.org/resource/hasGeometry> ?nlong.

?nplace <http://yago-knowledge.org/resource/hasNumberOfPeople> ?popul1

.

FILTER((?long, ?nlong) < 50)

} ORDER BY ASC(?d + ?popul1 + ?conf) LIMIT k

Query 7:

BASE <http://yago-knowledge.org/resource/> .

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

SELECT ?a?nplace?b?loc2

WHERE {

?nplace <http://yago-knowledge.org/resource/isLocatedIn> ?loc2.

?nplace <http://yago-knowledge.org/resource/hasGeometry> ?nlong.

?nplace <http://yago-knowledge.org/resource/hasEconomicGrowth> ?popul1

.

?r rdf:subject ?a.

?r rdf:predicate <http://yago-knowledge.org/resource/isLocatedIn>.

?r rdf:object ?b.

?r <http://yago-knowledge.org/resource/hasConfidence> ?conf.

?a <http://yago-knowledge.org/resource/hasGeometry> ?long.

FILTER((?long, ?nlong) < 50)

} ORDER BY ASC(?popul1 + ?conf) LIMIT k

Query 8:

SELECT ?b?nplace?a?loc2

WHERE {

?r1 rdf:subject ?loc2.

169

?r1 rdf:predicate <http://yago-knowledge.org/resource/wasBornIn>.

?r1 rdf:object ?nplace.

?r1 <http://yago-knowledge.org/resource/hasConfidence> ?conf1.

?nplace <http://yago-knowledge.org/resource/hasGeometry> ?nlong.

?r rdf:subject ?a.

?r rdf:predicate <http://yago-knowledge.org/resource/isLocatedIn>.

?r rdf:object ?b.

?r <http://yago-knowledge.org/resource/hasConfidence> ?conf.

?b <http://yago-knowledge.org/resource/hasGeometry> ?long.

?a <http://yago-knowledge.org/resource/hasPopulationDensity> ?d.

FILTER((?long, ?nlong) < 50)

} ORDER BY ASC(?d + ?conf1 + ?conf) LIMIT k

A.3.2 LGD

Query 1:

BASE <http://yago-knowledge.org/resource/> .

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

SELECT ?place ?nplace ?typePred1 ?typePred2

WHERE {

?r rdf:subject ?place.

?r rdf:predicate ?typePred1.

?r rdf:object <http://geoknow.eu/uk_points#hotel>.

?r <hasConfidence> ?conf.

?place <http://yago-knowledge.org/resource/hasGeometry> ?long.

?r1 rdf:subject ?nplace.

?r1 rdf:predicate ?typePred2.

?r1 rdf:object <http://geoknow.eu/uk_natural#park>.

?r1 <hasConfidence> ?conf1.

?nplace <http://yago-knowledge.org/resource/hasGeometry> ?nlong.

FILTER((?long, ?nlong) < 50)

} ORDER BY ASC(?conf + ?conf1) LIMIT k

Query 2:

BASE <http://yago-knowledge.org/resource/> .

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

SELECT ?place ?nplace ?typePred1 ?typePred2

170

WHERE {

?r rdf:subject ?place.

?r rdf:predicate ?typePred1.

?r rdf:object <http://geoknow.eu/uk_points#hotel>.

?r <hasConfidence> ?conf.

?place <http://yago-knowledge.org/resource/hasGeometry> ?long.

?r1 rdf:subject ?nplace.

?r1 rdf:predicate ?typePred2.

?r1 rdf:object <http://geoknow.eu/uk_points#police>.

?r1 <hasConfidence> ?conf1.

?nplace <http://yago-knowledge.org/resource/hasGeometry> ?nlong.

FILTER((?long, ?nlong) < 50)

} ORDER BY ASC(?conf + ?conf1) LIMIT k

Query 3:

BASE <http://yago-knowledge.org/resource/> .

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

SELECT ?place ?nplace ?typePred1 ?typePred2 ?label1 ?name2

WHERE {

?r rdf:subject ?place.

?r rdf:predicate ?typePred1.

