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Abstract
The stationary multi-armed bandit (MAB) framework is a well-studied problem in
literature, with many rigorous mathematical treatments and optimal solutions. How-
ever, for a non-stationary environment, i.e., when the reward distribution changes
over time, the MAB problem is notoriously difficult to analyze. In general, to ad-
dress non-stationary bandit problems, researchers have proposed two approaches:
i) passively adaptive techniques, that are analytically tractable, or ii) actively adap-
tive techniques that keep track of the environment and adapt as soon as changes
are detected. Consequently, researchers have come up with variants of bandit algo-
rithms that are based on classical solutions, e.g., sliding-window upper-confidence
bound (SW-UCB), dynamic UCB (d-UCB), discounted UCB (D-UCB), discounted
Thompson sampling (DTS), etc. In this regard, we consider the piecewise station-
ary environment, where the reward distribution remains stationary for a random time
and changes at an unknown instant. We propose a class of change-detection based,
actively-adaptive, TS algorithms for this framework named TS-CD. In particular, the
non-stationary in the environment is modeled as a Poisson arrival process, which
changes the reward distribution on each arrival. For detecting the change we em-
ploy i) mean-estimation based methods, and ii) Goodness-of-fit tests, namely the
Kolmogorov-Smirnov test (KS-test) and the Anderson-Darling test (AD-test). Once
a change is detected, the TS algorithm either refreshes the parameters, or discounts
the past rewards. To assess the performance of the proposed algorithm, we have
tested it for edge-control of i) multi-connectivity1 and ii) RAT selection in a wireless
network. We have compared the TS-CD algorithms with other bandit algorithms that
are designed for non-stationary environments, such as D-UCB, discounted Thomp-
son sampling (DTS) and change detection based UCB (CD-UCB). With extensive
simulations, we establish the superior performance of the proposed TS-CD in the
considered applications.

1This work is under minor revision in Elsevier Physical Communication.

i



Contents

List of Figures iii

1 Introduction 1
1.1 Stochastic Bandits . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Algorithms For The Stationary Bandits . . . . . . . . . . . . . . . . 2

1.2.1 ε - greedy . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2.2 Upper Confidence Bound (UCB) . . . . . . . . . . . . . . . 3
1.2.3 Thompson Sampling . . . . . . . . . . . . . . . . . . . . . 3

1.3 Algorithms for Non-Stationary Environment . . . . . . . . . . . . . 4
1.3.1 Change detection Based UCB . . . . . . . . . . . . . . . . 4
1.3.2 Discounted Upper Confidence bound . . . . . . . . . . . . 5
1.3.3 Sliding Window Upper Confidence Bound . . . . . . . . . . 6
1.3.4 Discounted Thompson Sampling . . . . . . . . . . . . . . . 6

2 Experimental Setup 8
2.1 Problem Statement: The Two Armed-Bandit Setting . . . . . . . . . 8
2.2 Piecewise-Stationary Environment . . . . . . . . . . . . . . . . . . 8
2.3 Change Detection Methods . . . . . . . . . . . . . . . . . . . . . . 8

2.3.1 Mean Estimated Change Detection . . . . . . . . . . . . . . 8
2.3.2 Goodness Of Fit Test Based Change Detection . . . . . . . 10

3 Proposed Algorithm 14
3.1 Change Detection Algorithm . . . . . . . . . . . . . . . . . . . . . 14
3.2 Thompson Sampling With Change Detection . . . . . . . . . . . . 15

4 Case Study 17
4.1 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2 Characterization Of Mean Rewards . . . . . . . . . . . . . . . . . . 18

5 Simulation Results 20
5.1 RAT Selection In Wireless Networks . . . . . . . . . . . . . . . . . 20
5.2 Multi-Connectivity . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Bibliography 23

ii



List of Figures

5.1 Time averaged regret for different algorithms. . . . . . . . . . . . . 20
5.2 AET Performance of the proposed algorithm as compared to static

association schemes with Fixed β. . . . . . . . . . . . . . . . . . . 21
5.3 AET Performance of the proposed algorithm as compared to static

association schemes with varying β. . . . . . . . . . . . . . . . . . 22

iii



List of Illustrations

iv



Chapter 1

Introduction
The multi-armed bandit (MAB) framework is a class of problems in online learn-

ing and sequential decision making. Since its introduction, it has found many appli-
cations in the fields of reinforcement learning [28], online recommendation systems
[27], clinical trials [1], computational advertisement systems [2], and wireless com-
munications [3]. The classical MAB problem models the exploration-exploitation
trade-off inherent in sequential decision problems. In MAB framework at each step
a learning agent pulls an arm of a K-armed bandit based on its past observations,
and receives a reward accordingly. Each arm is characterized by a unknown reward
distribution and the rewards are independent and identically distributed (iid).
The objective of a learning agent or algorithm is to maximize the total expected re-
ward, or to minimize the expected regret over time horizon T, which is defined as the
expectation of the difference of total reward obtained and that of the highest expected
reward. To facilitate this, the algorithm keeps track of each arm, so that according
to the past history of rewards, either it can select the current best arm or explore
other arms, which is an exploration/exploitation dilemma. Stationary multi-armed
bandit in which the reward distribution is time invariant is very well studied in the
literature. Algorithms like upper confidence bound (UCB) [4], have been proven to
perform optimally. Thompson sampling, which was first discussed in [5] has also got
some interesting results. For some applications such as online advertising Thompson
sampling’s performance is far better than other algorithms [6].
However, when the reward distribution is non-stationary, some researches have pro-
posed the idea of discounting the past rewards to make the system adaptive to the dy-
namic changes [7], [8]. Garivier and Moulines [8] have presented a scenario where
environment is stationary for fixed duration of time and changes abruptly at unknown
time. They have analysed the theoretical upper bounds of regret for the discounted
UCB and sliding window UCB. Liu et al. [9] has also considered the piece-wise sta-
tionary environment and presented the change detection based framework for multi-
armed bandit problems and studied the class of change detection based UCB policies
(CD-UCB). They have used cumulative sum and Page-Hinkely statistical test (PHT)
as the change detection algorithm.

