
A Recommendation System Involving
Human-in-the-loop to Improve the Quality

of Ontologies

Student Name: Pramit Bhattacharyya
IIIT-D-MTech-CS-20-MT18142

July, 2020

Indraprastha Institute of Information Technology
New Delhi

Thesis Advisors
Dr. V. Raghava Mutharaju

Submitted in partial fulfillment of the requirements
for the Degree of M.Tech. in Computer Science & Engineering,

without Specialization

©2020 IIIT-D-MTech-CS–20-MT18142
All rights reserved

Certificate

This is to certify that the thesis titled "A Recommendation System Involving
Human-in-the-loop to Improve the Quality of Ontologies" submitted by Pramit
Bhattacharyya for the partial fulfillment of the requirements for the degree of Master of
Technology in Computer Science & Engineering is a record of the bonafide work carried
out by him under my guidance and supervision at Indraprastha Institute of Information
Technology, Delhi. This work has not been submitted anywhere else for the reward of any
other degree.

Dr. V. Raghava Mutharaju
Indraprastha Institute of Information Technology, New Delhi

2

Abstract

Building an ontology is not only a time-consuming process, but it is also confusing, espe-
cially for beginners and the inexperienced. Although ontology developers can take the
help of domain experts in building an ontology, they are not readily available in several
cases for a variety of reasons. Ontology developers have to grapple with several questions
related to the choice of classes, properties, and the axioms that should be included. Apart
from this, there are aspects such as modularity and reusability that should be taken
care of. From among the thousands of publicly available ontologies and vocabularies
such as Linked Open Vocabularies (LOV), it is hard to know the terms (classes and
properties) that can be reused in the development of an ontology. A similar problem
exists in implementing the right set of ontology design patterns (ODPs) from among the
several available. Generally, ontology developers make use of their experience in handling
these issues, and the inexperienced ones have a hard time. In order to bridge this gap,
we propose a tool named OntoSeer, that monitors the ontology development process and
provides suggestions in real-time by interacting with the ontology developers to improve
the quality of the ontology under development. It can provide suggestions on the naming
conventions to follow, vocabulary to reuse, ODPs to implement, and axioms to be added
to the ontology. OntoSeer has been implemented as a Protégé plug-in and is available at
github link https://github.com/kracr/ontoseer.

https://github.com/kracr/ontoseer

Keywords: Ontology Engineering, Ontology Quality, Ontology Design Pattern, LOV, and
Protégé plug-in

i

Acknowledgments

I would like to express my deepest gratitude to my advisor Dr. V. Raghava Mutharaju
for his guidance and support. I would like to thank him for his mentorship at every stage
of this thesis work. I would not have been able to complete my thesis work this smoothly
in IIIT Delhi without his consistent support.

I would also like to thank the thesis committee members for evaluating my work. I want
to thank my friends and college mates for their immense support. Most importantly,
none of this would have happened without my family’s love and patience - my parents
Late Amalendu Bhattacharyya, and Tuhina Bhattacharyya, to whom this thesis
is dedicated. I would also like to thank my elder sister Mrs. Ishita Bhattacharyya,
my brother-in-law Mr. Santanu Debnath, and my nephew Master Amrut Debnath,
and my cousin Dr. Anup Bhattacharya for their continuous support throughout the
process.

ii

Contents

1 Introduction 1

2 Background 3
2.0.1 Basic Terminologies . 3
2.0.2 Ontology Modelling . 8

3 Related Work 11

4 OntoSeer Description 14
4.0.1 Class, Property, and Vocabulary Recommendation 14
4.0.2 Naming Convention and Suggestion 16
4.0.3 Axiom Recommendation . 18
4.0.4 ODP Recommendation . 19
4.0.5 Class Hierarchy Verification . 20
4.0.6 Challenges Faced and Efforts Required in building OntoSeer 22

5 Evaluation 26
5.0.1 Dataset . 26
5.0.2 User Study . 27

6 Sustainability Plan 33

7 Conclusion 34

iii

List of Figures

2.1 Representation of book ontology in schematic form. 4
2.2 Linked Open Data cloud diagram giving an overview of published data sets

and their interlinkage relationships. 6
2.3 Figure showing AgentRole ODP, a commonly used ODP describing its usage. 8
2.4 Steps involved in ontology modelling according to MethOntology Approach. 9

4.1 A schematic representation of input and output for OntoSeer’s features. . . 15
4.2 Vocabulary Recommendation from OntoSeer on querying class Person. The

output is based on the result returned by LOV search query. 16
4.3 The naming recommendation for the selected concept is shown. The recom-

mended name follows the naming convention for classes. 17
4.4 Axiom recommendations on Person class.We have ignored the IRI’s for sim-

plicity of the image. The recommendation is based on ranking implemented
by OntoSeer. 19

4.5 OntoSeer’s ODP recommendations on providing “College” as intent and
“University” as domain. 20

4.6 OntoSeer showing the rigidity, identity, unity values of objects mentioned
in Ontoclean. 23

4.7 OntoSeer’s user inputs to question for class hierarchy valiadation. In this
figure no violation to Table 4.2 mentioned standards has been done. 23

4.8 OntoSeer verifying the class hierarchy subsumption based on rigidity, iden-
tity, unity mentioned in Table 4.2. Here no violations to rigidity, identity
and unity constraints has been done which is shown in output. 24

4.9 OntoSeer’s user inputs to question for class hierarchy valiadation. In this
figure violations to Table 4.2 mentioned standards has been done. 24

4.10 OntoSeer verifying the class hierarchy subsumption based on rigidity, iden-
tity, unity mentioned in Table 4.2. Here violations to rigidity, identity and
unity constraints has been done which is shown in output. 24

iv

5.1 Figure shows users expertise with Protégé and in ontology modelling. . . . 28
5.2 Figure shows the percentage of users being aware of LOV and the frequency

of using LOV by knowledgeable users. 29
5.3 Figure shows the percentage of users being aware of ODP and the frequency

of using ODP by knowledgeable users. 29
5.4 Figure represent user evaluation of class and property recommendations

with CQs. 30
5.5 Figures represent user evaluation of various Vocabulary Suggestion without

and with CQs. 30
5.6 Figures represent user evaluation of various Axiom Recommendation without

and with CQs. 31
5.7 Figures represent user evaluation of various Naming Conventions without

and with CQs. 31
5.8 Figures represent user evaluation of various ODP Recommendation without

and with CQs. 31
5.9 Figure shows user response on consumption of modelling time by OntoSeer. 32

v

List of Tables

4.1 Object described in OntoClean . 21
4.2 Table showing values of rigidity, identity, unity for class hierarchy validation 22

5.1 OntoSeer Feature Result without CQs . 29
5.2 OntoSeer Feature Result with CQs . 30

vi

vii

Chapter 1

Introduction

Ontology is a machine-interpretable shared vocabulary of basic concepts of a domain
and relationships among them. Ontology finds its primary usage in knowledge-based
applications where they are used for sharing knowledge among the researchers.
Ontology development is generally a group activity, where domain experts, ontology
developers, and other stakeholders meet to discuss and develop an ontology. This makes
ontology development time consuming and expensive process, especially if the scope
of the ontology is broad. It is not always possible to take the help of domain experts
either because they are not available for the entire duration of the ontology development
process or are not available at all. Another issue is that the ontology developer could be
inexperienced. Even experienced developers face issues while building ontologies, and this
problem only magnifies in the case of inexperienced developers. They will have to deal
with several questions, such as the following.

