

 Cover Page Page No. 1

Representing Dimensional Model in MongoDB

by

Neha Gupta

Under the Supervision of Dr. Naveen Prakash

Indraprastha Institute of Information Technology Delhi

May, 2020

 Inner Cover Page Page No. 2

©Indraprastha Institute of Information Technology (IIITD), New Delhi 2020

 Inner Cover Page Page No. 3

Representing Dimensional Model in MongoDB

by

Neha Gupta

Submitted

in partial fulfilment of the requirements for the degree of

Master of Technology

to

Indraprastha Institute of Information Technology Delhi

May, 2020

 Page No. 4

Certificate

This is to certify that the thesis titled “Representing Dimensional Model in MongoDB” being submitted
by (Neha Gupta) to the Indraprastha Institute of Information Technology Delhi, for the award of the
Master of Technology, is an original research work carried out by her under my supervision. In my
opinion, the thesis has reached the standards fulfilling the requirements of the regulations relating to
the degree.

The results contained in this thesis have not been submitted in part or full to any other university or

institute for the award of any degree/diploma.

May, 2020

 Dr. Naveen Prakash

 Department of CSE

Indraprastha Institute of Information Technology Delhi

New Delhi 110020

 Page No. 5

Acknowledgements

With immense pleasure, I am presenting this report on thesis on “Representing Dimensional Model in
MongoDB” as a part of the curriculum of MTech. Computer Science and Engineering at Indraprastha
Institute of Information Technology Delhi. It gives me privilege to complete this report work
under the valuable guidance of Dr. Naveen Prakash.

I would also like to thank all the Staff Members of Computer Science and Engineering Department,
Management, friends and my family members, who have directly or indirectly guided and helped me
for the preparation of this Report and gave me an unending support right from the stage the idea
was conceived.

 Name: Neha Gupta
 Roll No.: MT18113

 Page No. 6

Abstract

Conventional data warehouse systems are implemented either on a multi-

dimensional database or a relational database. While the earlier supports MOLAP

operations, the other supports ROLAP operations. In this work, we used another

option to implement a data warehouse on a NoSQL database. NoSQL (Not Only

SQL) systems are becoming popular due to several advantages such as elasticity and

horizontal scalability. We propose and implement the rules that convert the

dimensional data model to the logical MongoDB model. We show the disadvantages

of ROLAP and MOLAP and advantages of MongoDB, which is a document-

oriented NoSQL database.

 Page No. 7

List of Figures

2.1 Representation of a Document in MongoDB 14
2.2 ”products” is an array of embedded documents 15
2.3 ”body” is an embedded document ... 16
2.4 Result of a find query ... 16
2.5 Result of aggregate query .. 17
2.6 Result of an aggregate query without $unwind, and $match 18
2.7 Create Index in MongoDB .. 19
2.8 Get Index in MongoDB .. 19
2.9 Drop Index in MongoDB .. 19
2.10 Master-Slave Replication in MongoDB (Source:[1])20
2.11 No index can be created on BLOB21
2.12 No primary key contains BLOB data type21
2.13 Document (Source:[2])21

2.14 Collection in MongoDB23

4.1 GOM4DW Model 28
4.2 Data Object can be simple or aggregate28
4.3 Login/Sign Up Screen29

4.4 Unique Project Id generated on sign up29

4.5 Login Screen …………..30

4.6 Options for User…………..30

4.7 Instantiation of Data Object31

4.8 Category Attributes …………..32

4.9 Data Object Mapping33

4.10 Aggregate Information34

4.11 Confirmation Screen35

4.12 Modify Information…………..36

4.13 View Information…………..37

4.14 Model Data Object Using Conversion Rules (Section 3.1.3) …………….38

 Page No. 8

List of Tables
6.1 Vegetable Trader Schema .. 41
6.2 Database created after applying Rule 1 .. 42
6.3 Collection created and MongoDB queries for insertion of data for

“performance” data object .. 43
6.4 Collection created and MongoDB queries for insertion of data for

“order” data object .. 43
7.1 Relational Schema and MongoDB Comparison 50
7.2 OLAP Operations in Relational Schema and MongoDB 51
7.3 Relational Algebra Operations in Relational Schema and Mongo-
 DB ... 53

 Page No. 9

Contents
Certificate

Acknowledgements

Abstract

List of Figures

List of Tables

Chapter 1 11
Introduction 11

Chapter 2 13
Understanding MongoDB 13

2.1 MongoDB - Introduction 13
2.2 Definitions 13
2.2.1 Document 13
2.2.2 ObjectId in MongoDB 14
2.2.3 Array of Embedded Documents 15
2.2.4 Embedded/Nested Documents 15
2.3 Querying 15
2.3.1 find 16
2.3.2 aggregate() 16
2.4 Indexing 18
2.5 Master-Slave Replication 19
2.6 Other Terminologies 20
2.6.1 BLOB 20
2.6.2 Distributed Database 21
2.6.3 Document-Oriented Database 21
2.6.4 High Performance 22
2.6.5 High Availability 22
2.6.6 Easy Scalability 22
2.6.7 Collection 22
2.6.8 XML vs MongoDB Document 23
2.6.9 BASE Property 24
2.6.10 Sharding 24

Chapter 3 25
Background and Related Work 25

Chapter 4 27
Generic Object Model For DW 27

4.1 Components of GOM4DW 27
4.2 Implementation 29

Chapter 5 39
5.1 Conversion Rules to Represent GOM4DW Schema in MongoDB 39

Chapter 6 41
Case Study 41

6.1 Schema Used 41

 Page No. 10

6.2 Validation of Conversion Rules 42

Chapter 7 44
GOM4DW to RDBMS 44

7.1 Algorithm 44
7.2 Snowflake Schema 45
7.3 Comparison Between Relational Schema and MongoDB 49

Chapter 8 54
Conclusion 54

Bibliography 55

Appendix A 57

Appendix B 58

Curriculum Vitae (CV) 59

Chapter 1 Page No. 11

*Explained in Section 2.6 (Other Terminologies)

\

Chapter 1

Introduction
A Data Warehousing (DW) is process for collecting and maintaining
data from various sources to provide meaningful business insights.
A Data warehouse is typically used to connect and analyze business
data from different sources [18].

Data warehouse are implemented either by using a multidimensional
database that uses MOLAP operations or a relational database that
uses ROLAP operations [21]. Relational OLAP (ROLAP) servers are
placed between the relational back-end server and client front-end
tools. To store and manage the warehouse data, it uses relational or
extended-relational DBMS [19]. Multidimensional OLAP (MOLAP)
uses array-based multidimensional warehouse for multidimensional
data views. Among multidimensional data stores, the storage
utilization may be less in the case of the sparse dataset [20].

Since, MOLAP operations are not proficient of containing detailed
data and ROLAP operations uses relational databases which have
several disadvantages, another approach is to use NoSQL databases
for implementing a data warehouse.

A NoSQL database (which refers to non-SQL or non-relational
database before) provides data retrieval and storage mechanism that
uses models (like documents and graphs), other than tables which is
used in relational databases [22]. Based on the data structures used,
there are mainly four types of NoSQL Database, Key-Value Store,
Document-based Store, Column-based Store, and Graph-based
databases.

The motivation to use NoSQL databases is to overcome the
disadvantages of the relational databases. Here, we used MongoDB
to represent dimensional model which is a document-oriented*
NoSQL database.

The disadvantages of relational databases are [21][23]:
• Sometimes, the piece of data is not present in underlying data

sources at the extraction time (ETL). In a relational database, this
can be handled by using a NULL ‘value’. It creates difficulties
particularly in the use NULL as a foreign key in fact tables and as
a dimension value. Instead of NULL values, designers of star
schema use values like -1, 0, or ‘n/a’ in dimensions. The star
schemas designers have described several problems associated
with these practical solutions to the problem of NULL values. For
example, misinterpretation of query results. These disadvantages
can be handled in NoSQL database since NoSQL database like
MongoDB does not required to store NULL values.

• Now, there is a need to save and process large data volumes which
the relational databases may find challenging to handle. Besides,
relational databases have challenges in operating in a distributed
environment. Hence, the NoSQL database is used because it does
not use the concept of JOINs which leads to high system
performance in the case of a large volume of data.

