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Abstract

Conventional dictionary learning is a synthesis formulation; it learns a
dictionary to generate/synthesize the data from the learned coefficients.
Transform learning is its analysis equivalent. The transform analyzes the
data to generate the coefficients. Dictionary learning had been popular in
both signal processing and machine learning communities. However, trans-
form learning is largely unknown outside the signal processing research
community. So far, transform learning has been primarily used for solving
inverse problems.

The objective of the thesis is to build a completely new machine learn-
ing framework out of transform learning. It has already been shown how
the basic transform learning has been used as an unsupervised feature ex-
traction tool.

This work aims at proposing a supervised version of transform learning
with a plug-and-play approach. The supervised version is general enough
to perform classification without the need for any external classifier. The
kernelized version of supervised transform learning and stochastic regular-
ization on transform learning are also proposed. Based on the proposed
supervised transform learning framework, problems on computer vision,
bioinformatics, hyperspectral image classification, and arrhythmia classifi-
cation are solved.

This work also focuses on an unsupervised greedy deep transform learn-
ing problem, where each of the layers was solved separately. This was a
solution for unsupervised feature extraction using deep transform learning.
But the greedy solution for deep transform learning was sub-optimal. Then
work has been done on proposing an optimal solution to learn all the layers
jointly. It was used to solve classification, clustering and inverse problems.
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Another problem discussed in this work is the supervised version of deep
transform learning. The supervised version is general enough to perform
single-label classification and multi-label classification. Proposed super-
vised deep transform learning for multi-label classification has been used
for solving a practical problem of non-intrusive load monitoring.

Another contribution of this work is to propose a deeply transformed sub-
space clustering framework. In this work, two techniques are introduced:
transformed locally linear manifold clustering and transformed sparse sub-
space clustering. Next, a deeper architecture for the same is proposed.

Then, the idea of convolutional transform learning is introduced. Here,
a set of independent convolutional filters are learned that operate on the
images to produce representations (one corresponding to each filter). The
kernels learned from this method have a close relationship with that of
convolutional neural networks.

Finally, a semi-coupled transform learning framework is introduced. Given
training data in two domains (source and target), it learns a transform in
each of the domains such that the corresponding coefficients are (linearly)
mapped from the source to the target. Since the mapping is in one direction
(source to target) but not the other way round, It is called semi-coupled.
This work is the analysis equivalent of (semi) coupled dictionary learning.

ii
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Chapter 1

Introduction

1.1 Introduction

(a) (b)

Figure 1.1: (a)Neural network (b)Segregated representation

In a typical neural network, there is an input layer where samples are

presented, a hidden or representation layer and an output layer with the

target values (figure 1.1a). The network is learned using back-propagation.

As shown in figure 1.1b, learning of such a network can be perceived as

two sub-problems: learning the weights between input and the representa-

tion layer and between representation and output layer. If the representa-

1



tions are known, learning the weights between the hidden and output layer

is trivial. It is a simple regression problem since both the input (represen-

tations of the input data) and output are known. Learning the weights

between input and representation layer is a challenging task since both

weights and output are unknown. This is called representation learning.

There are four well-known frameworks for deep representation learning:

stacked auto encoder, deep belief network, convolutional neural network

and dictionary learning.

CNN gives excellent results in every perceivable image analysis task.

However, the applicability of CNN is limited largely to images in the visi-

ble range. There is literature on the application of CNN to areas outside

this range (hyperspectral imaging, radar imaging, etc.), but the success

has been limited. This is largely because CNN need humongous volumes

of supervised data to train; this is only available in the visible range of

the spectrum. The pre-training fine-tuning paradigm does not generalize

well outside this range; hence the applicability of CNN has been largely

restricted in scientific imaging modalities. This also precludes their appli-

cability in unsupervised tasks like clustering.

A deep belief network uses the restricted boltzmann machines (RBM)

as the building block. Mathematically the cost function for RBM is cum-

bersome and cannot be solved efficiently; at best, it can be solved only

approximately. This is a serious impediment that precludes any serious

mathematical modification to the learning model. Besides, the inputs to

2



RBM / deep belief network (DBN) need to be either binary or in the range

between 0 and 1 (gaussian Bernoulli RBM); this is highly restrictive. For

any signal where the dynamic range is high, when the input is normalized

(between 0 and 1), the small numbers reach the limits of machine precision

and are treated as zeroes or garbage values.

Stacked autoencoder overcomes the limitations of DBN; it has a mathe-

matically tractable cost function and can handle any input value. However,

the problem of this model is that it requires learning twice the number of pa-

rameters/connections (encoders and decoders) than other neural networks.

This makes the stacked auto encoder (SAE) susceptible to over-fitting.

Dictionary Learning has been used to solve inverse problems in imag-

ing and as an unsupervised feature extraction tool in vision. The main

disadvantage of DL for applications in vision is the relatively long feature

extraction time during testing; owing to the requirement of solving an

iterative optimization problem (l0-minimization). Thus, the test feature

generation is a time-consuming task and cannot be real-time.

The general idea that led the thesis is to introduce a new method for

representation learning called transform learning, a technique developed

in the field of signal processing, and apply it to problems considered in

machine learning. Transform learning is an analysis framework [2, 3, 4].

It has been recently introduced and is not yet popular outside the signal

processing community. It is a tool to find effective regularizer in ill-posed

3



inverse problems. As long as the underlying target (e.g., image, video,

etc.) to be recovered is sparse, transform learning can help improve the

reconstruction quality. In this work, it is shown that it can be used as

an alternative to dictionary learning as well. The newly developed analy-

sis framework of transform learning does not suffer from the slow feature

extraction problem. In transform learning a basis/transform is learned to

analyze the data to generate features/coefficients. For transform learning,

the test features can, therefore, be generated by a matrix-vector product.

This is fast and can be real-time.

1.2 Research contributions

This thesis focuses on building a completely new machine learning frame-

work out of transform learning. It aims at a few inter-related problems.

From the machine learning perspective, classification and clustering prob-

lems are solved. From a signal processing perspective, inverse problems are

solved. The idea here is not to compete with the best dictionary learning

techniques in computer vision, but to show that transform learning yields

result at par (or better) than dictionary learning is and is computation-

ally cheaper (faster) at run time. The proposed framework is implemented

for different databases, comparison methods, and applications. The appli-

cations range from face recognition to MRI reconstruction to document

retrieval. This work does not want to focus on one application and wants
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to show the generic strength of the proposed work. The research contribu-

tions are summarized as follows:

• This work proposes supervised formulations of transform learning. Four

different types of supervision penalties are proposed. They enforce (i)

class- sparsity, (ii) similarity among intra-class features in terms of

low-rank constraint, (iii) discriminative transform learning, (iv) label-

consistency. Also, the work introduces the kernelized version of trans-

form learning and stochastic regularization techniques drop out (DO)

and drop connect (DC) into the transform learning formulation. The

problems on computer vision, bioinformatics, hyperspectral image clas-

sification, and arrhythmia classification are solved to show the generic

strength of the work.

• Then, a deep version of unsupervised transform learning is proposed.

Two solutions are presented here: (i) greedy one that learns layers

one after another, and (ii) one in which the whole structure is trained

simultaneously in a single optimization run. It was used to solve clas-

sification, clustering and inverse problems.

• Another work discussed in this thesis is a deep version of supervised

transform learning. Supervision is introduced by adding a label con-

sistency penalty to the previous unsupervised formulation. An opti-

mization algorithm is synthesized for training. It is based on proximal

variable splitting, augmented Lagrangians, and alternating direction
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method of multipliers. Proposed supervised deep transform learning

for multi-label classification has been used for solving a practical prob-

lem of non-intrusive load monitoring.

• Another contribution is the incorporation of locally linear manifold

clustering and sparse subspace clustering into the transform learning

formulation. The method is introduced to perform transform analysis

and clustering jointly through the formulation of a coupled minimiza-

tion problem.

• Then the introduction of convolutions into transform learning is made.

Convolutions are here determined in an unsupervised fashion based on

the gauss-seidel algorithm.

• Finally, semi-coupled transform learning is proposed. Given are train-

ing data in two domains (source and target), it learns to transform each

of the domains into lower-dimensional spaces between which there is

a linear mapping. Then, it enables the reconstruction of target data

from new source data.

The research outcomes have been disseminated through publications in

journals and conferences.
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1.3 Dissertation organization

Chapter 2 describes some important basic concepts that are building blocks

of this thesis. It includes a brief description of stacked autoencoder, deep

belief network, convolutional neural network and dictionary learning. Con-

cepts related to deep dictionary learning supervised dictionary learning,

coupled dictionary learning and coupled representation learning are also

discussed along with an introduction to basic TL. Chapter 3 discusses

supervised TL framework, its kernelized version, and stochastic regulariza-

tion. Four types of supervision penalties are introduced into TL framework:

class-sparse transform learning, low-rank transform learning, discrimina-

tive transform learning, and label consistent transform learning. The im-

plementation of stochastic regularization is done through drop connect and

drop out. Chapter 4 describes unsupervised deep TL frameworks. Two ap-

proaches are discussed- greedy and joint learning. It solves classification

and clustering problems. Chapter 5 is based on solving inverse problems

using unsupervised deep TL. First, the deblurring problem is solved. Then,

it is used for solving the reconstruction problem. Chapter 6 introduces a

deeper architecture of supervised TL. It is used for multilabel classifica-

tion in a non-intrusive load monitoring application. Chapter 7 describes

deep transformed subspace clustering for locally linear manifold clustering

and sparse subspace clustering. Chapter 8 gives a description of convolu-

tional TL. Convolutional filters are determined in an unsupervised fashion.
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Chapter 9 describes semi-coupled TL. It is used for image super-resolution

and cross-lingual document retrieval.
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Chapter 2

Literature review

Deep learning methods have multiple levels of learning; in each layer, a

more abstract representation of the raw data is learned via non-linear

transformations. Using such non-linear modules of transformation, very

complex functions can be determined. The critical idea stems from bi-

ology, where it is believed that cognition happens through several layers.

The basic building blocks of deep learning are autoencoder, RBM, CNN,

and DL. Each of them is discussed in this chapter. Introduction to basic

concepts of deep dictionary learning, supervised DL, convolutional DL and

coupled representation learning followed by basic transform learning are

also given.

2.1 Autoencoder

The architecture of an autoencoder is shown in figure 2.1a. Autoencoder is

a self-supervised network; it learns encoding and decoding weights between

9



(a) (b)

Figure 2.1: (a) Autoencoder (b) Stacked autoencoder

input and itself. It consists of two parts encoder and decoder. Encoder

maps the input to a latent representation, and the decoder maps the en-

coded input back to the data. For a given input x the representations can

be expressed as:

z = φ(W1x) (2.1)

Where, φ is the non-linearity and W1 are the encoding weights. The

decoder maps the representations back to the data space:

x = W1
′
φ(W1x) (2.2)

The problem is to learn the encoding and decoding weights W1 and W1
′.

These are learned by minimizing the euclidean cost:

min
W1,W1

′
‖x−W1

′
φ(W1x)‖2

2 (2.3)

The idea behind representation learning is to preserve the information con-

tent of the input in the representations. In autoencoder, information is
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preserved at the representations in a euclidean sense. To form a neural

network, the decoder part of the autoencoder is removed. The encoder

forms the first part (input to representation layer) of the neural network.

Targets are attached to the representations and backpropagation is used

to train the network.

Deep networks can be formed using autoencoders by nesting them one

inside the other. These networks are called stacked autoencoders (fig-

ure 2.1b). Once this network is learned, the decoder part is removed,

and targets are attached to representations of the deepest layer. And the

network is fine-tuned using backpropagation.

2.2 Restricted Boltzmann machine

(a) (b)

Figure 2.2: (a) Restricted Boltzmann machine (b) Deep belief network

The second approach to representation learning is the restricted Boltz-

mann machine (figure 2.2a). RBM learns by maximizing the similarity be-

tween the projection of the data and representations. As it has no output,

backpropagation cannot be used for training. It is solved by contrastive
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divergence [5]. Once the RBM is learned, targets are attached to its output

to form a complete neural network.

Deep belief network [6] is formed by stacking one RBM unit after the

other. The architecture is shown in figure 2.2b. The targets are attached

to the final representation layer, and network weights are tunned using

backpropagation.

2.3 Convolutional neural network

Convolutional neural networks are a special kind of multi-layer neural net-

works. Like other neural networks, CNN are trained with backpropaga-

tion, but the architecture is different. CNN is a sequence of layers. Mainly

there are three types of layers: convolutional layer, pooling layer, and fully

connected layer. These layers are stacked one after the other to form a

complete convolutional neural network architecture. Each layer of CNN

converts one layer of activations to another through a differentiable func-

tion. CNN takes an input image, process it and classify it under certain

categories. Each input pass through convolutional layers with filters, pool-

ing layers, fully connected layer, and a softmax function is applied for

classification.

figure 2.3 shows the diagram of Lenet-5 architecture introduced by Lecun

et al in 1998 [7]. It was designed to recognize handwritten and machine-

printed digits. Lenet-5 is 7 layer CNN, among which 3 are convolutional
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layers (C1, C2 and C3). The convolutional layer consists of 5 by 5 filters

with stride 1. There are two 2 by 2 average pooling layers (S2 and S4).

The layer F6 denotes the fully connected layer. Tanh activation function

is used throughout the network.

Figure 2.3: Lenet-5 architecture

2.4 Dictionary learning

Figure 2.4: Dictionary learning

A dictionary is an over-complete basis, i.e. it has more columns than

rows. The columns of a dictionary are often referred to as atoms. These

atoms may be the linear combinations of other atoms in the dictionary.

The benefit of a dictionary over the basis is that a dictionary may result

in even sparser representation as compared to a fixed basis. However, it

should be remembered that the dictionary is not ubiquitous, unlike the
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fixed transforms. Dictionaries are learned to solve a problem for a partic-

ular class of signals; they are not intended to be generalizable to others.

DL learns a dictionary/ basis to synthesize the data from the latent rep-

resentation. Neural network interpretation of DL is shown in figure 2.5.

Figure 2.5: Neural network interpretation of DL

Suppose we are given the data X ∈ Rm×n such that each column xi rep-

resents a training sample of size m, thus we have total n training samples.

Dictionary learning aims at learning a dictionary and the sparse represen-

tation of these signals, as shown in figure 2.4. The dictionary learning

problem can be expressed as

min
D∈C,Z∈Rk×n

1
n

n∑
i=1

(1
2||xi −Dzi||

2
2 + λ||zi||1) (2.4)
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where the constraint set C is defined as

C = {D ∈ Rm×ks.t∀j = 1 . . . k, dTj dj ≤ 1}

Various algorithms have been proposed in literature to solve the dictionary

learning problem. The algorithms like method of optimal directions (MOD)

solve for dictionary and sparse representation alternately. The K-SVD

algorithm takes a total of K rank-one approximations to determine all K

atoms of the dictionary sequentially. The rank-one approximations are

done using singular value decomposition (SVD).

The euclidean cost function 2.5 of DL is given by:

min
D,Z
‖X −DZ‖2

F (2.5)

2.5 Greedy deep dictionary learning

In deep learning, the idea is to learn multiple levels of dictionaries. It

proposes to extend the shallow DL problem into multiple levels. The idea

of forming a deep architecture using DL stems from the success of deep

learning. Mathematically, a deep dictionary learning (DDL) problem with

two levels as in figure 2.6 can be formulated as given in the equation below.

X = D1φ(D2Z) (2.6)

Where, X is the input data, D1 and D2 are dictionaries and Z are the
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Figure 2.6: Schematic diagram: deep dictionary learning

coefficients. φ is the non-linearity. Greedy approach to DDL learns one

layer at a time. First layer of the dictionary learns from the training data.

The representations and dictionaries are learned for the first layer. in the

second layer, representations learned in the first layer act as the input and

it learns the dictionary for the second layer. Same concept can be extended

to multiple layers. Formulation for DDL with non-linear activations can

be expressed as:

X = D1φ(D2φ(...φ(DNZ))) (2.7)

Where, D1 to DN are N level dictionaries and Z are the final level repre-

sentations. Following optimization problem need to be solved.

min
D1,D2...DN ,Z

||X −D1φ(D2φ(...φ(DNZ)))||2F (2.8)

2.5.1 Supervised dictionary learning

To incorporate supervision, a linear map is learned between the coefficients

of the last layer and the actual targets. The supervised deep dictionary
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learning can be formulated as:

min
DN ,Z,W

||φ−1(ZN−1)−DNZ||2F + µ||Q−WZ||2F + λ||Z||1 (2.9)

Here, Q are the targets and W is the linear map between the targets and

coefficients.

2.6 Convolutional dictionary learning

The reconstruction of a signal x from a sparse representation z with respect

to dictionary matrix D is linear, i.e. x ≈ Dz. The convolutional dictionary

learning (CoDL) [8] approach replaces unstructured dictionary D by a

set of linear filters dm. In this case, the reconstruction of signal x from

representations zm is x ≈ Σmdm∗zm. Where x is an image. Mathematically,

CoDL can be formulated as:

arg min
{dm},{zm,k}

1
2
∑
k
||∑
m
dm ∗ zm − xk||22 + λ

∑
m,k
||zm,k||1

s.t.||dm||2 = 1∀m
(2.10)

The constraint on the norms of filters dm is required to avoid the scaling

ambiguity between filters and coefficients, the training images xk are con-

sidered to be N dimensional vectors, where N is the number of pixels in

each image, and the number of filters and the number of training images

are M and K respectively.
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2.7 Coupled representation learning

The central concept of coupled representation learning is schematically

shown in figure 2.7. There are two domains: source and target; a model

learns representations from each domain, and a linear map is learned from

the representation of the source to that of the target. It has been used in

several problems arising in domain adaptation.

So far, there are two popular models for coupled representation learning;

based on - dictionary learning and autoencoder. The formulation for CDL

[9, 10] is given by -

min
DS ,DT ,ZS ,ZT

||X −DSZS||2F + ||Y −DTZT ||2F

+γ||ZT −MZS||2F + λS||ZS||1 + λT ||ZT ||1
(2.11)

Here X and Y are the data for the source and target domains respectively.

DS and the DT are models (dictionaries) learnt for each of the two domains;

their corresponding representations are ZS and ZT . M is the linear map

coupling the representations. The dictionaries learn a representation in

each domain, and there is a map between the representations of the two

domains.

For synthesis tasks, once the training is complete, the dictionaries for

the source and target are preserved along with the learned linear map;

the coefficients are not of any further use. Once a new sample in the

source domain arrives, it’s the representation. It is obtained by the learned
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Figure 2.7: Coupled representation learning

dictionary of the source domain. This is further mapped onto the target

domain by the learned linear map. The thus obtained representation in the

target domain is synthesized into the corresponding signal by the target

domain dictionary. For inverse problems, the source domain is usually the

corrupted image, and the target domain is the clean image. This approach

has been used for super-resolution [9], denoising [10], deblurring [11] and,

reconstruction [12].

2.8 Analysis and synthesis formulation

To understand the difference between analysis and synthesis formulation,

we need to digress and talk about compressed sensing; it studies the prob-

lem of solving an under-determined system of linear equations when the

solution is known to be sparse. In general, a problem of the following form

has infinitely many solutions;

ym×1 = Am×nyn×1,m < n (2.12)
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The practical way to solve this problem when the solution is known to be

sparse is by minimizing the l1-norm.

min
x
||x||1

s.t

y = Ax

(2.13)

The l1-norm is defined as the sum of absolute values in the vector. In

practice, the system is corrupted by white gaussian noise; the noisy version

of equation 2.12 is expressed as,

y = Ax+ η

η ∈ N(0, σ2)
(2.14)

In such a situation, the equality constraint of equation 2.13 is relaxed by

a quadratic constraint,
min
x
||x||1

s.t

||y − Ax||22 ≤ ε

ε = mσ2

(2.15)

Natural signals are almost never sparse in their physical domain, e.g.

biomedical signals like EEG, ECG, MEG and speech are not sparse in

time domain and images are never sparse in pixel domain. However most

natural signals have an approximately sparse representation in a transform

domain, viz. speech is sparse in short time fourier transform, images are

sparse in wavelets, biomedical signals are sparse in Gabor, etc. In com-
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pressed sensing, we are mostly interested in orthogonal, and tight-frame

transforms; both of these follow the analysis-synthesis equations:

• Synthesis:

x = T ′Z

• Analysis:

Z = Tx

Here x is the signal of interest (dense), T is the sparsifying transform and

Z the transform coefficients are assumed to be sparse. Using the synthesis

form, the system of equations 2.14 can be expressed as,

y = AT ′Z + η (2.16)

Thus, we are back to the sparse regime and the solution can be recovered

by,
Ẑ = min

Z
||Z||1

s.t.

||y − AT ′Z||22 ≤ ε

(2.17)

Once the sparse coefficients are obtained, the signal of interest can be

recovered by applying the synthesis equation. This kind of solution 2.17 is

called the synthesis formulation; it solves for the sparse coefficients from

which the signal is ‘synthesized’. Notice that the synthesis formulation is

quite stringent; it allows for only a few transforms that are either orthog-

onal or tight-frame. This precludes many useful transforms like Gabor
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or finite-difference. There is an alternate formulation called the co-sparse

analysis prior. There is little theoretical understanding of this topic. In lay

person’s terms, unlike the synthesis prior formulation, the analysis prior

formulation solves for the signal itself and not the sparse coefficients. The

recovery is expressed as,

x̂ = min
x
||Hx||1s.t.||y − Ax||22 ≤ ε (2.18)

Here H is the analysis operator; it can be any linear operator; it need

not be orthogonal or tight-frame. One can see that the analysis and the

synthesis prior are the same for orthogonal transforms but not for tight-

frames (the proof is trivial). Notice that the analysis prior formulation is

more generic. The synthesis prior is a special case of the analysis prior

formulation H = I and A = AT ′ . More than 95% of work on compressed

sensing and sparse recovery including theoretical studies, algorithms and

application areas are based on the synthesis prior formulation.

2.9 Transform learning

Figure 2.8: Transform learning
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TL is the analysis equivalent of dictionary learning. It learns an analysis

dictionary / transform (T ) such that it operates on the data (X) to generate

the coefficients (Z) (see figure 2.8). It’s neural network representation is

given as figure 2.9. Suppose we are given the data X ∈ Rm×n such that

each column xi represents a training sample of size m, thus we have total

n training samples. Mathematically this is represented as,

min
T∈Rk×m,Z∈Rk×n

1
n

n∑
i=1

(1
2||Txi − zi||

2
2 + λ||zi||1) (2.19)

Figure 2.9: Neural network interpretation of TL

One may be enticed to solve the TL problem by formulating,

min
T,Z
||TX − Z||2F + µ||Z||0 (2.20)

Unfortunately such a formulation would lead to degenerate solutions; it is
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easy to verify the trivial solution T = 0 and Z = 0. In order to ameliorate

this the following formulation was proposed in [2].

min
T,Z
||TX − Z||2F + λ(ε||T ||2F − log detT ) + µ||Z||0 (2.21)

The factor − log det1 imposes a full rank on the learned transform; this pre-

vents the degenerate solution. The additional penalty ||T ||2F is to balance

scale; without this − log det can keep on increasing; producing degenerate

results in the other extreme. Note that the sparsity constraint on the co-

efficients is not mandatory for machine learning problems. It is useful for

solving inverse problems in signal processing. In [3], an alternating min-

imization approach was proposed to solve the TL problem equation 2.21,

and the same will be used throughout the thesis.

