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Abstract

Automating the process of melody generation from lyrics has been a challenging

research task in the field of artificial intelligence. Lately, however, music-related

datasets have become available at large-scale, and with the advancements of deep

learning techniques, it has become possible to better explore this task. In particular,

Generative Adversarial Networks (GANs) have shown a lot of potential in generation

tasks involving continuous-valued data such as images. In this work, however, we

explore Conditional Generative Adversarial Networks (CGANs) for discrete-valued

sequence generation, in particular, we exploit the Gumbel-Softmax relaxation tech-

nique to train GANs for discrete sequence generation. We propose a novel archi-

tecture, Three Branch Conditional (TBC) LSTM-GAN for melody generation from

lyrics. Through extensive experimentation, we show that our proposed model out-

performs the baseline models by generating tuneful and plausible melodies from the

given lyrics.
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Chapter 1

Introduction

1.1 Motivation and goal of the project

Songwriting is one of the creative human endeavors. Typically, during songwriting,

a musician either writes the lyrics for a song first and then tries to compose a melody

to match the lyrics or composes a melody for a song first and then write lyrics to

fit the melody. From the perspective of automation of the songwriting process, this

gives rise to two very interesting and related problems. These are lyrics generation

from a melody and melody generation from lyrics. In this work, we restrict ourselves

to the latter one, i.e., melody generation from lyrics.

We aim to build a model for lyrics-conditioned melody generation that can cap-

ture the correlations that exist between segments of lyrics and patterns in a melody.

We define lyrics as a sequence of syllables and a melody as a sequence of triplets

of discrete-valued music attributes. Each triplet of music attributes in a melody is

composed of MIDI number, duration, and rest. The MIDI number (or pitch) refers

to the frequency of a musical note, the duration refers to the length of time we play

a musical note and the rest indicates the length of silence after a playing a musical

note. The data we need for this task is composed of a collection of melody-lyrics

pairs where the melody and lyrics are aligned note-syllable level i.e., corresponding

to each triplet of discrete-valued music attributes in a melody we have a syllable in

the lyrics.
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1.2 Solution and Challenges

In a general sense, we can consider the task of melody generation from lyrics as a

sequence-to-sequence task whereby we are given a lyrics i.e. a sequence of syllables

and we want to generate a melody i.e., a sequence of discrete-valued triplets of

music attributes. In this work, we explore the framework of Generative Adversarial

Networks (GANs) as a potential solution for the task at hand. More precisely, we

propose a novel architecture, Three Branch Conditional (TBC) LSTM-GAN, which

generates melody conditioned on the lyrics.

The problem of melody generation from lyrics is intrinsically challenging in na-

ture due to the existence of a many-to-many mapping between a melody and lyrics.

It means that for a given melody there can exist multiple lyrics and for a given lyrics

there can exist multiple melodies i.e. there is no fixed melody for the given lyrics.

This poses a real challenge, especially, during the evaluation phase, because, as

such, there does not exist any single metric that can measure the generated melody

for the given lyrics both qualitatively and quantitatively. Moreover, measuring the

quality of a melody is subjective in nature. Another important issue that we en-

counter is the inability to train GANs for discrete data generation. As we will see

later, we employ the Gumbel-Softmax relaxation technique to overcome this issue.

First, some useful research background is presented in Chapter 2 and the archi-

tecture of the used model is detailed in Chapter 3. Experiments are presented in

Chapter 4. Conclusion and future works are discussed in Chapter 5.

2



Chapter 2

Background work

2.1 Related Words

2.1.1 Music Generation

Automating the process of music composition through computational techniques has

been studied since the 1950s [Hiller and Isaacson, 1958]. More recently, [Rodriguez

and Vico, 2014] conducted an elaborate study related to music composition through

algorithmic methods. Lately, various techniques of shallow and deep learning have

shown promising results for lyrics assisted melody generation. [Ackerman and Loker,

2016] proposed a songwriting system, ALYSIA, based on Random Forest that gen-

erates a set of sample melodies when given a short lyrical phrase. [Bao et al., 2018]

adopted a sequence-to-sequence framework to develop a melody composition model.

To produce notes together with the corresponding alignment they use a a hierar-

chical decoder and a couple of encoders for the lyrics and context melody. [Yu and

Canales, 2019] have proposed an LSTM based GAN architecture that uses a quan-

tization framework to discretize its continuous-valued output and generate melodies

for the given lyrics.

2.1.2 Discrete Data Generation using GANs

The task of melody generation from lyrics is one of conditional discrete-sequence

generation. In this work, we intend to harness the power of GANs as a potential
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solution to our problem. GANs were proposed by [Goodfellow et al., 2014], and

designed originally to generate continuous-valued data like images. Lately, however,

GANs have been used for sequence generation tasks, specifically generation of text,

which is discrete in nature. However, using GANs for discrete sequence generation is

not straightforward and an active area of research. The reason being, during discrete

data generation, the output of the generator is non-differentiable due to which stan-

dard gradient-based algorithms cannot be used to train the model. Recently, two

types of strategies have been explored to deal with the non-differentiability problem

arising from discrete data generation using GANs. The first one is based on the RE-

INFORCE algorithm [Williams, 1992] and the second one is based on reformulating

the problem in the continuous space.

More recently, a wide variety of GANs for discrete data generation, especially

for text generation, have relied on the RL methods to train the model. SeqGAN [Yu

et al., 2017] for instance, bypasses the generator differentiation problem through the

use of policy gradient methods [Sutton et al., 2000]. MaliGAN [Che et al., 2017]

overcomes the difficulty of backpropagation through discrete random variables by

optimizing a low variance maximum-likelihood objective. RankGAN [Lin et al.,

2017] uses a rank-based discriminator instead of the binary classifier and is opti-

mized through policy gradient techniques. LeakGAN [Guo et al., 2018] lets the

discriminator leak high-level features it has learned to the generator and guides it.