• Since, relational database does not handle unstructured data, audio

or video files. Hence, it a disadvantage when DW is implemented
by using relational database. This disadvantage is overcome by

Chapter 1 Page No. 12

*Explained in Section 2.6 (Other Terminologies)

the use of NoSQL databases.

• ETL for a relational implementation of a DW is a time-consuming
process, because the data from diverse sources need to be
converted into one conventional structured format of dimension
tables and the fact. Since, structured data is not necessary in the
case of NoSQL databases, ETL time will be less.

• ROLAP uses relational database, hence, supports complex joins

which can be hard to understand and take too much time to
execute. Therefore, performance of DW systems can be increased
if implemented in a NoSQL database.

• The BASE* acronym is used to describe the properties of NoSQL

databases, whereas the ACID acronym is used to describe the
features of relational databases. Since data warehouse mostly
provides a read-only, the analytic environment with changes
restricted to ETL time, the requirement of ACID is inappropriate,
and the flexibility of BASE is acceptable and, indeed, may lead to
a better data warehouse performance.

In this thesis, our focus is on comparing, at the schema level, a ROLAP
schema with a MongoDB schema for a given multidimensional model. Our
starting point is implementing a tool for instantiating the GOM4DW model
to yield a GOM4DW schema. This tool is instantiated with the case of a
vegetable vendor.

Thereafter, we built a tool for converting a GOM4DW schema into ROLAP
and another tool for converting the GOM4DW schema to a MongoDB
representation. For the former, we used rules given in [29], and for the latter,
we used the proposals of [17].

For purposes of comparison, we took the vegetable trader GOM4DW schema
as input for our two tools and produced its ROLAP and MongoDB
representations, respectively. The comparison was done thereafter.

The layout of the thesis is as follows. Chapter 2 describes the concepts of
MongoDB, whereas Chapter 3 focuses on Background and related work.
Chapter 4 describes the description of the dimensional model and
implementation with the use of conversion rules. Further, Chapter 5 shows
the case study and validation of the implemented tools and conversion rules.
Chapter 6 shows the ROLAP schema and its comparison with MongoDB.
Lastly, Chapter 7 concludes the work and describes the future work to be
done.

Chapter 2 Page No. 13

*Explained in Section 2.6 (Other Terminologies)

Chapter 2

Understanding MongoDB
2.1 MongoDB - Introduction

MongoDB development was started by10gen software company in
2007 as a component of a planned PaaS (platform-as-a-service)
product. In 2009, the company moved to an open-source
development model, with the company offering commercial support
and other services. In 2013, 10gen changed its name to MongoDB
Inc. On October 20, 2017, MongoDB became a publicly-traded
company. On October 30, 2019, MongoDB teams up with Alibaba
(NYSE: BABA) Cloud, who will offer its customers a MongoDB-
as-a-service solution. Customers can use the managed offering from
BABA’s global data centers [3].

MongoDB is a distributed*,document-oriented*, NoSQL database
which is used to handle a large amount of data in the form of
documents. MongoDB is written in C++ and an open-source
database. It provides high performance*, high availability*, and easy
scalability*. It works on the concept of collection* and document
(described in section 2.2.1) [23].

2.2 Definitions

2.2.1 Document

• Documents are semi-structured entities, mainly in a standard
format such as Extensible Markup Language (XML*) or
JavaScript Object Notation (JSON) [4].

• Documents are stored in a collection*, which will build up a
database in MongoDB.

• Fields in a document can contain arrays and or sub-documents
(sometimes called nested or embedded documents). [5]

Representation of Document: The Structure of JSON Objects

JSON objects are constructed using several simple syntax rules:

• Like key-value databases, data organized in key-value pairs.

• Documents comprise of name-value pairs separated by commas.

• Documents begin with a {and end with a}.

• Names are strings, like “user” and “products”.

• Values can be numbers, strings, Boolean (true or false), arrays,
objects, or the NULL value.

• The values of arrays are listed within square brackets, i.e., [and].

• The values of objects are listed as key-value pairs within curly
brackets, i.e., { and }.

JSON is just one option for representing documents in a document
database like MongoDB [4].

Figure 2.1 shows the representation of a document of an order.

Chapter 2 Page No. 14

*Explained in Section 2.6 (Other Terminologies)

Figure 2.1: Representation of a Document in MongoDB

Document in MongoDB supports many data types. Some of them

are:

• ObjectId: It is used to store the document’s ID. Further
explanation is in section 2.2.2.

• String: It is the most commonly used datatype to store the
data. String in MongoDB must be UTF-8 valid.

• Integer: It is used to save a numerical value. It can be 32 bit
or 64 bit depending upon the server.

• Date: It is used to store the current date or time in UNIX time
format. We can specify our own date time by creating an object
of date and passing day, month, a year into it.

• Boolean: It is used to store a boolean (true/ false) value.

• Double: It is used to store floating-point values.

• Arrays: It is used to store either arrays or list or multiple
values into one key.

• Timestamp: It can be handy for recording when a document
has either modified or added.

• Object: It is used for embedded documents.

• Null: It is used to store a Null value.

 [6]

2.2.2 ObjectId in MongoDB

It is a 12-byte BSON type with the following structure:

• The first 4 bytes describing the seconds since the Unix epoch

• The next 3 bytes are the device identifier

• The next 2 bytes comprises of process id

• The last 3 bytes are counter value which is random

Chapter 2 Page No. 15

*Explained in Section 2.6 (Other Terminologies)

2.2.3 Array of Embedded Documents

An array of Embedded Documents is used in a one-to-many
relationship where one entity is the primary document, and the
many entities are described as an array of embedded documents.
The primary document has fields about the one entity, and the
embedded documents have fields about the many entities [4].

It can be used where all the documents are not related to each
other. Example: One product’s attributes (rate, quantity, etc.) are
not dependent on other’s product and can be retrieved
independently.

In figure 2.2, “products” of an order is an array of embedded documents.

2.2.4 Embedded/Nested Documents

An embedded/nested document allows document database users
to store related data in a single document. This allows the
document database to avoid a process called joining in which data
from one table, called the foreign key, is used to lookup data in
another table [4].

It can be used where all the documents are related to each other.
Example: All the subsections of a book can be dependent on each
other and retrieved together as a section of a book.

In figure 2.3, the body of an email is an embedded document.

2.3 Querying

Querying in MongoDB can be done by either using find() or
aggregate() function in MongoDB.

Figure 2.2: ”products” is an array of embedded documents

Chapter 2 Page No. 16

*Explained in Section 2.6 (Other Terminologies)

Figure 2.3: ”body” is an embedded document

2.3.1 find()

It selects documents in a collection or view and returns a cursor to
the selected documents.

Syntax: db.collection.find(query, projection)

Here, the query specifies a selection filter using query operators. To
return all the documents in a collection, omit the parameter or pass
an empty document (). And, the projection specifies the fields to
return in the documents that match the query filter. To return all the
fields in the matching documents, omit the parameter [7].

Note: Both query and projection are optional parameters in

find().

Example of find() is shown in figure 2.4.

Figure 2.4: Result of a find query

2.3.2 aggregate()

It processes data records and returns computed results. It group
values from multiple documents together also can perform a variety
of operations on the grouped data to return a single result.

Syntax: db.collectionname.aggregate(aggregate operation)

Aggregate operation includes:

Chapter 2 Page No. 17

*Explained in Section 2.6 (Other Terminologies)

• $sum: Adds the defined value from all documents in the collection.

• $avg: Computes the average of all given values.

• $min: Gets the minimum of the similar values from all
documents in the collection.

• $max: Gets the maximum of the similar values from all
documents in the collection.

• $push: It inserts the value to an array in the resulting

document. Following are the possible stages in the aggregation

framework in MongoDB:

• $project: Used to select some particular fields from a collection.

• $match: It is a filtering procedure; hence this can reduce the
amount of documents that are given as input to the next stage.

• $group: It does the actual aggregation.

• $unwind: It is used to unwind document that are using arrays.
When an array is used, the data is pre-joined, and this operation
will be undone to have individual documents again. Therefore,
with this stage, we will increase the number of documents for
the next stage.