Gupta et al. [10], has proposed Dynamic Thompson sampling. Hartland et al.
[11] has also considered dynamic bandits and abrupt changes in the environment and
proposed an algorithm called Adapt-EvE. It also uses change point detection tech-
nique to detect any abrupt change in the environment and to detect the change it
also uses Page-Hinkely test. It utilizes a meta bandit formulation for exploration-
exploitation dilemma once the change is detected. For the non-stationary environ-
ment, Raj and Kalyani [12] have proposed an algorithm based on Bayesian bandits.
Their algorithm- Discounted Thompson sampling (DTS), discounts the effect of past
rewards.

1



1.1 Stochastic Bandits

Reinforcement learning is a field that uses the training information to evaluate
the actions taken rather than instructing by giving correct actions, this is one of the
important feature that distinguish reinforcement learning from other types of learn-
ing. This is the reason of exploration, the requirement of explicit search for good
behaviour. Purely evaluative feedback is the indication of the goodness of an ac-
tion taken, it may be the best action or the worst possible. The evaluative feedback
problem that we will explore is the K−armed bandit problem/ Multi-armed bandits
(MAB). Bandit problem was first introduced by William R. Thompson in 1993 [25].
In early days, medical trials were run blindly, without adapting the treatment alloca-
tions on the fly as the drug appears more or less effective. The name comes from the
study of Frederick Mosteller and Robert Bush in 1950s [25]. They decided to study
animal learning and ran trials on mice and then on humans. They took a T-shaped
maze and put a piece of food at one end each time, unknown to the mice. Each time
the mice has to decide to which side it should go. A similar experiment was per-
formed with the humans, they were faced with a dilemma to pull either left or right
arm of a ‘two-armed machine’. Each time when an arm is pulled, the machine re-
turns a random payoff with the distribution of payoffs unknown to the human player,
the machine was called ‘two-armed bandit’. The MAB problem is one of the topics
which is studied for decades in statistics, operations research, electrical engineering,
computer science, and economics.

A stochastic bandit consist of a set of arms κ = {1, 2, ...K} with distributions
〈D1, ......Dk〉 and mean 〈µ1, ....µk〉 associated with each arm It ∈ κ. The player
interacts with the environment for T rounds, T is the horizon. In each round t ∈
{1, 2, ....T}, the player chooses an arm/action I t∈ κ and receives a reward X t(It)
from distribution DIt . The player’s goal is to maximize the total expected reward
or the total expected regret, that depends on the actions of the player. Regret is the
amount of deficit suffered by the player by not selecting the optimal action in each
round, defined as

R(T ) = E

[
T∑
t=1

(Xt(i
∗
t )−Xt(it))

]
.

where, i∗t is the optimal arm.

1.2 Algorithms For The Stationary Bandits

To gain more insight of the bandit problem, we will go through with some of the
algorithms that are present in the literature. There are many algorithms for the sta-
tionary bandits, but we will only explore ε - greedy, upper confidence bound (UCB),
and Thompson Sampling (TS).

1.2.1 ε - greedy

The ε- greedy algorithm is very simple. At each time step t = 1, 2, ..., the al-
gorithm selects the arm which has the highest estimated reward up-to time t with
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probability 1− ε and explores other arms with probability ε. Mathematically

pi(t+ 1) =

{
1− ε+ ε/k; i = arg maxi=1,2,..K µ

∗
j(t)

ε/k otherwise

the performance of ε− greedy algorithm depends on the choice of the exploration
factor ε.

1.2.2 Upper Confidence Bound (UCB)

The principle of optimism in the face of uncertainty is the basis of the upper con-
fidence bound algorithm, which means that one should act as if the environment is
as acceptable as credibly possible. In context of bandits, optimism means to assign a
value called upper confidence bound to each arm using the information obtained so
far, which is an overestimate of the unknown mean with the high probability. The
others arms will be explored only if the upper confidence bound of these arms is
greater than that of the optimal arm, which in turn is larger than the mean of the
optimal arm [26].
The idea of UCB algorithm is that it tracks the number of times each arm is played
up-to time t, denoted by Ni(t). It is ensured that each arm is played once initially,
and after that at each time-step t selects an arm j as follows:

j(t) = arg max
i=1,2,...K

(
µ̂i + c

√
ln t

Ni

)
µ̂i is the estimate of mean reward, and c > 0 is a constant that controls the degree
of exploration. Therefore, the quantity which is maximized is a sort of upper-bound
on the true value, and the quantity c determining the confidence level. each time an
arm i is selected: Ni increases, and in return decreases the uncertainty, as it appears
in the denominator. If some other arm is selected, the uncertainty increases, as t in
the denominator increases and Ni remains the same.