• What should be the classes, properties, and instances in this domain?

• Which classes should be related to each other?

• Are there any classes, properties, or instances that can be reused?

• How should the ontology be made modular?

• What naming conventions should be followed?

• If something has to be a property, should it be an object property or a data property?

• Should something be a class, or a property, or an instance?

• What should be the class hierarchy? Is it correct?

• Does the ontology answer the competency questions set forth initially by the devel-
opment group?

1

• Is the ontology too big? Should it be divided into multiple smaller modules?

• What should be some of the axioms in the ontology?

Experienced ontology developers may be able to answer some of these questions and make
better design decisions. But even for them, it will be hard to keep track of all the new
vocabularies, ontologies, and the ontology design patterns [10] that get published in the
repositories. Our proposed tool, named OntoSeer, is a Protégé plug-in that works with
the ontology developer during the ontology development process and gives suggestions in
real-time that can lead to better quality ontologies. The contributions of this work are as
follows.

• A tool that recommends classes, properties, axioms, and ontology design patterns
to (re)use based on the description, competency questions, and the ontology under
development.

• A mechanism to provide suggestions of names to use during the ontology development.
These suggestions follow the naming conventions.

• Integration with Protégé (available as a plug-in) to improve the ontology development
experience.

2

Chapter 2

Background

2.0.1 Basic Terminologies

Ontology

According to Gruber, “An ontology is a formal, explicit specification of a shared conceptu-
alization.” [8]

• formal: ontology should be defined in a formal language.

• explicit specification: concepts, relations between them, and the constraints on them
should be explicitly defined.

• shared: ontology should be a shared view between several parties, a consensus rather
than an individual view.

• Conceptualization: ontology should be an abstract, simplified view of the world that
we wish to represent for some purpose.

Some of the reasons for building an ontology are:

• To act as a medium for sharing the understanding of the structure of information
among researchers.

• For enabling reuse of domain knowledge.

• For making domain assumptions explicit.

• For separating domain knowledge from the operational knowledge.

• For analyzing domain knowledge.

3

Figure 2.1: Representation of book ontology in schematic form.

Figure 2.1 shows a book ontology where “Book” class is related to the “Author” class
by “hasAuthor” property. Again, “Book” class is related to the “Publisher” class by
“hasPublisher” property.
SNOMED-CT1 and GeneOntology2 are some of the widely used ontology in the medical
domain with more than 28000 axioms.

OWL (Web Ontology Language)

OWL is a knowledge representation language used to build ontologies. There are three
types of entities in OWL. They are as follows.

1. Classes: Classes are the focus of most ontologies. Classes describe concepts in
the domain. For example, a class of wines represents all wines. Specific wines are
instances of this class. A class can have subclasses that represent concepts that are
more specific than the superclass. For example, we can divide the class of all wines
into red, and white wines [5].

2. Roles or Properties: Also defined as roles, properties connect one class with
another or one individual with another individual or a class with an individual.
There are two types of properties.

• Object properties or Abstract roles: They connect individual to individual.
For example, a role defined to connect the person’s name to the organization
he is affiliated with.

• Concrete roles or Data property: They connect an individual to data
values. For example, a role connecting a person to their first name.

1http://www.snomed.org/
2http://geneontology.org/

4

http://www.snomed.org/
http://geneontology.org/

3. Instances or Individuals: They are the instances or constants in the domain. For
example, mary (is a Woman), julie (is a Parent). Here mary is the instance of a
class woman, while julie is the instance of a class parent.

Axioms

We will define axiom with the help of an example. Let A be an atomic class, i.e., a class
name, and let R be an (abstract) role. Statements or Axioms in OWL are divided into
two groups, namely, into TBox statements and ABox statements. The TBox contains
terminological (or schema) knowledge, while the ABox contains assertional knowledge
about instances (i.e., individuals). Formally, a TBox consists of statements of the form
C@D, where C and D are class expressions. An ABox, on the other hand, consists of
statements of form C(a) and R(a, b), where C is a class expression, R is a role, and a, b
are concepts.

Competency Questions

Michael Grüninger and Mark Fox defined competency questions as the questions an
ontology should be competent to answer [7]. Let us consider a family ontology consisting
of the names of all the family members. This family ontology should be able to answer
some of the questions relating to kin relationships:

• Parentage

• Grandparents

• Great-grandparents

• Ancestors

• Aunts, uncles, and cousins to the second degree

Other than these the family ontology should be able to answer the

• Marital relationships between individuals.

• Should be able to represent in-law relationships – parents, siblings, etc.

• Should represent birth, death, and marriage years.

Competency Questions (CQs) must cover the scope of the ontology. CQs are most
commonly used to test ontology’s quality, as the ontology is competent enough to answer
the basic questions.

5

Figure 2.2: Linked Open Data cloud diagram giving an overview of published data sets and their
interlinkage relationships.

Linked Data

Linked Data refers to a set of best practices for publishing and interlinking structured
data on the Web. Linked Data are machine-readable, are linked to other external data
sets, and can also be linked to from external data sets [2]. Linked Data principles are:

• Use URIs as names for things.

• Use HTTP URIs, so that people can look up those names (make URIs dereference-
able).

• When someone looks up a URI, provide useful information, using the standards
(RDF, SPARQL).

• Include links to other URIs, so that they can discover more things.

Fig 2.2 shows the linked open data cloud of published data sets and relationships between
them.

Vocabularies

Vocabulary consists of classes, properties, and datatypes that define the meaning of data.
RDF vocabularies are themselves expressed and published following the Linked Data
principles; this gives humans and machines access to the definitions of the terms used to
qualify the data. Some commonly used vocabularies are:

1. SKOS: It is a vocabulary for knowledge organization systems (KOS) such as thesauri,
classification schemes, subject heading systems and taxonomies of Semantic Web.

6

2. FOAF: It integrates a social network of human collaboration friendship and as-
sociation with representational networks describing cartoon networks in factual
terms.