T ← minT ||TX − Z||2F + λ(ε||T ||2F − log detT )

Z ← minZ ||TX − Z||2F + µ||Z||0
(2.22)

Updating the coefficients (Z) is straightforward. It can be updated via one

step of hard thresholding [13], [14] . This is expressed as,

2Z ← (abs(TX) ≥ µ)
⊗
TX (2.23)

Here ⊗ represents element-wise product.

For updating the transform, one can notice that the gradients for dif-
1logdet(T)= log(singular values). If some singular value ≤ 0, then the log takes +∞ as output. For the case

when T is not square, the algorithm solves − log det(T ′T ) + ||T ||2F .
2We take absolute of each entry of the matrix and see if any entry of matrix is greater than µ
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ferent terms in equation 3.1 are easy to compute. Ignoring the constants,

this is given by:

∇||TX − Z||2F = XT (TX − Z)

∇||T ||2F = T

∇ log detT = T−T

(2.24)

In the initial paper on transform learning [3], a non-linear conjugate gra-

dient based technique was proposed to solve the transform update. In the

second paper [4], with some linear algebraic tricks they were able to show

that a closed form update exists for the transform.

XXT + λεI = LLT

L−1Y XT = QSRT

T = 0.5R(S + (S2 + 2λI)1/2)QTL−1

(2.25)

The first step is to compute the cholesky decomposition; the decomposition

exists since XXT + λεI is symmetric positive definite. The next step is to

compute the full SVD. The final step is the update step. One must notice

that L−1 is easy to compute since it is a lower triangular matrix. The cost

function is monotone, decreasing in each step. Moreover, since it is lower

bounded, it converges, and its closed-form solution exists.

The main motivation that can be carried from TL is to use it beyond

signal processing. TL has not been used for solving machine learning prob-

lems. We explore if TL features can be general enough to solve machine
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learning problems, and we have computational cost and run time advan-

tages.
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Chapter 3

Supervised transform learning

This chapter introduces certain supervised formulations to transform learn-

ing. Four different types of supervision penalties are proposed. The first

one is class-sparsity, which imposes common sparse support within repre-

sentations of each class. The second one imposes similarity among intra-

class features in terms of a low-rank constraint (high cosine similarity). The

third penalty enforces features of the same class to be nearby each other

and features of different classes to be far apart. The final formulation is

the well known label-consistency formulation [15, 16], which learns a linear

map from the feature space to the class targets. For the first time, we show

how TL (and its supervised versions can be kernelized). It also introduces

stochastic regularization techniques like drop out and drop connect into

the TL formulation. First, this chapter describes the proposed methodol-

ogy in section 3.1. Then section 3.2 presents the experiments and results.

Experiments have been carried out on four different problems: computer

vision, bioinformatics, hyperspectral imaging, and ECG based arrhythmia
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classification.

3.1 Proposed formulation

Several variants of supervised transform learning (STL) are proposed. Su-

pervision will appear as regularization terms on top of the basic TL formu-

lation equation 3.1. To improve the results further, the kernelized versions

of TL are proposed. This is motivated by the success of kernel dictio-

nary learning (KDL) [17, 18, 19]. Finally we discuss how stochastic reg-

ularization techniques like DO [20] and DC [21] can significantly improve

performance. The basic TL formulation is as follows:

T ← minT ||TX − Z||2F + λ(ε||T ||2F − log detT )

Z ← minZ ||TX − Z||2F + µ||Z||0
(3.1)

Where µ, λ, ε are hyperparameters.

In STL, four different types of supervision penalties are proposed. The

first one is class-sparsity, which imposes common sparse support within

representations of each class. The second one imposes similarity among

intra-class features in terms of a low-rank constraint (high cosine similar-

ity). The third penalty enforces features of the same class to be nearby

each other and features of different classes to be far apart. The final for-

mulation is the well known label-consistency formulation, which learns a

linear map from the feature space to the class targets.
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3.1.1 Class-sparse transform learning

The basic formulation for TL is unsupervised, i.e. the class/label informa-

tion is not required. In recent papers, class-sparsity has been proposed as

a viable supervision term. In [22, 23] class-sparse autoencoders have been

proposed, in [24] class-sparsity was incorporated in RBM. The main idea

of class-sparsity is to impose a common sparse signature across all features

of the same class. For example, consider a problem where the number of

features is 10, and there are two classes. Class-sparsity would impose that

the first-class should have the non-zero values at exactly the same posi-

tions, e.g. in say 1, 5 and 7; similarly the second class would have non-zero

values at say 2, 3, 6 and 10. Class-sparsity shows excellent improvement

in results. The reason for introducing class sparsity can be attributed to

the traditional interpretation of the neural network. In a human brain, a

class of input activates a given bunch of neurons. Class-wise sparsity tries

achieving the same in a neural network. A transform can also be viewed

as a neural network; Instead of interpreting the elements as a basis, they

can be thought of as connections between the input and the representa-

tion. Class-sparsity would enforce representations from the same class to

have common support. Assume there are n training images from C distinct

classes. The supervised training samples can be represented as:

X = [x1,1| . . . |x1,n1︸ ︷︷ ︸
X1;class1

x2,1| . . . |x2,n2︸ ︷︷ ︸
X2;class2

· · ·xC,1| . . . |xC,nC︸ ︷︷ ︸
XC ;classC

]
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where {x1,1| . . . |x1,n1} representsX1; class1, {x2,1| . . . |x2,n2} representsX2;class2

and {xC,1| . . . |xC,nC} represents XC;classC . We propose to learn the features

such that they will have the same sparsity signature across the class, i.e.,

they will have a common sparse support and ZC will be row sparse. This

is achieved by incorporating l2,1-norm regularization [25] as follows: Math-

ematically class-sparse transform learning (CSTL) is expressed as follows:

min
T,Z
||TX − Z||2F + λ(ε||T ||2F − log detT ) + µ

∑
c
||Zc||2,1 (3.2)

Here c denotes the class index for C number of classes and Z = [Z1|...|Zc|...|ZC ].

[Z1|...|Zc|...|ZC ] denotes all Z ′is stacked together column-wise.

||Z||2,1 =
∑
j

||Zj→||2

is the sum of l2-norms of the rows (indicated by j). The inner l2-norm

promotes a dense (non-zero) solution within the selected rows, but the

outer l1-norm (sum) enforces sparsity in selecting the rows. The proposed

formulation shown in Equation3.2 enforces row-sparsity within each group.

This makes the optimization supervised, i.e., the information regarding the

class labels is required to formulate Equation3.2. The formulation enforces

supervision by constraining that the features from the same group should

have the same sparsity signature. The l2,1-norm is a well-known penalty

for imposing row-sparsity within the cth class so that all the features have

the same common support. The same has been used in [22, 23, 24].
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Solving equation 3.2 is straightforward. Alternating minimization leads

to:
T ← min

T
||TX − Z||2F + λ(ε||T ||2F − log detT )

Zc ← min
Zc
||TX − Z||2F + µ||Zc||2,1

(3.3)

Update of T is a standard transform update as shown in equation 2.24

and equation 2.25 having a closed form update.

Z can be decoupled for each class,

min
Zc
||TXc − Zc||2F + µ||Zc||2,1 (3.4)

The equation 3.4 is easily solved using one step of modified iterative soft

thresholding algorithm (ISTA).

This is our first supervised formulation. We call it class sparse transform

learning (CSTL). This can be used either for supervised or for unsuper-

vised representation learning. For the unlabeled samples in semi-supervised

learning, the l2,1−norm will boil down to the sparsity promoting l1−norm.

3.1.2 Low-rank transform learning

A good representation learning method would enforce similarity within the

features of the same class. This would mean that the features would have a

high cosine similarity. If all the features from the same class are stacked as

columns of a matrix, the resultant would be rank-deficient. This is because

the features would be similar to each other, and hence linearly dependent.
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To achieve this explicitly, a low-rank penalty needs to be imposed on the

class-wise feature matrix. This leads to the following formulation:

min
T,Z
||TX − Z||2F + λ(ε||T ||2F − log detT ) + µ

∑
c
||Zc||∗ (3.5)

The nuclear norm [26] acts as the tightest convex surrogate of rank and

has been used profusely in signal processing and machine learning to obtain

low-rank solutions.

The solution for equation 3.5 can be obtained by alternating minimiza-

tion. The transform update would remain exactly the same as before equa-

tion 2.25. The update for the coefficients is given by the following problem,

min
Z
||TX − Z||2F + µ

∑
c
||Zc||∗

min
Zc
||TXc − Zc||2F + µ||Zc||∗

(3.6)

The features for each class can be updated by one step of singular value

shrinkage. This technique is called as low-rank transform learning (LRTL).

The disadvantage of this technique is, if there are too few samples in any

class, the low-rank assumption does not hold. This, in turn, might degrade

the performance. This technique works best when there is an approxi-

mately even distribution of large numbers (at least having the same order

as the feature size) of samples in each class. Furthermore, this technique

is not as directly amenable to semi-supervised representation learning.
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3.1.3 Discriminative transform learning

The aforesaid formulations, although supervised, are not discriminative, i.e.

they enforce similarity between representations of the same class but do

not discriminate between classes. In the next formulation, discrimination

is enforced by enforcing intra-class similarity and inter-class discrimination.

For each class ‘c′ it enforces the features of the same class to be clustered

near each other. This is achieved by minimizing the total distance between

each sample of the class with its class mean, i.e. ||Zc − Z̄c||2F . Here is the

class mean repeated the same number of times as the number of samples

in the class ‘c′. Thus, it is arranged as a matrix. This reduces intra-class

distance. To enforce discrimination, it also needs to enforce maximize the

inter-class distances. This is achieved by maximizing the distances between

all pairs of class means. Combining the two, the formulation is given as

follows:

min
T,Z
||TX − Z||2F + λ(ε||T ||2F − log detT ) + µ||Z||1

+η1
∑
c
||Zc−Z̄c||2 − η2

∑
c

∑
j 6=c
||Z̄c − Z̄j||2

(3.7)

Here ∑
c

∑
j 6=c
||Z̄c − Z̄j||2 is for maximizing the class distances from each other.

The term ∑
c
||Zc−Z̄c||2 minimizes the distance within class. This is called

discriminative transform learning (DiTL). With little simplification, it can

be shown that the term ||Zc − Z̄c||2 can be represented as ||McZc||2 where
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Mc = I − 1c
nc

Here nc is the number of samples in the class and 1c denotes a matrix

of all 1c of dimensionality nc × nc.

Similarly, we can express

Z̄c = ZC
1c
nc

where 1′c denotes a matrix of dimension nc×ν. ν being the dimensionality

of the representation. Therefore

||Z̄c − Z̄j||2

can be represented as

|Z̄c − Z̄j||2 = ||Zc
1′c
nc
− Zj

1′j
nj
||2 (3.8)

With these simplifications, equation 3.7 can be expressed as,

min
T,Z
||TX − Z||2F + λ(ε||T ||2F − log detT ) + µ||Z||1

+η1
∑
c
||McZc||2 − η2

∑
c

∑
j 6=c
||Zc 1′c

nc
− Zj 1′j

nj
||2

(3.9)

As before, it is solved using alternate minimization. The update for the

TL step remains unchanged. The update for features for each class (after

34



decoupling) can be expressed as,

min
Zc
||TXc − Zc||2F + µ||Zc||1

+η1
∑
c
||McZc||2 − η2

∑
c

∑
j 6=c
||Zc 1′c

nc
− Zj 1′j

nj
||2

(3.10)

This is a l1−regularized least-squares problem. It can be solved using

ISTA [14]. This concludes the steps of the training algorithm. We name

it discriminative transform learning (DTL). Note that this formulation is

naturally amenable to semi-supervised learning. For samples that do not

have class information, only the sparsity penalty is imposed (without the

discriminative terms); for labelled samples, both the sparsity penalty and

the discriminative penalties are imposed.

3.1.4 Label consistent transform learning

Label consistency penalties proved to be immensely successful in machine

learning tasks. It was introduced in [27] as label consistent K-SVD. A

slightly varied formulation was proposed in [28] with the title ’discrimina-

tive K-svd’. However, the equivalence between the two has been shown

in [29]. Later label-consistent formulation has been used in autoencoder

[30] as well. The basic idea in label consistency is to learn a linear map

that projects the sparse features into the target variables. The same idea

is used here. The label consistent transform learning (LCTL) formulation
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is expressed as follows,

min
T,Z
||TX − Z||2F + λ(ε||T ||2F − log detT ) + µ||Z||1

+η||Q−MZ||2
(3.11)

Here M is the linear classifying map and Q are the target (binary) class

labels. We call this the LCTL.

The LCTL formulations can be solved using alternating minimization.

The transform update step remains the same as before. But in this for-

mulation we need to learn an additional linear map M; this is obtained by

min
M
||Q−MZ||2 (3.12)

This has a closed-form solution in the form of pseudo-inverse. For the

LCTL formulation, the update for the sparse coefficients remains the same

as that of modified soft thresholding as in the CSTL formulation.

3.1.5 Testing

For the first three techniques, supervised representation is learned. The fea-

tures obtained from the training stage is used to learn a separate classifier.

During testing, the sparse feature is obtained using the learned transform.

This requires solving,

min
Ztest
||TXtest − Ztest||2 + µ||Ztest||1 (3.13)
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This has a closed form update via soft thresholding. The thus generated

sparse feature is input to the learnt classifier for class assignment.

Note that the test phase of transform learning is much faster than that of

dictionary learning. We only need a soft thresholding operation following a

matrix-vector product to solve (22) [31]. In dictionary learning, one needs

to solve an iterative optimization problem for generating the sparse codes

(l1-minimization). For the LCTL techniques, one can use the generated

features for training a separate classifier or follow the technique in label

consistent K-SVD [31]. After generating the sparse features, the linear map

(M) is used to obtain the target labels: q̂ = Mztest . The generated target

is not a binary vector. But the label can be assigned from the position of

the highest value in q̂.

3.1.6 Kernel transform learning

The idea of kernel transform learning (KTL) gets motivation from the

success of KDL [17, 18], which in turn extends from the concept of double

sparsity [30]. Instead of learning a dense dictionary, it learns a dictionary

that is produced as a sparse combination of elements from a known basis

(e.g. wavelet, DCT). Let ϕ : RN → F be a non-linear mapping from RN

into a higher dimensional feature space F . Since the feature space, F can be

very high dimensional, in the kernel methods, kernels are usually employed

to carry out the mapping implicitly. A kernel is a function that for all data

xi gives rise to a positive semi-definite matrix K(xi, xj). It corresponds to
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mapping the data with some mapping ϕ into a feature space F instead of

the dot product in input space.

The formulation is expressed as,

X = ΦAZ

Here Φ is the fixed basis, ΦA is the dictionary expressed as a sparse com-

bination (A) of basis from Φ. The idea of decomposing the dictionary into

a fixed portion and a learned variable stems from the concept of double

sparsity. The formulation for kernel dictionary learning is given by,

ϕ(X) = ϕ(X)A︸ ︷︷ ︸
Dictionary

Z (3.14)

The non-linear transformation on the data ϕ(X) is synthesized from the

coefficients (Z) from a dictionary formed by itself and a combination of its

elements ϕ(X)A. The formulation for learning is,

min
A,Z
||ϕ(X)− ϕ(X)AZ||2F s.t. ||Z||0 ≤ τ (3.15)

The problem is solved using alternate minimization. The update step for

A is actually independent of the data, since

A← min
A
||ϕ(X)(I − AZ)||2F

A = ZT (ZTZ)−1

The update for the sparse coding stage is a solved problem via kernel match-

ing pursuit (KMP) [32]. A more efficient solution via the Nystrom method
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is proposed in [24].

Using the kernel method, we describe how the TL approach can be made

nonlinear. It is shown that nonlinear TL approach can provide better dis-

crimination compared to its linear counterpart, especially when the data

is corrupted by noise.

Let us rewrite the basic transform learning formulation TX = Z in kernel-

ized form. The transform can be written as Bϕ(X)T and data in higher

dimensional feature space can be expressed as ϕ(X). Hence, the KTL

equation can be written as:

Bϕ(X)T︸ ︷︷ ︸
Transform

ϕ(X) = Z (3.16)

The advantage of our proposed formulation is that, one can define the

kernel upfront,

K(X,X) = ϕ(X)Tϕ(X)

This allows expressing equation 3.16 as,

BK(X,X) = Z (3.17)

Comparison between transform learning equation 2.19 and our proposed

formulation equation 3.17 is that instead of the data matrix, we have the

kernelized data matrix. The usual constraints of TL will apply. We formu-
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late the learning as,

min
B,Z
||BK(X,X)− Z||2F + λ(ε||B||2F − log detB) + µ||Z||0 (3.18)

One can see that the update for B is the same as that of the transform

and the update for Z remains the same as that of sparse coefficients. This

concludes the training phase. For testing, the corresponding expression

will be:

Bϕ(X)Tϕ(xtest) = ztest (3.19)

The kernel is automatically defined as:

K(X, xtest) = ϕ(X)Tϕ(xtest)

This allows expressing equation 3.19 as follows,

BK(X, xtest) = ztest

Since, one looks for sparse features, one needs to solve,

min
ztest
||BK(X, xtest)− ztest||2F + µ||ztest||0

This is solved by just one step of hard thresholding. We have shown

the kernelized version for the basic TL. Our supervised versions follow

directly; one only needs to replace the raw samples by their kernels and

the transform by B; the rest remains the same. In short, here are the
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kernelized versions of the four different supervision penalties introduced in

this chapter.

• Kernel CSTL:

min
B,Z
||BK(X,X)− Z||2F + λ(ε||B||2F − log detB) + µ

∑
c
||Zc||2,1

• Kernel LRTL:

min
B,Z
||BK(X,X)− Z||2F + λ(ε||B||2F − log detB) + µ

∑
c
||Zc||∗

• Kernel DiTL:

min
B,Z
||BK(X,X)− Z||2F + µ||Zc||1

+λ(ε||B||2F − log detB)

+η1
∑
c
||McZc||2 − η2

∑
c

∑
j 6=c
||Zc 1′c

nc
− Zj 1′j

nj
||2

• Kernel LCTL:

min
B,Z,M

||BK(X,X)− Z||2F + λ(ε||T ||2F − log detT )

+µ||Z||1 + η||Q−MZ||2F

3.1.7 Stochastic regularization

The idea of stochastic regularization (in neural networks) is fairly new.

These techniques do not have the firm mathematical backing of determin-

istic regularization but have heuristic understanding. We discuss and adopt

two different stochastic regularization techniques that have been recently
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proposed in neural networks.

The main idea in DO [20] is to randomly drop units (along with their

connections) from the network during training. This prevents nodes from

co-adapting too much. Suppose we have training data X; in every itera-

tion of DO some randomly chosen output units along with their connection

weights are set to zero, as shown in figure 3.1. Here, out of three output

neurons, z (selected randomly) is dropped. This idea can be adopted to

Figure 3.1: Drop out

TL. For that, we would need to interpret TL in a slightly different manner.

The usual interpretation of TL is to think of the transform as an analysis

basis which operates on the data to produce coefficients: this is shown

in the left of figure 2.9. Instead of thinking of the transform elements as

a basis, they can alternately be interpreted as connections between the

input and the representation. This is more akin to a neural network in-

terpretation shown in the right of figure 2.9. With the neural network

interpretation, DO would require randomly putting some representations
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Figure 3.2: Drop connect

to zero. This can be easily achieved. The updates for the coefficients and

transform are,

Zk ← min
Z
||Tk−1X − Z||2F + µ||Z||0

Tk ← min
T
||TX − Zk||2F + λ(ε||T ||2F − log detT )

(3.20)

In every iteration (k), before using Zk to update the transform Tk, some of

the elements in Zk are randomly put to zero. This yields the desired effect

of DO.

We have shown it here for the unsupervised formulation. But it is

trivial to extend it to the supervised and kernelized formulations. The

other approach to stochastic regularization is DC, as shown in figure 3.2.

In this, the connections between successive layers of nodes are dropped. In

our neural network type interpretation of TL, it would mean that some of
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the elements in the transform are dropped after every iteration. This can

be achieved by putting some of the elements Tk in equation 3.20 to zero

before using the transform to update Zk+1 in equation 3.20 in the next

iteration.

There is a heuristic interpretation of drop out and drop connect. By

dropping the connections or representations, the architecture of the neural

network changes. Over iterations, an average of many such architectures

is apparently learned. This prevents over-fitting.

3.2 Experiments and results

3.2.1 Computer vision

We carry out classification on some benchmark computer vision datasets:

face Recognition (YaleB and AR), object categorization (Caltech 101) and

scene categorization (Scene 15). All these datasets are well known. The

extended yale face database B (YaleB) includes 2, 414 face images of 38 per-

sons under 64 illumination conditions, which is challenging due to plentiful

expressions and varying illumination conditions. All the original images

are cropped to 192× 168 pixels and then projected onto 504−dimensional

vectors with a randomly generated matrix (i.i.d gaussian) to obtain random-

face features. Following the common settings for this database, we chose

one-half of the images for training, and the remaining samples were used

for testing. The AR face database contains more than 4, 000 colour face
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images of 126 people. Each person has 26 frontal face images which are

taken during two sessions. This database includes frontal views of faces

with different facial expressions, lighting conditions, and occlusion condi-

tions (sunglasses and scarves). All the images are cropped and scaled to

165× 120. We followed a common evaluation protocol in our experiments

for this database, in which we used a subset of 2600 images pertaining to

50 males and 50 female subjects. For each subject, we randomly chose 20

samples for training and the rest for testing. The Caltech 101 database

comprises of 9, 144 images from 102 classes. Each category has 31 to 800

images. We use the standard bag-of-features (BoF) + spatial pyramid

matching (SPM) frame for feature extraction. 30 images per category are

randomly selected for training and the remaining for testing. The num-

ber of samples in each category of the fifteen scene dataset (Scene 15)

ranges from 200 to 400, and the average image size is around 250 × 300

pixels. This database contains 15 scenes, such as kitchen, bedroom, and

country scenes. The feature extraction scheme remains the same as in

Caltech 101. Following the common experimental settings, 100 images per

category are randomly chosen as training data with the rest as testing

data. We compare our proposed techniques with discriminative bayesian

dictionary learning (DBDL) [33], multimodal task driven dictionary learn-

ing (MTDL) [34], discriminative analysis dictionary learning (DADL) [35],

sparse embedded dictionary learning (SEDL) [36] and non linear dictio-

nary learning (NDL) [37] and label consistent dictionary learning (LCDL)
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[38]. For the proposed supervised dictionary learning techniques, we show

results with the basic formulations, with the kernelized formulation, and

with stochastic regularization. The parametric values used in this work

are shown in table 3.1. These values have been obtained on a validation

dataset (CIFAR−10); they have not been tuned for the datasets used in

this work.
Table 3.1: Parameter values

Method Parameters
CSTL λ = 0.1;µ = 0.05
LRTL λ = 0.1;µ = 0.05
DiTL λ = 0.1;µ = 0.05; η1 = 0.25; η2 = 0.1
LCTL λ = 0.1;µ = 0.05; η = 1

The experimental results are shown in Tables 3.2. Our proposed meth-

ods: CSTL, LRTL and DiTL require separate classifiers. In this work, we

use a simple nearest neighbour, classifier. For all the kernelized versions

we have used a polynomial kernel of order 3. In the following tables, DO

and DC refer to stochastic regularizations and ‘K ′ refers to the kernel-

ized version. The kernel class-sparse transform learning (K-CSTL), kernel

low-rank transform learning (K-LRTL), kernel discriminative transform

learning (K-DiTL) require separate classifiers but kernel label consistent

transform learning (K-LCTL) doesn’t require any external classifier. For

both DO and DC, 5% dropping was used. For all our formulations, the

number of basis elements used was half the dimensionality of the input

data.

