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Abstract

Keywords-Wireless sensor network, Compressive sensing, Energy harvest-
ing, Data reconstruction, Missing data recovery, Channel state informa-
tion, Millimeter wave communication, Sampling process, Analog-to-digital
converters, Wide sense stationary process, Correlated Signals

The next generation wireless communication system has the goal of reducing
the power consumption, increasing the network capacity and global connectiv-
ity. Most of the signals generated, transmitted or received in wireless systems
are generally analog in nature. An analog signal contains both information and
energy. However, using the information carrying signal for energy harvesting
may lead to loss of information and hence, may affect a system’s performance.
Therefore, the objective of this thesis, “iDEG:integrated data and energy gather-
ing for wireless systems" is to harvest the energy as well as information from the
same signal without effecting the system performance for energy constrained
applications. This implies, the designed system should recover the entire infor-
mation from the partial signal, and hence the remaining signal can be used for
the energy harvesting. In order to recover entire signal from partial information,
we have examined different properties of the signal such as sparsity, low-rank
and correlation in the data and for different applications such as wireless sen-
sor network (WSN), millimeter wave (mmWave) communication and for wide
sense stationary (WSS) signals.

To accomplish the objective of efficient data gathering, We have first pro-
posed a partial canonical identity (PCI) based compressive sensing (CS) frame-
work, which randomly samples the observed signal at sub-Nyquist rate and im-
proves the data recovery performance, under the sparsity condition in particular
domains such as discrete cosine transform (DCT) and discrete Fourier transform
(DFT). This PCI-CS framework reduces the computation cost, implementation
complexity, energy losses and can also recover the missing data values. The per-
formance of PCI-CS has been improved in noisy environment by proposing a
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robust two-stage algorithm, named as PCI-MF, which also utilizes the low-rank
nature of the observed signal. The first stage of this algorithm utilizes PCI-CS to
recover the sparsest solution and the rank of the data from the partial available
information, which are jointly utilized in the second stage to de-noise the data
in a matrix factorization framework. This algorithm has been compared with
various conventional and state-of-the-art CS and matrix completion framework
in context of WSN and mmWave communication. This is due to the fact that a)
WSN data is highly coherent in spatial and temporal domain, which results in
double sparsity in the DCT domain and also reduction in rank of the data. Sim-
ulations are performed on two real datasets of Intel Lab and Data Sensing Lab.
b) PCI-MF has also been proposed to estimate entire channel state information
(CSI) from a few randomly varying noisy channel coefficients in mmWave mas-
sive multiple-input-multiple-output (MIMO) channel, where estimation of all
channel coefficients is not practically feasible. The mmWave channel matrix is
a low-rank matrix, which can be modeled as a two dimensional DFT form of a
sparse matrix due to the directional beamforming. Simulations have been per-
formed on two different datasets, where one dataset is generated in a real-world
setting in the New York City.

The next step of this thesis, also aligned with the title, is to develop an inte-
grated data and energy gathering (iDEG) solution. The iDEG has been proposed
for WSN, Analog-to-digital-converters (ADCs) and for correlated wide-sense-
stationary signals. We have proposed an iDEG framework for practical WSN.
The sensor nodes deployed in WSNs generate an analog signal corresponding
to the sensed parameters, which is sampled and digitized for further processing
and transmission to the fusion center. The iDEG for WSN utilizes PCI based
CS framework, which selects only a set of sensor nodes at every time point to
transmit the data to the FC for recovering the entire data, while the rest of the
nodes, which are not participating in data transmission are utilized to harvest
the energy from the received analog signal. The performance of iDEG has been
tested on a real WSN dataset from Intel Lab. Comparative results of iDEG with
the conventional approaches highlight its efficacy. This work motivates us to re-
think the sampling process of the ADC. A common ADC architecture is based
on sample-and hold (S/H) circuits, where the analog signal is being tracked
only for a fraction of the sampling period, and hence allow us to harvest energy
in the remaining duration, developing an iDEG solution for ADCs. Therefore,
we have proposed eSampling ADCs, which extends the structure of S/H ADCs
without altering its data conversion procedure, while harvesting energy from
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the analog signal during the time periods where the signal is not being tracked.
The amount of energy harvested can be increased by reducing the sampling
rate, and hence we have also analyzed the tradeoff between the accuracy and
the harvested energy. Our theoretical results also shows that eSampling 8-bit
ADC acquiring bandlimited signal at Nyquist rate can harvest over 15 dB more
energy than it consumes in the conversion procedure. To verify the feasibility
of eSampling ADCs, we present a circuit-level design using standard comple-
mentary metal oxide semiconductor (CMOS) 65 nm technology. An eSampling
8-bit ADC which samples at 40 MHZ is designed on a Cadence Virtuoso plat-
form. Our experimental study involving Nyquist rate sampling of bandlimited
signals demonstrates that such ADCs are indeed capable of harvesting more
energy than that spent during analog to- digital conversion, without effecting
the accuracy. Finally, to validate eSampling in real-world scenario, a hardware
setup has also been designed to harvest energy along with sampling at sensor
node deployed for environment and health monitoring WSN application.

The final objective for this thesis is to propose a joint sub-Nyquist eSampling
and reconstruction based iDEG framework for multiple correlated stochastic sig-
nals by exploiting the general correlation without inheriting an inbuilt structure.
This work exploits the correlation of multiple stochastic signals to improve the
reconstruction accuracy at lower sampling rate, and hence increases the amount
of harvested energy from the analog signals by exploiting eSampling method.
We derive the achievable reconstruction error, maximum amount of energy har-
vested and the corresponding esampling system for arbitrary sampling rates and
spectral structures by designing an optimal analog combining and reconstruc-
tion filter. The proposed system minimizes the error and maximizes the energy,
when sampling below the Nyquist rate by preserving only the most dominant
spatial eigenmodes aliased to each frequency. Our numerical results illustrate
that joint esampling can achieve negligible reconstruction error at low sampling
rates, and also allows the system to operate at zero power with up to 16-bits of
quantization resolution.
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Chapter 1

Introduction

The fifth generation (5G) wireless systems have the goal of reducing the power

consumption by ten-fold, increasing the network capacity by thousand-fold,

seamless user experience and global connectivity [4]. Most of the signals gen-

erated, transmitted or received in wireless systems are analog in nature. An ana-

log signal contains both information and energy. Therefore, efficient systems

should be designed that can extract the information as well as harvest the en-

ergy from the analog signal, which will help in meeting the goals of 5G wireless

systems. However, using the informative signal for harvesting the energy will

result in loss of information, and hence affects the system performance. There-

fore, the objective of this thesis, "iDEG:integrated data and energy gathering

for wireless systems" is to harvest the energy as well as information from the

same signal without affecting the system performance for energy constrained

applications. Here, the term data gathering implies recovering the complete

data accurately from partial signal by sampling at a sub-Nyquist rate so that the

remaining signal can be used for energy harvesting (EH). Furthermore, the term
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energy gathering is used to denote the combined effect of energy saving and

EH. This gathered energy will definitely reduce the energy consumption of the

wireless systems and may also help in developing a self-sustainable device for

critical applications of wireless systems.

The proposed method for data gathering has been discussed in Section 1.1.

Followed by integrated data and energy gathering (iDEG) methods for various

applications such as wireless sensor network (WSN), Sampling process and

for correlated stochastic signals in Section 1.2, Section 1.3 and Section 1.4,

respectively.

1.1 Data Gathering

As mentioned above, the term data gathering used in this thesis implies recov-

ering the complete data from the partial signal by sampling at the sub-Nyquist

rate. One of the growing field for sub-Nyquist sampling is compressive sens-

ing (CS) [5,6], which exploits the underlying structure of continuous-time (CT)

signal to allow reconstruction from its low rate sampled version [7–11]. The ef-

fect of sub-Nyquist sampling has been studied in various applications, such as

data recovery [12,13], de-noising of data [14], channel capacity [15–17], source

coding [18, 19] and channel estimation [20, 21]. The lower sampled version of

the original signal is the compressive measurements of the signal, which can

be represented as the multiplication of a matrix (known as sensing matrix) with

the Nyquist sampled version of the original signal. CS theory states that the
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original signal can be accurately reconstructed from its compressive measure-

ments, if the signal has a sparse representation in the certain transform domain,

such that the sparsifying domain is mutually incoherent with the sensing ma-

trix. The conventionally popular sensing matrices are Gaussian and Bernoulli

random matrices, which provide the linear combination of the original signal

as the compressive measurements and have coherence with any fixed transform

basis of the around square root of the length of the original signal sampled at

the Nyquist rate [10]. The data acquisition process is demanding in terms of

resources such as hardware cost, acquisition time and complexity.

In this thesis, partial canonical identity (PCI) sensing matrix is utilized to

sense the data compressively. The PCI sensing matrix randomly selects the

samples at sub-Nyquist rate instead of obtaining the linear combination of the

data, and hence allows to harvest the energy from the un-utilized signal, which

will help to meet the iDEG goal of the thesis, discussed in Section 1.2. PCI

sensing matrix was proposed in [22] and reported to have inferior performance

compared to random matrices such as Gaussian and Bernoulli. Likewise, it

was also used with wavelet transform (WT) in [23] for CS based image recon-

struction and observed to be inferior to Gaussian and Bernoulli matrices. We

have investigated different transform domains such as discrete cosine transform

(DCT) and Fourier transform (FT), where PCI sensing matrix is actually per-

forming superior to the conventional Gaussian and Bernoulli matrices. We have

computed the coherency of PCI sensing matrix with different transform basis to

select an appropriate sparsifying basis that ensures good quality reconstruction
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of the data. The computational complexity of PCI has been compared with the

Gaussian and Bernoulli matrices. In addition, for further analysis, we have also

compared the reconstruction performance of the PCI sensing matrix with vari-

ous other sparse sensing matrices. The detailed description has been provided

in Chapter 2 of this thesis.

Since PCI based CS framework (PCI-CS) can recover the entire data from a

few random samples, it resembles the missing data recovery (MDR) framework.

Therefore, we have also studied PCI-CS in the context of MDR, while also

improving the data recovery problem in the presence of noise. To accomplish

this, we have proposed a robust two-stage algorithm, named as PCI-MF. The

first stage of this algorithm utilizes PCI-CS to recover the sparsest solution and

the rank of the data from the partially available information, which are jointly

utilized in the second stage to de-noise the data in a matrix factorization (MF)

framework. This algorithms has been exploited for WSN application and also

for millimeter wave (mmWave) communication. The salient contributions in

both applications are elaborated below

1.1.1 WSN

WSN is a technology based on Internet of Things (IoT), built using various types

of wireless sensor nodes to provide local and maybe even global connectivity.

In recent years, with the advent of smart sensors, the design and deployment

of WSNs have become an active area of research. Sensor nodes are typically

deployed to measure environmental parameters/conditions such as temperature,
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pressure, humidity, and vibration, etc. The measured value is transmitted to

the fusion centre (FC) for further processing. In WSN applications, data loss

is prevalent and generally arises due to hardware failures, channel fading, syn-

chronization issues, collisions, and environmental blockage [24]. These miss-

ing values are required to be estimated accurately. The incorrect estimation

of the missed raw data can lead to serious damage or casualty. For example,

the underwater temperature measurements are used to determine the nature of

ocean currents, helping in generating environmental alerts in case of any adver-

sity. The above discussion clearly establishes the need for designing effective

methods for recovering missing data in WSNs.

It is to be noted that WSN data is smoothly varying data, which results in

sparsity in the DCT domain and also exhibit low-rank nature. This helps to

utilize PCI-MF for WSN application.

We have compared PCI-MF with various well-known missing data recov-

ery/matrix completion techniques such as interpolation, K nearest neighbour

(KNN) [25], singular value thresholding (SVT) for nuclear norm minimiza-

tion [26], matrix decomposition [27], and ESTI-CS methods [28]. The results

have been computed on the realistic dataset of WSN [1]. It is to be noted that

along with PCI-MF, we have also proposed two more algorithms in this context,

which are performing better than the existing algorithms, however performing

inferior with the PCI-MF. The detailed description has been provided in Chapter

3 of the thesis.
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The robustness of PCI-MF algorithm has been further proved by recover-

ing the complete channel state information (CSI) from partial information for

mmWave massive multi-input-multiple-output (MIMO) wireless systems, dis-

cussed in the next section.

1.1.2 Mmwave communication

MmWave communication is a promising solution for providing gigabits-per-

second data rates in cellular networks [29, 30]. However, transmission at such

a high frequency also results in high path loss attenuation, and hence transmit

beamforming using massive number of antennas is a common solution. This

also requires perfect CSI estimation. The estimation of CSI is not practically

feasible in mmWave massive MIMO systems. Therefore, to reduce the over-

head, the problem of channel estimation in mmWave massive MIMO systems

is formulated as either beam-alignment problem [31–33] or CS problem. How-

ever, in beam alignment, the transmitter and receiver search for the best beam

pair, which increases the feedback overhead.

The performance of existing CS based methods [20, 21] is still restricted be-

cause these methods are not leveraging the known properties of mmWave mas-

sive MIMO channel matrix judiciously. In this thesis, PCI-MF has been used to

recover the entire mmWave CSI by estimating only a few channel coefficients.

Specifically, in this method, the few estimated noisy channel coefficients are

represented as a combination of PCI and discrete Fourier transform (DFT) ma-

trix in a CS framework to recover the sparsest solution of the channel matrix
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by exploiting the fact that both PCI and DFT matrices are highly incoherent.

The sparse matrix determined above has been used to recover the rank of the

channel matrix. The knowledge of the rank, along with the sparse coefficients

recovered above, have been used jointly in a MF framework to recover the actual

channel matrix. PCI-MF has been compared with conventional matrix comple-

tion/missing data recovery framework [34] and state-of-the-art methods [20,21]

for two different data sets by varying different parameters such as the number

of transmitting and receiving antennas, antenna configurations, signal-to-noise

ratio (SNR) and measurement ratio. In order to validate the proposed method

for realistic applications, one data set is generated from real-world parameters

obtained in the New York City [2,3]. The details have been provided in Chapter

4.

Note: After acquiring the data from the partial signal, the next step is to

effectively utilize the remaining signal for energy harvesting. Therefore, in the

next section, we will be discussing iDEG protocol for one of the most critical

energy constrained application of wireless systems, i.e., WSN.

1.2 iDEG for WSN

As discussed in section 1.1.1, the sensor nodes deployed in WSN measure the

physical parameters such as temperature, pressure, position, flow, humidity, vi-

bration, force and motion to monitor the real-world applications. The output of

a sensor node is generally an electrical signal, which is digitized using analog-to-
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digital-converter (ADC) and transmitted to the FC after pre-processing. The FC

processes the data received from all the nodes to take a global decision. The per-

formance and lifetime of practical WSNs are generally limited by the amount of

energy consumed, while sensing and transmitting the sensed data [35]. More-

over, sensors are usually deployed in remote locations where replacement or

recharging of energy sources, i.e., batteries not always be possible, for instance,

in dense forest, ocean beds, toxic environments, medical body area network

(MBAN) and body area network (BAN). As a consequence, researchers are ac-

tively searching for methods to prolong the life of sensors by making sensors

partially or fully battery independent. In order to achieve this, two avenues

are generally followed, a) Power up nodes by harvesting energy either from

ambient or human-generated sources [36, 37], prominent among them are, me-

chanical EH, solar EH, nano-sensor EH, bio-sensor EH, acoustic EH, thermal

EH, wind EH, and wireless radio frequency (RF) EH. However, this will always

require a dedicated source to charge the sensor nodes, which may not be pos-

sible. Moreover, a dedicated circuitry will also be required at the sensor nodes

for harvesting this energy. This increases the size and complexity of nodes. b)

Reducing the energy consumption of sensor nodes [12, 35, 38–47]. This can be

done by allowing only a few selected nodes to participate in sensing and com-

municating the data to FC [35]. However, prohibiting some of the nodes from

sending the sensed data may degrade the reliability of global decision made at

FC. Therefore, effective "data gathering" at the sensor nodes is required, which

can reduce the energy consumption of sensor nodes while maintaining the ac-
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curacy at FC. Since WSN data is highly redundant [39], distributive coding and

collaborative processing have been used to compress the sensor network data.

This reduces the number of transmissions from sensor nodes to FC. However,

these techniques rely on prior knowledge of correlation among nodes, sophisti-

cated communication between nodes and FC, and increase in node capabilities

which further enhance the complexity and energy consumption. CS has been

used in WSN to eliminate the above-mentioned drawbacks [10,12,48]. The CS

based data aggregation in WSN has been shown to reduce the network traffic.

However, collection and transmission of the linear combination of data from

all the nodes increase the energy consumption [12]. Therefore, [40–42] pro-

vide various energy efficient CS based routing algorithms to effectively collect

the data. In addition to the above methods, significant research has also been

devoted towards reducing the energy consumption of CS framework by reduc-

ing the number of measurements [43, 44] or by using a sparse measurement

matrix [45–47]. These methods [40–47] (discussed in detail subsequently in

Chapter 5) focused to cater the problem of effective data gathering only how-

ever does not consider simultaneous data and energy gathering.

As a consequence, in this thesis, an iDEG protocol has been proposed for

WSN, which utilizes the proposed PCI-CS framework for data gathering that

does not require the linear combination of original data, unlike the conventional

CS based methods. This reduces the sensing time, computation cost, implemen-

tation complexity, the number of transmissions, and hence the energy losses,

which helps to meet the energy gathering goal of iDEG. Along with energy sav-
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ing, a new method has also been proposed to harvest energy at those sensor

nodes which are not participating in the data gathering process from the signal

received through sensing the physical parameter (discussed in detail in Chapter

5).

The energy harvesting from the un-utilized analog signal at sensor nodes

motivated us to re-think the utility of the conventional sampling, specifically in

the context of energy harvesting without affecting the data acquisition procedure

of the sampling process. Therefore, in this thesis, we will be proposing iDEG

framework for the sampling process. Hence, in the subsequent section, we try to

answer the following question, can we harvest energy from analog signal during

the sampling process?

1.3 eSampling: Energy harvesting during sampling process

In general, real world signals are analog in nature. To capture these signals for

further processing, or transmission, signals are converted into digital bits using

ADC. In this conversion, a good amount of signal energy is wasted because the

signal is captured only for a fraction of sampling duration, while the rest of the

signal is discarded. In this context, we revisit the sampling process and proposes

to harvest the discarded signal, naming the method as eSampling, i.e., sampling

with energy harvesting. This harvested energy can be used to supplement the

ADC itself, paving the way to the possibility of zero-power consumption and

power-saving ADCs. The amount of energy harvested can be increased by re-
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ducing the sampling rate. We analyze the tradeoff between the ability to recover

the sampled signal and the energy harvested and provide guidelines for setting

the sampling rate in the light of accuracy and energy constraints. Our analysis

indicates that eSampling ADCs operating with up to 12 bits per sample can ac-

quire bandlimited analog signals such that they can be perfectly recovered (up

to the distortion induced in quantization) without requiring power from the ex-

ternal source. Furthermore, our theoretical results reveal that eSampling ADCs

can infact save power by harvesting more energy than they consume. We show

how these results imply that an eSampling ADC acquiring a bandlimited signal

at Nyquist rate with 8 bit ADCs can harvest over 15 dB more energy than it

consumes in the conversion procedure. To verify the feasibility of eSampling

ADCs, we present a circuit-level design using standard complementary metal-

oxide semiconductor (CMOS) 65 nm technology. An eSampling 8-bit ADC

which samples at 40 MHZ is designed on a Cadence Virtuoso platform. Our ex-

perimental study involving Nyquist rate sampling of bandlimited signals demon-

strates that such ADCs are indeed capable of harvesting more energy than that

spent during analog-to-digital conversion, without affecting the accuracy.