[8]

Example of aggregate() is shown in figure 2.5.

Figure 2.5: Result of aggregate query

Without $unwind and $match, the result of the aggregate is the same
as find function in MongoDB in case of an array of embedded
documents. An example is shown in figure 2.6.

Chapter 2 Page No. 18

*Explained in Section 2.6 (Other Terminologies)

Figure 2.6: Result of an aggregate query without $unwind, and $match

2.4 Indexing

• createIndex() method is used to build or create an index in
MongoDB. 1 is for creating the index in ascending order and -1 is
for descending order [9].

Syntax: db.COLLECTION NAME.createIndex({KEY:1})

Example: db.order.createIndex({”products.product”:1})

Figure 2.7: Create Index in MongoDB

To create an index on multiple fields, pass multiple fields in
createIndex() method.

• getIndexes() method is used to find all the indexes created on
a collection.

Syntax: db.COLLECTION NAME.getIndexes()

Example: db.order.getIndexes()

• dropIndex() method is used to drop the index in a collection.

Syntax: db.collection name.dropIndex({index name: 1})

Example: db.order.dropIndex({”products.product”:1})

Chapter 2 Page No. 19

*Explained in Section 2.6 (Other Terminologies)

Figure 2.8: Get Index in MongoDB

Figure 2.9: Drop Index in MongoDB

• Document databases improve on query capacities of key - value
databases with indexing and the capability to filter documents
based on attributes in the document [4].

2.5 Master-Slave Replication
• It is a process that enables data from one database server (the

master) to be copied automatically to one or more database
servers (the slaves).

• It is usually used to increase read access on various servers for
scalability, although it can also be used for additional purposes
like for fail-over, or analyzing data on the slave to avoid
overloading the master.

• As it is a one-way replication (from master to slave), the master
database is used for the write operations, while multiple slave
databases are used for the read operations.

• If replication is used as the scale-out solution, you need to have
at least two data sources defined, one for the write operations

Chapter 2 Page No. 20

*Explained in Section 2.6 (Other Terminologies)

and the second for the read operations [10].

Replication in MongoDB

MongoDB uses Master-Slave Replication (Figure 2.10). MongoDB
achieves replication by the use of a replica set. It is a group of
MongoDB instances that host the same data set. In a replica, one
node is a primary node that receives all write operations. All other
nodes, such as secondaries, apply methods from the primary so that
they have the same data set. A replica set must have only one primary
node [1].

• All the data replicates from the primary to the secondary node.

• At the time of maintenance or automatic fail-over, election
establishes for primary, and a new primary node is elected.

• After the recovery of the failed node, it again joins the replica
set and works as a secondary node.

Figure 2.10: Master-Slave Replication in MongoDB (Source:[1])

2.6 Other Terminologies

2.6.1 BLOB

A BLOB is one of the datatypes used in a relational database like
MySQL. It is a binary large object that can hold a variable amount
of data. BLOB is the family of column type intended as high-
capacity binary storage [11].

Limitations of BLOB

Following are the limitations of BLOB data type used in relational
databases like MySQL:

• BLOB data columns cannot be part of an index as in figure 2.11 [12].

Chapter 2 Page No. 21

*Explained in Section 2.6 (Other Terminologies)

Figure 2.11: No index can be created on BLOB

• BLOB data columns cannot be part of a primary key as in figure 2.12

(here ”idproduct” is a primary key).

Figure 2.12: No primary key contains BLOB data type

Because of the limitations related to indexing in a BLOB, search
query takes a lot of time in case of extensive data used in
applications like commercial applications or social networking
websites. It can overcome by using BSON type documents in
MongoDB.

2.6.2 Distributed Database
Multiple NoSQL databases (like MongoDB) can be executed in a
distributed manner. Hence, MongoDB is a distributed database. It
offers auto-scaling and fail-over capabilities.

2.6.3 Document-Oriented Database
It retrieves and stores data as a key-value pair, but the value part is
saved as a document. The document is stored or saved in JSON or
XML* formats [2].

Figure 2.13: Document (Source:[2])

Chapter 2 Page No. 22

*Explained in Section 2.6 (Other Terminologies)

2.6.4 High Performance

It is based on two categories:

• Increase Query Performance: It uses BSON instead of JSON
for storing data. BSON is a binary JSON. Being Binary it
improves the processing efficiency of the MongoDB. It uses B
Tree indexes, so they are sorted.

• Increase Scale Performance: Replica sets enable data
availability at all times by having copies of data at multiple
replicas. Sharding* as well helps to store large amounts of data.

2.6.5 High Availability

It indicates a system designed for redundancy, durability, and automatic fail-

over so that the applications supported by the system can work continuously

and without downtime for a long period. MongoDB replica sets support high

availability when deployed according to the best practices in MongoDB.

• Replica sets use elections to support high availability.

• Elections of replica set occur when the primary becomes unavailable,

and the replica set members autonomously select a new primary.

2.6.6 Easy Scalability

You can scale out your deployments quite efficiently, i.e., additional nodes

can easily be added to the deployment to share or distribute data between

them so that all data need not be saved in one node. It can be done by Sharding

in MongoDB.

2.6.7 Collection

• In MongoDB, databases contain collections of documents.

• Collections are similar to the tables in relational databases.

• MongoDB creates the collection when data is stored for that collection

for the first time if a collection does not exist. [13]

Figure 2.14 shows a MongoDB collection.

Chapter 2 Page No. 23

*Explained in Section 2.6 (Other Terminologies)

{

Figure 2.14: Collection in MongoDB

2.6.8 XML vs MongoDB Document

The central idea of a document-oriented database is the notion of a
document.

Document stores allow different types of documents in a single
store, let the fields within them to be optional. For example, a
document encoded in JSON:

”FirstName”: ”Neha”,
”LastName”: ”Gupta”,
”Address”: ”IIIT Delhi, New Delhi”,
”Hobby”: ”research”

}

A second document might be encoded in XML as:

〈contact〉
〈firstname〉Neha 〈/firstname 〉
〈lastname〉Gupta〈/lastname〉
〈address〉

〈type〉College 〈/type〉
〈addressline1〉IIIT Delhi 〈/addressline1〉

〈city〉New Delhi 〈/city〉

〈/address〉

〈/contact〉

The above documents share some structural elements with one
another, but each also has unique elements. Both XML and
MongoDB documents follow the hierarchical structure.

Chapter 2 Page No. 24

*Explained in Section 2.6 (Other Terminologies)

2.6.9 BASE Property

• Basically available means that the system does guarantee availability.

• Soft state means that the systems state may change over time, also

without input.

• Eventual consistency symbolizes that the system will become

consistent over time, given that the system doesn’t receive input during

that time [2].

• Example: Shopping Carts like Amazon, Flipkart, etc. follows the

BASE property.

2.6.10 Sharding

• Another term for horizontal partitioning of data is sharding. It is the

process of storing data records across multiple machines. Example: A

Customer table has 100 rows. To shard it across four servers, we use

‘key’ based sharding in which customers will be distributed as

follows: SHARD-1(1-25), SHARD-2(26-50), SHARD-3(51-75),

SHARD-4(76-100)Sharding splits the data set and shares them over

multiple databases, or shards. Sharding can be done in 2 ways: [5]

1. Hash-based: MongoDB determines the hash of a fields value

first and then creates chunks using those hashes.

2. Key-based: Choose a key from a collection and divide or split

the data using the keys value to deploy sharding in Mongo-

DB. This key is known as shard key that determines how to

distribute the documents of a collection among the different

shards in a cluster. [23]

Chapter 3 Page No. 25

Chapter 3

Background and Related Work

We have studied about the various approaches used for the data
warehouse implementation on the NoSQL platform. Similar to the
name ROLAP and MOLAP, some researchers used as the concept of
NOSOLAP [21]. The work done till date is either on column-oriented
databases and document-oriented databases. These are as follows:

• Chevalier and other researchers [24] converted the schema to both
column-oriented (HBase) and document-oriented(MongoDB)
NoSQL model. They used star schema for mapping rules which
consist of only facts and dimensions. In the former model, each
fact is mapped with measures as the columns to a column family.
And, each dimension and dimension attributes are mapped to
separate column families and columns in the respective column
families. These families make a table which represents a single
star schema. Whereas in the latter, each fact and dimension is a
compound attribute consists of the measures and dimension
attributes as simple attributes. A fact is considered as a document,
and the measures are within this document. Chevalier and others
[26] extended their work to only document-oriented NoSQL
model. They mapped the rules directly from the multi-dimensional
data model to document-oriented NoSQL model (instead of the
multi-dimensional data model to the relational model to
document-oriented NoSQL model) using three approaches and
compare these approaches concerning performance.