?r rdf:object <http://geoknow.eu/uk_points#hotel>.

?r <hasConfidence> ?conf.

?place <http://yago-knowledge.org/resource/hasGeometry> ?long.

?place <http://www.w3.org/2000/01/rdf-schema#label> ?label1.

?r1 rdf:subject ?nplace.

?r1 rdf:predicate ?typePred2.

?r1 rdf:object <http://geoknow.eu/uk_points#police>.

?r1 <hasConfidence> ?conf1.

?nplace <http://yago-knowledge.org/resource/hasGeometry> ?nlong.

?nplace <http://geoknow.eu/uk_points#name> ?name2.

FILTER((?long, ?nlong) < 50)

} ORDER BY ASC(?conf + ?conf1) LIMIT k

Query 4:

BASE <http://yago-knowledge.org/resource/> .

171

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

SELECT ?place ?nplace ?typePred1 ?typePred2 ?label1 ?name1 ?name2

WHERE {

?r rdf:subject ?place.

?r rdf:predicate ?typePred1.

?r rdf:object <http://geoknow.eu/uk_points#pub>.

?r <hasConfidence> ?conf.

?place <http://yago-knowledge.org/resource/hasGeometry> ?long.

?place <http://www.w3.org/2000/01/rdf-schema#label> ?label1.

?place <http://geoknow.eu/uk_points#name> ?name1.

?r1 rdf:subject ?nplace.

?r1 rdf:predicate ?typePred2.

?r1 rdf:object <http://geoknow.eu/uk_points#police>.

?r1 <hasConfidence> ?conf1.

?nplace <http://yago-knowledge.org/resource/hasGeometry> ?nlong.

?nplace <http://geoknow.eu/uk_points#name> ?name2.

FILTER((?long, ?nlong) < 50)

} ORDER BY ASC(?conf + ?conf1) LIMIT k

Query 5:

BASE <http://yago-knowledge.org/resource/> .

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

SELECT ?place ?nplace ?typePred1 ?typePred2 ?label1 ?name1 ?name2 ?

label2

WHERE {

?r rdf:subject ?place.

?r rdf:predicate ?typePred1.

?r rdf:object <http://geoknow.eu/uk_natural#park>.

?r <hasConfidence> ?conf.

?place <http://yago-knowledge.org/resource/hasGeometry> ?long.

?place <http://www.w3.org/2000/01/rdf-schema#label> ?label1.

?r1 rdf:subject ?nplace.

?r1 rdf:predicate ?typePred2.

?r1 rdf:object <http://geoknow.eu/uk_points#police>.

?r1 <hasConfidence> ?conf1.

?nplace <http://yago-knowledge.org/resource/hasGeometry> ?nlong.

172

?nplace <http://geoknow.eu/uk_points#name> ?name2.

?nplace <http://www.w3.org/2000/01/rdf-schema#label> ?label2.

FILTER((?long, ?nlong) < 50)

} ORDER BY ASC(?conf + ?conf1) LIMIT k

Query 6:

BASE <http://yago-knowledge.org/resource/> .

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

SELECT ?place ?nplace ?typePred1 ?typePred2

WHERE {

?r rdf:subject ?place.

?r rdf:predicate ?typePred1.

?r rdf:object <http://geoknow.eu/uk_natural#park>.

?r <hasConfidence> ?conf.

?place <http://yago-knowledge.org/resource/hasGeometry> ?long.

?r1 rdf:subject ?nplace.

?r1 rdf:predicate ?typePred2.

?r1 rdf:object <http://geoknow.eu/uk_roads#roads>.

?r1 <hasConfidence> ?conf1.

?nplace <http://yago-knowledge.org/resource/hasGeometry> ?nlong.

FILTER((?long, ?nlong) < 50)

} ORDER BY ASC(?conf + ?conf1) LIMIT k

Query 7:

BASE <http://yago-knowledge.org/resource/> .

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

SELECT ?place ?nplace ?typePred1 ?typePred2

WHERE {

?r rdf:subject ?place.