In this way, it allows the generator to incorporate intermediate information during

each generation step. MaskGAN [Fedus et al., 2018] resorts to a seq2seq model and

propose an action-critic CGAN that fills the missing text missing by conditioning

on the context surrounding it.

Lately, GANs, for discrete data generation, have relied on either working in

a continuous space or approximating the discreteness. Conditional LSTM-GAN

[Yu and Canales, 2019] for lyrics-assisted melody generation, for instance, uses a

quantization framework to discretize the continuous-valued output it generates. The

quantization scheme they adopt constraints the generated continuous-valued music

attributes to their closest discrete value. TextGAN [Zhang et al., 2017] and FM-

GAN [Chen et al., 2018] apply an annealed softmax relaxation to approximate the
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argmax operation at the output of the generator. ARAE [Zhao et al., 2018] uses

an auto-encoder module to transform discrete data into a continuous latent space

to avoid the issue of non-differentiability. RELGAN [Nie et al., 2019] applies the

gumbel-softmax relaxation for training GANs on discrete data.

2.2 Basics of music theory

6
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Figure 2.1: Alignment between the lyrics and melody

The data for our task is composed of a collection of melody-lyrics pairs aligned

at the note-syllable level. In the music terminology, each such melody-lyrics pair in

the dataset is known as the digital music score. Formally, a music score is composed

of a melody score augmented with syllable information for each melody note. The

digital music score is helpful in analyzing the correlations that exist between the

melody and its corresponding lyrics.

Figure 2.2: Relationship between note duration and note

Figure 2.3: Relationship between rest values and corresponding symbols

5



As we observe from the figure 2.1, we play a single note at a time, therefore

we can say that a melody is monophonic in nature. The left-most symbol in a

music score is known as the G-clef and it denotes the reference pitch. The vertical

position of a music note relative to the reference pitch decides the pitch of a note.

In a music score, a measure is composed of 4 beats and is denoted by a vertical line.

The duration of a musical note and the length the rest that follows a note depends

on the symbol used to depict it. In figure 2.2 we show the relationship between a

musical note (depicted by a symbol) and the value of duration. In figure 2.3 we

show the correspondence between values of rest and symbols used to denote it.

Note MIDI number Pitch

B3 59 247 Hz

C4 60 262 Hz

C]4 or D[4 61 277 Hz

D4 62 294 Hz

D]4 or E[4 63 311 Hz

E4 64 330 Hz

F4 65 349 Hz

F]4 or G[4 66 370 Hz

G4 67 392 Hz

G]4 or A[4 68 415 Hz

A4 69 440 Hz

A]4 or B[4 70 466 Hz

B4 71 494 Hz

C5 72 523 Hz

Table 2.1: Correspondance between Note-Pitch

For instance, a quarter note depicted by ˇ “ lasts a quarter measure or a single

beat. An eighth note depicted ˇ “( lasts an eighth measure or a half-beat. Similarly, a

quarter rest depicted by > lasts a quarter measure or a single beat. When we place

a dot next to a musical note or a rest, then its duration is extended by a factor of

1.5. As an example, ˇ “‰ lasts for 1/4× 1.5 = 3/8 measure (or 1.5 beat). We denote a

musical note by a letter (C, D, E, F , G, A or B) – and optionally a symbol [ (flat)

or ] (sharp)–, followed by a number (which indicates in which frequency range the

6



note is played)1. In Table 2.12, we show the correspondence that exists between the

musical note, MIDI number, and the pitch.

2.3 Long-Short Term Memory

Long-Short Term Memory (LSTM) is a variant of Recurrent Neural Networks (RNNs)

proposed by [Hochreiter and Schmidhuber, 1997]. Unlike the standard RNN archi-

tecture, the design of LSTM enables it to learn long term dependencies that exist

in sequential data and overcome the problem of vanishing gradient [Pascanu et al.,

2012] suffered by RNNs.

Figure 2.4: Architecture of LSTM cell

Figure 2.4 shows the general architecture of the LSTM cell. LSTM units are

composed of three gates namely the input, forget, and the output gate. These three

gates are used to control the information flow in the LSTM cell. The key aspect of

the LSTM cell is the cell state, ct. The input gate is used to add new information

1https://en.wikipedia.org/wiki/Musical note
2https://newt.phys.unsw.edu.au/jw/notes.html
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to the cell state, the forget gate is used to forget information from the cell state and

the output gate is used to compute the output, by filtering the contents of the cell

state. At time-step t, the three states of the gates of the LSTM cells are given by:

it = σ(wi[ht−1, xt] + bi) (2.1)

ft = σ(wf [ht−1, xt] + bf ) (2.2)

ot = σ(wo[ht−1, xt] + bo) (2.3)

where it, ft and ot denote the input, forget and output gates, ht−1 is the output

state of the LSTM at previous time-step, w’s and b’s are weights and biases, and xt

is the input of the LSTM cell. Then, the current output of the cell is computed by:

ht = ot ◦ tanh(ct) (2.4)

where ◦ denotes the point-wise multiplication between vectors, and ct = ft ◦ ct−1 +

it ◦ c̃t, with c̃t = tanh(wc[ht−1, xt] + bc).

2.4 Skip-gram models

Skip-gram model with negative sampling famously known as Word2Vec was proposed

by [Mikolov et al., 2013]. It is a prediction based model that is used to learn dense

representations for words in a corpus. In this work, we use two pre-trained skip-gram

models as lyric-encoders. The first skip-gram model is trained on the syllable-level

lyrics data to learn syllable-level embeddings. The second skip-gram model is trained

on the word-level lyrics data to learn word-level embedding.

