I

Deep Transform Learning

By

JYOTI MAGGU

Under the supervision of

Dr. Angshul Majumdar

COMPUTER SCIENCE AND ENGINEERING
INDRAPRASTHA INSTITUTE OF INFORMATION TECHNOLOGY DELHI

NEw DELHI- 110020

21sT DECEMBER, 2019

I

Deep Transform Learning

By

JYOTI MAGGU

A THESIS
SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR
THE DEGREE OF

Doctor of Philosophy

COMPUTER SCIENCE AND ENGINEERING
INDRAPRASTHA INSTITUTE OF INFORMATION TECHNOLOGY DELHI

NEw DELHI- 110020

21sT DECEMBER, 2019

©Jyoti Maggu, 2019.

Certificate

This is to certify that the thesis titled Deep Transform Learning being
submitted by Jyoti Maggu to the Indraprastha Institute of Information
Technology Delhi, for the award of the degree of Doctor of Philosophy, is
an original research work carried out by her under my supervision. In my
opinion, the thesis has reached the standard fulfilling the requirements of

the regulations relating to the degree.

The results contained in this thesis have not been submitted in part
or full to any other university or institute for the award of any degree or

diploma.

21st December, 2019

Dr. Angshul Majumdar

Indraprastha Institute of Information Technology Delhi

New Delhi 110020

Dedication

To,
My loving Parents— Every bit of me is little bit of you.

Acknowledgements

Completion of this doctoral dissertation was possible with the support of
several people. I would like to express my sincere gratitude to all of them.

First and foremost, I would like to express my sincere gratitude to my
advisor Dr. Angshul Majumdar, who has been an embodiment of every-
thing I expected out of my advisor. I cannot thank him enough for the
continuous support, patience, motivation, immense knowledge, valuable
guidance, scholarly inputs and consistent encouragement. This thesis and
my growth in the past four years are credits to his technical prowess and
constant engagement in my work.

[am much indebted to Dr. Mayank Vatsa, Dr. Debarka Sengupta, (Asst.
Prof. IIIT Delhi) and Dr. Victor Sanchez (Associate Professor, University
of Warwick) for their insightful comments and encouragement, but also for
the hard question which incented me to widen my research from various
perspectives. I want to express my immense gratitude for the invaluable
feedback to the external examiners Dr. Tanaya Guha, Dr. Pawel Wawrzy-
fiski and Dr. Sonya Coleman.

I am profoundly grateful to the Indraprastha Institute of Information Tech-
nology for providing excellent infrastructure and research environments. I
want to thank the University Grants Commission for providing me a re-
search fellowship that helped me financially throughout my Ph.D.

I have been blessed to have worked and guided by some of the eminent
researchers in the field. I want to express my sincere thanks to Dr. Emilie
Chouzenoux and Dr. Giovanni Chierchia for research collaboration and
internship opportunity at A3SI, LIGM, Universite de Paris.

This thesis would be incomplete without the mention of my support system
from the Salsa lab. I thank all my friends and colleagues in this journey,
Hemant, Megha, Shikha, Shalini, Pooja, Priyadarshini, Smriti, Kanchan,
Tanya, Ruchi, Divya, Prerna and many more. Special thanks to Vanika
for always helping me. It is the endless cups of coffee and night long con-
versations with her that gave me a new perspective to look at everything
from work to life. Staying together in Paris, chatting, walking and cooking
together was fantastic. Aanchal has been the closest of my friends; my
one stop destination for sharing it all — happiness and sorrows. Thanks for
everything.

This thesis and my PhD itself would not have seen culmination if not for
my family. My parents have given me the freedom to choose, the confidence
to decide and a faith that no matter what, I have them watching my back.
My gratitude to my family is incomplete without a very special mention for
my mother, for always believing in me, for the endless love and supporting
me throughout my life. Another person who bore the highs and lows of
this journey almost as much as I did is my brother, Himanshu. He has
borne all my mood swings, stress and lack of time and yet stood strong by
my side through it all. I cannot thank enough my childhood friend Nishu
for the unconditional support.

I owe a special thanks to my husband, Deepak Budhiraja, for supporting
me and encouraging me throughout my Ph.D. To my beloved son Rudra,
I would like to express my thanks for always cheering me up.

I also express my regards to all of those who supported me in any respect
during the completion of my PhD.

Abstract

Conventional dictionary learning is a synthesis formulation; it learns a
dictionary to generate/synthesize the data from the learned coefficients.
Transform learning is its analysis equivalent. The transform analyzes the
data to generate the coefficients. Dictionary learning had been popular in
both signal processing and machine learning communities. However, trans-
form learning is largely unknown outside the signal processing research
community. So far, transform learning has been primarily used for solving
inverse problems.

The objective of the thesis is to build a completely new machine learn-
ing framework out of transform learning. It has already been shown how
the basic transform learning has been used as an unsupervised feature ex-
traction tool.

This work aims at proposing a supervised version of transform learning
with a plug-and-play approach. The supervised version is general enough
to perform classification without the need for any external classifier. The
kernelized version of supervised transform learning and stochastic regular-
ization on transform learning are also proposed. Based on the proposed
supervised transform learning framework, problems on computer vision,
bioinformatics, hyperspectral image classification, and arrhythmia classifi-
cation are solved.

This work also focuses on an unsupervised greedy deep transform learn-
ing problem, where each of the layers was solved separately. This was a
solution for unsupervised feature extraction using deep transform learning.
But the greedy solution for deep transform learning was sub-optimal. Then
work has been done on proposing an optimal solution to learn all the layers
jointly. It was used to solve classification, clustering and inverse problems.

Another problem discussed in this work is the supervised version of deep
transform learning. The supervised version is general enough to perform
single-label classification and multi-label classification. Proposed super-
vised deep transform learning for multi-label classification has been used
for solving a practical problem of non-intrusive load monitoring.

Another contribution of this work is to propose a deeply transformed sub-
space clustering framework. In this work, two techniques are introduced:
transformed locally linear manifold clustering and transformed sparse sub-
space clustering. Next, a deeper architecture for the same is proposed.

Then, the idea of convolutional transform learning is introduced. Here,
a set of independent convolutional filters are learned that operate on the
images to produce representations (one corresponding to each filter). The
kernels learned from this method have a close relationship with that of
convolutional neural networks.

Finally, a semi-coupled transform learning framework is introduced. Given
training data in two domains (source and target), it learns a transform in
each of the domains such that the corresponding coefficients are (linearly)
mapped from the source to the target. Since the mapping is in one direction
(source to target) but not the other way round, It is called semi-coupled.
This work is the analysis equivalent of (semi) coupled dictionary learning.

ii

Contents

Acknowledgements
Abstract i
List of Tables viii
List of Figures X
1 Introduction 1
1.1 Introduction 1
1.2 Research contributions 4
1.3 Dissertation organization 7
2 Literature review 9
2.1 Autoencoder 9
2.2 Restricted Boltzmann machine 11
2.3 Convolutional neural network 12
2.4 Dictionary learning 13
2.5 Greedy deep dictionary learning 15
2.5.1 Supervised dictionary learning 16

2.6 Convolutional dictionary learning 17

iii

2.7 Coupled representation learning 18
2.8 Analysis and synthesis formulation 19
2.9 Transform learning 22
Supervised transform learning 27
3.1 Proposed formulation 28
3.1.1 Class-sparse transform learning 29
3.1.2 Low-rank transform learning 31
3.1.3 Discriminative transform learning 33
3.1.4 Label consistent transform learning 35
3.1.5 Testingo 36
3.1.6 Kernel transform learning 37
3.1.7 Stochastic regularization 41
3.2 Experiments and results 44
3.2.1 Computer vision 44
3.2.2 Bioinformaticso 48
3.2.3 Hyperspectral image classification o1
3.2.4 Arrhythmia classification 54
3.3 Discussion Y

Unsupervised deep transform learning - classification and

clustering problems 59
4.1 Proposed formulationo 60
4.1.1 Greedy deep transform learning 60
4.1.2 Jointly learned deep transform learning 63
4.2 Experiments and results 66

4.2.1 Classification using jointly learned deep transforms 66

iv

4.2.2 Clustering using jointly learned deep transforms . .

4.3 Discussion

5 Unsupervised deep transform learning - inverse problems
5.1 Literature review
5.2 Proposed formulation 0L
5.3 Experiments and results

5.3.1 Deblurring
5.3.2 Reconstruction

5.4 Discussion,

6 Supervised deep transform learning
6.1 Proposed formulation
6.2 Experiments and results
6.2.1 Single-label classification
6.2.2 Multilabel classification.
6.2.3 Evaluation metrics

6.3 Discussion,

7 Deep transformed subspace clustering
7.1 Introduction
7.2 Literature review L
7.3 Proposed formulation
7.4 Experiments and results

7.5 Discussion,

8 Convolutional transform learning

70
72

73
74
79
83
83
86
89

91
92
95
95
96
100
103

104
105
108
110
115
118

119

8.1 Introduction 120
8.2 Proposed formulation 121
8.2.1 Optimization algorithm 123
8.2.2 Remark for rectangular 7: 125
8.3 Multi-layer case with a simplified 2D model 128
8.3.1 Problem formulation 129
8.3.2 Optimization algorithm 130
8.4 Experiments and results 132
8.4.1 Classification accuracy 133
8.4.2 Computational time 135
8.4.3 Analysis of the learned kernels 136
8.4.4 Classification accuracy with deep convolutional trans-
form learningo 137
8.4.5 Clustering results with deep convolutional transform
learning Lo 140
8.5 Discussiono 140
Semi-coupled transform learning 142
9.1 Introduction 143
9.2 Literature review L 145
9.2.1 Coupled dictionary learning 145
9.3 Proposed formulation 146
9.4 Experiments and results 150
9.4.1 Image super-resolution 150
9.4.2 Cross lingual document retrieval 151
9.5 Discussion 153

vi

10 Conclusions 155

10.1 Summary of contribution 156
10.1.1 Supervised transform learning 156
10.1.2 Deep transform learning - classification and cluster-

ing problem L. 156
10.1.3 Deep transform learning - inverse problem 157
10.1.4 Supervised deep transform learning 158
10.1.5 Deep transformed subspace clustering 158
10.1.6 Convolutional transform learning 159
10.1.7 Semi-coupled transform learning 160

10.2 Future work 160
10.2.1 Coupled deep transform learning 160
10.2.2 Deep transform information fusion network 162

References 164

vii

List of Tables

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9

4.1

4.2
4.3

4.4
4.5

5.1

0.2

Parameter values 0oL 46
Classification accuracy 47
Classification accuracy compared with DeepMethyl 49
DeepChrome: area under curve (AUC) comparison 5l
Classification accuracy on Indian Pines 53
Classification accuracy on Pavia 53
Train and test set details 95
Parameter values L. 56
ECG classification accuracy: AAMI 2 protocol o7

Nearest neighbour classification (accuracy: joint unsuper-

vised DTL) o 69
SVM classification (accuracy): joint unsupervised DTL . . 69
Going deep: joint unsupervised DTL with SVM classifier

(AcCuracy)o 70
Clustering on COIL-20: joint unsupervised DTL 71
Clustering on YALEB: joint unsupervised DTL 71

Comparative deblurring performance: peak signal to noise
ratio (PSNR) o 84

Comparative deblurring performance: structural similarity
index (SSIM) 85

viii

0.3
5.4

6.1
6.2

6.3
6.4
6.5

7.1
7.2
7.3

7.4

8.1
8.2
8.3
8.4
8.9

8.6

9.1
9.2
9.3

Run-time comparison 85
Reconstruction performance in terms of normalized mean

squared error (NMSE) L. 88
Classification accuracy on face recongnition 96

Performance evaluation on reference energy disaggregation

dataset (REDD) oo 101
Appliance level evaluation on REDD 101
Performance evaluation on Pecan street 101
Appliance level evaluation on Pecan street 102
comparison with benchmarks on COIL 20 117
Comparison with benchmarks on Extended Yale B. 117

Results with number of layers on EYALEB: deep transformed
sparse subspace clustering (DTSSC) 117

Comparison of joint vs greedy solution on Coil-20: DTSSC 118

Classification accuracy on benchmark datasets.. 135
Accuracy on support vector machine (SVM) with layers . . 139
Classification accuracy using k-nearest neighbour (KNN) . 139

