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Abstract

Online hate speech, particularly over microblogging platforms like Twitter, has emerged

as arguably the most severe issue of the past decade. Several countries have reported a steep

rise in hate crimes infuriated by malicious hate campaigns. While the detection of hate speech

is one of the emerging research areas, the generation and spread of topic-dependent hate

in the information network remains underexplored. In this work, we focus on exploring

user behavior, which triggers the genesis of hate speech on Twitter and how it diffuse via

retweets. We crawl a large-scale dataset of tweets, retweets, user activity history, and follower

networks, comprising over 161 million tweets from more than 41 million unique users. We

also collect over 600k contemporary news articles published online. We characterize different

signals of information that govern these dynamics. Our analyses differentiate the diffusion

dynamics in the presence of hate from usual information diffusion. This motivates us to

formulate the modeling problem in a topic-aware setting with real-world knowledge. For

predicting the initiation of hate speech for any given hashtag, we propose multiple feature-rich

models, with the best performing one achieving a macro F1 score of 0.65. Meanwhile, to

predict the retweet dynamics on Twitter, we propose RETINA, a novel neural architecture

that incorporates exogenous influence using scaled dot-product attention. RETINA achieves a

macro F1 score of 0.85, outperforming multiple state-of-the-art models. Our analysis reveals

the superlative power of RETINA to predict the retweet dynamics of hateful content compared

to the existing diffusion models.
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CHAPTER 1

Introduction

The Internet is one of the greatest boons to society since it has brought together people

from different race, religion, and nationality. Various social media websites like Twitter

and Facebook have connected billions of people and allowed them to share their ideas and

opinions instantly. They act as a platform for users to exchange their views or gain knowledge

about various trends in the society. Due to the immense popularity of these social media

platforms they continue to be one of the most preferred sources of information dissemination

in human society. Some people however, misuse this medium to spread hateful or offensive

contents.

1.1 Basic Terminologies

Here are few basic terminologies that need to be known before proceeding further since these

terminologies are used throughout the thesis.

1.1.1 Twitter

According to Wikipedia, "Twitter (/twtr/)1 is an American microblogging and social network-

ing service on which users post and interact with messages known as "tweets". Tweets can be

of 280 characters or less in length. Twitter can be used for various forms of communication.

1https://en.wikipedia.org/wiki/Twitter

1

https://en.wikipedia.org/wiki/Twitter
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1.1.2 Tweet and Retweet

The message posted on twitter is known as tweet while a Retweet is a repost of message or a

tweet of another user. It begins with characters ’RT’.

1.1.3 Followers and Followees

The followers of a user are the one’s who will receive tweets posted by the user. Followers

can further Retweet, like or comment on the tweet. Followees on the other hand are the one’s

that user follows.

1.2 Hate Speech

Twitter updated its “Hateful Conduct Policy” in 2017 and defines hate speech as any tweet that

‘promotes violence against other people on the basis of race, ethnicity, national origin, sexual

orientation, gender, gender identity, religious affiliation, age, disability, or serious disease’ 2.

This definition includes tweets that may appeal violence against some disadvantaged group.

Many hate crimes against minority and backward communities have been directly linked with

hateful campaigns circulated over Facebook, Twitter, Gab, and many other online platforms

[1, 2]. Online social media has provided an unforeseen speed of information spread, aided

by the fact that the power of content generation is handed to every user of these platforms.

Extremists have exploited this phenomenon to disseminate hate campaigns to a degree where

manual monitoring is too costly, if not impossible.

Thankfully, the research community has been observing a spike of works related to online

hate speech, with a vast majority of them focusing on the problem of automatic detection of

hate from online text [3]. However, as Ross et al. [4] pointed it out, even manual identification

of hate speech comes with ambiguity due to the differences in the definition of hate. Also,

an important signal of hate speech is the presence of specific words/phrases, which vary

2https://help.twitter.com/en/rules-and-policies/hateful-conduct-policy

https://help.twitter.com/en/rules-and-policies/hateful-conduct-policy
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significantly across topics/domains. Tracking such a diverse socio-linguistic phenomenon in

real-time is impossible for automated, large-scale platforms.

An alternative approach can be to track potential groups of users who have a history of

spreading hate. As Matthew et al. [5] suggested, such users are often a very small fraction of

the total users but generate a sizeable portion of the content. Moreover, the severity of hate

speech lies in the degree of its spread, and an early prediction of the diffusion dynamics may

help to combat online hate speech to a new extent altogether. However, a tiny fraction of the

existing literature seeks to explore the problem quantitatively. Matthew et al. [5] put up an

insightful foundation for this problem by analyzing the dynamics of hate diffusion in Gab3.

However, they do not tackle the problem of modeling the diffusion and restrict themselves to

identifying the different characteristics of hate speech in Gab.

Hate speech on Twitter Twitter, as one of the largest micro-blogging platforms with a

worldwide user base, has a long history of accommodating hate speech, cyberbullying, and

toxic behavior. Recently, it has come hard at such contents multiple times45, and a certain

fraction of hateful tweets are often removed upon identification. However, a large majority

of such tweets still circumvent Twitter’s filtering. In this work, we choose to focus on the

dynamics of hate speech on Twitter mainly due to two reasons: (i) the wide-spread usage of

Twitter compared to other platforms provides scope to grasp the hate diffusion dynamics in a

more realistic manifestation, and (ii) understanding how hate speech emerges and spreads even

in the presence of some top-down checking measures, compared to unmoderated platforms

like Gab.

Diffusion patterns of hate vs. non-hate on Twitter. Hate speech is often characterized

by the formation of echo-chambers, i.e., only a small group of people engaging with such

contents repeatedly. In Figure 1.1, we compare the temporal diffusion dynamics of hateful vs.

non-hate tweets (see Sections 3.1 and 5.0.1 for the details of our dataset and hate detection

methods, respectively). Following the standard information diffusion terminology, the set of

3https://gab.com/
4https://www.bbc.com/news/technology-42376546
5https://blog.twitter.com/en_us/topics/company/2019/

hatefulconductupdate.html

https://gab.com/
https://www.bbc.com/news/technology-42376546
https://blog.twitter.com/en_us/topics/company/2019/hatefulconductupdate.html
https://blog.twitter.com/en_us/topics/company/2019/hatefulconductupdate.html
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FIGURE 1.1: Plot (a) shows the growth of retweet cascades for hateful and
non-hate tweets (solid lines and shaded regions signifying the average over the
dataset and confidence of count, respectively). Analogously, plot (b) depicts
the temporal change of susceptible users over time.