1.2.3 Thompson Sampling

Thomson sampling - also known as posterior sampling and probability matching,
was proposed by Thomson in 1993, for the two-armed bandit problem for clinical
trial. Thomson sampling is considered among the Bayesian bandits, approach which
involve a prior over a problem instance. For the sake of understanding, we will
consider the Bernoulli bandit problem, i.e., reward, rt is either 0 or 1, and for arm
i probability of success is µi, µi is the unknown expected reward of arm i [18].
The rewards are obtained immediately after the arm is played and are i.i.d. Also
the observed rewards are independent of the plays of the other arms. Let the prior
distribution be the Beta distribution. It is a convenient choice due to its conjugacy
property. The beta distribution forms a family of continuous probability distribution
on the interval (0, 1). The pdf of the beta prior with parameters α,β is defined as:

f(x;α, β) =
Γ(α + β)

Γ(α)Γ(β)
xα−1(1− x)β−1

3



where, α > 0, and β > 0. The mean of the Beta(α, β) is α
α+β

; it is evident from
the distribution that, higher the value of α,β, higher will be the concentration of the
curve around the mean. The posterior update is very simple under the beta prior,
if on pulling an arm there is success, then the update will be Beta(α + rt, β), if
there is a failure, then it will be Beta(α, β + rt). The algorithm starts with the prior
distribution, Beta(1, 1), which is a uniform distribution on (0, 1). Let Si(t) be the
number of success of arm i up-to time t and Fi(t) be the number of failures. Let
Ni(t) = Si(t) + Ni(t) be the total number of pulls of arm i. The algorithm updates
the distributions on µi as Beta(Si(t) + 1, Ni(t)− Si(t) + 1, and samples θi(t) from
this posterior distribution and selects an arm i(t) according to the rule:

i(t) = arg max
i
θi(t)

and observe reward rt.

1.3 Algorithms for Non-Stationary Environment

The multi-armed bandit problem is widely studied in the literature for the station-
ary environment. However, in real world problems, this assumption of stationary
environment does not hold, therefore it is necessary to study the problem of non-
stationary bandits. To understand the non-stationary bandits, we will discuss some
of the work that is present in the literature. We will discuss some algorithms such as,
sliding-window upper-confidence bound (SW-UCB), change-detection based UCB
(CD-UCB), discounted UCB (D-UCB), and discounted Thompson sampling (DTS).
Some other algorithms are also present, but we will only briefly go through with
these.

1.3.1 Change detection Based UCB

Change detection based framework under piece-wise stationary environment is
presented by Fang Liu. et al, in [9]. Authors have studied change detection based
UCB algorithm, that detects the change in the environment and restarts the bandit
algorithm. The CD-UCB consists of change detection algorithm and a bandit al-
gorithm. For change detection authors have used cumulative sum method and Page
Hinkley test (Hinkley 1971), and UCB is used as the bandit algorithm. The CD-UCB
algorithm as presented in [9] is shown in Algorithm1.

CD(·,·) is the change detection algorithm which takes arm index i and observation
Xt(i) as input, and on detecting a change, returns 1. For more details on change
detection algorithm that authors have used, one can refer to [9]. The change detec-
tion algorithm combined with the UCB is shown in algorithm 1, known as CD-UCB.
Now, we will describe some notations and some equations of UCB algorithm that
authors have used. τi is the last time CD(i,·) alarms a change and restarts for arm i
before time t. Ni(t) is the number of valid observations for arm i up to time t, and
nt is the total number of observations. α is the tuning parameter, X̄t(i) is the sample
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Algorithm 1: CD-UCB
Require: T ,α, and an algorithm CD(·,·)
Initialize τi = 1, ∀i
while t < T do

Update according to equations (1.1 - 1.3) ;
Play arm It and observe Xt(It) ;
if CD (It, Xt(It)) == 1 then

τIt = t+ 1;
reset CD(It,·)

else
end

end

average and, Ct(i) is the confidence padding term. Therefore,

X̄t(i) =
t∑

s=τi

Xs(i)

Nt(i)
1{Is=i} Nt(i) =

t∑
s=τi

1{Is=i}

Ct(i) =

√
ξ log nt
Nt(i)

nt =
K∑
i=1

Nt(i)

It =

{
arg maxi∈κ

(
X̄t(t) + Ct(i)

)
, w.p 1− α

i, ∀i ∈ κ w.p α
k

To gain more insight of CD-UCB policy, one can refer to [9].

1.3.2 Discounted Upper Confidence bound

In this section we will discuss another algorithm for the non-stationary environ-
ment, proposed by Kocsis and Szepesv´ari (2006). They have proposed a discounted
variant of the UCB algorithm, with discounting factor γ ∈ (0, 1). For the instanta-
neous expected reward, policy constructs an UCB X̄t(γ, i) + Ct(γ, i), and the dis-
counted empirical average is

X̄t(γ, i) =
1

Nt(γ, i)

t∑
s=1

γt−sXs(i)1{Is=i}

Nt(γ, i) =
t∑

s=1

γt−s1{Is=i}

and the discounted padding function is

Ct(γ, i) =

√
ξ log nt(γ)

Nt(γ, i)
, nt(γ) =

K∑
i=1

Nt(γ, i)
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From the above equations one can see that if γ = 1, the discounted version of UCB
is same as UCB algorithm. using above equation, discounted UCB (D-UCB) is de-
fined in Algorithm 2. To estimate the instantaneous expected reward, the D-UCB
algorithm averages past rewards in a way that, it assigns more weight to the recent
rewards.

Algorithm 2: Discounted UCB
for t from 1 to K, play arm

It = t;
for t from K+1 T, play arm

It = arg max1≤i≤K X̄t(γ, i) + Ct(γ, i)

1.3.3 Sliding Window Upper Confidence Bound

The sliding window UCB (SW-UCB) is proposed by Garivier and Moulines (2008).
In the D-UCB algorithm, we saw that all the past rewards were considered for taking
the average, with a discounting factor that assigns more weight to the recent reward.
In SW-UCB, averages are computed for a fixed time period. At time t, for averaging,
instead of using all the past rewards with a discount factor, SW-UCB relies on a local
empirical average of the observed, using only the last τ plays. For the instantaneous
expected reward, the algorithm constructs an UCB X̄t(τ, i) + Ct(τ, i), and the local
empirical average reward is given by:

X̄t(τ, i) =
1

Nt(τ, i)

t∑
s=t−τ+1

Xs(i)1{Is=i}

and the padding function is

Ct(τ, i) = B

√
ξ log(nt ∧ τ)

Nt(τ, i)

where t ∧ τ is the minimum of t and τ , and ξ is a constant. The SW-UCB is defined
in Algorithm 3.