To train a Word2Vec model we consider the task of language modelling. The

training data can be any text corpus such as Wikipedia. Figure 2.5 shows the

architecture of skipgram model. Formally, let D represent the set of correct word

pairs (w, c) in the corpus. And, let D′ represent the set of incorrect word pairs (w, r)

in the corpus. Let vw, uc, ur be the representation of the word w and context word

c and r respectively. Considering all (w, c) ∈ D, we want to

8



Figure 2.5: Skip-gram model

maximize
θ

∏
(w,c)∈D

P (z = 1|w, c) (2.5)

where, for a given (w, c), P (z = 1|w, c) = σ(uTc vw) and θ is the word represen-

tation (vw) and context representation (uc) for all words in our corpus. Considering

all (w, r) ∈ D′, we want to

maximize
θ

∏
(w,r)∈D′

P (z = 0|w, r) (2.6)

where, for a given (w, r), P (z = 0|w, r) = 1 − σ(uTr vw). Combining equations

2.5 and 2.6,

maximize
θ

∏
(w,c)∈D

P (z = 1|w, c)
∏

(w,r)∈D′
P (z = 0|w, r) (2.7)

maximize
θ

∏
(w,c)∈D

P (z = 1|w, c)
∏

(w,r)∈D′
(1− P (z = 1|w, r))

maximize
θ

∑
(w,c)∈D

logP (z = 1|w, c)
∑

(w,r)∈D′
log(1− P (z = 1|w, r))

9



maximize
θ

∑
(w,c)∈D

log σ(uTc vw)
∑

(w,r)∈D′
log σ(−uTr vw)

where σ(x) = 1
1+e−x . We sample k negative (w, r) pairs for every positive (w, c)

pair hence the size of D′ is k times the size of D. In figure 2.5 the skipgram model

is shown.

2.5 Generative Adversarial Networks (GANs)

GANs were introduced by [Goodfellow et al., 2014] and since then have been applied

successfully to various generation tasks. In this section, we offer a brief overview of

GANs. We will also discuss its conditional version, i.e., CGANs introduced by [Mirza

and Osindero, 2014].

GANs

A GAN is composed of two models: a generative model G and a discriminative

model D. The goal of the generator is to learn the distribution of the training data

whereas the goal of the discriminator is to distinguish between the samples from the

training data and the generated samples. The training procedure of the generator

is designed to maximize the probability of the discriminator making a mistake.

Therefore, in a way, the GAN framework corresponds to a minimax two-player

game. The architecture of a generator and discriminator can correspond to any

non-linear function, such as a multi-layered perceptron (MLP).

The generator learns a mapping, G(z; θg) from a prior noise distribution pz(z)

to the data space to capture the generator distribution pg over the data x. The

discriminator, D(x; θd), outputs a probability estimate that x is sampled from the

training data instead of pg. Figure 2.6 shows the architecture of a GAN.

We train the generator and discriminator simultaneously such that, the parame-

ters of the generator are adjusted to minimize log(1−D(G(z))) while parameters of

the discriminator are adjusted to minimize log(D(X)). The contradictory objectives

of the G and D are captured by the value function V (G,D) given by

10



Figure 2.6: Generative adversarial network

min
G

max
D

Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z)))] (2.8)

Conditional GANs

We can easily extend a GAN to a conditioned model by conditioning both the

generator and discriminator by some additional information y. Here, y can be any

kind of auxiliary information, such as class labels or data from other modalities.

For our problem of lyrics assisted melody generation, as we will see in chapter 3,

we condition both the generator and discriminator model by a sequence of syllables

i.e. lyrics. Figure 2.7 shows the architecture of CGAN. We combine the prior input

noise pz(z) and y in a joint hidden representation in the generator network. In the

discriminator, we present x and y as inputs. The objective function of a two-payer

minimax game is given as

min
G

max
D

Ex∼pdata(x)[logD(x|y)] + Ez∼pz(z)[log(1−D(G(z|y)))] (2.9)

where y is the condition vector.

11



Figure 2.7: Conditional adversarial network

2.6 Gumbel-Softmax Relaxtion

Training GANs using discrete-valued data such as text leads to the critical issue

of non-differentiability. Due to this, the parameters of the generator cannot be

updated and hence the generator cannot learn during the training phase. To mit-

igate this problem of non-differentiability, and enable the training of the generator

various techniques have been used in the past. Mostly these revolve around the

REINFORCE algorithm [Williams, 1992] and its variants that have their roots in

reinforcement learning (RL).

More recently, the Gumbel-Softmax relaxation technique has been used to train

GANs for text generation, a discrete data generation task [Nie et al., 2019]. In

contrast to the usage of RL heuristics, using Gumbel-Softmax simplifies our model

and allows us to remain in the realm of the GAN framework. Therefore, in this work,

we use the Gumbel-Softmax relaxation to enable the training of GANs for discrete

data generation. Before we discuss the Gumbel-Softmax relaxation, we consider the

task of text generation using a GAN with a recurrent neural network (RNN) based
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generator to better understand the issue of non-differentiability.

The task of text generation involves generating a sequence of tokens such that

each token belongs to the vocabulary V of the underlying data. When using an

RNN based generator, we generate one token at a time step. Let |V | denote the size

of the vocabulary and let ot ∈ R|V | denote the output logits, at time t. Then, we

can obtain the next generated one-hot token yt+1 ∈ R|V | by sampling given as

yt+1 ∼ softmax(ot) (2.10)

where softmax(ot) represents a multinomial distribution over the set of all pos-

sible tokens present in V . The sampling from a multinomial distribution depicted

in equation 2.10 is a non-differentiable operation, this implies the presence of a step

function at the output of the generator. Since the derivative of a step function is

zero, we have ∂yt+1

∂θG
= 0. Using the chain rule, we can see that the gradients of the

generator loss lG w.r.t. θG will be

∂lG
∂θG

=

T−1∑
i=0

∂yt+1

∂θG

∂lG
∂yt+1

= 0 (2.11)

Now, because ∂lG
∂θG

is zero, an update signal cannot flow back to the genera-

tor via the discriminator and hence the generator cannot learn. This is the non-

differentiability problem encountered in GANs during discrete data generation.