susceptible nodes at any time instance of the spread is defined by all such nodes which have

been exposed to the information (followers of those who have posted/retweeted the tweet)

up to that instant but did not participate in spreading (did not retweet/like/comment). While

hateful tweets are retweeted in a significantly higher magnitude compared to non-hateful

ones (see Figure 1.1(a)), they tend to create lesser number of susceptible users over time

(see Figure 1.1(b)). This is directly linked to two major phenomena: primarily, one can

relate this to the formation of hate echo-chambers – hateful contents are distributed among

a well-connected set of users. Secondarily, as we define susceptibility in terms of follower

relations, hateful contents, therefore, might have been diffusing among connections beyond

the follow network – through paid promotion, etc. Also one can observe the differences in

early growth for the two types of information; while hateful tweets acquire most of their

retweets and susceptible nodes in a very short time and stall, later on, non-hateful ones tend

to maintain the spread, though at a lower rate, for a longer time. This characteristic can again

be linked to organized spreaders of hate who tend to disseminate hate as early as possible.
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FIGURE 1.2: Distribution of hateful vs non-hate tweets (on a scale 0 to 1) for
a selected number of hashtags.

Topic-dependence of Twitter hate. Hateful contents show strong topic-affinity: topics

related to politics and social issues, for example, incur much more hateful content compared

to sports or science. Hashtags in Twitter provide an overall mapping for tweets to topics of

discussion. As shown in Figure 1.2, the degree of hateful content varies significantly for

different hashtags. Even when different hashtags share a common theme (such as of discussion

jamiaunderattack, #jamiaviolence and #jamiaCCTV), they may still incur a different degree

of hate. Previous studies [5] tend to denote users as hate-preachers irrespective of the topic

of discussion. However, as evident in Figure 1.3, the degree of hatefulness expressed by a

user is dependent on the topic as well. For example, while some users resort to hate speech

concerning COVID-19 and China, others focus on topics around the protests against the

Citizenship Amendment Act in India.

Exogenous driving forces. With the increasing entanglement of virtual and real social

processes, it is only natural that events happening outside the social media platforms tend to

shape the platform’s discourse. Though a small number of existing studies attempt to inquire

into such inter-dependencies [6, 7], the findings are substantially motivating in problems

related to modeling information diffusion and user engagement in Twitter and other platforms.
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FIGURE 1.3: Distribution of hatefulness expressed by a selected set of users
for different hashtags. The color of a cell corresponds to a user, and a hashtag
signifies the ratio of hateful to non-hate tweets posted by that user using that
specific hashtag.

In the case of hate speech, exogenous signals offer even more crucial attributes to look into,

which is global context. For both detecting and predicting the spread of hate speech over

short tweets, the knowledge of context is likely to play a decisive role (e.g., there has been

∼ 9-times rise in hate tweets aimed at Chinese people after the COVID-19 broke out6).

1.3 An Overview Of Research

Based on the findings of the existing literature and the analysis we presented above, here we

attempt to model the dynamics of hate speech spread on Twitter. We separate the process of

spread as the hate generation (asking for who will start a hate campaign) and retweet diffusion

of hate (who will spread an already started hate campaign via retweeting). Our contributions

can be summarized as follows:

(1) We formalize the dynamics of hate generation, and retweet spread on Twitter subsum-

ing the activity history of each user and signals propagated by the localized structural

6https://shorturl.at/dJPS0

https://shorturl.at/dJPS0
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properties of the information network of Twitter induced by follower connections

as well as global endogenous and exogenous signals (events happening inside and

outside of Twitter) (See Section 4).

(2) We present a large dataset of tweets, retweets, user activity history, and the inform-

ation network of Twitter covering versatile hashtags, which made to trend very

recently. We manually annotate a significant subset of the data for hate speech. We

also provide a corpus of contemporary news articles published online (see Section 3.1

for more details).

(3) We unsheathe rich set of features manifesting the signals mentioned above to design

multiple prediction frameworks which forecast, given a user and a contemporary

hashtag, whether the user will write a hateful post or not (Section 4.1). We provide

an in-depth feature ablation and ensemble methods to analyze our proposed models’

predictive capability, with the best performing one resulting in a macro F1 score of

0.65.

(4) We propose RETINA (Retweeter Identifier Network with Exogenous Attention), a

neural architecture to predict potential retweeters given a tweet (Section 4.2.2).

RETINA encompasses an attention mechanism with dictates the prediction of

retweeters based on a stream of contemporary news articles published online. Fea-

tures representing hateful behavior encoded within the given tweet as well as the

activity history of the users further help RETINA to achieve a macro F1 score of

0.85, significantly outperforming several state-of-the-art retweet prediction models.



CHAPTER 2

Related Work

Hate speech detection. In recent years, the research community has been keenly interested

in better understanding, detection, and combating hate speech on online media. Starting with

the basic feature-engineered logistic regression models[8, 9] to the latest ones employing

neural architectures [10], variety of automatic online hate speech detection models have been

proposed across languages [11]. To determine the hateful text, most of these models utilize

a static-lexicon based approach and consider each post/comment in isolation. With lack

of context (both in the form of individual’s prior indulgence in the offense and the current

world view), the models trained on previous trends, perform poorly on new datasets. While

linguistic and contextual features are essential factors of a hateful message, the destructive

power of hate speech lies in its ability to spread across the network. However, only recently

have researchers started using network-level information for hate speech detection [12], [13].

While our work does not involve building a new hate speech detection model, yet hate

detection underpins any work on hate diffusion in the first place. We have later compared the

performance of the above mentioned hate detection classifiers on training the with our data

and selected Davidson [9] as the best Hate Speech Detection classifier for our data. Inspired

by existing research, we also incorporate hate lexicons as a feature for the diffusion model.

The lexicon is curated from multiple sources and manually pruned to suit the Indian context

[14]. Meanwhile, to overcome the problem of context, we utilize the whole timeline of a user,

to determine her propensity towards hate speech.

Information diffusion and microscopic prediction. Predicting the spread of information

on online platforms is crucial in understanding the network dynamics with applications in

marketing campaigns, rumor spreading/stalling, route optimization, etc. The latest in the

8
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family of diffusion being the CHASSIS [15] model. On the other end of the spectrum, the

SIR model [16] effectively captures the presence of R (Recovered) nodes in the system, which

are no longer active due to information fatigue1. Even though limited in scope, the SIR model

serves as an essential baseline for all diffusion models.

Among other techniques, a host of studies employ social media data for both macroscopic

(size and popularity) and microscopic (next user(s) in the information cascade) prediction.