Classification accuracy using SVM 139
Convolutional transformed clustering: adjusted rand index

(ARI) o 140
Clustering timeinsec. 140
PSNR for super-resolution 151
Comparable document retrieval on Europarl 152

Comparable document retrieval on Wikipedia 152

ix

List of Figures

1.1 (a)Neural network (b)Segregated representation 1

2.1 (a) Autoencoder (b) Stacked autoencoder 10
2.2 (a) Restricted Boltzmann machine (b) Deep belief network 11
2.3 Lenet-5 architecture o000 000 13
2.4 Dictionary learning 13

2.5 Neural network interpretation of dictionary learning (DL) . 14

2.6 Schematic diagram: deep dictionary learning 16
2.7 Coupled representation learning 19
2.8 Transform learning 22
2.9 Neural network interpretation of transform learning (TL) 23
3.1 Dropout. 42
3.2 Dropconnect 43
4.1 Deep transform learning 60

5.1 Man Left to Right: original, blurred image,row-column sparse
representation (RCSR), graph-based deblurring (GBD), generative
adversarial network-based deblurring (DeblurGAN) and pro-
posed 85

5.2 Reconstructed image. Top: cardiac perfusion 1; Bottom:
cardiac perfusion 2. Left to right: ground-truth, low-rank
adaptive sparse signal model (LASSI), kernel low-rank method
(KLR), convolutional recurrent network (CRN) and proposed 88

5.3 Difference image. Top: cardiac perfusion 1; Bottom: cardiac
perfusion 2. Left to right: LASSI, KLR, CRN and proposed 89

6.1 NILM as multi-label classification problem 97

7.1 TIllustration of the subspace clustering framework based on
sparse and low-rank representation approaches for building
the affinity matrix[1] L 107

7.2 Illustration of the transformed subspace clustering frame-
work based on sparse and low-rank representation approaches
for building the affinity matrix 107

7.3 Example images from Coil-20 dataset 115

7.4 Example images from YaleB dataset 116

8.1 Kernels in convolutional neural network (CNN)(top) and
coupled transform learning (CTL)(bottom) 137

8.2 Kernels learned on YALE dataset. 138

9.1 Semi-coupled TL 143

9.2 Semi-coupled TL: architectural diagram 146

9.3 Semi-coupled TL: neural network interpretation 147

9.4 Original(left), coupled dictionary learning (CDL)(mid), pro-
posed(right) oL 150

10.1 Deep coupled transform learning 161

10.2 Information fusion deep transform network 163

xi

Acronyms

DeblurGAN generative adversarial network-based deblurring

TL

DL
MOD
DDL
CoDL
CDL
SVD
MRI
STL
KDL
RBM
CSTL
LRTL
ISTA
KTL
KMP
LCTL
DBDL
MTDL

transform learning

dictionary learning

method of optimal directions

deep dictionary learning
convolutional dictionary learning
coupled dictionary learning

singular value decomposition
magnetic resonance imaging
supervised transform learning
kernel dictionary learning

restricted boltzmann machines
class-sparse transform learning
low-rank transform learning
iterative soft thresholding algorithm
kernel transform learning

kernel matching pursuit

label consistent transform learning
discriminative bayesian dictionary learning

multimodal task driven dictionary learning

xii

DADL
SEDL
NDL
DiTL
DO

DC
K-CSTL
K-LRTL
K-DiTL
K-LCTL
CNN
AUC
SSLR
HSSF
GSLR
OA

AA
DBN
SAE
SVM
DTL
GDTL
JDTL
ADMM
CSSAE

discriminative analysis dictionary learning
sparse embedded dictionary learning

non linear dictionary learning
discriminative transform learning

drop out

drop connect

kernel class-sparse transform learning
kernel low-rank transform learning
kernel discriminative transform learning
kernel label consistent transform learning
convolutional neural network

area under curve

spectral-spatial shared linear regression
hierarchical spectral-spatial features
group-sparse low-rank representation
overall accuracy

average accuracy

deep belief network

stacked auto encoder

support vector machine

deep transform learning

greedy deep transform learning

jointly learned deep transform learning
alternating direction method of multipliers

class sparse stacked autoencoder

xiii

CSDBN
KNN
DSC
DSIFT
HOG
PCA
NMI
ARI
LASSO
CS
ReLU
AL
PSNR
SSIM
GBD
RCSR
CRN
KLR
LASSI
NMSE
NILM
LCDL
LCDTL
RAKEL
MLKNN

class sparse deep belief network
k-nearest neighbour

deep subspace clustering

dense scale-invariant feature transform
histogram of oriented gradients
principal component analysis
normalized mutual information
adjusted rand index

least absolute selection and shrinkage operator
compressed sensing

rectified linear unit

augmented lagrangian

peak signal to noise ratio

structural similarity index
graph-based deblurring

row-column sparse representation
convolutional recurrent network

kernel low-rank method

low-rank adaptive sparse signal model
normalized mean squared error

non intrusive load monitoring

label consistent dictionary learning
label consistent deep transform learning
random K label set

multi-label K-nearest neighbor

Xiv

REDD
LLMC
SSC
LRR
DTSC
SVD
OMP
DSC
DMF
DKM
TLLMC
TSSC
TLRR
DTSSC
DTLLMC
CoTL
CTL
SCTL
DCoTL
OPCA
CPLSA
MRR
SDAE
SGSA
DDBN

reference energy disaggregation dataset
locally linear manifold clustering

Sparse subspace clustering

low-rank representation

deeply transformed subspace clustering
singular value decomposition

orthogonal matching pursuit

deep sparse subspace clustering

deep matrix factorization

deep K-means clustering

transfomed locally linear manifold clustering
transformed sparse subspace clustering
transformed low-rank representation

deep transformed sparse subspace clustering
deep transfomed locally linear manifold clustering
convolutional transform learning

coupled transform learning

semi-coupled transform learning

deep convolutional transform learning
oriented principal component analysis
coupled probabilistic latent semantic analysis
mean reciprocal rank

stacked denoising autoencoder

stacked group sparse auto encoder

discriminative deep belief network

XV

LCKSVD label consistent KSVD
LCDDL label-consistent deep dictionary learning

SLCA stacked label consistent autoencoder

xvi

Chapter 1
Introduction

1.1 Introduction

Representation)
Representation

O O O
O

Target
Input

OOOO0OO

Target

O
O
O

000000
OOOO
OO0
OO0

(a

g

(b)
Figure 1.1: (a)Neural network (b)Segregated representation

In a typical neural network, there is an input layer where samples are
presented, a hidden or representation layer and an output layer with the

target values (figure 1.1a). The network is learned using back-propagation.

As shown in figure 1.1b, learning of such a network can be perceived as
two sub-problems: learning the weights between input and the representa-

tion layer and between representation and output layer. If the representa-

tions are known, learning the weights between the hidden and output layer
is trivial. It is a simple regression problem since both the input (represen-
tations of the input data) and output are known. Learning the weights
between input and representation layer is a challenging task since both
weights and output are unknown. This is called representation learning.
There are four well-known frameworks for deep representation learning:
stacked auto encoder, deep belief network, convolutional neural network

and dictionary learning.

CNN gives excellent results in every perceivable image analysis task.
However, the applicability of CNN is limited largely to images in the visi-
ble range. There is literature on the application of CNN to areas outside
this range (hyperspectral imaging, radar imaging, etc.), but the success
has been limited. This is largely because CNN need humongous volumes
of supervised data to train; this is only available in the visible range of
the spectrum. The pre-training fine-tuning paradigm does not generalize
well outside this range; hence the applicability of CNN has been largely
restricted in scientific imaging modalities. This also precludes their appli-

cability in unsupervised tasks like clustering.

A deep belief network uses the restricted boltzmann machines (RBM)
as the building block. Mathematically the cost function for RBM is cum-
bersome and cannot be solved efficiently; at best, it can be solved only
approximately. This is a serious impediment that precludes any serious

mathematical modification to the learning model. Besides, the inputs to

RBM / deep belief network (DBN) need to be either binary or in the range
between 0 and 1 (gaussian Bernoulli RBM); this is highly restrictive. For
any signal where the dynamic range is high, when the input is normalized
(between 0 and 1), the small numbers reach the limits of machine precision

and are treated as zeroes or garbage values.

Stacked autoencoder overcomes the limitations of DBN; it has a mathe-
matically tractable cost function and can handle any input value. However,
the problem of this model is that it requires learning twice the number of pa-
rameters/connections (encoders and decoders) than other neural networks.

This makes the stacked auto encoder (SAE) susceptible to over-fitting.

Dictionary Learning has been used to solve inverse problems in imag-
ing and as an unsupervised feature extraction tool in vision. The main
disadvantage of DL for applications in vision is the relatively long feature
extraction time during testing; owing to the requirement of solving an
iterative optimization problem (lp-minimization). Thus, the test feature

generation is a time-consuming task and cannot be real-time.

The general idea that led the thesis is to introduce a new method for
representation learning called transform learning, a technique developed
in the field of signal processing, and apply it to problems considered in
machine learning. Transform learning is an analysis framework [2, 3, 1].
It has been recently introduced and is not yet popular outside the signal

processing community. It is a tool to find effective regularizer in ill-posed

inverse problems. As long as the underlying target (e.g., image, video,
etc.) to be recovered is sparse, transform learning can help improve the
reconstruction quality. In this work, it is shown that it can be used as
an alternative to dictionary learning as well. The newly developed analy-
sis framework of transform learning does not suffer from the slow feature
extraction problem. In transform learning a basis/transform is learned to
analyze the data to generate features/coefficients. For transform learning,
the test features can, therefore, be generated by a matrix-vector product.

This is fast and can be real-time.

1.2 Research contributions

This thesis focuses on building a completely new machine learning frame-
work out of transform learning. It aims at a few inter-related problems.
From the machine learning perspective, classification and clustering prob-
lems are solved. From a signal processing perspective, inverse problems are
solved. The idea here is not to compete with the best dictionary learning
techniques in computer vision, but to show that transform learning yields
result at par (or better) than dictionary learning is and is computation-
ally cheaper (faster) at run time. The proposed framework is implemented
for different databases, comparison methods, and applications. The appli-
cations range from face recognition to MRI reconstruction to document

retrieval. This work does not want to focus on one application and wants

to show the generic strength of the proposed work. The research contribu-

tions are summarized as follows:

o This work proposes supervised formulations of transform learning. Four
different types of supervision penalties are proposed. They enforce (i)
class- sparsity, (ii) similarity among intra-class features in terms of
low-rank constraint, (iii) discriminative transform learning, (iv) label-
consistency. Also, the work introduces the kernelized version of trans-
form learning and stochastic regularization techniques drop out (DO)
and drop connect (DC) into the transform learning formulation. The
problems on computer vision, bioinformatics, hyperspectral image clas-
sification, and arrhythmia classification are solved to show the generic

strength of the work.

e Then, a deep version of unsupervised transform learning is proposed.
Two solutions are presented here: (i) greedy one that learns layers
one after another, and (ii) one in which the whole structure is trained
simultaneously in a single optimization run. It was used to solve clas-

sification, clustering and inverse problems.

o Another work discussed in this thesis is a deep version of supervised
transform learning. Supervision is introduced by adding a label con-
sistency penalty to the previous unsupervised formulation. An opti-
mization algorithm is synthesized for training. It is based on proximal

variable splitting, augmented Lagrangians, and alternating direction

method of multipliers. Proposed supervised deep transform learning
for multi-label classification has been used for solving a practical prob-

lem of non-intrusive load monitoring.

e Another contribution is the incorporation of locally linear manifold
clustering and sparse subspace clustering into the transform learning
formulation. The method is introduced to perform transform analysis
and clustering jointly through the formulation of a coupled minimiza-

tion problem.

e Then the introduction of convolutions into transform learning is made.
Convolutions are here determined in an unsupervised fashion based on

the gauss-seidel algorithm.

o Finally, semi-coupled transform learning is proposed. Given are train-
ing data in two domains (source and target), it learns to transform each
of the domains into lower-dimensional spaces between which there is
a linear mapping. Then, it enables the reconstruction of target data

from new source data.