The eSampling ADCs have a potential advantage in the IoT based applica-

tions. This is due to the fact that most of the sensor nodes are energy constrained

nodes and generate an analog signal corresponding to the sensed parameter.

This analog signal is converted into digital bits by using the sampling and quan-

tization process. Hence, by replacing sampling with eSampling, the discarded

energy of the analog signal could be harvested to develop a self-sustainable
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sensor node. To experimentally demonstrate that energy harvesting can be com-

bined with sampling, we have provided a real-time validation of eSampling

ADC for sensing circuit for environmental and health monitoring application in

Chapter 6.

1.4 iDEG using eSampling for correlated stochastic signals

In Section 1.2, we have observed by utilizing the underlying structure of the

analog signal, we can sample the signal at low sampling rate by utilizing PCI

based compressive sensing, which also allows us to harvest the energy from the

un-utilized signal. Further, in Section 1.3, we have observed we can harvest the

input signal energy during the sampling process by utilizing eSampling method.

We have also observed the amount of energy harvested can be increased by

reducing the sampling rate. However, for an unstructured signal, the PCI based

CS method can not be utilized to reduce the sampling rate. Therefore, in this

thesis, we have also studied iDEG for multiple correlated stochastic signals by

exploiting the general correlation between the signals.

In Chapter 7, we have jointly esampled and recovered the multiple correlated

stochastic sources by exploiting their correlation at the reduced sampling rate,

which also allowed us to harvest the more energy from the input analog signal.

We derive the achievable reconstruction error, the maximum amount of energy

harvested, and the corresponding sampling system for arbitrary sampling rates

and spectral structures by designing an optimal analog combining and recon-
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struction filter. Our numerical results illustrate that joint esampling can achieve

negligible reconstruction error and also maximizes the amount of harvested en-

ergy from the input analog signals.

1.5 Research Objectives

The research objectives of this dissertation are to retrieve the complete informa-

tion from the partial signal so that the remaining signal can be used for energy

harvesting. Hence, two-dimensional objectives of this dissertation are elabo-

rated below:

• To improve the performance of the recovery algorithm that allows full data

recovery from a very few samples even under a noisy scenario. This has

been done by examining different properties of the signal such as sparsity,

low-rank and correlation in the data and for different applications such

as WSN, mmWave communication and for wide sense stationary (WSS)

signals.

• To harvest the energy from the un-utilized analog signal without affecting

the system performance, for instance, harvesting energy during the conven-

tional sampling process of an ADC. In addition, to improve the amount

of harvested energy by reducing the sampling rate of ADCs and also by

designing the optimal filters.
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1.7 Thesis Organisation

This dissertation is organized as follows.

Notation: Matrices and vectors are written in capital bold letters and small

bold letters, respectively, whereas scalars are written in italics. Furthermore,

X′, X∗ and XH denotes the transpose, conjugate and the Hermitian (conjugate

transpose) of matrix X, respectively. The element corresponding to ith row and

jth column of a matrix X is represented as X(i, j). The ith element of a vector x

is represented as x(i). The vectorization of matrix X is denoted as X(:). X⊗ Y

and X�Y represents Kronecker and Hadamard product between matrix X and

Y, respectively. The lp norm of a matrix or a vector is represented as || · ||p. A

binary, complex and real matrix of size a × b is represented by Ba×b, Ca×b and

<a×b, respectively.

• Chapter 2 introduces basic concepts of CS followed by proposed partial

canonical identity based compressive sensing (PCI-CS) and its properties.

PCI-CS has been examined on WSN application. The simulation results

have been computed on WSN data taken from Intel lab [1].
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• In Chapter 3, PCI-CS has been studied in the context of missing data re-

covery. The algorithm has been further improved by introducing a second

stage of reconstruction. This algorithm has been compared with various

missing data recovery algorithms for WSN data.

• In Chapter 4, the proposed algorithm has been further verified by recover-

ing the complete CSI from partial knowledge of the channel in mmwave

massive MIMO wireless systems. The work has been compared with state-

of-the-art methods.

• In Chapter 5, an integrated data and energy gathering protocol for WSN

has been proposed, which focuses on energy saving and energy harvesting

for WSN, while reconstructing the data using PCI-CS framework.

• Chapter 6 proposes a method of harvesting energy from the analog signal

during the sampling process without affecting the performance of an ADC.

The work has been examined through analysis, simulations as well as ex-

perimentally.

• In Chapter 7, an iDEG solution utilizing eSampling has been proposed for

the unstructured signal such as correlated WSS signal. The system jointly

esampled and reconstructed the multiple correlated stochastic signals by

designing an optimal analog combining and reconstruction filter.

• Finally, Chapter 8 concludes this dissertation along with the suggested fu-

ture research directions.
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Chapter 2

Partial Canonical Identity based

Compressive Sensing applied to Wireless

Sensor Networks

2.1 Introduction to Compressive sensing

Compressive sensing (CS), also known as sub-Nyquist sampling and sparse

sampling is a signal processing technique, which allows acquisition of the signal

at a rate much below the Nyquist sampling rate [7–9]. For instance, according

to the Shannon-Nyquist sampling theorem, a signal can be recovered if it’s ac-

quired at a rate twice the maximum signal frequency. However, if the signal is

exactly or approximately sparse in some transform domain, then a few compres-

sive measurements (less than Nyquist rate) of the original signal is sufficient to

recover the original signal, if certain conditions are satisfied [48]. A signal is

called exactly k-sparse if it has only k number of non-zero elements and all the
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remaining elements are zero. While a signal is called approximately k-sparse, if

the signal has only k number of entries with large coefficients and all remaining

entries are tending to zero. CS has been utilizing in various applications, such as

magnetic resonance imaging, high-speed video acquisition, and ultra-wideband

communication.

Let us illustrate the concept of CS through a brief example. The M compres-

sive measurements of a signal x (to be recovered) of length N can be written as

y = Φx, (2.1)

where Φ is a M ×N sensing matrix and M << N . In general, Φ is a Gaussian

or Bernoulli matrix that provides linear combinations of x in y. Let x is sparse

in Ψ domain, i.e., s = Ψx, where s is the sparse representation of x. Therefore,

y can also be written as:

y = ΦΨ−1s

= As (∵ A = ΦΨ−1), (2.2)

where A of size M ×N is termed as the measurement matrix.

The sparse signal x can be recovered from y if either the Restricted isomet-

ric property (RIP) or the Mutual incoherence property is satisfied by matrix A.

These properties can be understood as follows.

A matrix A is said to satisfy RIP, if there exists δk ∈ (0, 1) for all k-sparse
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signals s such that

(1− δk) ||s||22 ≤ ||A s||22 ≤ (1 + δk) ||s||22. (2.3)

The mutual incoherence property is said to be satisfied by matrix A if the sens-

ing matrix Φ and the sparsifying basis Ψ−1 are incoherent, where the coherence

between the sensing matrix and the transform basis can be calculated as:

µ(Φ,Ψ−1) =
√
N max

∀i,j

∣∣〈Φi,Ψ
−1
j

〉∣∣
‖Φi‖2

∥∥Ψ−1
j

∥∥
2

, (2.4)

where Φi is the ith row of Φ and Ψ−1
j is the jth column of Ψ−1. It should

be noted that µ(Φ,Ψ−1) ∈ [1,
√
N ], and hence µ = 1 represents maximum

incoherence between the matrices. It is observed that the random matrices like

Gaussian and Bernoulli follow the above constraints with mutual coherence of
√

2 logN [10].

Note: CS framework can also be utilized with noisy input signal, in such a

case, the obtained CS measurements will be written as

z = Φ(x + n)

= Φ(Ψ−1s + n)

(a)
= As + n (∵ A = ΦΨ−1), (2.5)

where (a) follows from the fact that noise vector, n is the random AWGN (addi-

tive white Gaussian noise), and hence Φn can be written as n.
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2.2 Partial Canonical identity based CS (PCI-CS)

In this thesis, we have proposed a partial canonical identity (PCI) sensing ma-

trix, which randomly selects M elements of x, instead of obtaining the M lin-

ear combination of x, unlike the conventional Gaussian and Bernoulli matrices.

Therefore, the compressive measurements of x using PCI sensing matrix will

be given by y = [x1 x2 ...xM ]′. It can be visualized as follows

y =



x1

x4

...

xN


M×1

=



1 0 0 0 0 0 ... 0

0 0 0 1 0 0 ... 0

... ... ... ... ... ... ...
...

0 0 0 0 0 0 ... 1


M×N



x1

x2

x3

x4

...

xN


N×1

=Φx, (2.6)

where Φ is an M ×N PCI sensing matrix, where each element of Φ is given by

Φ(i, j) =


1 1 ≤ i ≤ M, j = m,where m ∈ [1,N]

and all m are distinct.

0 otherwise.

(2.7)

It can be observed that no multiplication or addition is required to compute y

from x using PCI sensing matrix. On the other hand, if Φ is a Gaussian matrix,

thenMN multiplications andM(N−1) additions are required to compressively
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sense the data. Similarly, if Φ is a Bernoulli matrix, then M(N − 1) additions

are required (refer to Table 2.1). Thus, the computational complexity associated

with the sensing of data is greatly reduced with PCI matrix compared to the

conventionally popular random sensing matrices.

Table 2.1: Computational Complexity of PCI and conventional sensing matrices.

Sensing Matrix (Φ) Multiplications Additions
Gaussian MN M(N − 1)

Bernoulli 0 M(N − 1)

PCI 0 0

Further, in order to recover the complete data from compressive measure-

ments, the sensing matrix should be mutually incoherent with the transform

basis. For the PCI sensing matrix, the expression of coherence (2.4) reduces to

µ(PCI,Ψ−1) =
√
N max

∀i,j

|Ψ−1(i, j)|
||Ψ−1

j ||2
. (2.8)

The coherence value of PCI sensing matrix with various transform basis is pro-

vided in Table 2.2. From this table, it is observed that the PCI matrix is highly

incoherent with FT (and inverse FT) and DCT (and inverse DCT) with coher-

ence values of 1 and
√

2, respectively, that are independent of the length of input

vector x. However, the coherence of Gaussian and Bernoulli random matrices

with any fixed basis is approximately
√

2 logN [10]. Thus, PCI matrix is more

incoherent with FT, IFT, DCT and IDCT basis matrices as compared to Gaus-

sian and Bernoulli matrices. However, in the wavelet domain, the coherence of

Gaussian and Bernoulli matrices is proportional to
√

logN , but coherence of
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PCI matrix is quite large and proportional to
√
N . Fig. 2.1 compares the coher-

ence of PCI matrix with the conventional random sensing matrices (Gaussian

and Bernoulli) for different transform basis on values of N ranging from 50 to

500. We note that PCI sensing matrix has low coherence with FT and DCT and

hence, can be effectively utilized with these sparsifying matrices in CS based ap-

plications. One such application is wireless sensor networks (WSN) discussed

in the next section of this chapter.

Table 2.2: Coherence between PCI sensing matrix and various transform basis.

Ψ−1 µ Ψ−1 µ

FT/IFT 1 db3 wavelet 0.8069
√
N

DCT/IDCT
√

2 db4 wavelet 0.7148
√
N

Haar Wavelet 0.7071
√
N coif2 wavelet 0.8127

√
N

db2 wavelet 0.8365
√
N coif4 wavelet 0.7822

√
N

Note: Selecting M elements of x is equivalent to obtaining the M linear

combinations of s. This can be understood from Fig. 2.2.

2.3 PCI-CS applied to WSN

As mentioned in section 2.2, PCI matrix is highly incoherent with DCT and FT

basis, and hence if the data is sparse in such domain, PCI based CS can be ef-

fectively used to reduce the sensing cost as well as to improve the performance.

Indeed, the WSN data is sparse in the DCT domain as seen from the plot

of sorted DCT coefficients in Fig. 2.3. The coefficients are plotted for the

temperature data taken from the Intel Lab [1]. The signal is less smooth in the
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Figure 2.1: Coherence of PCI, Gaussian, and Bernoulli sensing matrices with a) IFT b) IDCT c) Haar wavelet d)
coif2 wavelet for different value of N .
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Figure 2.2: Each block is filled with some color that corresponds to some integer value. For example, white
represents ’0’, and the yellow represents ’1’. a) z is compressively sensed data of x, but Φ is chosen such that z
contains few randomly sensed samples of x. (b) Replace x by Ψ−1s in (a), Ψ−1 is the sparsifying basis matrix and
s is the sparse vector. (c) Although z is obtained by randomly picking up a fewer sample of x, mathematically this is
equivalent to taking linear combinations of s.

spatial domain as compared to the time domain because nodes are randomly

distributed in the spatial domain. Hence, from Fig. 2.3, we observe that the

data is less sparse in the spatial domain as compared to the time domain. The

smoothness of the signal is captured by the parameter called Hurst exponent

(H). IfH > 0.5, the signals are smoother and their KL (Karhunen–Loeve) basis

can be approximated by DCT [49]. In order to validate this, we computed the

Hurst exponent, H of the considered data [1], and it was observed to be nearly

0.7 in the time domain. Correspondingly, we also generated the synthetic data

with H = 0.8. The DCT coefficients of both synthetic and real data have been

plotted in Fig. 2.3. We observe that both synthetic and real data are sparse in

the DCT domain.

The reconstruction of the entire data from compressive measurements ob-

tained through PCI sensing matrix by exploiting sparsity in the DCT domain

has been discussed in the subsequent section.
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Figure 2.3: Sorted DCT coefficients of WSN Intel lab data [1] and synthetic data.

2.3.1 Reconstruction

WSN data is smoothly varying in both the spatial and temporal domain and

results in DCT sparsity due to both domains. Therefore, in Section 2.3.1.1 and

Section 2.3.1.2, we have shown the mathematical representation for exploiting

both domains’ sparsity separately and jointly, respectively.

2.3.1.1 Single sparsity

The DCT sparsity either due to the spatial domain or due to the temporal domain

can be exploited as follows to reconstruct the complete data from the compres-

sive measurements.

Assuming the data samples x1, x2... xN of input signal x are either time do-

main or the spatial domain samples based upon the type of sparsity we would

like to exploit. The sparse representation of signal x, i.e., s can be recovered

from compressive measurements, y by using following l1 minimization prob-
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lem, if any of the mentioned conditions of CS (2.3), (2.4) is satisfied,

min
s
||y− As||22 + λ||s||1, (2.9)

where λ is the regularization parameters to control the level of sparsity and

the data accuracy. Iterative soft thresholding method (ISTA) [50] can be used

to solve (2.9). The sparse vector, s determined above can recover the original

signal x by using x = Ψ−1s.

2.3.1.2 Double Sparsity

In this section, we will exploit both spatial and temporal sparsity jointly to re-

construct complete data from compressive measurements. Consider the WSN

data X for N nodes at T time instants as

X =



x
(1)
1 x

(2)
1 x

(3)
1 ... x

(T )
1

x
(1)
2 x

(2)
2 x

(3)
2 ... x

(T )
2

... ... ... ...
...

x
(1)
N x

(2)
N x

(3)
N ... x

(T )
N


N×T

(2.10)

where x(j)
i represents data of ith sensor at jth time instant. Since data is corre-

lated in both the spatial and temporal domains, it is assumed to be sparser in

Ψ1 domain due to spatial correlation and sparser in Ψ2 domain due to temporal

correlation. Thus, the sparse representation of X can be written as S = Ψ1XΨ′2,

or

X = Ψ−1
1 S(Ψ′2)

−1. (2.11)
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Furthermore, (2.11) can be written in the vectorized form using the Kronecker

multiplication of basis matrices as [51],

x = vec(X) = (Ψ−1
2 ⊗Ψ−1

1 )vec(S)

= (Ψ−1
2 ⊗Ψ−1

1 )s. (2.12)

Thus, the reconstructed signal can be written as

y = Φ(Ψ−1
2 ⊗Ψ−1

1 )s,

= As (∵ A = Φ(Ψ−1
2 ⊗Ψ−1

1 )). (2.13)

Equation (2.13) can be solved using the convex optimization formulation given

in (2.9) and accordingly, x̂ can be recovered from (Ψ−1
2 ⊗Ψ−1

1 )ŝ.

2.3.2 Simulation Results

In this section, the PCI sensing matrix has been compared with the conven-

tional Gaussian and Bernoulli sensing matrices. To ascertain performance im-

provement with the proposed methodology, the PCI sensing matrix based recov-

ery has also been compared with various sparse sensing matrices [42, 52, 53].

Graphs are plotted for different compressive sampling ratios with normalized

mean square error (NMSE) 1 as the performance metric of data recovery.

For the proof-of-concept demonstration and practical verification of the pro-

posed work, simulations are performed on a real data set of Intel lab [1]. This
1NMSE= ||x−x̂||22

||x||22
, where x is the original data and x̂ is the recovered data.

28



data was collected in the Intel Berkeley Research Lab between 28th Feb and 5th

April 2004. Mic2Dot sensors were arranged in a Lab of dimension 40m× 20m

to collect readings of temperature, humidity, light, and voltage. We have chosen

the day of 28th Feb 2 with data value at each minute for the 52 sensors3. The

matrix X in (2.10) is filled with temperature values such that N = 52 repre-

sents the number of sensor nodes and T = 500 represents the total number of

timestamps.

Further, this dataset is observed to have some missing entries. This is an

obvious scenario for practical WSNs, where some data points may not be avail-

able due to environmental factors, channel conditions, faulty sensors, etc. Since

conventional CS based methods with Gaussian sensing matrices require the lin-

ear combination of data, these entries are filled by techniques such as linear

interpolation, KNN [25], or by using statistical methods of data estimation in

sensor networks [54]. For example, this particular dataset has 6593 missing

entries from the total of 26,000 entries (52 × 500), i.e., 25.36% of data is not

available. Thus, in order to apply CS on the complete data set, the conventional

Gaussian and Bernoulli sensing matrices will first interpolate these values to

compute the M random linear projections of the dataset. This process may also

lead to noisy recovery because of the inherent noise in filling the missing entries

that would further lead to cumulative noise owing to picking up linear combi-

nations. However, the proposed PCI matrix is self-sufficient in estimating the

missing entries without any additional noise in sensing and doesn’t require any
2The chosen date has no impact on the results. The pattern will be similar for any other date.
3Out of 54 sensors, 52 sensors have been chosen because data value for the 5th and 28th sensor was not available
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complementary method to fill the missing data. This saves both time and energy

and also leads to better performance. The contribution of the proposed work in

terms of missing data recovery has been elaborated in Chapter 3.

2.3.2.1 Single Sparsity with Spatial Correlation

In this section, we have exploited the spatial correlation of the data. Accord-

ingly, data is obtained by vectorizing matrix X as

x =

[
x

(1)
1 ... x

(1)
N x

(2)
1 ... x

(2)
N ... x

(T )
1 ... x

(T )
N

]′
or,

x =

[
x

(1)
1 ... x

(1)
N x

(2)
N ... x

(2)
1 ... x

(T )
1 ... x

(T )
N

]′
.