• Dehdouh1 and others [25] uses a column-oriented NoSQL model
to implement a data warehouse. They also used star schema as in
[24] but used three approaches which differ in terms of structure
and its attribute types.

• R. Yangui and others [27] has done a comparative study of the
transformation of data warehouse schema to NoSQL database.
Like [24], they also worked on column-oriented as well as
document-oriented data models. Besides, they proposed two
transformations, i.e., simple and hierarchical transformations.
They used facts and dimensions in simple transformation, whereas
the other transformation uses hierarchies with facts and
dimensions.

• According to D. Prakash [21], the model with only facts and
dimensions have two limitations related to aggregate functions
modelling and recording the history in a star schema. Hence, the
Information model is proposed where information can either be
detailed, aggregate or historical. This model focuses on details of
information instead of just facts and dimensions. Here, the
researcher worked on Cassandra model, which is a column-
oriented NoSQL database.

 Page No. 26

To overcome the limitations of the above models according to [21]
for a document-oriented logical model, we used the rules to convert
the dimensional model (as described in section 4.1) to the document-
oriented logical model. In this work, we used MongoDB as the
document-oriented model.

The implementation is done in two phases:

• Save the GOM4DW model in the database (MSSQL server).

• Retrieving the GOM4DW model from the database and then
converting to MongoDB model using the rules described in
section 5.1.

Chapter 4 Page No. 27

Chapter 4

Generic Object Model For DW

In this chapter, we describe the GOM4DW model and then show the implementation of our tool to

instantiate it.

4.1 Components of GOM4DW

Components of the model are described as shown in the figure 4.1.

1. Data Object: It is also referred to as fact in dimensional modelling. A fact table is a primary

table in a dimensional model [14]. If the data object is contained in another data object, then it

may be treated as a dimension.

2. Attribute: Non-key columns are commonly referred to as attributes. The dimension table

comprises of attributes associated with the dimension entry. These are rich and business-

oriented textual details, such as customer name or product name [15].

3. Category: A category or dimension is a structure that categorizes data in order to enable

users to answer business questions. Data objects can be categorized by categories. Example:

Orders dimension can be categorized by product, location, etc.

4. Category Attributes: Category also comprises of category attributes like attributes of data

objects. Category attributes have change types: Type 1 (Correction of an error in source

systems / Overwriting the old value), Type 2 (A change to preserve old data / Creating a new

additional record) and Type 3 (Soft tentative change, ‘what if’ change / Adding a new

column).

5. History: History of data objects can be maintained on the basis of period/duration and

frequency.

6. Aggregates: These are used in dimensional models of data warehouse to reduce the time it

takes to query large sets of data. An aggregate is a summary table that can be derived by

performing a Group by SQL query [16]. These are a powerful tool for improving query

processing speed in dimensional data marts [15].

https://docs.oracle.com/cd/B10501_01/server.920/a96520/glossary.htm#432012

Chapter 4 Page No. 28

Figure 4.1: GOM4DW Model

Data object can be simple or aggregate and categorized by category as shown in the figure 4.2.

Figure 4.2: Data Object can be simple or aggregate

Chapter 4 Page No. 29

4.2 Implementation
The following screenshots provides implementation of the tool and user interaction.

1. The below screenshot shows the first screen of the tool. A new project can be registered using

the ‘New User’ button where as an existing one can be logged in using login button.

Figure 4.3: Login/Sign Up Screen

2. On Signup, the tool creates a unique project id which will be used to login in future sessions

to work on that project. On pressing next button, the options menu will be displayed.

Figure 4.4: Unique Project Id generated on sign up

Chapter 4 Page No. 30

3. By clicking the login button in figure 4.2, the user will be taken to login screen as shown in

figure 4.5. For logging in, the project id generated at time of registration is to be used.

Figure 4.5: Login Screen

4. Figure 4.6 shows the option menu for the user. The project name gets loaded automatically

from sign up/login details. The options menu consists of basic functionalities i.e. create,

modify and view a data object. The user can choose which data object to view by selecting

from the drop down placed alongside the button ‘View Information’. Further the user can start

conversion process by clicking ‘Proceed to make MongoDB Model’.

Figure 4.6: Options for User

Chapter 4 Page No. 31

5. To instantiate the dimensional model, user will click on ‘create new Information’ button and

can enter the required details. Figure 4.7 shows the example: Orders.

Figure 4.7: Instantiation of Data Object

Chapter 4 Page No. 32

6. Figure 4.8 shows the category attributes that user can enter by clicking on ‘Add Category

Attributes’ button.

Figure 4.8: Category Attributes

Chapter 4 Page No. 33

7. Figure 4. 9 shows the mapping of data objects that user can enter by clicking on ‘Data Object

Mapping’ button.

Figure 4.9: Data Object Mapping

Chapter 4 Page No. 34

8. Figure 4.10 shows the aggregate information user enters by clicking on ‘Add Aggregate Info’

button. This functionality is optional for the user.

Figure 4.10: Aggregate Information

Chapter 4 Page No. 35

9. After pressing save button, on ‘create new information’ window, the user will be asked for

confirmation for the details entered before saving the same to the database in figure 4.11. To

save the user inputs, MS SQL Server is used.

Figure 4.11: Confirmation Screen

Chapter 4 Page No. 36

10. The user can modify the existing information in the project by clicking ‘Modify Information’

button from the options Menu. Figure 4.12 shows example of modification screen where

duration is changed from 1 to 2 years. The user can choose from drop down which data object

he / she wishes to modify.

Figure 4.12: Modify Information

Chapter 4 Page No. 37

11. The user can view the existing information by selecting the data object from drop down

clicking on ‘View Information’ button from the options Menu. Figure 4.13 shows example of view

screen.

Figure 4.13: View Information

Chapter 4 Page No. 38

12. Figure 4.14 shows to model the data object using the conversion rules as discussed in the

section 3.1.3. On clicking “Save” button, a data object is saved according to the rules, and, on clicking

“Model Data Object” button, the rules will be saved in the JavaScript (.js) file.

Figure 4.14: Model Data Object Using Conversion Rules (Section 3.1.3)

Note: MongoDB commands are saved in JavaScript(.js) file, since, all the queries will run

sequentially at once using JavaScript file using the following command after starting mongo

shell.

mongo localhost:27017 "dbScripts/P5_withvalues.js"

Chapter 5 Page No. 39

Chapter 5

In this chapter, we show the conversion rules for converting from GOM4DW schema to a MongoDB

representation. The implementation produces a JavaScript file containing the script that is processed to

yield the MongoDB database for the given GOM4DW schema.

5.1 Conversion Rules to Represent GOM4DW Schema in MongoDB

The following rules are described below to convert a GOM4DW schema in MongoDB [17].

Rule 1: Create a Database for the GOM4DW schema at hand.

use vegetable_trader;

or db = db.getSiblingDB(‘vegetable_trader’);
Rule 2: For every data object, O that is not contained in another data object, create a

MongoDB Collection, C.

db.createCollection("vendor_revenue")
Rule 3: Every attribute of O is a field of C.

db.vendor_revenue.insertOne({

cost:

,quantity:
Rule 4: For every data object, o that is contained in O, create an embedded document in C.

The attributes of o will become the fields of the embedded document.

Rule 5: For every category object, CO, create an embedded document in C. The attributes of

CO will become elements of the embedded document.

,Product:{ SKU: “P11”, name: “Potato”}

,Vendor{ID:”V11”, Name: “ABC”}

,DateP{ datePurchase: new Date(“18-04-2020 11:40”)}

,Quality {number: 5}
Rule 6: For every category, co, contained in CO, two cases arise:

Case 1: If the cardinality is 1:1: Create an embedded document in C with the attributes of co as

the elements of the document.