ODP

ODP or ontology design patterns can be considered analogous to software design patterns
known from object-oriented modellings. Patterns on the Semantic Web typically emerge
from (linked) data, ontologies, and queries, as well as from procedural aspects of design at
either the modelling or implementation stage. The main innovation of design patterns lies
in the observation that most datasets and ontologies share similar publishing challenges,
which can be approached by a common strategy. ODPs help in this aspect. An ODP can
be described using the following fields:

• Name: It signifies the title name of the ODP like Trajectory pattern.

• Intent: It signifies the domain on which this ODP can be used.

• Competency questions: It consists of the questions ODP is competent to answer.

• Scenarios: Examples of requirements in natural language that can be modelled using
this pattern.

• Diagram: It describes the UML diagram representing the pattern.

• Elements: It provides with the list of classes and relations in the pattern.

• Consequences: It describes the advantages and disadvantages of using the said ODP.

• Known uses: Examples of realistic ontologies where the pattern can be used.

• Reengineered from: It refers to the ontology or conceptual schema from which the
pattern has been extracted.

• Related patterns: Other patterns that are either a specialization, generalization,
composition, or component of this pattern. It also lists patterns that are generally
used along with the described pattern.

• Building block: It provides with a reference implementation (URI or OWL file).

7

Figure 2.3: Figure showing AgentRole ODP, a commonly used ODP describing its usage.

2.0.2 Ontology Modelling

There is no one “correct” way or methodology for developing ontologies. An iterative
approach to ontology development is the most commonly used procedure, which starts
with a rough first pass at the ontology. We then revise and refine the ontology. Some
fundamental rules followed in ontology design:

1. There is no one correct way to model a domain— there are always viable alternatives.
The best solution almost always depends on the application that developer have in
mind.

2. Ontology development is an iterative process.

3. Concepts in the ontology should be close to objects (physical or logical) and rela-
tionships in the domain of interest. These are most likely to be nouns (objects) or
verbs (relationships) in sentences that describe the domain.

We will primarily focus on MethOntology [5], the most commonly used procedure to build
ontology from scratch. Some of the steps involved are:

Specification

The goal of the specification phase is to produce an ontology specification document
written in natural language, using a set of competency questions.

8

Figure 2.4: Steps involved in ontology modelling according to MethOntology Approach.

Knowledge Acquisition

Developers can acquire knowledge from books, handbooks, figures, tables, and even from
human experts. Knowledge acquisition is an iterative process and thus collides with other
stages of the ontology development life cycle.

Conceptualization

In the conceptualization stage, the domain knowledge is structured into a conceptual
model that describes the problem. For this, a domain vocabulary consisting of terms that
include concepts, instances, verbs, and properties are built.

Integration

In the integration stage, the developer try to reuse the definitions already built in other
ontologies instead of building from scratch and thus increasing the speed of development.
OntoSeer, our work focuses significantly on the integration stage of the ontology life cycle.

Evaluation

Evaluation subsumes the terms Verification and Validation. Verification refers to the
process that guarantees the correctness of an ontology, with respect to CQs. Validation
guarantees that the ontologies correspond to the system that they are supposed to represent
based on subclass hierarchies and naming conventions.

Our tool OntoSeer is compatible with any of the modelling methods undertaken by the
developer. The developer, at any point, can change the design, and OntoSeer will update

9

itself accordingly. For a new developer, it is not always possible to determine the scope
of the model at first or to have the competency questions. OntoSeer also takes this
unfavourable situation into account and provides a recommendation, though better and
more refined recommendations will require more prior knowledge of the domain.

10

Chapter 3

Related Work

Tools that are similar to OntoSeer are OntoClean [9], OOPS! [14] [13], and OntoCheck [16].
We briefly discuss the functionality of these tools and how they differ from OntoSeer.
OOPS! stands for Ontology Pitfall Scanner. It is an online tool that detects pitfalls or
common modelling errors that ontology developers make. The pitfalls are divided into
three categories - structural, functional, and usability-profiling. There are around 40
pitfalls, but here we discuss only some of them. Having cycles in the class hierarchy is
a pitfall that comes under the structural dimension. Generally, the ontology should not
contain more than one semantically equivalent class. Missing disjointedness axioms is a
common pitfall. Unless explicitly stated, classes are not disjoint. A functional pitfall is
connecting disconnected components. Sometimes two unrelated entities are joined by a
relationship. This is a pitfall that should be avoided. A usability pitfall is using different
naming conventions in the ontology. For example, a super-class will have a name following
one naming convention, and a subclass name follows a different naming convention. Missing
domain and range for properties is another common pitfall.
One of the main differences between OOPS! and OntoSeer is that OntoSeer works along
with the ontology developer in creating better quality ontologies. It does not evaluate
ontologies post creation. Another major difference is OntoSeer recommends terms (classes,
properties, instances) that can be reused. It does this by checking the similarity of the
terms from the ontology being built with existing ontologies. OntoSeer also recommends
ODPs that can be used in making the ontology modular.
OntoCheck [16] is a plugin for the Protégé to allow for easy checks on compliance towards
ontology naming conventions. In particular, OntoCheck plugin helps to clean up an
ontology by enforcing naming conventions meeting most of the requirements outlined for
such a tool. Found test violations can be corrected to foster consistency in entity naming.
One of the main differences between OntoCheck and OntoSeer is OntoCheck only indicates
the class names that violate the naming convention. It does not provide any recommenda-
tion for alternate names that can be used, which OntoSeer does. For example, if someone
builds classes like HumanBeing, names, nitrogenoxide, then OntoCheck outputs that 67

11

percent of the classes do not follow naming conventions and class names and nitrogenoxide
do not follow naming conventions. In contrast, OntoSeer not only indicates the violation
but also recommends class names such as NitrogenOxide to the user.
OntoSeer uses the OntoClean paper to validate and verify the class hierarchy. A property
p subsumes q if and only if, for every possible state of affairs, all instances of q are also
instances of p [9]. The three characteristics mentioned in OntoClean are used by OntoSeer
for class hierarchy validation. They are

1. Rigidity

2. Identity

3. Unity

The important distinction between OntoClean and OntoSeer is OntoSeer also takes into
account the cases where the developer is not aware of the objects he/she is developing.
Other than that, OntoSeer also recommends axioms, naming conventions, and ODPs.

The Linked Open Vocabularies (LOV) [17] is an initiative that harnesses information
about the relationships between vocabularies. The number of vocabularies indexed by
LOV is 716 (as of July 2020). The primary purpose of LOV is to encourage the reusability
of well-documented vocabularies. It is the only open-source catalog that accepts all types
of search criteria, including ontology search, metadata search, and a SPARQL endpoint
access.
Ontology Search: LOV allows searching for terms (classes, properties) according to the
domain they address.
Ontology Assessment: LOV retrieves the terms according to the ranking metrics they
have implemented, which have been addressed in later sections.