While highly popular, both DeepCas [17] and DeepHawkes [18] focus only on the size of the

overall cascade. Similarly, Khosla et al. [19] utilized social cues to determine the popularity of

an image on Flickr. While Independent Cascade (IC) based embedding models [20, 21] led the

initial work in ML-based microscopic cascade prediction; they failed to capture the cascade’s

temporal history (either directly or indirectly). Meanwhile, Yang et al. [22] presented a neural

diffusion model for microscopic prediction, which employs recurrent neural architecture to

capture the history of the cascade. These models focus on predicting the next user in the

cascade from a host of potential candidates. In this regard, TopoLSTM [23] considers only

the previously seen nodes in any cascade as the next candidate without using timestamps as

a feature. This approximation works well under limited availability of network information

and the absence of cascade metadata. Meanwhile, FOREST [24] considers all the users in the

global graph (irrespective of one-hop) as potential users, employing a time-window based

approach. Work by Wang et al. [25] lies midway of TopoLSTM and FOREST, in that it does

not consider any external global graph as input, but employs a temporal, two-level attention

mechanism to predict the next node in the cascade. Zhou et al. [26] compiled a detailed

outline of recent advances in cascade prediction.

Compared to the models discussed above for microscopic cascade prediction, which aim to

answer who will be the next participant in the cascade, our work aims to determine whether

a follower of a user will retweet (participate in the cascade) or not. This converts our use

case into a binary classification problem, and adds negative sampling (in the form on inactive

nodes), taking the proposed model closer to real-world scenario consisting of active and

passive social media users.

1http://paginaspersonales.deusto.es/abaitua/konzeptu/fatiga.htm

http://paginaspersonales.deusto.es/abaitua/konzeptu/fatiga.htm
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The spread of hate and exploratory analysis by Mathew et al. [5] revealed exciting character-

istics of the breadth and depth of hate vs. non-hate diffusion. However, their methodology

separates the non-haters from haters and studies the diffusion of two cascades independently.

Real-world interactions are more convoluted with the same communication thread containing

hateful, counter-hateful, and non-hateful comments. Thus, independent diffusion studies,

while adequate at the exploratory analysis of hate, cannot be directly extrapolated for predict-

ive analysis of hate diffusion. The need is a model that captures the hate signals at the user

and/or group level. By taking into account the user’s timeline and his/her network traits, we

aim to capture more holistic hate markers.

Exogenous influence. As early as 2012, Myers et al. [7] exposed that external stimuli drive

one-third of the information diffusion on Twitter. Later, Hu et al. [27] proposed a model for

predicting user engagement on Twitter that is factored by user engagement in 600 real-world

events. From employing world news data for enhancing language models [28] to boosting the

impact of online advertisement campaigns [29], exogenous influence has been successfully

applied in a wide variety of tasks. Concerning social media discourse, both De et al. [30]

in opinion mining and Dutta et al. [6] in chatter prediction corroborated the superiority of

models that consider exogenous signals.

Since our data on Twitter was collected based on trending Indian hashtags, it becomes crucial

to model exogenous signals, some of which may have triggered a trend in the first place.

While a one-to-one mapping of news keywords to trending keywords is challenging to obtain,

we collate the most recent (time-window) news w.r.t to a source tweet as our ground-truth.



CHAPTER 3

Datasets

3.1 Dataset Collection

Our collection of Twitter data spans from Monday 3rd February, 2020 to Tuesday 14th April,

2020. Using Twitter’s official API1, we tracked and crawled for trending hashtags each day

within this duration. This resulted in a total of 20, 625 tweets from 13, 965 users. We also

crawled the retweeters for each tweet along with the timestamps. Table 3.1 describes the

hashtag-wise detailed statistics of the data. To build the information network, we collected the

followers of each user up to a depth of 3, resulting in a total of 41, 032, 789 unique users in our

dataset. We also collect the activity history of the users, resulting in a total of 161, 857, 992

tweets in our dataset.

We also, crawled the online news articles published within this span using the News-please

crawler [31]. We managed to collect a total of 683, 419 news articles for this period. After

filtering for language, title and date, we were left with 319, 179 processed items. There

headlines were used as the source of exogenous signal.

#-tag acronyms for the #-tags mentioned in the Table 3.1:

JV: jamiaviolence, MOTR: MigrantsOnTheRoad, TTSV: timetosackvadras, JUA: jamiaun-

derattack, IBN: IndiaBoycottsNPR, ZNBK: ZeeNewsBanKaro, SCW: SaluteCoronaWarri-

ors, IPIM: IslamoPhobicIndianMedia, DR2020: delhiriots2020, S4S: Seva4Society, PMCF:

PMCaresFunds, C_19: COVID_19, HUA: Hindus_Under_Attack, WP: WarisPathan, LE:

1https://developer.twitter.com/
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TABLE 3.1: Statistics of the data crawled from Twitter. Avg. RT, Users, and
Users-all signify average retweets, unique number of users tweeting and the unique
number of users engaged in (tweet+retweet) the #-tag, respectively.

#-tags JV MOTR TTSV JUA IBN ZNBK SCW
Tweets 950 872 280 263 570 919 104
Avg. RT 15.45 6.69 8.19 5.8 7.87 9.58 5.65
Users 743 641 138 215 333 751 53
Users-all 4026 2176 548 688 1227 1940 225
%-Hate 3.78% 8.20% 1.3% 6.06% 0.8% 7.01% 0.0%
#-tags IPIM DR2020 S4S PMCF C_19 HUA WP
Tweets 1385 1453 1087 1172 971 382 989
Avg. RT 7.008 12.23 13.24 7.61 6.38 7.10 9.23
Users 842 1136 532 1076 807 292 807
Users-all 2934 6051 4058 2691 2593 1073 2924
%-Hate 13% 6.8% 1.53% 0.8% 1.96% 10.1% 12.07
#-tags LE JCCTV TVI PNOP DE DER ASMR
Tweets 107 1045 339 555 542 843 959
Avg. RT 1.85 12.07 8.47 13.24 9.66 7.56 5.01
Users 102 815 284 365 414 731 765
Users-all 138 4091 1134 2146 1857 1807 1807
%-Hate 0.0% 5.66% 2.6% 5.71% 7.61% 3.20% 9.94%
#-tags R4GK DV SNPR 1C4DH NV NM 90DSB
Tweets 949 1121 82 889 649 1124 226
Avg. RT 3.94 9.004 10.23 11.62 7.61 8.24 5.25
Users 492 948 64 770 546 843 188
Users-all 986 2702 440 3045 1577 3199 506
%-Hate 2.84% 7.37% 0.0% 0.99% 4.67% 7.85% 12.04%

lockdownextension, JCCTV: JamiaCCTV, TVI: TrumpVisitIndia, PNOP: PutNationOverPub-

licity, DE: DelhiExodus, DER: DelhiElectionResults, ASMR: amitshahmustresign, R4GK:

Restore4GinKashmir, DV: DelhiViolance, SNPR: StopNPR, 1C4DH: 1Crore4DelhiHindu,

NV: NirbhayaVerdict, NM: NizamuddinMarkaz, 90DSB: 90daysofshaheenbagh.