By applying the Gumbel-Softmax relaxation we can solve the problem of non-

differentiability encountered during the training of GANs for discrete data genera-

tion. The Gumbel-Softmax approximates samples from a categorical distribution by

defining a continuous distribution over a simplex [Jang et al., 2016,Maddison et al.,

2016]. The Gumbel-Softmax relaxation is composed of two parts which include the

Gumbel-Max trick and relaxation of the discreteness. Using the Gumbel-Max trick

we can reparameterize the non-differentiable sampling operation in equation 2.10 as

yt+1 = one hot(arg max1≤i≤|V |(o
(i)
t + g

(i)
t )) (2.12)

where o
(i)
t denotes the ith entry of ot and g

(i)
t is from i.i.d standard Gumbel

13



distribution i.e. g
(i)
t = − log(− logU

(i)
t ) with U

(i)
t ∼ Uniform(0, 1). Reparameteri-

zation of the sampling operation in equation 2.10 is one part of the solution since the

argmax operation in equation 2.12 is non-differentiable in nature. So, now we relax

the discreteness by approximating the “one-hot with argmax” by softmax given as

ŷt+1 = σ(β(ot + gt)) (2.13)

where β > 0 is a tunable parameter called inverse temperature. Since ŷt+1 in

equation 2.13 is differentiable w.r.t. ot, we can use it instead of yt+1 as the input to

the discriminator.

2.7 Kullback–Leibler divergence

Kullback–Leibler(KL) divergence is used as a measure to calculate the difference

between two probability distributions. It assumes a value of 0 when the two prob-

ability distributions are same. Formally, let us consider a random variable X =

{x1, · · · , xn}. Let Y = {y1, · · · , yn} and Ŷ = {ŷ1, · · · , ŷn} be the true and predicted

probability distribution of X. Then the entropy is given by

HY = −
n∑
i=1

yi log yi (2.14)

and cross entropy are given by

HY,Ŷ = −
n∑
i=1

yi log ŷi (2.15)

using 2.14 and 2.15, we can define the KL-divergence by

DKL(Y ‖Ŷ ) = HY,Ŷ −HY

= −
n∑
i=1

yi log ŷi +

n∑
i=1

yi log yi
(2.16)
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2.8 Evaluation Metrics

Evaluation of GANs is an active area of research [Theis et al., 2015,Semeniuta et al.,

2018]. One of the challenges we face during the evaluation of generated samples is the

lack of a single metric that can be used to simultaneously measure the quality and

diversity of generated samples. Moreover, as we have mentioned earlier, measuring

the quality of the generated melody is subjective in nature and depends on various

factors.

Nevertheless, we use the Self-BLEU score [Zhu et al., 2018] to measure the diver-

sity of generated samples and Maximum Mean Discrepancy (MMD) [Gretton et al.,

2012] to measure the sample quality. Further, we conduct a subjective evaluation

to measure the quality of the sample.

2.8.1 Self-BLEU

The Self-BLEU score is to measure the diversity of the generated samples. To

measure the diversity of samples generated by GANs is an important aspect of

evaluating GANs since they are susceptible to mode collapse. The value of the

Self-BLEU score ranges between 0 and 1. The diversity of the generated samples is

inversely proportional to the value of Self-BLEU. The lower the value of Self-BLEU

the higher the sample diversity and the lesser the chance of mode collapse of the

GAN model. Similarly, the higher the value of Self-BLEU the lower the sample

diversity and more the chance of mode collapse of the GAN model.

We know that the BLEU score [Papineni et al., 2002] aims to assess the similarity

between two sentences, and therefore, it can be used to evaluate the resemblance be-

tween one sentence and rest in a generated collection. By considering one generated

sample as a hypothesis and the rest of the generated samples as reference, we can

calculate the BLEU score for each generated sample and define the average BLEU

score to be the Self-BLEU score.
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2.8.2 Maximum Mean Discrepancy (MMD)

The objective of GAN training is that the generator is able to learn the underlying

distribution of the training data. Therefore, it is intuitive to assume that if the

generator is indeed able to learn the underlying distribution of the data then it will

be able to generate high-quality samples. The MMD estimator is helpful to estimate

and compare the statistical distributions when given two sets of samples. The value

of MMD ranges between 0 and 1 indicating how likely two sets of samples are coming

from the same distribution. A value of 0 indicates that the two sets are sampled

from the same distribution.

To compare two statistical distributions, the MMD is used. Let F be a reproduc-

ing kernel Hilbert space (RKHS), with the kernel function k(x, x′) := 〈φ(x), φ(x′)〉,

with continuous feature mapping φ(x) ∈ F from each x ∈ X . Assume x ∼ Px and

y ∼ Py. Then,

MMD2(F , Px, Py) = E[k(x, x′)]− 2E[k(x, y)] + E[k(y, y′)]. (2.17)

If Px and Py are different, an unbiased quadratic-time estimate of the MMD

exists, and the following statements are proven in [Gretton et al., 2012]. Let Xm :=

{x1, . . . , xm} and Yn := {y1, . . . , yn} be two sets of independently and identically

distributed (i.i.d) samples from Px and Py respectively. Then, an unbiased empirical

estimate of MMD2 is given by:

MMD2
u(F , Xm, Yn) =

1

m(m− 1)

m∑
i=1

m∑
j 6=i

k(xi, xj)

+
1

n(n−1)

n∑
i=1

n∑
j 6=i

k(yi, yj)−
2

mn

m∑
i=1

n∑
j=1

k(xi, yj).

(2.18)

2.8.3 Subjective Evaluation

To measure the quality of a melody generated for a given lyrics is a challenging task.

A melody should be plausible as well as tuneful. As mentioned before, there does not

exist any metric which can be used to measure the quality of a melody accurately.
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This warrants the need for subjective evaluation [Yu and Canales, 2019].