LOV Ranking

LOV devised a ranking mechanism adapting term-frequency inverse document frequency
(tf-idf), which they applied to the vocabularies’ inherent graphical structure. Term t of a
Vocabulary V has been considered as the basic unit instead of a word. Tf-Idf takes into
account the relevance and importance of a resource to the query.

One of the biggest challenges in ontology is that the same terms can be used as class
names or descriptions. To do away with this LOV defined a normalized mechanism:

• Primary Label: The highest scores have been assigned to this class, which includes
rdfs:label , dce:title, dcterms:title, skos:prefLabel.

12

• Secondary Label: A medium score has bees assigned to the properties that includes:
rdfs:comment, dce:description, dcterms:description, skos:altLabel.

• Tertiary Label: Finally, all properties not falling in the previous categories are
considered as tertiary labels for which a low score is assigned. An example of tertiary
label matching the term “person” is rdarel2:name “Person”.

The equation for normalized ranking is, therefore,
norm(t, V)=lengthNorm(field) * ∏

pεV boost(p(t))
The final score of t for a query Q is a combination of the tf-idf, the importance of label
properties of t on which query terms matched, and the popularity of that term in the
LOV dataset. LOV added a fourth parameter in their ranking - the popularity - as it is
of fundamental importance in the Semantic Web. The popularity metric indicates how
widely a term is already used (in frequency and the number of datasets using it). The
equation for LOD is, therefore,
score(t, q)=tf(t, V) * idf(t, V) * norm(t, V) * pop(t, D)
OntoSeer uses the LOV ranking model for recommending vocabularies, terms, and axioms.

13

Chapter 4

OntoSeer Description

In this section, we discuss the various features of OntoSeer, along with the implementation
details for each of those features in subsequent sections. OntoSeer features are as follows.

1. Class, Property, and Vocabulary Recommendation.

2. Naming Convention Suggestion.

3. Axiom Recommendation.

4. ODP Recommendation.

5. Class Hierarchy Verification.

4.0.1 Class, Property, and Vocabulary Recommendation

It is challenging for ontology developers, especially the inexperienced ones, to quickly come
up with suitable class and property names. OntoSeer’s class and vocabulary recommenda-
tion feature help in this regard. OntoSeer’s class and vocabulary recommendation feature
take the developed class and property terms in the ontology as input. Figure 4.1 shows a
diagram of possible inputs to OntoSeer’s class and vocabulary recommendation feature.
Competency questions (CQs) and ontology domain descriptions are optional requirements,
but the development of an ontology is mandatory to use the vocabulary recommendation
feature.
In most cases, an ontology developer will not have access to CQs. To handle that averse
situation, OntoSeer can recommend classes and properties without CQs also. After
the ontology developer starts putting in classes and properties, OntoSeer can suggest
additional classes and 33 properties based on the ontology corpus. It will look for classes
and properties in the corpus that are similar to the ones made and will make suggestions.

14

Figure 4.1: A schematic representation of input and output for OntoSeer’s features.

The corpus OntoSeer uses is the Manchester OWL Corpus1, which consists of Bioportal2,
and Oxford OWL3 corpora. This corpus is indexed using an inverted index, and OntoSeer
searches through that index for the recommendation. The procedure for building an
inverted index and searching through has been described in section 4.0.3 .
Ontoseer will use the classes and properties that have already been built in the ontology
for suggesting class names and property names. OntoSeer not only suggests names but
also provides the user with the vocabulary names where the said class or property is
present. For each of the class and property, Ontoseer will first query LOV4. It also searches
the bioportal repository5 using Bioportal’s REST API. For searching in Bioportal, the
user must have a Bioportal account as the API key is necessary for authentication of the
developer, or else OntoSeer will throw an exception and will require restarting of the plugin
for further usage. Data from URLs returned in JSON format is parsed and converted to a
string and is shown in the plugin. Ontoseer only shows the top three vocabularies based
on the scoring matrix of LOV and Bioportal.
Thus on querying “Person”, Ontoseer recommends “Person” from www.w3.org where
“Person” is present in the title and rdaregistry.info where “Person” is present in elements
section. Along with that, OntoSeer also recommends alternate names such as persoon.

1http://mowlrepo.cs.manchester.ac.uk/datasets/mowlcorp/
2https://bioportal.bioontology.org/ontologies
3https://www.cs.ox.ac.uk/isg/ontologies/
4https://lov.linkeddata.es/dataset/lov/api/v2/term/suggest?q=
5http://data.bioontology.org/recommender?input=

15

http://mowlrepo.cs.manchester.ac.uk/datasets/mowlcorp/
https://bioportal.bioontology.org/ontologies
https://www.cs.ox.ac.uk/isg/ontologies/
https://lov.linkeddata.es/dataset/lov/api/v2/term/suggest?q=
http://data.bioontology.org/recommender?input=

Figure 4.2: Vocabulary Recommendation from OntoSeer on querying class Person. The output
is based on the result returned by LOV search query.

Figure 4.2 shows OntoSeer’s recommendation on querying class “Person". The vocabulary
recommendation outputs the three vocabularies where person term is present.

4.0.2 Naming Convention and Suggestion

For a beginner, it is a challenge to abide by the naming conventions. To cater to that
need, we have incorporated the naming conventions systems for classes and properties in
OntoSeer. OntoSeer’s naming convention recommendation feature takes the developed
class and property terms in the ontology as input. Figure 4.1 shows a diagram of possible
inputs to OntoSeer’s naming convention recommendation feature. The development of an
ontology is mandatory to use the naming convention recommendation feature, while CQs
and ontology domain descriptions are optional requirements.
While suggesting OntoSeer looks for the following discrepancies in the name.

• Use of numbers in class and property names are discouraged. So OntoSeer suggests
alternatives that do not involve numbers. Thus if a user builds a class “Human1234”,
it will recommend using “Human” instead.

• It is generally considered as a bad practice to use any special characters other than
an underscore while naming terms. So, OntoSeer recommends name only with an
underscore as the special character.

• Usage of camel-case while naming is considered as a good practice. Thus if the user
builds a class named “Human_being”, OntoSeer will recommend using “HumanBe-
ing”.

• OntoSeer focuses on use of verb sense terms while naming properties. This is
implemented using Stanford-core-NLP part-of-speech taggers, where each property
name is checked whether it is started with a verb form or not.

16

Figure 4.3: The naming recommendation for the selected concept is shown. The recommended
name follows the naming convention for classes.