The research outcomes have been disseminated through publications in

journals and conferences.

1.3 Dissertation organization

Chapter 2 describes some important basic concepts that are building blocks
of this thesis. It includes a brief description of stacked autoencoder, deep
belief network, convolutional neural network and dictionary learning. Con-
cepts related to deep dictionary learning supervised dictionary learning,
coupled dictionary learning and coupled representation learning are also
discussed along with an introduction to basic TL. Chapter 3 discusses
supervised TL framework, its kernelized version, and stochastic regulariza-
tion. Four types of supervision penalties are introduced into TL framework:
class-sparse transform learning, low-rank transform learning, discrimina-
tive transform learning, and label consistent transform learning. The im-
plementation of stochastic regularization is done through drop connect and
drop out. Chapter 4 describes unsupervised deep TL frameworks. Two ap-
proaches are discussed- greedy and joint learning. It solves classification
and clustering problems. Chapter 5 is based on solving inverse problems
using unsupervised deep TL. First, the deblurring problem is solved. Then,
it is used for solving the reconstruction problem. Chapter 6 introduces a
deeper architecture of supervised TL. It is used for multilabel classifica-
tion in a non-intrusive load monitoring application. Chapter 7 describes
deep transformed subspace clustering for locally linear manifold clustering
and sparse subspace clustering. Chapter 8 gives a description of convolu-

tional TL. Convolutional filters are determined in an unsupervised fashion.

Chapter 9 describes semi-coupled TL. It is used for image super-resolution

and cross-lingual document retrieval.

Chapter 2

Literature review

Deep learning methods have multiple levels of learning; in each layer, a
more abstract representation of the raw data is learned via non-linear
transformations. Using such non-linear modules of transformation, very
complex functions can be determined. The critical idea stems from bi-
ology, where it is believed that cognition happens through several layers.
The basic building blocks of deep learning are autoencoder, RBM, CNN,
and DL. Each of them is discussed in this chapter. Introduction to basic
concepts of deep dictionary learning, supervised DL, convolutional DL and
coupled representation learning followed by basic transform learning are

also given.

2.1 Autoencoder

The architecture of an autoencoder is shown in figure 2.1a. Autoencoder is

a self-supervised network; it learns encoding and decoding weights between

Representation

N

QOO0

s
5
OO0O0OO0OOO0O

Hi@ Léye) 2

3

Input
QOOOOO
Conéin o)

Output

Output

QOO0O0O0O
olelele
536000

Encoder Decoder
(a) (b)

Figure 2.1: (a) Autoencoder (b) Stacked autoencoder

input and itself. It consists of two parts encoder and decoder. Encoder
maps the input to a latent representation, and the decoder maps the en-
coded input back to the data. For a given input x the representations can

be expressed as:

2 = ¢p(Wyx) (2.1)

Where, ¢ is the non-linearity and W; are the encoding weights. The

decoder maps the representations back to the data space:

x =W, p(Wyz) (2.2)

The problem is to learn the encoding and decoding weights 1W/; and Wi

These are learned by minimizing the euclidean cost:

min ||z — Wy o(Wiz)|3 (2.3)

L,W1

The idea behind representation learning is to preserve the information con-

tent of the input in the representations. In autoencoder, information is

10

preserved at the representations in a euclidean sense. To form a neural
network, the decoder part of the autoencoder is removed. The encoder
forms the first part (input to representation layer) of the neural network.
Targets are attached to the representations and backpropagation is used

to train the network.

Deep networks can be formed using autoencoders by nesting them one
inside the other. These networks are called stacked autoencoders (fig-
ure 2.1b). Once this network is learned, the decoder part is removed,
and targets are attached to representations of the deepest layer. And the

network is fine-tuned using backpropagation.

2.2 Restricted Boltzmann machine

Figure 2.2: (a) Restricted Boltzmann machine (b) Deep belief network

The second approach to representation learning is the restricted Boltz-
mann machine (figure 2.2a). RBM learns by maximizing the similarity be-
tween the projection of the data and representations. As it has no output,

backpropagation cannot be used for training. It is solved by contrastive

11

divergence [5]. Once the RBM is learned, targets are attached to its output

to form a complete neural network.

Deep belief network [0] is formed by stacking one RBM unit after the
other. The architecture is shown in figure 2.2b. The targets are attached
to the final representation layer, and network weights are tunned using

backpropagation.

2.3 Convolutional neural network

Convolutional neural networks are a special kind of multi-layer neural net-
works. Like other neural networks, CNN are trained with backpropaga-
tion, but the architecture is different. CNN is a sequence of layers. Mainly
there are three types of layers: convolutional layer, pooling layer, and fully
connected layer. These layers are stacked one after the other to form a
complete convolutional neural network architecture. Each layer of CNN
converts one layer of activations to another through a differentiable func-
tion. CNN takes an input image, process it and classify it under certain
categories. Each input pass through convolutional layers with filters, pool-
ing layers, fully connected layer, and a softmax function is applied for

classification.

figure 2.3 shows the diagram of Lenet-5 architecture introduced by Lecun
et al in 1998 [7]. It was designed to recognize handwritten and machine-

printed digits. Lenet-5 is 7 layer CNN, among which 3 are convolutional

12

layers (C1,Cy and C3). The convolutional layer consists of 5 by 5 filters
with stride 1. There are two 2 by 2 average pooling layers (S and Sy).
The layer Fg denotes the fully connected layer. Tanh activation function

is used throughout the network.

C3: f. maps 16@10x10

C1: feature maps S4: f. maps 16@5x5
INPUT 6@28x28 2
32x32

S2: f. maps
6@14x14

Full conrllection ‘ Gaussian connections
Convolutions Subsampling Convolutions ~ Subsampling Full connection

Figure 2.3: Lenet-5 architecture

2.4 Dictionary learning

Original Data (X) Dictionary (D) Sparse Representation (7))
‘ | | ‘ ‘ ‘ ‘ ‘ | ‘ ‘ ‘ ‘ - m ‘ ‘ | . "
m

mxn mxk kxn

Figure 2.4: Dictionary learning

A dictionary is an over-complete basis, i.e. it has more columns than
rows. The columns of a dictionary are often referred to as atoms. These
atoms may be the linear combinations of other atoms in the dictionary.
The benefit of a dictionary over the basis is that a dictionary may result
in even sparser representation as compared to a fixed basis. However, it

should be remembered that the dictionary is not ubiquitous, unlike the

13

fixed transforms. Dictionaries are learned to solve a problem for a partic-
ular class of signals; they are not intended to be generalizable to others.
DL learns a dictionary/ basis to synthesize the data from the latent rep-

resentation. Neural network interpretation of DL is shown in figure 2.5.

O0O0O0

Figure 2.5: Neural network interpretation of DL

Suppose we are given the data X € R™*" such that each column x; rep-
resents a training sample of size m, thus we have total n training samples.
Dictionary learning aims at learning a dictionary and the sparse represen-
tation of these signals, as shown in figure 2.4. The dictionary learning

problem can be expressed as

121
DeC{%lgRim n =1 (2Hx sl + Allzill) (24)

14

where the constraint set C' is defined as
C={DeR"*stVj=1...kd d; <1}

Various algorithms have been proposed in literature to solve the dictionary
learning problem. The algorithms like method of optimal directions (MOD)
solve for dictionary and sparse representation alternately. The K-SVD
algorithm takes a total of K rank-one approximations to determine all K
atoms of the dictionary sequentially. The rank-one approximations are

done using singular value decomposition (SVD).

The euclidean cost function 2.5 of DL is given by:

: . 2
mip | X — DZ|[F (2.5)

2.5 Greedy deep dictionary learning

In deep learning, the idea is to learn multiple levels of dictionaries. It
proposes to extend the shallow DL problem into multiple levels. The idea
of forming a deep architecture using DL stems from the success of deep
learning. Mathematically, a deep dictionary learning (DDL) problem with

two levels as in figure 2.6 can be formulated as given in the equation below.

X = Diop(D2Z) (2.6)

Where, X is the input data, D; and D, are dictionaries and Z are the

15

N 4

Figure 2.6: Schematic diagram: deep dictionary learning

coefficients. ¢ is the non-linearity. Greedy approach to DDL learns one
layer at a time. First layer of the dictionary learns from the training data.
The representations and dictionaries are learned for the first layer. in the
second layer, representations learned in the first layer act as the input and
it learns the dictionary for the second layer. Same concept can be extended
to multiple layers. Formulation for DDL with non-linear activations can

be expressed as:

X = D1¢(D2¢(...0(DnZ))) (2.7)

Where, Dy to Dy are N level dictionaries and Z are the final level repre-

sentations. Following optimization problem need to be solved.

Dl,DI?..i.Ill)N,Z [1X = Dig(Dag(...¢(Dn 2))) [(2.8)

2.5.1 Supervised dictionary learning

To incorporate supervision, a linear map is learned between the coefficients

of the last layer and the actual targets. The supervised deep dictionary

16

learning can be formulated as:

min (|67 (Zy-) - DxZl}+ pll@ - WZIR M2 (29)
N4y

Here, () are the targets and W is the linear map between the targets and

coefficients.

2.6 Convolutional dictionary learning

The reconstruction of a signal x from a sparse representation z with respect
to dictionary matrix D is linear, i.e. &~ Dz. The convolutional dictionary
learning (CoDL) [8] approach replaces unstructured dictionary D by a
set of linear filters d,,. In this case, the reconstruction of signal x from
representations z,, is r ~ X,,d,;,*2z,,,. Where z is an image. Mathematically,

CoDL can be formulated as:

argmin 53 || S dp * 2 — 2])3 + A 2 ||zl
{dm}Loma} = F T ok

s.t.||dm]le = 1Vm

(2.10)

The constraint on the norms of filters d,, is required to avoid the scaling
ambiguity between filters and coefficients, the training images z; are con-
sidered to be N dimensional vectors, where N is the number of pixels in
each image, and the number of filters and the number of training images

are M and K respectively.

17

2.7 Coupled representation learning

The central concept of coupled representation learning is schematically
shown in figure 2.7. There are two domains: source and target; a model
learns representations from each domain, and a linear map is learned from
the representation of the source to that of the target. It has been used in

several problems arising in domain adaptation.

So far, there are two popular models for coupled representation learning;
based on - dictionary learning and autoencoder. The formulation for CDL

[9, 10] is given by -

. B) -)
potnin X = DsZs|lp + |IY — DrZr|[x (2.11)

| Zr — MZs|[E + Asl| Zs|ly + Arl| Zr| |4
Here X and Y are the data for the source and target domains respectively.
Dg and the Dy are models (dictionaries) learnt for each of the two domains;
their corresponding representations are Zg and Zp. M is the linear map
coupling the representations. The dictionaries learn a representation in
each domain, and there is a map between the representations of the two

domains.

For synthesis tasks, once the training is complete, the dictionaries for
the source and target are preserved along with the learned linear map;
the coefficients are not of any further use. Once a new sample in the

source domain arrives, it’s the representation. It is obtained by the learned

18

Source Latent Space Zg

Domain (S)

]: Coupling (M)

Target
Domain (T)

Latent Space Z+

Figure 2.7: Coupled representation learning

dictionary of the source domain. This is further mapped onto the target
domain by the learned linear map. The thus obtained representation in the
target domain is synthesized into the corresponding signal by the target
domain dictionary. For inverse problems, the source domain is usually the
corrupted image, and the target domain is the clean image. This approach
has been used for super-resolution [9], denoising [10], deblurring [I1] and,

reconstruction [12].

2.8 Analysis and synthesis formulation

To understand the difference between analysis and synthesis formulation,
we need to digress and talk about compressed sensing; it studies the prob-
lem of solving an under-determined system of linear equations when the
solution is known to be sparse. In general, a problem of the following form

has infinitely many solutions;

Ymx1 = Amxnynxly m<n (212)

19

The practical way to solve this problem when the solution is known to be

sparse is by minimizing the 11-norm.

mn]
y = Ax

The 11-norm is defined as the sum of absolute values in the vector. In
practice, the system is corrupted by white gaussian noise; the noisy version

of equation 2.12 is expressed as,

= Ax +
y ! (2.14)

n € N(0,0?)