Case 2: If the cardinality is 1:M where M is a few (<200): Create an array of embedded

documents in C with each document representing an instance of co. The attributes of co

will become elements of the embedded document

Case 3: If the cardinality is 1:M where M is large: Create a separate document for instance of co

with the attributes as elements of the document. Create an array of the ids as

link/references to C

Case 4: If the cardinality is 1:M where M is humungous: To be omitted

,Product:{SKU: “P11”, name: “Potato” , pdtType: [{typeid: 1, name:

“Root”}, { typeid: 99, name: “all round year”}]}

,Vendor:{ID:”V11”, Name: “ABC”}

,DateP{ datePurchase: new Date(“18-04-2020 11:40”)}

, Quality:{number: 5}
Rule 7: If change_type = update then do nothing

 If change_type = no_update then

Chapter 5 Page No. 40

If Case 3 of Rule 6 is selected: then

1. denormalize the attribute with change_type = no_update into the

array

2. add an element CreationTime to C and set the value to current

system timestamp

 else

add an element CreationTime to C and set the value to current system

timestamp

,CreationTime: new Date()

Rule 8: To capture Period, add a new field to the C, Duration. Create a TTL index on the field

Duration. Two possibilities exist

a. Set the value of Duration to current timestamp. Convert the value of the attribute,

period, to seconds. Set the expireAfterSeconds of TTL index to this value

OR

b. Set Duration = Period + current time. Example 5 years will be 14/4/2025 21:00:00. Set

the value of Duration to this value. Use expireAfterSeconds = 0.

,Duration: new Date()}

)

db.vendor_revenue.createIndex({Duration:1}, { expireAfterSeconds

:3600})

Rule 9: Define a surrogate attribute for every category object, C, and add it to the respective

embedded document.

,Product:{PdtKey: 11,SKU: “P11”, name: “Potato” , pdtType: [{typeid:

1, name: “Root”}, { typeid: 99, name: “all round year”}]}

,Vendor: {VendorKey:1, ID:”V11”, Name: “ABC”}

,DateP:{ DateKey: 1 datePurchase: new Date(“18-04-2020 11:40”)}

, Quality:{GradeKey:5, number: 5}
Rule 10: Define separate _id for each document C.

,_id : 47827703

 Points to be considered:

• Normalized Data Models: Include a links/references in another document. Example, User

has its _id. Include this _id as a field in say contact document.

• De-normalized/Embedded Data Models: Effective if cardinality is few (< 200) not many

(>200). Or else document may become too large. Then better to normalize this part. If

cardinality is very large (>few thousands) don’t use array of object ids.

• Disadvantages of embedded document: Cant access the embedded document as a stand-

alone.

• Capped collections: They are good if mainly reads required. Also, indexes can be added.

Note: The converted file (.js file) is only used for the testing purpose since it does not contain

the data to be stored. The script has to be suitably edited at ETL time to include the data so it

can produce the desired MongoDB multidimensional form.

Chapter 6 Page No. 41

Chapter 6

Case Study
6.1 Schema Used

The GOM4DW schema of a vegetable trader is represented in MongoDB. The schema is shown in

Table 6.1.

Table 6.1: Vegetable Trader Schema

No. Category Objects Simple Data Objects Aggregat
e Objects

Categories
over which
aggregated

History

1 Vyapari(name,
address, telephone),
Commission
Rate(rate percent),
Date

Required Re-Stock(Quality
required, Quantity required,
Price, SGST, CGST, Transport
cost, Storage cost)

2 Location(address),
Date

Storage Capacity(Used,
Vacant)

3 Market(Name),
Day,
Quality(quality
rating)

Market Price(Quantity in
Market, Quantity sold in
Market, Price in Market)

 Daily,
2 years

4 Vyapari,
 Date

Agreement to sell (Quality
agreed, Quantity agreed,
Price agreed, Commission
Rate agreed)

 Each
agreement,
5 years

5 Vyapari,
date

Business Ease(easy quality
change, easy new quantity,
easy new price)

6 Vyapari,
Agreement(id),
delivery date

Performance(quality agreed,
quality supplied, quantity
agreed, quantity Supplied,
punctual supply, delivery lead
time)

 Each
performance,
5 years

7 Vyapari, date

Delivery time agreement
(Quality agreed, Quantity
agreed, Delivered Quality,
Original Price agreed, Delivery
time price agreed,
Commission Rate agreed)

 Each delivery,
5 years

8 Vyapari, Day →

Daily Agreement (Quality,
Quantity, Price, Commission
Rate)

 Daily, 5 years

9 Customer(Name,
address),

Sale(Quantity, Amount)

Chapter 6 Page No. 42

date,
Quality,
Mode(cash, credit)

10 Market, day Market Price(Quality, Price)

11 Vyapari, date Discarded Stock(Quantity
thrown)

 Daily, 2 years

12 Vyapari, Customer,
date, Quality

Order(Quantity, Amount) Net
Amount

Quality,
Quantity

13 Vyapari, day, Quality Stock in hand(Total Quantity

in hand)

14 Date

Daily Earning(Quantity,

Selling Rate, Commission

Rate)

15 Vyapari, day

Agreed commission(Quality

agreed, Quantity agreed,

Price agreed, agreed

commission rate)

16 Quality, date Daily Sales(Quantity, Price,

Discount)

17 Customer, day Commission due(quantity,

price, commission amount)

6.2 Validation of Conversion Rules

Applying the rules followed to the part the schema used in the section 6.1, we can create the database

named “market” using the tool based on Rule 1 as shown in Table 6.2.

Table 6.2: Database created after applying Rule 1

db = db.getSiblingDB(‘market’);

As shown in Table 6.3, Rule 2, 3, 5, 7, 9, 10 are applied for data object “performance” as there is no

data object containment and sub-category. Here, quantity supplied, delivery lead time, quality

supplied, quality agreed, punctual supply, quantity agreed are the data object attributes;

vyapari(name), agreement(id), delivery date(date) are the category (and category attributes).

According to Rule 8, index is created.

Chapter 6 Page No. 43

Table 6.3: Collection created and MongoDB queries for insertion of data for “performance” data

object

db.createCollection("performance");

db.performance.insertOne({

_id:,

quantity_supplied:,delivery_lead_time:,quality_supplied:,quality_agreed:,

punctual_supply:,quantity_agreed:,vyapari:{vyapari_key:,name:},agreement:{agre

ement_key:,id:},delivery_date:{delivery_date_key:,date:},CreationTime: new

Date(),

Duration: new Date()});

db.performance.createIndex({Duration:1}, { expireAfterSeconds :157680000});

As shown in Table 6.4, Same rules are applied except Rule 8 for “order” data object as in Table 6.3.

In addition, aggregate information “Net amount” is added with amount as attribute and quality as

category.

Table 6.4: Collection created and MongoDB queries for insertion of data for “order” data object

db.createCollection("order");

db.order.insertOne({

_id:,

amount:,quantity:,date:{date_key:,date:},vyapari:{vyapari_key:,name:},customer:{custome

r_key:,name:},quality:{quality_key:,number:},Net_Amount:{amount:,quality:{quality_key:,

number:}},CreationTime: new Date(),

Duration: new Date()});

Note: The output file and the output file with values are described in Appendix A and

Appendix B respectively.

Chapter 7 Page No. 44

Chapter 7

GOM4DW to RDBMS

We have seen the conversion rules [17] for converting from GOM4DW schema to MongoDB in the

last chapter. Now, we present the rules used for converting the GOM4DW schema to a ROLAP

schema [29]. These rules were used to build a conversion tool.