OntoSeer, along with naming conventions, also suggests alternate names for the classes
built. For this, OntoSeer refers to the already downloaded and indexed WordNet-3.06 and
use its nouns as the baseline dictionary. A string matching algorithm named Jaro-Winkler
is used, and a class name is suggested.
Jaro-Winkler distance is a string metric for measuring the edit distance between two
sequences, or in other words, Jaro distance between two words is defined as the minimum
number of single-character transpositions required to change one word into the other [3].
The Jaro-Winkler distance uses a prefix scale, which gives more favorable ratings to strings
that match from the beginning for a set prefix length. As it gives more importance to the
words with an identical prefix, hence the Jaro-Winkler distance seems very interesting to
our use case of syntactic matching. The Jaro Distance between two sequences s1 and s2 is
defined by:
dj=1/3*((m/|s1|)+(m/|s2|)+((m− t)/m))
dj is the Jaro distance, m is the number of matching characters (characters that appear in
s1 and s2), t is half the number of transpositions (compare the i-th character of s1 and
the i-th character of s2 divided by 2), |s1| is the length of the first string, |s2| is the length
of the second string.
The similarity coefficient is above the threshold of 0.7 which has been set after observing
the scores across multiple iterations. OntoSeer, in this aspect, is different from LOV
or BIO-Portal name suggestion as they only suggest names after matching with the
terms that are present in their vocabularies. OntoSeer spellchecker, on the other hand,
suggests names that are present in the dictionary of WordNet. Thus if a user builds
a class named “acicul”, OntoSeer will recommend alternate names such as “acicula”,
“aciculae”, “auriculae”. Naming Suggestion for OntoSeer is implemented using our own

6https://wordnet.princeton.edu/

17

https://wordnet.princeton.edu/

built-in inverted index. We indexed the base file, which is noun.txt of WordNet, and used
the indexed file for our string comparison algorithm.

4.0.3 Axiom Recommendation

OntoSeer can retrieve axioms from the ontology corpus that are similar to the ones in
the current ontology. It will also remind the user about axioms such as disjointedness
among class siblings, and property characteristics (inverse, symmetric, transitive, etc.),
that were missed or overlooked. OntoSeer’s axiom recommendation feature takes the
developed class and property terms in the ontology as input. Figure 4.1 shows a diagram
of possible inputs to OntoSeer’s axiom recommendation feature. The development of an
ontology is mandatory to use the naming convention recommendation feature, while CQs
and ontology domain descriptions are optional requirements.
In order to recommend axioms, we make use of the Manchester OWL corpus, Bioportal
corpus, MOWL corpus, and Oxford corpus. Since Lucene [1], a well-known java library
that provides powerful indexing and searching features, is not compatible with the Protégé
tool, we have built an inverted index structure. We have indexed the ontology files across
Manchester OWL corpus, Bioportal corpus, MOWL corpus, and Oxford corpus for axiom
recommendation.
An inverted index is an index data structure storing a mapping from content, such as
words or numbers, to its locations in a document or a set of documents [12]. We have built
a record-level inverted index that contains a list of references to documents for each term
(class-names, instance-names, property-names). This way, we have been able to store the
occurrences of the term (class names, property names) in each OWL files. While indexing,
we separate IRI’s into domain names and class or property names. We use only the local
part of the IRI that contains the class or property name for indexing. For example, for an
IRI of the form <http://www.geneontology.org/formats/oboInOwl/hasDate> we index
only the local part hasDate.
It then allows us to perform queries on this index, returning results ranked by the relevance
to the query as no scoring methodology is implemented.
In our indexing implementation for vocabulary suggestion, each OWL file is the unit of
search and index. While for axiom suggestion, we have taken each tuple as the index.
An index consists of one OWL file or a tuple of a document. A tuple is defined as a
data entity composed of subject, object, and predicate. For example, in the statement
“ Bob knows Alice”, “Bob” is the subject, “knows” is the predicate, and “Alice” is the
object. Indexing involves adding documents or tuples to an index, and searching involves
retrieving documents or tuples from an index based on functionality. Searching requires an
index to have already been built. On querying class “Person”, OntoSeer will recommend
〈Person〉〈hasURI〉〈SNOMEDCT_2005_07_31〉
〈Person〉〈subClassOf〉〈HP_0000708〉

18

Figure 4.4: Axiom recommendations on Person class.We have ignored the IRI’s for simplicity of
the image. The recommendation is based on ranking implemented by OntoSeer.

where hasURI is a property and HP_0000708, SNOMEDCT_2005_071 are classes of
MOWL repository.

4.0.4 ODP Recommendation

OntoSeer recommends ODPs that can be used in making the ontology modular. The
attributes that are used for ODP recommendation are the description of the ontology
(optional), domain of the ontology (mandatory), some sample classes and properties
related to the domain (optional), and competency questions (optional). OntoSeer’s ODP
recommendation feature takes input from the user about the domain of the ontology,
which is mandatory. All other attributes are optional. Figure 4.1 shows a diagram of
possible inputs to OntoSeer’s ODP recommendation feature. Ontology domain description
and human involvement are necessary for ODP recommendation, while all the other are
optional requirements.
Users may not have answers to all the questions; nevertheless, in most cases, the user will
be able to answer at least one of them. It is necessary to provide at least the domain as
input, or else OntoSeer will throw an exception.
For recommendations, we have scraped through all the ODPs listed in ODP site7. We
have collected each of the intent, domain, competency questions, elements, and additional
information that is listed for each ODP in individual ODPs.
OntoSeer makes use of string similarity for ODP recommendation. We have taken each
of the ODP documents as a string and, the inputs provided by the user will be matched
against them. Ontoseer then recommends ODP based on the string similarity between
them using the Jaro-Winkler metric of string matching.

7http://ontologydesignpatterns.org/wiki/Main_Page

19

Figure 4.5: OntoSeer’s ODP recommendations on providing “College” as intent and “University”
as domain.

For user input of description of ontology being “Cool”, and domain being “Weather”,
this technique recommends the following ODPs SmartHome, AdrianWalker, Criterion,
ReportingEvent, AffectedBy. OntoSeer is using syntactic similarity. Hence SmartHome
having score 0.63 are recommended. On analysis, we will find class names and additional
information of the ODP having similar terms as “Cool” and “Weather” as smart homes
have facilities to control room temperature. The other ODPs like AdrianWalker and
Criterion, had scores of 0.62 and is having information of “Cool”, and “Weather” as its
concepts. The recommendation can be more refined if Doc2Vec methodology [11] is used
because it considers semantic matching too. The incompatibility of deeplearning4j [6] with
Protégé compelled us to use the Jaro-Winkler method, which gives comparable results.

4.0.5 Class Hierarchy Verification

Determining the class hierarchy is confusing, especially to the inexperienced ontology
developers. This often leads to improper hierarchy. Ontology developers need to carefully
answer a few questions while building the class hierarchy.