To this end we select 3 different lyrics randomly from the dataset and according

we obtain melodies using the baseline model, the proposed model and the ground

truth. We use Synthesizer V 3 to synthesize the generated melody and lyrics. We

invite [number] random subjects to listen to the generated melodies. We play the

lyrics synthesized melody in random order three times.For each melody played, we

ask the subjects to answer three questions

1. How about the entire melody?

2. How about the rhythm?

3. Does the melody fit the lyrics well?

The subjects give a score between 1 and 5 for each question. Here, a score of 1

corresponds to very bad, 2 to bad, 3 to OK, 4 to good, and 5 to very good.

3https://synthesizerv.com/en/
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Chapter 3

Methodology

In this chapter, we will describe the dataset and the architecture of the proposed

model, Three Branch Conditional(TBC) LSTM-GAN. Also, we describe the archi-

tecture of one of the baseline models, Single Branch Conditional (SBC) LSTM-GAN.

3.1 Data

The data [Yu and Canales, 2019] for our task is composed of a collection of melody-

lyrics pairs aligned at the note-syllable level. In the data, a melody is represented

by a sequence of triplets of music attributes. Each triplet is composed of the MIDI

number of the musical note, the duration of the note, and the length of rest that

follows the note. Further, a lyrics is represented by a sequence of syllables.

Figure 3.1: Dataset distribution of music attributes

MIDI number is a discrete variable and it can take 128 possible values rang-
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ing from 0 to 127. The temporal attributes, duration, and rest are also discrete in

nature and assume values that represent the time they last with a single beat repre-

sented by a unity. In figure 3.1, we can observe the distribution of MIDI numbers,

note duration and rest values in our dataset respectively. In the data, there are

100 distinct MIDI numbers, 12 distinct duration values, and 7 distinct rest values

present. In this work, we work with sequences of length 20 i.e. each lyrics contains

20 syllables and each melody contains 20 triplets of music attributes, one triplet of

music attribute corresponding to each syllable in the lyrics.

As we have mentioned in section 2.4, in this work, two pre-trained skip-gram

models are used as lyric-encoders. To encode the lyrics, we need to get the embedded

representation for each syllable in the lyrics. We obtain the embedded representation

for a syllable in two steps. In the first step, we use the syllable-level skip-gram to

obtain a syllable-level embedding. In the second word, we fetch the representation

of the word corresponding to the syllable using the word-level skip-gram model.

We then concatenate the syllable-level and word-level representations to obtain the

syllable embedding.

Formally, we denote Ew(.) and Es(.) as word-level and syllable-level skip-gram

models respectively. Let s be a syllable from word w present in a lyrics then a

dense representation for a syllable is given by Ew(w)||Es(s) where Ew(w) ∈ R10

and Es(s) ∈ R10 therefore the dimensionality of overall representation for a syllable

is 20.

Our goal is to generate a melody, a sequence of triplets of music attributes

denoted by Y = [y1, . . . , yT ] from the given lyrics, a sequence of syllables denoted

by X = [x1, . . . , xT ]. Here, yi = {yMIDI
i , ydurationi , yresti } represents the ith triplet of

music attributes present in the melody, and xi represents the ith syllable present in

the lyrics.

3.2 Architecture

In this section, we describe the architecture of the proposed model for melody gen-

eration from lyrics. We train the proposed model by considering the alignment
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relationship between the melody and lyrics. The proposed model is composed of

three main components: a LSTM-based generator to model long term dependencies,

the Gumbel-Softmax relaxation to felicitate the training of the GAN on discrete

data and a LSTM-based discriminator for long-distance dependency modeling and

to provide meaningful updates to the generator.

We know that a melody is a sequence of “triplets of music attributes” such that

each triplet is composed of a MIDI number, duration of musical note and a rest

value. There are two key strategies we can adopt to design the generator for melody

generation conditioned on the lyrics. In the first strategy, we build a generator to

output three sequences : a sequence of MIDI numbers, a sequence of duration values

and a sequence rest values. We can then align these three sequences to obtain the

melody. In the second strategy, we build a generator to output a single sequence

of triplets of music attributes. In this work, we will use both the strategies and

show empirically, Three Branch Conditional (TBC) LSTM-GAN designed using the

first strategy is better than Single Branch Conditional (SBC) LSTM-GAN designed

using the second strategy.

3.2.1 Three Branch Conditional (TBC) LSTM-GAN

Figure 3.2 shows the overall architecture of the TBC LSTM-GAN model.

Generator

The role of generator is to generate a melody conditioned on the lyrics. The gen-

erator is composed of three identical and independent sub-networks responsible for

generating a sequence of MIDI numbers, a sequence duration values and a sequence

of rest values respectively. We align the three output sequences to assemble a melody

for the given lyrics.

Formally, we are given a lyrics i.e. a sequence of syllables X = [x1, . . . , xT ] and

we want to generate a sequence of MIDI numbers YMIDI = [yMIDI
1 , . . . , yMIDI

T ],

a sequence of duration values Y duration = [yduration1 , . . . , ydurationT ] and a sequence

of rest values Y rest = [yrest1 , . . . , yrestT ]. As mentioned earlier, in this work, we use

sequences of length T = 20. We know, there are 100 distinct MIDI numbers, 12
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Figure 3.2: Overall architecture of TBC-LSTM-GAN

distinct duration values and 7 distinct rest values present in the data therefore

we can represent a MIDI number, duration value and rest value by a 100, 12, 7

dimensional one-hot vector respectively.

Since each sub-network in the generator is identical in nature, we will only explain

the forward pass of the sub-network responsible for generating a sequence of MIDI

numbers. In Algorithm 1 we provide a succinct description of the forward pass and

in figure 3.3, we show the architecture of the sub-network. Formally, we are given a

lyrics i.e. a sequence of syllables X = [x1, . . . , xT ] such that xi ∈ R20 and we want

to generate a sequence of MIDI numbers ŶMIDI = [ŷMIDI
1 , . . . , ŷMIDI

T ] such that
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ŷMIDI
i ∈ R100.