The results show certain trends. First, kernelization helps; we always
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Table 3.2: Classification accuracy

Method YALEB AR faces Caltech-101 Scene-15
DBDL[33] 97.2 97.4 74.6 98.7
MTDL[34] 97.0 97.1 73.2 97.1
DADL[35] 97.7 98.7 74.6 98.3
SEDL[36] 96.6 94.2 81.9 96.2
NDL[37] 91.8 92.1 62.8 83.7
LCDL[38] 92.7 94.6 64.4 86.7
CSTL 96.2 97.1 73.6 96.8
CSTL-DO 96.4 97.3 73.7 97.0
CSTL-DC 96.5 97.3 73.9 97.1
K-CSTL 97.1 97.6 74.1 97.5
K-CSTL-DO 97.2 97.8 74.2 97.6
K-CSTL-DC 97.4 97.8 74.2 97.6
LRTL 96.0 96.6 72.8 96.2
LRTL-DO 96.2 96.8 73.0 96.4
LRTL-DO 96.3 96.9 73.1 96.6
K-LRTL 96.8 97.4 73.6 97.0
K-LRTL-DO 97.0 97.5 73.8 97.1
K-LRTL-DC 97.0 97.6 73.8 97.3
DiTL 97.0 98.0 74.6 97.9
DiTL-DO 97.1 98.2 74.8 98.1
DiTL-DC 97.2 98.4 74.8 98.2
K-DiTL-DO 97.9 98.9 75.6 98.9
K-DiTL-DC 97.9 98.9 75.7 98.9
LCTL 97.8 98.8 75.1 98.6
LCTL-DO 98.0 98.9 75.2 98.8
LCTL-DC 98.1 99.0 75.4 98.9
K-LCTL 98.4 99.2 75.9 99.1
K-LCTL-DO 98.5 99.4 76.1 99.3
K-LCTL-DC 98.6 99.4 76.2 99.3

get better results after kernelization compared to its linear counterpart.

Second, the stochastic regularization techniques improve results for both

the linear and kernel formulations. Third, of the two stochastic regular-

ization techniques, DC is always as good or better than DO. The LRTL

formulation yields the worst results among all the proposed formulations.

The class sparsity formulation improves upon LRTL but is not able to

produce better results than the prior techniques. The DiTL formulation
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improves further, but the linear formulation is not always able to beat the

previous best. But with the kernelized version of the DiTL, we are able

to surpass prior results. The LCTL formulation almost always yields the

best results (except for scene 15). With kernelization and stochastic regu-

larization, LCTL improves even further. In computer vision, deep learning

is popular these days. But note that the results of deep learning on these

datasets are not very high. As the article [39] reveals, well known CNN

architectures perform sub-par (less than the methods compared here) Yale

B and AR face datasets. This is mainly due to the non-availability of

too many training samples. Similarly, [40] reports results on several CNN

based architectures for scene 15; all of them report accuracies lower than

the ones here.

3.2.2 Bioinformatics

We apply our techniques to two well-known problems in bioinformatics.

The first one is the prediction of DNA methylation state using genome

topological features. A recent study applied deep learning (stacked au-

toencoder) to address the said problem [41]. The work described above is

dubbed DeepMethyl; it predicts the methylation state of DNA CpG dinu-

cleotides using features inferred from three−dimensional genome topology

(based on Hi−C) and DNA sequence patterns. It is a binary classification

problem (methylated or unmethylated). The experimental data are from

immortalized myelogenous leukaemia (K562) and healthy lymphoblastoid
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(GM12878) cell lines. Following [42], DeepMethyl [41] used sequential fea-

tures generated within a window of the genome and features generated

from the three-dimensional topology of a genome indicated by the Hi−C

experiment. Two sets of experiments have been proposed in the aforesaid

study: Benchmark 1. the methylation level of sequential neighbouring re-

gions is included as features. Benchmark 2. Excluding the methylation

level as features to increase difficulty. The details of the prior experiments

and feature extraction are given in [41]. The results are shown in Table 3.3.

Taking cues from the previous set of experiments, we do not show results

for all the different techniques. We only show results for the kernelized

versions along with stochastic regularization using DC. An RBF kernel

has been used throughout. The dropping rate for DC has been fixed at 5%.

For CSTL, LRTL and DiTL; an SVM classifier is used (since it is a binary

classification problem). As a benchmark, basic TL is used as a benchmark.
Table 3.3: Classification accuracy compared with DeepMethyl

Method Benchmark−1 Benchmark−2

GM12878 K562 GM12878 K562
DeepMethyl[41] 89.7 88.6 84.8 72.0
TL 87.9 86.6 83.0 69.9
KTL 88.2 87.2 83.3 70.6
KTL-DC 88.8 87.6 84.0 71.3
K-CSTL 90.1 89.2 85.1 72.0
K-CSTL-DC 90.8 90.5 85.9 72.7
K-LRTL 88.9 88.0 83.1 71.1
K-LRTL-DC 89.3 88.3 83.8 71.4
K-DiTL 91.7 91.6 86.0 72.6
K-DiTL-DC 92.4 92.1 86.8 74.3
K-LCTL 92.6 92.0 87.0 75.1
K-LCTL-DC 93.2 92.8 87.6 75.8

For all of our formulations, 100 transform basis was used. The results
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show that the basic TL formulation (linear or kernelized) does not out-

perform the existing stacked autoencoder based formulation. The LRTL

formulation improves slightly upon the basic formulation but still does not

beat the prior method. The LCTL formulation improves over DeepMethyl.

The DiTL and LCTL formulations improve upon further.

Our second experiment is carried out with DeepChrome [43]. This prob-

lem takes histone modifications as input and predicts gene expression as

a classification task on 56 different cell- types from REMC database [44].

In [43], the 10, 000 basepair (bp) DNA region (+/- 5000 bp) around the

transcription start site (TSS) of each gene was divided into bins of length

100 bp. Each bin includes 100 bp long adjacent positions flanking the TSS

of a gene. In total, five core histone modification marks from the REMC

database were considered [44]. These five histone modifications were se-

lected as they are uniformly profiled across all cell-types considered in the

study. This makes the input for each gene a 5×100 matrix, where columns

represent different bins and rows represent histone modifications. This con-

stitutes the input feature. The aforesaid work used a CNN for prediction.

For the parameter settings and experimental protocol, we followed [43]. In

this work, we employ TL after vectorizing the 5 × 100 dimensional input

feature. DeepChrome [43] reports average AUC as the evaluation metric.

The results are shown in the following table. In prior studies, we have seen

that DO always performs better than DC; hence, in this final experiment,

we only use the later.
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Table 3.4: DeepChrome: AUC comparison

SVM 0.75
DeepChrome[43] 0.80

Without DC With DC
KTL 0.72 0.75
K-CSTL 0.79 0.82
K-LRTL 0.75 0.77
K-DiTL 0.82 0.83
K-LCTL 0.83 0.84

In [43], DeepChrome was compared with SVM. The results are the

same as we obtained. We find that the KTL formulation does not improve

results; in fact, with SVM, the results are exactly the same as obtained on

raw data. When supervision is added, results improve. As before, LRTL

only improves slightly over the basic TL formulation. CSTL shows further

improvement. With DC, it beats DeepChrome. Results improve even

further with the DiTL formulation. The best results are obtained with the

LCTL formulations.

3.2.3 Hyperspectral image classification

We evaluate our proposed technique on the problem of hyperspectral im-

age classification; the datasets are Indian Pines which has 200 spectral

reflectance bands after removing bands covering the region of water ab-

sorption and 145× 145 pixels of sixteen categories, and the Pavia Univer-

sity scene which has 103 bands of 340 × 610 pixels of nine categories. In

this work, we follow the standard evaluation protocol on these datasets.

For both the first datasets, we follow the standard protocol; we randomly
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select 5% of the labelled data as the training set and rest as the testing

set. This is repeated 100 times, and the average accuracies are reported.

In this work we have compared with several state-of-the-art techniques:

spectral-spatial shared linear regression (SSLR) [45], hierarchical spectral-

spatial features (HSSF) [46], CNN [47] and group-sparse low-rank repre-

sentation (GSLR) [48]. We compare with these techniques since they are

the latest ones and comprise an even mix of shallow and deep techniques.

For our proposed technique, we input the raw pixel values: there is no

requirement of extracting spatial and spectral features as needed in prior

techniques [45, 46, 47]. For tuning the parameters, Salinas has been used

as a validation set. We found that the same parameter values, as shown in

table 3.1 yields outstanding results. The number of transform basis used

in these experiments were 50. For the CSTL, LRTL and DiTL, we need

a separate classifier. Here the group sparse representation-based classifier

is used [49]. In all cases (CSTL, LRTL, DiTL and LCTL) an RBF kernel

has been used along with DC regularization (with 5% dropping).DO gives

worse results than DC and hence has not been shown here. The experi-

mental results are shown in tables 3.5 and 3.6. The overall accuracy (OA),

average accuracy (AA) and Kappa are used for evaluation metrics.

One cannot compare the results obtained here from the CNN based tech-

nique [47] and SSLR [45] with the corresponding papers since the volume

of the training data used there is much higher compared to ours. Therefore

it is reasonable to expect a drop in the accuracy. Even for other techniques,
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Table 3.5: Classification accuracy on Indian Pines

Class K-CSTL-DC K-LRTL-DC K-DiTL-DC K-LCTL-DC GSLR[48] SSLR[45] HSSF[46] CNN[47]
1 75.00 95.83 97.92 95.83 96.08 82.58 81.32 86.58
2 96.43 96.67 97.21 98.15 95.30 90.73 80.51 82.68
3 95.47 90.93 96.67 96.93 96.72 87.84 79.75 84.36
4 86.19 85.71 93.33 91.14 95.05 85.13 68.57 90.33
5 96.42 93.74 95.75 91.21 90.25 80.92 79.25 93.88
6 98.66 97.32 99.55 91.11 97.74 92.24 95.18 95.99
7 82.61 69.57 60.87 100.00 91.67 85.00 95.20 88.67
8 97.95 98.41 100.00 99.97 98.92 98.14 93.08 96.49
9 50.00 55.56 50.00 100.00 84.21 80.00 89.47 97.00
10 93.80 93.80 94.60 96.70 90.64 88.86 77.85 87.35
11 95.54 94.37 99.28 97.20 95.22 82.13 85.62 74.90
12 91.85 93.66 95.65 96.73 91.60 81.57 69.95 92.82
13 100.00 99.47 100.00 100.00 100.00 95.68 96.36 95.59
14 95.96 99.14 99.83 99.48 97.80 95.26 96.28 95.55
15 88.01 87.43 91.81 98.37 83.10 80.46 83.16 84.41
16 88.24 100.00 91.76 95.29 92.22 97.67 96.06 95.06

OA 95.10 94.86 97.83 97.97 94.75 88.19 84.70 84.81
AA 92.55 90.73 91.85 97.81 93.53 87.76 85.48 90.12
Kappa 0.94 0.94 0.96 0.97 0.94 0.88 0.83 0.82

Table 3.6: Classification accuracy on Pavia

Class K-CSTL-DC K-LRTL-DC K-DiTL-DC K-LCTL-DC GSLR[48] SSLR[45] HSSF[46] CNN[47]
1 89.56 82.23 94.40 99.64 84.47 89.21 98.79 89.06
2 79.98 72.47 95.91 92.68 93.02 98.48 99.85 89.80
3 85.45 82.26 91.71 90.06 75.65 84.34 87.10 80.67
4 98.66 98.56 96.22 98.94 97.05 94.16 93.99 90.85
5 99.91 99.82 99.10 100.00 99.73 98.86 99.61 95.91
6 95.76 93.92 94.45 98.77 92.32 82.66 98.34 91.17
7 97.96 92.46 95.32 98.81 94.80 80.31 92.62 89.68
8 96.43 78.98 95.37 98.54 92.95 88.69 93.97 86.09
9 98.49 96.98 96.48 96.48 99.37 90.18 94.20 94.84

OA 90.65 81.07 94.27 97.89 91.45 90.16 97.53 89.28
AA 93.58 88.61 95.44 97.10 92.15 89.65 95.38 89.55
Kappa 0.91 0.84 0.95 0.98 0.88 0.89 0.97 0.87

the results may not be directly comparable, since they handpick the spec-

tral bands; in here all the spectral bands are used. The results show that

our proposed label consistent formulation yields the best results as always.

It also has the highest number of class-wise accuracies. Closely follow-

ing is the discriminative formulation. The class-wise sparse regularization

yields better results than the ones compared against but falls short of the

DiTL and LCTL formulations. The LRTL formulation yields the worse re-

sults among the proposed techniques. Here we do not report the standard
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deviations in each class (some studies indicate that). But we performed

simple statistical t-tests between mutual pairs of close performing methods

to see (at 99% confidence interval) if they are significantly different. The

summarized results are as follows: The results of the t-test reveal that

LCTL and DiTL are considerably different for both the datasets. Apart

from GSLR nothing comes close by our proposed techniques for the Indian

Pines dataset. GSLR is significantly better than LRTL but is worse than

the rest of the proposed methods (LCTL, DiTL and CSTL). On the Pavia

dataset, CNN is significantly better than LRTL. Both are worse than all

others. CSTL is significantly better than SSLR but worse than all others.

It is even worse than GSLR. The existing technique HSSF is significantly

better than our proposed DiTL but is worse than our LCTL.

3.2.4 Arrhythmia classification

Here, five types of beat classes of arrhythmia as recommended by associ-

ation for the advancement of medical instrumentation (AAMI) were an-

alyzed from electrocardiogram (ECG) signals namely: non-ectopic beats,

supraventricular ectopic beats, ventricular ectopic beats, fusion beats and

unclassifiable and paced beats. The classification experiments are carried

out on the MIT-BIH arrhythmia dataset from www.physionet.org. The

MIT-BIH arrhythmia database contains 48 half-hour recordings of two-

channel ambulatory ECG, obtained from 47 subjects in the year 1975 and

1979 by the beth-Israel hospital arrhythmia laboratory at Boston. Twenty-
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four-hour ambulatory ECG recordings were collected from a mixed popula-

tion of size 4000 having inpatients (around 60%) and outpatients (around

40%). The recordings were digitized at 360 samples per second per channel

with an 11-bit resolution over a 10 mV range. Two or more cardiologists

independently annotated each record; the consensus was made to obtain

the computer-readable reference annotations for each beat. For classifica-

tion experiments, the MIT-BIH protocol is converted to the AAMI / ANSI

standard. This leads to 5 classes - non-ectopic beat (N), supra-ventricular

ectopic beats (S), ventricular ectopic beats (V), fusion beat (F) and un-

known beat (Q). Owing to the relative sparsity of samples in the F and

Q class, they are merged with V; this is following the AAMI2 protocol

proposed in [50]. For the experimental protocol we follow [50]; this is re-

peatable protocol. The division into test set and training set is shown in

Table I. The record number # of the patient used for training are: 101,

114, 112, 207, 223, 106, 115, 124, 208, 230, 108, 116, 201, 209, 109, 118,

203, 215, 112, 119, 205, 220; for testing are: 100, 117, 210, 221, 233, 103,

121, 212, 222, 234, 105, 123, 213, 228, 111, 200, 214, 231, 113, 202, 219,

232.
Table 3.7: Train and test set details

Dataset N S V F Q Total # Rec
Train 45844 943 3788 415 8 50998 22
Test 44238 1836 3221 388 7 49690 22
Total 90082 2779 7009 803 15 100688 44

The proposed technique is compared with two recent works [41, 42]. In
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[41] deep neural networks built upon stacked autoencoder and deep belief

networks are used. In [42], deep 1D CNN are used. The said studies

are known to yield the best-known results; they excel overall state of the

art shallow techniques. We follow the standard preprocessing step [41].

All ECG signals are first preprocessed using a 200ms width median filter

to remove the P wave and QRS complex, then a 600ms width median

filter to remove the T wave. The resulted signals are subtracted from

the original signals to yield the baseline−corrected ECG signals. Then a

12−order low-pass filter with a 35Hz cut−off frequency is applied to remove

power−line and high−frequency noise. For feature extraction, we follow

exactly the same technique as outlined in [41]. The processing is done

using the ecgpuwave toolbox. In all our formulations, 50 transform basis

was used. Since our proposed technique requires specification of certain

parameters, we have tuned them on the European society of cardiology

ST−T database. The parameters obtained are shown in table 3.8.
Table 3.8: Parameter values

Method Parameters
CSTL λ = 0.5;µ = 0.05
LRTL λ = 0.5;µ = 0.05
DTL λ = 0.5;µ = 0.05; η1 = 0.25; η2 = 0.1
LCTL λ = 0.5;µ = 0.05; η = 0.8

For our proposed methods: LCTL, LRTL and DiTL; the nearest neigh-

bour classifier is used. Our LCTL formulation does not require an external

classifier. We have shown the results for a linear and polynomial kernel of

order 2. Other kernels show mark degradation in results. DC regulariza-
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tion has been used. The comparisons are made with DBN, SAE and CNN.

The results are shown in Table 3.9. The customary measures of overall

accuracy, sensitivity, and specificity of each class are reported.
Table 3.9: ECG classification accuracy: AAMI 2 protocol

Method

Accuracy F S V
Sens. Spec. Sens. Spec. Sens. Spec.

DBN[41] 94.8 95.7 66.5 23.9 100 83.9 100
SAE[41] 93.8 96.9 62.8 20.8 100 83.2 100
CNN[42] 97.2 100 66.2 21.0 100 85.2 98.5
CSTL 88.6 95.8 31.9 14.1 97.2 41.8 92.8
K-CSTL 90.1 98.8 52.2 15.1 97.6 45.7 95.4
LRTL 86.5 91.2 39.8 11.0 97.0 52.4 90.8
K-LRTL 89.2 95.6 56.8 13.6 97.4 60.2 95.2
DiTL 92.0 96.8 54.5 13.6 100 48.6 93.6
K-DiTL 96.9 98.8 56.6 24.5 100 85.2 96.2
LCTL 93.8 94.6 55.3 15.9 97.0 48.9 89.6
K-LCTL 100.00 100 70.5 28.0 100 94.1 100

The proposed methods use DC regularizations. One cannot compare

the reported results with the ones in [51, 52]. This is because the division

of test and training samples used here are different. We follow a repeatable

protocol while most others used a randomized one. The results in Table

3.9 show that with kernelization, there is an improvement in results. The

kernelized versions of DiTL and LCTL improve upon the previous bests.

3.3 Discussion

There are three major contributions to this chapter. First, this work pro-

poses supervised versions of transform learning; four different supervision

techniques have been proposed. Second, this chapter also introduces Ker-
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nelization to transform learning. Third, it shows how stochastic regular-

ization techniques like drop out and drop connect can be incorporated into

transform learning. Experiments have been carried out on four different

kinds of problems: computer vision, bioinformatics, hyperspectral imaging,

and biomedical signal analysis. In such a diverse set of experiments, we

outperform state-of-the-art techniques.
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Chapter 4

Unsupervised deep transform

learning - classification and

clustering problems

The concept of deep transform learning (DTL) is motivated by the suc-

cess of deep learning techniques like SAE, DBN, CNN and DDL. In DTL,

multiple levels of transforms are learned to represent the data in terms

of coefficients. Usually, such deep architectures are used for classification

problems leading to deep neural networks, but this is not mandatory. It

can be used for other problems where class information is not required; for

example in clustering or reconstruction. The layers of single level trans-

forms have been stacked one after the other leading to the framework of

DTL; it has been shown in there that DTL indeed is a more powerful

tool than conventional ones like SAE, DBN and DDL. In this chapter, we

will discuss greedy deep transform learning (GDTL), followed by jointly

59



learned deep transform learning (JDTL) in section 4.1. Then experiments

are performed for classification and clustering problems in section 4.2.

4.1 Proposed formulation

4.1.1 Greedy deep transform learning

Deep learning methods have multiple levels of learning; in each layer, a

more abstract representation of the raw data is learned via non-linear

transformations. Using such non-linear modules of transformation, very

complex functions can be determined. Deeper representations are learned

by stacking one transform after another. The learning is done greedily. The

first layer determines the transform and features from the input training

samples. The subsequent layers use the features(after activation) from the

previous layer as training input.

Figure 4.1: Deep transform learning

For DTL, instead of analyzing the data by single-level transform, mul-

tiple levels of transforms are used to produce the final level of coefficients.
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This is expressed as,

TNϕ...(T2ϕ(T1X)) = Z (4.1)

Here T1 operates on the data X to produce the first level of coefficients.

T2 analyzes the first level of the coefficient to produce the second level.

Finally, TN operates the second level of coefficients to generate Z. Here

ϕ denotes the activation function, without which all the transforms will

collapse into the single one. Following the greedy paradigm, we solve it

one layer at a time. With the substitution,

ϕ(TN−1ϕ...(T2ϕ(T1X))) = ZN−1 (4.2)

It can be expressed as, TNZN−1 = Z This can be alternatively expressed

as,

(TN−1ϕ...(T2ϕ(T1X))) = ϕ−1(ZN−1) (4.3)

With the substitution ϕ(TN−2ϕ...(T2ϕ(T1X))) = ZN−2, we have for the

next layer,

(TN−1ZN−2) = ϕ−1(ZN−1) (4.4)

Continuing the substitution in this fashion, till final layer, we have,

T1X = ϕ−1(Z1) (4.5)

Note that, for all layers it is easy to invert the activation function, since ϕ

operates element-wise.
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We start solving the different layers of transforms in backward direction.