1. Can a particular class act as a super-class or a subclass?

2. Should a particular subclass have more than one parent?

3. Is a particular class, truly a subclass of the super-class?

It seems that a social entity can be a subclass of groups of people because groups of people
form a social entity. However, the social entity is positively unity class, while groups of

20

people are negatively unity class. A negative unity class cannot subsume a positive unity
class. Hence this hierarchy is wrong.
OntoSeer makes use of rigidity (R), identity (I), and unity (U) characteristics of the classes
and takes the user input based on these characteristics to validate the class hierarchy.

1. Rigidity: A property is rigid if it is essential to all its possible instances; an instance
of a rigid property cannot cease to exist in the future or fail to be its instance in a
different domain. For example, having a brain is a rigid property for a human being
but is not a rigid property while developing an ontology on the Wizard of Oz.

2. Identity: Identity constraint is the criteria we use to answer questions like, “Is that
my dog?”. Two objects are identical if they are the same. For two different objects,
we usually check whether they have the same essential properties or not. If they
have, then they are identical else not.

3. Unity: Unity constraint checks whether properties have wholes as instances or not.
For example, “Ocean” is a subclass of “Water”, since all oceans are water. However,
we will be having a contradiction if we claim that instances of the “Water” must not
be wholes, and instances of “Ocean” always are.

Ontoclean defined some broad classes and assigned values to these three characterisitics or
constraints which are shown in 4.1.

Table 4.1: Object described in OntoClean

Type Identity Unity Rigidity
Entity -I -U +R
Country +I +U -R

Organization +I +U +R
Legal Agent +I -U -R

Agent +I -U -R
Social Entity -I +U +R
Vertebrate +I +U +R
Invertebrate +I +U +R

Fruit +I +U +R
Person +I +U +R
Food +I -U -R

Living being +I +U +R
Group -I -U +R

Amount of matter -I -U +R

OntoSeer interacts with the ontology developer and based on the inputs, determines the
characteristics a particular class has. The questions asked by OntoSeer are as follows.

21

1. Do the instances of the class cease to exist in the future? For example, “Person” will
always be person but “Student” can cease to exist to be a student in future.

2. Are the super-class and subclass identical? For example, two one hour duration of
time interval are identical but an hour interval on Wednesday are not identical to an
hour interval on Friday.

3. Is the subclass part of the whole class? For example, a lump of clay is part of amount
of matter but amount of matter is not part of a lump of clay.

OntoSeer validates the class hierarchy based on these three characteristics. It recommends
that “Person” cannot be a subclass of “Student” as it violates Rigidity criteria. Similarly,
“Water” cannot be a subclass of “Ocean” for violating the unity criteria, whereas “Groups of
people” cannot be a subclass of “Social entity” for violating the identity criteria. Table 4.2
shows the super-class and its possible subclass characteristics for validating the class
hierarchy.

Table 4.2: Table showing values of rigidity, identity, unity for class hierarchy validation

Rule Super-Class Value Posible SubClass Value
Identity Positive Negative,Positive
Identity Negative Negative
Rigidity Positive Negative,Positive
Rigidity Negative Negative
Unity Positive Negative,Positive
Unity Negative Negative

Figure 4.6 shows how OntoSeer shows the characteristic values of the entities defined in
OntoClean. Figure 4.7 shows the user providing inputs that cause no violation of any
of the three constraints. Hence, Figure 4.8 shows the output as all the constraints and
subclass hierarchy are correctly maintained. On the other hand, Figure 4.9 shows the user
providing inputs that cause a violation of all three constraints. Hence, Figure 4.10 shows
the output as all the constraints are violated, and the subclass hierarchy is incorrect.

4.0.6 Challenges Faced and Efforts Required in building On-
toSeer

One of the challenging aspects of building OntoSeer is the incompatibility of Protégé with
the various open-source libraries. Hence it took a significant amount of time to build
OntoSeer.

• LOV and Bioportal have a limited number of ontologies. To make the recommen-
dation better, we have indexed the MOWL corpus. The inverted index has been

22

Figure 4.6: OntoSeer showing the rigidity, identity, unity values of objects mentioned in Ontoclean.

Figure 4.7: OntoSeer’s user inputs to question for class hierarchy valiadation. In this figure no
violation to Table 4.2 mentioned standards has been done.

23

Figure 4.8: OntoSeer verifying the class hierarchy subsumption based on rigidity, identity, unity
mentioned in Table 4.2. Here no violations to rigidity, identity and unity constraints has been
done which is shown in output.

Figure 4.9: OntoSeer’s user inputs to question for class hierarchy valiadation. In this figure
violations to Table 4.2 mentioned standards has been done.

Figure 4.10: OntoSeer verifying the class hierarchy subsumption based on rigidity, identity, unity
mentioned in Table 4.2. Here violations to rigidity, identity and unity constraints has been done
which is shown in output.

24

built from scratch due to the incompatibility of Protégé with Lucene. It took a
considerable amount of effort to build the inverted index with individual terms.

• Protégé is not compatible with Deeplearning4j. Hence, instead of Doc2Vec, we have
to use the Jaro-Winkler string matching algorithm for ODP recommendation. We
have implemented the Jaro-Winkler algorithm from scratch, thus taking more time
to build the ODP recommendation feature.

• OntoSeer was taking significantly more time to recommend axioms with the inverted
index built during vocabulary recommendation. To reduce the retrieval time, we
have indexed tuples instead of individual terms. Building an inverted index in the
form of tuples from scratch again took a significant amount of effort.

• A significant amount of time and effort has been spent making the UI user-friendly
and compatible with Protégé.

25

Chapter 5

Evaluation

In our evaluation of OntoSeer, we would like to get answers to the following questions.

1. Are the inexperienced ontology developers benefit from the recommendations of
OntoSeer?

2. Is OntoSeer saving the time of ontology developers?

3. Are ontology developers able to make richer ontologies due to the axiom recommen-
dations of OntoSeer?

4. Are ontology developers reusing existing ontologies more than they generally used
to do?

5. How easy is it to use OntoSeer? Is there any feedback for the improvement of the
tool?

6. Are the ontology developers able to create more modular ontologies by incorporating
ODPs?

7. Are the ontology developers able to build ontologies that follow the naming conven-
tions?

5.0.1 Dataset

OntoSeer makes use of the existing ontologies and vocabularies in making the recommen-
dations. We, therefore, here describe the datasets that OntoSeer uses. OntoSeer has
been implemented in java, jdk version being 1.8.0_252, and Protégé version is 5.5.0 and
is available at github link https://github.com/kracr/ontoseer. OntoSeer uses the
following datasets.