Algorithm 3: Sliding Window UCB
for t from 1 to K, play arm

It = t;
for t from K+1 T, play arm

It = arg max1≤i≤K X̄t(τ, i) + Ct(τ, i)

1.3.4 Discounted Thompson Sampling

It is a variant of Thompson sampling algorithm proposed in [12], for restless ban-
dits. As discussed in the earlier in section of stationary bandits, Thompson sampling
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maintains a prior distribution, and samples from this prior distribution for selecting
the arm to play. Beta distribution is used as prior distribution, having parameters α
and β, as already discussed in the section of Thompson sampling. The key idea of
discounted Thompson sampling (dTS) is that it uses a discounting factor, γ ∈ (0, 1),
to discount the past rewards, and also, it increases the variance of the unexplored
arms systematically. Another feature of dTS is that, while modifying the variance of
the arms, the mean is kept constant between the plays. The mean is modified only
for the arm which is played. The dTS is defined in Algorithm 4. dTS differs with

Algorithm 4: Discounted Thompson sampling
Require:T,TF ,α,γ,
For each arm i = 1,....,N Set Si = 0 ,Ni = 0, and Fi = Ni − Si
while t < T do

For each arm i = 1,...,N, sample θi(t) from the Beta(Si + 1,Fi + 1)
distribution;

choose better arm, j ← i(t) | θj := argmaxi θi(t);
Play the chosen arm and observe the reward, R(t)← Rj(t) ;
Update Beta distribution;
Fj ← γFj + (1−Rt);
Sj ← γSj +R(t) ;
Fi 6=j ← γFi 6=j ;
Si 6=j ← γSi 6=j ;

end

TS in a way that, it discounts the past values of Si and Fi before updating with the
current rewards. Note that, when γ = 1, dTS is same as the TS. Authors have also
derived the probability of choosing a sub-optimal arm for dTS, and how the variance
is changed because of the discounting factor. To gain more insight of dTS, one can
refer to [12].

7



Chapter 2

Experimental Setup
In this section we will describe the problem statement and will also set-up piece-

wise stationary environment for our work. Further, we will also explain the change
detection methods that we have used in our work.

2.1 Problem Statement: The Two Armed-Bandit Setting

Let κ = {1, 2} be the set of arms. Let t = {1, 2, ....T} be the time instants when
the decision maker makes the decision and T is the time horizon. At each time step
the player chooses an arm I t∈ κ and obtains a reward X t(It). We assume that the
each arm I t∈ κ has Gaussian distribution1, i.e., X t(It) ∼ N (µt(It), σ

2). The arm
I t∈ κ has unknown, non-stationary mean (µt(It)) and known, fixed variance (σ2).
We have assumed that the mean µj , j∈ κ remains constant for some time and changes
at unknown time-instants TCi , where i = 1,2,..., with TC0 assumed to be at t = 0.

2.2 Piecewise-Stationary Environment

We consider a model where the reward process of the arms is non-stationary on the
whole, but stationary on intervals. The reward distribution changes arbitrarily and at
arbitrary time steps, otherwise remains stationary.
We have assumed that the change time instants, TCi , follows the Poisson arrival pro-
cess with parameter, λC , and the inter-arrival time is exponentially distributed:

P(TCi+1
− TCi ≤ k) = 1− exp(−λCk)

We choose the value of λC in such a way that the reward distribution is stationary for
required time and we get enough number of samples for the goodness of fit test.

2.3 Change Detection Methods

2.3.1 Mean Estimated Change Detection

We will consider the two armed-bandit setting as described in the previous section.
For the mean estimated method, we will use the results derived by G. Ghatak in [23]
2. Author has made an assumption that the reward distribution remains stationary for
TF = TN +nT time steps after every time a change occurs where nT is the number of
time-slots after a change, required to detect a change, and TN is the minimum number
of time-slots for which the MAB framework remains stationary after the detection of
the change. The change will be detected when the mean of test sequence (µtest)

1This assumption is made in regards of the use case, i.e., RAT selection strategy. In general it is
not necessary that the reward distribution is Gaussian. Our change detection algorithm will work even
for other distributions.

2This work is under review
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differs from the mean of the estimate sequence (µ̂i) by more than ∆C . Let’s say that
the change occurs at time TCi and detected at time n = TDi > TCi . For evaluating
µtest, out of the nT samples of µtest, let n1 samples (X1, X2, .....Xn1) comes from the
distribution Xi ∼ N (µi(TCi − 1), σ2) and n2 samples (Y1, Y2, ....., YN) from Yi ∼
N (µi(TCi + 1), σ2). The mean of arm It changes from µi(TCi−1) to µi(TCi+1) with
condition that |µi(TCi − 1)− µi(TCi + 1)| ≥ ∆m, the minimum difference between
the mean rewards of the same arm across the time slots. Also, the author has assumed
that, without loss of generality µi(TCi + 1) < µi(TCi − 1) .Therefore the detection
criteria is:∣∣∣∣∣ 1

nT

(
n−nT+n1∑
p=n−nT

Xp +

n1∑
n−nT+n1

Yp

)
− 1

Ni

(
n−nT∑

q=n−nT−Ni

Xq

)∣∣∣∣∣ ≥ ∆C

Now, the points where mean estimated based change detection algorithm will fail
are:

• E1: The estimate of the mean of the original distribution is not accurate (|µ̂1 − µ1| > ε).
Let Tn be the minimum number of samples for an accurate estimation, as men-
tioned earlier.