The length of vector x for our case is NT = N × T = 26000. However, due

to missing entries only Na = 19407 samples are present (NT > Na). There-

fore, the analysis is performed on the known data only. For instance, at sam-

pling ratio=0.5, the number of obtained measurements, i.e., Ma will be equal

to 0.5 × Na. Fig. 2.4 presents NMSE computed at Na sample points (denoted

as, NMSENa) with various sensing matrices, i.e., PCI, Gaussian, and Bernoulli

matrices at different sampling ratios (Ma

Na
) varied from 0.1 to 0.9. DCT is cho-

sen as the sparsifying domain. From Fig. 2.4, we observe that the PCI sensing

matrix outperforms both Gaussian and Bernoulli matrices at all sampling ratios.

Hence, it is evident from the discussion in Section 2.2 and Fig. 2.4 that PCI

sensing matrix reduces the computational complexity and improves the NMSE

performance.
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Figure 2.4: NMSENa
obtained with PCI, Gaussian, and Bernoulli sensing matrices by exploiting spatial correlation.

Consider Fig. 2.5 for the visual illustration of the obtained results. This

figure shows the temperature values corresponding to the original dataset of

length Na = 19407 and the recovered data using all three sensing matrices at a

sampling ratio of 60%, i.e., Ma

Na
= 0.6. From this figure, it can be observed that

the data recovered from the PCI sensing matrix is close to the original data as

compared to Gaussian and Bernoulli sensing matrices.

2.3.2.2 Single Sparsity with Time Correlation

In this section, we have exploited the time correlation of the data. Accordingly,

data is obtained by vectorizing matrix X

x =

[
x

(1)
1 ... x

(T )
1 x

(1)
2 ... x

(T )
2 ... x

(1)
N ... x

(T )
N

]′
or,
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Figure 2.5: Temperature values of a) Original data b), c) and d) recovered data using PCI, Gaussian and Bernoulli
sensing matrix respectively at 60% sampling ratio.

x =

[
x

(1)
1 ... x

(T )
1 x

(T )
2 ... x

(1)
2 ... x

(1)
N ... x

(T )
N

]′
.

Again, x should be of length NT . However, owing to missing entries, only Na

samples are present. Fig. 2.6(a) presents NMSENa obtained with various sens-

ing matrices, i.e., PCI, Gaussian, and Bernoulli matrices at different sampling

ratios (Ma

Na
) varied from 0.1 to 0.9. Again, DCT is chosen as the sparsifying

domain. From this figure, it is observed that Gaussian and Bernoulli’s matrices

perform better than PCI for Ma

Na
< 0.4. This is because, for low values of sam-

pling ratio, there could be a case where no data is sensed from any particular

sensor while using the PCI sensing matrix. It is obvious that while exploiting

time correlation, we must have samples from all the sensor nodes as all nodes

are independent, unlike the case of spatial correlation, where the data is esti-

mated with the help of neighbouring nodes. To mitigate the above drawback,

we have considered the following two cases:
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Figure 2.6: NMSENa
obtained with PCI, Gaussian, and Bernoulli sensing matrices by exploiting time correlation

for different cases.

Case-1: Here, the data of all the nodes at all timestamps is vectorized, with a

constraint that the same number of data is sensed from each of the sensor nodes.

Therefore, if the minimum available data for 500 timestamps at any sensor node

is M1, then sampling ratio will be equal to NM1

Na
The results for this is provided

in Fig. 2.6(b), from where we can observe that the PCI matrix is outperforming

the conventional sensing matrices.

Case-2: The reconstruction algorithm at each sensor node is applied sepa-

rately as data is considered to be time correlated. Therefore, if nti samples are

available at ith sensor node such that
N∑
i=1

nti = Na, then the number of mea-

surements picked from each sensor node can be given as mt
i = sampling ratio

×nti. The NMSE for each sensor node on available nti samples is computed sep-

arately. Further, the mean of obtained NMSEs, denoted as NMSEnt is plotted in

Fig. 2.6(c). As mentioned before, T = 500 timestamps are taken for each sen-

sor node, and all the corresponding entries are not available. In 500 timestamps,

the maximum filled entries at a particular sensor is 490 whereas, the minimum

is 139 (such that (nti ∈ [139, 490])). For such a low number of observations,

both the conventional methods are giving a very high value of NMSE. However,
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the PCI sensing matrix is still performing better, as shown in Fig. 2.6(c).

2.3.2.3 Double sparsity with both space and time correlation

In this section, both time and space correlation are exploited on the matrix X.

For both the dimensions, DCT sparsifying domain is taken. As mentioned be-

fore, missing entries are present and conventional sensing matrices can’t be ap-

plied in this case as they take the linear combination of the data. Therefore, the

technique like linear interpolation is first used to fill the missing entries of the

matrix X and then compressive sensing is applied for Gaussian and Bernoulli

matrix [25]. However, such an interpolation technique is not required while

sensing with PCI sensing matrix as it is self-sufficient in estimating the miss-

ing entries. In Fig. 2.7, NMSENa with sampling ratio (Ma

Na
) is plotted for for

PCI, Gaussian and Bernoulli sensing matrix. We can observe the PCI sensing

matrix outperforms the conventional matrices, without using the interpolation

technique.

2.3.2.4 Reconstruction performance of different sparse random matrices

In this section, we have compared the reconstruction performance of the PCI

sensing matrix with different sparse random sensing matrices. The considered

sparse sensing matrices are described below:
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• A binary matrix, Φ1 [42, 52] given as

Pr(Φ1(i, j) = w) =


p w = 0

1− p w = 1 ∀i, j

0 otherwise,

where Φ1(i, j) is the element of the matrix Φ1. The considered value of p

is 0.5 and 0.3.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Sampling ratio (M
a
/N

a
)

10-6

10-5

10-4

10-3

10-2

N
M

S
E

N
a

PCI sensing matrix

Gaussian sensing matrix with linear interploation in time domain

Bernoulli sensing matrix  with linear interpolation in time domain

Gaussian sensing matrix with linear interpolation in space domain

Bernoulli sensing matrix  with linear interpolation in space domain

Figure 2.7: NMSENa
obtained with PCI, Gaussian, and Bernoulli sensing matrices by exploiting both space and

time correlation.

• Another class of sparse matrix, say Φ2, is introduced in [53], in which

each entry can be +1, -1 and 0 with the some probability. The considered

probability mass function is given below

Pr(Φ2(i, j) = w) =


1
3 w ∈ {0, 1,−1} ∀i, j

0 otherwise,

where Φ2(i, j) is the element of the matrix Φ2.
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Figure 2.8: NMSENa
obtained with various sensing matrices and DCT sparsifying domain.

The DCT domain has been considered as the sparsifying domain. From Fig.

2.8, we can observe binary matrix with p = 0.5 is performing worse than con-

ventional Gaussian and Bernoulli matrices, whereas, the performance of binary

matrix with p = 0.3 and the sparse matrix proposed in [53] have the almost sim-

ilar performance with the conventional Gaussian and Bernoulli matrices. How-

ever, the proposed PCI sensing matrix based reconstruction is outperforming all

sensing matrices with considerable difference.

2.4 Discussion

As mentioned above, the proposed PCI-CS framework is self-sufficient in re-

covering the missing entries from the original data, and the detailed analysis

has been provided subsequently in Chapter 3. However, a few observations are

mentioned below:
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• Fig. 2.9 shows the original data (with missing entries), and the data re-

covered data using all three sensing matrices (i.e., Gaussian, Bernoulli and

PCI). There were NT −Na = 6593 missing entries in the original data set

which could be recovered successfully only with PCI sensing matrix as a

complimentary by-product.
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Figure 2.9: Recovery of missing values from the original data, a by-product of PCI sensing matrix.

• Consider Fig. 2.4 to evaluate the performance of PCI sensing matrix in

context of missing data recovery. It can be observed that NMSE of approx-

imately 10−3, 10−4 and 10−5 is obtained with PCI sensing matrix at the

sampling ratios of 0.1, 0.5 and 0.9, which is equivalent to the case when

90%, 50% and 10% data are missing, respectively.
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Chapter 3

Robust two-stage algorithm for Missing

data recovery in WSN

In recent years, wireless sensor networks (WSNs) are being widely used for

both critical as well as non-critical applications. The data collected by sensor

nodes may be corrupted or distorted due to hardware impairments and severe

environmental conditions such as deep fading. For critical applications such as

detection of the forest fire, ocean currents, chemical pills and earthquake, it is

essential to obtain complete data accurately at the fusion centre (FC) for tak-

ing an appropriate decision. Previously, to recover the missing and corrupted

data in WSN, various interpolation techniques such as K-nearest neighbours

(KNN) [55], and Delaunay Triangulation (DT) [56] have been used. However,

when missing entries are large, the accuracy of the above techniques are deemed

insufficient. In addition, missing values are effectively recovered by using the

low-rank constraint in various applications such as recommender systems, im-

age inpainting and WSN, since most of the real-world signals are low rank.
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3.1 Background

Consider a WSN matrix XN×T , whereN is the number of sensor nodes and T is

the number of time stamps at which data is collected. The received incomplete

matrix can be written as

Y = B • X, (3.1)

where ‘•’ denotes element wise multiplication and B is a binary index matrix

such that B(i, j) = 1, if X(i, j) is present and is 0 if X(i, j) is missing. If X

is low-rank, it can be recovered by solving the following convex optimization

program

min
X

rank(X) s.t Y = B • X. (3.2)

However, minimizing rank of the data is an NP-hard problem. Hence, instead

of minimizing the rank of X, sum of the singular values of X is minimized using

the following formulation

min
X
||X||∗ s.t. Y = B • X. (3.3)

where ||X||∗ is the nuclear norm of X. (3.3) can be solved by singular value

thresholding (SVT) algorithm [26]. Matrix factorization is also one of the fa-

mous techniques for matrix completion (MC) [57], if rank of X (say r) is known.

In such a scenario, (3.2) can be solved as:

min
U,V

(||U||2F + ||V′||2F ) s.t. Y = B • (UV′). (3.4)
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Here, we need to find matrices U and V such that X = UV′. The dimensions of

U and V are N × r and T × r, respectively. It may be noted that the rank of an

incomplete matrix can not be determined, and hence, a low-rank matrix fitting

(LMaFit) algorithm [34] has been presented for MC, in which r is dynamically

adjusted. Moreover, in [28], spatial and temporal correlation along with the rank

constraint have been exploited to recover the missing data in WSN by solving

following optimization framework

min
U,V

(||B• (UV′)−Y||2F +λ(||U||2F + ||V′||2F ) + ||HUV′||2F + ||UV′T||2F ), (3.5)

where λ is the Lagrange multiplier. T and H matrices are used to exploit the

temporal and spatial correlation, respectively. This method requires both rank

and topology of the data for correct estimation of missing values, which is not

known in practical scenario for incomplete data matrix. Furthermore, robust

principal component analysis (RPCA) [58] is also one of the known method

used for MC in the noisy environment, in which the data matrix X is assumed

to be the sum of a low rank matrix (L) and a sparse matrix (S). Hence, along

with minimizing the nuclear norm of L, the algorithm also minimizes the l1

norm of S as shown below

min
L,S

(||B • (L + S)− Y||2F + λ1||L||∗ + λ2||S||1. (3.6)

Several fast and efficient algorithms have been proposed to solve RPCA prob-

lem [59,60]. In [59], Robust PCA has been solved via gradient descent method.

This method is called as RPCA-GD.
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3.2 Proposed methods

In this section, we will discuss three different proposed methods to recover the

missing data values in the context of WSN, which are listed below. It is to be

noted that all the proposed algorithms outperform various matrix completion

algorithms and do not require any prior knowledge of the data, such as the rank

or the network topology.

• PCI-MDR: In continuation with Section 2.4 of Chapter 2, we have pro-

posed a two-stage PCI based missing data recovery (MDR) method, named

as PCI-MDR. The first stage of this algorithm utilizes PCI-CS to recover

the entire data, and the second stage de-noise the data by exploiting the

low-rank nature while minimizing the nuclear norm of the WSN dataset.

This algorithm has been discussed in details in Section 3.2.1.

Some of the open questions of the proposed PCI-MDR algorithm are

1. Can we use double DCT sparsity in context of matrix completion frame-

work (3.1), instead of PCI-CS to recover the data?

2. Can we improve the de-noising stage (second stage) by exploiting

more properties of the recovered data from the first stage?

In order to answer the above questions, two algorithms employing “two

stage matrix completion (TS-MC)" for WSN have been proposed.

• TS-MC-1: The first stage of this algorithm performs matrix completion

by minimizing the DCT coefficients (named as MC-DCT) jointly in both
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spatial and temporal domain and the second stage de-noises the data in the

matrix factorization framework.

• TS-MC-2: The first stage of this algorithm utilizes PCI-CS to recover the

sparsest solution and the rank of the data from the partial available infor-

mation, which are jointly utilized in the second stage to de-noise the data

in a matrix factorization framework. Hence, this algorithm also named as

PCI-MF. Both TS-MC methods have been discussed in details in Section

3.2.2.

3.2.1 PCI-MDR algorithm

The received incomplete WSN matrix (3.1) can also be written as

y = Φx, (3.7)

where x = X(:) is a vector of length NT . Further, Φ is the matrix of size M ×

NT with M as the number of available entries of full data x. Here, each row of

Φ contains single ‘1’ at the position corresponding to the data samples available

in x. This implies vector y contains the available M entries of x. This particular

non-square matrix Φ with a single ‘1’ in every column and row is the PCI matrix.

Since the WSN matrix is sparse in DCT domain due to spatial and temporal

smoothness, (refer Section 2.3), the vector x, and hence X can be recovered

from y as shown in Section 2.3.1. Therefore, the PCI based CS framework

(PCI-CS) proposed in Chapter 2 can also be used to recover the missing data
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values. However, in presence of noise, the smoothness in the data is affected,

which in turn impacts the level of sparsity which deteriorates the performance

of the algorithm. Since, the WSN data is also low-rank, a de-noising framework

with low-rank constraint is subsequently applied on the matrix recovered using

PCI-CS, denoted as X̂, as shown below

X̃ = ||X̂− X||2F + λl||X||∗, (3.8)

where λl is the regularization parameter.

3.2.2 TS-MC algorithms

This section provides the detailed description of TS-MC-1 and TS-MC-2 algo-

rithms. The first stage of both TS-MC algorithms, exploited the DCT sparsi-

fying domain, as the WSN signal is sparse in the DCT domain 2.3. However,

the implementation of both algorithms is different. In the first stage of TS-MC-

1, matrix completion is performed by minimizing the DCT coefficients jointly

in both the spatial and temporal domain. However, the first stage of TS-MC-2

solves the missing data recovery problem by using PCI-CS framework. The

first stage of both TS-MC has been discussed subsequently in Section 3.2.2.1.

It is to be noted that the second stage of both the algorithms is the same and

discussed in Section 3.2.3. In this stage, the recovered data from the first stage

is further de-noised using matrix factorization framework. The rank required

for matrix factorization can be estimated from the data recovered from the first
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stage.

3.2.2.1 First stage of TS-MC algorithms

The first stage of TS-MC-1 and TS-MC-2 has been discussed in the following

subsections 3.2.2.2 and 3.2.2.2, respectively.

3.2.2.2 First stage of TS-MC-1

In this method, the matrix completion problem is formulated as

min
X
||Y− B • X||2F + λ1||D1XD2||1, (3.9)

where D1 and D2 are the DCT matrices of size N ×N and T × T , respectively.

The constraint ||D1XD2||1 used in (3.9) enforces the double DCT sparsity as

data is slowly-varying in both spatial and temporal domains. Further, λ1 ∈ R

is the regularization parameter that controls the trade-off between data accuracy

and the sparsity level. A proxy variable W is introduced to rewrite (3.9) as

min
X,W
||Y− B • X||2F + λ1||W||1 + λ2||W− D1XD2||2F , (3.10)

where λ2 is the controlling parameter to control the degree of equality between

the original term and the proxy variable. For small value of λ1, the equality

constraint is relaxed and for high value of λ1, the constraint is enforced. The

above problem (3.10) can be divided into the following sub-problems by using
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the alternating direction method of multipliers (ADMM):

P1 : min
W
||W− D1XD2||2F + λa||W||1

(
∵ λa =

λ1

λ2

)
,

P2 : min
X
||Y− B • X||2F + λ2||W− D1XD2||2F (3.11)

P1 can be solved using soft-thresholding [61] and P2 is a simple least squares

problem.

Algorithm 1 TS-MC-1

Input: B, Y, D1, D2, Xint, λa, µ, maxiter1, maxiter2
Initializing: X = Xint

Obtain Bc such that Bc(i, j) =

{
1 if B(i, j) = 0
0 if B(i, j) = 1

for k1 = 1 : maxiter1
W = sgn(D1XD2) max(0, |D1XD2| − 0.5λa)

1

X = DT
1 WDT

2

X = Y + Bc • X
end[
U D V

]
= svd(X); svd is the singular value decomposition.

d = diag(D); diag picks the diagonal elements.
r = number of highest values in d
for k2 = 1 : maxiter2

U← minU
∥∥[X̂ 0n×r

]
− U

[
V √

µIr
]∥∥2

F

V← minV

∥∥∥∥[ X̂
0r×t

]
−
[

U√
µIr

]
V
∥∥∥∥2

F
end
X=UV
Output: X

3.2.2.3 First stage of TS-MC-2

In this method, the problem of missing data recovery is formulated as a CS

problem and solved using PCI-CS framework, the same as in the first stage

of PCI MDR algorithm. Refer to Section 3.2.1. Compared to TS-MC-1, this

1sgn =


−1 if x < 0
0 if x = 0
1 if x > 0
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method also carries out de-noising of data.

3.2.3 Second stage of TS-MC algorithms

The data recovered from the first stage (X̂) is de-noised in the second stage

using matrix factorization such as X̂ = UV. The dimension of U and V are

chosen to be n × r and r × t, respectively, where r is the rank of the data that

can be estimated from X̂. The problem can be formulated as

min
U,V
||X̂− UV||2F + µ||U||2F + µ||V||2F . (3.12)

The problem in (3.12) can be divided into two sub-problems using ADMM as

P3 : U← min
U
||X̂− UV||2F + µ||U||2F ,

P4 : V← min
V
||X̂− UV||2F + µ||V||2F . (3.13)

The above sub-problems can be re-written as

P3 : U← min
U

∥∥∥∥[X̂ 0n×r

]
− U

[
V √

µIr

]∥∥∥∥2

F

P4 : V← min
V

∥∥∥∥∥∥∥
 X̂

0r×t

−
 U
√
µIr

V

∥∥∥∥∥∥∥
2

F

. (3.14)

The above sub-problems are the simple least squares problems. Further, the

original WSN matrix X can be recovered as X̃ = UV.

The algorithmic steps of TS-MC-1 and TS-MC-2 algorithm have been pro-
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vided in Algorithm 1 and Algorithm 2, respectively.

Algorithm 2 TS-MC-2

Input: Φ, y, D1, D2, xint, n, t, µ, λ3, maxiter1, maxiter2
Initializing: x = xint
H = Φ(D2 ⊗ DT

1 )
α = max(eig(HTH))
for k1 = 1 : maxiter1

x = sgn(x + 1
αHT y−Hx) max(0, |HT y−Hx| − λ3

2α)1

end
X = reshape(x, (n, t)); reshape converts the vector x into a matrix of size n× t.[
U D V

]
= svd(X); svd is the singular value decomposition.

d = diag(D); diag picks the diagonal elements.
r = number of highest values in d
for k2 = 1 : maxiter2

U← minU
∥∥[X̂ 0n×r

]
− U

[
V √

µIr
]∥∥2

F

V← minV

∥∥∥∥[ X̂
0r×t

]
−
[

U√
µIr

]
V
∥∥∥∥2

F
end
X=UV
Output: X

3.3 Complexity

The complexity of all three proposed algorithms are provided below: PCI-

MDR: The complexity of the first and the second stage of the PCI-MDR algo-

rithm isO(MNT ) andO(N 2T ) per iteration, respectively. Therefore, the over-

all complexity of the proposed algorithm will beO(MNT+N 2T ) ≈ O(MNT )

per iteration.