3.2 Data Preprocessing

We performed pre-processing on all the tweets before feeding them to our hate detection

classifier as the performance may degrade due to the presence of hexadecimal characters and

non-useful URLs. We used NLTK library and removed all the special characters, RT, cc,

URLs, mentions and stopwords. This pre-processed clean text was then used everywhere.
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3.3 Handling Suspended Users

While the data was collected, there were many accounts which were deactivated or suspended

during that period. So, we could not gather history for those users. Hence, all those users and

their tweets were not considered. It has been found that these users are often suspended when

their tweets violated Twitter’s content policy or related to sentiments or claims users decided

to no longer promote. The removal of these users and their tweets has certainly decreased the

hate content from our dataset.



CHAPTER 4

Hate Generation and Diffusion

An information network of Twitter can be defined as a directed graph G = {U , E}, where

every user corresponds to a unique node ui ∈ U , and there exists an ordered pair (ui, uj) ∈ E

if and only if the user corresponding to uj follows user ui. (Table 4.1 summarizes important

notations and denotations.) Typically, the visible information network of Twitter does not

associate the follow relation with any further attributes, therefore any two edges in E are

indistinguishable from each other. We associate unit weight to every e ∈ E .

Every user in the network acts as an agent of content generation (tweeting) and diffusion

(retweeting). For every user ui at time t0, we associate an activity historyHi,t0 = {τ(t)|t ≤

t0}, where τ(t) signifies a tweet posted (or retweeted) by ui at time t.

The information received by user ui has three different sources: (a) Peer signals (SP
i ): The

information network G governs the flow of information from node to node such that any tweet

posted by ui is visible to every user uj if (ui, uj) ∈ E ; (b) Non-peer endogenous signals

(Sen): Trending hashtags, promoted contents, etc. that show up on the user’s feed even in the

absence of peer connection; (c) Exogenous signals (Sex): Apart from the Twitter feed, every

TABLE 4.1: Important notations and denotations.

Notation Denotation
G The information network
Hi,t Activity history of user ui up to time t
Sex Exogenous influence
Sen Endogenous influence
SPi Peer influence on ui
T Topic (hashtag)

P ui , P ui
j Probability of ui retweeting (static vs. jth interval)

XT , XN Feature tensors for tweet and news
XT,N Output from exogenous attention

14
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user interacts with the external world-events directly (as a participant) or indirectly (via news,

blogs, etc.).

Hate generation. The problem of modeling hate generation can be formulated as assigning

a probability with each user that signifies their likelihood to post a hateful tweet. With

our hypothesis of hateful behavior being a topic-dependent phenomenon, we formalize the

modeling problem as learning the parametric function, f1 : IRd → (0, 1) such that,

P (ui|T ) = f1(Sen,Sex,Hi,t, T |θ1) (4.1)

where T is a given topic, t is the instance up to which we obtain the observable history of ui,

d is the dimensionality of the input feature space, and θ1 is the set of learnable parameters.

Though ideally P (ui|T ) should be dependent on SP
i as well, the complete follower network

for Twitter remains mostly unavailable due to account settings, privacy constraints, inefficient

crawling, etc.

Hate diffusion. As already stated, we characterize diffusion as the dynamic process of

retweeting in our context. Given a tweet τ(t0) posted by some user ui, we formulate the

problem as predicting the potential retweeters within the interval [t0, t0 + ∆t]. Assuming

the probability density of a user uj retweeting τ at time t to be p(t), then retweet prediction

problem translates to learning the parametric function f2 : IRd → (0, 1) such that,∫ t0+∆t

t0

p(t)dt = f2(SP
j ,Sen

j ,Sex
j ,Hj,t, τ |θ2) (4.2)

Eq. 4.2 is the general form of a parametric equation describing retweet prediction. In our

setting, the signal components SP
j ,Hj,t, and the features representing the tweet τ incorporates

the knowledge of hatefulness. Henceforth, we call τ the root tweet and ui the root user. It

is to be noted that, the features representing the peer, non-peer endogenous, and exogenous

signals in Eq. 4.1 and 4.2 may differ due to the difference in problem setting.

Beyond organic diffusion. The task of identifying potential retweeters of a post on Twitter is

not straightforward. In retrospect, the event of a user retweeting a tweet implies that the user

must have been an audience of the tweet at some point of time (similar to ‘susceptible’ nodes
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of contagion spread in the SIR/SIS models [16],[32]). For any user, if at least one of his/her

followees engages with the retweet cascade, then the subject user becomes susceptible. That is,

in an organic diffusion, between any two users ui, uj there exists a finite path 〈ui, ui+1 . . . , uj〉

in G such that each user (except ui) in this path is a retweeter of the tweet by ui. However,

due to account privacy etc., one or more nodes within this path may not be visible. Moreover,

contents promoted by Twitter, trending topics, content searched by users independently may

diffuse alongside their organic diffusion path. Searching for such retweeters is impossible

without explicit knowledge of these phenomena. Hence, we primarily restrict our retweet

prediction to the organic diffusion, though we experiment with retweeters not in the visibly

organic diffusion cascade to see how our models handle such cases.

4.1 Modelling Hate Generation

To realize Eq. 4.1, we signify topics as individual hashtags. We rely purely on manually en-

gineered features for this task so that rigorous ablation study and analysis produce explainable

knowledge regarding this novel problem. The extracted features instantiate different input

components of f1 in Eq. 4.1. We formulate this task in a static manner, i.e., assuming that

we are predicting at an instance t0, we want to predict the probability of the user posting a

hateful tweet within [t0,∞]. While training and evaluating, we set t0 to be right before the

actual tweeting time of the user.

4.1.1 User history-based features

The activity history of user ui, signified byHi,t is substantiated by the following features:

•We use unigram and bigram features weighted by tf-idf values from 10 most recent tweets

posted by ui to capture its recent topical interest. To reduce the dimensionality of the feature

space, we keep the top 300 features sorted by their idf values.

• To capture the history of hate generation by ui, we compute two different features her

most recent 10 tweets: (i) ratio of hateful vs. non-hate tweets and (ii) a hate lexicon vector
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HL = {hi|hi ∈ II+ and i = 1, . . . , |H|}, where H is a dictionary of hate words, and hi is the

frequency of the ith lexicon from H among the tweet history.