• E2: The change detection framework is not able to detect the change due to
less number of samples from the test distribution. Let nT be the number of
samples from the test distribution for efficient estimation.

• E3: Two consecutive changes in the arm occur too often for the detection to
keep track. This results in the upper bound on change parameter λC .

The mathematical characterization of the above events is done in [23] and the results
are as follows:

• Under E1, the minimum number of plays of TS-CD framework for estimate of
mean, µi of best arm to be well-localized with probability greater than 1− ploc
is

TN =
−40

∆2
µ

W
(
− exp

(
−40

∆2
µ

(
1

ε
ln

(
1

ploc

)
− 48

∆4
µ

))
∆2
µ

40

)
• Under E2, given µi is well-localized, for a false alarm probability PF , to limit

the probability of failure of change detection to PM , the number of samples
required in test set are

nT =
1

∆m

(√
ln

1

PM
+ σQ−1(PF )

)
• Under E3, to limit the probability of frequency of change to pchange, the bound

on the value of λC is

λC ≤
1

nT + TN
ln

(
1

1− pchange

)
9



And,

∆C =
σQ−1(PF )
√
nT

− ε

The proof follows the procedure in [23].

2.3.2 Goodness Of Fit Test Based Change Detection

The gof test measures how well the observed values of data fits a distribution. It
is used to test whether the two samples are coming from the same distribution or
from different distributions. In this section, we will present Kolmogorov-Smirnov
test (KS-test) and Anderson-Darling test (AD-test). We will compare both of them
and will present an analysis on the number of samples required to detect the change.

Kolmogorov Smirnov Test

The Kolmogorov-Smirnov test was introduced by Kolmogorov(1933,1941), and
Smirnov (1939). It is a non-parametric hypothesis test that measures that an i.i.d.
sample X1, X2, ....Xn comes from a particular distribution or not. We will first dis-
cuss the one-sample KS-test and will extend this to two-sample test. Consider an
i.i.d. sample X1, X2, .....Xn that comes from some unknown distribution P. The ob-
jective is to test the hypothesis that P is equal to a particular distribution P0, that is,
to test the hypothesis:

H0 : P = P0

H1 : P 6= P0

There are many advantages of KS-test, such as:

• It is sensitive to the shape of a distribution because it can detect differences
everywhere along the axis.

• It is applicable for the small sample sizes as well.

• It can detect very small changes in the distribution.

• It does not care if the sample size of the two data is unequal.

Now, let F (x) = P (X ≤ x) denotes the c.d.f of random variable x. Now, let’s define
the empirical c.d.f as

Fn(x) = Pn (X ≤ x) =
1

n

n∑
i=1

I(Xi ≤ x)

According to the law of large numbers, for any fixed point x ∈ R

Fn(x) =
1

n

n∑
i=1

I(Xi ≤ x)→ EI(X ≤ x) = P (X ≤ x) = F (x)

10



which means that

sup
x
|Fn(x)− F (x)| → 0

i.e. maximum difference between empirical c.d.f. and the true c.d.f. approaches zero
in probability. There are two important theorems that we will discuss now

Theorem 1. If F(x) is continuous then the distribution of

sup
x
|Fn(x)− F (x)|

does not depend on F.

Proof. The proof follows the procedure in [25]

Another important result we will use is

P
(√

n sup
x
|Fn(x)− F (x)| ≤ t

)
→ H(t) = 1− 2

∞∑
1

(−1)i−1e−2i
2t

where H(t) is the c.d.f. of Kolmogorov-Smirnov distribution, and

Dn = sup
x
|Fn(x)− F (x)|

is the KS-statistics.
Now, we will present the KS-statistics for the two sample KS-test, that we have used
in our change detection algorithm. Let us consider that the sample X1, X2, .....Xn of
size n and has a distribution with c.d.f. F (x) and another sample Y1, Y2, ....Ym of size
m has distribution with c.d.f. G(x), and we want to test whether the two samples are
coming from same distribution or different. Let Fn(x) and Gm(x) be the empirical
c.d.f.s, then the KS-statistics is:

Dnm =

(
nm

m+ n

) 1
2

sup
x
|Fn(x)−Gm(x)|

The KS-statistics for two sample test also follows the results presented above. Now
let’s derive the KS-statistics for the Gaussian distribution. let us consider that

f1(x) =
1√

2πσ2
1

exp

(
−
(

(x− µ1)
2

2σ2
1

))
f2(x) =

1√
2πσ2

2

exp

(
−
(

(x− µ2)
2

2σ2
2

))
and the corresponding c.d.f.s. are

F1(x) =

∫ x

−∞
f1(x)dx

F2(x) =

∫ x

−∞
f2(x)dx
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respectively. We know from the fundamental theorem of calculus that the derivative
of a function:

F (x) =

∫ t

0

f(x)dx

is

d

dx

∫ x

0

f(t)dt = f(x)

Therefore F1
′(x) = f1(x) and F2

′(x) = f2(x). Now, the KS-statistics is the maxi-
mum over x of the difference of the two c.d.f.s, therefore to maximize we will take
the derivative and will equate it to zero to find the value of x that maximize the
statistics, as shown below:

⇒ d

dx
|F1(x)− F2(x)| = 0

⇒ f1(x) = f2(x)