?r rdf:predicate ?typePred1.

?r rdf:object <http://geoknow.eu/uk_points#hotel>.

?r <hasConfidence> ?conf.

?place <http://yago-knowledge.org/resource/hasGeometry> ?long.

?r1 rdf:subject ?nplace.

?r1 rdf:predicate ?typePred2.

?r1 rdf:object <http://geoknow.eu/uk_roads#roads>.

173

?r1 <hasConfidence> ?conf1.

?nplace <http://yago-knowledge.org/resource/hasGeometry> ?nlong.

FILTER((?long, ?nlong) < 50)

} ORDER BY ASC((++0+1*?conf/1) (++0+1*?conf1/1)) LIMIT k

Query 8:

BASE <http://yago-knowledge.org/resource/> .

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

SELECT ?place ?nplace ?typePred1 ?typePred2 ?label2

WHERE {

?r rdf:subject ?place.

?r rdf:predicate ?typePred1.

?r rdf:object <http://geoknow.eu/uk_natural#park>.

?r <hasConfidence> ?conf.

?place <http://yago-knowledge.org/resource/hasGeometry> ?long.

?r1 rdf:subject ?nplace.

?r1 rdf:predicate ?typePred2.

?r1 rdf:object <http://geoknow.eu/uk_roads#roads>.

?r1 <hasConfidence> ?conf1.

?nplace <http://yago-knowledge.org/resource/hasGeometry> ?nlong.

?nplace <http://www.w3.org/2000/01/rdf-schema#label> ?label2.

FILTER((?long, ?nlong) < 50)

} ORDER BY ASC(?conf + ?conf1) LIMIT k

174

Bibliography

[1] RDF 1.1 Primer. Technical report. https://www.w3.org/TR/rdf11-primer/.

[2] RDF 1.1 N-Quads: A line-based syntax for RDF datasets. W3C Recommendation,
February 2014. http://www.w3.org/TR/n-quads/.

[3] Uniprot: a hub for protein information. Nucleic Acids Research, 43(Database-
Issue):204–212, 2015.

[4] Daniel J Abadi, Adam Marcus, Samuel R Madden, and Kate Hollenbach. Scalable
Semantic Web Data Management using vertical partitioning. In PVLDB, 2007.

[5] Daniel J Abadi, Adam Marcus, Samuel R Madden, and Kate Hollenbach. SW-
Store: a vertically partitioned DBMS for semantic web data management. The VLDB
Journal, 18(2), 2009.

[6] Nicole Alexander and Siva Ravada. RDF object type and reification in the database.
In ICDE, 2006.

[7] Güneş Aluç, Olaf Hartig, M Tamer Özsu, and Khuzaima Daudjee. Diversified Stress
Testing of RDF Data Management Systems. In ISWC. 2014.

[8] Güneş Aluç, M Tamer Özsu, Khuzaima Daudjee, and Olaf Hartig. Executing queries
over schemaless RDF databases. In ICDE, 2015.

[9] Vo Ngoc Anh and Alistair Moffat. Simplified similarity scoring using term ranks. In
SIGIR, 2005.

[10] Vo Ngoc Anh and Alistair Moffat. Pruned query evaluation using pre-computed
impacts. In SIGIR, 2006.

[11] Jens Auer, Sören Lehmann and Sebastian Hellmann. LinkedGeoData: Adding a
spatial dimension to the web of data. ISWC, 2009.

[12] Sören Auer, Christian Bizer, Georgi Kobilarov, Jens Lehmann, Richard Cyganiak,
and Zachary Ives. DBpedia: A nucleus for a web of open data. ISWC, 2007.

[13] Ron Avnur and Joseph M Hellerstein. Eddies: Continuously adaptive query process-
ing. In SIGMOD, 2000.

175

[14] Robert Battle and Dave Kolas. Enabling the geospatial semantic web with parliament
and GeoSPARQL. Semantic Web, 3(4), 2012.

[15] David Beckett, Tim Berners-Lee, Eric Prud’hommeaux, and Gavin Carothers.
RDF 1.1 Turtle Terse RDF Triple Language. W3C recommendation.
http://www.w3.org/TR/turtle/.