Starting from equation 4.5, this is easily solved using the standard trans-

form learning formulation.

min
T1,Z1
||T1X − Z1||2F + λ(||T1||2F − log detT1) (4.6)

In each iteration, Z1 = T1X. Once, Z1 is solved, it acts as input to second

layer for solving T2 and Z2; as shown below:

min
T2,Z2
||T2Z1 − Z2||2F + λ(||T2||2F − log detT2) (4.7)

Now, Z2 acts as input to the third layer and so on. This is continued till

the final layer of transform TN . This completes the training process. The

advantage of such a greedy training paradigm is that for each level, we only

need solving a shallow transform learning problem which has algorithms

with convergence guarantees.

During testing, the objective is to generate the test feature (Ztest) given

the input test sample (Xtest). This is expressed as

TNϕ...(T2ϕ(T1Xtest)) = Ztest (4.8)

The multiple layers of transforms have already been learnt during the train-

ing phase. Therefore during testing, one needs to apply them one after the

other.

62



4.1.2 Jointly learned deep transform learning

The greedy approach is sub-optimal since there is no flow of information

from deeper to shallower layers. In deep learning, this issue is addressed by

back-propagation during the fine-tuning stage for supervised learning prob-

lems. We are proposing an unsupervised representation learning technique;

there are no outputs to back-propagate from. Hence, we need to derive an

algorithm for solving all the layers of transforms via a joint optimization

framework called JDTL. The deep transform learning formulation is given

in equation 4.9.

TNφ...(T2φ(T1X)) = Z (4.9)

The joint optimization problem, we intend to solve is as follows,

min
Ti
′s,Z
||TN(φ...(T2(φ(T1X))))− Z||2F + λ

∑
i

(µ||Ti||2F − log detTi) (4.10)

This will be solved using the variable splitting approach. Using the same

substitutions as in the greedy approach, i.e.,

φ(TN−1...(T2φ(T1X))) = ZN−1

We can express the augmented Lagrangian for equation 6.1 as,

min
Ti
′s,Z,ZN−1

||TNZN−1 − Z||2F + λ
N∑
i=1

(µ||Ti||2F − log detTi)

+µ||(TN−1...(T2(φ(T1X))))− φ−1 (ZN−1) ||2F
(4.11)
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As in the greedy solution, we have used the fact that inverting the activa-

tion function is trivial since it operates element-wise. In the second, step we

substitute, φ(TN−2...(T2φ(T1X))) = ZN−2,this allows expressing equation

4.11 as follows (in terms of augmented lagrangian),

min
Ti
′s,Z,ZN−1,ZN−2

||TNZN−1 − Z||2F + µ||TN−1ZN−2 − φ−1(ZN−1)||2F

+λ∑
i

(µ||Ti||2F − log detTi)

+µ||φ(TN−2(φ...(T2(φ(T1X)))))− ZN−2||2F

(4.12)

Continuing in this fashion, with the final substitution φ(T1X) = Z1,we get

the complete augmented lagrangian formulation,

min
Ti
′s,Z,Zi

′s
||TNZN−1 − Z||2F + λ

N∑
i=1

(µ||Ti||2F − log detTi)

+µ||T1X − φ−1 (Z1) ||2F + µ
N−1∑
i=2
||TiZi−1 − φ−1(Zi)||2F

(4.13)

The alternating direction method of multipliers (ADMM) [53] allows

equation 4.13 to be segregated into the following sub-problems:

S1 : min
TN
||TNZN−1 − Z||2F + λ(||TN ||2F − log detTN)

S2 : min
TN−1

µ||TN−1ZN−2 − φ−1(ZN−1)||2F + λ(||TN−1||2F − log detTN−1)

.

.
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.

SN : min
T1

µ||T1X − φ−1(Z1)||2F + λ(||T1||2F − log detT1)

SN+1 : min
Z
||TNZN−1 − Z||2F ⇒ TNZN−1 = Z

SN+2 :
min
ZN−1
||TNZN−1 − Z||2F + µ||TN−1ZN−2 − φ−1(ZN−1)||2F

≡ min
ZN−1
||TNZN−1 − Z||2F + µ||φ(TN−1ZN−2)− ZN−1||2F

.

.

.

S2N : min
Z1
||T2Z1 − φ−1(Z2)||2F + µ||φ(T1X)− Z1||2F

We see that the sub-problems S1 to SN are all standard transform up-

dates. We already know how to solve them (solving equation 2.21). Solving

for the final/deepest representation is simple; follows from SN+1. The solu-

tion of the intermediate representations is from SN+2 to S2N . All of them

are least-squares problems in their equivalent form; hence has a closed-form

solution: pseudo-inverse. Notice that we have kept the Lagrangian multi-

plier µ constant for all the layers. Moreover, we must give equal importance

to all the layers, and hence, we keep µ = 1 throughout. This is usually
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not the case for generic optimization problems. However, in this work, we

argue that each of the layers has equal importance, µ equaling unity is a

logical choice. This concludes the derivation of the joint optimization algo-

rithm. The testing stage remains the same as the greedy technique. One

only needs to apply one transform after another in the correct order with

the activation functions to generate the representation of a test sample.

4.2 Experiments and results

Unlike most deep learning techniques where all the layers are initialized

randomly, we only have to initialize T1, that too for solving T1X = φ−1(Z1)

from the training data. After solving the transform learning problem, the

obtained value of T1 becomes the initial value for the ensuing iterations.

Once the first layer of coefficient Z1 is learned, it is used to initialize the

second layer of transform by solving T2Z1 = φ−1(Z2). The second layer

representation is used to initialize the transform for the third layer, and so

on.

4.2.1 Classification using jointly learned deep transforms

Classification is carried out on five benchmark deep learning datasets:

MNIST, 20-newsgroup, GTZAN, YaleB and AR faces.

• MNIST dataset [54]

It consists of 28× 28 images of handwritten digits ranging from 0 to
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9. The dataset has 60000 training images and 10000 testing images.

• 20-newsgroup dataset [55]

The 20 newsgroups dataset comprises around 18000 newsgroups posts

on 20 topics split into two subsets: one for training (or development)

and the other one for testing (or for performance evaluation). The

split between the train and test set is based upon messages posted

before and after a specific date. The training set consists of 11269

samples, and the test set contains 7505 examples. We have used 5000

most frequent words for the binary input features. We follow the same

protocol as outlined in [56].

• GTZAN [57]

It is a music genre dataset. It contains 10000 three-second audio clips,

equally distributed among 10 musical genres: blues, classical, country,

disco, hip-hop, pop, jazz, metal, reggae, and rock. Each example in the

set is represented by 592 Mel-phon coefficient (MPC) features. These

are a simplified formulation of the Mel-frequency cepstral coefficients

(MFCCs) that are shown to yield better classification performance.

Since there is no predefined standard split and fewer examples, we

have used 10-fold cross-validation, where each fold consisted of 9000

training examples and 1000 test examples.

• E-YALE-B [58]:

The Extended Yale B database contains 2432 images with 38 subjects
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under 64 illumination conditions. Each image is cropped to 192-by-

168 pixels and downscaled to 48-by-42 pixels. For our experiments, we

shuffled all the samples, took 70% for training and 30% for testing.

• AR-Faces [59]:

This database contains more than 4000 images of 126 different sub-

jects (70 male and 56 female). The images have various facial expres-

sions, the lighting varies, and some of the images are partially occluded

by sunglasses and scarves. For our experiments, we selected 2600 im-

ages of 100 individuals (50 males and 50 females), which is 26 different

images for each subject. The train set contains 2000 images, and 600

images are kept in the test set. Each image has 540 features.

We compare our proposed jointly learned deep transform learning with

three state-of-the-art representation learning techniques; two of them are

supervised: they are class sparse stacked autoencoder (CSSAE) [60] and

class sparse deep belief network (CSDBN) [24] . The third one is unsuper-

vised; it is DDL[61]. For all these techniques, we found that reducing the

number of nodes in each layer to half that of the previous layer yields the

best results consistently. In the CSSAE and the CSDBN formulations one

needs specifying the sparsity parameter; for CSSAE a value of 0.1 yields

the best results and for CSDBN the corresponding value is 0.02. There is

no parameter required for the DDL technique.

Our proposed joint unsupervised DTL uses a simple approach for fixing
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the number of nodes in each layer. It uses a three-layer architecture where

the number of bases are halved in subsequent layers, i.e. for MNIST since

the input of length 784, the number basis in the first layer is 392, in the

second it is 196, and in the third, it is 98. For other datasets, the values

change accordingly. All the techniques compared against can only learn a

representation; they do not have in-built classifiers. Hence, we employ two

off-the-shelf classifiers: KNN and SVM with RBF kernel. The parameters

of SVM have been tuned via grid search for each technique.

Table 4.1: Nearest neighbour classification (accuracy: joint unsupervised DTL)

Dataset CSSAE[60] CSDBN[24] DDL[61] GDTL Proposed
MNIST 97.33 97.05 97.75 97.62 97.91
20-Newsgroup 70.48 70.09 70.48 70.98 72.64
GTGAN 83.31 80.99 83.31 83.31 83.89
YALEB 84.27 84.17 91.28 92.12 95.33
AR Faces 82.14 81.35 93.11 92.91 96.40

Table 4.2: SVM classification (accuracy): joint unsupervised DTL

Dataset CSSAE CSDBN DDL GDTL Proposed
MNIST 98.50 98.53 98.64 98.52 98.71
20-Newsgroup 71.29 71.18 71.97 72.40 73.19
GTGAN 83.42 81.83 84.92 83.68 85.18
YALEB 85.21 84.97 92.66 93.01 97.67
AR Faces 82.22 82.11 93.35 93.76 96.80

The results from CNN for GTZAN is 59.20; for YaleB is 61.18; for AR

faces is 57.9; for MNIST, CNN yields an accuracy of 98.40 with a modified

LeNet architecture; for the 20-newsgroup data, CNN is not applicable.
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Table 4.3: Going deep: joint unsupervised DTL with SVM classifier (accuracy)

Dataset 1-layer 2-layers 3-layers 4-layers
MNIST 96.93 97.05 97.75 97.19
20-Newsgroup 68.98 70.19 70.48 70.12
GTGAN 81.11 82.99 83.31 83.20
YALEB 95.11 97.41 97.67 96.36
AR Faces 94.98 95.87 96.80 96.24

4.2.2 Clustering using jointly learned deep transforms

We compare with three major ones: DDL, SAE[62] and deep sparse sub-

space clustering (DSC)[63]. Experiments were carried out on the COIL20

(object recognition) [64] and Extended YaleB (face recognition) [65] datasets.

The COIL20 database contains 1,440 samples distributed over 20 objects,

where each image is with the size of 32 × 32. The used YaleB consists

of 2,414 samples from 38 individuals, where each image is with a size

of 192 × 168. For both, the datasets dense scale-invariant feature trans-

form (DSIFT) and histogram of oriented gradients (HOG) features were ex-

tracted. They were further reduced by principal component analysis (PCA)

to the dimensionality of 300. Since the ground truths (class labels) for

these datasets are available, clustering accuracy was measured in terms of

normalized mutual information (NMI), ARI and F-score.

The architectures used for comparison have been obtained from the

published studies since they were the best-performing ones according to the

authors. Both SAE and DSC uses a five-layer architecture with 300-200-

150-200-300 nodes; both of them use the tanh activation function. Prior
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study on DDL used a four-tier architecture with 600-300-150-75 nodes; the

activation function is tanh.

For our proposed DTL, a three-layer architecture (tanh activation) with

a 300-150-75 basis in each layer was used. The value of the hyper-parameter

µ is fixed at unity. The value of the parameter λ has been fixed to 0.1

throughout; we checked that the results are stable for values ofλ between

0.05 and 0.5. In DDL, SAE and our proposed technique, after obtaining

the coefficients from the final layer, a simple K-means clustering is used.

We are showing results for DSIFT and HOG features.
Table 4.4: Clustering on COIL-20: joint unsupervised DTL

Method

HOG DSIFT
NMI ARI F-Score NMI ARI F-Score

SAE[62] 89.26 74.25 75.70 77.09 56.59 59.07
DSC[63] 91.19 81.92 82.86 91.19 84.80 85.58
DDL[61] 90.12 80.20 81.30 91.04 84.60 83.54
GDTL 91.51 81.88 82.59 92.36 85.08 84.96
Proposed 93.37 84.24 85.82 94.38 86.92 88.56

Table 4.5: Clustering on YALEB: joint unsupervised DTL

Method

HOG DSIFT
NMI ARI F-Score NMI ARI F-Score

SAE[62] 93.43 82.57 83.07 87.54 75.82 76.50
DSC[63] 96.91 90.25 89.46 90.85 83.00 83.45
DDL[61] 96.82 88.97 89.13 90.20 81.83 83.42
GDTL 97.12 90.56 90.48 91.27 82.51 84.66
Proposed 98.93 93.43 92.06 93.26 85.62 85.86
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4.3 Discussion

A new framework for deep learning called deep transform learning has been

proposed recently. The idea is to represent the training data as a non-

linear combination of several layers of transforms. The first work solves

DTL problem greedily. It was a sub-optimal approach since there was

no flow of information from deeper layers to the shallower layers. In the

second work, all the transforms and coefficients are solved simultaneously

in a single optimization problem. It is an unsupervised method, and any

classifier can be used on the learned features to make predictions. Results

are computed on benchmark classification and clustering datasets. The

performance is compared with state-of-art methods. In both cases, the

proposed approach produced significantly better results than the existing

methods.
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Chapter 5

Unsupervised deep transform

learning - inverse problems

This chapter addresses the issue of solving a linear inverse problem. Many

problems in imaging can be generalized to a linear inverse problem, for

example, image denoising, deblurring, reconstruction, inpainting, and im-

age super-resolution. Conventional inversion techniques are transductive;

solving an inverse problem with only some prior knowledge about the so-

lution. The advent of deep learning led the way for inductive (trained)

inversion techniques. The main issue with inductive inversion is that un-

less the unseen signal (to be inverted) is similar to the training data, the

learned model fails to generalize rendering poor inversion results. A recent

study on DDL has shown how it can combine the best of both worlds: deep

learning with transductive inversion. In this chapter, we show how the anal-

ysis counterpart of DL, called transform learning, can be extended deeper

for transductive inversion. First, a brief literature review is described in
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section 5.1, followed by the proposed methodology in section 5.2. Then

section 5.3 presents the experiments and results. Experiments have been

carried out on deblurring and reconstruction.

5.1 Literature review

Many problems in machine learning and signal processing such as unmix-

ing, regression, denoising, reconstruction, source separation, etc. solve the

linear inverse problem. Mathematically it is represented as follows,

y = Ax (5.1)

Where y is the observation, A is the linear system of equations, and x is the

unknown. Problems differ in the nature of A. For example, in denoising,

A is an identity, for regression, it is the system of explanatory variables,

and for magnetic resonance imaging (MRI) reconstruction, it is a Fourier

operator. In most practical scenarios, the linear system is noisy. In machine

learning problems such as regression, the ‘noise′ is the modelling error. In

other problems, such as reconstruction, the noise is usually generated by

the physical process, e.g. thermal noise in MRI. Therefore, a more practical

model of our interest is the noisy version of equation 5.1 given by,

y = Ax+ η (5.2)
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Here η is the noise and its statistical properties are assumed to be known.

The most straightforward approach to solve equation 5.2 is to find a min-

imum variance solution. For the commonly assumed Gaussian noise, this

turns out to be the pseudo-inverse. For other types of noise, the solution is

more sophisticated. In this work, we will assume that the noise is Gaussian.

Later techniques, instead of just solving for the minimum variance solu-

tion, assumed some prior. The simplest prior can be the minimum energy

solution, which reduces to Tikhonov regularization. This is expressed as

follows,

arg min
x
||y − Ax||22 + λ||x||22 (5.3)

More modern approaches assumed the solution to be sparse. This led

to regularization via the l1-norm leading to the following,

arg min
x
||y − Ax||22 + λ||x||1 (5.4)

Perhaps the most famous applications of sparse recovery in machine

learning are least absolute selection and shrinkage operator (LASSO) re-

gression [66] and relevance vector machine [67]. In signal processing, the

field of compressed sensing (CS) [68] started from the idea of sparse re-

covery. In this work, we are mainly interested in signal processing aspects

of linear inverse problems. CS-based techniques became popular in this

domain because a large class of signals can be represented in a sparse fash-

ion in some fixed transform domain (wavelet, DCT, Gabor, etc.). Many
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such transforms are either orthogonal or tight-framed. After incorporating

transform (Ψ) domain sparsity, typically 5.5 is expressed as follows:

arg min
α
||y − AΨTα||22 + λ||α||1 (5.5)

Here α is the sparse representation of the image in Ψ. Usually l1 norm

minimization is used to recover sparse coefficients. This allows expressing

the signal via analysis-synthesis equations. Therefore signal recovery could

be framed as a sparse synthesis prior problem. In this formulation, the

signal is recovered by applying the synthesis equation on the recovered

coefficients. The majority of studies in CS are based on the synthesis

prior formulation. It is theoretically well understood, and there are many

efficient algorithms to solve it. However, in practice, the synthesis prior is

restrictive; it can accommodate only transforms that follow the analysis-

synthesis equations. This precludes many powerful priors such as total

variation in image processing tasks. Therefore, in practice, the co-sparse

analysis prior formulation [69] is known to yield better results. This is

expressed in the following fashion.

arg min
x
||y − Ax||22 + λ||Ψx||1 (5.6)

In CS, the quality of reconstruction is directly proportional to the sparsity

of the signal in the transform domain; sparser the representation better is

the recovery. The fixed transforms used in CS are mathematically well

defined and generic in nature; they can sparsely represent a wide class
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of signals. But it is well known in signal processing that, to get the best

(sparsest) representation, the basis needs to be adaptively learned from the

signal itself. This is the reason, DL based inversion techniques [70] even-

tually surpassed CS. The formulation for DL based inversion is expressed

as follows,

min
x,D,Z

||y − Ax||22 + λ(
∑
i

||Pix−Dzi||22s.t||zi||0 ≤ τ) (5.7)

The first term is the standard data fidelity term assuming gaussian noise.

The term within the brackets corresponds to DL. Given the patches of the

signal Pix, a dictionary D is learnt such that the corresponding coefficients

zi is sparse. Instead of the standard CS sparsity prior in a fixed transform,

equation 5.7 learns both the basis (D) and the coefficients (zi) adaptively

from the signal. In a very recent work [71], it was shown that instead

of learning only a single layer of the dictionary, better results could be

obtained if multiple layers are learned. The following formulation is given

in [71],
min

x,D1,D2,D3,Z
||y − Ax||22

+λ(∑
i
||Pix−D1φ(D2φ(D3zi))||22 + γ||zi||1)

(5.8)

Here D1, D2, D3 are three layers of dictionaries. The non-linear activa-

tion function φ prevents collapsing of the three dictionaries into a single

one. Note that instead of the l0−norm DDL employs the l1−norm to pro-

mote sparsity. DL is a synthesis formulation; it learns a basis (dictionary)

from the signals such that one can generate the signals from the learnt
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coefficients. Just as there is an analysis version of CS, there is an analysis

version of DL called TL [2, 3]. TL learns an analysis basis (transform)

that operates on the signals to generate the coefficients. The TL based

inversion formulation is as follows,

min
x,T,Z
||y − Ax||22 + λ(∑

i
||TPix− zi||22 + µ(||T ||2F − log detT )

s.t||zi||0 ≤ τ

(5.9)

Instead of applying transform on full image, the small sub-images of 8× 8

are extracted from it. We call the small sub-image a patch of the image.

The term in brackets correspond to TL. Here T operates on the patches

of the image Pix to produce sparse coefficients zi. A is an inversion oper-

ator which is used differently for different problems. For deblurring, A is

convolution operator and for reconstruction, it is projection operator.

A very recent work [72] proposed a sparse autoencoder based denoising

formulation. This is an interesting formulation since autoencoders have

never been used for transductive inversion. The mathematical expression

is as follows,

min
x̂,W,WT

||y − x||22 + λ(∑
i
||Pix−W Tϕ(WPix)||22

+γ||ϕ(WPix)||1)
(5.10)

The term within the brackets corresponds to sparse autoencoder learning.

W and W T are the encoding and decoding weights. The l1−norm on the

features promotes sparsity. Note that the autoencoder based formulation
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has been used for denoising, and not for generic inversion. But it can be

easily extended to solve general inversion problems.

5.2 Proposed formulation

We propose an adaptive deep learning-based approach for solving inverse

problems. It is based on DTL. In standard (shallow) TL, learned basis (T )

is applied over each patch (Pix) of the image to obtain sparse coefficients

(zi).

TPix = zi ∀i (5.11)

The formulation has already been mentioned in equation 5.9 but it is re-

peated here for convenience.

min
x,T,Z
||y − Ax||22 + λ(∑

i
||TPix− zi||22 + µ(||T ||2F − log detT )

s.t||zi||0 ≤ τ (5.12)

We extend from single level to multi-level deep transforms. Therefore each

patch is operated by multiple levels of transforms.

T1φ(T2φ(...φ(TN)))Pix = zi (5.13)

We are showing the derivation for three layers, but the approach we follow

is easily extendable to fewer or more layers. Here φ denotes the activation

function; without which all the transforms will collapse into a single one.
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In this work, we will be using rectified linear unit (ReLU) type activations.