⇒ 1√
2πσ2

1

exp

(
−
(

(x− µ1)
2

2σ2
1

))
=

1√
2πσ2

2

exp

(
−
(

(x− µ2)
2

2σ2
2

))
on solving we will get

x =
µ1 + µ2

2

Since, we do not know the exact mean and variance, i.e. µ1,µ2 and σ1, σ2 are un-
known, we will use their estimates to find the statistics. Therefore

x =
µ̂1 + µ̂2

2

Now the KS-statistics is

|F1(x)− F2(x)|
x=

µ̂1+µ̂2
2

and we know that

Q(x) =

∫ ∞
x

1√
2π

exp

(
−t2

2

)
and

G(x) = 1−Q(x)

where, G(x) is the c.d.f. of standard Normal distribution. From the above two results
we can say that

F1(x) = 1−Q
(
x− µ̂1

σ̂1

)
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and

F2(x) = 1−Q
(
x− µ̂2

σ̂2

)

⇒ |F1(x)− F2(x)|
x=

µ̂1+µ̂2
2

=

∣∣∣∣Q( µ̂1 − µ̂2

2σ

)
−Q

(
µ̂2 − µ̂1

2σ

)∣∣∣∣
Let’s assume that σ1 = σ2 = σ, and using the property of Q − function, Q(x) =
1−Q(−x)

D =

∣∣∣∣2Q( µ̂1 − µ̂2

2σ

)
− 1

∣∣∣∣
Anderson Darling Test

The KS-test Works effectively when the distributions differ in center. But, when
the change in the two distributions is around the tails, KS-test does not perform
well. Therefore, it is required to have a test which can detect smaller changes at
any point along the distribution. The Anderson-Darling (AD) test was developed
in 1952 by T.W. Anderson and D.A. Darling (Anderson and Darling, 1952). We
will first understand the one sample AD-test. Let

{
X(1) < X(2) < ....... < X(n)

}
,

be the observed data of sample size n, and let F (X) be the underlying cumulative
distribution to which the sample data is considered. The one sample AD statistics is

AD = −n− 1

n

n∑
i=1

(2i− 1)(ln(x(i)) + ln(1− (x(n+1−i))))

The null hypothesis is that, the observed data comes from the underlying distribution
F (X). The null hypothesis is rejected or the change is detected when the critical
value ADα is less than the AD-statistics for a given value of α.
The two-sample test was introduced by Darling (1957) and Pettitt (1976). The two-
sample Ad statistics is

AD =
1

mn

m+n∑
i=1

(
NiZ(m+n−ni)

)2 1

iZ(m+n−i)

where Z(m+n) is the combined and ordered samples Xm and Yn of size m and n
respectively. Ni is the number of observations inXm that are less than or equal to the
ith observation in Z(m+n). The change is detected i.e., Xm and Yn comes from the
different distributions when the AD statistics is greater than the critical value. Further
, Anderson Darling test is also generalized for k-samples, but we will not discuss
here. The AD test have all the advantages of KS-test, discussed in the previous
section. Apart from that, AD-test has two more advantages. The AD test is highly
sensitive towards the tails of the distribution, in which KS-test has less sensitivity,
and AD-test can detect very small changes even for large sample size [19].
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Chapter 3

Proposed Algorithm
In this chapter we will present the change detection algorithm using goodness of

fit test and will use that algorithm for our main algorithm, "change detection based
Thompson sampling using goodness of fit test".

3.1 Change Detection Algorithm

First we will propose the change detection (CD) algorithm using KS-test in Algo-
rithm 1. For the change detection we will require, time duration TF for which the
environment is stationary, history of rewards Ri of arm i ∈ κ. Let N1 be the number
of samples before TF and N2 be the test samples, i.e., number of samples against
which the change detection is performed. Note that, some samples from time before
TF are also considered in N2 to make a good estimate.
Let Si(N1) and Si(N2) be the empirical c.d.f.s of arm i before and after time TF re-
spectively, and let Fi(N1) and Fi(N2) be the corresponding true distributions.
The CD algorithm starts just after time t is greater than TF , so that we have enough
number of samples to make the good estimate of empirical distributions. First we
form the empirical distributions with the history of rewards for each arm to detect
the change.

Assumption 1. For all the arms, change is happening at the same unknown time
instants.

Note that, for the ease of simulations, we have assumed that all the arms are chang-
ing at the same time, this may not true in general. Due to this assumption we only
have to apply CD algorithm to any one arm, but if all the arms are changing at dif-
ferent time it will be applied to all arms in parallel.
Using these empirical distributions, we will calculate the KS-statistics, which fol-
lows the KS-distribution. And finally we will calculate the p-value to compare with
acceptable significance level α. If p − value < α, then we will say that the change
is detected, i.e., both the reward samples are coming from different distributions.

Algorithm 5: Change Detection Algorithm Using KS-test
Require:Ri,N1,N2,α
For arm i ∈ κ;

D =
(

N1N2

N1+N2

) 1
2

sup |Si(N1)− Si(N2)| ;

N =
(

N1N2

N1+N2

) 1
2
;

lambda = max((
√
N + 0.12 + 0.11/

√
N) ∗D, 0) [29];

p = P(D > lambda) = 1−H(lambda);
Return: p
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3.2 Thompson Sampling With Change Detection

We propose TS-CD in Algorithm 2 for the non-stationary environment. In TS-CD,
first we initialize the parameters of the Beta distribution Si and Ni for i ∈ κ with 0.
At each time-step t we sample from the Beta distribution for all the arms and play
the arm which returns the highest sample and obtain the reward Ri(t) for that arm.
Consequently we update the posterior distribution of the arm played.
We have already defined TF in the above sections, to detect the change, at each time
step we will see whether t is greater than TF or not, if condition is true than we call
the change detection algorithm, i.e., Algorithm 1. CD algorithm will return a p-value,
which will be compared with the given acceptable significance level α. If the change
is detected then parameters of the posterior distribution will be reset according to the
equation,