[16] Joanna Biega, Erdal Kuzey, and Fabian M Suchanek. Inside YAGO2s: A transparent
information extraction architecture. In WWW, 2013.

[17] Pedro Bizarro, Shivnath Babu, David DeWitt, and Jennifer Widom. Content-based
routing: Different plans for different data. In PVLDB, 2005.

[18] Christian Bizer, Tom Heath, and Tim Berners-Lee. Linked data - the story so far.
Int. J. Semantic Web Inf. Syst., 5(3):1–22, 2009.

[19] Christian Bizer, Jens Lehmann, Georgi Kobilarov, Sören Auer, Christian Becker,
Richard Cyganiak, and Sebastian Hellmann. DBpedia - A Crystallization Point for
the Web of Data. J. Web Sem., 7(3), 2009.

[20] Christian Bizer and Andreas Schultz. The Berlin SPARQL Benchmark. Int. Journal
of Semantic Web Inf. Syst., 5(2), 2009.

[21] Olivier Bodenreider. Provenance information in biomedical knowledge reposito-
ries: a use case. In First International Conference on Semantic Web in Provenance
Management, 2009.

[22] Peter A. Boncz, Orri Erling, and Minh-Duc Pham. Advances in large-scale RDF
data management. In Linked Open Data - Creating Knowledge Out of Interlinked
Data - Results of the LOD2 Project. 2014.

[23] Mihaela A Bornea, Julian Dolby, Anastasios Kementsietsidis, Kavitha Srinivas,
Patrick Dantressangle, Octavian Udrea, and Bishwaranjan Bhattacharjee. Building
an efficient RDF store over a relational database. In SIGMOD, 2013.

[24] Thomas Brinkhoff, Hans-Peter Kriegel, and Bernhard Seeger. Efficient processing
of spatial joins using r-trees. In SIGMOD, 1993.

[25] Matthias Bröcheler, Andrea Pugliese, and Venkatramanan S Subrahmanian.
DOGMA: A disk-oriented graph matching algorithm for RDF databases. In ISWC.
2009.

[26] Jeen Broekstra, Arjohn Kampman, and Frank Van Harmelen. Sesame: A generic
architecture for storing and querying RDF and RDF Schema. In ISWC, 2002.

[27] Jeen Broekstra, Arjohn Kampman, and Frank van Harmelen. Sesame: An architec-
ture for storin gand querying RDF data and schema information. In Spinning the
Semantic Web: Bringing the World Wide Web to Its Full Potential [outcome of a
Dagstuhl seminar], 2003.

176

[28] Semantic web challenge 2008. billion triples track.
http://challenge.semanticweb.org/.

[29] George P Copeland and Setrag N Khoshafian. A decomposition storage model. In
SIGMOD, 1985.

[30] Mark De Berg, Otfried Cheong, Marc Van Kreveld, and Mark Overmars. Computa-
tional geometry. In Computational geometry. 2000.

[31] Amol Deshpande, Zachary Ives, and Vijayshankar Raman. Adaptive Query Process-
ing. Foundations and Trends in Databases, 1(1), 2007.

[32] Shuai Ding and Torsten Suel. Faster Top-k Document Retrieval using Block-max
Indexes. In SIGIR, 2011.

[33] Orri Erling and Ivan Mikhailov. RDF support in the virtuoso DBMS. In Networked
Knowledge-Networked Media. 2009.

[34] Raphael A Finkel and Jon Louis Bentley. Quad trees a data structure for retrieval on
composite keys. Acta informatica, 4(1), 1974.

[35] Alejandra Garcia-Rojas, Spiros Athanasiou, Jens Lehmann, and Daniel Hladky.
GeoKnow: leveraging geospatial data in the web of data. ODW, 2013.

[36] Steve H Garlik, Andy Seaborne, and Eric Prud’hommeaux. SPARQL 1.1 Query
Language. W3C Recommendation, 21(10), 2013.