• Users who receive more attention from the fellow users for hate propagation are more

likely to generate hate. Therefore, we take the ratio of retweets of previous hateful tweets

to non-hateful ones by ui. We also take the ratio of total number of retweets on hateful and

non-hateful tweets of ui .

• Follower count and date of account creation of ui.

• Number of topics (hashtags) ui has tweeted on up to t.

4.1.2 Topic (hashtag)-oriented feature

We compute Doc2Vec [33] representations of the tweets, along with the hashtags present in

them as individual tokens. We then compute the average cosine similarity between the user’s

recent tweets and the word vector representation of the hashtag, this serves as the topical

relatedness of the user towards the given hashtag.

4.1.3 Non-peer endogenous features

To incorporate the information of trending topics over Twitter, we supply the model with a

binary vector representing the top 50 trending hashtags for the day the tweet is posted.

4.1.4 Exogenous feature

We compute the average tf-idf vector for the 60 most recent news headlines from our corpus

posted before the time of the tweet. Again we select the top 300 features.

Using the above features, we implement six different classification models(and their variants).

Details of the models are provided in Section 5.0.2.
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4.2 Retweet Prediction

While realizing Eq. 4.2 for retweeter prediction, we formulate the task in two different settings:

the static retweeter prediction task, where t0 is fixed, and ∆t is∞ (i.e., all the retweeters

irrespective of their retweet time) and the dynamic retweeter prediction task where we predict

on successive time intervals.

For these tasks, we rely on features both designed manually as well as extracted using

unsupervised/self-supervised manner.

4.2.1 Feature selection

For the task of retweet prediction, we extract features representing the root tweet itself, as well

as the signals of Eq. 4.2 corresponding to each user ui (for which we predict the possibility of

retweeting). Henceforth, we indicate the root user by u0.

Here, we incorporate SP
i using two different features: shortest path length from u0 to ui in G,

and number of times ui has retweeted tweets by u0. All the features representing Hi,t and

Sen remain same as described in Section 4.1.

We incorporate two sets of features representing the root tweet τ : the hate lexicon vector

similar to Section 4.1.1 and top 300 unigram and bi-gram features weighted by tf-idf values.

For the retweet prediction task, we incorporate the exogenous signal in two different methods.

To implement the attention mechanism of RETINA, we use a Doc2Vec representations of the

news articles as well as the root tweet. For rest of the models, we use the same feature set as

Section 4.1.4.

4.2.2 Design of RETINA

Guided by Eq. 4.2, RETINA exploits the features described in Section 4.2.1 for both static

and dynamic prediction of retweeters.
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FIGURE 4.1: Design of different components of RETINA – (a) Exogenous
attention: Key and Value linear layers (blue) are applied on each element of
the news feature sequence XN , while the Query linear layer (red) is applied
on the tweet feature XT . The attention weights computed for each news
feature vector by contracting the query and key tensors along feature axis (dot
product) are then applied to the value tensors and summed over the sequence
axis to produce the ‘attended’ output, XT,N . (b) Static prediction of retweeters:
To predict whether uj will retweet, the input feature Xuj is normalized and
passed through a feed-forward layer, concatenated with XT,N , and another
feed-forward layer is applied to predict the retweeting probability P uj . (c)
Dynamic retweet prediction: In this case, RETINA predicts the user retweet
probability for consecutive time intervals, and instead of the last feed-forward
layer used in the static prediction, we use a GRU layer.

Exogenous attention. To incorporate external information as an assisting signal to model

diffusion, we use a variation of scaled dot product attention [34] in RETINA (see Figure 4.1).

Given the feature representation of the tweet XT and news feature sequence XN = {XN
1 , X

N
2 , . . . , X

N
k },

we compute three tensors QT , KN , and VN , respectively as follows:

QT = XT � |(−1,0)W
Q

KN = XN � |(−1,0)W
K

VN = XN � |(−1,0)W
V

(4.3)

where WQ, WK , and WV are learnable parameter kernels (we denote them to belong to

query, key and value dense layers, respectively in Figure 4.1). The operation (·)� |(−1,0)(·)

signifies Tensor contraction according to Einstein summation convention along the specified

axis. In Eq. 4.3, (−1, 0) signifies last and first axis of the first and second tensor, respectively.
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Therefore, X � |(−1,0)Y =
∑

iX[. . . , i]Y [i, . . . ]. Each of WQ, WK , and WV is a two-

dimensional tensor with hdim columns (last axis).

Next, we compute the attention weight tensor A between the tweet and news sequence as

A = Softmax(QT � |(−1,−1)K
N) (4.4)

where Softmax(X[. . . , i, j]) = eX[...,i,j]∑
j e

X[...,i,j] . Further, to avoid saturation of the softmax

activation, we scale each element of A by hdim−0.5 [34].

The attention weight is then used to produce the final encoder feature representation XT,N by

computing the weighted average of VN as follows:

XT,N =
∑
i

VN [. . . , i, . . . ]A[. . . , i] (4.5)

RETINA is expected to aggregate the exogenous signal exposed by the sequence of news

inputs according to the feature representation of the tweet into XT,N , using the operations

mentioned in Eqs. 4.3-4.5 via tuning the parameter kernels.

Final prediction. With Sex being represented by the output of the attention framework, we

incorporate the features discussed in Section 4.2.1 in RETINA to subsume rest of the signals

(see Eq. 4.2). For the two separate modes of retweeter prediction (i.e., static and dynamic),

we implement two different variations of RETINA.

For the static prediction of retweeters, RETINA predicts the probability of each of the users

u1, u2, . . . , un to retweet the given tweet with no temporal ordering (see Figure 4.1 (b)). The

feature vector Xui corresponding to user ui is first normalized and mapped to an intermediate

representation using a feed-forward layer. It is then concatenated with the output of the

exogenous attention component, XT,N , and finally another feed-forward layer with sigmoid

nonlinearity is applied to compute the probability P ui .

As opposed to the static case, in the dynamic setting RETINA predicts the probability of

every user ui to retweet within a time interval t0 + ∆ti, t0 + ∆ti+1, with t0 being the time of

the tweet published and ∆t0 = 0. To capture the temporal dependency between predictions
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in successive intervals, we replace the last feed-forward layer with a Gated Recurrent Unit

(GRU)1, as shown in Figure 4.1 (c).

Cost/loss function. In both the settings, the task translates to a binary classification problem

of deciding whether a given user will retweet or not. Therefore, we use standard binary

cross-entropy loss L to train RETINA:

L = −w · t log(p)− (1− t) log(1− p) (4.6)

where t is the ground-truth, p is predicted probability (P ui in static and P ui
j in dynamic

settings), and w is a the weight given to the positive samples to deal with class imbalance.