26

https://github.com/kracr/ontoseer

a) Competency questions (CQs). 92 CQs and their corresponding ontologies are
available at Software Ontology1. 52 CQs and ontologies are available at ArCo2.
Several CQs and their associated ontologies are available from CORAL [4] and [15] .

b) Ontologies. We have collected ontologies from several repositories such as NCBO
BioPortal3, Manchester OWL Corpus4, Oxford OWL Repository5, and Protégé
Ontology Library6.

c) Ontology Design Patterns. ODPs are available at the ODP repository7. Since
there is no bulk download option, we used a web scraper to collect all the ODPs.
There are six categories of ODPs, and their URLs are used as the seed for the web
scraper.

d) Vocabularies. Several vocabularies are indexed at the Linked Open Vocabularies
(LOV)8. These vocabularies can be accessed using either the SPARQL endpoint or
the LOV API.

5.0.2 User Study

We have conducted a survey among fifteen people from various educational institutes
and of different proficiency levels in ontology development, and in using Protégé. Five of
these fifteen are from our research group, while the remaining ten people are from various
institutions. For the evaluation, the users were provided with two different scenarios.
One scenario was based on Chess-playing, and the other was on the History of Human
Evolution. The users were asked to build ontologies on them and along with that to
validate the recommendations from OntoSeer. The survey has been conducted through an
anonymous Google form. The complete list of questions used for user study are as follows:

1. How was the installation process?

2. How experienced are you with ontology modelling?

3. How experienced are you with using Protege?

4. Do you know about LOV and ontology repositories such as BioPortal?
1https://softwareontology.wordpress.com/2011/04/01/user-sourced-competency-

questions-for-software
2https://github.com/ICCD-MiBACT/ArCo
3https://bioportal.bioontology.org/ontologies
4http://mowlrepo.cs.manchester.ac.uk/datasets/mowlcorp/
5https://www.cs.ox.ac.uk/isg/ontologies/
6https://protegewiki.stanford.edu/wiki/Protege_Ontology_Library
7http://ontologydesignpatterns.org/wiki/Main_Page
8https://lov.linkeddata.es/dataset/lov/

27

https://softwareontology.wordpress.com/2011/04/01/user-sourced-competency-questions-for-software
https://softwareontology.wordpress.com/2011/04/01/user-sourced-competency-questions-for-software
https://github.com/ICCD-MiBACT/ArCo
https://bioportal.bioontology.org/ontologies
http://mowlrepo.cs.manchester.ac.uk/datasets/mowlcorp/
https://www.cs.ox.ac.uk/isg/ontologies/
https://protegewiki.stanford.edu/wiki/Protege_Ontology_Library
http://ontologydesignpatterns.org/wiki/Main_Page
https://lov.linkeddata.es/dataset/lov/

5. If Yes, please specify how often do you reuse classes and properties from LOV and
ontology repositories?

6. Do you use Ontology Design Patterns (ODPs) while modelling?

7. If Yes, please specify how often do you use ODPs?

8. This section should be answered if competency questions have been provided to
OntoSeer.

(a) How useful are the class and property recommendations?
(b) How useful are the ontology vocabulary recommendations?
(c) How useful are the ODP recommendations?
(d) How useful are the axiom recommendations?
(e) How useful are the naming convention checker?

9. This section should be answered if competency questions are not provided to On-
toSeer.

(a) How useful are the ontology vocabulary recommendations?
(b) How useful are the ODP recommendations?
(c) How useful are the axiom recommendations?
(d) How useful are the naming convention checker?

10. How was your experience of modelling an ontology without OntoSeer?

11. How was your experience of modelling an ontology with OntoSeer?

12. Does Ontoseer help in saving modelling time?

13. Do you have any suggestions for improving the user experience?

Figure 5.1: Figure shows users expertise with Protégé and in ontology modelling.

The first few questions on the evaluation focussed on the ease of the installation procedure.
Thirteen users said that the plugin’s installation is easy, and the instructions were clear,

28

whereas two users found it moderately difficult to install the plugin. Other than that, the
users were also asked about their expertise in building ontology and using Protégé. Figure
5.1 shows the users’ expertise in using Protégé.
Seven people taking the survey mentioned they were unaware of terms like LOV and
Bioportal, as shown in Figure 5.2, while six people said they were not well-versed with
ODPs, as shown in Figure 5.3. In Figure 5.2 and Figure 5.3, we have included only those
responses who said that they are aware of vocabularies and ODP, respectively.

Figure 5.2: Figure shows the percentage of users being aware of LOV and the frequency of using
LOV by knowledgeable users.

Figure 5.3: Figure shows the percentage of users being aware of ODP and the frequency of using
ODP by knowledgeable users.

Table 5.1: OntoSeer Feature Result without CQs

Type(Score Range) Class Vocab Naming Axiom ODP
Poor(1-2) 0 0 0 3 0
Neutral(3) 3 2 2 3 1
Good(4-5) 12 13 13 9 14

Table 5.1 represents the cumulative user responses for various features when the user is
not having CQs, whereas Table 5.2 represents the cumulative user responses for various
features when the user has CQs. Figure 5.4 to Figure 5.8 are the graphical representations
of the user responses showed in Table 5.1 and Table 5.2.
On analyzing the figures Figure 5.4 to Figure 5.8 and Table 5.1 and Table 5.2, it is observed
that OntoSeer performs better when CQs are present. This is because CQs give a more

29

Table 5.2: OntoSeer Feature Result with CQs

Type(Score Range) Class Vocab Naming Axiom ODP
Poor(1-2) 0 0 0 2 0
Neutral(3) 2 1 1 3 0
Good(4-5) 13 14 14 10 15

Figure 5.4: Figure represent user evaluation of class and property recommendations with CQs.

clear idea about the minimum requirements that the ontology should satisfy. As a result,
OntoSeer gets more prominent class names and property names, and the recommendation
gets more refined than the recommendations when no CQs are present.
Our analyses also show that the 85% of users are satisfied with Ontoseer recommenda-
tions, barring axiom recommendation. One of the reasons for low satisfaction for Axiom
recommendation is that we have indexed only a few OWL corpora leading to failure in
capturing all the recommendations. One of the suggestions that we have received from
user study is to index more ontology corpus to get better axioms recommendation.
One important aspect of the evaluation of OntoSeer is the quality of the ontology that

Figure 5.5: Figures represent user evaluation of various Vocabulary Suggestion without and with
CQs.

30

Figure 5.6: Figures represent user evaluation of various Axiom Recommendation without and
with CQs.

Figure 5.7: Figures represent user evaluation of various Naming Conventions without and with
CQs.

gets developed and the amount of time it consumes to develop it. Eleven of the users
taking the survey have said that OntoSeer helped in improving their ontologies, whereas
thirteen users were of the opinion that OntoSeer saves modeling time as well. Figure 5.9
shows the performance of Protégé with Ontoseer over Protégé without Ontoseer.

Figure 5.8: Figures represent user evaluation of various ODP Recommendation without and with
CQs.