[37] Jon Jay Le Grange, Jens Lehmann, Spiros Athanasiou, Alejandra Garcia Rojas,
Giorgos Giannopoulos, Daniel Hladky, Robert Isele, AxelCyrille Ngonga Ngomo,
Mohamed Ahmed Sherif, Claus Stadler, and Matthias Wauer. The GeoKnow gen-
erator: managing geospatial data in the linked data web. Linking Geospatial Data,
2014.

[38] Sven Groppe, Jinghua Groppe, Dirk Kukulenz, and Volker Linnemann. A sparql
engine for streaming rdf data. In SITIS. IEEE, 2007.

[39] Paul T Groth and Yolanda Gil. Linked data for network science. In LISC, 2011.

[40] Yuanbo Guo, Zhengxiang Pan, and Jeff Heflin. LUBM: A Benchmark for OWL
Knowledge Base Systems. J. Web Sem., 3(2), 2005.

[41] Peter J Haas and Joseph M Hellerstein. Ripple Joins for Online Aggregation. In
SIGMOD, 1999.

[42] Stephen Harris and Nigel Shadbolt. SPARQL query processing with conventional
relational database systems. In ICSW, 2005.

[43] Andreas Harth. Billion Triples Challenge data set. Downloaded from
http://km.aifb.kit.edu/projects/btc-2012/, 2012.

177

[44] Andreas Harth and Stefan Decker. Optimized index structures for querying RDF
from the web. In LA-WEB, 2005.

[45] Andreas Harth, Jürgen Umbrich, Aidan Hogan, and Stefan Decker. YARS2: A
federated repository for querying graph structured data from the web. In ISWC.
2007.

[46] Johannes Hoffart, Fabian M Suchanek, Klaus Berberich, Edwin Lewis-Kelham, Ger-
ard De Melo, and Gerhard Weikum. YAGO2: exploring and querying world knowl-
edge in time, space, context, and many languages. In WWW, 2011.

[47] Johannes Hoffart, Fabian M Suchanek, Klaus Berberich, and Gerhard Weikum.
YAGO2: A Spatially and Temporally Enhanced Knowledge Base from Wikipedia.
AI, 194, 2013.

[48] Jiewen Huang, Daniel J Abadi, and Kun Ren. Scalable SPARQL querying of large
RDF graphs. PVLDB, 4(11), 2011.

[49] Ihab F Ilyas, Walid G Aref, and Ahmed K Elmagarmid. Supporting Top-k Join
Queries in Relational Databases. PVLDB, 13(3), 2004.

[50] Ihab F Ilyas, Walid G Aref, Ahmed K Elmagarmid, Hicham G Elmongui, Rahul
Shah, and Jeffrey Scott Vitter. Adaptive Rank-Aware Query Optimization in Rela-
tional Databases. TODS, 31(4), 2006.

[51] Ihab F Ilyas, George Beskales, and Mohamed A Soliman. A Survey of Top-k Query
Processing Techniques in Relational Database Systems. CSUR, 40(4), 2008.

[52] Ihab F Ilyas, Rahul Shah, Walid G Aref, Jeffrey Scott Vitter, and Ahmed K Elma-
garmid. Rank-Aware Query Optimization. In SIGMOD, 2004.

[53] Apache Jena-TDB. http://jena.apache.org/documentation/tdb/index.html.

[54] George Karypis and Vipin Kumar. A fast and high quality multilevel scheme for
partitioning irregular graphs. SIAM, 20, 1998.

[55] Leonard Kaufman and Peter Rousseeuw. Clustering by means of medoids. North-
Holland, 1987.

[56] Jyoti Leeka and Srikanta Bedathur. RQ-RDF-3X: going beyond triplestores. In
ICDEW (DESWEB), 2014.

[57] Jyoti Leeka, Srikanta Bedathur, Debajyoti Bera, and Medha Atre. Quark-X: An
Efficient Top-𝑘 Processing Framework for RDF Quad Stores. In CIKM, 2016.