Figure 3.3: Architecture of TBC-LSTM-GAN generator sub-network

Algorithm 1: TBC-LSTM GAN generator sub-network forward pass

1 Sample ŷMIDI
0 from Uniform(0, 1)

2 for t← 1, · · · , T do

3 zt ← FCrelu(FClinear(ŷ
MIDI
t−1 )‖xt)

4 zt ← LSTM(zt)

5 ŷMIDI
t ← GumbelSoftmax(FClinear(zt))

6 end

At the tth timestep, the input to the sub-network is the syllable xt and the MIDI

number generated during the previous timestep ŷMIDI
t−1 . To obtain an embedding or

dense representation of the ŷMIDI
t−1 we pass it through a fully connected layer with a

linear activation. We learn the embedding of MIDI number during the training. We

then concatenate the syllable xt with the embedded MIDI representation and pass

it through a fully connected layer with ReLU activation to obtain the intermediate
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representation zt. We then pass zt through a LSTM module with two LSTM layers.

The output of the LSTM module is then passed through a fully connected layer

with linear activation to obtain the output logits, ot ∈ R100. To obtain the one-hot

approximation of generated MIDI number for the tth timestep, ŷMIDI
t we apply the

Gumbel-Softmax relaxation on ot.

We repeat the entire procedure for T timesteps to generate a sequence of MIDI

numbers, ŶMIDI = [ŷMIDI
1 , . . . , ŷMIDI

T ] for the given lyrics, X = [x1, . . . , xT ]. Sim-

ilarly, we generate a sequence of duration values Ŷ duration = [ŷduration1 , . . . , ŷdurationT ]

and a sequence of rest values, Ŷ rest = [ŷrest1 , . . . , ŷrestT ] using the other two sub-

networks respectively. By aligning the three generated sequences we can assemble

the melody for the given lyrics.

Discriminator

The role of discriminator is to distinguish between a real melody and a generated

melody. The discriminator is a LSTM-based network to model long term dependen-

cies and provide informative signals for generator updates.

Formally, we are given a lyrics i.e. a sequence of syllables X = [x1, . . . , xT ]

such that xi ∈ R20 and a melody (real or generated). As mentioned earlier, in

this architecture, we represent a melody by three separate sequences: a sequence

of MIDI numbers, YMIDI = [yMIDI
1 , . . . , yMIDI

T ] where yMIDI
i ∈ R100, a sequence

of duration values, Y duration = [yduration1 , . . . , ydurationT ] where ydurationi ∈ R12, and a

sequence of rest values, Y rest = [yrest1 , . . . , yrestT ] where yresti ∈ R7.

Algorithm 2: TBC-LSTM GAN discriminator forward pass

1 for t← 1, · · · , T do

2 zt ← FCrelu(FClinear(y
MIDI
t )‖FClinear(ydurationt )‖FClinear(yrestt )‖xt)

3 zt ← LSTM(zt)

4 logitst ← FClinear(zt)

5 end

At the tth timestep, the input to the discriminator is the syllable xt , MIDI num-

ber yMIDI
t , duration value ydurationt , and rest value yrestt . We first embed the MIDI

number, duration and rest values by passing them through a fully connected layer
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Figure 3.4: Architecture of TBC-LSTM-GAN discriminator

with linear activation. The embedded representation of MIDI number, duration,

rest and syllable are then concatenated together to form a joint representation of

syllable conditioned music attribute triplet. This joint representation is then passed

through a fully connected layer with ReLU activation to obtain an intermediate

representation zt. We then pass zt through a LSTM module. The output of the

LSTM module is then passed through a fully connected layer with linear activation

to obtain the output logits, ot ∈ R. We repeat the entire procedure for T timesteps

to generate a sequence of output logits [o1, . . . , oT ] such that oi ∈ R. We then com-

pute the mean of [o1, . . . , oT ] and use the average logit for calculating the loss. In

Algorithm 2 we provide a succinct description of the forward pass and in figure 3.4,

we show the architecture of the discriminator.

3.2.2 Single Branch Conditional (SBC) LSTM-GAN

We know, in our data, a melody is composed of a sequence of triplets of music

attributes. To train SBC-LSTM-GAN, we first build a vocabulary of triplets of

music attributes. To this end, 3397 unique triplets are extracted from the data. We
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can hence denote a melody by y = [y1, · · · , yT ] such that yi ∈ R3397. In figure 3.5

we show the overall architecture of the SBC-LSTM-GAN.

Figure 3.5: Overall architecture of SBC-LSTM-GAN

Generator

Formally, we are given a lyrics i.e. a sequence of syllables X = [x1, · · · , xT ] and

we want to generate a melody i.e. sequence of triplets of music attributes Y =

[y1, · · · , yT ]. As mentioned earlier, in this work, we use sequences of length T = 20.

We know there are 3397 distinct triplets of music attributes present in the data

therefore we can represent a triplet of music attributes by a 3397 dimensional one-

hot vector. In Algorithm 3 we provide a succinct description of the forward pass

and in figure 3.3, we show the architecture of the generator.

25



Figure 3.6: Architecture of SBC-LSTM-GAN generator

Algorithm 3: SBC-LSTM GAN generator forward pass

1 Sample ŷ0 from Uniform(0, 1)

2 for t← 1, · · · , T do

3 zt ← FCrelu(FClinear(ŷt−1)‖xt)

4 zt ← LSTM(zt)

5 ŷt ← GumbelSoftmax(FClinear(zt))

6 end

Given a sequence of syllables X = [x1, · · · , xT ] such that xi ∈ R20, we want to

generate a melody Ŷ = [ŷ1, · · · , ŷT ] such that ŷi ∈ R3397. At the tth timestep, the

input to the generator is the syllable xt and the music triplet generated during the

previous timestep ŷt−1. To obtain an embedding or dense representation of ŷt−1 we

pass it through a fully connected layer with a linear activation. We learn the em-

bedding of the triplet of music attributes during the training. We then concatenate

the syllable xt with the embedded triplet representation and pass it through a fully
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connected layer with ReLU activation to obtain the intermediate representation zt.