1We experimented with other recurrent architectures as well; performance degraded with simple RNN and
no gain with LSTM.



CHAPTER 5

Experiments, Results and Analysis

5.0.1 Detecting hateful tweets

We employ three professional annotators who have experience in analyzing online hate speech

to annotate the tweets manually. We annotated a total of 17, 877 tweets with an inter-annotator

agreement of 0.58 Krippendorf’s α1. We select the final tags based on majority voting.

Based on this gold-standard annotated data, we train three different hate speech classifiers

based on the designs given by Davidson et al. [9], Waseem and Hovy [8], and Pinkesh et al.

[10]. With an AUC score 0.85 and macro-F1 0.59, the Davidson et al. model emerges as the

best performing one. We use this model to annotate rest of the tweets in our dataset (% of

hateful tweets for each hashtag is reported in Table 3.1). We use the machine-annotated tags

for the features and training labels in our proposed models only, while the hate generation

models are tested solely on gold-standard data.

Along with the manual annotation and trained hate detection model, we use a dictionary of

hate lexicons proposed in [14]. It contain a total of 209 words/phrases signaling a possible

existence of hatefulness in a tweet.

5.0.2 Hate generation

To experiment on our hate generation prediction task, we use a total of 19, 032 tweets coming

from 12, 492 users to construct the ground-truth. With an 80 : 20 train-test split, there are

1The low value of inter-annotator’s agreement is at par with most hate speech annotation till date, pointing
out the hardness of the task even for human subjects. This further strengthens the need for contextual knowledge
as well as exploiting beyond-the-text dynamics.

22
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TABLE 5.1: List of model parameters used for predicting hate generation.
SVM-r and SVM-l refer to Support Vector Machine with rbf and linear kernels,
respectively. LogReg: Logistic Regression, Dec-Tree: Decision Tree.

Classifier Parameters
LogReg Random state=0
AdaBoost Random State=1
SVM-r Class Weight = ‘Balanced’
SVM-l Penalty= l2, Class Weight = ‘Balanced’
Dec-Tree Class Weight = ‘Balanced’, Max Depth = 5
XGBoost eta=0.4, eval metric= ‘logloss’, learning rate=0.0001,

objective= ’binary:logistic’, reg alpha = 0.9

611 hateful tweets among 15, 225 in the training data, whereas 129 out of 3, 807 in the testing

data.

To deal with the severe class imbalance of the dataset, we use both upsampling of positive

samples and downsampling of negative samples.

With all the features discussed in Section 4.1, the full size of the feature vector is 3, 645. We

experimented with all our proposed models with this full set of features and dimensionality

reduction techniques applied to it. We use Principal Component Analysis (PCA) with the

number of components set to 50. Also, we conduct experiments selecting K-best features

(K = 50) using mutual information.

We implement a total of six different classifiers using Support Vector Machine (with linear and

RBF kernel), Logistic Regression, Decision Tree, AdaBoost, and XGBoost [35]. Parameter

settings for each of these are reported in Table 5.1. All of the models, PCA, and feature

section are implemented using scikit-learn2.

5.0.3 Retweeter prediction

The activity of retweeting, too, shows a skewed pattern similar to hate speech generation.

While the maximum number retweets for a single tweet is 133 in our dataset, the average

remains to be 11.97. We use only those tweets with more than one retweet for all of the

2https://scikit-learn.org/stable/

https://scikit-learn.org/stable/
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proposed models. With an 80 : 20 train-test split, this results in a total of 3, 057 and 765

samples for training and testing.

For all the Doc2Vec generated feature vectors related to tweets and news headlines, we set the

dimensionality to 50 and 500, respectively. For RETINA, we set the parameter hdim and all

the intermediate hidden sizes for the rest of the feed-forward (except the last one generating

logits) and recurrent layers to 64 (see Section 4.2.2).

Hyperparameter tuning of RETINA. For both the settings (i.e, static and dynamic prediction

of retweeters), we used mini-batch training of RETINA, with both Adam and SGD optimizers.

We varied the batch size within 16, 32 and 64, with the best results for a batch size of 16 for

the static mode and 32 for the dynamic mode. We also varied the learning rates within a range

10−4 to 10−1, and chose the best one with learning rate 10−2 using the SGD optimizer3 for

the dynamic mode. The static counterpart produced the best results with Adam optimizer4

[36] using default parameters.

To deal with the class imbalance, we set the parameter w in Eq. 4.6 as w = λ(logC− logC+),

where C and C+ are the counts for total and positive samples, respectively in the training

dataset, and λ is a balancing constant which we vary from 1 to 2.5 with 0.5 steps. We

found the best configurations with λ = 2.0 and λ = 2.5 for the static and dynamic modes

respectively.

5.1 Baselines and ablation variants

In the absence of external baselines for predicting hate generation probability due to the

problem’s novelty, we explicitly rely on ablation analyses of the models proposed for this

task. For retweet dynamics prediction, we implement 5 external baselines and two ablation

variants of RETINA. Since information diffusion is a vast subject, we approach it from two

perspectives – one is the set of rudimentary baselines (SIR, General Threshold), and the other

is the set of recently proposed neural models.

3https://www.tensorflow.org/api_docs/python/tf/keras/optimizers/SGD
4https://www.tensorflow.org/api_docs/python/tf/keras/optimizers/Adam

https://www.tensorflow.org/api_docs/python/tf/keras/optimizers/SGD
https://www.tensorflow.org/api_docs/python/tf/keras/optimizers/Adam
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TABLE 5.2: Evaluation of different classifiers for the prediction of hate
generation. Proc. signifies different feature selection and label sampling
methods, where DS: downsampling of dominant class, US: upsampling of
dominated class, PCA: feature dimensionality reduction using PCA, top-K:
selecting top-K features with K = 50.