[58] Jens Lehmann, Spiros Athanasiou, Andreas Both, Alejandra García-Rojas, Giorgos
Giannopoulos, Daniel Hladky, Jon Jay Le Grange, Axel-Cyrille Ngonga Ngomo,
Mohamed Ahmed Sherif, Claus Stadler, Matthias WAUER, Patrick WESTPHAL,
and Vadim ZASLAWSKI. Managing geospatial linked data in the GeoKnow project.
The Semantic Web in Earth and Space Science, 20, 2015.

178

[59] Jens Lehmann, Robert Isele, Max Jakob, Anja Jentzsch, Dimitris Kontokostas,
Pablo N Mendes, Sebastian Hellmann, Mohamed Morsey, Patrick Van Kleef, Sören
Auer, et al. DBpedia–a large-scale, multilingual knowledge base extracted from
wikipedia. Semantic Web, 6(2), 2015.

[60] Justin Levandoski and Mohamed Mokbel. RDF Data-Centric Storage. In ICWS,
2009.

[61] John Liagouris, Nikos Mamoulis, Panagiotis Bouros, and Manolis Terrovitis. An
effective encoding scheme for spatial RDF data. PVLDB, 7(12), 2014.

[62] LinkedIn Knowledge Graph. https://engineering.linkedin.com/blog/2016/10/building-
the-linkedin-knowledge-graph.

[63] Vebjorn Ljosa and Ambuj K. Singh. Top-𝑘 spatial joins of probabilistic objects. In
ICDE, 2008.

[64] Sara Magliacane, Alessandro Bozzon, and Emanuele Della Valle. Efficient Execu-
tion of Top-k SPARQL Queries. In ISWC. 2012.

[65] Farzaneh Mahdisoltani, Joanna Biega, and Fabian Suchanek. Yago3: A knowledge
base from multilingual wikipedias. In CIDR, 2014.

[66] Thomas Mandl, Fredric Gey, Giorgio Di Nunzio, Nicola Ferro, Ray Larson, Mark
Sanderson, Diana Santos, Christa Womser-Hacker, and Xing Xie. GeoCLEF
2007: The CLEF 2007 Cross-Language Geographic Information Retrieval Track
Overview. Springer Berlin Heidelberg, 2008.

[67] Sebastian Michel, Peter Triantafillou, and Gerhard Weikum. KLEE: a Framework
for Distributed Top-k Query Algorithms. In PVLDB, 2005.

[68] Thomas Neumann and Guido Moerkotte. Characteristic sets: Accurate cardinality
estimation for RDF queries with multiple joins. In ICDE, 2011.

[69] Thomas Neumann and Gerhard Weikum. RDF-3X: a RISC-style engine for RDF.
PVLDB, 1(1), 2008.

[70] Thomas Neumann and Gerhard Weikum. Scalable join processing on very large
RDF graphs. In SIGMOD, 2009.

[71] Sadegh Nobari, Farhan Tauheed, Thomas Heinis, Panagiotis Karras, Stéphane Bres-
san, and Anastasia Ailamaki. TOUCH: in-memory spatial join by hierarchical data-
oriented partitioning. In SIGMOD, 2013.

[72] HweeHwa Pang, Xuhua Ding, and Baihua Zheng. Efficient Processing of Exact
Top-k Queries over Disk-Resident Sorted Lists. VLDB Journal, 19(3), 2010.

[73] Jignesh M Patel and David J DeWitt. Partition based spatial-merge join. In SIG-
MOD, 1996.

179

[74] Patrick Hayes and Peter Patel-Schneider. RDF 1.1 Semantics. W3C Recommenda-
tion, February 2014.

[75] Mirjana Pavlovic et al. TRANSFORMERS: Robust spatial joins on non-uniform
data distributions. In ICDE, 2016.

[76] Mirjana Pavlovic, Thomas Heinis, Farhan Tauheed, Panagiotis Karras, and Anasta-
sia Ailamaki. TRANSFORMERS: Robust spatial joins on non-uniform data distri-
butions. In ICDE, 2016.