7.1 Algorithm
The following algorithm is used to convert GOM4DW schema to RDMS [29].

Algorithm: Conversion to multi-dimensional schema

Input: Instantiation of GOM4DW

Output: Snowflake schema for I

1. for Each data object, I not contained in another data object do

2. F:= createfact(I)

3. for Each Attribute, A, of I,

4. addAttribute(A, F);

5. end for

6. for Each data object, O, that contains other data objects do

7. D:= createDimension(O);

8. for Each attribute, A, of O do

9. addAttribute(A, D);

10. end for

11. Link D to F;

12. end for

13. for Each category, C do

14. D:= createDimension(C);

15. if D does not exist then

16. for Each attribute, A, linked to C do

17. addAttribute(A, D);

18. end for

19. if change type=no_update & timestamp does not exit then

20. Add timestamp field to D

21. end if

22. Link D to F;

23. end if

24. else Link already existing D to F and discard current D

25. for Each category, cc, contained in C do

26. SD = createSubDimension(cc)

27. if SD does not exist then

28. for Each attribute, A, linked to cc do

29. Add A to SD as a Dimensional attribute

30. end for

31. if change type=no_update & timestamp does not exit then

32. Add timestamp field to D

33. end if

34. Link SD to D

35. end if

36. else Link already existing SD to D and discard current SD

37. end for

38. end for

Chapter 7 Page No. 45

If Duration of history = n units of time is to be recorded then there is no provision for this in the above
schema and the task is performed at ETL time. For this:

1. Define starting calendar year, month and day of n. For example: if n=5 years, then
start date of recording data can be 1/1/2010.

2. After n units of time are completed, then expired data is removed from the DW as an
additional step in ETL. So, in our example, on 31/12/2014 midnight, data of year 2010
will be removed from the DW. Notice, this additional step has to be performed only
once a year in our example.

For Period = n, perform ETL every n units of time.

7.2 Snowflake Schema

The snowflake schema generated using the algorithm in section 7.1 of the input schema given in

section 6.1.

Chapter 7 Page No. 46

Chapter 7 Page No. 47

Chapter 7 Page No. 48

Chapter 7 Page No. 49

7.3 Comparison Between Relational Schema and MongoDB

Table 7.1 shows the comparison between relational schema and MongoDB. Data object containment

and sub-category key are not described in the schema used in section 6.1*.

Suppose “Storage Capacity” data object is contained in “Required Re-Stock” data object in section

6.1. Then, it can be represented in MongoDB and relational schema as follows:

Chapter 7 Page No. 50

Suppose “Commission Rate” category is a sub-category of “Vyapari” category of “Required Re-

Stock” data object in section 6.1. Then, it can be represented in MongoDB and relational schema as

follows:

Table 7.1: Relational Schema and MongoDB Comparison

Key Relational Schema MongoDB

NULL Values Required Re-Stock Fact has Foreign Key
(Vyapari_Key and Commission_Key). If
any of the Key value is not present in
the Vyapari or Commission dimension,
then there will be the problem of NULL.

Required Re-Stock Data Object has
categories (Vyapari and Commiss-
ion). In the case of NULL values,
MongoDB will handle it by removing
the NULL attributes.

Schema
Representation

There are 17 snowflakes schema
generated where each data object and
category is represented by a fact and
dimension respectively, which is conn-
ected using the concept of a foreign
key.

There are 17 documents generated
where each data object and cate-
gory is represented by a document
and nested document, respectively.

Data Object
Containment*

For every data object that is contained
in a parent data object, a dimension is
created, which is connected to the fact
(parent data object)using the concept
of JOINs.

For every data object that is
contained in a parent data object
(collection), an embedded docu-
ment is created.

Sub Category* For every sub-category of a category, a
dimension is created. A sub-category
is connected to a dimension (category)
using the concept of JOINs.

For every sub-category of a category
, a nested document is created using
the concept of hierarchical data
storage in MongoDB.

Principle ACID (Atomicity, Consistency, Isolation
and Durability) acronym is used to
describe the features of relational
databases.

BASE (Basically Available, Soft State,
Eventual Consistency) acronym is
used to describe the properties of
MongoDB. Here, data inconsistency
is possible, but data is always
available.

Chapter 7 Page No. 51

OLAP Operations:
The OLAP operations are [32] [33] :

• Roll-Up: It performs aggregation on a data cube in either of the following ways:
o By stepping up a concept hierarchy for a dimension
o By reducing a dimension

• Drill-down: It is the reverse operation of roll-up. It is implemented in either of the
following ways:

o By rising down a concept hierarchy for a dimension
o By introducing a new dimension

• Slice: It selects one particular dimension from a given cube and provides a new sub-
cube.

• Dice: It selects two or more dimensions from a given cube and provides a new sub-
cube.

“Storage Capacity” data object from Vegetable Trader Schema in section 6.1 is taken to
illustrate the example in table 7.2.

Table 7.2: OLAP Operations in Relational Schema and MongoDB

OLAP
Operations

Query Relational Schema MongoDB

Roll-up Return the total
used storage across
all used storage at
increasing aggre-
gation levels of
location: from state
to country to region
for different
Quarters.

SELECT Date,
Location ,sum (Used)
AS
Total_used_Storage
FROM
StorageCapacity
GROUP BY ROLLUP
(Date, Location);

db.StorageCapacity.group({
"key":{"ROLLUP(Date, Location)":
true},
"initial":{
"sumUsedASTotal_used_Storage ": 0},
"reduce": function(obj , prev){
prev.sumUsedASTotal_used_Storage=
prev.sumUsedASTotal_used_Storage
+ obj.UsedASTotal_used_Storage - 0;
} });

Drill-down Return the total
used storage across
all used storage at
decreasing aggre-
gation levels of
location: from
region to country to
state for different
Quarters.

SELECT Date,
Location ,sum (Used)
AS
Total_used_Storage
FROM
StorageCapacity
GROUP BY
ROLLDOWN (Date,
Location);

db.StorageCapacity.group({
 "key":{"ROLLDOWN(Date, Location)":
true},
"initial": {
"sumUsedASTotal_used_Storage ": 0},
"reduce": function(obj ,prev){
prev.sumUsedASTotal_used_Storage=
prev.sumUsedASTotal_used_Storage
+ obj.UsedASTotal_used_Storage - 0;
 } });

Facts and
Dimension
Representation

Fact is represented as a table, and each
dimension is represented as separate
tables. Fact tables and dimension
tables generally reference each other.
A fact table contains typically several
primary keys that later form their
entries in the dimension tables. It is
shown in section 7.2.

Fact is represented as a collection
and dimensions are represented as
nested documents or embedded
documents in the collection. It is
shown in section 6.2.

Chapter 7 Page No. 52

Slice Return the total
number of used
storage capacity on
Date “05-05-2020”
sold across all of the
Vegetable Trader
locations

Select Date, sum
(used) from
StorageCapacity wh
ere Date = '2020-05-
05' GROUP BY Date;

db.StorageCapacity.group({
 "key":{ " Date": true},
 "initial": { "sumused ": 0},
 "reduce": function(obj , prev)
{ prev.sumused = prev.sumused +
obj. used - 0;},
 "cond": {
 "Date " : '2020-05-05'} });

Dice Return the total
number of used
storage capacity on
Date “05-05-2020”
in the particular
Vegetable Trader
location of Europe

Select Date, sum
(used) from
StorageCapacity wh
ere Date = '2020-05-
05' and Location =
’Europe’ group by
Date;

db.StorageCapacity.group({
 "key":{ " Date": true},
 "initial": { "sumused ": 0},
 "reduce": function(obj , prev)
{ prev.sumused = prev.sumused +
obj.used - 0; },
 "cond": {
 "$and": [{
 "Date " : '2020-05-05'
 },{ "$where": "this.
Location == this. ’Europe’ "
 }]
 } });

Normalization:

• Fact table is normalized, but the dimension tables are not normalized in the case of a
star schema. A snowflake schema is an expansion of a star schema, and it adds new
dimensions. The dimension tables are also normalized, which splits data into other
tables [30]. It is shown in section 7.2.

• In MongoDB, in case of normalization, you are dividing your data into multiple
collections with references between those collections. Each piece of data will be in a
collection, but various documents will reference it [31]. In MongoDB, the fact and
dimension tables are de-normalized, since dimension tables are represented as
nested or embedded documents. It is shown in section 6.2.

Query capacity: The basic relational algebra operations are shown in table 7.3. “Storage
Capacity” data object from Vegetable Trader Schema in section 6.1 is taken to illustrate the
example.

Chapter 7 Page No. 53

Table 7.3: Relational Algebra Operations in Relational Schema and MongoDB

Relational
Algebra

Operations

Query Relational Schema MongoDB

UNION Returns all the
dates and select
all the locations.