Before going into the formulation, we discuss the reason for the deep ex-

tension. The shallow inversion formulation is linear. It is known in neural

network theory about the function approximation capability of non-linear

networks with ReLU [73]. The approximation capacity improves when one

goes deeper with ReLU [74]. This is the prime reason behind the extension

to deeper layers of transform with ReLU activation. We extend the ba-

sic TL based inversion formulation equation 5.9 to accommodate multiple

layers of transforms. Mathematically this is expressed as follows,

min
x,T1,T2,T3,Z

||y − Ax||22 + λ(∑
i
||T3T2T1Pix− z||2F

+µ
3∑
j=1

(||Ti||2F − log detTi) + γ||zi||1)
(5.14)

Z is formed by stacking the z′is as columns. Also, the coefficients in equa-

tion 5.14 after application of each layer of transform should be non-negative

to impose ReLU activation. This means that

T1Pix > 0

and

T2T1Pix > 0

PiX is the ith patch of the image X. T1 is the transform being applied

on this patch and T1Pix > 0 suggests ReLU activation. To solve equation

5.14 we resort to the variable splitting technique [15]. We introduce two
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sets of proxy variables

wi = T1Pix

and

hi = T2T1Pix

This leads to the following augmented lagrangian (AL) formulation.

min
x,T1,T2,T3,H,W,Z

||y − Ax||22 + µ
3∑
j=1

(||Ti||2F − log detTi) + γ||zi||1)

+λ(∑
i
||T3hi − zi||2F + ||T2wi − hi||2F + ||T1Pix− wi||2F )

(5.15)

H and W are formed by stacking the hi′s and wi
′s as columns. In this

formulation equation 5.15 the proxy variables wi and hi need to be greater

than 0. Ideally we would require to have two multiplicative hyper-parameters

corresponding to the two newly introduced terms ||T2wi − hi||2Fand ||T1Pix−

wi||2F . However, we argue that since these two terms actually correspond

to two intermediate layers of deep transform learning, there is no reason to

weigh them differently. Hence we keep the multiplicative hyper-parameter

to be unity. We employ the ADMM [75] to solve equation 5.15. Basically,

we update each of the variables as sub-problems:

S1 : min
T1

∑
i
||T1Pix− wi||2F + µ(||T1||2F − log detT1)

S2 : min
T2

∑
i
||T2wi − hi||2F + µ(||T2||2F − log detT2)
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S3 : min
T3

∑
i
||T3hi − zi||2F + µ(||T3||2F − log detT3)

S4 : min
x
||y − Ax||22 + λ

∑
i
||T1Pix− wi||2F

S5 : min
hi
||T3hi − zi||2F + ||T2wi − hi||2F∀i

S6 : min
wi
||T2wi − hi||2F + ||T1Pix− wi||2F∀i

S7 : min
z
||T3hi − zi||2F + γ||zi||1∀i

All the sub-problems have closed-form solutions. S1 to S3 are standard

transform updates. S4 to S6 are least-square problems that have a closed-

form solution in the form of pseudo-inverse. However, here we solve it

using a conjugate gradient since A may not always be available as an ex-

plicit matrix. S7 is a sparse coefficient update. It must be noted that

for the updates of S4 and S5, one must need to ensure that the solution

is non-negative; this is easily enforced by putting all the negative values

of hi and wi as zeroes after the pseudo-inverse solution. The problem is

non-smooth and non-convex. There is recent work that shows the conver-

gence of ADMM (to local minima) for such class of problems [76] especially

when each of the sub-problems has a closed-form update. In practice, we

stop the iterations when the objective function does not change much over
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consequent iterations. The computational complexity of each iteration is

mainly dictated by the transform updates. Since they require computing

singular value decompositions, their complexity is O(n3). The complexity

for solving the least square problems is O(n2) by the conjugate gradient.

The last sub-problem (sparse update) costs O(n).

5.3 Experiments and results

5.3.1 Deblurring

Blur is a common image degradation. Blurring is, at least locally, a lin-

ear operation resulting from the convolution of a sharp image with a filter.

When the support of the blur kernel is small compared to the patch size,

one can assume a linear relationship between the blurry and sharp patches.

Thus, a simple approach to the deblurring problem consists of learning

how to invert this linear transform. The formulation for deblurring can be

formulated as 5.12, considering A as a blur kernel which is block circulant.

For comparison we have used some of the latest techniques in image deblur-

ring: GBD [77], RCSR [78] and DeblurGAN [79]. Note that the first two

are transductive approaches, while the last one is an inductive approach.

For comparative denoising performance, we have followed the protocol out-

lined in [11]. The training image set consists of 91 images for all the

problems. The testing dataset is comprised of Set5 and Set14 composed of

5 and 14 images. Note that only [79] requires training; the others do not
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have a training phase since they are transductive in nature. The images

were synthetically blurred using known motion blur kernel. Our proposed

approach requires the specification of three parameters: λ, µ and γ. These

parameters have been tuned on separate validation images (not used in the

experiments). The values obtained are λ = .2,µ = .1 and γ = .05. We

have used a three-layer network for the deblurring experiments. We also

tried going deeper, but the results deteriorated owing to over-fitting. The

number of transform basis used in each layer are 256-128-64. Overlapping

patches of size 32 × 32 are used here. The comparative results are shown

in the following table. The metrics used here are PSNR and SSIM.
Table 5.1: Comparative deblurring performance: PSNR

Images

Blurry RCSR[78] GBD [77] DeblurGAN[79] Proposed
SET-14

Baboon 20.29 20.21 21.30 23.54 23.91
Barbara 23.91 22.86 24.13 26.49 26.96
Bridge 21.06 20.93 22.97 24.51 25.05
Coastguard 22.25 22.19 23.83 25.70 25.70
Comic 18.59 18.41 20.44 22.26 22.28
Face 28.02 27.79 29.53 31.07 31.65
Flower 21.43 21.25 23.74 25.21 25.73
Foreman 23.56 23.10 26.53 26.98 27.40
Lena 26.62 26.36 28.81 30.22 30.65
Man 22.58 22.39 24.28 26.04 26.49
Monarch 21.83 21.66 24.80 25.39 25.91
Pepper 26.10 25.70 28.44 29.42 29.96
Ppt3 18.97 18.69 21.49 23.00 23.00
Zebra 19.61 19.40 22.52 23.45 23.45

SET-5
Baby 27.17 26.71 29.58 31.06 31.69
Bird 25.13 24.69 28.01 29.06 29.63
Butterfly 16.32 16.12 19.51 20.04 20.88
Head 28.09 27.82 29.60 31.77 31.43
Woman 22.32 21.98 25.36 26.80 27.24

The results in table 5.1 and table 5.2 show that our proposed method

yields the best aggregate performance. It is better than other transductive
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Table 5.2: Comparative deblurring performance: SSIM

Images

Blurry RCSR[78] GBD [77] DeblurGAN[79] Proposed
SET-14

Baboon 0.37 0.37 0.49 0.73 0.76
Barbara 0.67 0.64 0.70 0.82 0.85
Bridge 0.44 0.44 0.59 0.75 0.76
Coastguard 0.38 0.38 0.52 0.73 0.73
Comic 0.45 0.44 0.60 0.70 0.74
Face 0.66 0.65 0.72 0.82 0.87
Flower 0.60 0.59 0.70 0.73 0.79
Foreman 0.72 0.70 0.78 0.80 0.85
Lena 0.76 0.75 0.80 0.83 0.87
Man 0.58 0.56 0.66 0.68 0.78
Monarch 0.77 0.76 0.82 0.84 0.86
Pepper 0.75 0.73 0.79 0.80 0.84
Ppt3 0.72 0.70 0.77 0.78 0.78
Zebra 0.48 0.47 0.67 0.74 0.77

SET-5
Baby 0.78 0.76 0.85 0.86 0.89
Bird 0.76 0.74 0.83 0.84 0.85
Butterfly 0.48 0.47 0.62 0.63 0.65
Head 0.66 0.65 0.72 0.84 0.84
Woman 0.73 0.71 0.80 0.80 0.82

Figure 5.1: Man Left to Right: original, blurred image,RCSR, GBD, DeblurGAN and proposed

Table 5.3: Run-time comparison

Method Time in sec
RCSR[78] 301
GBD [77] 31
DeblurGAN[79] 1
Proposed 2 layer 125
Proposed 3 layer 216
Proposed 4 layer 399

techniques like RCSR and GBD. Ours is also better than state-of-the-art

learning-based technique DeblurGAN; on an average, the improvement is

over .5dB of PSNR and .2 SSIM. For qualitative evaluation, we show
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one of the images in figure 5.1. Next, we show the run-times of different

algorithms. Experiments were run on a 64 bit Windows 10 PC running

on i7 @ 3.1 GHz with 16 GB of RAM. The transductive techniques were

run on MatlabTM R2015a, and the inductive technique was run on python.

We show the average (per image) run-time from the different techniques in

table 5.3.

The results show that DeblurGAN is the fastest; this is obvious since

it has a long training time but very fast operational time with only a few

matrix products. The RCSR is the most time consuming (however we

were able to achieve faster speed than reported in [78] possibly owing to a

better environment). Of the transductive techniques, GBD is the fastest.

Our method is much slower than GBD; moreover, as we go deeper, the run-

time increases because of the requirement of solving more sub-problems.

5.3.2 Reconstruction

We address the problem of dynamic MRI reconstruction. Transforms for

different patches are trained; each patch can be sparsely represented by the

corresponding transform. Then, obtain the samples by a sensing projection

matrix which is incoherent with transform. Finally, solve an optimization

problem to reconstruct the image.

Experiments are conducted on two publicly available datasets. The two

sequences will be called the cardiac perfusion sequence 1 and 2. The data

was collected on a 3T Siemens scanner. In this work, we simulated a ra-
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dial sampling with 24 lines that were acquired for each time frame; this

corresponds to an under-sampling ratio of 0.21. The full resolution of the

dynamic MR images is 128 × 128. About 6.7 samples were collected per

second. The scanner parameters for the radial acquisition were transmis-

sion rate = 2.5-3.0 msec, TE = 1.1 msec, flip angle = 12◦ and slice thickness

= 6 mm. The reconstructed pixel size varied between 1.8mm2 and 2.5mm2.

Each image was acquired in a ∼ 62-msec read-out, with the radial field of

view (FOV) ranging from 230 to 320 mm.

We have compared our method with a few recent reconstruction tech-

niques. The first one is based on a LASSI [80]. The second one is a KLR

[81]. Both are transductive approaches. The last one is an inductive deep

learning-based approach that combines dynamic modelling via recurrent

neural networks with spatial modelling via a CNN; this is called CRN [82].

As before, for our proposed method, we tuned the parameters using a grid

search on a separate dynamic MRI data not used here. The obtained para-

metric values are: λ = .2, µ = .5 and γ = .2. 3D patches of size 16 × 16

× 4 were used. We obtained the best results for four layers; the number

of basis elements in each layer is 256-128-128-64. The experimental results

are shown in table 5.4. MRI reconstruction quality is usually measured

by NMSE. We use the same metric. From the numerical results, we find

that our method yields the best results. It is much better than the learned

technique CRN. The other transductive techniques, LASSI, and KLR are

much worse.
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Figure 5.2: Reconstructed image. Top: cardiac perfusion 1; Bottom: cardiac perfusion 2. Left to right:
ground-truth, LASSI, KLR, CRN and proposed

The numerical results do not give the complete picture for MRI recon-

struction. Therefore it is customary to show reconstructed and difference

(between ground-truth and original) images. We will only show the re-

sults with four layers from our proposed deep transform learning because

it yields the best results.
Table 5.4: Reconstruction performance in terms of NMSE

Method LASSI[80] KLR[81] CRN[82] DTL 2-layer DTL 3-layer DTL 4-layer DTL 5-layer
Cardiac 1 0.0586 0.0412 0.0356 0.0408 0.0219 0.0184 0.0357
Cardiac 2 0.0474 0.0401 0.0312 0.0400 0.0202 0.0149 0.0286

One frame each from the two reconstructed sequences are shown in

figure 5.2. One can see that even though LASSI shows poor NMSE, its

reconstruction quality is actually at par with KLR and CRN; LASSI shows

lot of reconstruction artifacts but is able to preserve the edges. KLR and

CRN on the other hand overtly smooths the tissue boundaries. Our pro-

posed technique preserves the tissue boundaries with minimal artifacts.
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Figure 5.3: Difference image. Top: cardiac perfusion 1; Bottom: cardiac perfusion 2. Left to right: LASSI,
KLR, CRN and proposed

The difference images are shown in figure 5.3. These are obtained by tak-

ing the absolute difference between the fully sampled ground-truth and the

reconstructed images. The thus obtained difference images are contrast-

enhanced uniformly for visual clarity. From these difference images, we

can see that LASSI indeed considerable reconstruction artefacts; these are

much less pronounced in KLR. CRN improves over KLR, but our method

yields the best reconstruction; the artefacts are negligible.

5.4 Discussion

This is the first work that shows that proposes a generic inversion approach

based on deep transform learning. In particular, we have addressed two

problems in this chapter: deblurring and MRI reconstruction. For both
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problems, we have compared with the state-of-the-art in each area. We

improve upon the rest by a considerable margin for both problems. In

recent times, there are a plethora of studies proposing deep learning-based

inductive solutions to inversion problems. The main criticism against this

class of approach is that it does not take into account the inversion model

[83]. There are a few recent studies like [84] that introduce deep learning

as a prior in the inversion process; such approaches are likely to be more

consistent in terms of quality and reproducibility. Our work is a step in

this direction.

90



Chapter 6

Supervised deep transform learning

In the previous chapters, We have discussed DTL in an unsupervised fash-

ion; which needed a third party classifier. The unsupervised DTL based

formulations are optimal for solving problems like denoising, reconstruc-

tion and impainting but it may not lead to optimal solution in classifica-

tion tasks. In such tasks the goal is to have the transforms and coefficients

with high discriminative capabilities. This motivates to learn DTL in a

supervised framework that can classify directly without any need of an ex-

ternal classifier. The basic idea in label consistency is to learn a linear map

that projects the sparse features into the target variables as discussed in

Chapter 2. The formulation can be generalized to perform both single label

and multi-label classification. In this chapter, a deeper version of LCTL is

proposed in section 6.1. Experiments are performed on benchmark single

label and multi label classification problems. The proposed algorithm is

applied on a practical application of non intrusive load monitoring (NILM)

in section 6.2.
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6.1 Proposed formulation

In a binary classification problem, each sample belongs to only one output

class whereas, in multi-label classification, a single sample may belong to

more than one output class. NILM is a multi-label classification problem

since at a given point of time; it is likely that multiple appliances are

running. The proposed approach has been used to predict appliance states

at a particular time instance.

In this work, we extend DTL to its supervised version with multi-label

consistency terms. We solve the problem in an optimal fashion using the

variable splitting augmented lagrangian approach followed by the ADMM.

Basically, we learn a linear map such that the coefficients from the final level

maps to the multi-label targets. The complete formulation is as follows,

The formulation for DTL is given by

min
Ti
′s,Z
||TN(φ...(T2(φ(T1X))))− Z||2F + λ

∑
i

(µ||Ti||2F − log detTi) (6.1)

We add a label consistency term to the formulation equation 6.1 to

incorporate supervision. In LCDL [85], a penalty term is added that

minimizes the error between the mappings of the learned representations

and target binary class labels. For shallow TL [85], the formulation is

given by:

min
T1,Z,W

‖T1X − Z‖2
F + λ‖Q−WZ‖2

F (6.2)
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Here, the first term is the standard TL term. In the second term, W is

the linear map between the learned representations Z to the target binary

class labels Q. λ is a regularization parameter. In, Q positions of the

corresponding class labels is 1 and rest are 0’s.

In [86] it is shown that the label consistent formulation can be extended

to the multi-label classification problem. In such problems, a single sample

may belong to multiple output classes, which is the case in most standard

classification problems.

In our proposed formulation, we add a label consistency term on top

of the deep transform learning problem and call it label consistent deep

transform learning (LCDTL) 6.1, given by:

minTi′s,Z,W ||TN(φ...(T2(φ(T1X))))− Z||2F + λ||Q− φ(WZ)||2F

+λ∑
i

(µ||Ti||2F − log detTi)
(6.3)

In order to jointly learn all the layers, we use a variable splitting method [87]

to solve DTL problem. For three layers, the formulation becomes:

min
T1,T2,T3,Z,W

||T3φ(T2φ(T1X)))− Z)||2F + λ||Q− φ(WZ)||2F

+ε∑
i

(||Ti||2F − log detTi)
(6.4)

We substitute Z1 = φ(T1X) and Z2 = φ(T2Z1). This leads to following
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AL,

min
T1,T2,T3,Z1,Z2,Z,W

||T3Z2 − Z)||2F + λ||Q− φ(WZ)||2F + ε
∑
i

(||Ti||2F − log detTi)

+µ(||Z2 − φ(T2Z1)||2F + µ||Z1 − φ(T1X)||2F
(6.5)

The multiplicative terms µ′s indicate the relative weight age of each layer.

Since there is no reason to give one layer more importance than others,

we have set all of them as unity. ADMM [53] has been used to solve

equation 6.5. Following the ADMM we can segregate equation 6.5 into

following sub-problems:

S1 :
min
T1
||Z1 − φ(T1X))||2F + ε||T1||2F − log detT1

≡ min
T1
||φ−1(Z1)− T1X)||2F + ε||T1||2F − log detT1

S2 :
min
T2
||Z2 − φ(T2Z1))||2F + ε||T2||2F − log detT2

≡ min
T2
||φ−1(Z2)− T2Z1)||2F + ε||T2||2F − log detT2

S3 : min
T3
||T3Z2 − Z||2F + ε||T3||2F − log detT3

S4 : min
Z
||T3Z2 − Z||2F + λ||Q−WZ||2F

S5 :
min
Z1

µ(||Z2 − φ(T2Z1))||2F + ||Z1 − φ(T1X))||2F )

≡ min
Z1

µ(||φ−1(Z2)− T2Z1)||2F + ||Z1 − φ(T1X))||2F )
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S6 : min
Z2
||T3Z2 − Z||2F + µ(||Z2 − φ(T2Z1))||2F )

S7 : min
W
||Q−WZ||2F

During the training phase, the above sub-problems are solved using alter-

nating minimization. Solving for T ′s is a standard transform update. All

these sub-problems of solving Z ′s are simple least-square problems hav-

ing closed-form solutions in Moore-Penrose pseudo-inverse. The activation

function φ is unitary applied element-wise. Hence, it is trivial to invert.

We have used two stopping criteria for the iterations. The first one is a

limit on the maximum number of iterations. The second one is the local

convergence of the objective function. The testing phase is similar to the

one discussed in section 3.1.5.

6.2 Experiments and results

6.2.1 Single-label classification

To evaluate the performance of proposed method, experiments are per-

formed on benchmark face recognition datasets: AR face [88] and YaleB

face [65]. Brief description of both the datasets is given in 4.2.1. The

proposed architecture is compared against stacked denoising autoencoder

(SDAE)[89], stacked group sparse auto encoder (SGSA)[22], stacked label
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Table 6.1: Classification accuracy on face recongnition

Method AR yaleB
SDAE[89] 37.60 42.81
SGSA[22] 32.50 66.27
SLCA[90] 85.21 86.22
DBN[6] 34.91 43.62
DDBN[91] 38.20 60.34
LCKSVD[92] 87.67 90.80
DDL[93] 42.66 63.35
LCDDL[94] 96.50 94.57
Proposed 1-layer 97.80 98.80
Proposed 2-layer 97.91 98.87
Proposed 3-layer 98.89 98.65
Proposed 4-layer 96.16 97.24

consistent autoencoder (SLCA)[90], DBN[6], discriminative deep belief net-

work (DDBN)[91], label consistent KSVD (LCKSVD)[92], DDL[93] and

label-consistent deep dictionary learning (LCDDL)[94]. For all the deep

techniques, three layers are used and in each layer the number of nodes

are reduced by half from the previous layer. All the techniques apart from

DDL have their in-built classifiers. For DDL, a separate SVM classifier

with radial basis function was used.

For the proposed LCDTL, we show the results from one to four lay-

ers. Here we halve the number of atoms in each subsequent layer. The

classification accuracies are shown in the table 6.1.

6.2.2 Multilabel classification

In the multi-label classification problem, one sample can belong to multiple

classes. In [86] it is shown that label consistent KSVD [85] can be used

for multi-label classification problems. Our work is a deeper extension and
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Figure 6.1: NILM as multi-label classification problem

hence can be used for multi-label classification as discussed in the previous

section. A practical example of multi-label classification can be found in

NILM, as shown in figure 6.1. In NILM, one tries to predict the states of

individual appliances from the aggregated power readings [95].

Ideally, NILM should be able to desegregate the load from only the

smart-meter reading. However, this is a challenging problem (especially

at low sampling rates); in practice, a learning-based paradigm is followed

where the training stage is intrusive, but the testing/operation stage is not.

The building is instrumented during the training stage to gather data, from

which machine learning models are learned. During operation, the sensors

are removed, and the learned models are used to predict the consumption

of each device.

This paradigm is not entirely non-intrusive. The training stage is intru-

sive requiring deployment of multiple sensors. In recent times a multi-label

classification approach provides an entirely non-intrusive alternative. It

does not require any instrumentation; it only requires the recording of the

97



state-of-the-appliance, i.e. whether it is ON or OFF. During the training

stage, given the smart-meter reading and the recorded states of the appli-

ances, a machine learning model learns multi-label classification; here each

appliance is treated as a label - since several appliances can be ON at the

same time, it turns out to be a multi-label classification problem. During

the operational stage, the learned model is used to predict the state of the

appliances given the smart-meter readings. To estimate the actual power

consumption, the state is multiplied by the average power consumption of

the device.

minTi′s,Z,W ||TN(φ...(T2(φ(T1X))))− Z||2F + λ||Q− φ(WZ)||2F

+λ∑
i

(µ||Ti||2F − log detTi)

Here, X is aggregated power meter data, and Q are the targets. Each

target has the same length as the number of the appliance; the appliances

are in order. If an appliance is "ON", the corresponding value is 1 or else

it is 0. The map W projects the coefficients Z to the multi-label target

labels Q.

For simultaneous detection of multiple appliances from smart-meter

measurements via multi-label consistent deep transform learning, We have

used two traditional techniques as benchmarks- random K label set (RAKEL)

[96] and multi-label K-nearest neighbor (MLKNN) [97] for comparison.

Experiments have been carried out on two benchmark datasets: REDD
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[98] and Pecan Street dataset [99]. A brief description of both the datasets

is as follows:

• REDD dataset

The REDD dataset consists of both aggregated and appliance level

power data from six houses at 1Hz. However, we do not make use

of the appliance level consumption data; we only need its state. To

emulate real-world conditions, the samples are averaged over a time

period of 1 minute for our experiments. Four high power-consuming

devices used in our experiments are the dishwasher, kitchen outlet,

lighting, and washer dryer.

• Pecan street dataset

Pecan street dataset consists of a one-minute appliance level and build-

ing level electricity data from 240 houses. For experiments, subsets of

28 houses have been used. For this work, 4 most power-consuming

devices (site meter, air conditioner, electric furnace, and sockets) are

used for experiments. To prepare training and testing data, aggre-

gated and sub-metered data are averaged over a period of 1 minute.

Each training sample contains power consumed by a particular device

in one day while each testing sample contains total power consumed

in one day in a particular house. 80% of the houses are assigned to

the training set and 20% to the test set.
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6.2.3 Evaluation metrics

Metrics used for single label classification cannot be used for multi-label

classification. Prior work [96] proposed to used F1 macro and F1 micro eval-

uation measures. To evaluate the performance, three measures are used:

F1 macro, F1 micro and energy error. Given the number of true positives

(TP ), false positives (FP ), and false negatives (FN) the F1 measure is

define as:

F1 = 2 ∗ TP
2 ∗ TP + FP + FN

(6.6)

F1 macro and F1 micro are the measures derived from F1 score. These

are label based evaluation measures that depend on the averaging method

(macro or micro) used [96]. F1 micro measure is computed by averaging the

F1 scores for each label. Whereas, F1 macro is computed after summing

true positives, false positives and false negatives across all labels.