TS-MC-1: The complexity of the first and the second stage of the TS-MC-1 algo-

rithm is O(NT ) and O(NrT ) per iteration, respectively. Therefore, the overall

complexity of the proposed algorithm will be O(NT + NrT ) ≈ O(NrT ) per

iteration.

TS-MC-2: The complexity of the first and the second stage of the TS-MC-2 al-
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Table 3.1: Complexity comparison of all three proposed methods

PCI-MDR TS-MC-1 TS-MC-2
(PCI-MF)

First stage PCI-CS
O(MNT )

MC-DCT
O(NT )

PCI-CS

O(MNT )

Second stage SVT
O(N2T )

MF
O(NrT )

MF
O(NrT )

Total complexity O(MNT ) O(NrT ) O(MNT )

gorithm is O(MNT ) and O(NrT ) per iteration, respectively. Therefore, the

overall complexity of the proposed algorithm will be O(MNT + NrT ) ≈

O(MNT ) per iteration.

The complexity of TS-MC-1 is same as of the matrix factorization O(NrT )

[57] and a bit smaller than the complexity of PCI-MDR and TS-MC-2. However,

the complexity of these two algorithms (PCI-MDR and TS-MC-2) is dominated

by ISTA and quite higher even with the complexity of SVT (O(n2t)) [62]. Al-

though it should be observed that at massive data loss, M will decrease, and

hence complexity will also decrease. In addition to the above, the computations

will be performed at the fusion centre (FC), which is generally equipped with

powerful processors. Furthermore, algorithms like Fast ISTA (FISTA) [50] also

exist in the literature, which reduces the complexity of ISTA and hence, the

complexity of these algorithms can be further reduced.

3.4 Simulation Results

This section compares the performance of all three proposed algorithms with

various recent and state-of-the-art methods in the context of missing data recov-
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ery. The simulation results for PCI-MDR have been discussed in Section 3.4.1,

whereas the simulation results for TS-MC algorithms have been discussed in

Section 3.4.2.

3.4.1 PCI-MDR algorithm

In this section, we have computed the performance of the proposed PCI-MDR

method for missing data recovery in both absence as well as in the presence

of noise. The results have been compared with matrix factorization [57] and

SVT [26] algorithms on the real data set of temperature taken from Intel Lab

[1]. The data from 53 sensor nodes at every minute has been considered for 200

minutes in the simulation Hence,N = 53 and T = 200. It is to be noted that out

of 10600 entries (53 × 200), 2699 entries are missing i.e., 25.4623% of data is

not available. Since the ground truth of the missing data mentioned above is not

available, we manually removed m2 entries randomly, in addition to the values

already missing in the original dataset i.e., m1. We designed the PCI matrix

to recover the original m1 missing entries and also the simulated m2 missing

entries, therefore the overall missing data will be N − M = m1 + m2. The

data loss percentage is calculated as m2

N−m1
× 100%. Further, NMSE is given by

||xm2
−x̂m2

||22
||xm2

||22
, where x̂m2

is the recovered data at the simulated missing positions

(i.e., m2) and xm2
is the ground truth available at m2 positions.

All the data points of x i.e., N has been reconstructed, however, for comput-

ing the performance of the algorithm, the performance is calculated only at the

simulated missing values, i.e., m2 since the ground truth is available at these
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positions only. If the data at the simulated missing positions are recovered with

good accuracy, it will indicate that the actual missing data must have also been

recovered with good accuracy. Furthermore, in order to create the noisy data,

additive Gaussian noise is added to the dataset such that the average signal-to-

noise (SNR) power ratio is 10 dB.

Fig. 3.1 and 3.2 shows the NMSE of data recovered at simulated missing po-

sitions as a function of data loss percentage in the absence and presence of noise,

respectively. From Fig. 3.1, we observe that a) the reconstruction performance

of the PCI-MDR method is better in the time domain as compared to the spatial

domain. This is because the data in the time domain is smoother than the spatial

domain and hence will be more sparse in the DCT domain, this is also evident

from Fig. 2.3; b) PCI-MDR is performing better than both matrix factoriza-

tion [57] and SVT [26] methods. It may be noted that the matrix factorization

technique also requires the rank of the data, which is generally unavailable for

the realistic scenario. Therefore, we have computed matrix factorization algo-

rithm for two values of rank, r = 1 and 2. Further, it can be observed that as the

data loss percentage increases, the performance of the proposed method com-

pared to existing methods also increases.; c) double sparsity can be exploited

using both spatial and temporal domain together to further improve the perfor-

mance of PCI-MDR.; and d) at massive data loss of 90%, the proposed method

is still giving NMSE of 4.0445 × 10−5, however, the matrix factorization with

r = 1 has NMSE of 0.019348, and hence providing ∼ 25 dB improvement.

The second stage of de-noising in PCI-MDR method (3.8) provides the sig-
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Figure 3.1: NMSE versus data loss for WSN Intel Lab data in the absence of noise.
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Figure 3.2: NMSE versus data loss for WSN Intel Lab data in the presence of noise with SNR = 10 dB.

nificant improvement in the case of noisy data as shown in Fig. 3.2 but no

improvement for noiseless data as shown in Fig. 3.1. This is because in the

presence of noise, the smoothness of the real data gets affected, therefore ex-

ploiting low-rank constraint at the second stage provides an improvement in

the reconstruction performance. However, in the absence of noise, the PCI and

DCT based CS framework (first stage) is sufficient in recovering the missing

data accurately, and hence no additional constraint such as low-rank is required.

Compared to the existing matrix factorization algorithm with r = 1, the pro-

posed method provides 8.6 dB improvement in the presence of noise.
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3.4.2 TS-MC algorithms

The performance of PCI-MDR can be further improved by using proposed TS-

MC-1 and TS-MC-2 algorithms. Consider Fig.3.3, which compares all three pro-

posed algorithms and also various other matrix completion algorithms such as

SVT [26], LMaFit [34], OptSpace [63] and RPCA-GD [59]. From the obtained
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Proposed: TS-MC-2

PCI-MDR

Figure 3.3: NMSE versus data loss for WSN Intel Lab data in the presence of noise with SNR = 10dB.

results, it is observed that both proposed algorithms of TS-MC outperforming

the various matrix completion algorithms as well as PCI-MDR. Furthermore,

the performance of TS-MC-2 is much better than TS-MC-1 at high data loss.

From Fig. 3.5, we observe that at 90% data loss, TS-MC-1 is providing around

6 dB improvement, while TS-MC-2 is providing around 12.5 dB improvement

as compared to LMaFit, Optspace and RPCA-GD. Therefore, at higher data

losses, the proposed algorithm is performing very well, and hence in Fig. 3.4,

we have plotted the NMSE with respect to SNR for 90% data loss. The com-

parison has also been shown on humidity dataset of the Intel lab [1] in Fig. 3.5.

52



0 5 10 15 20
SNR (dB)

10
-3

10
-2

10
-1

10
0

N
M

S
E

LMaFit

OptSpace

RPCA-GD

SVT

Proposed: TS-MC-1

Proposed: TS-MC-2

Figure 3.4: NMSE against SNR at 90% data loss for temperature dataset taken from Intel lab
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Figure 3.5: NMSE against data loss percentage at SNR = 10 dB for Intel Lab humidity dataset

For further verification, we have also compared the algorithms using the

dataset of another lab (data sensing lab [64]). In this dataset, N = 38 sensor

nodes are present and similar to above T = 200 timestamps have been taken.

Further, in this dataset, 9.16% of entries are not available, as NT = 7600 and
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N−m1 = 6904. In Fig. 3.6, NMSE form2 entries has been plotted against data

loss percentage. It can be observed that the proposed algorithms are consistently

outperforming the conventional MC algorithms on this dataset as well.
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Figure 3.6: NMSE against data loss percentage at SNR = 10 dB for temperature dataset taken from Data sensing lab

3.5 Discussion

We have observed that the proposed TS-MC-2 (also known as PCI-MF), which

is exploiting PCI-CS to recover the incomplete data in the first stage and then

de-noising the recovered data in the second stage using matrix factorization

framework by estimating the rank from the first stage is the best performing

algorithm. In this chapter, this algorithm has been used in the WSN application.

However, the proposed algorithm can be applied in various other applications,

if the data is sparse in a domain such that the sparsifying domain is mutually

incoherent with PCI matrix, for instance, DCT and DFT, and also the low-rank
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in any domain.

In the subsequent chapter, TS-MC-2/PCI-MF has been modified to recover

the channel coefficients in mmWave massive MIMO wireless system. This is

due to the fact that mmWave channel forms a sparsity pattern in the DFT do-

main, and further the channel coefficients also has various dependencies which

reduce the rank of the channel matrix. This also implies the proposed algorithm

is not only designed for a correlated data such as WSN, it will equally perform

even for a random data such as wireless channel.
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Chapter 4

PCI-MF: Partial canonical identity and

Matrix factorization framework for

channel estimation in mmWave Massive

MIMO systems

4.1 Introduction

To facilitate the vision of fifth-generation (5G) cellular standard, numerous ad-

vanced technologies such as shrinking the cell’s size, and advanced multiple-

input-multiple-output (MIMO) have been proposed in the literature [65, 66].

However, the existing microwave band (< 6 GHz) is mostly occupied and

may not be able to meet future demands even after employing these technolo-

gies [67, 68]. Therefore, there is a need to move to extremely high frequency

(EHF) band (30-300 GHz), also known as millimetre wave (mmWave) band,

which has the capability of providing data rates in giga-bits-per-second (Gbps)
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[29, 30]. The transmission at such high frequency comes at the expense of sig-

nificant path attenuation [69]. Therefore, to overcome the propagation losses

at mmWave frequencies, directional beamforming between transmitter and re-

ceiver is employed by using multiple antennas at both transmitter as well as

receiver [70, 71]. Fortunately, due to shorter wavelength of mmWave commu-

nication system, more antennas can be placed together in a small area because

the separation required between consecutive antennas is around half of the sig-

nal’s wavelength at both the transmitter as well as the receiver [72]. However,

to provide sufficient beamforming gain, a well-aligned narrow beam between

transmitter and receiver is required, which requires perfect channel state infor-

mation (CSI). Since mmWave massive MIMO system utilizes multiple antennas

at both transmitter and receiver, estimation of channel coefficients between ev-

ery pair increases the overhead considerably.

To reduce the overhead, the problem of channel estimation in mmWave mas-

sive MIMO is formulated as either beam-alignment problem or compressive

sensing (CS) problem. In beam alignment, the transmitter and receiver search

for the best beam pair, which increases the feedback overhead [31–33]. How-

ever, the CS problem exploits the sparse behaviour of mmWave channel [73–75]

and does not require feedback. Consequently, a few compressive measurements

are obtained to recover the entire CSI by using sparse recovery methods, such as

orthogonal matching pursuit (OMP) [76]. Apart from CS based techniques that

exploit the sparse behaviour of mmWave channel, [77, 78] have exploited the

low-rank property of mmWave channel to recover the CSI. In [77,78] low-rank
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tensor factorization methods have been employed, which improve the accuracy

and reduce the complexity as compared to the sparsity-based CS techniques.

Recently, researchers have exploited both low-rank as well as sparse behaviour

of mmWave channel to considerably improve the accuracy of the estimated

CSI [20, 21]. In [20], a two-stage method has been developed for mmWave

channel estimation, where the low-rank property in a matrix completion frame-

work [62] and the sparse property in a sparse recovery framework have been

used in two consecutive stages. Unlike above, in [21] both low-rank as well as

the sparse property of mmWave channel matrix have been exploited jointly to

obtain the entire CSI from a few channel coefficients. It uses an alternating di-

rection method of multipliers (ADMM) for jointly exploiting the low-rank and

sparse properties in a matrix completion framework. Simulations show consid-

erable improvement in channel estimation in [21] as compared to [20].

The performance of existing methods is still restricted because these meth-

ods are not leveraging the known properties of mmWave massive MIMO chan-

nel matrix judiciously. In this chapter, the proposed PCI-MF has been used

to recover complete CSI from a few noisy mmWave channel coefficients. The

mmWave channel matrix is modeled as a two dimensional discrete Fourier trans-

form (DFT) form of a sparse matrix due to the directional beamforming [79].

Since PCI and DFT matrices are mutually incoherent, the Fourier representa-

tion of the channel matrix is utilized in PCI based CS framework to estimate

the sparse matrix associated with the channel matrix in the DFT domain. The

rank of the channel matrix (or the number of dominant paths) is estimated by
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calculating the number of non-zero coefficients in the above estimated sparse

matrix. This estimated rank and sparse coefficients have been used jointly in

an MF framework to recover the channel matrix. The main contributions of the

proposed method, PCI-MF have been summarized below:

• Unlike the existing algorithm of [80], PCI-MF is not constrained due to

the following: number of minimum transmissions during training phase

should be greater than or equal to the total number of transmitter antennas

(NT). Hence, it can estimate the full CSI from a few channel coefficients.

• PCI-MF has been shown to estimate the massive MIMO mmWave channel

more accurately as compared to recent state-of-the-art algorithms such as

[20,21] and hence, provides a better achievable spectrum efficiency (ASE)

for a mmWave MIMO communication system. For instance, it has been

shown that at 25 dB SNR and 32 × 32 MIMO configuration, PCI-MF is

able to achieve ASE of 16.09 bits/sec/Hz with only 30% of CSI, which is

comparable to ASE achieved when full CSI is available.

• The improvement in the performance of PCI-MF has also been verified

against numerous parameters such as antenna configuration (uniform lin-

ear array, uniform planar array), MIMO configurations (32 × 32, 64 ×

64), operating frequencies (28 GHz, 92 GHz) and fading channel models

(Rayleigh fading and Nakagami fading).

• Results have also been verified on realistic data given in [2, 3]. PCI-MF is

obtaining 5.45 dB and 16.93 dB improvement with 10% and 90% availabil-
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ity of channel information as compared to the existing methods.

Notations: X′, X∗ and XH denote the transpose, conjugate, and the Hermitian

(conjugate transpose) of matrix X, respectively. The element corresponding to

the ith row and jth column of a matrix X is represented by X(i, j). The ith

element of a vector x is represented as x(i). The vectorization of matrix X is

denoted as X(:). Da is a normalized DFT matrix of size a×a. X⊗Y and X�Y

represent the Kronecker and Hadamard products between matrices X and Y, re-

spectively. The lp norm of a matrix or a vector is represented as || · ||p. Binary,

complex and real matrices of size a× b are represented by Ba×b, Ca×b and <a×b,

respectively. A random variable Z with Gaussian distribution with mean µg and

variance σ2
g is represented as Z ∼ N (µg, σ

2
g). Similarly, the complex Gaussian

random variable will be represented as Z ∼ CN (µg, σ
2
g). An exponentially

distributed random variable Z with mean λ−1
e is denoted as Z ∼ ε(λe). The

Rayleigh distribution with variance σ2
r is represented as Z ∼ R(σ2

r). Further, a

random variable with the Nakagami distribution is denoted as Z ∼ NG(m,Ω),

where m is the shape parameter and Ω is the controlling parameter. More-

over, Poisson distribution with mean µpo and Laplace distribution with standard

deviation σlp are represented as Z ∼ P(µpo) and Z ∼ L(σlp), respectively.

Lastly, a uniformly distributed Z between variables au and bu is represented as

Z ∼ U(au, bu).
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4.2 Channel and System Model

4.2.1 Channel model

Consider a mmWave massive MIMO channel with NT transmit and NR receive

antennas. The geometrical model of H ∈ CNR×NT is given in [31, 79] as:

H =

√
NRNT

ρ

L∑
l=1

αlAT(l)AR(l)H , (4.1)

where AT(l) ∈ CNT×1 and AR(l) ∈ CNR×1 represent the steering vectors at the

transmitter and receiver of the lth path, respectively. In addition, L is the total

number of dominant paths. The maximum possible value of L can be obtained

using L =
Nc∑
j=1

Lj, where Nc is the total number of clusters and Lj is the number

of dominant paths in the jth cluster. Furthermore, αl is the complex small scale

fading gain of the lth path and ρ is the average path loss between transmitter and

receiver. The channel model of (4.1) can be re-written in the matrix form as:

H = ARZAH
T , (4.2)

where AR ∈ CNR×L and AT ∈ CNT×L are given by [AR(1) AR(2) ... AR(L)]

and [AT(1) AT(2) ... AT(L)], respectively. Z ∈ CL×L is a diagonal matrix with

diagonal entries
√

NTNR

ρ αl, where l = 1, 2...L.

Based upon the geometrical arrangement of the antennas at the transmitter

as well as the receiver, different type of steering vectors can be obtained [21].

The commonly used geometrical arrangements are uniform linear array (ULA)
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and uniform planar array (UPA), which are described below.

4.2.1.1 ULA

For ULA, antennas are placed in a line with uniform spacing of dx between

all consecutive antennas as shown in Fig. 4.1. If ΘT
l is the azimuth angle of

departure (AoD) of the lth path, then the steering vector at the transmitter for

the lth path will be given by

AT(ΘT
l ) =

1√
NT

[1 ej
2π
λc
dx sin ΘT

l ... ej
2π
λc
dx(NT−1) sin ΘT

l ]′. (4.3)

Similarly the steering vector of ULA at the receiver for the lth path can be

dx

ƟT dx

ƟR

Cluster

NR

N
T

a) ULA

dx
dy

dx

dy

NRy

NRx

NTy

NTx

ΦR

ΦT

ƟT

ƟR Cluster

b) UPA

Figure 4.1: Beamforming between transmitter and receiver with different antenna configurations

obtained from (4.3) by replacing AoD, i.e., ΘT
l with angle of arrival (AoA), i.e,

ΘR
l and NT with NR. Further, λc is the wavelength of the signal. Moreover,

inline with the previous work [20, 21], it is assumed that AoA and AoD lie on

the discretized grids.
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From (4.2) and (4.3), it is observed that the structure of AT and AR for ULA

resemble normalized DFT matrix and hence, the DFT matrix can be segregated

from (4.2) as follows

H = DNR
DHNR

ARZAH
TDNT

DHNT

= DNR
SDHNT

, (4.4)

where S = DHNR
ARZAH

TDNT
∈ CNR×NT is a diagonal matrix with L non-zero

diagonal entries and contains the information of AoAs, AoDs and αl.

4.2.1.2 UPA

For UPA, antennas are placed in a plane, with dx and dy spacing between two

consecutive antennas lying in a horizontal and vertical line, respectively as

shown in Fig. 4.1. Let us assume that NTx and NTy are the number of an-

tennas placed horizontally and vertically, respectively, at the transmitter such

that NT = NTxNTy. Similarly, NRx and NRy are the number of antennas placed

horizontally and vertically, respectively, at the receiver such thatNR = NRxNRy.