In such a situation, the equality constraint of equation 2.13 is relaxed by

a quadratic constraint,

min ||z,
s.t
(2.15)
ly — Az|]5 < e
£ =mo?

Natural signals are almost never sparse in their physical domain, e.g.
biomedical signals like EEG, ECG, MEG and speech are not sparse in
time domain and images are never sparse in pixel domain. However most
natural signals have an approximately sparse representation in a transform
domain, viz. speech is sparse in short time fourier transform, images are

sparse in wavelets, biomedical signals are sparse in Gabor, etc. In com-

20

pressed sensing, we are mostly interested in orthogonal, and tight-frame

transforms; both of these follow the analysis-synthesis equations:

o Synthesis:
r=T7

o Analysis:
Z =Tz

Here x is the signal of interest (dense), 1" is the sparsifying transform and
Z the transform coefficients are assumed to be sparse. Using the synthesis

form, the system of equations 2.14 can be expressed as,
y=AT'Z +n (2.16)

Thus, we are back to the sparse regime and the solution can be recovered

by,

7 = min 1 Z1]1
s.t. (2.17)
ly — AT'Z|[3 < <
Once the sparse coefficients are obtained, the signal of interest can be
recovered by applying the synthesis equation. This kind of solution 2.17 is
called the synthesis formulation; it solves for the sparse coefficients from
which the signal is ‘synthesized’. Notice that the synthesis formulation is
quite stringent; it allows for only a few transforms that are either orthog-

onal or tight-frame. This precludes many useful transforms like Gabor

21

or finite-difference. There is an alternate formulation called the co-sparse
analysis prior. There is little theoretical understanding of this topic. In lay
person’s terms, unlike the synthesis prior formulation, the analysis prior
formulation solves for the signal itself and not the sparse coefficients. The

recovery is expressed as,
N 2
T =min||Hz|1s.t.|ly — Az|lz < e (2.18)

Here H is the analysis operator; it can be any linear operator; it need
not be orthogonal or tight-frame. One can see that the analysis and the
synthesis prior are the same for orthogonal transforms but not for tight-
frames (the proof is trivial). Notice that the analysis prior formulation is
more generic. The synthesis prior is a special case of the analysis prior
formulation H = I and A = AT’ . More than 95% of work on compressed
sensing and sparse recovery including theoretical studies, algorithms and

application areas are based on the synthesis prior formulation.

2.9 Transform learning

Transform (T) Original Data (X) Sparse Representation ()
] | BEOOm
@ A I:Ig d ’? ﬁ OmQd
...... gl |:| HA ti. [T K] : _ : :
| I:I Ol O ORAg
D Ood D | 8 D
kxXm mxn kXxXn

Figure 2.8: Transform learning

22

TL is the analysis equivalent of dictionary learning. It learns an analysis
dictionary / transform (7°) such that it operates on the data (X)) to generate
the coefficients (Z) (see figure 2.8). It’s neural network representation is
given as figure 2.9. Suppose we are given the data X € R"*" such that
each column z; represents a training sample of size m, thus we have total

n training samples. Mathematically this is represented as,

1
N |7 i i 2 A i 2.1
TekamZeRann;:l(1Tz — 2|3 + Allzil 1) (2.19)

X T Z

Figure 2.9: Neural network interpretation of TL

One may be enticed to solve the TL problem by formulating,
apip 17X = Z1f + |l (2.20)

Unfortunately such a formulation would lead to degenerate solutions; it is

23

easy to verify the trivial solution 7' = 0 and Z = 0. In order to ameliorate

this the following formulation was proposed in [2].
pip X — 2| 4 NI~ logdet T) 211y (221)

The factor — log det! imposes a full rank on the learned transform; this pre-
vents the degenerate solution. The additional penalty ||T||% is to balance
scale; without this — log det can keep on increasing; producing degenerate
results in the other extreme. Note that the sparsity constraint on the co-
efficients is not mandatory for machine learning problems. It is useful for
solving inverse problems in signal processing. In [3], an alternating min-
imization approach was proposed to solve the TL problem equation 2.21,

and the same will be used throughout the thesis.

T« ming ||TX — Z||3 + (e[| T||; — log det T) (2.22)
7 ming [|[TX — Z||% + ul|Z|o

Updating the coefficients (Z) is straightforward. It can be updated via one

step of hard thresholding [13], [14] . This is expressed as,

27 «+ (abs(TX) > n) QTX (2.23)

Here ® represents element-wise product.

For updating the transform, one can notice that the gradients for dif-

ogdet(T)= log(singular values). If some singular value < 0, then the log takes 400 as output. For the case
when T is not square, the algorithm solves — log det(T"T) + ||T|%.
2We take absolute of each entry of the matrix and see if any entry of matrix is greater than p

24

ferent terms in equation 3.1 are easy to compute. Ignoring the constants,

this is given by:

VITX = Z|[% = XT(TX — 2)
VIT|Z =T (2.24)
ViogdetT =TT

In the initial paper on transform learning [3], a non-linear conjugate gra-
dient based technique was proposed to solve the transform update. In the
second paper [1], with some linear algebraic tricks they were able to show

that a closed form update exists for the transform.

XXT 4+ el =LLT

LYY XT = QSRT (2.25)

T =05R(S + (S* + 2A1)Y2)QT L~
The first step is to compute the cholesky decomposition; the decomposition
exists since X X7 + \el is symmetric positive definite. The next step is to
compute the full SVD. The final step is the update step. One must notice
that L~! is easy to compute since it is a lower triangular matrix. The cost
function is monotone, decreasing in each step. Moreover, since it is lower

bounded, it converges, and its closed-form solution exists.

The main motivation that can be carried from TL is to use it beyond
signal processing. TL has not been used for solving machine learning prob-

lems. We explore if TL features can be general enough to solve machine

25

learning problems, and we have computational cost and run time advan-

tages.

26

Chapter 3

Supervised transform learning

This chapter introduces certain supervised formulations to transform learn-
ing. Four different types of supervision penalties are proposed. The first
one is class-sparsity, which imposes common sparse support within repre-
sentations of each class. The second one imposes similarity among intra-
class features in terms of a low-rank constraint (high cosine similarity). The
third penalty enforces features of the same class to be nearby each other
and features of different classes to be far apart. The final formulation is
the well known label-consistency formulation [15, 16], which learns a linear
map from the feature space to the class targets. For the first time, we show
how TL (and its supervised versions can be kernelized). It also introduces
stochastic regularization techniques like drop out and drop connect into
the TL formulation. First, this chapter describes the proposed methodol-
ogy in section 3.1. Then section 3.2 presents the experiments and results.
Experiments have been carried out on four different problems: computer

vision, bioinformatics, hyperspectral imaging, and ECG based arrhythmia

27

classification.

3.1 Proposed formulation

Several variants of supervised transform learning (STL) are proposed. Su-
pervision will appear as regularization terms on top of the basic TL formu-
lation equation 3.1. To improve the results further, the kernelized versions
of TL are proposed. This is motivated by the success of kernel dictio-
nary learning (KDL) [17, 18, 19]. Finally we discuss how stochastic reg-
ularization techniques like DO [20] and DC [21] can significantly improve

performance. The basic TL formulation is as follows:

T < ming ||TX — Z||% + Me||T||% — log det T') 3.1)
Z + ming ||TX — Z|[3 + pl| Z]lo

Where u, A\, e are hyperparameters.

In STL, four different types of supervision penalties are proposed. The
first one is class-sparsity, which imposes common sparse support within
representations of each class. The second one imposes similarity among
intra-class features in terms of a low-rank constraint (high cosine similar-
ity). The third penalty enforces features of the same class to be nearby
each other and features of different classes to be far apart. The final for-
mulation is the well known label-consistency formulation, which learns a

linear map from the feature space to the class targets.

28

3.1.1 Class-sparse transform learning

The basic formulation for TL is unsupervised, i.e. the class/label informa-
tion is not required. In recent papers, class-sparsity has been proposed as
a viable supervision term. In [22, 23] class-sparse autoencoders have been
proposed, in [24] class-sparsity was incorporated in RBM. The main idea
of class-sparsity is to impose a common sparse signature across all features
of the same class. For example, consider a problem where the number of
features is 10, and there are two classes. Class-sparsity would impose that
the first-class should have the non-zero values at exactly the same posi-
tions, e.g. in say 1, 5 and 7; similarly the second class would have non-zero
values at say 2, 3, 6 and 10. Class-sparsity shows excellent improvement
in results. The reason for introducing class sparsity can be attributed to
the traditional interpretation of the neural network. In a human brain, a
class of input activates a given bunch of neurons. Class-wise sparsity tries
achieving the same in a neural network. A transform can also be viewed
as a neural network; Instead of interpreting the elements as a basis, they
can be thought of as connections between the input and the representa-
tion. Class-sparsity would enforce representations from the same class to
have common support. Assume there are n training images from C distinct

classes. The supervised training samples can be represented as:

oo, o xea] - Tene)
Xi;classl Xy;class2 XcosclassC

X = [1'171’ Ce \xml LL‘271

29

where {x11]... |1, } represents X; classl, {xa1|. .. |Tan,} represents Xo. 452
and {zc1| ... |Tcn. } represents Xe.assc. We propose to learn the features
such that they will have the same sparsity signature across the class, i.e.,
they will have a common sparse support and Zo will be row sparse. This
is achieved by incorporating ls ;-norm regularization [25] as follows: Math-

ematically class-sparse transform learning (CSTL) is expressed as follows:

i ITX = Z|[} + AGIITI — logdet T) + u X | Zella (3.2

Here ¢ denotes the class index for C' number of classes and Z = [Z]...|Z.|...| Z¢].

[Z1]...|Z¢]...| Z¢] denotes all Z!s stacked together column-wise.

12

21 =2 1277
J

is the sum of ly-norms of the rows (indicated by j). The inner ly-norm
promotes a dense (non-zero) solution within the selected rows, but the
outer [1-norm (sum) enforces sparsity in selecting the rows. The proposed
formulation shown in Equation3.2 enforces row-sparsity within each group.
This makes the optimization supervised, i.e., the information regarding the
class labels is required to formulate Equation3.2. The formulation enforces
supervision by constraining that the features from the same group should
have the same sparsity signature. The [;;-norm is a well-known penalty
for imposing row-sparsity within the ¢! class so that all the features have

the same common support. The same has been used in [22, 23, 2],

30

Solving equation 3.2 is straightforward. Alternating minimization leads

to:

T <+ min ||TX — Z||% + Me||T||% — log det T)
r (3.3)

Ze & mgn |TX = 2|13+ pl| Zel o

Update of T is a standard transform update as shown in equation 2.24

and equation 2.25 having a closed form update.

Z can be decoupled for each class,

min[TX. - Z|[% + l|Z] 2. (3.4)

The equation 3.4 is easily solved using one step of modified iterative soft

thresholding algorithm (ISTA).

This is our first supervised formulation. We call it class sparse transform
learning (CSTL). This can be used either for supervised or for unsuper-
vised representation learning. For the unlabeled samples in semi-supervised

learning, the I ;—norm will boil down to the sparsity promoting {; —norm.

3.1.2 Low-rank transform learning

A good representation learning method would enforce similarity within the
features of the same class. This would mean that the features would have a
high cosine similarity. If all the features from the same class are stacked as
columns of a matrix, the resultant would be rank-deficient. This is because

the features would be similar to each other, and hence linearly dependent.

31

To achieve this explicitly, a low-rank penalty needs to be imposed on the

class-wise feature matrix. This leads to the following formulation:
min ||TX — Z|[5 + AE||T|[E —logdet T) + p 3 || Ze[[. (3.5

The nuclear norm [206] acts as the tightest convex surrogate of rank and
has been used profusely in signal processing and machine learning to obtain

low-rank solutions.

The solution for equation 3.5 can be obtained by alternating minimiza-
tion. The transform update would remain exactly the same as before equa-

tion 2.25. The update for the coefficients is given by the following problem,

min [|[TX — Z|[f + p 2 || Z| |«
Z ¢ (3.6)
min ||TX, — Z||% + pll Z|.

The features for each class can be updated by one step of singular value
shrinkage. This technique is called as low-rank transform learning (LRTL).
The disadvantage of this technique is, if there are too few samples in any
class, the low-rank assumption does not hold. This, in turn, might degrade
the performance. This technique works best when there is an approxi-
mately even distribution of large numbers (at least having the same order
as the feature size) of samples in each class. Furthermore, this technique

is not as directly amenable to semi-supervised representation learning.