[77] Matthew Perry and John Herring. OGC GeoSPARQL-a geographic query language
for RDF data. OGC Candidate Implementation Standard, 2012.

[78] PostgreSQL. http://www.postgresql.org/download.

[79] Shuyao Qi, Panagiotis Bouros, and Nikos Mamoulis. Efficient top-𝑘 spatial distance
joins. In SSTD, 2013.

[80] Kurt Rohloff and Richard E Schantz. Clause-iteration with mapreduce to scalably
query datagraphs in the SHARD graph-store. In DataSys, 2011.

[81] Sherif Sakr and Ghazi Al-Naymat. Relational processing of RDF queries: a survey.
SIGMOD, 2010.

[82] Hanan Samet. The quadtree and related hierarchical data structures. CSUR, 16(2),
1984.

[83] Michael Schmidt, Thomas Hornung, Georg Lausen, and Christoph Pinkel.
SP2Bench: A SPARQL Performance Benchmark. In ICDE, 2009.

[84] John Sheridan and Jeni Tennison. Linking UK government data. In LDOW, 2010.

[85] Lefteris Sidirourgos, Romulo Goncalves, Martin Kersten, Niels Nes, and Stefan
Manegold. Column-Store support for RDF Data Management: not all Swans are
White. PVLDB, 1(2), 2008.

[86] Michael Sintek and Malte Kiesel. RDFBroker: A Signature-based High-
Performance RDF Store. ESWC, 2006.

[87] Benjamin Sowell, Marcos Vaz Salles, Tuan Cao, Alan Demers, and Johannes
Gehrke. An experimental analysis of iterated spatial joins in main memory. PVLDB,
6(14), 2013.

[88] Fabian M Suchanek, Johannes Hoffart, Erdal Kuzey, and Edwin Lewis-Kelham.
YAGO2s: Modular high-quality information extraction with an application to flight
planning. In BTW, 2013.

[89] Fabian M Suchanek, Gjergji Kasneci, and Gerhard Weikum. YAGO: a core of se-
mantic knowledge. In WWW, 2007.

180

[90] Octavian Udrea, Andrea Pugliese, and VS Subrahmanian. GRIN: A graph based
RDF index. In AAAI, volume 1, 2007.

[91] Jacopo Urbani, Sourav Dutta, Sairam Gurajada, and Gerhard Weikum. KOGNAC:
Efficient Encoding of Large Knowledge Graphs. In IJCAI, 2016.

[92] Yannis Velegrakis. Relational technologies, metadata and RDF. In SWIM. 2010.

[93] Virtuoso 7.2. http://virtuoso.openlinksw.com/dataspace/doc/
dav/wiki/Main/VirtTipsAndTricksSPARQL11FeaturesExamplesCollection,
2016.

[94] Denny Vrandečić and Markus Krötzsch. Wikidata: a free collaborative knowledge-
base. Communications of the ACM, 57(10), 2014.

[95] W3C SPARQL Working Group. SPARQL 1.1 overview. W3C recommendation,
2013.

[96] Andreas Wagner, Thanh Tran Duc, Günter Ladwig, Andreas Harth, and Rudi Studer.
Top-𝑘 Linked Data Query Processing. In ESWC. 2012.

[97] Chih-Jye Wang, Wei-Shinn Ku, and Haiquan Chen. Geo-Store: a spatially-
augmented SPARQL query evaluation system. In SIGSPATIAL, 2012.

[98] Dong Wang, Lei Zou, Yansong Feng, Xuchuan Shen, Jilei Tian, and Dongyan Zhao.
S-store: An engine for large RDF graph integrating spatial information. In DASFAA,
2013.

[99] Dong Wang, Lei Zou, and Dongyan Zhao. gst-Store: An engine for large RDF graph
integrating spatiotemporal information. In EDBT, 2014.

[100] Dong Wang, Lei Zou, and Dongyan Zhao. Top-𝑘 Queries on RDF Graphs. Informa-
tion Sciences, 316, 2015.