If ΘT
l and ΦT

l are the azimuth and elevation AoDs of the lth path, respectively,

then the steering vector at the transmitter for UPA will be given by

AT(ΘT
l ,Φ

T
l ) =

1√
NTxNTy

[1 ej
2π
λc

[dx sin ΘT
l cos ΦT

l +dy sin ΘT
l sin ΦT

l ] ...

ej
2π
λc

[dx(NTx−1) sin ΘT
l cos ΦT

l +dy(NTy−1) sin ΘT
l sin ΦT

l ]]′. (4.5)
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Similarly, the steering vector of UPA at the receiver for the lth path can be

obtained from (4.5) by replacing ΘT
l with ΘR

l , ΦT
l with ΦR

l (elevation AoA),

NTx with NRx and, NTy with NRy.

Unlike ULA, in UPA the structure of AT and AR resemble the Kronecker

product of the normalized DFT matrices (from (4.2), (4.5)) and hence, (4.2) can

be simplified as below:

H = KNR
KHNR

KRZKH
T KNT

KHNT

= KNR
SKHNT

, (4.6)

whereKNR
= DNRx

⊗DNRy
andKNT

= DNTx
⊗DNTy

. Further, S = KHNR
ARZAH

TKNT
∈

CNR×NT is a diagonal matrix with L non-zero diagonal entries containing the in-

formation of AoAs, AoDs (azimuth as well as elevation), and αl.

From (4.4) and (4.6), it is observed that S ∈ CNR×NT has only L non-zero

diagonal coefficients. This implies that S is a sparse matrix because the number

of non-zero coefficients is much smaller than the total number of coefficients

in the matrix i.e., L << NTNR. Furthermore, it is a diagonal matrix with

the number of non-zero coefficients at the diagonal less than their dimension

(L < min(NT, NR)). Hence, H is a low-rank matrix.

In mmWave massive MIMO systems, the value of NR and NT is large, and

hence, the estimation of many channel coefficients corresponding to H will be

impractical. Therefore, in Section-4.3, various properties of massive MIMO

based mmWave channel matrix, such as low rank property, sparsity and its DFT
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representation have been utilized jointly to recover entire CSI from a few esti-

mated channel coefficients.

4.2.2 System Model

Given a hybrid architecture of mmWave massive MIMO system with NRF num-

ber of RF chains deployed at both transmitter as well as receiver. Let us as-

sume that the transmitter is beamforming a data stream of length Ns, repre-

sented by x at the receiver (shown in Fig. 4.2). The transmitter applies an

NRF×Ns baseband precoder denoted by FT−BB, followed by an NT×NRF RF

precoder denoted by FT−RF and hence, the transmitter precoding matrix is given

by FT = FT−RF × FT−BB. The signal observed at the receiver is passed to an

NRF×NR RF precoder denoted by FR−RF, followed by an mr×NRF baseband

precoder to obtain mr measurements denoted by FR−BB and hence, the receiver

combining precoding matrix is given by FR = FR−BB × FR−RF. The system

model has been illustrated in Fig. 4.2.

4.2.2.1 Training phase

During the training phase, the transmitter transmits the known data symbol, also

known as pilot to estimate the channel coefficients. If the transmitter is beam-

forming a pilot p, i.e., Ns = 1, then the combined received signal at the receiver

with mr measurements of p can be written as

y = FRHFTp+ n, (4.7)
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where FT ∈ CNT×1. Further, the receiver combining precoding matrix obtaining

mr measurements of the transmitted symbol at the receiver can be expressed

as FR = [fR1
fR2

...fRmr
]′ ∈ Cmr×NR, where fRi

∈ CNR×1 ∀i. Additionally,

n ∈ Cmr×1 is the noise vector and H ∈ CNR×NT is the mmWave MIMO channel

matrix.

Baseband 
Precoder

1

NR

NT
NRF

1

Baseband 
Precoder

Transmitted 
data vector/ 

pilots

RF 
Precoder

(𝐅T)𝑁sx𝑁T

(𝐅R)𝑚rx𝑁R

𝐲𝑚rx1

𝐱𝑁sx1

RF Chain

RF Chain

RF Chain

RF Chain

RF 
Precoder

1

For data transmission
y≈x

For pilot transmission
y≈hΩ

PCI-MF

NRF

1

𝐇𝑁R×𝑁T

(𝐅T−BB) (𝐅T−RF)

(𝐅R−BB)(𝐅R−RF)

Figure 4.2: System model

It may be noted that inline with the previous work [21, 80, 81], to reduce

the power consumption and complexity during the training phase, only one

transmitting antenna is activated in each transmission. Hence, the number of

pilots transmitted is equal to the number of transmitting antennas selected. If

ith transmitting antenna is activated, then FT should be designed in such a way

that FT(i) = 1 and all the remaining entries will be zero [80]. The pilot, p is

known at the receiver and assumed to be 1. Let’s assume, H(i, j1), H(i, j2) and

H(i, j3) needs to be estimated, which implies fR1
(j1) = 1, fR2

(j2) = 1, fR3
(j3) =

1, and all the remaining entries of FR will be zero and hence, the received signal,
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y = [H(i, j1) H(i, j2) H(i, j2)]
′. It may be noted that the number of channels

estimated per transmission is limited by mr, which is again limited by the num-

ber of RF chains at the receiver (NRF), as mr ≤ NRF. Therefore, in order to

reduce the pilots overhead and hardware constraints during the training phase,

only M coefficients of H have been estimated from the total NTNR coefficients.

In the subsequent section, we will show how the complete channel matrix can

be estimated from these M coefficients.

4.3 Proposed PCI-MF for mmWave channel estimation

This section shows the utilization of proposed PCI-MF method to recover the

entire channel matrix from a few estimated channel coefficients (i.e., M ). The

estimated coefficients of H are stacked in a vector hΩ ∈ CM×1 and is written as:
hΩ = Φh + n, (4.8)

h ∈ CNRNT×1 is equal of H(:) and n ∈ CNRNT×1 is a complex Gaussian

noise vector. However, the measurement matrix Φ ∈ BM×NRNT is the PCI

matrix. We illustrate the above with an example. Consider a channel matrix,

H =

h11 h12

h21 h22

, and only two coefficients h21 and h22 have been estimated in

the training phase. Hence, hΩ =

[
h21 h22

]′
and the corresponding PCI matrix,

Φ will be

0 0 1 0

0 0 0 1

.
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For ULA, using (4.4), h = (D∗NT⊗DNR)s, where s = S(:). Hence, (4.8) can

also be re-written as:

hΩ = Φ(D∗NT ⊗DNR)s + n

= ΦΨls + n (∵ Ψl = D∗NT ⊗DNR)

= Als + n (∵ Al = ΦΨl), (4.9)

where Al ∈ CM×NTNR and Ψl ∈ CNTNR×NTNR. However, for UPA (from (4.6))

h = (K∗NT ⊗ K̄NR)s, where s = S(:). Hence, (4.8) can be re-written as

hΩ = Φ(K∗NT ⊗KNR)s + n

= Φ((DNTx
⊗DNTy

)∗ ⊗ (DNRx
⊗DNRy

))s + n

= ΦΨps + n

= Aps + n. (∵ Ap = ΦΨp), (4.10)

where Ap ∈ CM×NTNR and Ψp ∈ CNTNR×NTNR.

Since s ∈ CNTNR×1 is the sparse vector, (4.9) and (4.10) resemble the com-

pressive sensing framework [10], where hΩ is the compressive measurements,

Φ is the PCI sensing matrix, and Ψl and Ψp are the sparsifying matrices for

ULA and UPA, respectively. The mutual coherence between Φ and Ψl for CS

framework provided in (4.9) is calculated using (2.4) as follows:

µ(Φ,Ψl) =
√
NTNR max

∀i,j
|Ψl(i, j)| = 1. (4.11)

Similarly, the mutual coherence between Φ and Ψp for CS framework shown
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in (4.10) will be given by:

µ(Φ,Ψp) =
√
NTxNTyNRxNRy max

∀i,j
|Ψp(i, j)| = 1. (4.12)

From (4.11) and (4.12), it is observed that both ULA (4.9) as well as UPA

(4.10) CS frameworks have minimum coherence of 1 and hence, the following

l1 minimization problem has been solved to recover s from hΩ:

P1 : min
s
||hΩ − As||22 + λ||s||1, (4.13)

where A =

Al for ULA

Ap for UPA
, and λ is the regularization parameters to control

the level of sparsity and the data accuracy. Iterative soft thresholding method

(ISTA) [50, 82] can be used to solve (4.13). The sparse vectors s determined

above either for ULA or for UPA can be used to estimate channel matrix H by

jointly exploiting it’s low-rank nature in a matrix factorization framework as

follows:

P2 : min
H,U,V

(||H− UV||2F + ρ1||U||2F + ρ2||V||2F ) + µ||hΩ − As||2F . (4.14)

Matrices U and V have the dimension ofNR×r and r×NT, respectively, where

r is the rank of the channel matrix H that can be determined by calculating the

number of non-zero values in s 2. The parameter ρ1 and ρ2 control the magnitude

of matrices U and V, respectively. The term µ||hΩ − As||2F has been added to

penalize the error caused due to noisy estimation of s (in (4.13)). Generally, s
2The coefficients of s having smaller value tending towards zero will be considered as zero.
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will be estimated noisy for lower received signal-to-noise ratio (SNR) and/or for

low value of measurement ratio defined as MR = M
NTNR

. Hence, addition of this

term provides robust estimation of H. A higher value of µ implies more weight

to the term ||hΩ − As||2F , in the case of noisy estimation of s. The problem P2

given in (4.14) can be solved using the alternate direction method of multipliers

(ADMM) by dividing into following three sub-problems [83] as follows:

P2(a) : min
U
||H− UV||2F + ρ1||U||2F . (4.15)

P2(b) : min
V
||H− UV||2F + ρ2||V||2F . (4.16)

P2(c) : min
H
||H− UV||2F + µ||hΩ − As||2F . (4.17)

All three sub-problems mentioned above are the simple least square problems

and are solved as follows. The problem P2(a) is written as:

P2(a) : min
U
||H̃− UṼ||2F , (4.18)

where H̃ =

[
H 0NR×r

]
and Ṽ =

[
V √

ρ1Ir

]
. This implies

U = H̃Ṽ
′
(ṼṼ

′
)−1. (4.19)

Similarly the problem P2(b) is written as:

P2(b) : min
V
||Ĥ− ÛV||2F , (4.20)

where Ĥ =

 H

0r×NT

 and Û =

 U
√
ρ2Ir

. Hence,

V = (Û
′
Û)−1Û

′
Ĥ. (4.21)
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The problem P2(c) is written as:

min
h
||h− (INT

⊗ U)v||2F + µ||Φh− As||2F , (4.22)

where h = H(:) and v = V(:). Differentiating (4.22) for h yields:

h = (INTNR
+ µΦ′Φ)−1((INT

⊗ U)v + µΦ′As). (4.23)

It is to be noted that for high received SNR with high MR 3, the problem P2(c)

can be simply reduced into two steps: 1) H = UV. 2) Replace the estimated

channel coefficients i.e., hΩ by As. The algorithmic steps for the proposed PCI-

MF method are provided in Algorithm 1.

4.4 Complexity Analysis

The complexity of the state-of-the-art methods such as for the two-stage meth-

ods of [20] and [21] is given as O(max(NR, NT)NRNT) because both these

methods are dominated by singular value thresholding (SVT) [62].

The complexity of the proposed method will depend upon the complexity of

problem P1 and all three sub-problems of P2, i.e, P2(a), P2(b) and P2(c). The

complexity of P1, which is usually solved by method such as ISTA is given as
3Typically, for our experimental setup, low SNR implies 0 to 5 dB and low MR implies availability of 10% to 20% channel

coefficients. Hence, high SNR with high MR implies availability of more than 5 dB SNR and 20% channel coefficients.
4n1, n2 and n3 represent the maximum number of iterations.
5Da will generate a DFT matrix of size a.

6sgn =


−1 if x < 0
0 if x = 0
1 if x > 0

7resize converts the given vector into a matrix of given size.
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Algorithm 3 PCI-MF

Input: Φ, hΩ, NT, NR, NTx, NTy, NRx, NRy, µ, λ, ρ1, ρ2, n1, n2, n3
4

Initialization: s = zeros(NTNR × 1)
For ULA: Ψl = D∗NT ⊗DNR

5

For UPA: Ψp = (DNTx
⊗DNTy

)∗ ⊗ (DNRx
⊗DNRy

)

A = ΨΦ, where Ψ =

{
Ψl for ULA
Ψp for UPA

α = max(eig(A′A))
for k1 = 1 : n1 do

s = sgn(s + 1
αA′hΩ − As) max(0, |A′hΩ − As| − λ

2α) 6

end for
r = sparsity of s
h = Ψs
for k2 = 1 : n2 do

H = resize(h, [NR, NT]) 7

V = H(1 : r, :)
for k3 = 1 : n3 do

H̃ =
[
H 0NR×r

]
and Ṽ =

[
V √

ρ1Ir
]

U = H̃Ṽ′(ṼṼ′)−1

Ĥ =

[
H

0r×NT

]
, Û =

[
U√
ρ2Ir

]
.

V = (Û
′
Û)−1Û

′
Ĥ

end for
At low SNR and/or low MR:
h = (INTNR

+ µΦ′Φ)−1((INT
⊗ U)v + µΦ′As)

At high SNR with high MR:
H=UV
p = find(Φ(:) == 1)
h = H(:), h(p) = As

end for
H = resize(h, [NR, NT])
Output: H
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(O(MNRNT)). However, the complexity of P2(a) and P2(b) isO(rNRNT). For

high SNR with high MR, the complexity of P2(c) is also O(rNRNT). There-

fore, in this case, the complexity of PCI-MF is (O(MNRNT + 3rNRNT)) ≈

O(MNRNT). The value of M varies from 1 to NRNT and hence, the computa-

tional complexity of PCI-MF increases at higher values of M . Further, it is ob-

served that the complexity of PCI-MF is dominated by ISTA and hence, method

such as fast iterative soft thresholding method (FISTA) [50] can be used instead

of ISTA to reduce the computational complexity of PCI-MF. However, at low

SNR and/or low MR, the complexity of P2(c) is (O(N 2
RN

2
T)). Hence, the com-

plexity of PCI-MF will be (O(MNRNT + 2rNRNT + N 2
RN

2
T)) ≈ O(N 2

RN
2
T),

which is a trade-off between complexity and performance. It may be noted that

the above is a rare scenario and is applicable for applications with a very low

value of SNR ≤ 5 dB and also a very low percentage of MR ≤ 20%. Consider

Table I that presents the complexity comparison of different algorithms.

Table 4.1: Complexity comparison

Algorithm Complexity
LMaFit [34] O(rNRNT)

Two stage [20] O(max(NR, NT)NRNT)

E. Vlachos et al. [21] O(max(NR, NT)NRNT)

PCI-MF : At low SNR (≤ 5 dB)
and/or low MR (≤ 20%)

O(N2
RN

2
T)

PCI-MF : At high SNR (>5 dB)
with high MR (>20%)

O(MNRNT)
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Table 4.2: Simulation parameters

fc
(GHz)

Nc Lk AoA/AoD αl

90 [21] 1 2 L(50◦)
a)R(1)

b) NG(0.5, 1)

28 [2, 3] max(1,P(1.8)) 2

N (U(0, 2π), ε(λa))

λ−1
a =



15.5 for ΘR
l

6 for ΦR
l

10.2 for ΘT
l

0 for ΦT
l

R(γl100.1PL)

γl =
γ′l∑L
i=1 γ

′
l

, γ′l = U rτ−1
l 10−0.1Zl ,

Ul ∼ U(0, 1), Zl ∼ N (0, 16),
PL = α+ 10β log10(d) + ζ dB,

α = 72, β = 2.92, ζ ∼ N (0, 8.7 dB),
dt−r = 100 m.

4.5 Simulation and discussion

This section presents the simulation results of the proposed PCI-MF method.

Results have been compared with the state-of-the-art methods such as the two-

stage methods [20] and [21] presented by Xingjian et al. and by E. Vlachos

et al., respectively. In addition to the above, the performance of PCI-MF has

also been compared with the conventional matrix completion algorithm based

on MF such as the low-rank matrix fitting (LMaFit) [34].

Simulations are performed against various parameters such as the MIMO

configurations, SNR, MR, and L. Moreover, results have been obtained for two

different operating frequencies (fc) i.e., 90 GHz [21] and 28 GHz [2, 3]. The

value of various parameters considered for both frequencies is summarized in

Table II. Furthermore, for 28 GHz, simulations are performed for real-world

parameters obtained at New York City. It is to be noted that for all the simula-

tions, the distance between two consecutive antennas placed either horizontally

or vertically is λc
2 , which implies dx = dy = λc

2 . The value of the regularization
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parameters ρ1 = ρ2 = 0.01, whereas µ varies from 0.1 to 0.01.

For 90 GHz (Fig. 4.3-4.13), both AoA and AoD are Laplacian distributed

with standard deviation 50◦ [21]. The value taken for the number of clusters (Nc)

and the number of dominant paths in each cluster (Lk) are 2 and 1, respectively,

which implies L = 2. For Figs. 4.3-4.10 instantaneous path loss is Rayleigh

distributed with unit variance [21] and antenna configuration is ULA. Results

for UPA are shown in Fig. 4.12. In prior literature [84–86], it has been observed

that Nakagami channel fading model fits better than the Rayleigh fading model

for mmWave band, especially, with directional beamforming. Therefore, results

with Nakagami fading model are also shown in Fig. 4.13.
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Figure 4.3: NMSE vs MR for ULA at 25 dB SNR with 32× 32 MIMO configuration.

Fig. 4.3-4.4 compare the NMSE 8 against the MR for 32 × 32 and 64 × 64

MIMO configuration, respectively, with SNR = 25 dB. It is observed that PCI-
8NMSE = ||H−He||22

||H||22
, where H and He are the actual and estimated channel matrices, respectively.
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Figure 4.4: NMSE vs MR for ULA at 25 dB SNR with 64× 64 MIMO configuration.

MF outperforms all existing methods at all MR ratios and for both MIMO

configurations. For instance, for 32 × 32 MIMO configuration at MR = 0.4,

the state-of-the-art methods [20] and [21] yielded NMSE of 7.755 × 10−3 and

5.44 × 10−3, respectively, as shown in Fig. 4.3. On the other hand, we ob-

tained an NMSE of 0.499 × 10−3 using PCI-MF. Hence, an improvement of

10 log10

(
5.44×10−3

0.499×10−3

)
= 11.91 dB and 10.375 dB is obtained as compared to [20]

and [21], respectively. Similarly, an improvement of 3.22 dB and 5.52 dB is

obtained for 64 × 64 MIMO configuration (Fig. 4.4) with PCI-MF compared

to [20] and [21], respectively.

To show the robustness of PCI-MF, we computed NMSE against SNR with

only 10% measurement ratio, i.e., MR = 0.1 in Fig. 4.5-4.6 for 32×32 and 64×

64 MIMO configuration, respectively. It is observed that PCI-MF outperforms

in all the above scenarios. To further validate the proposed work, NMSE is also

shown against SNR at MR = 0.5 in Fig. 4.7.
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Figure 4.5: NMSE vs SNR for ULA at MR = 0.1 with 32× 32 MIMO configuration.
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Figure 4.6: NMSE vs SNR for ULA at MR = 0.1 with 64× 64 MIMO configuration.

In Fig. 4.8, NMSE is plotted against the number of paths, i.e., L for SNR =

25 dB and MR = 0.1 for 32×32 MIMO configuration. Results demonstrate that

the performance of PCI-MF does not degrade even with different values of L.