32

3.1.3 Discriminative transform learning

The aforesaid formulations, although supervised, are not discriminative, i.e.
they enforce similarity between representations of the same class but do
not discriminate between classes. In the next formulation, discrimination
is enforced by enforcing intra-class similarity and inter-class discrimination.
For each class ‘¢ it enforces the features of the same class to be clustered
near each other. This is achieved by minimizing the total distance between
each sample of the class with its class mean, i.e. ||Z, — Z.||%. Here is the
class mean repeated the same number of times as the number of samples
in the class ‘¢. Thus, it is arranged as a matrix. This reduces intra-class
distance. To enforce discrimination, it also needs to enforce maximize the
inter-class distances. This is achieved by maximizing the distances between
all pairs of class means. Combining the two, the formulation is given as

follows:

min [|[TX — Z|[7 + A(el| || — log det T') + ul| Z]|:
b . - (3.7)
Tl Ze=Zello =X ¥ [1Ze = Zjlls
JFC
Here Y ? |Z. — Zj||2 is for maximizing the class distances from each other.
C jZec
The term 3 |Z,~Z.||» minimizes the distance within class. This is called

discriminative transform learning (DiTL). With little simplification, it can

be shown that the term ||Z, — Z.||> can be represented as ||M.Z.||, where

33

L,
M,=1--"

Te

Here n. is the number of samples in the class and 1. denotes a matrix

of all 1. of dimensionality n. X n..

Similarly, we can express

_ 1.
Z, = Zc~

Te

where 1. denotes a matrix of dimension n. X v. v being the dimensionality

of the representation. Therefore

12— Zj|2
can be represented as
_ _ 1/0 1/]
Ze — Zj||2 = Hch*—ij\b (3.8)
c j

With these simplifications, equation 3.7 can be expressed as,

min [|TX — Z|[7 + Me||T[|7 — logdet T) + pl|Z||x oo
| 3.9
S IIMZell: =3 3 1Z:Ls — 7,51,
J7c J

As before, it is solved using alternate minimization. The update for the

TL step remains unchanged. The update for features for each class (after

34

decoupling) can be expressed as,

min [|TX. — Z|[f + pl| Z |
. (3.10)

S IMZle = % 5 11205 = Zi
JFc

This is a [1—regularized least-squares problem. It can be solved using
ISTA [14]. This concludes the steps of the training algorithm. We name
it discriminative transform learning (DTL). Note that this formulation is
naturally amenable to semi-supervised learning. For samples that do not
have class information, only the sparsity penalty is imposed (without the
discriminative terms); for labelled samples, both the sparsity penalty and

the discriminative penalties are imposed.

3.1.4 Label consistent transform learning

Label consistency penalties proved to be immensely successful in machine
learning tasks. It was introduced in [27] as label consistent K-SVD. A
slightly varied formulation was proposed in [28] with the title 'discrimina-
tive K-svd’. However, the equivalence between the two has been shown
in [29]. Later label-consistent formulation has been used in autoencoder
[30] as well. The basic idea in label consistency is to learn a linear map
that projects the sparse features into the target variables. The same idea

is used here. The label consistent transform learning (LCTL) formulation

35

is expressed as follows,

min [|7X — Z|[3 + Me||T|[3 — log det T) + | Z]],
T,z (3.11)

+1||Q — M Z||;

Here M is the linear classifying map and Q are the target (binary) class
labels. We call this the LCTL.

The LCTL formulations can be solved using alternating minimization.
The transform update step remains the same as before. But in this for-

mulation we need to learn an additional linear map M; this is obtained by

min [|Q — M Z||, (3.12)

This has a closed-form solution in the form of pseudo-inverse. For the
LCTL formulation, the update for the sparse coefficients remains the same

as that of modified soft thresholding as in the CSTL formulation.

3.1.5 Testing

For the first three techniques, supervised representation is learned. The fea-
tures obtained from the training stage is used to learn a separate classifier.
During testing, the sparse feature is obtained using the learned transform.

This requires solving,

min ||T Xyest — Ziest||2 +]| Ziest| 1 (3.13)

test

36

This has a closed form update via soft thresholding. The thus generated

sparse feature is input to the learnt classifier for class assignment.

Note that the test phase of transform learning is much faster than that of
dictionary learning. We only need a soft thresholding operation following a
matrix-vector product to solve (22) [31]. In dictionary learning, one needs
to solve an iterative optimization problem for generating the sparse codes
(I1-minimization). For the LCTL techniques, one can use the generated
features for training a separate classifier or follow the technique in label
consistent K-SVD [31]. After generating the sparse features, the linear map
(M) is used to obtain the target labels: § = Mz s . The generated target
is not a binary vector. But the label can be assigned from the position of

the highest value in q.

3.1.6 Kernel transform learning

The idea of kernel transform learning (KTL) gets motivation from the
success of KDL [17, 18], which in turn extends from the concept of double
sparsity [30]. Instead of learning a dense dictionary, it learns a dictionary
that is produced as a sparse combination of elements from a known basis
(e.g. wavelet, DCT). Let ¢ : RN — F be a non-linear mapping from R
into a higher dimensional feature space F'. Since the feature space, F' can be
very high dimensional, in the kernel methods, kernels are usually employed
to carry out the mapping implicitly. A kernel is a function that for all data

x; gives rise to a positive semi-definite matrix K (z;, ;). It corresponds to

37

mapping the data with some mapping ¢ into a feature space F' instead of
the dot product in input space.

The formulation is expressed as,
X =0AZ

Here & is the fixed basis, ® A is the dictionary expressed as a sparse com-
bination (A) of basis from ®. The idea of decomposing the dictionary into
a fixed portion and a learned variable stems from the concept of double
sparsity. The formulation for kernel dictionary learning is given by,

o(X) = p(X)A Z (3.14)

——
Dictionary

The non-linear transformation on the data ¢(X) is synthesized from the
coefficients (Z) from a dictionary formed by itself and a combination of its

elements (X)A. The formulation for learning is,

min[[o(X) — o()AZ| st ([Zlo<T (3.15)

The problem is solved using alternate minimization. The update step for

A is actually independent of the data, since

A min||p(X)(I - AZ)|[%

A= 7T(ZT7)!

The update for the sparse coding stage is a solved problem via kernel match-

ing pursuit (KMP) [32]. A more efficient solution via the Nystrom method

38

is proposed in [24].
Using the kernel method, we describe how the TL approach can be made
nonlinear. It is shown that nonlinear TL approach can provide better dis-
crimination compared to its linear counterpart, especially when the data
is corrupted by noise.
Let us rewrite the basic transform learning formulation T'X = Z in kernel-
ized form. The transform can be written as Bp(X)T and data in higher
dimensional feature space can be expressed as ¢(X). Hence, the KTL
equation can be written as:

Bo(X) p(X) = Z (3.16)

—————
Transform

The advantage of our proposed formulation is that, one can define the

kernel upfront,

K(X,X) = p(X)p(X)
This allows expressing equation 3.16 as,

BK(X,X)=Z (3.17)

Comparison between transform learning equation 2.19 and our proposed
formulation equation 3.17 is that instead of the data matrix, we have the

kernelized data matrix. The usual constraints of TL will apply. We formu-

39

late the learning as,
min || BK(X, X) - Z|[} + Al Bl — logdet B) + ul|Zlla (3.18)

One can see that the update for B is the same as that of the transform
and the update for Z remains the same as that of sparse coefficients. This

concludes the training phase. For testing, the corresponding expression

will be:

B@(X)T(P(xtest) = Ztest (319)

The kernel is automatically defined as:

K(X, Test) = @(X)T@(xtest)

This allows expressing equation 3.19 as follows,
BK(X7 xtest) = Ztest
Since, one looks for sparse features, one needs to solve,

min HBK(XJ xtest) - Ztest”% + MHZtestHO

Ztest

This is solved by just one step of hard thresholding. We have shown
the kernelized version for the basic TL. Our supervised versions follow
directly; one only needs to replace the raw samples by their kernels and

the transform by B; the rest remains the same. In short, here are the

40

kernelized versions of the four different supervision penalties introduced in

this chapter.

Kernel CSTL:

rgingBK(X,X) — ZH%—i—)\(sHBH% — logdet B) +,u§C:HZcH2,1

Kernel LRTL:
ip | BK(X, X) = Z|% + el Bll} — log det B) + n X || Z.

Kernel DiTL:

min [[BK (X, X) — Z\|E + pllZel
+X(e||B||% — log det B)

2 HMCZCH2 — N2 2 HZC}TIC - Z]}TJHQ
c ¢ jZe c j

Kernel LCTL:

. . 2 2
Juin, IBE (X, X) = ZI[3 + A=|ITI[} — log et T)

+ul| 2l +llQ — MZ| [
3.1.7 Stochastic regularization

The idea of stochastic regularization (in neural networks) is fairly new.
These techniques do not have the firm mathematical backing of determin-
istic regularization but have heuristic understanding. We discuss and adopt

two different stochastic regularization techniques that have been recently

41

proposed in neural networks.

The main idea in DO [20] is to randomly drop units (along with their
connections) from the network during training. This prevents nodes from
co-adapting too much. Suppose we have training data X; in every itera-
tion of DO some randomly chosen output units along with their connection
weights are set to zero, as shown in figure 3.1. Here, out of three output

neurons, z (selected randomly) is dropped. This idea can be adopted to

Figure 3.1: Drop out

TL. For that, we would need to interpret TL in a slightly different manner.
The usual interpretation of TL is to think of the transform as an analysis
basis which operates on the data to produce coefficients: this is shown
in the left of figure 2.9. Instead of thinking of the transform elements as
a basis, they can alternately be interpreted as connections between the
input and the representation. This is more akin to a neural network in-
terpretation shown in the right of figure 2.9. With the neural network

interpretation, DO would require randomly putting some representations

42

Figure 3.2: Drop connect

to zero. This can be easily achieved. The updates for the coefficients and
transform are,
Zip <+ min |[Ty 1 X — Z||% + || Z]]o
z g (3.20)
T}, = min ||TX — Zil|% + M(e||T||3 — log det T')
In every iteration (k), before using Z; to update the transform T}, some of

the elements in 7 are randomly put to zero. This yields the desired effect

of DO.

We have shown it here for the unsupervised formulation. But it is
trivial to extend it to the supervised and kernelized formulations. The
other approach to stochastic regularization is DC, as shown in figure 3.2.
In this, the connections between successive layers of nodes are dropped. In

our neural network type interpretation of TL, it would mean that some of

43

the elements in the transform are dropped after every iteration. This can
be achieved by putting some of the elements T} in equation 3.20 to zero
before using the transform to update Z;.; in equation 3.20 in the next

iteration.

There is a heuristic interpretation of drop out and drop connect. By
dropping the connections or representations, the architecture of the neural
network changes. Over iterations, an average of many such architectures

is apparently learned. This prevents over-fitting.