SELECT Date
FROM Date
UNION
SELECT Address
FROM Location;

db. Date.aggregate([{
$lookup:{ from:"Location ",
pipeline: [], as: " Location" } },
{$addFields: { Location: {
$map:{input: “Location", as: "loc",
in: {"type": " Location ",
"address": "$$loc. address ", }
 } } } }, {
$group: { _id: null, Date: {
$push:{ type: "Date",
Date: "$Date" } },
Location: { $first: "$Location" } } }, {
$project: { items: {
$setUnion:["$Date","$Location"]
} } }, { $unwind: "$items" }, {
$replaceRoot:{newRoot: $items" } }
]);

CROSS PRODUCT Returns cross
product if all the
dates and
locations.

SELECT Date,
Address
FROM Date,
Location;

NOT POSSIBLE in MongoDB.
Note: Only LEFT JOIN is possible from
MongoDB 3.2 using $lookup.

SELECTION Returns all the
details of
location.

SELECT * FROM
Location;

db.Location.find({});

DIFFERENCE Returns all the
location key
from Location
which are not
present in
storage capacity.

SELECT
Location_Key
FROM Location
MINUS
SELECT
Location_Key
FROM
StorageCapacity
;

locKey = db.StorageCapacity. distinct
("Location_Key ");

db.Location.distinct("Location_Key",
{ "Location_Key": { $nin: locKey }});

PROJECTIONS Returns the
location key in
storage capacity
where used
storage capacity
is greater than
100.

SELECT
Location_Key
FROM
StorageCapacity
WHERE Used>100;

db.StorageCapacity.find(
{ "Used":{ "$gt" : 100 } },
{ "Location_Key": 1 }
);

Note: A language is relationally complete if the basic relational algebra operation can be

performed: UNION, CROSS PRODUCT, SELECTION, DIFFERENCE, PROJECTIONS [34].

Since the “CROSS PRODUCT” operation cannot be implemented, MongoDB is relationally

incomplete.

Chapter 8 Page No. 54

*The destination schema D is faithful to the source schema S if it does not cause the system to
fall into inconsistency, i.e., D does not violate any constraint of S [28].

Chapter 8

Conclusion

There are mainly two ways in which a Data warehouse is implemented.
One approach is to use the data cube in a multi-dimensional database
directly. These systems give high performance but are not proficient of
containing detailed data. The other method to implement a data
warehouse is to use a relational database. Here, facts and dimensions are
implemented as relational tables. Relational databases have several
disadvantages like relational database allows NULLs, not supporting all
the different types of data that is to be saved, involving join operations
which leads to system performance issues. Hence, we use a document-
oriented NoSQL database, MongoDB. After all the information needs of
the dimensional model of data warehouse has been recognized by the
implementation phase of data objects, we introduce mapping rules using
the concept of the faithfulness of schema* to convert the information
obtained to the logical model of MongoDB. After the mapping of rules,
the commands can be used to perform OLAP operations. We also
illustrate a relational schema for the same case study and lastly compare
between MongoDB and relational schema.

Future work includes:

1. Developing mapping rules for a graph database like Neo4j.

2. Developing mapping rules for key-value databases like Riak.

Bibliography Page No. 55

Bibliography

[1] “Replication and sharding in mongodb tutorial — simplilearn.”
 https://www.simplilearn.com/ replication-and-sharding-mongodb-tutorial-video.

[2] “Nosql tutorial: Learn nosql features, types, what is, advantages.”
https://www.guru99.com/nosql-tutorial.html.

[3] Wikipedia contributors, “Mongodb — Wikipedia, the free encyclopedia.”

https://en.wikipedia.org/w/index.php?title=MongoDB&oldid= 927312653, 2019. [Online;
accessed 21-November-2019].

[4] Dan Sullivan. 2015. NoSQL for Mere Mortals (1st. ed.). Addison-Wesley Professional.

[5] “Introduction to document databases with mongodb — derick rethans.”

https://derickrethans.nl/introduction-to-document-databases. html.

[6] “Mongodb - datatypes - tutorialspoint.” https://www.tutorialspoint.
com/mongodb/mongodb_datatype.htm.

[7] “db.collection.find() — mongodb manual.” https://docs.mongodb.com/

manual/reference/method/db.collection.find/.

[8] “Mongodb - aggregation - tutorialspoint.” https://www.tutorialspoint.
com/mongodb/mongodb_aggregation.htm.

[9] “Mongodb indexing tutorial with example.” https://beginnersbook.

com/2017/09/mongodb-indexing-tutorial-with-example/.

[10] “Mysql master-slave replication tutorial — toptal.” https://www.toptal. com/mysql/mysql-
master-slave-replication-tutorial.

[11] “What is blob data type in mysql?.” https://www.tutorialspoint.com/ What-is-BLOB-data-

type-in-MySQL.

[12] “Openedge.” https://documentation.progress.com/output/ua/
OpenEdge_latest/index.html#page/dmsrf/blob-limitations.html.

[13] “Databases and collections — mongodb manual.” https://docs.mongodb.

com/manual/core/databases-and-collections/.

[14] “Difference between fact table and dimension table.” https://www.guru99.com/fact-
table-vs-dimension-table.html.

[15] C. Ballard, D. M. Farrell, A. Gupta, C. Mazuela, and S. Vohnik, Dimensional Modeling: In a

Business Intelligence Environment. Vervante, 2006.

[16] Aggregate (data warehouse) - wikipedia.”
https://en.wikipedia.org/wiki/Aggregate_(data_warehouse).

[17] Prakash D., Data warehouse design using Document Stores, internal report, dept. of CSE,

NIIT University, Neemrana, Rajasthan.

[18] “What is data warehouse? types, definition & example.” https://www.guru99.com/data-
warehousing.html.

[19] “Data warehousing - relational olap - tutorialspoint.”

https://www.tutorialspoint.com/dwh/dwh_relational_olap.htm.

https://www.simplilearn.com/replication-and-sharding-mongodb-tutorial-video
https://www.simplilearn.com/replication-and-sharding-mongodb-tutorial-video
https://www.guru99.com/nosql-tutorial.html
https://www.guru99.com/nosql-tutorial.html
https://en.wikipedia.org/w/index.php?title=MongoDB&oldid=927312653
https://en.wikipedia.org/w/index.php?title=MongoDB&oldid=927312653
https://derickrethans.nl/introduction-to-document-databases.html
https://derickrethans.nl/introduction-to-document-databases.html
https://www.tutorialspoint.com/mongodb/mongodb_datatype.htm
https://www.tutorialspoint.com/mongodb/mongodb_datatype.htm
https://www.tutorialspoint.com/mongodb/mongodb_datatype.htm
https://docs.mongodb.com/manual/reference/method/db.collection.find/
https://docs.mongodb.com/manual/reference/method/db.collection.find/
https://docs.mongodb.com/manual/reference/method/db.collection.find/
https://www.tutorialspoint.com/mongodb/mongodb_aggregation.htm
https://www.tutorialspoint.com/mongodb/mongodb_aggregation.htm
https://www.tutorialspoint.com/mongodb/mongodb_aggregation.htm
https://beginnersbook.com/2017/09/mongodb-indexing-tutorial-with-example/
https://beginnersbook.com/2017/09/mongodb-indexing-tutorial-with-example/
https://beginnersbook.com/2017/09/mongodb-indexing-tutorial-with-example/
https://www.toptal.com/mysql/mysql-master-slave-replication-tutorial
https://www.toptal.com/mysql/mysql-master-slave-replication-tutorial
https://www.toptal.com/mysql/mysql-master-slave-replication-tutorial
https://www.tutorialspoint.com/What-is-BLOB-data-type-in-MySQL
https://www.tutorialspoint.com/What-is-BLOB-data-type-in-MySQL
https://www.tutorialspoint.com/What-is-BLOB-data-type-in-MySQL
https://documentation.progress.com/output/ua/OpenEdge_latest/index.html%23page/dmsrf/blob-limitations.html
https://documentation.progress.com/output/ua/OpenEdge_latest/index.html%23page/dmsrf/blob-limitations.html
https://documentation.progress.com/output/ua/OpenEdge_latest/index.html%23page/dmsrf/blob-limitations.html
https://docs.mongodb.com/manual/core/databases-and-collections/
https://docs.mongodb.com/manual/core/databases-and-collections/
https://docs.mongodb.com/manual/core/databases-and-collections/
https://www.guru99.com/fact-table-vs-dimension-table.html
https://www.guru99.com/fact-table-vs-dimension-table.html
https://en.wikipedia.org/wiki/Aggregate_(data_warehouse)
https://www.guru99.com/data-warehousing.html
https://www.guru99.com/data-warehousing.html
https://www.tutorialspoint.com/dwh/dwh_relational_olap.htm

Bibliography Page No. 56

[20] “Data warehousing - multidimensional olap - tutorialspoint.”
https://www.tutorialspoint.com/dwh/dwh_multidimensional_olap.htm.