Model Proc. m-F1 ACC AUC Model Proc. m-F1 ACC AUC Model Proc m-F1 ACC AUC

SVM
linear

None 0.52 0.94 0.52

SVM
rbf

None 0.55 0.88 0.61

LogReg

None 0.50 0.96 0.503
DS 0.63 0.73 0.63 DS 0.62 0.70 0.64 DS 0.64 0.79 0.629
US+DS 0.44 0.64 0.63 US+DS 0.46 0.69 0.66 US+DS 0.47 0.72 0.63
PCA 0.55 0.90 0.59 PCA 0.48 0.71 0.68 PCA 0.49 0.97 0.50
top-K 0.53 0.84 0.63 top-K 0.50 0.79 0.62 top-K 0.49 0.97 0.50
PCA+DS 0.57 0.71 0.57 PCA+DS 0.63 0.68 0.66 PCA+DS 0.60 0.78 0.59

Dec-
Tree

None 0.51 0.79 0.64

Ada-
Boost

None 0.49 0.97 0.49

XGB

None 0.53 0.97 0.52
DS 0.65 0.74 0.66 DS 0.62 0.77 0.61 DS 0.57 0.76 0.566
US+DS 0.45 0.67 0.61 US+DS 0.44 0.63 0.68 US+DS 0.44 0.66 0.62
PCA 0.46 0.68 0.65 PCA 0.50 0.97 0.50 PCA 0.51 0.96 0.51
top-K 0.53 0.84 0.63 top-K 0.49 0.97 0.50 top-K 0.49 0.97 0.50
PCA+DS 0.60 0.66 0.63 PCA+DS 0.61 0.78 0.59 PCA+DS 0.56 0.73 0.55

5.1.1 Rudimentary baselines

SIR: The Susceptible-Infectious-Recovered (Removed) [16] is one of the earliest predictive

models for contagion spread. It is an epidemiological model that computes the number of

people infected with a contagious illness in a closed population over time. The name of this

class of models derives from the fact that they involve coupled equations relating the number

of susceptible people S(t), number of people infected I(t), and number of people who have

recovered R(t).

In terms of information diffusion, SIR can be modelled as, a node is in the susceptible state ’S’,

when it has not been influenced by the information but may get infected by nearby infected

nodes. A node becomes infected with state ‘I’, when it has been influenced by the information

and when it can spread the information to other nodes. And, a node is in the recovered ‘R’

state, when a node can not be influenced by the information again. A node gets infected by its

friends and nearby nodes by information in a similar way as in the epidemics.

Threshold Model: This model assumes that each node has threshold inertia chosen uniformly

at random from the interval [0, 1]. A node becomes active if the weighted sum of its active

neighbors exceeds this threshold. [37]
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In simple terms, in the LT model, each edge has a weight, each vertex has a threshold

chosen uniformly at random, and a vertex becomes activated if the weighted sum of its active

neighbors exceeds its threshold.[38]

5.1.2 Neural network based baselines

To overcome the feature engineering step involving combinations of topical, contextual,

network, and user-level features, neural methods for information diffusion have gained

popularity. While these methods are all focused on determining only the next set of users,

they are still important to measure the diffusion performance of RETINA.

TopoLSTM [23]: It is one of the initial works to consider recurrent models in generating

the next user prediction probabilities. The model converts the cascades into dynamic DAGs

(capturing the temporal signals via node ordering). The sender-receiver based RNN model

captures a combination of active node’s static score (based on the history of the cascade), and

a dynamic score (capturing future propagation tendencies).

It takes dynamic DAGs as inputs and generates topological aware embedding for each node in

the DAGS as outputs.The cascades are based in the order of the nodes in each cascade sequence

and thus can be written as s = (v1, 1)(v2, 1), (vt−1, T ). And with these cascade sequences

the diffusion model is able to predict a node to activate at time t , given a test sequence

s′ = (v′1, 1)(v′2, 1), (v′t−1, T ). Also the senders embedding ht can be learned recursively from

the earlier h′is , as they all store the encoded information about the diffusion topology before

time t.

They have extended the standard LSTM to TOPO-LSTM for modelling the diffusion topolo-

gies., which are DAGs. It has 3 types of inputs (1) v′ts feature vector xt . (2)possible activation

attempts from v′ts precedent set Pv,.t, (3) The other activated nodes Q1:t−1/Pv,t . The major

difference it has from normal LSTM is it has different types of inputs and multiple inputs in

each type.



5.1 BASELINES AND ABLATION VARIANTS 27

FOREST [24]: It aims to be a unified model, performing the microscopic and the macroscopic

cascade predictions combining reinforcement learning (for macroscopic) with the recurrent

model (for microscopic). By considering the complete global graph, it performs graph

sampling to obtain the structural context of a node as an aggregate of the structural context

of its one or two hops neighbors. In addition, it factors the temporal information via the

last m seen nodes in the cascade. The sender-receiver based RNN model is enhanced by

the action-state model of RL, to give superior performance for both the tasks. It is worth

noticing that largest graph the model was tested on consisted of ≈ 23k nodes, while even

after sampling our smallest graph has ≈ 150k nodes. This six-fold increase in data, coupled

with limited computing power, drastically reduced the performance of FOREST, as it tries to

predict next user probabilities against all 150k nodes.

HIDAN [25]: It does not explicitly consider a global graph as input. Any information loss

due to the absence of a global graph is substituted by temporal information utilized in the

form of ordered time difference of node infection. The model uniquely captures the non-

sequential nature of information diffusion, by employing a two-tier attention mechanism. The

first attention system, builds the structural context of a user from the historical inter-user

interactions. This context is aggregated into user’s own context. Meanwhile, at cascade-level

the temporal information is used, along with the updated user context to predict the next node.

Since HIDAN does not employ a global graph, like TopoLSTM, it too uses the set of all seen

nodes in the cascade as candidate nodes for prediction.

5.1.3 Ablation models

In the absence of external baselines for predicting hate generation probability due to the

problem’s novelty, We exercise extensive feature ablation to examine the relative importance

of different feature sets. Among the six different algorithms we implement for this task,

along with different sampling and feature reduction methods, we choose the best performing

model for this ablation study. Following Eq. 4.1, we remove the feature sets representingHi,t,

Sex, Sen, and T (see Section 4.1 for corresponding features) in each trial and evaluate the

performance.
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TABLE 5.3: Feature ablation for Decision Tree with downsampling for
predicting hate generation. At each trial, we remove features representing
signals –Hi,t (All \ History), Sex (All \ Endogen), Sen (All \ Exogen), and T
(All \ Topic). See Eq. 4.1 and Section 4.1 for details of the signals and features,
respectively.

Features m-F1 ACC AUC
All 0.65 0.74 0.66
All \ History 0.56 0.59 0.64
All \ Endogen 0.61 0.68 0.64
All \ Exogen 0.56 0.58 0.66
All \ Topic 0.65 0.74 0.66

To investigate the effectiveness of the exogenous attention mechanism for predicting potential

retweeters, we remove this component and experiment on static as well as the dynamic setting

of RETINA.

5.2 Evaluation

Evaluation of classification models on highly imbalanced data needs careful precautions

to avoid classification bias. We use multiple evaluation metrics for both the tasks: macro

averaged F1 score (macro-F1), area under the receiver operating characteristics (AUC), and

binary accuracy (ACC). As the neural baselines tackle the problem of retweet prediction as

a ranking task, we improvise the evaluation of RETINA to make it comparable with these

baselines. We rank the predicted probability scores (P ui and P ui
j in static and dynamic

settings, respectively) and compute mean average precision at top-k positions (MAP@k) and

binary hits at top-k positions (HITS@k).