3.2 Experiments and results

3.2.1 Computer vision

We carry out classification on some benchmark computer vision datasets:
face Recognition (YaleB and AR), object categorization (Caltech 101) and
scene categorization (Scene 15). All these datasets are well known. The
extended yale face database B (YaleB) includes 2, 414 face images of 38 per-
sons under 64 illumination conditions, which is challenging due to plentiful
expressions and varying illumination conditions. All the original images
are cropped to 192 x 168 pixels and then projected onto 504—dimensional
vectors with a randomly generated matrix (i.i.d gaussian) to obtain random-
face features. Following the common settings for this database, we chose
one-half of the images for training, and the remaining samples were used

for testing. The AR face database contains more than 4,000 colour face

44

images of 126 people. Each person has 26 frontal face images which are
taken during two sessions. This database includes frontal views of faces
with different facial expressions, lighting conditions, and occlusion condi-
tions (sunglasses and scarves). All the images are cropped and scaled to
165 x 120. We followed a common evaluation protocol in our experiments
for this database, in which we used a subset of 2600 images pertaining to
50 males and 50 female subjects. For each subject, we randomly chose 20
samples for training and the rest for testing. The Caltech 101 database
comprises of 9,144 images from 102 classes. Each category has 31 to 800
images. We use the standard bag-of-features (BoF) + spatial pyramid
matching (SPM) frame for feature extraction. 30 images per category are
randomly selected for training and the remaining for testing. The num-
ber of samples in each category of the fifteen scene dataset (Scene 15)
ranges from 200 to 400, and the average image size is around 250 x 300
pixels. This database contains 15 scenes, such as kitchen, bedroom, and
country scenes. The feature extraction scheme remains the same as in
Caltech 101. Following the common experimental settings, 100 images per
category are randomly chosen as training data with the rest as testing
data. We compare our proposed techniques with discriminative bayesian
dictionary learning (DBDL) [33], multimodal task driven dictionary learn-
ing (MTDL) [34], discriminative analysis dictionary learning (DADL) [35],
sparse embedded dictionary learning (SEDL) [36] and non linear dictio-

nary learning (NDL) [37] and label consistent dictionary learning (LCDL)

45

[38]. For the proposed supervised dictionary learning techniques, we show
results with the basic formulations, with the kernelized formulation, and
with stochastic regularization. The parametric values used in this work
are shown in table 3.1. These values have been obtained on a validation
dataset (CIFAR—10); they have not been tuned for the datasets used in

this work.

Table 3.1: Parameter values

Method Parameters

CSTL A=0.1; 4 =0.05

LRTL A=0.1;u =0.05

DiTL A=0.1;0=0.05;m; = 0.25;72 = 0.1
LCTL A=01;u=005n=1

The experimental results are shown in Tables 3.2. Our proposed meth-
ods: CSTL, LRTL and DiTL require separate classifiers. In this work, we
use a simple nearest neighbour, classifier. For all the kernelized versions
we have used a polynomial kernel of order 3. In the following tables, DO
and DC refer to stochastic regularizations and ‘K’ refers to the kernel-
ized version. The kernel class-sparse transform learning (K-CSTL), kernel
low-rank transform learning (K-LRTL), kernel discriminative transform
learning (K-DiTL) require separate classifiers but kernel label consistent
transform learning (K-LCTL) doesn’t require any external classifier. For
both DO and DC, 5% dropping was used. For all our formulations, the
number of basis elements used was half the dimensionality of the input

data.

The results show certain trends. First, kernelization helps; we always

46

Table 3.2: Classification accuracy

Method YALEB AR faces Caltech-101 Scene-15
DBDL[33] 97.2 97.4 74.6 98.7
MTDL[34] 97.0 97.1 73.2 97.1
DADL[35] 97.7 98.7 74.6 98.3
SEDL[36] 96.6 94.2 81.9 96.2
NDL[37] 91.8 92.1 62.8 83.7
LCDL[38] 92.7 94.6 64.4 86.7
CSTL 96.2 97.1 73.6 96.8
CSTL-DO 96.4 97.3 73.7 97.0
CSTL-DC 96.5 97.3 73.9 97.1
K-CSTL 97.1 97.6 74.1 97.5
K-CSTL-DO 97.2 97.8 74.2 97.6
K-CSTL-DC 97.4 97.8 74.2 97.6
LRTL 96.0 96.6 72.8 96.2
LRTL-DO 96.2 96.8 73.0 96.4
LRTL-DO 96.3 96.9 73.1 96.6
K-LRTL 96.8 97.4 73.6 97.0
K-LRTL-DO 97.0 97.5 73.8 97.1
K-LRTL-DC 97.0 97.6 73.8 97.3
DiTL 97.0 98.0 74.6 97.9
DiTL-DO 97.1 98.2 74.8 98.1
DIiTL-DC 97.2 98.4 74.8 98.2
K-DiTL-DO 97.9 98.9 75.6 98.9
K-DiTL-DC 97.9 98.9 75.7 98.9
LCTL 97.8 98.8 75.1 98.6
LCTL-DO 98.0 98.9 75.2 98.8
LCTL-DC 98.1 99.0 75.4 98.9
K-LCTL 98.4 99.2 75.9 99.1
K-LCTL-DO 98.5 99.4 76.1 99.3
K-LCTL-DC 98.6 99.4 76.2 99.3

get better results after kernelization compared to its linear counterpart.
Second, the stochastic regularization techniques improve results for both
the linear and kernel formulations. Third, of the two stochastic regular-
ization techniques, DC is always as good or better than DO. The LRTL
formulation yields the worst results among all the proposed formulations.
The class sparsity formulation improves upon LRTL but is not able to

produce better results than the prior techniques. The DiTL formulation

47

improves further, but the linear formulation is not always able to beat the
previous best. But with the kernelized version of the DiTL, we are able
to surpass prior results. The LCTL formulation almost always yields the
best results (except for scene 15). With kernelization and stochastic regu-
larization, LCTL improves even further. In computer vision, deep learning
is popular these days. But note that the results of deep learning on these
datasets are not very high. As the article [39] reveals, well known CNN
architectures perform sub-par (less than the methods compared here) Yale
B and AR face datasets. This is mainly due to the non-availability of
too many training samples. Similarly, [10] reports results on several CNN
based architectures for scene 15; all of them report accuracies lower than

the ones here.

3.2.2 Bioinformatics

We apply our techniques to two well-known problems in bioinformatics.
The first one is the prediction of DNA methylation state using genome
topological features. A recent study applied deep learning (stacked au-
toencoder) to address the said problem [11]. The work described above is
dubbed DeepMethyl; it predicts the methylation state of DNA CpG dinu-
cleotides using features inferred from three—dimensional genome topology
(based on Hi—C) and DNA sequence patterns. It is a binary classification
problem (methylated or unmethylated). The experimental data are from

immortalized myelogenous leukaemia (K562) and healthy lymphoblastoid

48

(GM12878) cell lines. Following [12], DeepMethyl [11] used sequential fea-
tures generated within a window of the genome and features generated
from the three-dimensional topology of a genome indicated by the Hi—C
experiment. Two sets of experiments have been proposed in the aforesaid
study: Benchmark 1. the methylation level of sequential neighbouring re-
gions is included as features. Benchmark 2. Excluding the methylation
level as features to increase difficulty. The details of the prior experiments
and feature extraction are given in [11]. The results are shown in Table 3.3.
Taking cues from the previous set of experiments, we do not show results
for all the different techniques. We only show results for the kernelized
versions along with stochastic regularization using DC. An RBF kernel
has been used throughout. The dropping rate for DC has been fixed at 5%.
For CSTL, LRTL and DiTL; an SVM classifier is used (since it is a binary

classification problem). As a benchmark, basic TL is used as a benchmark.

Table 3.3: Classification accuracy compared with DeepMethyl

Method Benchmark—1 Benchmark—2
GM12878 K562 GM12878 K562
DeepMethyl[41] 89.7 88.6 84.8 72.0
TL 87.9 86.6 83.0 69.9
KTL 88.2 87.2 83.3 70.6
KTL-DC 88.8 87.6 84.0 71.3
K-CSTL 90.1 89.2 85.1 72.0
K-CSTL-DC 90.8 90.5 85.9 72.7
K-LRTL 88.9 88.0 83.1 71.1
K-LRTL-DC 89.3 88.3 83.8 71.4
K-DiTL 91.7 91.6 86.0 72.6
K-DiTL-DC 92.4 92.1 86.8 74.3
K-LCTL 92.6 92.0 87.0 75.1
K-LCTL-DC 93.2 92.8 87.6 75.8

For all of our formulations, 100 transform basis was used. The results

49

show that the basic TL formulation (linear or kernelized) does not out-
perform the existing stacked autoencoder based formulation. The LRTL
formulation improves slightly upon the basic formulation but still does not
beat the prior method. The LCTL formulation improves over DeepMethyl.

The DiTL and LCTL formulations improve upon further.

Our second experiment is carried out with DeepChrome [43]. This prob-
lem takes histone modifications as input and predicts gene expression as
a classification task on 56 different cell- types from REMC database [11].
In [43], the 10,000 basepair (bp) DNA region (4 /- 5000 bp) around the
transcription start site (TSS) of each gene was divided into bins of length
100 bp. Each bin includes 100 bp long adjacent positions flanking the T'SS
of a gene. In total, five core histone modification marks from the REMC
database were considered [11]. These five histone modifications were se-
lected as they are uniformly profiled across all cell-types considered in the
study. This makes the input for each gene a 5 x 100 matrix, where columns
represent different bins and rows represent histone modifications. This con-
stitutes the input feature. The aforesaid work used a CNN for prediction.
For the parameter settings and experimental protocol, we followed [13]. In
this work, we employ TL after vectorizing the 5 x 100 dimensional input
feature. DeepChrome [13] reports average AUC as the evaluation metric.
The results are shown in the following table. In prior studies, we have seen
that DO always performs better than DC; hence, in this final experiment,

we only use the later.

50

Table 3.4: DeepChrome: AUC comparison

SVM 0.75
DeepChrome|[43] 0.80
Without DC With DC
KTL 0.72 0.75
K-CSTL 0.79 0.82
K-LRTL 0.75 0.77
K-DiTL 0.82 0.83
K-LCTL 0.83 0.84
In [13], DeepChrome was compared with SVM. The results are the

same as we obtained. We find that the KTL formulation does not improve
results; in fact, with SVM, the results are exactly the same as obtained on
raw data. When supervision is added, results improve. As before, LRTL
only improves slightly over the basic TL formulation. CSTL shows further
improvement. With DC, it beats DeepChrome. Results improve even
further with the DiTL formulation. The best results are obtained with the

LCTL formulations.

3.2.3 Hyperspectral image classification

We evaluate our proposed technique on the problem of hyperspectral im-
age classification; the datasets are Indian Pines which has 200 spectral
reflectance bands after removing bands covering the region of water ab-
sorption and 145 x 145 pixels of sixteen categories, and the Pavia Univer-
sity scene which has 103 bands of 340 x 610 pixels of nine categories. In
this work, we follow the standard evaluation protocol on these datasets.

For both the first datasets, we follow the standard protocol; we randomly

o1

select 5% of the labelled data as the training set and rest as the testing
set. This is repeated 100 times, and the average accuracies are reported.
In this work we have compared with several state-of-the-art techniques:
spectral-spatial shared linear regression (SSLR) [15], hierarchical spectral-
spatial features (HSSF) [16], CNN [17] and group-sparse low-rank repre-
sentation (GSLR) [18]. We compare with these techniques since they are
the latest ones and comprise an even mix of shallow and deep techniques.
For our proposed technique, we input the raw pixel values: there is no
requirement of extracting spatial and spectral features as needed in prior
techniques [15, 46, 47]. For tuning the parameters, Salinas has been used
as a validation set. We found that the same parameter values, as shown in
table 3.1 yields outstanding results. The number of transform basis used
in these experiments were 50. For the CSTL, LRTL and DiTL, we need
a separate classifier. Here the group sparse representation-based classifier
is used [19]. In all cases (CSTL, LRTL, DiTL and LCTL) an RBF kernel
has been used along with DC regularization (with 5% dropping).DO gives
worse results than DC and hence has not been shown here. The experi-
mental results are shown in tables 3.5 and 3.6. The overall accuracy (OA),

average accuracy (AA) and Kappa are used for evaluation metrics.