F1macro = F1
 N∑
i=1

TPi,
N∑
i=1

FPi,
N∑
i=1

FNi

 (6.7)

F1micro = 1
N

N∑
i=1

F1(TPi, FPi, FNi) (6.8)

Here, TPi, FPi and FNi denote the number of true positives, false positive

and false negative for label i. N is the number of labels in the dataset.
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The energy error is defined in [100]. It is defined as:

error =
|
(∑N

i=1Avergae_poweri
)
−
(∑N

i=1Actual_poweri
)
|

(∑N
i=1Actual_poweri)

(6.9)

Here, N is the number of appliances. We compare with MLKNN and

RAKEL as benchmarks which are used in prior studies [101, 102]. These

techniques use thresholded wavelet coefficients as input features.
Table 6.2: Performance evaluation on REDD

Method F1-macro measure F1-micro measure Average energy error
MLKNN[97] 0.5931 0.6034 0.1067
RAKEL[96] 0.5334 0.5749 0.9949
Proposed (one layer) 0.5838 0.5884 0.0983
Proposed (two layers) 0.5857 0.5905 0.0892
Proposed (three layers) 0.5981 0.6001 0.0766
Proposed (four layers) 0.5951 0.5914 0.0827

Table 6.3: Appliance level evaluation on REDD

Device

LCTL(1-layer) LCTL(3-layer) MLKNN[97] RAKEL[96]
ERROR F1-score ERROR F1-score ERROR F1-score ERROR F1-score

Dishwasher 0.0250 0.5353 0.0786 0.5722 0.1250 0.4937 0.9964 0.3413
Kitchen Outlet 0.1492 0.5660 0.0556 0.5731 0.0647 0.6202 0.9952 0.6645
Lighting 0.1141 0.6959 0.1241 0.6768 0.1105 0.7384 0.9943 0.6975
Washer Dryer 0.0250 0.5379 0.0982 0.5702 0.0743 0.4304 0.9964 0.4302

Table 6.4: Performance evaluation on Pecan street

Method F1-macro measure F1-micro measure Average energy error
MLKNN[97] 0.6227 0.6263 0.0989
RAKEL[96] 0.6620 0.6663 0.9995
Proposed (one layer) 0.6079 0.6079 0.0236
Proposed (two layers) 0.6089 0.6082 0.0223
Proposed (three layers) 0.6104 0.6104 0.0115
Proposed (four layers) 0.6087 0.6096 0.0228

In Tables 6.2 and 6.4, the aggregate results over all the houses are shown.
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Table 6.5: Appliance level evaluation on Pecan street

Device

LCTL(1-layer) LCTL(3-layer) MLKNN[97] RAKEL[96]
ERROR F1-score ERROR F1-score ERROR F1-score ERROR F1-score

Site Meter 0.0239 0.8299 0.0113 0.8404 0.0696 0.8096 0.9995 0.7072
Air Conditioner 0.0176 0.5274 0.0125 0.5286 0.1381 0.5663 0.9995 0.5841
Electric Furnace 0.0194 0.5101 0.0059 0.5135 0.0899 0.5165 0.9995 0.6568
Socket 0.0302 0.5643 0.0149 0.5589 0.2696 0.5983 0.9995 0.7071

It shows that for the REDD dataset, we do better than most others, how-

ever for the Pecan Street dataset, we do not do as well as others in terms

of the F1 scores. However, in terms of the energy error, we do much bet-

ter. In practice, this is the error that is essential for NILM problems. We

observe that our proposed deep methods significantly outperform all other

shallow and deep techniques both in terms of F1-score as well as energy er-

ror. The other observation is that, once we go deeper, the results improve

from layers 1 to 3; but when we go even deeper, the problem of over-fitting

arises, and the results deteriorate. Of the pre-existing shallow techniques,

RAKEL performs decently in terms of F1-score, but is very poor in terms

of energy error; MLKNN yields balanced results.

In Tables 6.3 and 6.5, we show the performances at the appliance level.

We have demonstrated results only for layer three since it yields the best

results. We see that the conclusions remain the same. We generate the

best results in terms of all metrics. RAKEL yields by far the worst results.
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6.3 Discussion

In this chapter, we propose a supervised formulation for deep transform

learning called LCDTL. This work proposes a joint approach to learn all

the transforms simultaneously as a single optimization problem. Super-

vision is incorporated by adding a label consistency term on top of the

unsupervised formulation. It is shown that the formulation can be gen-

eralized to perform multi-label classification without needing an external

classifier. The comparison has been performed on state-of-art techniques.

The proposed method is applied to a practical application of NILM. It

outperforms the existing methods.
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Chapter 7

Deep transformed subspace

clustering

In this chapter, we propose to incorporate subspace clustering into the TL

formulation. The core idea is to perform the clustering task in a trans-

formed domain instead of processing the raw samples directly. The trans-

form analysis step and the clustering are not done piecemeal but are per-

formed jointly through the formulation of a coupled minimization problem.

Subspace clustering assumes that the data is separable into separate sub-

spaces; this assumption may not always hold. For such cases, we believe

that, even if the raw data is not separable into subspaces, one can learn a

deep representation such that the learned representation is separable into

subspaces. To achieve the intended goal, we embed subspace clustering

techniques (locally linear manifold clustering (LLMC), Sparse subspace

clustering (SSC) and low-rank representation (LRR)) into DTL. The en-

tire formulation is jointly learned; giving rise to a new class of methods
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called deeply transformed subspace clustering (DTSC). The introduction

and motivation for the problem are given in section 7.1. In section 7.2

literature review is discussed. Section 7.3 presents the proposed algorithm

of deeply transformed subspace clustering (DTSC). The experimental ef-

fectiveness is demonstrated on two different image databases in section

7.4.

7.1 Introduction

The problem of clustering is well known. It studies how signals are natu-

rally grouped together. One of the best-known applications of clustering is

image segmentation, where there is no labelled data available, and one must

distinguish between the background and foreground. Perhaps the simplest

and most widely used clustering technique is the K-means [103]. It groups

the samples such that the total distance of the data points within the clus-

ter is minimized. The problem is NP-hard and hence is solved greedily.

One of the limitations of K-means is that it operates on the raw data and

hence fails to capture non-linear relationships. This can be simply fixed

by resorting to the kernel K-means [104], where the standard euclidean

distance between the samples typically used in K-means is replaced by a

kernelized version of it. Spectral clustering [104], [105] extends the kernel

K-means strategy by replacing the kernelized data matrix by a so-called

affinity matrix. This allows generalizing the kernel metric to any similarity
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measure. Subspace clustering techniques [106] is a particular class of spec-

tral clustering approach which assumes that the samples from the same

cluster lie in the same subspace. In practice, it requires to express each

data point as a linear combination of the other data points. The associ-

ated linear weights then serve as inputs for creating the affinity matrix. In

the past, it has been shown [107] that instead of applying subspace clus-

tering on the raw data, a projection space can be learned such that the

clustering is carried out in the projected domain as shown in figure 7.1.

For instance, in [107], a tight-frame operator was learned from the data

along with the subspace clustering formulation. In this work, we propose to

adopt a similar concept as in [107], which is to perform subspace clustering

in a transformed space as shown in figure 7.2, with the aim to obtain clus-

ters with more useful features thanks to the transform step. Indeed, raw

data have many irrelevant dimensions that could mask existing clusters in

noisy data. Transform learning is thus expected to help in removing irrel-

evant and redundant dimensions of high-dimensional data. For improved

versatility, we propose to replace the tight-frame transform from [107] by a

more general linear transform operator, as it was done in [2]. A subspace

clustering strategy based on LLMC is then incorporated in our transform

learning framework, and the ensuing estimation problem is solved jointly

by means of an alternating minimization algorithm.
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Figure 7.1: Illustration of the subspace clustering framework based on sparse and low-rank representation
approaches for building the affinity matrix[1]

Figure 7.2: Illustration of the transformed subspace clustering framework based on sparse and low-rank
representation approaches for building the affinity matrix
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7.2 Literature review

Subspace clustering[108] is an extension to the basic clustering technique

which clusters high dimensional data that lie in union of several low-dimensional

subspaces. Let {Sl}nL=1 be an arrangement of n linear subspaces of RD of

dimensions {dl}nL=1. Consider a given collection of N noise- free data points

xi, i ∈ 1...N that lie in the union of the n subspaces. Denote the matrix

containing all the data points as

X
∆= [x1...xN ] = [X1...Xn]Γ

where Xl ∈ RD×Nl is a rank-dl matrix of the Nl > dl points that lie in Sl

and Γ ∈ RN×N is an unknown permutation matrix. Subspace clustering

techniques such as LLMC [109], SSC [108] and LRR [110] express the

samples as a linear combination of other samples. It tries to find clusters

in different subspaces of the same dataset. Each data point is expressed as

a linear combination of the other data points. This is expressed as,

xi = Xicci, ∀i ∈ 1 . . . N

Here above, for every , i ∈ Rm denotes the ith sample, Xic ∈ Rm×n−1

gathers all the other samples column-wise and ci ∈ Rn−1 states for the

corresponding linear weight vector.

In subspace clustering techniques, the general learning formulation is
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expressed as follows,

min
ci∈Rn−1

||xi −Xicci||22 +R(ci)∀i ∈ 1...N (7.1)

Where R is a regularization function, depending on its nature, several

formulations can be obtained. For LLMC, there is no regularization, i.e.

R = 0. For SSC, R is a sparsity promoting penalty, such as l1-norm [108]

or l0 pseudo-norm [111]. For LRR, R is a low-rank penalty, usually taking

the form of a nuclear norm.

Let us define the coefficient matrix

C = [ζ1|ζ2|...|ζn] ∈ Rn×n (7.2)

where, for every i ∈ 1 . . . N ζi ∈ Rn, is a vector with the ith entry equal

to 0, and the remaining n − 1 entries equal to ci. Once C is obtained for

all the n samples by resolution of (equation), an affinity matrix A ∈ Rn×n

needs to be computed. Such matrix defines the similarity (inverse distance)

between the samples and hence by applying some kind of cut (e.g., N -Cut),

allows to segment the clusters. Several variants have been proposed for the

definition of the affinity matrix [112]. For example, one option can be:

A = |C|+ |CT | (7.3)

Where |C| defines absolute value of each entry of the matrix C. Another

option, retained in LRR, is to form the affinity matrix 7.1 from the scaled
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left singular values of C. Since C is low rank, its skinny SVD reads C =

USV T . The affinity matrix is generated from scaling the left singular

vectors by the corresponding square rooted singular values, such that For

every i ∈ 1 . . . n and j ∈ 1 . . . n,

Aij = ([U1U
T
1 ]ij)2 (7.4)

where U1 = US1/2 Yet another way to generate the affinity matrix (usually

for LLMC) is by:

A = |C|+ |CT |+ |CTC| (7.5)

Once the affinity matrix is defined (by using any suitable formula), one

needs to segment the clusters. Usually, the spectral clustering algorithm

(normalized-cuts) is used for this purpose.

7.3 Proposed formulation

So far, there has been only a single work that incorporates subspace clus-

tering into a deep learning framework. In [113], they incorporate the sparse

subspace clustering formulation into the features from the deepest layer of

a SAE. We propose a new framework called deeply transformed subspace

clustering 7.2. Mathematically the formulation for DTL is as follows,

T3T2T1X = Z (7.6)
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Although we have not explicitly shown any activation function between the

layers, we will implicitly impose ReLU type activation. We have shown the

formulation for three layer. The generalization to more number of layers

will be straightforward. The optimization problem is posed as:

min
Ti,Z
||T3T2T1X − Z||2F + λ

3∑
i=1

(||Ti||2F − log detTi)

s.t

T1X ≥ 0

T2T1X ≥ 0

(7.7)

Note that we have dropped the sparsity promoting term on the coefficients.

Usually, in deep learning, the dimensionality of the coefficients reduce in

each layer; therefore, the representation is naturally compact. In this work,

our goal is to embed the subspace clustering formulation into the DTL to

jointly learn the representation and clustering. The notion is similar to

prior studies [114] [115] [116], where the goal is to learn a deep subspace

that is conducive to clustering. The difference between our work and the

prior studies lies both in the choice of the clustering technique and the

deep architecture. In subspace clustering, it is assumed that the data

is naturally separated into certain subspaces (a selection of one or more

dimensions). This may not always hold. Here, we are assuming that even

if the original data is not separable into subspaces, by learning a non-

linear representation of it (via DTL), the coefficients will fall into separate
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subspaces. Mathematically our formulation can be expressed as,

min
T3,T2,T1,Z,C

||T3T2T1X − Z||2F + λ
3∑
i=1

(||Ti||2F − log detTi)︸ ︷︷ ︸
Deep_transform

+γ
∑
i

||zi − Zicci||22 +R(C)︸ ︷︷ ︸
subspace_clustering

s.t.

T1X ≥ 0

T2T1X ≥ 0

(7.8)

To solve equation 7.8, we follow the popular variable splitting strategy.

After introducing the proxy variable, the AL is solved via ADMM. In our

case equation 7.8, we introduce two proxy variables

T2T1X = X3

and

T1X = X2

. The AL becomes,

min
T1,T2,T3,X2,X3,Z,C

||T3X3 − Z||2F + µ1||T2X2 −X3||2F + µ2||T1X −X2||2F

+λ
3∑
i=1

(||Ti||2F − log detTi) + γ
∑
i
||zi − Zicci||22 +R(C)

s.t.

X3 ≥ 0, X2 ≥ 0
(7.9)
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In equation 7.9, the hyper-parameters µ1 and µ2 correspond to the repre-

sentation in shallower layers. We argue that there is no reason to prefer

one layer over the other. Therefore we assign µ1 = µ2 = 1. With this slight

simplification, we have:

min
T1,T2,T3,X2,X3,Z,C

||T3X3 − Z||2F + ||T2X2 −X3||2F + ||T1X −X2||2F

+λ
3∑
i=1

(||Ti||2F − log detTi) + γ
∑
i
||zi − Zicci||22 +R(C)

s.t.

X3 ≥ 0, X2 ≥ 0

(7.10)

The problem 7.10 can be solved using ADMM [117]. Each of the variables

is updated separately from the following sub-problems.

• S1 :

min
T1
||T1X −X2||2F + λ(||T1||2F − log detT1)

• S2 :

min
T2
||T2X2 −X3||2F + λ(||T2||2F − log detT2)

• S3 :

min
T3
||T3X3 − Z||2F + λ(||T3||2F − log detT3)

• S4 :

min
X3
||T3X3 − Z||2F + ||T2X2 −X3||2Fs.t.X3 ≥ 0

• S5 :

min
X2
||T2X2 −X3||2F + ||T1X −X2||2Fs.t.X2 ≥ 0
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• S6 :

min
Z
||T3X3 − Z||2F + γ

∑
i

||zi − Zicci||22

• S7 :

min
C

∑
i

||zi − Zicci||22 +R(C)

Sub-problems S1 to S3 are standard transform updates whose closed-form

solution is given in [118]. S4 and S5 are least-square problems with closed-

form updates: one first needs computing the pseudo-inverse followed by

imputing all the negative values to zero. S6 is a simple least-squares prob-

lem. The solution to S7 will depend on the regularization used. With no

regularization (locally linear manifold clustering), it will have a closed-form

update via the pseudo-inverse. With l1−norm regularization S7 will have

to solved via some kind of ISTA such as [119]; this case pertains to SSC.

When the regularizer in S7 is a nuclear norm, one needs to solve it via

singular value shrinkage [120]. This concludes the derivation of the main

algorithm. Once, equation 7.8 is solved, our work proceeds in the same

fashion as standard subspace clustering. Given C, we compute the affinity

matrix using equation 7.5, which is then segmented / clustered by Normal-

ized cut (more sophisticated techniques like optimized cuts [121] can also

be used).
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7.4 Experiments and results

Experiments were carried out on the COIL20 (object recognition) [64] and

Extended YaleB (face recognition) [65] datasets. The COIL20 database

contains 1,440 samples distributed over 20 objects, where each image is

with the size of 32× 32. The used YaleB consists of 2,414 samples from 38

individuals, where each image is with a size of 192×168. For our proposed

method, we do not require any feature extraction technique. However,

when we applied the orthogonal matching pursuit (OMP), DSC, TL-LLMC

and TL-SSC algorithms on the raw data, very poor results were obtained.

We thus chose to feed them with extracted features, based on DSIFT and

HOG, reduced by PCA to the dimensionality of 300. Since the ground

truth (class labels) for both datasets is available, clustering accuracy was

measured in terms of accuracy, NMI, ARI, precision and F-score. The

parameters are selected using the grid search.

Figure 7.3: Example images from Coil-20 dataset

We compare our methods deep transfomed locally linear manifold clus-
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Figure 7.4: Example images from YaleB dataset

tering (DTLLMC) and DTSSC with three deep clustering benchmarks:

DSC [63], deep K-means clustering (DKM) [114] and deep matrix fac-

torization (DMF) [122]. The said studies have been published recently

and have compared with traditional clustering techniques like matrix fac-

torization, spectral clustering, subspace clustering, hierarchical clustering

etc. Therefore, we do not compare with the traditional ones. We follow

the experimental protocol from [113]. The results are shown in table 7.1

(COIL20) and table 7.2(YaleB). Since the last stage of all the clustering al-

gorithms involves K-means, we ran the experiments 100 times and reported

the mean and standard deviations. The parametric settings for the meth-

ods compared against have been taken from the respective papers. For our

proposed technique, we have kept λ = 0.1 and γ = 1. transfomed locally

linear manifold clustering (TLLMC) does not require the specification of

any other parameter. transformed sparse subspace clustering (TSSC) has

τ = 0.1 as the sparsity promoting term and transformed low-rank represen-

tation (TLRR) has τ = 0.01 as the rank deficiency term. The algorithms
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are robust to these parametric values; changes by order of magnitude to

either side do not affect the results statistically. We show the results of

variation in the number of layers in table 7.3 and the results of the joint

versus greedy solution in table 7.4. In the greedy solution, we learn the

deep transform separately and feed the features into subspace clustering.

Since the SSC yields better results than LLMC, we are showing the layer-

wise comparison results and comparison with the greedy framework on SSC

formulation only.
Table 7.1: comparison with benchmarks on COIL 20

Method DSC[63] DKM[114] DMF[122] DTLLMC DTSSC
Accuracy 85.00 88.00 86.00 92.27 99.01
NMI 0.91 0.94 0.92 0.89 0.91
ARI 0.84 0.86 0.85 0.90 0.96
Precision 0.82 0.85 0.84 0.93 0.98
F-Measure 0.85 0.87 0.84 0.93 0.99

Table 7.2: Comparison with benchmarks on Extended Yale B

Method DSC[63] DKM[114] DMF[122] DTLLMC DTSSC
Accuracy 88.00 91.00 89.00 93.13 99.26
NMI 0.90 0.92 0.90 0.92 0.95
ARI 0.83 0.90 0.83 0.91 0.97
Precision 0.79 0.91 0.80 0.94 0.99
F-Measure 0.83 0.90 0.84 0.94 0.97

Table 7.3: Results with number of layers on EYALEB: DTSSC

Method DTSSC-1layer DTSSC-2layers DTSSC-3layers
Accuracy 99.22 99.23 99.26
NMI 0.9448 0.9451 .9476
ARI 0.9656 0.9663 .9666
Precision 0.9887 0.9900 0.9912
F-Measure 0.9567 0.9610 0.9667
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Table 7.4: Comparison of joint vs greedy solution on Coil-20: DTSSC

Method Greedy DTSSC-3layers Proposed DTSSC-3layers
Accuracy 94.17 99.01
NMI 0.7874 0.9087
ARI 0.8115 0.9553
Precision 0.9082 0.9771
F-Measure 0.8576 0.9886

7.5 Discussion

From the results, we see that our proposed methods are considerably bet-

ter (on average) than the rest in terms of every clustering metric. The

main reason behind this to work is using relevant features from high di-

mensional dataset jointly by searching the appropriate cluster in some low-

dimensional subspace of the dataset. The joint problem solving reduces

the chances of masking relevant clusters by noisy features. We find that

the results improve from one to three layers, but once we go beyond three

layers, the results deteriorate. This is because, with more layers the num-

ber of parameters to learn increases; with a limited volume of training data

(as is the case), this leads to over-fitting and subsequent deterioration of

results. Between the joint and greedy formulations, the joint formulation

yields better results. This is expected because this formulation learns the

weights with the goal of clustering. The greedy unsupervised formulation

does not have this advantage.
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Chapter 8

Convolutional transform learning

In this chapter, a new representation learning technique called convolu-

tional transform learning is discussed. In standard transform learning, a

dense basis is learned that analyses the image to generate the representa-

tion from the image. Here, we learn a set of independent convolutional fil-

ters that operate on the images to produce representations (one correspond-

ing to each filter). The significant advantage of our proposed approach is

that it is entirely unsupervised; unlike CNN where labeled images are re-

quired for training. Moreover, it relies on a well-sounded minimization

technique with established convergence guarantees.

The chapter is organized as follows. First a brief introduction of convo-

lutional transform learning is given in section 8.1. The proposed algorithm

is presented in section 8.2. The experiments are performed on standard

datasets against the state-of-the-art solution for each problem. Experi-

ments and results are discussed in section 8.4.
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8.1 Introduction

The convolutional transform learning (CoTL) can be considered as a fully

connected neural network. Usually, a neural network requires the learn-

ing of a lot of parameters (connection weights/transform basis). When

training data is limited, this leads to over-fitting. CNN [123, 124] reduces

the number of connections to be learned drastically by learning only a

few convolutional filters. This automatically leads to improved generaliza-

tion performance. Today the success of CNN has become very pervasive.

However, there are some stark shortcomings in CNN. First, they cannot

be learned without supervision since they are based on backpropagation.

Getting large volumes of labeled data is a challenge in many application

fields, e.g. medical imaging and remote sensing. Secondly, there is no

guarantee in CNN that the filters learned will be mutually different; CNN

just initializes them randomly and depends on the non-convergence of the

backpropagation algorithm to maintain the mutual difference.

In recent times, there has been an increasing amount of works dealing

with CoDL [125, 126, 127]. A brief overview of CoDL is given in section

2.11. However, the field is nascent, and the performance of such techniques

has yet to reach those of CNN. Another issue with the DL formulation is its

synthesis nature; in neural network terms, this would correspond to a feed-

backward neural network. On the other hand, transform learning-based

techniques are interpretable as a feed-forward neural network. Therefore,
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in this work, we propose a convolutional version of TL, expecting improved

performance in terms of analysis metrics.