We then pass zt through a LSTM module with two LSTM layers. The output of the

LSTM module is then passed through a fully connected layer with linear activation

to get the output logits, ot ∈ R3397. To obtain the one-hot approximation of gener-

ated music triplet for the tth timestep, ŷt we apply the Gumbel-Softmax relaxation

on ot. We repeat the entire procedure for T timesteps to generate a sequence of

music triplets, Ŷ = [ŷ1, · · · , ŷT ] for the given lyrics, X = [x1, · · · , xT ].

Discriminator

Figure 3.7: Architecture of SBC-LSTM-GAN discriminator

Algorithm 4: SBC-LSTM GAN discriminator forward pass

1 for t← 1, · · · , T do

2 zt ← FCrelu(FClinear(yt)‖xt)

3 zt ← LSTM(zt)

4 logitst ← FClinear(zt)

5 end

Formally, we are given a lyrics i.e. a sequence of syllables X = [x1, · · · , xT ] such
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that xi ∈ R20 and a melody (real or generated) i.e. a sequence of triplets of music

attributes Y = [y1, · · · , yT ] such that yi ∈ R3397. At the tth timestep, the input

to the discriminator is the syllable xt , and triplet of music attribute, yt. We first

embed the music triplet by passing it through a fully connected layer with linear

activation. The embedded representation of the music triplet and syllable are then

concatenated together to form a joint representation of syllable conditioned music

attribute triplet. This joint representation is then passed through a fully connected

layer with ReLU activation to obtain an intermediate representation zt. We then

pass zt through a LSTM module with two LSTM layers. The output of the LSTM

module is then passed through a fully connected layer with linear activation to

obtain the output logits, ot ∈ R. We repeat the entire procedure for T timesteps

to generate a sequence of output logits [o1, · · · , oT ] such that oi ∈ R. We then

compute the mean of [o1, · · · , oT ] and use the average logit for calculating the loss.

In Algorithm 4 we provide a succinct description of the forward pass and in figure

3.7, we show the architecture of the discriminator.
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Chapter 4

Experiments and discussion

In this chapter, we discuss the experiments performed to show the effectiveness of

the proposed model, TBC-LSTM-GAN for lyrics-conditioned melody generation.

The data [Yu and Canales, 2019] for our task is composed of a collection of 13,251

melody-lyrics pairs aligned at the note-syllable level. We randomly split the data in

the ratio of 8:1:1 to create the train, validation and test sets.

As a baseline for the proposed model, TBC-LSTM-GAN, we use TBC-LSTM-

MLE, SBC-LSTM-GAN, SBC-LSTM-MLE, and Conditional-LSTM-GAN [Yu and

Canales, 2019]. The TBC-LSTM-MLE and SBC-LSTM-MLE models are the genera-

tors of TBC-LSTM-GAN and SBC-LSTM-GAN which are trained with the standard

MLE objective.

In this work, we have experimented with two different loss functions during the

adversarial training. These include the non-saturating standard GAN [Goodfellow

et al., 2014], and the Relativistic standard GAN (RSGAN) [Jolicoeur-Martineau,

2019]. Empirically, we have found the RSGAN function to be the most suitable loss

function for our task.

Before we commence the adversarial training, we pretrain the generator for sev-

eral epochs using the standard MLE objective. During the pre-training stage, we

have used the categorical cross-entropy loss function.
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Table 4.1: Configuration of the generator and discriminator in TBC-LSTM-GAN

Branch Layer 1 : FC(Linear) Layer 2 : FC (ReLU) Layer 3 : LSTM Layer 4 : FC (Linear)
# units # units depth # units # units

MIDI 128 32 2 64 100
Generator Duration 64 16 2 32 12

Rest 32 8 2 16 7

MIDI 128
Discriminator Duration 64 32 2 64 1

Rest 32

Table 4.2: Configuration of the generator and discriminator in SBC-LSTM-GAN

Layer 1 : FC(Linear) Layer 2 : FC (ReLU) Layer 3 : LSTM Layer 4 : FC (Linear)
# units # units depth # units # units

Generator 128 64 2 32 3397

Discriminator 128 64 2 32 1

4.1 Experimental Setup

We use the Adam optimizer with β1 = 0.9 and β2 = 0.99. We perform gradient

clipping if the norm of the gradients exceeds 5. Initially, the generator network is

pre-trained with the MLE objective for 40 epochs with a learning rate of 0.01. We

then perform adversarial training for 120 epochs with a learning rate of 0.01 for

both the generator and discriminator. Each step of adversarial training is composed

of a single discriminator step and a single generator step. The batch size is set

to 512 and a maximum temperature βmax = 1000 is used during the adversarial

training. The configuration of generator and discriminator for TBC-LSTM-GAN

and SBC-LSTM-GAN is summarized in table 4.1 and 4.2 respectively.

4.2 Music Quantitative Evaluation

To quantitatively measure the melody generated by the proposed model against the

different baselines, we compute different music properties [Yu and Canales, 2019].

The music properties are based on MIDI number and temporal music attributes. A

melody is a sequence of triplet of music attributes namely MIDI number, duration

and rest. Given a melody, we can extract a sequence of individual music attributes

and compute the following properties.
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1. MIDI Number Span: It corresponds to the difference between the largest

and smallest MIDI number found in a sequence of MIDI numbers.

2. 3-MIDI Number repetitions : It corresponds to the number of 3-gram

repetitions found in a sequence of MIDI numbers.

3. 2-MIDI Number repetitions : It corresponds to the number of 2-gram

repetitions found in a sequence of MIDI numbers.

4. Number of unique MIDI numbers : It corresponds to the number of

unique MIDI numbers found in a sequence of MIDI numbers.

5. Number of notes without rest : It corresponds to the number of null /

zero rests found in a sequence of rest values or the number of notes present in

the melody with zero rest.

6. Average rest value within a song : It corresponds to the average value of

rest given a sequence of rest values i.e. the average period of silence in a given

melody.