One cannot compare the results obtained here from the CNN based tech-
nique [17] and SSLR [15] with the corresponding papers since the volume
of the training data used there is much higher compared to ours. Therefore

it is reasonable to expect a drop in the accuracy. Even for other techniques,

52

Table 3.5: Classification accuracy on Indian Pines

Class K-CSTL-DC K-LRTL-DC K-DiTL-DC K-LCTL-DC GSLR[48] SSLR[45] HSSF[16] CNN[47]

1 75.00 95.83 97.92 95.83 96.08 82.58 81.32 86.58
2 96.43 96.67 97.21 98.15 95.30 90.73 80.51 82.68
3 95.47 90.93 96.67 96.93 96.72 87.84 79.75 84.36
4 86.19 85.71 93.33 91.14 95.05 85.13 68.57 90.33
5 96.42 93.74 95.75 91.21 90.25 80.92 79.25 93.88
6 98.66 97.32 99.55 91.11 97.74 92.24 95.18 95.99
7 82.61 69.57 60.87 100.00 91.67 85.00 95.20 88.67
8 97.95 98.41 100.00 99.97 98.92 98.14 93.08 96.49
9 50.00 55.56 50.00 100.00 84.21 80.00 89.47 97.00
10 93.80 93.80 94.60 96.70 90.64 88.86 77.85 87.35
11 95.54 94.37 99.28 97.20 95.22 82.13 85.62 74.90
12 91.85 93.66 95.65 96.73 91.60 81.57 69.95 92.82
13 100.00 99.47 100.00 100.00 100.00 95.68 96.36 95.59
14 95.96 99.14 99.83 99.48 97.80 95.26 96.28 95.55
15 88.01 87.43 91.81 98.37 83.10 80.46 83.16 84.41
16 88.24 100.00 91.76 95.29 92.22 97.67 96.06 95.06
OA 95.10 94.86 97.83 97.97 94.75 88.19 84.70 84.81
AA 92.55 90.73 91.85 97.81 93.53 87.76 85.48 90.12
Kappa 0.94 0.94 0.96 0.97 0.94 0.88 0.83 0.82
Table 3.6: Classification accuracy on Pavia
Class K-CSTL-DC K-LRTL-DC K-DiTL-DC K-LCTL-DC GSLR[45] SSLR[45] HSSF[46] CNN][47]
1 89.56 82.23 94.40 99.64 84.47 89.21 98.79 89.06
2 79.98 72.47 95.91 92.68 93.02 98.48 99.85 89.80
3 85.45 82.26 91.71 90.06 75.65 84.34 87.10 80.67
4 98.66 98.56 96.22 98.94 97.05 94.16 93.99 90.85
5 99.91 99.82 99.10 100.00 99.73 98.86 99.61 95.91
6 95.76 93.92 94.45 98.77 92.32 82.66 98.34 91.17
7 97.96 92.46 95.32 98.81 94.80 80.31 92.62 89.68
8 96.43 78.98 95.37 98.54 92.95 88.69 93.97 86.09
9 98.49 96.98 96.48 96.48 99.37 90.18 94.20 94.84
OA 90.65 81.07 94.27 97.89 91.45 90.16 97.53 89.28
AA 93.58 88.61 95.44 97.10 92.15 89.65 95.38 89.55
Kappa 0.91 0.84 0.95 0.98 0.88 0.89 0.97 0.87

the results may not be directly comparable, since they handpick the spec-
tral bands; in here all the spectral bands are used. The results show that
our proposed label consistent formulation yields the best results as always.
It also has the highest number of class-wise accuracies. Closely follow-
ing is the discriminative formulation. The class-wise sparse regularization
yields better results than the ones compared against but falls short of the
DiTL and LCTL formulations. The LRTL formulation yields the worse re-

sults among the proposed techniques. Here we do not report the standard

93

deviations in each class (some studies indicate that). But we performed
simple statistical t-tests between mutual pairs of close performing methods
to see (at 99% confidence interval) if they are significantly different. The
summarized results are as follows: The results of the t-test reveal that
LCTL and DiTL are considerably different for both the datasets. Apart
from GSLR nothing comes close by our proposed techniques for the Indian
Pines dataset. GSLR is significantly better than LRTL but is worse than
the rest of the proposed methods (LCTL, DiTL and CSTL). On the Pavia
dataset, CNN is significantly better than LRTL. Both are worse than all
others. CSTL is significantly better than SSLR but worse than all others.
It is even worse than GSLR. The existing technique HSSF is significantly

better than our proposed DiTL but is worse than our LCTL.

3.2.4 Arrhythmia classification

Here, five types of beat classes of arrhythmia as recommended by associ-
ation for the advancement of medical instrumentation (AAMI) were an-
alyzed from electrocardiogram (ECG) signals namely: non-ectopic beats,
supraventricular ectopic beats, ventricular ectopic beats, fusion beats and
unclassifiable and paced beats. The classification experiments are carried
out on the MIT-BIH arrhythmia dataset from www.physionet.org. The
MIT-BIH arrhythmia database contains 48 half-hour recordings of two-
channel ambulatory ECG, obtained from 47 subjects in the year 1975 and

1979 by the beth-Israel hospital arrhythmia laboratory at Boston. Twenty-

54

four-hour ambulatory ECG recordings were collected from a mixed popula-
tion of size 4000 having inpatients (around 60%) and outpatients (around
40%). The recordings were digitized at 360 samples per second per channel
with an 11-bit resolution over a 10 mV range. Two or more cardiologists
independently annotated each record; the consensus was made to obtain
the computer-readable reference annotations for each beat. For classifica-
tion experiments, the MIT-BIH protocol is converted to the AAMI / ANSI
standard. This leads to 5 classes - non-ectopic beat (N), supra-ventricular
ectopic beats (S), ventricular ectopic beats (V), fusion beat (F) and un-
known beat (Q). Owing to the relative sparsity of samples in the F and
Q class, they are merged with V; this is following the AAMI2 protocol
proposed in [50]. For the experimental protocol we follow [50]; this is re-
peatable protocol. The division into test set and training set is shown in
Table I. The record number # of the patient used for training are: 101,
114, 112, 207, 223, 106, 115, 124, 208, 230, 108, 116, 201, 209, 109, 118,
203, 215, 112, 119, 205, 220; for testing are: 100, 117, 210, 221, 233, 103,
121, 212, 222, 234, 105, 123, 213, 228, 111, 200, 214, 231, 113, 202, 219,

232.
Table 3.7: Train and test set details
Dataset N S v F Q Total # Rec
Train 45844 943 3788 415 8 50998 22
Test 44238 1836 3221 388 7 49690 22
Total 90082 2779 7009 803 15 100688 44
The proposed technique is compared with two recent works [11, 42]. In

95

[41] deep neural networks built upon stacked autoencoder and deep belief
networks are used. In [12], deep 1D CNN are used. The said studies
are known to yield the best-known results; they excel overall state of the
art shallow techniques. We follow the standard preprocessing step [11].
All ECG signals are first preprocessed using a 200ms width median filter
to remove the P wave and QRS complex, then a 600ms width median
filter to remove the T wave. The resulted signals are subtracted from
the original signals to yield the baseline—corrected ECG signals. Then a
12—order low-pass filter with a 35Hz cut—off frequency is applied to remove
power—line and high—frequency noise. For feature extraction, we follow
exactly the same technique as outlined in [11]. The processing is done
using the ecgpuwave toolbox. In all our formulations, 50 transform basis
was used. Since our proposed technique requires specification of certain
parameters, we have tuned them on the European society of cardiology

ST—T database. The parameters obtained are shown in table 3.8.

Table 3.8: Parameter values

Method Parameters

CSTL A=0.5;u=0.05

LRTL A=0.5;u=0.05

DTL A=0.5;u=0.05;m =0.25;1m, = 0.1
LCTL A=0.5u=0.057n=08

For our proposed methods: LCTL, LRTL and DiTL; the nearest neigh-
bour classifier is used. Our LCTL formulation does not require an external
classifier. We have shown the results for a linear and polynomial kernel of

order 2. Other kernels show mark degradation in results. DC regulariza-

o6

tion has been used. The comparisons are made with DBN, SAE and CNN.
The results are shown in Table 3.9. The customary measures of overall

accuracy, sensitivity, and specificity of each class are reported.

Table 3.9: ECG classification accuracy: AAMI 2 protocol

Accuracy F S \%
Method Sens. Spec. Sens. Spec. Sens. Spec.
DBNJ[41] 94.8 95.7 66.5 23.9 100 83.9 100
SAE[411] 93.8 96.9 62.8 20.8 100 83.2 100
CNNJ[42] 97.2 100 66.2 21.0 100 85.2 98.5
CSTL 88.6 95.8 31.9 14.1 97.2 41.8 92.8
K-CSTL 90.1 98.8 52.2 15.1 97.6 45.7 95.4
LRTL 86.5 91.2 39.8 11.0 97.0 52.4 90.8
K-LRTL 89.2 95.6 56.8 13.6 974 60.2 95.2
DiTL 92.0 96.8 54.5 13.6 100 48.6 93.6
K-DiTL 96.9 98.8 56.6 24.5 100 85.2 96.2
LCTL 93.8 94.6 55.3 15.9 97.0 48.9 89.6

K-LCTL 100.00 100 70.5 28.0 100 94.1 100

The proposed methods use DC regularizations. One cannot compare
the reported results with the ones in [51, 52]. This is because the division
of test and training samples used here are different. We follow a repeatable
protocol while most others used a randomized one. The results in Table
3.9 show that with kernelization, there is an improvement in results. The

kernelized versions of DiTL and LCTL improve upon the previous bests.

3.3 Discussion

There are three major contributions to this chapter. First, this work pro-
poses supervised versions of transform learning; four different supervision

techniques have been proposed. Second, this chapter also introduces Ker-

57

nelization to transform learning. Third, it shows how stochastic regular-
ization techniques like drop out and drop connect can be incorporated into
transform learning. Experiments have been carried out on four different
kinds of problems: computer vision, bioinformatics, hyperspectral imaging,
and biomedical signal analysis. In such a diverse set of experiments, we

outperform state-of-the-art techniques.

o8

Chapter 4

Unsupervised deep transform
learning - classification and

clustering problems

The concept of deep transform learning (DTL) is motivated by the suc-
cess of deep learning techniques like SAE, DBN, CNN and DDL. In DTL,
multiple levels of transforms are learned to represent the data in terms
of coefficients. Usually, such deep architectures are used for classification
problems leading to deep neural networks, but this is not mandatory. It
can be used for other problems where class information is not required; for
example in clustering or reconstruction. The layers of single level trans-
forms have been stacked one after the other leading to the framework of
DTL; it has been shown in there that DTL indeed is a more powerful
tool than conventional ones like SAE, DBN and DDL. In this chapter, we

will discuss greedy deep transform learning (GDTL), followed by jointly

99

learned deep transform learning (JDTL) in section 4.1. Then experiments

are performed for classification and clustering problems in section 4.2.

4.1 Proposed formulation

4.1.1 Greedy deep transform learning

Deep learning methods have multiple levels of learning; in each layer, a
more abstract representation of the raw data is learned via non-linear
transformations. Using such non-linear modules of transformation, very
complex functions can be determined. Deeper representations are learned
by stacking one transform after another. The learning is done greedily. The
first layer determines the transform and features from the input training
samples. The subsequent layers use the features(after activation) from the

previous layer as training input.

12 = YA
T1

Figure 4.1: Deep transform learning

For DTL, instead of analyzing the data by single-level transform, mul-

tiple levels of transforms are used to produce the final level of coefficients.

60

This is expressed as,

Here T3 operates on the data X to produce the first level of coefficients.
T, analyzes the first level of the coefficient to produce the second level.
Finally, T operates the second level of coefficients to generate 7. Here
¢ denotes the activation function, without which all the transforms will
collapse into the single one. Following the greedy paradigm, we solve it

one layer at a time. With the substitution,

p(Tn-1¢-.(Top(T1 X))) = Zn- (4.2)

It can be expressed as, TyZy_1 = Z This can be alternatively expressed

as,

(Tn-10---(Tep(T1X))) = 0 (Zn-1) (4.3)

With the substitution ¢(Ty_op...(Top(T1X))) = Zn_2, we have for the

next layer,

(Tn-1Zn—2) = ¢ (Zn-1) (4.4)

Continuing the substitution in this fashion, till final layer, we have,
X =9 (Z) (4.5)

Note that, for all layers it is easy to invert the activation function, since ¢

operates element-wise.

61

We start solving the different layers of transforms in backward direction.
Starting from equation 4.5, this is easily solved using the standard trans-

form learning formulation.
1m1Z11HT1X — Zl|\%+)\(|\T1||%—logdetTl) (46)

In each iteration, Z; = T1X. Once, Z; is solved, it acts as input to second

layer for solving 75 and Z; as shown below:

min || 722 Zo||% 4+ (|| To||% — log det Ty) (4.7)

Now, Z5 acts as input to the third layer and so on. This is continued till
the final layer of transform 7. This completes the training process. The
advantage of such a greedy training paradigm is that for each level, we only
need solving a shallow transform learning problem which has algorithms

with convergence guarantees.