It may be noted that the error between the estimated CSI and actual CSI will
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Figure 4.7: NMSE vs SNR for ULA at MR = 0.5 with 32× 32 MIMO configuration.
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Figure 4.8: NMSE vs L for ULA at SNR = 25 dB, MR = 0.1 with 32× 32 MIMO configuration.

directly impact the achievable spectral efficiency (ASE) of the wireless system

as shown below [21, 87]:

ASE = log2

∣∣∣∣∣INR
+

1

NTNR

(
NMSE + 1

SNR

)HHH

∣∣∣∣∣
bits/s/Hz. (4.24)
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Figure 4.9: ASE vs SNR for ULA at MR = 0.1 with 32× 32 MIMO configuration.
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Figure 4.10: ASE vs MR for ULA at SNR = 25 dB with 32× 32 MIMO configuration.

Hence, in Fig. 4.9, the ASE is plotted against SNR at MR = 0.1 for 32 × 32

MIMO configuration. It is observed that at 25 dB SNR, [21] performs best

among the existing methods and yields an ASE of 8 bits/sec/Hz. However, the

proposed method PCI-MF obtains an ASE equal to 10 bits/sec/Hz. It is noted

that the ASE obtained with perfect CSI is nearly 16 bits/sec/Hz. Therefore, in
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Figure 4.11: SER vs SNR for ULA at MR = 0.1 with 32× 32 MIMO configuration.

Fig. 4.10, we have plotted ASE by varying the MR and it is observed that at

MR ≥ 0.3, PCI-MF approaches close to the ASE value of 16 bits/sec/Hz, i.e.,

the value obtained with the perfect CSI.
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Figure 4.12: NMSE vs MR for UPA at SNR = 25 dB with 64× 64 MIMO configuration.

Lastly, we examined the performance of the symbol error rate (SER) of PCI-

MF against SNR by comparing it with other algorithms in Fig. 4.11. We mod-
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ulated the data for ULA at MR = 0.1 with 32 × 32 MIMO configuration using

BPSK (binary phase shift keying) modulation. The precoding vectors at the

transmitter and receiver are implemented using random complex vectors in ev-

ery iteration.

Fig. 4.12 shows the performance of PCI-MF with UPA. In this plot, NMSE

is plotted against MR at 25 dB SNR for 64 × 64 MIMO configuration, where

NTx = NTy = NRx = NRy = 16. Therefore, it can be concluded that PCI-MF

performs better for both ULA as well as UPA.
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Figure 4.13: NMSE vs MR for ULA at SNR = 25 dB with 32× 32 MIMO configuration in Nakagami fading with
shape parameter as 0.5.

Fig. 4.13 evaluates the performance of PCI-MF in the presence of Nak-

agami fading channel. The shape parameter of Nakagami distribution (m) de-

termines the fading channel conditions, for instance m = 1 represents Rayleigh

fading and m = 0.5 represents half Gaussian pulse, which is more severe
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than Rayleigh fading [88, 89]. Therefore, in Fig. 4.13, NMSE is plotted for

NG(0.5, 1) against MR at 25 dB SNR. From the plot, it is observed that PCI-

MF performs good even with severe fading.
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Figure 4.14: NMSE vs MR for realistic data set [2, 3] at SNR = 30 dB with d = 100 m.

Fig. 4.14 shows the results for statistical parameter values derived from

real world mmWave outdoor cellular propagation at 28 GHz collected in New

York City [2, 3]. As per the collected data, the number of clusters are Pois-

son distributed with mean value equal to 1.8 and number of dominant paths

in each cluster i.e., Lk is assumed to be 2. The AoA and AoD are Gaussian

distributed with mean and variance equal to µa and σ2
a, respectively, where µa

is uniformly distributed between 0 to 2π and σa is exponentially distributed

with mean λ−1
a . The values of λ−1

a for azimuth AoA, elevation AoA, azimuth

AoD and elevation AoD are 15.5, 6, 10.2 and 0, respectively [2, 3] (as sum-

marized in Table II). It considers a UPA with 64 × 64 MIMO configuration.
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The instantaneous path loss is Rayleigh faded with σ2
l variance. The variance

σ2
l for lth path is given as σ2

l = γl10(0.1PL), where γl =
γ′l∑L
i=1 γ

′
l

. Further-

more, γ′l = U rτ−1
l 10−0.1Zl, where rτ is 2.8, Ul ∼ U(0, 1) and Zl ∼ N (0, 16)

. Moreover, PL = α + 10β log10(d) + ζ dB, where α = 72, β = 2.92 and

ζ ∼ N (0, 8.7 dB) for non line-of-sight (NLOS) [2, 3]. The distance considered

between transmitter and receiver (dt−r) is 100 m. It is observed that for realistic

data set the performance of all existing methods except [21] is not acceptable,

as they hardly achieve NMSE of 10−2 even when 90% data is available. How-

ever, NMSE achieved by [21] is 2.952× 10−5. Since PCI-MF achieves NMSE

of 7.418× 10−10, 16.933 dB improvement is obtained as compared to [21].

4.6 Discussion

In this chapter, we have shown PCI-MF can recover the mmWave massive

MIMO CSI from a few noisy channel coefficients. The performance of the

method has been evaluated by calculating NMSE between the actual CSI and

the recovered CSI. NMSE results show considerable improvement in perfor-

mance with PCI-MF compared to the state-of-the-art methods. For validating

the robustness of PCI-MF, the NMSE is simulated with various parameters, such

as different MIMO configurations, low and high values of SNR and MR, as well

as different channel fading models. It is observed that PCI-MF consistently out-

performs the conventional methods for different MIMO configurations such as

32× 32, 64× 64, for all values of SNR and also for all MR. The improvement
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in performance is observed with both ULA as well as UPA antenna configura-

tions. The performance of PCI-MF is also shown by evaluating SER and ASE.

It is also observed that PCI-MF approaches the ASE values of perfect CSI. For

instance, at 25 dB SNR, ASE of 16.49 bits/sec/Hz is obtained with perfect CSI

for 32× 32 MIMO configuration. Using PCI-MF, with only 30% availability of

channel information, ASE of 16.09 bits/sec/Hz (close to perfect CSI) has been

obtained.

In order to validate the performance of PCI-MF in realistic scenarios, another

data set of New York City with real-world outdoor cellular propagation param-

eters has also been considered. It is observed that even in a practical scenario

when transmitter and receiver are 100 m apart, PCI-MF obtains 5.45 dB and

16.933 dB improvement with 10% and 90% availability of channel information,

respectively, as compared to the existing methods.
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Chapter 5

Integrated data and energy gathering for

WSN

In Chapter 2 and 3, we have shown PCI-CS framework can tackle various prob-

lems of WSN such as efficient data gathering at sensor node, improvement in

data reconstruction at FC and also missing data recovery at the FC. This chap-

ter will show how PCI-CS also contributes to energy gathering. This integrated

solution is henceforth called integrated data and energy gathering (iDEG) pro-

tocol for WSN. The term energy gathering here implies joint energy saving and

energy harvesting.

5.1 Background: CS in WSN

Consider a wireless sensor network with of N sensor nodes, where every node

transmits its information to either FC [12] or cluster head [40] based upon

single-hop and multi-hop WSN respectively. Data of sensor nodes can be rep-
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resented as x = [x1, x2, ..., xN ]′, where xi represents the data corresponding to

the ith sensor node.

The CS theory provides a better solution for data gathering in WSN by trans-

mitting only M linear projections of x, collected using a random sensing matrix

(Φ), like Gaussian or Bernoulli such that y = Φx = φ1x1 +φ2x2 + ...+φNxN

where φi is the ith column of Φ. The original raw data of length N can be

recovered at FC by solving the convex optimization problem as given in (2.9).

However, traditional CS based data gathering approaches suffer with a few draw-

backs: Every ith sensor node generates an M ×1 vector φi by using its network

address as the seed of a pseudo-random number generator.1. Data collected

at each node is multiplied by this vector φi and transmitted [12]. Due to the

additive nature of radio waves, the signal received at FC will be

y =
N∑
i=1

φixi = Φx. (5.1)

Hence, effectively only M information is transmitted instead of N and hence

network traffic will reduce. However, this will also increase the power con-

sumption at the sensor nodes by M . Furthermore, MN multiplications are also

required to compressively sense the data, which increase the complexity at the

sensor nodes and also cause energy dissipation.

Therefore, [40–42] provided the energy efficient data gathering solutions

using CS. Specifically, in [40], a multi-hop, cluster-based CS data collection

(CCS) has been proposed, in which CS measurements are generated at each
1These seed values are used by FC to generate the complete Φ matrix.
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cluster head. Cluster head collects the CS measurements within its cluster and

transmits it to the FC. As sensor nodes are closer to their cluster head as com-

pared to the FC, hence less power will be consumed while collecting the CS

measurements. In [41], a hybrid CS framework is utilized to minimize the en-

ergy consumption of WSN by selecting two types of traffic, namely, raw traffic

and CS encoded traffic depending on the network capacity and energy require-

ments. Unlike the conventional data sampling approaches of CS, [42] proposes

a multi-hop random walk based algorithm for data gathering in WSNs. In this,

few random walks among the nodes are selected, and each random walk will

contribute towards one random measurement. The sensor node will transmit

its information to the next node on its path, and then the added information is

transmitted to the next upcoming node. This process continues until the mea-

surement obtained from the linear combination of the sensors data is transmitted

to the FC. This will reduce the communication cost of the nodes as compared to

the scenario where every node is transmitting its information to the cluster head

or FC. However, multi-hop routing methods such as clustering [40] and random

walk [42] also increases the latency at the FC, when compared to single-hop

sensor network [12].

In addition to the above methods, significant research has also been devoted

towards reducing the energy consumption of the CS framework by reducing

the number of measurements [43, 44] or by using a sparse measurement ma-

trix [45–47]. For instance, in [43], a power-law decaying data model and ran-

dom projection-based estimation algorithm have been proposed for reducing the
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compressive measurements. In [44], unlike the conventional CS based data gath-

ering solutions that exploit the assumption of constant sparsity, the regression-

based model for WSNs has been proposed, where sparsity of signals is unknown.

The algorithm exploits the correlation in the data to determine the sparsity and

to reconstruct the data. Hence, a suitable number of measurements are chosen

according to the sensed data. In [45], data is collected randomly from a few sen-

sor nodes, unlike the previous work where each measurement is obtained from

the linear combination of raw data from all the sensor nodes. They have pro-

posed a representation basis which sparsifies the data. However, it sparsifies the

data in the spatial domain only. In [46] non-uniform sampling has been consid-

ered based upon heterogeneity. It has been shown that every sensor node has a

different amount of energy, and the node that has a higher energy supply should

sample more. Hence, a model has been developed which selects those nodes

which have high energy supply to recover the data of all nodes. They have also

shown their model can achieve good accuracy with the significant reduction in

energy consumption. However, this methodology will increase the computa-

tion and transmission cost as every node has to share their amount of energy

rate with other nodes. This further leads to energy dissipation. [47] proposes a

sparsity model that allows the use of CS for the online recovery of large data

sets in real WSN scenarios, exploiting Principal Component Analysis (PCA)

to capture the spatial and temporal characteristics of real signals. This method

is using sub-sampling for compressively sensing the data, PCA for capturing

the spatial and temporal characteristics and finally interpolation techniques for
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reconstructing the data.

5.2 Proposed iDEG framework

In the proposed protocol, a few M randomly selected sensor nodes from a set

of N sensor nodes are used at a time to construct the complete raw data at the

FC utilizing PCI-CS framework (discussed in Chapter 2), and the remaining

(N − M) sensor nodes harvest the energy from the received signal. To the

best of our knowledge, there is no work that provides an approach to harvest

energy for the remaining (N −M) sensors owing to the fact that a combination

of all the sensor nodes’ data is generally required to collect the compressive

measurements of the data. Instead, as noticed from above, extra energy is being

dissipated in constructing the CS data. This work is aimed at overcoming the

above limitations and proposes a joint framework for energy harvesting along

with better data recovery in practical WSNs.

5.2.1 Proposed Architecture

Consider the proposed architecture of a sensor node, as shown in Fig. 5.1. In

the proposed protocol, single-hop topology has been used, which reduces the

latency of the network because sensor nodes directly transmit their data to the

FC. Single-hop WSN consists of the transmit-only sensor node and is preferred

for applications requiring dense and long-lasting deployment with reduced cost

and latency [90]- [91]. In WSN, every node senses some physical condition
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and produces an electrical output signal. It is assumed that there are N sensor

nodes in the network andM out ofN nodes are randomly selected every time to

transmit their data to FC. These M nodes pass the electrical output signal to the

1st path shown in Fig. 5.1. Thus, the analog signal of M nodes is converted to

a digital output to transmit to the FC for the data reconstruction. The remaining

(N−M) nodes, that did not participate in data transmission, pass their electrical

analog signal to the 2nd path for harvesting the energy.
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     Ps 

Baseband 
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Power 
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Figure 5.1: The Proposed architecture of a sensor node.
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5.2.1.1 Data gathering and reconstruction

Let y(j) = [x1, x6, ...xM ]′ denotes the sensor nodes participating in information

transmission to FC at time instant (j), which can be written as

y(j) =



1 0 0 0 0 0 ... 0

0 0 0 0 0 1 ... 0

... ... ... ... ... ... ...
...

0 0 0 0 0 0 ... 1


M×N



x
(j)
1

x
(j)
2

x
(j)
3

x
(j)
4

...

x
(j)
N


N×1

=Φx, (5.2)

where x(j)
i is the data generated at ith sensor node (i=1,2...N ) and jth time in-

stant. Further, Φ is an M ×N PCI sensing matrix, where each element of Φ is

given by

Φ(i, j) =


1 1 ≤ i ≤ M, j = m,where m ∈ [1,N]

and all m are distinct.

0 otherwise.

(5.3)

The vector x(j) can be recovered from y(j) using single sparsity as shown in

Chapter 2. Further, we can also improve the accuracy by jointly reconstructing

the data for T time instants (y(j), y(j+1),..., y(j+T−1)) while exploiting the double

sparsity as shown in Chapter 2.
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5.2.1.2 Energy gathering

Energy gathering symbolizes the total amount of energy that can be saved and/or

harvested. The amount of power consumed by a sensor node can be divided

into two parts: the power consumed in sensing, represented as Ps and the power

consumed in transmission, which is given by Pt = Pb+Prf+Ppa, where Pb is the

power consumed in baseband signal processing, Prf is the power consumed in

the transmission circuit and Ppa is the power consumed by the power amplifier

[92].

The power consumed by the power amplifier of a sensor node, i.e., Ppa will

depend on the distance between the sensor node and the destination node, i.e.

the node to which it will transmit the data. In the single-hop network, the des-

tination node is the FC. However, in case of the multi-hop sensor network, the

destination node can be the cluster head of a cluster [40] or the adjacent node on

the path [42], depending on the selected routing method. Therefore, the power

consumed by power amplifier can be given as Ppa(di) = Ad(i)α

η1
Ppd, where A

depends upon the antenna characteristics of sensor node and destination node,

di denotes the distance between the ith sensor node and the destination node, η1

represents the drain efficiency of power amplifier, α is the path loss exponent

and Ppd is the minimum power required at destination to correctly recover the

data.

For simplistic comparison, assume the distance between any two adjacent

sensor node is ds and power consumed in transmitting the data from one sensor
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node to another is given by

P s−s
t = Pb + Prf +

Adαs
η1

Ppd. (5.4)

Similarly, the distance between a sensor node and the FC is taken as df and

hence power consumed in transmission is given as

P s−f
t = Pb + Prf +

Adαf
η1

Ppd. (5.5)

Further it is assumed that the time taken in transmitting information between the

sensor nodes is Ts−s, whereas the time taken in transmitting information from

sensor node to the FC is Ts−f .

Assume all the sensor nodes are sharing the common frequency band. There-

fore, the time taken by a generic single-hop WSN for transmitting the data of

N sensor nodes can be computed as NTs−f . In single-hop WSN every node

transmits its data to the FC directly. Therefore, the overall power consumed in

transmission is given by NP s−f
t . However, after applying conventional CS in

single-hop WSN framework [12], N information can be transmitted in M time

slots. Therefore, the time taken by the single-hop CS based WSN framework

will be MTs−f only. Further, as mentioned earlier in Section 5.1, every node

of single-hop CS based WSN framework transmits its data after multiplying it

with a basis vector of lengthM , to obtainM compressive measurements. There-

fore, if power dissipated in computing one multiplication is Pbm then the overall
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power consumed by a single-hop CS based WSN framework is given by

Pt[12] = MNP s−f
t +MNPbm. (5.6)

where P s−f
t is defined in (5.5). In order to overcome the drawback of single-

hop CS based WSN, multi-hop CS based WSN framework such as clustering,

and random routing has been proposed. In clustering [40], the sensor nodes are

divided into clusters. In every cluster, one node is selected to work as a cluster

head, which receives the data from the sensor nodes of its cluster. Later, cluster

heads compute the compressive measurements by utilizing the received data and

its own data and transmit the measurements to the FC. If all the sensor nodes

are equally divided into kc clusters, then the power consumption of clustering is

given by

Pt[40] = (N − kc)P s−s
t + kcMP s−f

t +
MN

kc
kcPbm +

(
N

kc
− 1

)
kcPba, (5.7)

where P s−s
t is the power consumed in transmitting the data of a sensor node

to its cluster head (5.4), P s−f
t is the power consumed in transmitting the data

from cluster head to FC (5.5). Further, Pbm and Pba represents the baseband

computation power dissipated in computing one multiplication and one addition,

respectively. In random routing [42], a sensor node will transmit its data to the

adjacent node on its path and the combined information is transmitted to the

next upcoming node and process continues. Finally, the data collected at the

last node will be transmitted to the FC. To obtain M measurements, M such

paths would be followed by a sensor network. If every path passes through kr
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random nodes, then the power consumption of random routing WSN will be

given as

Pt[42] = M(kr − 1)P s−s
t +MP s−f

t +M(kr − 1)Pba. (5.8)

The multi-hop WSN increases the latency of the system. Even if frequency

reuse among the clusters are assumed, the time taken by the cluster CS based

WSN framework will be N
kc
Ts−s+MTs−f . Similarly, in random routing method,

if all M random paths are followed simultaneously, the time taken by random

routing CS based WSN framework is given by (kr − 1)Ts−s +MTs−f .

In the proposed iDEG protocol, M nodes will be randomly selected to trans-

mit its data to the FC. Therefore, the time taken in the proposed protocol will

be MTs−f only, therefore reducing the latency. Further, the power consumed in

the proposed iDEG protocol is given as

PtiDEG
= MP s−f

t . (5.9)

Please note that energy consumption can be calculated as the product of power

consumption with the duration of time for which power is consumed. For in-

stance, the energy consumption of iDEG will be MP s−f
t Ts−f .

As mentioned above, M out of N nodes were used for the data aggregation.

Hence, the remaining (N −M) nodes, that are not participating in information

transmission, will harvest energy from the sensed electrical analog signal, as

shown in Fig. 5.1. Let’s assume, vi is the average voltage received at the ith
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node, therefore the amount of average power harvested at ith sensor node will

be given as Phi = ηv2
i W, where η is the efficiency of the harvester circuit.

Hence, the amount of energy harvested per slot for a complete WSN by using

the iDEG protocol can be given as

Eh =

(
η
N−M∑
i=1

v2
i

)
Tslot J, (5.10)

where Tslot is the time duration of one slot in seconds. Hence it is evident

from the above, the proposed iDEG protocol reduces the latency as well as

power consumption and promotes energy harvesting. Table III compares the

amount of power consumed and harvested for N sensor nodes for single-hop

WSN framework, single-hop CS based WSN framework [12], a multi-hop CS

based clustering WSN framework [40], a multi-hop random routing CS based

WSN framework [42] and the proposed iDEG WSN.