8.2 Proposed formulation

The concept of the transform model can be easily interpreted as a neural

network architecture in figure 2.9. Rethinking the transform T as connec-

tions from data X to learned features Z, which is a set of different con-

volutional filters. The different colors show different kernels/filters. The

unsupervised learning of filters and coefficients using this model generates

more general, unique and near to orthogonal filters that in turn generates

good features to be used for solving many machine learning problems.

Let us consider a dataset
{
x(m)

}
1≤m≤M withM entries in RN. Our CoTL

formulation relies on the key assumption that matrix T gathers a set of K

kernels t1, . . . , tK with K entries, i.e.

T = [t1 | . . . | tK ] ∈ RK×K . (8.1)

The proposed model then reads:

(∀m ∈ {1, . . . ,M}) X(m)T ≈ Zm. (8.2)

Hereabove,
(
X(m)

)
1≤m≤M ∈ RN×K are Toeplitz matrices associated to
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(x(m))1≤m≤M such that:

(∀m ∈ {1, . . . ,M}) X(m)T =
[
X(m)t1 | . . . | X(m)tK

]
=
[
t1 ∗ x(m) | . . . | tK ∗ x(m)] (8.3)

where ∗ is a discrete convolution operator with suitable padding, and

(∀m ∈ {1, . . . ,M}) Zm =
[
z

(m)
1 | . . . | z(m)

K

]
, (8.4)

contains the coefficients associated to each entry m ∈ {1, . . . ,M} of the

dataset. Let us denote:

Z = [Z>1 | . . . | Z>M ]> ∈ RNM×K . (8.5)

The goal is then to estimate (T, Z) from
{
x(m)

}
1≤m≤M . To this aim, we

propose to solve the following optimization problem generalizing equation

(2.21) to our convolutional learning framework:

min
T∈RK×K ,Z∈RNM×K

F (T, Z) (8.6)

where the objective function F is defined, for every T ∈ RK×K and every
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Z ∈ RNM×K as:

F (T, Z) = 1
2

K∑
k=1

M∑
m=1
‖tk ∗ x(m) − z(m)

k ‖2
2

+
K∑
k=1

M∑
m=1

(
β‖z(K)

k ‖1 + ι[0,+∞[(z(K)
k )

)

+ µ‖T‖2
F − λ log detT (8.7)

= 1
2

M∑
m=1
‖X(m)T − Zm‖2

F + µ‖T‖2
F

− λ log detT + β‖Z‖1 + ι[0,+∞[NM×K(Z). (8.8)

Hereabove, function ι[0,+∞[ denotes the indicator function of the positive

orthant 1, equals to 0 for nonnegative entries, +∞ elsewhere. Moreover,

(λ, µ, β) ∈]0,+∞[3 are regularization parameters.

8.2.1 Optimization algorithm

The resolution of problem equation (8.6) requires an efficient algorithm

for dealing with nonsmooth functions and hard constraints. In the opti-

mization literature, proximal algorithms constitute one of the most effi-

cient approaches to tackle such problems [128, 129, 130]. The key tool

in those methods is the proximity operator [131, 132] of a proper, lower

semi-continuous, convex function ψ : RN 7→]−∞,+∞] defined as:2

(∀z̃ ∈ RN)prozψ(z̃) = arg min
z∈RN

ψ(z) + 1
2||z − z̃||

2. (8.9)

1set of positive real numbers
2See also http://proximity-operator.net/
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Problem equation (8.6) fits nicely into the framework provided by the

alternating proximal algorithm from [130],[133]. For any initialization

T [0] ∈ RK×K and Z [0] ∈ RNM×K , its iterations are as follows:

For i = 0, 1, . . . T
[i+1] = proxγ1F (·,Z [i])

(
T [i]

)
Z [i+1] = proxγ2F (T [i+1],·)

(
Z [i]

)
(8.10)

where γ1 and γ2 are some positive constants. The convergence of sequence

(T (i), Z(i))i∈N to a minimizer of F is guaranteed, as a consequence of the con-

vergence properties of the proximal regularization of Gauss-Seidel method

algorithm 3 established in [130]. In the remaining of this section, we show

that the updates on both variables T and Z have closed-form expressions,

and thus can be computed with high precision in an efficient manner.

8.2.1.1 Update of T

Let i ∈ N. Then, by definition,

T [i+1] = proxγ1F (·,Z [i])
(
T [i]) (8.11)

= argminT∈RK×K
1
2

M∑
m=1
‖X(m)T − Z [i]

m‖2
F

+ µ‖T‖2
F − λ log detT + 1

2γ1
‖T − T [i]‖2

F . (8.12)

3Algorithm 8.10 is a particular case of the proximal regularization of the Gauss-Seidel method algorithm. The
convergence of the latter is established in [120]. Thus, Algorithm 6.10 converges too.
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Using [134], we deduce that:

T [i+1] = 1
2Λ−1/2V

(
Σ + (Σ2 + 2λIK)1/2)U>, (8.13)

with

Λ =
M∑
m=1

(X(m))>X(m) + γ−1
1 IK + 2µIK , (8.14)

the singular value decomposition:

UΣV > =
 M∑
m=1

(Z [i]
m )>X(m) + γ−1

1 T [i]
Λ−1/2, (8.15)

and IK the identity matrix of RK .

8.2.2 Remark for rectangular T :

Let us emphasize that our approach and the above update can easily be

generalized to the case when matrix T is rectangular, that is T ∈ RK1×K2

with not necessarily equality between K1 and K2. Then, the penalization

term on T should be replaced by:

(∀T ∈ RK1×K2) R(T ) =


µ‖T‖2

F − λ
∑K
k=1 log(λk) if T ∈ X++

K ,

+∞ otherwise,
(8.16)

with K = min(K1, K2), (λk)1≤k≤K are the singular values of T and X++
K

indicates the set of matrices T ∈ RK1×K2 with strictly positive singular

values (i.e. T has rank equals to K). The gradient of equation (8.16) on
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its definition domain reads:

(∀T ∈ X++
K ) ∇R(T ) = 2µT − λT †, (8.17)

with (·)† the pseudo-inverse operation (equivalent to inverse, when K1 =

K2 = K). Using Proposition 24.68 from [135], we can determine the new

update for variable T in our algorithm:

Let i ∈ N. Then:

T [i+1] = proxγ1F (·,Z [i])
(
T [i]) (8.18)

= argminT∈RK1×K2
1
2

M∑
m=1
‖X(m)T − Z [i]

m‖2
F + µ‖T‖2

F + λR(T )

+ 1
2γ1
‖T − T [i]‖2

F (8.19)

= 1
2Λ−1UDiag

([
σ1 + (σ2

1 + 2λ)1/2, . . . , σK + (σ2
K + 2λ)1/2, 0, . . . , 0

])
V >

(8.20)

with

Λ>Λ =
M∑
m=1

(X(m))>X(m) + γ−1
1 IK1 + 2µIK1, (8.21)

and the singular value decomposition:

UΣV > =
 M∑
m=1

(Z [i]
m )>X(m) + γ−1

1 T [i]
Λ−1, (8.22)

with U ∈ RK1×K1, V ∈ RK2×K2 orthogonal matrices and

Σ = Diag ([σ1, . . . , σK , 0, . . . , 0]) .
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The impact of log-det term in equation (8.7) is straight-forward. Such

penalty allows ensuring that the kernels are diverse enough to capture

good correlations and hence generate good features. Changing the penalty

parameter associated with the log-det term has an important impact on

the learned kernels. When the kernel size equals the number of its elements

(i.e., square case), then a full rank property is enforced on T , and in the

limit case when µ tends to infinity, the operator T is such that T−1 = 2µ
λ T .

8.2.2.1 Update of Z

Let i ∈ N. Then, using the definition of the proximity operator,

Z [i+1] = proxγ2F (T [i+1],·)
(
Z [i]) (8.23)

= argminZ∈RMN×K
1
2

M∑
m=1
‖X(m)T [i+1] − Zm‖2

F

+ β‖Z‖1 + ι[0,+∞[MN×K(Z) + 1
2γ2
‖Z − Z [i]‖2

F . (8.24)

By relying on the useful properties of the proximity operator listed in [132],

we obtain that, for every m ∈ {1, . . . ,M},

Z [i+1]
m = max

X γ2β
γ2+1

Z [i]
m + γ2Z

(m)T [i+1]

γ2 + 1

 , 0
 4 (8.25)

4max(A,0):We truncate to 0 all negative entries of the matrix A.
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where Xθ denotes the soft thresholding operator with parameter θ ≥ 0, i.e.:

(∀u ∈ R) Xθ(u) =



u+ θ if u < −θ

0 if u ∈ [−θ, θ]

u− θ if u > θ.

(8.26)

Remark:

First, the function in 8.24 is fully separable, i.e. it can be written as a sum

over all the entries of X. So we can resonate for the scalar function:

1
2([XmT i+1]p,q − Zp,q,r)2 + β|Zp,q,r|+ p[0,+∞[(Zp,q,r) + 1

2γ2(Zp,q,r − Z i
p,q,r)2

(8.27)

Where

β|Zp,q,r|+ p[0,+∞[(Zp,q,r)

is the function ’ix’ of table 10.2 in [132]. The quadratic terms can be

treated as in the case ’iv’ of table 10.1 in [132].

8.3 Multi-layer case with a simplified 2D model

Instead of learning only a single layer of convolutional filters, better results

can be obtained if multiple convolutional layers are learned. We consider

three layers deep architecture.
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8.3.1 Problem formulation

Let us now address the generalized case of learning L convolutional trans-

form layers for learning convolutional filters in the deeper network. We

need to introduce novel notations:

T` = [t1,` . . . tK,`] ,∀` ∈ {1, . . . , L} (8.28)

Zm,` = [z(m,`)
1 . . . z

(m,`)
K ] ∈ RN×K ∀m ∈ {1, . . . ,M} ,∀` ∈ {1, . . . , L}

(8.29)

Z` = [Z>1,` . . . Z>M,`]> ∈ RNM×K ∀` ∈ {1, . . . , L} (8.30)

We want to solve:

minimize
(T`)1≤`≤L∈RK×K ,(Z`)1≤`≤L∈RNM×K

F (T1, . . . , TL, Z1, . . . , ZL) (8.31)

with, for all (T`)1≤`≤L ∈ RK×K and (Z`)1≤`≤L ∈ RNM×K ,

F (T, Z) =
L∑
`=1


1
2

M∑
m=1
||Zm,`−1T` − Zm,`||2F + µ||T`||2F

−λ log det(T`) + β||Z`||1 + ι[0,+∞[(Z`)

, (8.32)

where Zm,0 = X(m) and, for every ` ∈ {2, . . . , L}, Zm,`−1 ∈ RN×K such

that

Zm,`−1T` = [Zm,`−1t1,` . . . Zm,`−1tK,`] (8.33)

=
[
t1,` ∗ z(m,`−1)

1 . . . tK,` ∗ z(m,`−1)
K

]
. (8.34)
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8.3.2 Optimization algorithm

Here again, we propose to use an alternating proximal minimization algo-

rithm:

For n = 0, 1, 2, . . .

For ` = 1, 2, . . . , L
T

[i+1]
` = prox

γ1F (T [i+1]
1 ,...,T

[i+1]
`−1 ,·,T [i]

`+1,...,T
[i]
L ,Z

[i+1]
1 ,...,Z

[i+1]
` ,Z

[i]
`+1,...,Z

[i]
L )

(
T

[i]
`

)
Z

[i+1]
` = prox

γ2F (T [i+1]
1 ,...,T

[i+1]
`−1 ,T

[i+1]
` ,T

[i]
`+1,...,T

[i]
L ,Z

[i+1]
1 ,...,Z

[i+1]
`−1 ,·,Z [i]

`+1,...,Z
[i]
L )

(
Z

[i]
`

)
(8.35)

with (T [0]
` )1≤`≤L ∈ RK×K , (Z [0]

` )1≤`≤L ∈ RNM×K and γ1 and γ2 some positive

constants.

8.3.2.1 Update of T

Let i ∈ N and ` ∈ {1, . . . , L}. Then:

T
[i+1]
` = prox

γ1F (T [i+1]
1 ,...,T

[i+1]
`−1 ,·,T [i]

`+1,...,T
[i]
L ,Z

[i+1]
1 ,...,Z

[i+1]
` ,Z

[i]
`+1,...,Z

[i]
L )

(
T

[i]
`

)
(8.36)

= argminT`∈RK×K
1
2

M∑
m=1
‖Z [i+1]

m,`−1T` − Z
[i]
m,`‖2

F + µ‖T`‖2
F − λ log det(T`)

+ 1
2γ1
‖T` − T [i]

` ‖2
F (8.37)

= 1
2Λ−1V

(
Σ + (Σ2 + 2λIK)1/2)U> (8.38)

with

Λ>Λ =
M∑
m=1

(Z [i+1]
m,`−1)>(Z [i+1]

m,`−1) + γ−1
1 IK + 2µIK , (8.39)
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and

UΣV > =
 M∑
m=1

(Z [i]
m,`)>(Z [i+1]

m,`−1) + γ−1
1 T

[i]
`

Λ−1. (8.40)

8.3.2.2 Update of Z

Let i ∈ N and ` ∈ {2, . . . , L− 1}. Then:

Z
[i+1]
` = prox

γ2F (T [i+1]
1 ,...,T

[i+1]
`−1 ,T

[i+1]
` ,T

[i]
`+1,...,T

[i]
L ,Z

[i+1]
1 ,...,Z

[i+1]
`−1 ,·,Z [i]

`+1,...,Z
[i]
L )

(
Z

[i]
`

)

(8.41)

= argminZ`∈RMN×K
1
2

M∑
m=1
‖Z [i+1]

m,`−1T
[i+1]
` − Zm,`‖2

F + 1
2

M∑
m=1
‖Zm,`T [i+1]

`+1 − Z
[i]
m,`+1‖2

F

+ β‖X`‖1 + ι[0,+∞[(Z`) + 1
2γ2
‖Z` − Z [i]

` ‖2
F (8.42)

When ` = 1, since Zm,0 = X(m), the minimization problem reads :

Z
[i+1]
1 = prox

γ2F (T [i+1]
1 ,T

[i]
2 ,...,T

[i]
L ,·,Z

[i]
2 ,...,Z

[i]
L )

(
Z

[i]
1

)
(8.43)

= argminZ1∈RMN×K
1
2

M∑
m=1
‖X(m)T

i+1]
1 − Zm,1‖2

F + 1
2

M∑
m=1
‖Zm,1T [i]

2 − Z
[i]
m,2‖2

F

+ β‖Z1‖1 + ι[0,+∞[(Z1) + 1
2γ2
‖Z1 − Z [i]

1 ‖2
F (8.44)

When ` = L, we have :

Z
[i+1]
L = prox

γ2F (T [i+1]
1 ,...,T

[i+1]
L ,Z

[i+1]
1 ,...,Z

[i+1]
L−1 ,·)

(
Z

[i]
L

)
(8.45)

= argminZL∈RMN×K
1
2

M∑
m=1
‖Z [i+1]

m,L−1T
[i+1]
L − Zm,L‖2

F

+ β‖ZL‖1 + ι[0,+∞[(ZL) + 1
2γ2
‖ZL − Z [i]

L ‖2
F (8.46)
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8.4 Experiments and results

To assess the performance of the proposed approach, we considered the

following datasets of small-to-medium size, on which we performed feature

extraction. The images very small images which are downsampled from

original full-size images.

• YALE [136]: The Yale dataset contains 165 images of 15 individuals,

downscaled to 32-by-32 pixels. There are 11 images per subject, one

per different facial expression or configuration. For our experiments,

we shuffled all the samples and took 70% for training and 30% for

testing. Moreover, we generated different train/test splits YALE-2,. . . ,

YALE-8. In a YALE-p dataset, p images per subject are kept in the

train set, and 11−p images are kept in the test set. So doing, the train

set contains 15p images, and the test set contains 15(11− p) images.

• E-YALE-B [58]: The Extended Yale B database contains 2432 im-

ages with 38 subjects under 64 illumination conditions. Each image is

cropped to 192-by-168 pixels and downscaled to 48-by-42 pixels. For

our experiments, we shuffled all the samples, took 70% for training

and 30% for testing.

• AR-Face [59]: This database contains more than 4000 images of 126

different subjects (70 male and 56 female). The images have various

facial expressions, the lighting varies, and some of the images are par-
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tially occluded by sunglasses and scarves. For our experiments, we

selected 2600 images of 100 individuals (50 males and 50 females),

which is 26 different images for each subject. The train set contains

2000 images, and 600 images are kept in the test set. Each image has

540 features.

8.4.1 Classification accuracy

We compared the proposed feature extraction approach CoTL with TL

[137] and DL [70]. Since our method is unsupervised, it is only fair to

compare with other unsupervised representation learning tools. As these

are all unsupervised learning methods, we evaluated their performance by

feeding the extracted features to a supervised classifier and then computing

the classification accuracy. We also performed the classification directly

on raw images (Raw). For the classification task, we used two popular

techniques: KNN and SVM. Our algorithm was ran until convergence

(typically 10 iterations are sufficient), with parameters γ1 = γ2 = 1. For

every tested method, the hyper-parameters were cross-validated.

We found that the proposed method CoTL yields better results than

regular TL for all the considered datasets and classifiers, while being better

than dictionary learning (DL) on all the datasets when using the nearest

neighbour classifier, and on YALE, E-YALE-B, YALE-2, YALE-6, YALE-

7, and YALE-8 when using an SVM classifier. To complete our analysis,

we also compared to a CNN trained on raw images through a standard
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supervised classification procedure. We used a custom CNN composed of

the following layers: Conv[64×3×3]→ ReLU→ Pool[2× 2]→ BNorm→

Conv[128× 3× 3] → ReLU → Pool[2× 2] → BNorm → DO → FC[256]

→ ReLU → FC[classes] → Softmax.

According to the results reported in Table, the proposed CoTL compares

favourably with CNN. This may be related to the fact that CNN are known

to require large training sets in order to achieve breakthrough performance,

whereas the considered datasets are small.

Another important observation is that in most of our experiments on

downsampled data, we have observed that SVM outperforms KNN. Intu-

itively, when we have a limited set of points in many dimensions, SVM

tends to be very good because it should be able to find the linear separa-

tion that should exist. Moreover, SVM is expected to be robust to outliers

since it only uses the most relevant points to find the linear separation (sup-

port vectors). In general, if we have large datasets in a low dimensional

space, then KNN is probably a suitable choice. If we have few points in the

dataset, lying in a high dimensional space, then a linear SVM is perhaps

better.

Our classification accuracy is comparable to the one obtained with CNN.

It should, however, be emphasized that the upvote for the proposed method-

ology is its unsupervised way of learning convolved features in contrast to

CNN, where convolved features are learned in a supervised manner.
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Table 8.1: Classification accuracy on benchmark datasets.

Dataset Raw TL DL CoTL

K
N

N

YALE 58.00 68.00 54.00 70.00
E-YALE-B 71.03 72.28 71.72 84.00
AR-Faces 55.00 53.50 54.50 56.00
YALE-2 43.40 49.63 43.70 51.85
YALE-3 49.40 48.33 47.50 55.83
YALE-4 52.38 50.48 44.76 54.28
YALE-5 51.11 53.33 44.44 54.44
YALE-6 53.33 50.67 50.67 57.33
YALE-7 60.20 61.67 53.33 66.67
YALE-8 63.60 57.78 57.78 71.11

SV
M

YALE 68.00 78.00 80.00 88.00
E-YALE-B 93.24 94.21 95.58 97.38
AR-Faces 87.33 84.33 97.67 88.87
YALE-2 58.52 51.11 58.52 62.22
YALE-3 62.50 60.83 66.67 64.17
YALE-4 60.95 53.33 64.76 64.52
YALE-5 66.67 57.78 68.89 66.67
YALE-6 73.33 61.33 81.33 82.67
YALE-7 80.00 66.67 78.33 83.33
YALE-8 80.00 71.11 80.00 84.44

C
N

N

YALE 84.00 - - -
E-YALE-B 98.60 - - -
AR-Faces 95.50 - - -
YALE-2 62.96 - - -
YALE-3 64.17 - - -
YALE-4 67.60 - - -
YALE-5 74.44 - - -
YALE-6 76.00 - - -
YALE-7 81.67 - - -
YALE-8 82.22 - - -

The learned features by the proposed method are general enough to

be used for other image processing tasks by making small changes in the

formulation.

8.4.2 Computational time

The proposed method is tested on small size images, which are downsam-

pled from the original full-size images. While the DL and TL methods

take one to ten seconds for learning representations, the proposed approach

takes around one minute. The difference in terms of computational time

135



is simply related to the fact that, in the case of TL and DL, the transform

requires a matrix-vector product while in the proposed approach, convolu-

tion and deconvolution operations are needed.

8.4.3 Analysis of the learned kernels

A given number K2 of kernels with K1 = K2
2 coefficients is learned to

represent the dataset ideally. Each kernel tk is convolved with the image x

to generate a different feature vector zk. The intra-kernel diversity is taken

care of by the penalties in the proposed formulation.

The proposed algorithm is capable of learning nontrivial and noniden-

tical kernels, thanks to the regularization on T present in equation (8.6).

In particular, the results reported in table 8.1 were obtained by fixing

K2 = 5, which corresponds to a good trade-off between model accuracy

and complexity.

Since K1 > K2 here, the estimated T is rectangular and over-complete.

The retrieved kernels are distinct from each other, as soon as µ > 0. In

contrast, if we had considered a large number of small size kernels (i.e.,

rectangular case with K1 < K2), T would have been under-complete and

the number of distinct kernels would be equals to the smallest dimension

of T , that is K1; the others being some linear combination of each other.

Note that the initialization of T plays no role in the learning process

since the optimization problem in equation (8.6) is convex.
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Figure 8.1: Kernels in CNN(top) and CTL(bottom)

It can be easily observed from figure 8.1 that there is a close relationship

between CNN and CTL.