Si ← γSi

Ni ← γNi

Note that, if the Value of γ is 0, then the parameters are completely refreshed. γ is
the hyper-parameter, which we have to tune to get the best results.
If the change is not detected than we will move the sliding window by one sample,
which means that we will consider the newest sample in the empirical distribution
and will discard the oldest sample, keeping number of samples that correspond to the
distributions fixed.
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Algorithm 6: TS With Change Detection
Require:T,TF ,α,γ,
For each arm i = 1,....,N Set Si = 0 ,Ni = 0, and Fi = Ni − Si
while t < T do

For each arm i = 1,...,N, sample θi(t) from the Beta(Si + 1,Fi + 1)
distribution;

choose better arm, j ← i(t) | θj := argmaxi θi(t);
Play the chosen arm and observe the reward, R(t)← Rj(t) ;
Update Beta distribution as;
Nj ← Nj + 1;
Sj ← Sj +R(t) ;
if t ≥ TF then

Call change detection algorithm and get the p-value;
if p ≤ α then

Si ← γSi;
Ni ← γNi;
Reset the TF ;

else
Move the sliding window by one sample;

end
else
end
t← t+ 1

end
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Chapter 4

Case Study
Since beginning, mobile technologies are designed to serve the purpose of the end

users. As the world is evolving, there is a tremendous increase in the demand for
high data-rates. Societies are becoming more and more data-centric and automated
and this requires transfer of much greater amounts of data, at much higher speeds.
Transmission in high frequency-range, such as mm-Wave is one promising solution.
However, mm-Wave transmission suffers a lot due to path-loss and blockages [17].
It is important that the existing cellular architectures must complement the first gen-
eration of mm-Wave access point (AP) deployment. However, the user equipment
association (UE) to the different APs and to different available frequency bands need
to be dynamic due to the environment dynamics, such as vehicular and human block-
ages.
Rahman et al [3] have studied a windowed TS based mm-Wave beam-forming scheme
which switches between two APs based on the blockage conditions. However, they
have not studied how to choose the duration of the window. In this chapter, we will
analyse a band-switching scheme modelled as two armed-bandit problem, and study
the efficacy of the TS-CD algorithm.

Another application that we will explore is of multi-connectivity or macro-diversity.
In multi-connectivity, a single user equipment (UE) connects to multiple base stations
simultaneously and increase the cellular coverage of the UEs [20], [21]. Macro-
diversity has many advantages, although its effects on the network throughput have
not studied properly in the literature. Connecting to multiple BSs of a single user
might degrade the network throughput due to over-provisioning of the resources. In
5G and other wireless applications, the connection of UEs is required to be synced to
the time-varying dynamics of the environment and user equipment. We will test the
proposed algorithm for the case of multi-connectivity and will model the number of
connections to the typical UE as the arms of the MAB framework.

4.1 System Model

We consider a wireless system consisting of APs on the the two dimensional Eu-
clidean plane. APs are located as points of a homogeneous Poisson point process
(PPP)φ, with intensity λ. Without loss of generality, we consider that the user is lo-
cated at the origin and it connects to AP with the highest downlink received power.
To provide ad-hoc coverage and enhanced-data rates, APs are assumed to operate in
two RATs, sub-6GHz band and the mm-Wave Band [13]. For simplification, let us
denote RAT with r, where r ∈ {m, s} stands for mm-Wave and sub-6GHz respec-
tively. Let v ∈ {L,N} be the visibility for line-of-sight (LOS) and non-line-of-sight
(NLOS), respectively. We assume that received power at the typical user from a AP
at a distance d fromthe user is given by KrPrx

−αrv , where αrv is the path loss ex-
ponent for RAT r and visibility state v, Kr is the path loss exponent for RAT r and
Pr is the transmit power from AP in RAT r. σ2

N,r is the noise power in RAT r. The
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received power in mm-Wave takes the advantage of directional antenna gain of the
transmitter and receiver. The user and the serving base station are assumed to be
aligned and the interfering base stations are assumed to be randomly oriented with
respect to the typical user. Here, we assume a model where the product of transmitter
and receiver antenna gain, G, takes on the values ak with probabilities bk as given in
table 1 of [14]. Let the maximum value of G be G0.
We assume the channel visibility (v) in the sub-6GHz and the mm-Wave to be the
same for a given AP, because, the probability of blockage of a signal is indepen-
dent of the frequency band, it mainly depends on blockage process [15]. We further
categorize φ, into either LOS NLOS processes: φL and φN , respectively, due to the
blockage conditions. The intensity of these modified processes are given by p(x)λ
and 1 − p(x)λ, respectively, where p(x) is the probability of a AP at a distance x to
be in LOS with respect to the typical user. For tractability we assume the following
function [13]:

p(x) =

{
1; x ≤ d
0 x > d

That is, AP within the distance d from the user will be considered as LOS and be-
yond d will be NLOS. where, d is the LOS ball radius [13]. To study the perfor-
mance of signal to interference and noise ratio (SINR), first, the path loss process
is reformulated as one dimensional process, φ′vr =

{
ξvr,i : ξvr,i = ‖x‖αvr

KrPr
, xi ∈ φv

}
,

v ∈ {L,N} , r ∈ {s,m}. The processes φ′vr are non-homogeneous with intensities
calculated as below.

Lemma 2. The intensity measures of LOS and NLOS path loss processes, φ′Lr and
φ′Nr are:

Λ′LR (0, x) =

{
πλ (KrPr)

2
αLr x

2
αLr , x < dαLr

KrPr

πλd2, x > dαLr
KvrPr

Λ′NR (0, x) =

{
0, x < dαNr

KvrPr

πλ
(

(KrPrx)
2

αNr − d2
)
, x > dαNr

KrPr

Proof. The derivation is similar to that in [16].