Based on the above analysis, we have computed the amount of power saved

using the iDEG protocol as compared to conventional CS based single-hop and

multi-hop WSN frameworks. For instance, the amount of power saved using

iDEG protocol, compared to the conventional single-hop CS based WSN frame-

work [12] can be given as

P
[12],iDEG
d = Pt[12] − PtiDEG

= MP s−f
t (N − 1) +MNPbm W. (5.11)

The amount of power saved with iDEG as compared to a multi-hop CS based
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clustering WSN framework [40] can be given as

P
[40],iDEG
d = Pt[40] − PtiDEG

= MP s−f
t (kc − 1) + (N − kc)P s−s

t

+
MN

kc
Pbm +M

(
N

kc
− 1

)
Pba W. (5.12)

Simillarly, the amount of power saved with iDEG as compared to a multi-hop

random routing CS based WSN framework [42] can be given as

P
[42],iDEG
d =Pt[42] − PtiDEG

=M(kr − 1)P s−s
t +M(kr − 1)Pba W. (5.13)

Table 5.1: Power consumed and power harvested in a WSN of N sensor nodes with different methods.

Different WSN
frameworks

Required time
Transmit power consumption

(W)
Power harvested

(W)

Single-hop NTs−f NP s−ft 0
Single-hop CS [12] MTs−f MNP s−ft +MNPbm 0

Clustered [40] N
kc
Ts−s +MTs−f

(N − kc)P s−st + kcMP s−ft

+MNPbm +M(N − kc)Pba
0

Random routing [42] (kr − 1)Ts−s +MTs−f
M(kr − 1)P s−st +MP s−ft

+M(kr − 1)Pba
0

Proposed:iDEG MTs−f MP s−ft η
N−M∑
i=1

v2
i

5.3 Simulation Results

In this section, the amount of energy that could be gathered by using iDEG

protocol has been shown. As mentioned above, energy gathering refers to the

total amount of energy that could be saved and harvested. For simulation, the
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distance between the sensor nodes i.e., ds−s is assumed to be 3 m. Further, the

distance between sensor node and FC i.e., ds−f is considered to be 100 m. The

remaining parameter values are given as Pt0 = Pb + Prf = 20µ W, η1 = 0.7,

α = 2, A = 1, Ppd = 0.05mW and η = 0.7. Further, kc and kr is assumed

to be 4 and 25. The value of vi at each sensor node can be calculated by using

standard temperature and voltage relationship, i.e., vi = KTi
q , where K is the

Boltzmann constant (1.38064852 ×10−23m2kg s−2K−1), Ti is the temperature

obtained at ith sensor node [1] in Kelvin and q is the charge of an electron

(1.60217662 ×10−19 coulombs). This implies at temperature value of 19.9002

◦C, the obtained voltage will be vi = (19.9002 + 273)/11600 = 0.0253V. The

temperature value is taken from [1] 2.

The amount of power saved using the proposed iDEG protocol as compared

to conventional CS based single-hop, P [12],iDEG
d (5.11) and multi-hop WSN

frameworks such as clustering, P [40],iDEG
d (5.12) and random routing, P [42],iDEG

d

(5.13) with respect to sampling ratio (MN ) have been plotted in Fig. 5.2. From

the graph, it can be observed that the proposed iDEG protocol saves a consider-

able amount of power as compared to conventional CS based WSN frameworks.

Further, in this graph, we have also plotted the amount of power that can be har-

vested for N = 52 sensor nodes. It can also be observed that as sampling ratio

increases, the amount of power harvested decreases, and the amount of power

saved increases because of the participation of more sensor nodes in the data

gathering process. Please note that in the proposed analysis we have neglected
2Same as chosen in Chapter 2.
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the extra computational power consumed in computing Pbm and Pba for obtain-

ing the compressive measurements in conventional frameworks, i.e. Pbm = 0

and Pba = 0 otherwise, the performance of the conventional frameworks would

further deteriorate.

In Fig. (5.3), the total amount of energy harvested for iDEG protocol with

N = 52 sensor nodes, T = 500 time slots of duration 1 minute (i.e. Tslot = 1

min) each has been plotted with respect to sampling ratio (Me

NT
), where Me will

be the number of samples picked fromNT for data gathering. For instance, sam-

pling ratio of 0.5 implies Me = 50% of NT samples are used for data gathering

and remaining time can be used for energy harvesting.
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Figure 5.2: Power harvested and saved using the proposed iDEG protocol

5.4 Discussion

In this work, a methodology has been proposed (named as ‘iDEG’) to harvest

the energy from the information signal at the sensor node without affecting the

system performance. It can be understood as: only a fraction of signal portion
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Figure 5.3: Energy harvested in the proposed iDEG protocol

has been utilized for the information transmission, as PCI-MF can be utilized

at the FC to recover the entire information, and the remaining signal has been

used for the energy harvesting. This motivated us to rethink the conventional

sampling process, in which the input analog signal is acquired only for a small

fraction of time in every sampling interval for discrete conversion. Hence, in the

subsequent chapter, we will propose a method of harvesting the energy from the

un-utilized input analog signal without affecting the data acquisition accuracy

of the conventional sampling process.
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Chapter 6

eSampling: Energy Harvesting ADCs

6.1 Introduction

Physical signals are analog in nature, taking values in continuous sets over a

continuous time interval. In order to process and extract information from such

signals using digital hardware, they must be accurately represented in digital

form. Analog-to-digital converters (ADCs) thus play an important role in dig-

ital signal processing systems [7]. ADCs are typically a major source of en-

ergy consumption, as their power dissipation grows with the sampling rate and

the quantization resolution, and thus their ability to accurately represent the ac-

quired signal is typically limited by the available power [93]. Nowadays, ADCs

are utilized in a multitude of energy-limited systems, including communica-

tion devices [94], wireless sensors [95], and medically implanted devices [96].

Therefore, there is a growing need for ADCs that are capable of reliably acquir-

ing signals while consuming low power.
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The existing strategies proposed in the literature to facilitate energy efficient

acquisition of analog signal can be divided broadly into two categories. First,

those taking a signal processing approach, and second techniques focusing on

circuit level design. Signal processing approaches typically aim for allowing

the ADC to operate at reduced sampling rate and quantization resolution by ac-

counting for how the acquired signal is processed and on the basis of the prior

information on the signal itself [95, 97–100]. Additionally, in scenarios where

the signal is acquired for some task, i.e., to recover some underlying informa-

tion, it was recently shown that the desired information could be accurately

recovered from the output of low-resolution ADCs by properly designing the ac-

quisition system [101–104]. An alternative signal processing oriented method

which does not limit the rate and resolution of ADC is based on acquiring a

portion of the analog signal for information decoding while utilizing the remain-

ing part for energy harvesting. This strategy, typically studied in the context of

communication receivers as simultaneous wireless information and power trans-

fer (SWIPT), considers time or power splitting of the analog signal [105–108].

However, it induces some inevitable loss on the system performance as only a

portion of the signal is converted into a digital representation. These aforemen-

tioned signal processing methods typically focus on the signal model and the

task for which it is acquired, without accounting for the ADC circuitry.

Circuit level methods rely on the hardware architecture of ADC devices. The

circuit level approach generally considers designing energy efficient ADC cir-

cuitry, which is capable of operating with reduced power consumption. This

102



can be achieved by reducing the circuit power supply [96] and/or limiting the

operating frequency [109] in order to reduce the overall power consumption.

An alternative technique is to modify the circuit components in existing ADC

architectures and combine various designs in the acquisition, such as sample-

and-hold (S/H) ADCs, flash ADCs, sigma-delta ADCs, and time-interleaved

ADCs, to improve their energy efficiency, see, e.g., [110–113]. Such circuit-

oriented designs which focus on the hardware aspects of acquisition, do not

account for the model of the analog signal and the task for which it is acquired.

A popular power efficient ADC is the S/H based successive approximation

register (SAR) architecture, which is capable of operating at high resolution and

a small form factor with relatively low power consumption [114]. The power

consumption of SAR ADCs can be further reduced by incorporating energy ef-

ficient switching schemes, as proposed in [115, 116]. In S/H architectures, the

circuit used to sample the input analog signal consists of two phases, acquisi-

tion phase and hold phase in each sampling period. In the acquisition phase,

the S/H circuit tracks the input analog signal. The sampled value captured in

the acquisition phase is then converted into digital form, i.e., a sequence of bits,

during hold phase. Therefore, during the sampling process of S/H ADCs, the

input signal is processed only for a fraction of the overall sampling period (ac-

quisition phase) and neglected/discarded for the remaining time interval (hold

phase) [117,118]. The fact that the signal is not accessed in a dominant portion

of the sampling period, motivates the extension of S/H ADCs, and particularly

S/H SAR ADCs, to continuously utilize the analog signal in order to mitigate
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power consumption.

In this work, we combine signal processing tools with circuit level meth-

ods to propose an eSampling ADC, which harvests energy from the acquired

signal while converting it into a digital representation. The eSampling ADC

builds upon the S/H ADC architecture while introducing an additional energy

harvesting circuit. In the resulting architecture, the signal is harvested during

hold phase, i.e., when it is not utilized in conventional S/H ADCs. As opposed

to SWIPT systems, in which the overall operation of the system is modified

to allow energy harvesting while conventional ideal ADCs are assumed [108],

eSampling exploits the inherent property of ADC devices to harvest energy as

a natural byproduct of their hardware architecture. This makes eSampling an

attractive technology which can be easily incorporated into existing devices.

Our theoretical study of eSampling ADCs analyzes its potential in terms of

the ability to harvest energy while maintaining a desired accuracy of signal re-

construction. To that aim, we focus on the acquisition of stationary random

processes and characterize the resulting tradeoff between the ability to accu-

rately reconstruct the signal from its samples and the energy harvested from it,

referred to henceforth as the energy-fidelity tradeoff. Our analysis identifies how

to set the sampling rate to optimize this tradeoff when operating under energy

constraints or fidelity restrictions on the reconstruction. The results allow us

to numerically characterize the maximal accuracy in which any signal can be

eSampled using only harvested energy, i.e., without requiring any energy from

its power source. Our numerical results demonstrate that eSampling ADCs are
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capable of fully reconstructing bandlimited signals with zero distortion while

harvesting at least as much energy as they consume. In particular, we show that

an eSampling ADC with 12 bits quantization can acquire a bandlimited signal

with flat power spectral density (PSD) at the Nyquist rate while harvesting more

energy than it consumes.

We then proceed to illustrate the hardware feasibility of such a device. To

that aim, we design the circuitry of an eSampling 8-bit SAR ADC which sam-

ples at 40 MHz on 65 nm complementary metal oxide semiconductor (CMOS)

technology, and provide guidelines for setting its parameters to achieve a de-

sired amount of harvested energy. The experimental evaluation of the eSampling

SAR ADC circuit, carried out on Cadence Virtuoso platform, shows that the

amount of energy harvested is much larger than the amount of energy consumed

during the conversion procedure. This is achieved without affecting the signal

reconstruction accuracy when acquiring a bandlimited signal while satisfying

Nyquist condition. Our experiment indicates that the theoretical potential of

eSampling can be translated into an actual ADC device, which accurately ac-

quires analog signals while harvesting more power than it consumes.

The eSampling ADCs have potential advantage in the IoT based applications.

This is due to the fact that most of the link sensor nodes with IoT are energy

constrained nodes and generate an analog signal corresponding to the sensed

parameter. This analog signal is converted into digital bits by using the sam-

pling and quantization process. Hence, by replacing sampling with eSampling,

the discarded energy of the analog signal could be harvested to develop a self-
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Figure 6.1: S/H SAR ADC illustration: (a) acquisition phase (b) hold phase.

sustainable sensor node. To experimentally demonstrate that energy harvesting

can be combined with sampling, we have provided a real-time validation of

eSampling ADC for sensing circuit for environmental and health monitoring

application.

The rest of this chapter is organized as follows: In Section 6.2, we present our

eSampling system model. Section 6.3 analyzes the associated energy-fidelity

tradeoff. The circuit-level design is presented in Section 6.4. Section 6.5 de-

tails experimental study of the eSampling ADC. Section 6.6 provides real-time

validation of eSampling ADC by demonstrating it on an actual hardware for

sensing node application.

6.2 System Model

In this section, the proposed ADC model has been discussed from a high-level

perspective. We begin by briefly reviewing S/H-based SAR ADCs and their

associated energy consumption in Subsection 6.2.1. Then, we present how S/H
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ADCs can be extended into eSampling ADCs which harvest energy in addition

to signal acquisition in Subsection 6.2.2.

6.2.1 Sample-and-Hold ADC Model

In this section, we briefly reviewing the S/H-based SAR ADCs and also their

associated energy consumption.

6.2.1.1 High-level description

S/H is a common ADC architecture. Such ADCs acquire each sample in two

phases, determined by a switch S, as illustrated in Fig. 6.1: In the acquisition

phase, the signal is connected to a capacitor referred to as a holding capacitor,

Ch, which is charged to the input analog voltage, as depicted in Fig. 6.1(a). The

time required byCh to charge to the input voltage, which dictates the acquisition

time, is given by [114]

Taq = ατRonCh, (6.1)

where Ron is the on-resistance of the switch S, and ατ is the number of time

constants, i.e., RonCh required for the capacitor to be fully charged.

Once the acquisition phase is over, the hold phase begins, in which the dis-

crete sample, i.e., the voltage stored in the holding capacitor, is quantized into

digital bits. During hold phase, whose duration is denoted by Th, the input sig-

nal is disconnected from the S/H circuit and Ch holds the acquired voltage to
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accomplish the successful conversion of the acquired sample into digital bits as

illustrated in Fig. 6.1(b). Both Th and Ch, must be set to allow the quantization

circuit of the ADC to complete the conversion.

When the quantizer is based on SAR logic, the overall architecture is referred

to as a SAR ADC. An n-bit SAR ADC consists of a comparator, digital-to-

analog converter (DAC), and an SAR logical circuit which successively refines

the digital representation. To allow successful quantization into n bits, the hold

time required to quantize each sample must satisfy [118]

Th ≥ nατRqCh, (6.2)

where Rq is the equivalent resistance of the quantizer binary scale switches.

Therefore, the sampling period, i.e., the duration of acquiring a single sample,

is lower bounded by the following expression

Ts = Taq + Th ≥ (Ron + nRq)ατCh. (6.3)

In S/H SAR ADCs, the on-resistance of the switch Ron is commonly not larger

than the resistance of the quantizer binary scale switches Rq. Thus from (6.1)

and (6.2), it is evident that Th is typically much larger than Taq, particularly

when using high resolution quantizers, such as ADCs with n ≥ 8 bits. Conse-

quently, the input signal, which is tracked only during the acquisition phase, is

discarded during most of the sampling period.
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6.2.1.2 Energy consumption

In general, the energy consumption of a circuit is typically a function of the time

duration it is active, and the amount of power drawn from the supply, denoted

here by Vref . As Th is typically much larger than Taq, most of the energy required

by S/H SAR ADCs is consumed during hold phase [115, 118].

In particular, the only energy consumed during acquisition phase, denoted

Eaq, is that needed to toggle the sampling switch S. In contrast the energy

consumption during hold phase, denoted Ehold, is comprised of the energy used

by each of the components taking part in the quantization:

Ehold = EDAC + Ec + Esl, (6.4)

where EDAC, Ec, and Esl are the energy consumption of the DAC array, com-

parator, and SAR logic, respectively, resulting in Ehold effectively representing

the power consumed per sample by S/H SAR ADCs [115, 118]. We elaborate

on the quantities in (6.4), which are dictated by the specific circuit parameters

used, in Section 6.4 where a concrete circuit-level design is discussed. Here,

we note that Ehold typically takes the form of a second-order polynomial in the

reference voltage Vref [119], i.e.,

Ehold = a1(n)Vref + a2(n)V 2
ref . (6.5)

The coefficients a1(n) and a2(n) in (6.5) are positive constants determined by

the number of bits n and the quantization circuit parameters, and can grow dra-

109



matically with n. This makes energy consumption a major bottleneck of high

resolution ADCs, motivating the proposed eSampling architecture detailed next.

6.2.2 eSampling ADC Architecture

As mentioned above, during hold phase, the capacitor Ch holds the acquired

voltage sample, which is converted into a set of digital bits. In this interval,

the input signal is disconnected from the circuit by the switch S. In order to

mitigate the energy consumption of S/H SAR ADCs without modifying their

sampling and quantization procedure, we propose to harvest the input signal

energy by connecting it to an energy harvesting circuit during the hold phase,

as illustrated in Fig. 6.2. Henceforth, the proposed architecture is referred to

eSampling ADC.

As depicted in Fig. 6.2, the energy harvesting capability is enabled by pass-

ing the signal observed during hold time through a conditioning circuit, whose

output is used to charge the energy harvesting capacitor CEH to a voltage level

VEH. The energy harvesting circuit can be designed using passive elements, as

we do in our proposed design detailed in Section 6.4. Hence, no external power

supply is required [120]. The purpose of the signal conditioning circuit used in

energy harvesting devices is to facilitate the storage of the energy of the signal

in the capacitor CEH [121–123]. For instance, a rectifier can act as a signal con-

ditioning circuit, reducing fluctuations in the amount of energy harvested in the

presence of alternating signals. Similarly, voltage regulator circuits and DC-DC

step up converters can also be used to enhance the overall efficiency of the en-
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ergy harvesting circuit [124]. The common measure for the quality of an energy

harvesting circuit is the efficiency parameter, denoted by η ∈ [0, 1], which repre-

sents the fraction of the energy of the input signal is harvested. Finally, in order

to connect the input signal to the quantization circuit during acquisition time

and to the energy harvesting circuit during hold time, the sampling switch S is

replaced by a two-way switch S̃. The circuit design of S̃ has been explained in

Section 6.4.

The amount of energy consumed in acquisition phase as given in (6.5) is dic-

tated by the design parameters of the circuitry, which also affect the sampling

rate via (6.3). In particular, the sampling duration is the sum of the acquisition

time Taq and the hold time Th. Further, the amount of time during which energy

is harvested from the input signal per sampling period is at most Th. Recall-

ing that typically Th � Taq, a significant portion of the sampling interval can

be allocated for harvesting energy from the input signal. Since energy is only

harvested during hold time, in which conventional S/H ADCs do not utilize the

analog signal, the ability to harvest energy in eSampling ADCs does not affect

the acquisition operation. Specifically, for a given sampling rate, eSampling

ADCs implement the same conversion mapping as standard S/H ADCs oper-

ating at the same rate. Nonetheless, eSampling provides the ability to trade

acquisition accuracy for harvesting more energy. This is due to the fact that

increasing the sampling interval, though may degrade the reconstruction of the

analog signal, allows eSampling ADCs to dedicate more time to energy harvest-

ing. The theoretical potential benefits of such an architecture, which is capable
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of simultaneously acquiring analog signals into a digital form while harvesting

their energy, is studied in the following section.

6.3 eSampling ADC Analysis

In this section, we analyze the capabilities of the proposed eSampling ADC in

terms of the amount of energy one can harvest while meeting a given level of re-

construction accuracy, as well the achievable accuracy for harvesting a desired

amount of energy. The interplay between these key performance measures is de-

termined by the selection of the sampling rate, as we show in the following. We

begin by formulating the signal model under which our analysis is carried out

and the corresponding problem of characterizing the associated energy-fidelity

tradeoff which arises from the eSampling ADC paradigm in Subsection 6.3.1.