8.4.4 Classification accuracy with deep convolutional transform learning

We show that the accuracy of deep transform learning indeed improves

when one goes deeper. Going deep beyond three layers makes performance

degrade as the model tends to overfit for the small training set. To eluci-

date, we have used a simple SVM classifier for deep convolutional transform

learning (DCoTL). The results are shown in Table 8.2 for levels 1, 2, 3 and

4. It has already been shown that a single layer of convolutional transform

learning yields better results than other single layer representation learn-

ing tools, including dictionary learning and transform learning. Therefore
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(a) [M2 = 3]

(b) [M2 = 5]

(c) [M2 = 7]

(d) [M2 = 9]

Figure 8.2: Kernels learned on YALE dataset.
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Table 8.2: Accuracy on SVM with layers

Dataset CoTL DCoTL-2 DCoTL-3 DCoTL-4
YALE 150 × 150 94.00 94.28 96.00 92.21
YALE 32 × 32 88.00 89.11 90.00 87.73
E-YALE-B 97.38 97.00 98.00 94.44
AR-Faces 88.87 92.22 97.67 82.21

it is expected that by going deeper, we will improve upon their deeper

counterparts. We do not repeat those baseline experiments here. We com-

pare our proposed technique with raw features and CoTL (shallow). We

skip comparison with CNN because of its supervised nature, whereas the

proposed technique is unsupervised. We take extracted features from the

proposed deep convolutional transform learning and perform classification

using external classifiers KNN and SVM. The classification accuracy is

shown in table 8.3 and table 8.4.
Table 8.3: Classification accuracy using KNN

Dataset Raw features CoTL DCoTL
YALE 150 × 150 78.00 70.00 80.00
YALE 32 × 32 60.00 58.85 60.00
E-YALE-B 71.03 84.00 85.00
AR-Faces 55.00 56.00 58.00

Table 8.4: Classification accuracy using SVM

Dataset Raw features CoTL DCoTL
YALE 150 × 150 93.00 94.00 96.00
YALE 32 × 32 68.00 88.00 90.00
E-YALE-B 93.24 97.38 98.00
AR-Faces 87.33 88.87 97.67
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8.4.5 Clustering results with deep convolutional transform learning

Then we perform clustering on the extracted features of DCoTL and report

the comparison of ARI in table 8.5. We also report clustering time on

extracted features in table 8.6. The time to cluster extracted features from

the proposed methodology is comparatively less than others.
Table 8.5: Convolutional transformed clustering: ARI

YALEB/Method Raw features DCoTL-2 DCoTL-3
K-means 0.785 0.734 0.788
Random 0.733 0.718 0.738

PCA-based 0.734 0.791 0.777

Table 8.6: Clustering time in sec

YALEB/Method Raw features DCoTL-2 DCoTL-3
K-means 2.28 0.45 0.14
Random 1.95 0.33 0.08

PCA-based 0.36 0.09 0.03

8.5 Discussion

This work proposes a new representation learning technique called convo-

lutional transform learning. Here, we learn a set of independent convolu-

tional filters that operate on the images to produce representations (one

corresponding to each filter). The significant advantage of our proposed

approach is that it is entirely unsupervised; unlike CNN, where labelled

images are required for training. Moreover, it relies on a well-sounded

minimization technique with established convergence guarantees. We have

compared the proposed method with dictionary learning and transform
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learning on standard image classification datasets. Results show that our

approach improves over the rest by a considerable margin.
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Chapter 9

Semi-coupled transform learning

In this chapter, semi-coupled transform learning is proposed. Given train-

ing data in two domains (source and target), it learns a transform in each of

the domains such that the corresponding coefficients are (linearly) mapped

from the source to the target. Since the mapping is in one direction (source

to target) but not the other way round, we call it semi-coupled. Our work

is the analysis equivalent of (semi) coupled dictionary learning. The pro-

posed technique has been applied to two problems: the first being image

super-resolution and the second, cross-lingual document retrieval.

The chapter is organized as follows. The chapter starts with an intro-

duction to semi-coupled transform learning (SCTL) in section 9.1 followed

by section 9.2, which discusses the existing work. The proposed algorithm

is presented in section 9.3. The experiments are performed on standard

datasets against the state-of-the-art solution for each problem. Experi-

ments and results are discussed in section 9.4.
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9.1 Introduction

Figure 9.1: Semi-coupled TL

There are many problems in image processing and computer vision,

which can be recast in the framework for transfer learning. For exam-

ple, consider the example of a single image super-resolution; the objective

is to create a high-resolution image from a low-resolution one. There are

many signal processing (sparsity) based techniques to solve this problem

[138, 139]. However, in recent times, dictionary learning-based approaches

are preferred owing to their improved performance. For each of the domains

(high resolution and low resolution), two dictionaries are learned, such that

the coefficients of low-resolution dictionary can be linearly mapped onto

the high-resolution dictionary [140, 141, 10, 142]. After the training phase,
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when a new low-resolution image is an input, it learns the corresponding co-

efficients from the learned dictionary; the coefficients, in turn, are mapped

to that of the high-resolution version by the learned linear map. From the

thus formed high-resolution coefficients, the corresponding high-resolution

image is synthesized. The transform learning equivalent is shown in figure

9.1. This formulation falls under the purview of CDL. Similar approaches

have been applied to other problems, e.g. photo sketch synthesis [141, 10],

RGB to Depth image matching [143], pose varying face matching [144]

and visible (VIS) to near infra-red (NIR) face matching [144]. In photo

sketch matching the problem is to match a person′s sketch to that of a

digital photo: this is usually used in law enforcement. Similar problems

exist in the other domains as well: e.g. matching between visible image

collected during daylight and that of NIR image collected during the night

[9]. Although one finds most applications of coupled dictionary learning in

vision problems, it has been used in computational linguistics as well [10].

There in the problem is cross-lingual document retrieval. The query is in

one language (source), and the problem is to find the documents from the

other (target) language.
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9.2 Literature review

9.2.1 Coupled dictionary learning

The idea of CDL was proposed in [140, 141, 10, 142, 143, 144]. Let there be

two domains: 1 and 2. X1 andX2 are the training data for the two domains.

CDL trains two dictionaries D1 and D2 (along with their coefficients Z1and

Z2) and linear coupling maps from domain1 to 2: M12 and from 2 to 1:

M21. Mathematically this is expressed as,

min
D1,D2,Z1,Z2,M12,M21

||X1 −D1Z1||2F + ||X2 −D2Z2||2F

+µ(||Z2 −M21Z1||2F + ||Z1 −M12Z2||2F ) + η(||Z1||0 + ||Z2||0)
(9.1)

Here we have abused the notations slightly; the l0-norm is defined on

the vectorized version of the Z ′s. Solving equation 9.1 may apparently be

a daunting task. However, when segregated into separate sub-problems,

they have well-known solutions. During testing, say the signal is avail-

able in domain 1, and the corresponding signal in domain 2 needs to be

generated; such problems can arise in photo sketch synthesis and image

super-resolution. The learned dictionary in domain 1 is used to generate

the coefficients.

min
Ztest1

||X test
1 −D1Z

test
1 ||2F + η||Ztest

1 ||1 (9.2)

The generated coefficients of domain 1 are now transformed to domain 2 by

the learnt linear map: Ẑtest
2 = M21Z

test
1 . For classification problems usually
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a classifier is trained with the coefficients Z1 and Z2. During testing (e.g.

RGB to NIR matching), Ẑtest
2 is run through the classifier for domain 2.

For synthesis problems (e.g. super-resolution), the high resolution image

is synthesized by x̂test2 = D2ẑ
test
2 .

9.3 Proposed formulation

Figure 9.2: Semi-coupled TL: architectural diagram

This work proposes a semi-coupled formulation; we learn a single direc-

tional map (from source to target). Suppose there are domains: 1 and 2.

Say X1 and X2 are the corresponding training data. Semi-coupled analysis

sparse coding learns two transforms T1 and T2 (one for each domain) and

their corresponding features Z1 and Z2 so that the features from one of

the domains can be linearly mapped M into the other as shown in figure

9.2 and its neural network interpretation is given in figure 9.3. For exam-

ple, in photo sketch identification, one needs to find the digital photograph
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from a photo sketch: not the other way round. If there is a need for bi-

directionality, e.g. in RGB and NIR matching, we can always learn two

semi-coupled transforms from one domain to the other as shown in figure

9.1.

Mathematically our formulation is expressed as,

Figure 9.3: Semi-coupled TL: neural network interpretation

min
T1,T2,Z1,Z2,M

||T1X1 − Z1||2F + ||T2X2 − Z2||2F + µ||Z2 −MZ1||2F

+η(||Z1||1 + ||Z2||1) + λ(ε||T1||2F + ε||T2||2F − log detT1 − log detT2)
(9.3)

The alternating minimization approach is used for solving equation 9.4. It

can be segregated into the following sub-problems.

• S1 :

min
T1
||T1X1 − Z1||2F + λ(ε||T1||2F − log detT1)
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• S2 :

min
T2
||T2X2 − Z2||2F + λ(ε||T2||2F − log detT2)

• S3 :
min
Z1
||T1X1 − Z1||2F + µ||Z2 −MZ1||2F + η||Z1||1

≡ min
Z1
||

 T1X1

√
µZ2

−
 I

√
µM

Z1||2F + η||Z1||1

• S4 :
min
Z2
||T2X2 − Z2||2F + µ||Z2 −MZ1||2F + η||Z2||1

≡ min
Z2
||

 T2X2

√
µMZ1

−
 I

√
µI

Z2||2F + η||Z2||1

• S5 :

min
M
||Z2 −MZ1||2F

Sub-problems S1 and S2 are standard transform updates. We already

know how to update them. Sub-problem S3 and S4 are regular updates for

sparse transform coefficients; they just require one step of soft thresholding.

Updating the map is easy since S5 is a simple least square problem. This

concludes the training phase.

Let us now consider fully CTL given as:

min
T1,T2,Z1,Z2,M12,M21

||T1X1 − Z1||2F + ||T2X2 − Z2||2F

+µ||Z2 −M12Z1||2F + ||Z1 −M21Z2||2F

+η(||Z1||1 + ||Z2||1) + λ(ε||T1||2F + ε||T2||2F − log detT1 − log detT2)
(9.4)
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In fully CTL, one would have to learn another linear map from domain

2 to domain 1. As mentioned at the onset, this is not required in most

cases. Even if it is necessary, we can learn another semi-coupled transform

from 2 to 1. But learning a fully coupled transform in a single problem

means one more variable (linear map) to solve. Given the limited training

data, solving more variables/parameters would lead to over-fitting. Hence

we consciously avoid such a formulation. During testing, it can apply to

two kinds of problems. In the first, one can carry out analysis in the

feature domain. For such, the coefficients in domain 2 are used to learn a

classifier. During testing the sample is given in domain 1. From which the

corresponding feature is generated by sparse coding:

ztest1 ← signum(T1x
test
1 ) ·max(0, abs(T1x

test
1 )− µ) (9.5)

From the features of domain 1, the target domain features are generated

by ẑtest2 = Mztest1 . These features are input to the learnt classifier for final

results. There can be a second possibility, where the analysis is carried

out not on the transform features (z-domain), but on the samples itself (x-

domain). In such a case, instead of stopping at ẑtest2 , one needs to synthesize

the corresponding sample. This is done by solving the inverse problem

T2x̂
test
2 = ẑtest2 . Once x̂test2 , one can carry out further analysis in the sample

domain.
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Figure 9.4: Original(left), CDL(mid), proposed(right)

9.4 Experiments and results

9.4.1 Image super-resolution

For image super-resolution, we train on the CIFAR-100 dataset. These are

32 × 32 images (HR: high resolution). Our interest is in 4 (2× 2)-fold

super-resolution. During training, we blur and down-sample the CIFAR

images to 16 × 16 (LR: low resolution). We follow a patch-based technique.

The LR images from the source and the HR the corresponding targets.

From the LR images, we extract 8 × 8 patches and their corresponding

16 × 16 patches from the target HR images. On this, our proposed SCTL

formulation is run. The training is carried out on the 50K training images

of CIFAR-100. The remaining 10K test images are used for validation. The
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tuned parameter values we obtained are λ=0.1, ε=1, µ=0.5 and γ=0.05.
Table 9.1: PSNR for super-resolution

Image name Lena Barbara Pepper Cameraman
Color CDL[145] 30.79 28.21 29.76 27.86

Proposed 33.03 30.28 31.81 30.14
Gray scale CDL[145] 31.27 28.98 30.46 28.70

Proposed 34.55 31.17 32.68 30.85

9.4.2 Cross lingual document retrieval

In this work, we follow the exact evaluation protocol outlined in [146]. We

test all algorithms on the Europarl data set of documents in English and

Spanish, and a set of Wikipedia articles in English and Spanish that con-

tain interlanguage links between them (i.e., articles that the Wikipedia

community have identified as comparable across languages). For the Eu-

roparl data set, we use 52,685 documents as training, 11,933 documents

as a development set, and 18,415 documents as a final test set. Docu-

ments are defined as speeches by a single speaker, as in [147]. For the

Wikipedia set, we use 43,380 training documents, 8,675 development doc-

uments, and 8,675 final test. For both corpora, the terms are extracted by

word breaking all documents, removing the top 50 most frequent phrases

and keeping the next 20,000 most frequent terms. No stemming or folding

is applied. We assess performance by testing each document in English

against all possible documents in Spanish, and vice versa. We measure the

top-1 accuracy (i.e., whether the true comparison is the closest in the test

set), and the mean reciprocal rank (MRR) of the true comparable, and
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report the average performance over the two retrieval directions. Ties are

counted as errors. We have compared our method against oriented princi-

pal component analysis (OPCA) and coupled probabilistic latent semantic

analysis (CPLSA)): two best-performing methods proposed in [146]; and

CDL [145]. The dimensions for the projections are given in the respective

papers. For our problem, λ=0.1, ε=1, µ=1 and η=0.05 are used for both

semi coupled analysis sparse coding and symmetrically coupled analysis

sparse coding. The number of projections used is 300. The final results

are shown in Tables 9.2 and 9.3.

For Wikipedia experiments, we use the unpaired t-test with Bonferroni

correction to determine the smallest set of algorithms that have statisti-

cally significantly better accuracy than the rest. The p-value threshold for

significance is chosen to be 0.05.
Table 9.2: Comparable document retrieval on Europarl

Algorithm Accuracy MRR
OPCA[146] 97.42 0.9846
CPLSA[146] 97.16 0.9782
CDL[145] 98.12 0.9839
Proposed 99.54 0.9896

Table 9.3: Comparable document retrieval on Wikipedia

Algorithm Accuracy MRR
OPCA[146] 72.55 0.7734
CPLSA[146] 45.79 0.5130
CDL[145] 72.79 0.7742
Proposed 78.68 0.8002
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9.5 Discussion

For image super-resolution, we have compared our method with the CDL

formulation [10]. The authors of [10] have compared with other super-

resolution techniques [139, 141] and have shown to supersede them; they

also improve the baseline bicubic interpolation technique. Therefore it is

enough to show that our proposed technique SCTL yields better results

than CDL [10]. We have carried out experiments both on greyscale and

RGB images. For RGB, the image was converted to YCbCr space. The

super-resolution technique was only applied to the illuminance channel.

For the others, simple bicubic interpolation is done. The results are shown

in figure 9.4. If one concentrates on the sharp edges (for example Lena′s

nose), one can see that CDL images are blurred compared to our proposed

method.

The PSNR values are shown in Table 9.1. The results establish the su-

periority of our proposed method over CDL [10] and hence over [139, 141]

(since [10] showed improvement upon them). In all cases we improve upon

the state-of-the-art by more than 2dB: this is a significantly large improve-

ment. To put it in context,[10] improves upon the prior works [139, 141]

by 1 to 1.5 dB. Here we improve upon the best known [10] by more than

2 dB in every case. One notices that the performance (of both algorithms)

for the grayscale image is always better than the colour counterpart. This

is because, in colour imaging, only the illuminance channel is properly
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super-resolved; the other channels are simply extrapolated using bicubic

interpolation. In cross-lingual document retrieval experiments, for the Eu-

roparl, there is no statistically significant difference between OPCA and

CPLSA. CDL is significantly better than them. Our proposed techniques

are even better than CDL. There is no statistically significant difference

between our two algorithms. For the Wikipedia dataset, OPCA and CDL

are statistically similar; both of them are significantly better than CPLSA.

Our proposed coupled analysis sparse coding techniques show significant

improvement over OPCA and CDL. Even for this dataset, there is no sta-

tistically significant difference between semi-coupled analysis sparse coding

and the symmetrically coupled counterpart.
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Chapter 10

Conclusions

This thesis focuses on developing a new framework for deep learning called

deep transform learning. By developing this new framework, we try to solve

machine learning problems using transform learning. Currently, Transform

learning has not been used outside the signal processing community. We

work on solving problems like classification, clustering and inverse problems

using transform learning.

The rest of the chapter is organized as follows. Section 10.1 presents

chapter wise contribution of the thesis. In section 10.2, future work is

discussed.
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10.1 Summary of contribution

10.1.1 Supervised transform learning

This work introduces certain supervised formulations to transform learning.

Four different types of supervision penalties are proposed. The first one

is class-sparsity, which imposes common sparse support within representa-

tions of each class. The second one imposes similarity among intra-class

features in terms of a low-rank constraint (high cosine similarity). The

third penalty enforces features of the same class to be nearby each other

and features of different classes to be far apart. The final formulation is the

well known label-consistency formulation, which learns a linear map from

the feature space to the class targets. For the first time, we show how trans-

form learning (and its supervised versions can be kernelized). Finally, this

work also introduces stochastic regularization techniques like drop out and

drop connect into the transform learning formulation. Experiments have

been carried out on four different problems: computer vision, bioinformat-

ics, hyperspectral imaging, and ECG based arrhythmia classification. In

such a diverse variety of problems, our method excels over all existing ones.

10.1.2 Deep transform learning - classification and clustering problem

DTL is a deeper version of transform learning. DTL is formed by stacking

multiple layers of transforms one after the other. The first approach to

solve DTL is greedy, where one layer is learned at a time. In the greedy
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approach, the input to the first layer is the training data. Then the output

coefficients learned in the previous layer forms the input to the next layer.

The problem with this approach is that the data flows only in the forward

direction. The deeper layers do not influence the learning of shallower

layers. Hence no feedback. Then, we are addressing this shortcoming by

proposing a solution where all the transforms and coefficients are learned

simultaneously in a single optimization problem. This is the unsupervised

method, and any classifier can be used to make predictions.

Experiments are performed on standard classification and clustering

datasets. It is seen that in both the cases proposed approach performed

better than the state-of-art methods.

10.1.3 Deep transform learning - inverse problem

This chapter addresses the problem of solving a linear inverse problem.

Conventional inversion techniques are transductive in nature; solving an

inverse problem with only some prior knowledge about the solution. The

advent of deep learning led the way for inductive (trained) inversion tech-

niques. The main issue with inductive inversion is that unless the unseen

signal (to be inverted) is of similar nature as the training data, the learned

model fails to generalize rendering poor inversion results. A recent study

on deep dictionary learning has shown how it can combine the best of

both worlds: deep learning with transductive inversion. In this work, we

show how the analysis counterpart of dictionary learning, called transform
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learning, can be extended deeper for transductive inversion. Results on two

standard inversion problems: deblurring and reconstruction, show that the

proposed techniques excel over the state-of-the-art.

10.1.4 Supervised deep transform learning

This work proposes to incorporate supervision into the deep transform

learning framework. Supervision is introduced by adding a label consis-

tency penalty to the previous unsupervised formulation. The derivation

for solving the ensuing formulation is based on the state-of-the-art opti-

mization paradigm that includes proximal variable splitting, augmented

lagrangians and alternating direction method of multipliers. This formula-

tion is flexible enough to handle a single label and multilabel classification

problems. The experiments have been carried out for the multilabel prob-

lem. The proposed approach is applied to a real-time problem of energy

disaggregation. The problem is modelled as a -multilabel classification

problem, where the task is to predict the appliance’s state (ON/OFF).

The experiments are performed on REDD, and Pecan Street datasets and

the proposed techniques excel over the state-of-the-art.

10.1.5 Deep transformed subspace clustering

This work incorporates the simplest subspace clustering formulation: lo-

cally linear manifold clustering, into the transform learning formulation.

The core idea is to perform the clustering task in a transformed domain
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instead of processing the raw samples directly. The transform analysis

step and the clustering are not done piecemeal but are performed jointly

through the formulation of a coupled minimization problem. Then, we

embed subspace clustering techniques (locally linear manifold clustering,

sparse subspace clustering, and low-rank representation) into deep trans-

form learning. The entire formulation is jointly learned; giving rise to a

new class of methods called deeply transformed subspace clustering. To test

the performance of the proposed techniques, benchmarking is performed

on image clustering problems. Comparison with state-of-the-art clustering

techniques shows that our formulation improves upon them.

10.1.6 Convolutional transform learning

This work proposes a new representation learning technique called convo-

lutional transform learning. In standard transform learning, a dense basis

is learned that analyses the image to generate the representation from

the image. Here, we learn a set of independent convolutional filters that

operate on the images to produce representations (one corresponding to

each filter). The major advantage of our proposed approach is that it is

completely unsupervised; unlike CNN where labelled images are required

for training. Moreover, it relies on a well-sounded minimization technique

with established convergence guarantees. We have compared the proposed

method with dictionary learning and transform learning on standard image

classification datasets. Results show that our method improves over the
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rest by a considerable margin.

10.1.7 Semi-coupled transform learning

This work introduces semi-coupled transform learning. Given training data

in two domains (source and target), it learns a transform in each of the do-

mains such that the corresponding coefficients are (linearly) mapped from

the source to the target. Since the mapping is in one direction (source to

target) but not the other way round, we call it semi-coupled. Our work

is the analysis equivalent of (semi) coupled dictionary learning. We have

showcased our results for two tasks. The first one is a synthesis problem

where the task is to super-resolve from a low-resolution image. Previously

coupled dictionary-based techniques have shown significant success in this

problem. Our proposed transform learning-based formulation improves

upon the state-of-the-art. The second problem is an analysis problem

where the task is cross-lingual document retrieval. In this task, we have

shown that the proposed method surpasses the previous state-of-the-art.

10.2 Future work

10.2.1 Coupled deep transform learning

Consider a problem of cross-style image synthesis, such as image super-

resolution, artistic rendering, photo-sketch synthesis, and multi-modal bio-

metrics, etc., Where we need to convert an image in one style into another
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style for better visualization, interpretation, and recognition. For examples,

up-convert a low-resolution image to a high resolution one, and convert a

face sketch into a photo for matching, etc. Using coupled deep transform

learning, a pair of transforms and a mapping function will be simulta-

neously learned. The transform pair can well characterize the structural

domains of the two styles of images, while the mapping function can reveal

the intrinsic relationship between the two styles domains. We propose to

learn a deep network figure 10.1 after the success of a shallow semi-coupled

transform learning network.

Figure 10.1: Deep coupled transform learning
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10.2.2 Deep transform information fusion network

Considering the problem of disguise detection, there are two sets of images:

gallery and probe. Gallery of images consisting of the genuine people, and

the probe is an image - can be either an imposter or genuine. The task is to

identify if the probe is genuine or imposter. In figure 10.2, we show some

examples of the deep transform information fusion network for disguise

detection. In figure 10.2a, we have one level of transform for processing

the individual probe and gallery image and another level for fusing the two.

In figure 10.2b, a single layer of transform processes the probe and gallery

image, and two layers for fusion. In the final architecture figure 10.2c,

there are two layers for processing the probes and gallery images and one

layer for fusion. We propose to make a deep transform information fusion

network architecture with the objective of classifying two inputs as a match

or mismatch (binary classification).
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(a) Architecture 1

(b) Architecture 2

(c) Architecture 3

Figure 10.2: Information fusion deep transform network
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