[21] D. Prakash., “Nosolap: Moving from data warehouse requirements to nosql databases,” in

Proceedings of the 14th International Conference on Evaluation of Novel Approaches to
Software Engineering - Volume 1: ENASE, , pp. 452–458, INSTICC, SciTePress, 2019.

[22] Wikipedia contributors, “Nosql — Wikipedia, the free encycloedia.”
https://en.wikipedia.org/w/index.php?title=NoSQL&oldid=954869460, 2020.

[23] N. Gupta, Comparison of relational database and MongoDB, internal report, dept. of CSE,

IIIT Delhi, New Delhi.

[24] M. Chevalier, M. El malki, A. Kopliku, O. Teste, and R. Tournier, “Implementing
multidimensional data warehouses into nosql,” ICEIS, vol. 1, 04 2015.

[25] K. Dehdouh, O. Boussaid, and F. Bentayeb, “Big data warehouse: Building columnar nosql

olap cubes,” International Journal of Decision Support System Technology, vol. 12, pp. 1–
24, 01 2020.

[26] Chevalier, Max and El Malki, Mohammed and Kopliku, Arlind and Teste, Olivier and

Tournier, Ronan Implementation of Multidimensional Databases with Document-Oriented
NoSQL. (2015) In: 17th International Conference on Big Data Analytics and Knowledge
Discovery (DaWaK 2015) in 26th DEXA Conferences and Workshops, 1 September 2015 - 4
September 2015 (Valencia, Spain).

[27] R. Yangui, A. Nabli, and F. Gargouri, “Automatic transformation of data warehouse schema

to nosql data base: Comparative study,” Procedia Computer Science, vol. 96, pp. 255 –
264, 2016. Knowledge-Based and Intelligent Information Engineering Systems:
Proceedings of the 20th International Conference KES-2016.

[28] T. Schaub, G. Friedrich, and B. O’Sullivan, ECAI 2014: 21st European Conference on

Artificial Intelligence 18-22 August 2014, Prague, Czech Republic. Ios Pr Inc, 2014.

[29] D. Prakash, “Direct conversion of early information to multi-dimensional model,” in
Database and Expert Systems Applications - 29th International Conference, DEXA 2018,
Regensburg, Germany, September 3-6, 2018, Proceedings, Part II (S. Hartmann, H. Ma, A.
Hameurlain, G. Pernul, and R. R. Wagner, eds.), vol. 11030 of Lecture Notes in Computer
Science, pp. 119–126, Springer, 2018.

[30] “Star and snowflake schema in data warehouse.” https://www.guru99.com/star-

snowflake-data-warehousing.html.

[31] “Mongodb: Normalizationvsdenormalization-dev.” https://dev.to/damcosset/mongodb-
normalization-vs-
denormalization#:~:text=What%20is%20normalization%3F,multiple%20documents%20will
%20reference%20it.

[32] “Datawarehousing-olap-tutorialspoint.”

https://www.tutorialspoint.com/dwh/dwh_olap.htm.

[33] “Data cube operations - sql queries - perficient blogs.”
https://blogs.perficient.com/2017/08/02/data-cube-operations-sql-queries/.

[34] “Relationalquerylanguages—relationalcompleteness dbmsenotes.”

http://dbmsenotes.blogspot.com/2014/08/relational-query-languages-relational.html

https://www.tutorialspoint.com/dwh/dwh_multidimensional_olap.htm
https://www.guru99.com/star-snowflake-data-warehousing.html
https://www.guru99.com/star-snowflake-data-warehousing.html
https://dev.to/damcosset/mongodb-normalization-vs-denormalization#:~:text=What%20is%20normalization%3F,multiple%20documents%20will%20reference%20it
https://dev.to/damcosset/mongodb-normalization-vs-denormalization#:~:text=What%20is%20normalization%3F,multiple%20documents%20will%20reference%20it
https://dev.to/damcosset/mongodb-normalization-vs-denormalization#:~:text=What%20is%20normalization%3F,multiple%20documents%20will%20reference%20it
https://dev.to/damcosset/mongodb-normalization-vs-denormalization#:~:text=What%20is%20normalization%3F,multiple%20documents%20will%20reference%20it
https://blogs.perficient.com/2017/08/02/data-cube-operations-sql-queries/

Appendix A Page No. 57

Appendix A

Output File

Description:

The file in JavaScript format shows the output generated by the tool bases on the conversion rules given in the

section 5.1. Here, P5 is the project name.

Filename:

P5.js

Appendix B Page No. 58

Appendix B

Output File (with values)

Description:

The file in JavaScript format shows the manual data inserted into the file to run the MongoDB queries directly using

the following command:

mongo localhost:27017 "dbScripts/P5_withvalues.js"

Here, P5 is the project name.

Filename:

P5_withvalues.js

\

Curriculum Vitae (CV) Page No. 59

Curriculum Vitae (CV)

Education

Indraprastha Institute of Information Technology, New Delhi

M. Tech – CSE (2018 – 2020)

CGPA (Current):

6.7

NRI Institute of Information Science and Technology, Bhopal

B. Tech – CSE (2010 – 2014)

CGPA:

8.13

St. Xavier’s Sr. Sec. Co-Ed School, Bhopal (M.P.)

CBSE (2009 – 2010)

Percentage: 74

St. Xavier’s Sr. Sec. Co-Ed School, Bhopal (M.P.)

CBSE (2007 – 2008)

Percentage: 78.6

Work Experience

Assistant System Engineer – Trainee (Team Member)

TCS ILP Training

Project – Managing Student’s Data

Objective - To manage student’s data of a college using CRUD

operations.

Programming Language – Visual C#

(Dec,14 – Feb,15)

 Team Size-4

Systems Engineer (Java / Web Developer)

TCS

Project – Khajane II (Karnataka IFMS)

Objective - Computerization of all the treasuries in the state of

Karnataka and connecting them to a central server at the state

secretariat.

Programming Language and Tools – Java, iReport, Eclipse, DB2

Technologies – JavaScript, Hibernate, JSP, CSS, Spring

 (Mar,15 – Jun,18)

Projects and Papers

 M. Tech Thesis (Aug,19 – July,20)

 Guide: Dr. Naveen Prakash Team Size-1

 Objective – Representing Dimensional Model in MongoDB

 Programming Language and Tools – MongoDB Shell, MS SQL Server,

 Java, JavaFX

Independent Study

Guide: Dr. Naveen Prakash, Dr. Samaresh Chatterji

Objective – Comparison of Relational database and MongoDB

 (May,19 – July,19)

 Team Size-1

NEHA GUPTA
Email: neha18113@iiitd.ac.in

 DOB: October 08, 1992

mailto:neha18113@iiitd.

Curriculum Vitae (CV) Page No. 60

Emotion, Gender and Text Classification on Speech

Guide: Dr. Richa Singh

Objective – Classification of emotional state, spoken text, and gender on

human speech using Machine Learning techniques.

Programming Language and Tools – Python, Jupyter Notebook

(Feb,19 – Apr,19)

Team Size-2

Term Paper (Feb,19 – Apr,19)

Guide: Dr. Naveen Prakash Team Size-2

Objective – Aspect-Oriented Programming

Interests and Hobbies

• Research – NoSQL Databases, Data Warehouse

• Technical – Software development (Java), Machine Learning (Python)

• Travelling

• Painting

Declaration: The above information is correct to the best of my knowledge.

Neha Gupta

Date: May 22, 2020