7. Song length : It corresponds to the sum of note duration and rest duration

values for a given melody.

Table 4.3: Metrics evaluation of in-songs attributes

Ground Truth C-LSTM-GAN TBC-LSTM-GAN SBC-LSTM-GAN TBC-LSTM-MLE SBC-LSTM-MLE

2-MIDI numbers repetitions 13.54 9.58 11.72 6.52 11.09 6.33
3-MIDI numbers repetitions 5.81 2.28 3.76 1.33 3.17 1.25
MIDI numbers span 10.77 7.65 11.59 13.82 13.86 14.40
Number of unique MIDI numbers 5.88 5.08 5.89 6.86 06.00 06.87
Average rest value within song 0.77 0.63 0.75 0.76 01.17 0.79
Number of notes without rest 15.58 16.70 15.95 15.68 12.72 15.49
Song length 43.25 39.16 42.93 39.62 54.81 43.10

We summarize the results in table 4.3. From the table, it is evident that the pro-

posed model TBC-LSTM-GAN is the closest to the ground-truth for MIDI related

song attributes and outperforms other baseline models. For temporal attributes, the

proposed model is very close to the ground truth. The proposed model outperforms

C-LSTM-GAN [Yu and Canales, 2019] in all properties.
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We also visualize the transition between MIDI numbers which is an important

music attribute. Figure 4.1 shows the MIDI number transition in the melodies gener-

ated by the proposed model, TBC-LSTM-GAN, the ground truth, and baseline mod-

els including Conditional LSTM-GAN, TBC-LSTM-MLE, SBC-LSTM-GAN and

SBC-LSTM-MLE. As we can observe from the figure and the value of KL diver-

gence (2.16), it is evident that the proposed model best approximates the MIDI

number transition in the ground truth.

Figure 4.1: Distribution of transitions

4.3 Quality and Diversity Evaluation

In this work, we use the Self-BLEU score to measure the diversity and the MMD

score to measure the quality of the generated melodies. Additionally, we perform

subjective evaluation to measure the sample quality.

4.3.1 Quality Evaluation

In the figure 4.2, we show the trend of MMD on the testing data during the training.

The pre-training and adversarial training stages are separated by the dotted line as

shown in the figure. At the start of pre-training, the MMD is high indicating poor
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Figure 4.2: Training curves of of MMD scores on testing dataset

quality samples being generated. As we advance into pre-training, the MMD value

decreases initially but then stagnates. At the start of an adversarial train, the MMD

value initially (upto epoch 50) increases indicating deteriorating sample quality but

then continues to decrease (upto epoch 100) indicating improving sample quality.

The MMD value then stagnates indicating no change in sample quality.

4.3.2 Diversity Evaluation

Figure 4.3: Training curves of self-BLEU scores on testing dataset

In the figure 4.3, we show the trend of Self-BLEU score on the testing data dur-

ing the training. The pre-training and adversarial training stages are separated by

the dotted line as shown in the figure. During the pre-training stage, the value of
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Self-BLEU does not change much and there is no observable trend. At the start of

an adversarial train, the value for Self-BLEU score increases (upto epoch 50) indi-

cates deteriorating sample diversity. However, as the adversarial training progresses,

we observe a decreasing trend of Self-BLEU score indicating improved diversity of

generated samples.

4.3.3 Subjective Evaluation

Figure 4.4: Subjective Evaluation Results

We perform subjective evaluation based on the procedure described in sub-

section 2.8.3 as a means to compare the performance of the proposed model with

the baseline models. Results of subjective evaluation are shown in figure 4.4. It is

clear from the results that the proposed model, TBC-LSTM-GAN outperforms other

baseline models and generates melodies closest to human compositions. Further, we

can observe that there exists a gap between the quality of melodies generated by

the proposed model and the ground-truth. This indicates that there is room for

improvement.

4.4 Generated music

In figure 4.5 we show three examples of generated melody by the trained TBC-

LSTM-GAN model using random lyrics from testing set. The lyrics are taken from
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songs Run To You (written by Whitney Houston), Catch My Fall (written by Billy

Idol), I Love My Friend (written by Andy Williams).

 
 
 

 
 
 

 

Figure 4.5: Sheet music for generated melodies

35



Chapter 5

Conclusion and future work

In this work, we proposed a model, TBC-LSTM-GAN and a baseline, SBC-LSTM-

GAN for lyrics-conditioned melody generation. We used a LSTM-based generator

to learn the correlation between segments of lyrics and patterns in the melody.

We used a LSTM-based discriminator to model long term dependency and provide

informative updates to the generator. We exploited the Gumbel Softmax relaxation

technique to train a GAN for discrete sequence generation.

Through various experiments we have shown the effectiveness of the proposed

model, TBC-LSTM-GAN in generating plausible and tuneful melodies from lyrics.

In particular, through quantitative measurements including MIDI related music at-

tributes and MIDI number transition, we have shown that the proposed model best

approximates the ground-truth. Also, through subjective evaluation we have shown

that the proposed model is the closest to the ground-truth with respect to the qual-

ity of generated melodies. Further, we showed how the quality and diversity of

generated samples improves as the adversarial training progresses.

We can therefore conclude that the proposed model, TBC-LSTM-GAN outper-

forms the baseline methods for lyrics assisted melody generation. Also, empirically,

we can say that a GAN architecture designed with three branches where each branch

is dedicated to a specific music attribute is better than a GAN architecture with a

single branch.

Lyrics-conditioned melody generation is a challenging task in terms of design,
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implementation and evaluation. As evident from the results of subjective evaluation,

our proposed model fails to outperform the ground-truth. Therefore, there is still

room for improvement. In this work we work with sequences of length 20 and use

Skip-gram models for lyrics encoding. In the future work, we can work with longer

sequences and try transformer-based lyrics encoding schemes. Furthermore, we col-

lect and label more data from a variety of music genres to evaluate the robustness

of our model. As part of future work, we can explore other interesting related tasks

such as melody conditioned lyrics generation.
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