[101] Cathrin Weiss, Panagiotis Karras, and Abraham Bernstein. Hexastore: sextuple
indexing for semantic web data management. PVLDB, 1(1), 2008.

[102] Kevin Wilkinson. Jena Property Table Implementation. SSWS, 2006.

[103] Kevin Wilkinson, Craig Sayers, Harumi Kuno, and Dave Reynolds. Efficient RDF
storage and retrieval in Jena2. In SWDB, 2003.

[104] David Wood, Paul Gearon, and Tom Adams. Kowari: A platform for semantic web
storage and analysis. In XTech, 2005.

[105] Dong Xin, Jiawei Han, and Kevin C Chang. Progressive and Selective Merge: Com-
puting Top-k with ad-hoc Ranking Functions. In SIGMOD, 2007.

[106] Pingpeng Yuan, Pu Liu, Buwen Wu, Hai Jin, Wenya Zhang, and Ling Liu. TripleBit:
a fast and compact system for large scale RDF data. PVLDB, 6(7), 2013.

181

http://virtuoso.openlinksw.com/dataspace/doc/dav/wiki/Main/VirtTipsAndTricksSPARQL11FeaturesExamplesCollection
http://virtuoso.openlinksw.com/dataspace/doc/dav/wiki/Main/VirtTipsAndTricksSPARQL11FeaturesExamplesCollection

[107] Shima Zahmatkesh. Retrieval of the most relevant Combinations of Data Published
in Heterogeneous Distributed Datasets on the Web. ISWC-DC, 2014.

[108] Lei Zou, Jinghui Mo, Lei Chen, M Tamer Özsu, and Dongyan Zhao. gStore: an-
swering SPARQL queries via subgraph matching. PVLDB, 4(8), 2011.

[109] Marcin Zukowski. Balancing vectorized query execution with bandwidth-optimized
storage. University of Amsterdam, PhD Thesis, 2009.

182

	Introduction
	Motivation
	Overview
	Contributions and Organization

	Background and Preliminaries
	Resource Description Framework
	SPARQL
	Motivational Queries

	Datasets
	Related Work
	RDF-3X
	Storage
	Query Processing

	RQ-RDF-3X: An Efficient Quad-Store
	Motivation
	Organization
	Related Work
	Reification Support
	N-Quads

	RQ-RDF-3X Framework
	Storage and Indexing in RQ-RDF-3X
	Selectivity Estimation
	Query Translation and Optimization

	Evaluation
	Experimental Setup
	Compared Systems
	Benchmark Queries
	Query Processing Performance
	Analysis of Results

	Discussion & Outlook
	Outlook

	Quark-X: An Efficient Top-k Processing Framework for RDF Quad Stores
	Motivation
	Organization
	Preliminaries
	Running Example

	Related Work
	Indexing for Quantitative Facts
	Quantifiable Indexes
	Semantic Encoding of Identifiers

	Query Processing
	S-index Join
	Non-quantifiable Predicate Joins

	Update Handling
	Implementation Details
	Evaluation Framework
	Datasets
	Benchmark Query Workloads

	Experimental Results
	Loading of Data and Database Size
	Query Performance
	Impact of Varying k

	Discussion & Outlook
	Outlook

	Streak: An Efficient Engine for Processing Top-k SPARQL Queries with Spatial Filters
	Motivation
	Challenge
	Contributions
	Organization

	Preliminaries
	Running Example

	Streak
	S-QuadTree Index for Spatial Entities
	Spatial Join Algorithm in Streak
	Adaptive Query Processing for Top-K Spatial Joins

	Evaluation Framework
	Datasets
	Benchmark Query Workloads

	Experimental Results
	Performance of Spatial Join Processing in Streak
	Comparison with Database Engines
	Comparison with varying k

	Related Work
	Discussion & Outlook
	Outlook

	Conclusions and Future Work
	Future Work

	Queries
	RQ-RDF-3X Benchmark Queries
	YAGO
	DBpedia

	Quark-X Benchmark Queries
	YAGO
	DBpedia

	STREAK Benchmark Queries
	YAGO
	LGD

	Bibliography