31

Figure 5.9: Figure shows user response on consumption of modelling time by OntoSeer.

32

Chapter 6

Sustainability Plan

With an increase in ontology modelling research, more vocabularies are getting added
to LOV, Bioportal, while new and improved ODPs are regularly published. OntoSeer
at present has indexed a limited number of vocabularies and ODPs, so with time, the
recommendations will lose its prominence. Thus sustainability or maintenance of the tool
is of significant concern. In building OntoSeer, we have been able to collect only a few
OWL corpora and index them. The end-user can add other corpora according to their
suitability by downloading them. OntoSeer will index them when it is first invoked. For
LOV and BioPortal, the vocabularies will get updated as they get added on the website
as OntoSeer is directly querying the respective websites. Users can download newly added
ODPs by scraping through the main page of the ODP category as text files. OntoSeer
will take those newly added text files into account and will update its recommendation
accordingly.

33

Chapter 7

Conclusion

Ontology developers, especially the inexperienced developers, face many problems regarding
the reuse of vocabularies or ODPs. Similarly, they may miss out on axioms, or the naming
of the terms may not be according to conventions. It is not easy even for experienced
developers to know whether the subclass hierarchy is correct or not.
To address the issues mentioned above, we have developed a tool named OntoSeer that
recommends classes, properties, axioms, ontology design patterns and validates the class
hierarchy in real-time while developing the ontology. According to 73.33 percent of users,
OntoSeer has helped them in building better ontology, and 86.7 percent of users agree
that it saves their modeling time. OntoSeer has been implemented as a Protégé plug-in
and is available at github link https://github.com/kracr/ontoseer.
In the future, we plan to engage in a dialogue with the ontology developer to resolve
confusing issues, such as whether a particular term should be a class or an instance or
a property. This confusion will be resolved by asking the ontology developer a series of
questions such as, does the term interact with other concepts, are the terms very specific
or general, if a term is made into a class, what will be its instances? We are also planning
to help the ontology developer to check whether the CQs would be answered by the
ontology. This can be accomplished by having a dialogue with the ontology developer.
At intermittent points of ontology development, OntoSeer can identify the subset of
CQs (given by the ontology developer) that are related to the ontology developed so far.
Ontology developers can then indicate whether these CQs can be answered using the
ontology built so far. If they cannot be answered, changes need to be made to the ontology.
We are planning to make embeddings out of the ontologies that we have indexed, which
are few of the popular ontologies. As a result, we can predict the axiom recommendations,
closest to the one already present in the ontology. We are also planning to take the indexed
ontologies as ground truth and want to evaluate the current ontology concerning that.
This eliminates the need for a user study.

34

https://github.com/kracr/ontoseer

Bibliography

[1] Mamatha Balipa and Balasubramani Ramasamy. Search Engine using Apache Lucene.
International Journal of Computer Applications, 127:27–30, 2015.

[2] Christian Bizer, Tom Heath, and Tim Berners-Lee. Linked Data: The Story so Far.
International Journal on Semantic Web and Information Systems, 5:1–22, 2009.

[3] Kevin Dreßler and Axel-Cyrille Ngonga Ngomo. On the efficient execution of bounded
jaro-winkler distances. 2015.

[4] Alba Fernández-Izquierdo, María Poveda-Villalón, and Raúl García-Castro. CORAL:
A corpus of Ontological Requirements Annotated with Lexico-Syntactic Patterns. In
The Semantic Web, pages 443–458. Springer International Publishing, 2019.

[5] Mariano Fernández-López, Asunción Gómez-Pérez, and Natalia Juristo. Methontology:
from ontological art towards ontological engineering. Engineering Workshop on
Ontological Engineering (AAAI97), 1997.

[6] Adam Gibson, Chris Nicholson, Josh Patterson, Melanie Warrick, Alex Black, Vy-
acheslav Kokorin, Samuel Audet, and Susan Eraly. Deeplearning4j: Distributed,
open-source deep learning for Java and Scala on Hadoop and Spark. 2016.

[7] Michael Grüninger and Mark Fox. Methodology for the Design and Evaluation of
Ontologies. 1995.

[8] Nicola Guarino, Daniel Oberle, and Steffen Staab. What Is an Ontology? In Handbook
on Ontologies, International Handbooks on Information Systems, pages 1–17. Springer,
2009.

[9] Nicola Guarino and Christopher A. Welty. An Overview of OntoClean. In Handbook
on Ontologies, International Handbooks on Information Systems, pages 201–220.
Springer Berlin Heidelberg, 2009.

[10] Krzysztof Janowicz. Introduction: Ontology Design Patterns in a Nutshell. 2016.

[11] Quoc V. Le and Tomas Mikolov. Distributed Representations of Sentences and
Documents. CoRR, 2014.

35

[12] Ajit Mahapatra and Sitanath Biswas. Inverted indexes: Types and techniques.
International Journal of Computer Science Issues, 8, 2011.

[13] María Poveda-Villalón, Mari Carmen Suárez-Figueroa, and Asunción Gómez-Pérez.
Validating Ontologies with OOPS! In Knowledge Engineering and Knowledge Man-
agement, pages 267–281. Springer Berlin Heidelberg.

[14] María Poveda-Villalón, Asunción Gómez-Pérez, and Mari Carmen Suárez-Figueroa.
OOPS! (OntOlogy Pitfall Scanner!): An On-line Tool for Ontology Evaluation.
International Journal on Semantic Web and Information Systems (IJSWIS), (2):7–34,
2014.

[15] Yuan Ren, Artemis Parvizi, Chris Mellish, Jeff Z. Pan, Kees van Deemter, and Robert
Stevens. Towards Competency Question-Driven Ontology Authoring. In The Semantic
Web: Trends and Challenges, Lecture Notes in Computer Science, pages 752–767.
Springer International Publishing, 2014.

[16] Daniel Schober, Ilinca Tudose, Vojtěch Svátek, and Martin Boeker. Ontocheck:
Verifying ontology naming conventions and metadata completeness in Protégé 4.
Journal of biomedical semantics, page S4, 2012.

[17] Pierre-Yves Vandenbussche, Ghislain A. Atemezing, and María and Vatant, Bernard
Poveda-Villalón. Linked Open Vocabularies (LOV): A gateway to reusable semantic
vocabularies on the web. 8(3):437–452, 2016.

36

	Introduction
	Background
	Basic Terminologies
	Ontology Modelling

	Related Work
	OntoSeer Description
	Class, Property, and Vocabulary Recommendation
	Naming Convention and Suggestion
	Axiom Recommendation
	ODP Recommendation
	Class Hierarchy Verification
	Challenges Faced and Efforts Required in building OntoSeer

	Evaluation
	Dataset
	User Study

	Sustainability Plan
	Conclusion