During testing, the objective is to generate the test feature (Z.s) given

the input test sample (Xyes). This is expressed as

TNSO---(TQSO(TlXtest)) = Ztest (48)

The multiple layers of transforms have already been learnt during the train-
ing phase. Therefore during testing, one needs to apply them one after the

other.

62

4.1.2 Jointly learned deep transform learning

The greedy approach is sub-optimal since there is no flow of information
from deeper to shallower layers. In deep learning, this issue is addressed by
back-propagation during the fine-tuning stage for supervised learning prob-
lems. We are proposing an unsupervised representation learning technique;
there are no outputs to back-propagate from. Hence, we need to derive an
algorithm for solving all the layers of transforms via a joint optimization
framework called JDTL. The deep transform learning formulation is given

in equation 4.9.

Tné...(Tod(T1X)) = Z (4.9)

The joint optimization problem, we intend to solve is as follows,

win [T (6. (To(&(T1X)))) = ZI} + A X (ul T3 — log det T3) (4.10)

This will be solved using the variable splitting approach. Using the same

substitutions as in the greedy approach, i.e.,

¢(Tn-1.--(Tap(Th X))) = Zn 1
We can express the augmented Lagrangian for equation 6.1 as,

N
min (T Z1— ZI3 4 A S (T — logdet T)
Ti's,2,Zn-1 i=1

+ul[(Ty-1-(Ta((T1 X)) — 7' (Zn-1) |IE

(4.11)

63

As in the greedy solution, we have used the fact that inverting the activa-
tion function is trivial since it operates element-wise. In the second, step we
substitute, ¢(Tn_o...(Top(T1X))) = Zn_o,this allows expressing equation

4.11 as follows (in terms of augmented lagrangian),

i TnZn_1— Z||? TN 1ZN—9— Y Zn_II?
T/s,Z,IZaniZN_QH NZN-1 7+ pl|TN-1Zn-—2— ¢~ (Zn-1)||%
+AS (ul| T} — log det T)) (4.12)

+ul|p(Tn—2(¢..(Ta(o(T1X))))) — Zn—2|7

Continuing in this fashion, with the final substitution ¢(71X) = Z;,we get

the complete augmented lagrangian formulation,

N
i [Ty Zy1 = ZIf3+ A 3 (T} — log det)

(4.13)
N-1
FHlITX = 67 (Z) |+ 3 T s — 67 (I

The alternating direction method of multipliers (ADMM) [53] allows

equation 4.13 to be segregated into the following sub-problems:
Sy II%ID HTNZN—l — ZH% +)\(HTNH% — lOg det TN)
N

Syt min pl|Ty1Zyn-2 = ¢~ (Zn-0)l[F + AT — log det Ty—y)
N—-1

64

Sn il X = ¢~ H(Z)I[F + A Thl[F — log det T1)

SN—H : mZin HTNZN—l — ZH% = ININn_1= 2

min ||TyZx-1 = 2|} + pll T Zy-2 = ¢~ (Zn-) 7
Sy TN
= pin [Ty Zy-1 = Z|[5 + pllo(Tv-12x-2) = Znllf

Son s min || 1320 = ¢ H(Zo) [+ ullo(ThX) = Z1|I%

We see that the sub-problems S; to Sy are all standard transform up-
dates. We already know how to solve them (solving equation 2.21). Solving
for the final /deepest representation is simple; follows from Sy;. The solu-
tion of the intermediate representations is from Sy.o to Son. All of them
are least-squares problems in their equivalent form; hence has a closed-form
solution: pseudo-inverse. Notice that we have kept the Lagrangian multi-
plier p constant for all the layers. Moreover, we must give equal importance

to all the layers, and hence, we keep p = 1 throughout. This is usually

65

not the case for generic optimization problems. However, in this work, we
argue that each of the layers has equal importance, u equaling unity is a
logical choice. This concludes the derivation of the joint optimization algo-
rithm. The testing stage remains the same as the greedy technique. One
only needs to apply one transform after another in the correct order with

the activation functions to generate the representation of a test sample.

4.2 Experiments and results

Unlike most deep learning techniques where all the layers are initialized
randomly, we only have to initialize T}, that too for solving Ty X = ¢~ (Z;)
from the training data. After solving the transform learning problem, the
obtained value of T} becomes the initial value for the ensuing iterations.
Once the first layer of coefficient Z; is learned, it is used to initialize the
second layer of transform by solving 1757, = ¢ 1(Z3). The second layer
representation is used to initialize the transform for the third layer, and so

O11.

4.2.1 Classification using jointly learned deep transforms

Classification is carried out on five benchmark deep learning datasets:

MNIST, 20-newsgroup, GTZAN, YaleB and AR faces.

o MNIST dataset [54]

It consists of 28 x 28 images of handwritten digits ranging from 0 to

66

9. The dataset has 60000 training images and 10000 testing images.

 20-newsgroup dataset [55]
The 20 newsgroups dataset comprises around 18000 newsgroups posts
on 20 topics split into two subsets: one for training (or development)
and the other one for testing (or for performance evaluation). The
split between the train and test set is based upon messages posted
before and after a specific date. The training set consists of 11269
samples, and the test set contains 7505 examples. We have used 5000
most frequent words for the binary input features. We follow the same

protocol as outlined in [50].

o GTZAN [57]
It is a music genre dataset. It contains 10000 three-second audio clips,
equally distributed among 10 musical genres: blues, classical, country,
disco, hip-hop, pop, jazz, metal, reggae, and rock. Each example in the
set is represented by 592 Mel-phon coefficient (MPC) features. These
are a simplified formulation of the Mel-frequency cepstral coefficients
(MFCCs) that are shown to yield better classification performance.
Since there is no predefined standard split and fewer examples, we
have used 10-fold cross-validation, where each fold consisted of 9000

training examples and 1000 test examples.

« E-YALEB [53]:

The Extended Yale B database contains 2432 images with 38 subjects

67

under 64 illumination conditions. Each image is cropped to 192-by-
168 pixels and downscaled to 48-by-42 pixels. For our experiments, we

shuffled all the samples, took 70% for training and 30% for testing.

o AR-Faces [59]:

This database contains more than 4000 images of 126 different sub-
jects (70 male and 56 female). The images have various facial expres-
sions, the lighting varies, and some of the images are partially occluded
by sunglasses and scarves. For our experiments, we selected 2600 im-
ages of 100 individuals (50 males and 50 females), which is 26 different
images for each subject. The train set contains 2000 images, and 600

images are kept in the test set. Each image has 540 features.

We compare our proposed jointly learned deep transform learning with
three state-of-the-art representation learning techniques; two of them are
supervised: they are class sparse stacked autoencoder (CSSAE) [60] and
class sparse deep belief network (CSDBN) [241] . The third one is unsuper-
vised; it is DDL[01]. For all these techniques, we found that reducing the
number of nodes in each layer to half that of the previous layer yields the
best results consistently. In the CSSAE and the CSDBN formulations one
needs specifying the sparsity parameter; for CSSAE a value of 0.1 yields
the best results and for CSDBN the corresponding value is 0.02. There is

no parameter required for the DDL technique.

Our proposed joint unsupervised DTL uses a simple approach for fixing

68

the number of nodes in each layer. It uses a three-layer architecture where
the number of bases are halved in subsequent layers, i.e. for MNIST since
the input of length 784, the number basis in the first layer is 392, in the
second it is 196, and in the third, it is 98. For other datasets, the values
change accordingly. All the techniques compared against can only learn a
representation; they do not have in-built classifiers. Hence, we employ two
off-the-shelf classifiers: KNN and SVM with RBF kernel. The parameters

of SVM have been tuned via grid search for each technique.

Table 4.1: Nearest neighbour classification (accuracy: joint unsupervised DTL)

Dataset CSSAE[60] CSDBNJ[24] DDL[61] GDTL Proposed
MNIST 97.33 97.05 97.75 97.62 97.91
20-Newsgroup 70.48 70.09 70.48 70.98 72.64
GTGAN 83.31 80.99 83.31 83.31 83.89
YALEB 84.27 84.17 91.28 92.12 95.33
AR Faces 82.14 81.35 93.11 92.91 96.40

Table 4.2: SVM classification (accuracy): joint unsupervised DTL

Dataset CSSAE CSDBN DDL GDTL Proposed
MNIST 98.50 98.53 98.64 98.52 98.71
20-Newsgroup 71.29 71.18 71.97 7240 73.19
GTGAN 83.42 81.83 84.92 83.68 85.18
YALEB 85.21 84.97 92.66 93.01 97.67
AR Faces 82.22 82.11 93.35 93.76 96.80

The results from CNN for GTZAN is 59.20; for YaleB is 61.18; for AR
faces is 57.9; for MNIST, CNN yields an accuracy of 98.40 with a modified

LeNet architecture; for the 20-newsgroup data, CNN is not applicable.

69

Table 4.3: Going deep: joint unsupervised DTL with SVM classifier (accuracy)

Dataset 1-layer 2-layers 3-layers 4-layers
MNIST 96.93 97.05 97.75 97.19
20-Newsgroup 68.98 70.19 70.48 70.12
GTGAN 81.11 82.99 83.31 83.20
YALEB 95.11 97.41 97.67 96.36
AR Faces 94.98 95.87 96.80 96.24

4.2.2 Clustering using jointly learned deep transforms

We compare with three major ones: DDL, SAE[62] and deep sparse sub-
space clustering (DSC)[63]. Experiments were carried out on the COIL20
(object recognition) [64] and Extended YaleB (face recognition) [65] datasets.
The COIL20 database contains 1,440 samples distributed over 20 objects,
where each image is with the size of 32 x 32. The used YaleB consists
of 2,414 samples from 38 individuals, where each image is with a size
of 192 x 168. For both, the datasets dense scale-invariant feature trans-
form (DSIFT) and histogram of oriented gradients (HOG) features were ex-
tracted. They were further reduced by principal component analysis (PCA)
to the dimensionality of 300. Since the ground truths (class labels) for
these datasets are available, clustering accuracy was measured in terms of

normalized mutual information (NMI), ARI and F-score.

The architectures used for comparison have been obtained from the
published studies since they were the best-performing ones according to the
authors. Both SAE and DSC uses a five-layer architecture with 300-200-

150-200-300 nodes; both of them use the tanh activation function. Prior

70

study on DDL used a four-tier architecture with 600-300-150-75 nodes; the

activation function is tanh.

For our proposed DTL, a three-layer architecture (tanh activation) with
a 300-150-75 basis in each layer was used. The value of the hyper-parameter
1 is fixed at unity. The value of the parameter A has been fixed to 0.1
throughout; we checked that the results are stable for values of A between
0.05 and 0.5. In DDL, SAE and our proposed technique, after obtaining
the coefficients from the final layer, a simple K-means clustering is used.

We are showing results for DSIFT and HOG features.

Table 4.4: Clustering on COIL-20: joint unsupervised DTL

HOG DSIFT
Method NMI ARI F-Score NMI ARI F-Score
SAE[62] 89.26 74.25 75.70 77.09 56.59 59.07
DSCJ63] 91.19 81.92 82.86 91.19 84.80 85.58
DDL[61] 90.12 80.20 81.30 91.04 84.60 83.54

GDTL 91.561 81.88 82.59 92.36 85.08 84.96
Proposed 93.37 84.24 85.82 94.38 86.92 88.56

Table 4.5: Clustering on YALEB: joint unsupervised DTL

HOG DSIFT
Method NMI ARI F-Score NMI ARI F-Score
SAE[62] 93.43 82.57 83.07 87.54 75.82 76.50
DSC[63] 96.91 90.25 89.46 90.85 83.00 83.45
DDL[61] 96.82 88.97 89.13 90.20 81.83 83.42

GDTL 97.12 90.56 90.48 91.27 82.51 84.66
Proposed 98.93 93.43 92.06 93.26 85.62 85.86

71

4.3 Discussion

A new framework for deep learning called deep transform learning has been
proposed recently. The idea is to represent the training data as a non-
linear combination of several layers of transforms. The first work solves
DTL problem greedily. It was a sub-optimal approach since there was
no flow of information from deeper layers to the shallower layers. In the
second work, all the transforms and coefficients are solved simultaneously
in a single optimization problem. It is an unsupervised method, and any
classifier can be used on the learned features to make predictions. Results
are computed on benchmark classification