5.2.1 Performance in predicting hate generation

Table 5.2 presents the performances of all the models we implement to predict the probability

of a given user posting a hateful tweet using a given hashtag. It is evident from the results that,

all six models suffer from the sharp bias in data; without any class-specific sampling, they

tend to lean towards the dominant class (non-hate in this case) and result in a low macro-F1
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and AUC compared to very high binary accuracy. SVM with rbf-kernel outperforms the rest

when no upsampling or downsampling is done, with a macro-F1 of 0.55 (AUC 0.61).

Effects of sampling. Downsampling the dominant classes result in a substantial leap in the

performance of all the models. The effect is almost uniform over all the classifiers except

XGBoost. In terms of macro-F1, Decision Tree sets the best performance altogether for this

task as 0.65. However, the rest of the models lie in a very close range of 0.62-0.64 macro-F1.

While the downsampling performance gains are explicitly evident, the effects of upsampling

the dominated class are less intuitive. For all the models, upsampling deteriorates macro-F1

by a large extent, with values in the range 0.44-0.47. However, the AUC scores improve by

a significant margin for all the models with upsampling except Decision Tree. AdaBoost

achieves the highest AUC of 0.68 with upsampling.

Dimensionality reduction of feature space. Our experiments with PCA and K-best feature

selection by mutual information show a heterogeneous effect on different models. While the

only SVM with linear kernel shows some improvement with PCA over the original feature set,

the rest of the models observe considerable degradation of macro-F1. However, SVM with

rbf kernel achieves the best AUC of 0.68 with PCA. With top-K best features, the overall

gain in performance is not much significant except Decision Tree.

We also experiment with combinations of different sampling and feature reduction methods,

but none of them achieve a significant gain in performance.

Ablation analysis. We choose Decision Tree with down-sampling of dominant class as

our best performing model (in terms of macro-F1 score) and perform ablation analysis.

Table 5.3 presents the performance of the model with each feature group removed in isolation,

along with the full model. Evidently, for predicting hate generation, features representing

exogenous signals and user activity history are most important. Removal of the feature

vector signifying trending hashtags, which represent endogenous signal in our case, also

worsens the performance to a significant degree.
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FIGURE 5.1: HITS@k of RETINA-D, RETINA-S, and TopoLSTM for
retweeter prediction with k = 1, 5, 10, 20, 50, and 100.

TABLE 5.4: Performance comparison for RETINA with baseline models
for retweeter prediction. RETINA-S and RETINA-D correspond to static
and dynamic prediction settings, respectively. † symbolizes RETINA (static
and dynamic) without exogenous attention. Gen.Thresh. corresponds to the
General Threshold model for diffusion prediction.

Model m-F1 ACC AUC MAP@20 HITS@20
LReg-S 0.61 0.92 0.682
RETINA-S 0.65 0.95 0.75 0.54 0.72
RETINA-S† 0.61 0.92 0.77 0.53 0.71
LReg-D 0.82 .93 .79
RETINA-D 0.89 0.99 0.86 0.78 0.88
RETINA-D† 0.87 0.99 0.798 0.69 0.80
FOREST - - - 0.51 0.64
HIDAN - - - 0.05 0.05
TopoLSTM - - - 0.60 0.83
SIR 0.04 - - - -
Gen.Thresh. 0.04 - - - -

5.2.2 Performance in retweeter prediction

Table 5.4 summarizes the performances of the competing models for the retweet prediction

task. Here again, binary accuracy presents a very skewed picture of the performance due

to class imbalance. While RETINA in dynamic setting outperforms rest of the models by a
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FIGURE 5.2: Comparison of RETINA in static (red; RETINA-S) and dy-
namic (blue; RETINA-D) setting with TopoLSTM (green) to predict potential
retweeters when the root tweet is – hateful (dark shade) vs non-hate (lighter
shade).

significant margin for all the evaluation metrics, TopoLSTM emerges as the best baseline in

terms of both MAP@20 and HITS@20.

In Figure 5.1, we compare RETINA in static and dynamic setting with TopoLSTM in terms

of HITS@k for different values of k. For smaller values of k, RETINA largely outperforms

TopoLSTM, in both dynamic and static setting. However, with increasing k-values, the three

models converge to very similar performances.

We find that the contribution of the exogenous signal plays a vital role in retweet prediction,

much similar to our findings in Table 5.3 for predicting hate generation. With the exogenous

attention component removed in static as well as dynamic settings (RETINA-S† and RETINA-

D†, respectively, in Table 5.4), performance drops by a significant margin. However, the

performance drop is more significant in RETINA-D† for ranking users according to retweet

probability (MAP@k and HITS@k).

Figure 5.2 provides an important insight regarding the retweet diffusion modeling power of

our proposed framework RETINA. Our best performing baseline, TopoLSTM largely fails to

capture the different diffusion dynamics of hate speech in contrast to non-hate (MAP@20
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0.59 for non-hate vs 0.43 for hate). On the other hand, RETINA achieves MAP@20 scores

0.80 and 0.74 in dynamic (0.54 and 0.56 in static) settings to predict the retweet dynamics

for hate and non-hate contents, respectively. One can readily infer that, our well-curated

feature design by incorporating hate signals along with the endogenous, exogenous, and

topic-oriented influences empowers RETINA with this superior expressive power.



CHAPTER 6

Conclusion and Future Work

6.1 Conclusion

The majority of the existing studies on online hate speech focused on hate speech detection,

with a very few seeking to analyze the diffusion dynamics of hate on large-scale information

networks. We bring forth the very first attempt to predict the initiation and spread of hate

speech on Twitter. Analyzing a large Twitter dataset that we crawled and manually annotated

for hate speech, we identified multiple key factors (exogenous information, topic-affinity of

the user, etc.) that govern the dissemination of hate. Based on the empirical observations, we

developed multiple supervised models powered by rich feature representation to predict the

probability of any given user tweeting something hateful. We proposed RETINA, a neural

framework exploiting extra-Twitter information (in terms of news) with attention mechanism

for predicting potential retweeters for any given tweet. Comparison with multiple state-of-

the-art models for retweeter prediction revealed the superiority of RETINA in general as well

as for predicting the spread of hateful content in particular.

6.2 Future Work

In this study, the mode of hate speech spread we primarily focused on is via retweeting,

and therefore we restrict ourselves within textual hate. However, spreading hateful contents

packaged by an image, a meme, or some invented slang are some new normal of this age and

leave the space for further studies in the future.
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