4.2 Characterization Of Mean Rewards

We will discuss how the arms of MAB framework is characterized and their mean
rewards. Arm1 represents the sub-6GHz transmission and arm2 corresponds to the
mm-Wave transmission. We assume that the link, AP to user, transition from LOS to
NLOS state at unknown time steps, e.g., communication link blockage due a vehicle
or if user is mobile, then blockage due to a building. We assume the rewards of the
arms to be the SINR coverage probability1 of the user for a threshold γ. The mean

1The SINR coverege probability is defined as the probability that a typical user receives the SINR
greater than a threshold. Ergodically it represents the percentage of users in the network under cover-
age.
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of both the arms follows two-state Markov model, based on the visibility sate, with
unknown transition probabilities. For arm It ∈ κ, the rewards change in the manner:
{µr,L → µr,N → µr,L → ....}, corresponding to RAT r. Note that, transitions for
both the arms occurs at the same time, as visibility state is same for both the bands.

Lemma 3. For a user served in the sub-6GHz band from an AP at a distance x,
being in visibility state v, the SINR coverage probability is given by:

µs,v = PCvs (γ) = exp

(
−γ · σ2

N,s · x−
∑
v′

Av′ (γ, x)

)
,

where,

Av′ =

∫ ∞
x

γx

y + γx
Λ′v′s (dy) , ∀ v′ ∈ {L,N}

Proof. The proof is similar to that in [13].

Lemma 4. For a user served in the mm-Wave band from an AP at a distance x, being
in visibility state v, the SINR coverage probability is given by:

µm,v = PCvm (γ) = exp

(
−
γ · x · σ2

N,M

G0

−B1 (γ, x)−B2 (γ, x)

)
,

with B1 (γ, x) =
4∑

k=1

(
−bk

∫ ∞
x

αkγx

y + αkγx
Λ′vm (dy)

)
,

and B2 (γ, x) =
4∑

k=1

(
−bk

∫ ∞
x

αkγx

y + αkγx
Λ′v′m (dy)

)
Proof. The proof is similar to that in [13].
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Chapter 5

Simulation Results
5.1 RAT Selection In Wireless Networks

To assess the efficacy of TS-CD algorithm, we compare it with algorithms such as
DTS, D-UCB, Rexp3 and PHT-UCB and also with a static association strategy (Fixed
association) based on the maximum received power in the respective bands [13].
We observe the system for T = 1e4 time-steps, with the user making a choice at
every step. Further we assume that radio environment is changing visibility with
λA = 1e − 5s−1. In “Fig. 5.1” we plot the time-averaged regret for different algo-
rithms. Specifically, we see that the static association strategy(Fixed-association),
which always sticks to a particular band (sub-6GHz or mm-Wave) and Rexp3 per-
forms worst among all other strategies. Further we see that the TS-CD with γ = 0
outperforms all other bandit algorithms by achieving near optimal regret (→ 0). The
figure also shows the points where change has occurred and the points where the
change is detected by the Page Hinkely test (PHT) algorithm as well as goodness
of fit test(GOF) algorithm. The zoomed figure shows number of samples to detect
the change taken by GOF test based algorithm are less than the PHT algorithm. The
shaded region in the figure represents the variance. We can see that the variance of
the TS-CD and PHT-UCB is much lower then the other algorithms, which means
they are more robust than the passively adaptive algorithms.

Figure 5.1: Time averaged regret for different algorithms.

This indicates that the proposed TS-CD algorithm efficiently tracks all the changes
in the dynamic environment with proper hyper-parameter tuning.
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5.2 Multi-Connectivity

Another application where we will test the efficacy of the proposed algorithm is
multi-connectivity. First we will define a performance metric. we will define average
effective throughput (AET) as a performance metric with n connections as:

AET (n, γ, r0) = βPCn(γ) + (1− β)PRn(r0)

where, PCn(τ) = P(SINRn > τ) is SINR coverage probability defined as a typical
UE receives a SINR over a given threshold τ . PRn is the rate coverage probability.
γ is SINR threshold, n is number of connections, and β is a parameter that decides
whether operator prioritizes the signal coverage or the per user throughput. To gain
more insight one can refer to [24]1, we have also characterized the mean rewards
from the results of the same. We assume the traffic density varies as shown in [22].
In “Fig. 5.2” we plot for N = 2 connections with varying UE density and fixed
β, and the optimal number of connections is 2. We see that the 2 connections case
coincides with the BEST strategy. Consequently, it is evident from the plot, that
the 2 connection case performs slightly better than the proposed algorithm TS-CD.
Also we can see that TS-CD performs better than a simple received signal-strength
indicator (RSSI) based 1 connection scheme, and it is clear that, with time TS-CD
learns the reward distribution and approaches the BEST and 2 connection schemes.
Thus, we can infer that, under dynamic traffic intensity which does not change the
optimal arm, the proposed algorithm approaches the optimal arm.
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Figure 5.2: AET Performance of the proposed algorithm as compared to static asso-
ciation schemes with Fixed β.

Now, another type of scenario is that, when the optimal arm changes with time,
such that when the rate and coverage demands of UE changes with time or the oper-
ator decides to prioritize a given type of service. In a, we plot for varying β. We can

1This work is under revision
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Figure 5.3: AET Performance of the proposed algorithm as compared to static asso-
ciation schemes with varying β.

see that initially the 2 connection case performs better, then at t = 9h, 1 connection
case is performing better. The proposed algorithm TS-CD successfully tracks the
change and selects the better arm.
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