Then, we derive the achieved normalized mean-squared error (NMSE) under

the considered model in Subsection 6.3.2. The derived NMSE is used to charac-

terize the energy-fidelity tradeoff in Subsection 6.3.3, and to obtain as a special

case the maximal amount of energy which can be harvested when sampling a

bandlimited signal at a rate satisfying Nyquist condition, i.e., allowing perfect

recovery. Finally, we discuss the pros and cons of eSampling ADC in light of

our analysis in Subsection 6.3.4.
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6.3.1 Problem Formulation

The eSampling ADC detailed in Subsection 6.2.2 harvests energy during hold

phase. This implies that more energy can be harvested by increasing the hold

time, which in turn increases the sampling period, potentially degrading the abil-

ity to reconstruct the signal from its samples. Therefore, to unveil the potential

of eSampling ADCs, we first wish to analyze the fundamental tradeoff between

the amount of energy harvested in eSampling and the resulting fidelity in sig-

nal reconstruction. We are particularly interested in quantifying the maximum

amount of energy that could be harvested without compromising the signal re-

construction accuracy.

In the analysis carried out in this section we consider a stochastic input signal

x(t) modeled as a zero-mean wide sense stationary (WSS) process, with vari-

ance σ2
x, and PSD Sx(f). The signal x(t) is sampled uniformly with sampling

interval Ts, resulting in the discrete-time signal x(kTs), k ∈ Z , where Z is the

set of integers. The sampled series is quantized with n bits per sample into the

digital sequence x̃(kTs). The digital representation is used to recover the ana-

log signal x(t) using a linear reconstruction filter G(t), which is designed to the

mean square error between x(t) and the recovered signal x̂(t) as in [100, 125].

The reconstructed signal is

x̂(t) =
∑
k∈Z

G(t− kTs)x̃(kTs). (6.6)

The overall system is illustrated in Fig. 6.3.
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The NMSE in reconstructing x(t) from x̂(t) is given by

ζ =
1

σ2
xTs

∫ Ts

0

{|x(t)− x̂(t)|2}dt, (6.7)

where {·} is the stochastic expectation. The amount of expected energy har-

vested per sampling period is given by

Eh = η
1

Rh

∫ Ts

Taq

{|x(t)|2}dt =
η

Rh
Thσ

2
x, (6.8)

where η and Rh is the efficiency and the resistance of the energy harvesting

circuit, respectively. As mentioned above, the energy harvesting circuit is com-

prised of passive elements, and does not require an external power source. There-

fore, the overall energy consumption per sample using the proposed eSampling

ADC can be given as Eaq + Ehold − Eh as illustrated in Fig. 6.3. Recalling

that the overall energy consumption is typically dominated by the energy used

during hold phase, i.e., Eaq � Ehold, and hence the ratio of the amount of

energy harvested to the energy consumption per sample can be approximated
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as Eratio = Eh

Ehold
. The value of Ehold is dictated by the power supply voltage

Vref and the number of quantization bits n, as well as the SAR architecture and

circuit parameters, as we show for our design detailed in Section 6.4.

In the following subsections, we study the fundamental tradeoff between the

reconstruction accuracy, modelled as the NMSE, and the portion of the energy

consumed in analog-to-digital conversion to that harvested by eSampling, re-

ferred to as the energy-fidelity tradeoff. To trade energy efficiency for fidelity,

we modify the sampling rate for a fixed quantization resolution n and fixed

acquisition time Taq. The reconstruction accuracy can be improved by increas-

ing the sampling rate, however eSampling ADC will harvest less energy, and

hence the inherent tradeoff between these parameters. In particular, we focus

on ADCs operating with relatively high resolution, where energy consumption

constitutes a major challenge. The following analysis sheds light on the poten-

tial of joint acquisition and energy harvesting. For example, it quantifies the

minimal recovery NMSE which allows a fixed n-bit ADC to operate at zero

power, i.e., Eratio = 0 dB. Alternatively, it identifies the quantization resolution

n for which the eSampling ADC can sample a bandlimited signal at Nyquist

condition and operate at zero power, as well as the maximal amount of energy

which can be harvested for an allowed level of reconstruction accuracy for both

bandlimited and non-bandlimited signals.
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6.3.2 Reconstruction NMSE

In general, the NMSE depends on both the sampling rate as well as the quan-

tization resolution [126]. Since we focus on relatively high rate quantization,

the NMSE due to quantization is well-approximated by the 6 dB rule-of-thumb

[127, Ch. 23], and is thus on the order of 10−0.6n [114], resulting in a negli-

gible contribution to the overall NMSE of less than roughly 10−5 for n ≥ 8.

Therefore, henceforth the focus is on the the NMSE between x(t) and x̂(t) due

to the sampling procedure alone, expressed in the following theorem, derived

in [125]:

Theorem 1 The minimal achievable NMSE in reconstructing a uniformly sam-

pled WSS signal x(t) with sampling frequency fs = 1/Ts using a linear recon-

struction filter, G(t) is

ζ(Ts) =1− 1

σ2
x

∑
k∈Z

∫ fs
2

− fs2

|Sx(f − kfs)|2∑
k′∈Z Sx(f − k′fs)

df. (6.9)

To achieve (6.9), the linear recovery filter G(t) in (6.6) is set according to

[100, 125], resulting in the minimal achievable NMSE between x(t) and x̂(t).

Theorem 1 generalizes the celebrated Shannon-Nyquist theorem, as stated in
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the following corollary:

Corollary 1 When x(t) is bandlimited and the sampling frequency satisfies

Nyquist condition, the resulting NMSE is zero.

If x(t) is bandlimited, then there exists some finite fm such that Sx(f) = 0 for

all |f | > fm. When the sampling rate satisfies Nyquist condition, then fs ≥ 2fm.

Consequently, the summands in (6.9) are non-zero only at k = k′ = 0, and

hence

ζ(1/fs) = 1− 1

σ2
x

∫ fs
2

− fs2

|Sx(f)|2

Sx(f)
df

= 1− 1

σ2
x

∫ fm

−fm

|Sx(f)|2

Sx(f)
df = 0, (6.10)

proving the corollary.

We next give an example of how Theorem 1 is computed:

Example 1 As an example, consider a bandlimited signal whose spectral sup-

port is [−fm, fm] for some fm > 0 with flat PSD. The obtained NMSE for such

signals computed via Theorem 1 is given by

ζ(1/fs) =


1− fs

2fm
fs ≤ 2fm,

0 otherwise.

(6.11)

Fig. 6.4 illustrates of the recovery NMSE result in Theorem 1, showing

which spectral portions of a signal with a flat PSD as in Example 1 are pre-
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Figure 6.4: Illustration of eSampling of a signal with a flat PSD for: (a) Sampling at Nyquist rate, while harvesting
an amount of energy proportional to Th = 1/fs − Taq; (b) Sampling at sub-Nyquist rate, thus trading recovery
accuracy for harvesting more energy.

served by the NMSE minimizing reconstruction. In particular, Fig. 6.4 demon-

strates how the complete spectrum is preserved when sampling above Nyquist

rate, while sub-Nyquist sampling yields some recovery error due to aliased com-

ponents. Fig. 6.4 also depicts the amount of energy harvested from the signal

based on (6.8), showing that reduction in the sampling rate allows to harvest

more energy in eSampling at the cost of less accurate recovery, leading to the

energy-fidelity tradeoff of eSampling analyzed in the sequel.
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6.3.3 Energy-Fidelity Tradeoff

In order to express the energy consumed in acquisition, we must first specify

the voltage of the power supply Vref . This value should be larger than the ampli-

tude of the input signal with high probability to avoid overloading the ADC.

Consequently, in the following we write the value of Vref as some multiple

K > 1 of the input standard deviation, i.e., the supply voltage is written as

Vref = Kσx. This general formulation allows us to relate the reference voltage

with the overload probability of the quantizer, since the overload probability

satisfies P (|x(t)| ≥ Vref) ≤ K−2 by Chebyshev’s inequality [101]. Therefore,

the ratio between the expected energy harvested (6.8) and consumed (6.5) for

eSampling of a WSS signal can be written as

Eratio =

η
Rh

(Ts − Taq)σ2
x

a2(n)K2σ2
x+a1(n)Kσx

. (6.12)

Using the expressions for the achievable NMSE (6.9) and the energy ratio

(6.12), we next characterize the energy-fidelity tradeoff of eSampling. Under

this setting, we formulate how the recovery accuracy and the energy ratio be-

have as the sampling period Ts varies. Recalling that the acquisition time Taq

is determined by the ADC circuit parameters (6.1), modifying the sampling pe-

riod is equivalent to tuning the hold time Th. The energy-fidelity tradeoff of

eSampling is thus encapsulated in two complementary optimization problems:

The first aims at finding the minimal achievable NMSE under a given energy
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constraint δ > 0, i.e.,

ζ(δ) = min
Ts>Taq

ζ, (6.13)

subject to Eratio ≥ δ.

Setting δ = 0 dB, implies that Ehold = Eh. Therefore, solving (6.13) with

δ = 0 dB reveals the minimal NMSE achievable by an eSampling ADC which

harvests at least as much energy as it consumes, i.e., when operating at zero

power. A positive value of δ (in dB) implies an energy saving ADC which

harvests more energy than its consumption per sample, namely, converting the

signal only adds power to the system.

An alternative formulation seeks to maximize the energy harvested under a

given fidelity constraint ε > 0, i.e.,

Eratio(ε) = max
Ts>Taq

Eratio, (6.14)

subject to ζ ≤ ε.

For instance, consider a bandlimited signal eSampled at Nyquist rate. In such

a case, Eopt
ratio(0) represents the maximal portion of the consumed energy which

can be harvested when seeking ideal recovery.

Problems (6.13)-(6.14) allow to characterize the energy-fidelity tradeoff, stated

in the following theorem:

120



Theorem 2 Let Th(δ) be given by

Th(δ) :=
δRh

ησ2
x

(
a2(n)K2σ2

x+a1(n)Kσx
)
.

By setting fs(δ) = 1
Taq+Th(δ) , the solution to (6.13) is

ζ(δ)=1− 1

σ2
x

∑
k∈Z

∫ fs(δ)
2

− fs(δ)2

|Sx(f−kfs(δ))|2∑
k′∈Z S

H
x (f−k′fs(δ))

df. (6.15a)

Similarly, by letting Ts(ε) be the maximal sampling interval satisfying ζ(Ts(ε)) =

ε in (6.9), then the solution to (6.14) is

Eratio(ε)=

η
Rh

(Ts(ε)− Taq)σ2
x

a2(n)K2σ2
x+a1(n)Kσx

. (6.15b)

The theorem follows by noting that ζ(Ts) in (6.9) is monotonically decreas-

ing in Ts, while Eratio in (6.12) is a monotonically increasing function of Ts.

Consequently, both (6.13) and (6.14) are obtained by identifying the minimal/-

maximal value of Ts for which the constraint holds with equality, hence proving

the theorem.

In the following subsection we discuss some of the properties and insights

which arise from the above energy-fidelity tradeoff analysis.

6.3.4 Discussion

The characterization of the energy-fidelity tradeoff in Theorem 2 identifies the

achievable energy ratio for a given recovery accuracy and vice versa.
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It also reveals the achievable energy ratio when eSampling a bandlimited sig-

nal of maximum frequency fm ≥ 0 with zero reconstruction error. In particular,

combining Corollary 1 and Theorem 2 indicates that this energy ratio is given

by

Eratio(0)=

η
Rh

( 1
2fm
− Taq)σ2

x

a2(n)K2σ2
x+a1(n)Kσx

. (6.16)

An example of how Theorem 2 is computed for arbitrary sampling rates is given

in the following:

Example 2 Consider again the bandlimited signal with flat PSD of Example

1. In this case, by (6.11), an NMSE of ζ(1/fs) ≤ ε is guaranteed by using

fs ≥ 2fm(1 − ε). Consequently, by Theorem 2 the energy ratio under fidelty

constraint ε for such signals is given by

Eratio(ε)=

η
Rh

( 1
2fm(1−ε) − Taq)σ2

x

a2(n)K2σ2
x+a1(n)Kσx

. (6.17)

As expected, the achievable energy ratio in Example 2 coincides with (6.16)

when perfect recovery is required, i.e., ε = 0. The energy ratio characterized

in (6.17) is increased by reducing the sampling rate, which in turn increases the

reconstruction error, ε, as illustrated in Fig. 6.4.

The fundamental balance between these measures follows from the structure

of eSampling ADCs, in which increasing the hold time degrades the ability to

recover the signal from its samples, while allowing to harvest more energy. This

unique property of eSampling can lead to ADCs which harvest more power than
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they consume, as we numerically demonstrate in Section 6.5 when using typical

parameters of S/H ADC hardware, as well as when evaluating an experimental

setup involving a dedicated design of an eSampling ADC circuit.

The amount of energy harvested in eSampling is determined by the sampling

rate and the signal energy, as illustrated in Fig. 6.4. Consequently, unlike the

recovery NMSE which depends not only on the sampling rate but also on the

shape of the PSD Sx(f) (6.9), the energy ratio for a fixed sampling rate is af-

fected only by the overall input energy σ2
x =

∫
Sx(f)df (6.12). This follows

from the fundamental difference between the two objectives of eSampling, i.e.,

acquisition and energy harvesting: The purpose of acquisition is to allow the

complete signal, whose profile depends on the shape of its PSD, to be recovered

from its digital representation. However, energy harvesting aims at extracting

energy from the signal without having to maintain sufficiency or to avoid dis-

torting the signal, and is invariant of specific values of its PSD.

Our characterization in the previous subsections focuses on the general fam-

ily of stationary signals. When the signal obeys some structure, e.g., it is known

to reside in a shift-invariant space, ideal recovery can be achieved at low sam-

pling rates using generalized sampling methods [7], allowing to harvest more

energy without affecting the recovery NMSE. This indicates that the energy-

fidelity tradeoff of eSampling ADCs can be further improved by accounting

for structured signals, as commonly encountered in communication [98] and

radar [99] systems. We leave the analysis of eSampling of structured signals for

future work.
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The fact that eSampling gives rise to ADCs which operate with zero power

and can even harvest more energy than they consume, makes it an attractive

technology for low-power systems, such as IoT devices, sensor networks, as

well as wearable and implantable medical units. However, the fact that the

proposed eSampling architecture is based on S/H ADCs limits its applicability

in some scenarios. For example, S/H ADCs typically operate at sampling rates

below 1 GHz, and are not suitable for operating at extremely high sampling

rates, where flash ADCs are more commonly used. While we conjecture that the

concept of eSampling, namely, the integration of energy harvesting into signal

acquisition, can also be combined with alternative ADC technologies other than

S/H ADCs, we leave this study for future work.

While our analysis focuses on WSS signals for analytical tractability, the

proposed eSampling ADCs applies to a much broader family of acquired ana-

log signals. For example the eSampling ADC circuitry detailed in the following

section is experimented in Subsection 6.5.2 when acquiring a sinusoidal signal,

demonstrating its ability to accurately reconstruct the signal in a power saving

manner. Our proposed analysis is based on linear recovery, being a common

reconstruction framework in sampling theory. In particular, the reconstruction

of Nyquist rate sampled bandlimited signals, shift-invariant signals, and various

other structures studied in the literature, is based on linear filtering [7]. How-

ever, the architecture of the eSampling ADC is invariant to the reconstruction

mechanism, and alternative recovery schemes would result in a different char-

acterization of the energy-fidelity tradeoff.
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Figure 6.5: Circuit diagram of (a) PMOS transistor switch, (b) NMOS bootstrapped switch.

6.4 eSampling ADC Circuit-level Design

In order to demonstrate the hardware feasibility of the concept of eSampling, in

this section we design and develop a prototype for such a device. In particular,

we realize the eSampling ADC model shown in Fig. 6.2 using standard 65 nm

CMOS technology. In order to design the eSampling ADC based on the high-

level architecture illustrated in Fig. 6.2, one has to design its three main sub-

blocks: The two-way switch S̃; the quantizer logic; and the energy harvesting

circuit. In the following we elaborate on each of these sub-blocks.

6.4.1 Two-way switch

The two-way switch S̃ allows the input signal to be connected to the hold ca-

pacitor during acquisition phase and to the energy harvesting circuit during the

hold phase. In our design, S̃ is implemented1 using two one-way switches,

one for each operation phase, namely, when one switch is open, the other is

closed. Each of these switches is realized using a different topology. The
1The term ‘implement’ used here implies the design/simulation of the circuit in Cadence Virtuoso platform, in line with the

similar usage of this terminology in [110–113, 116].
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switch designed to connect the input signal to the energy harvesting circuit is

implemented using a PMOS transistor, as illustrated in Fig. 6.5(a). The PMOS

transistor turns ON when the clock signal Clk is at logic ’0’, indicating that

hold phase is active. When Clk is at logic ’1’, it turns OFF and isolates the

input signal from the next block. In order to allow both switches of S̃ to utilize

the same single clock pulse, the switch designed to connect the input signal with

the quantizer is implemented using an NMOS transistor, which turns on when

Clk is at ’1’.

The on-resistance of a MOS transistor, which determines the value of Ron

in (6.1), is sensitive to fluctuations in the input signal and may vary accord-

ingly [114]. Such variations in Ron may introduce a non-linear distortion at the

output of the ADC. To avoid such distortion, we use an NMOS bootstrap switch

to connect the input signal to the quantizer, which ensures a constantRon, as pro-

posed in [128]. The design of the NMOS transistor based bootstrapped switch

used in this work is illustrated in Fig. 6.5(b). To achieve nearly constant Ron,

the gate of the transistor M1 in Fig. 6.5(b) is bootstrapped using two PMOS

transistors M2 and M3, three NMOS transistors M4, M5 and M6, and one

capacitor CB, as shown in [128]. Two CMOS inverters I1 and I2 are also em-

ployed in the structure to generate the required clock signals needed for proper

operation of the switch.

The value of the on-resistance Ron as well as the hold capacitor Ch affect

the setting of the acquisition time Taq, which follows from (6.1). To maximize

the amount of energy harvested, small values of Taq are preferable, so that more
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time could be allocated to harvesting the input signal energy. Reducing Ron

requires increasing the width of the transistors [114], which in turn increases

the device capacitance, and thus reduces the operating speed of the ADC. In

addition, wider devices may result in charge injection [129], which degrades the

signal-to-noise-distortion ratio (SNDR) of the ADC, and hence the performance

of the ADC. Alternatively, employing small values for Ch results in mismatch

issues and sampling noise, which degrade the ADC conversion accuracy [130,

131]. These drawbacks require the acquisition time Taq to be large enough such

that the ADC performance is not compromised, and is in fact the primary reason

S/H ADCs are typically limited to operate with sampling rates below 1 GHz, as

discussed in Subsection 6.3.4.

6.4.2 Quantizer

The dedicated eSampling ADC circuit design is based on S/H SAR ADC archi-

tectures [115,119,132] as illustrated in Figs. 6.1-6.2. Such quantizers generally

consist of a DAC, a voltage comparator and a SAR logic, which map the voltage

of the hold capacitor (also known as the total capacitance of DAC array) into

an n-bit value by successively refining the digital representation using a binary

search algorithm. In our eSampling ADC circuit we use a single-ended merge

capacitor switching (MCS) based SAR ADC. For such devices, the total capaci-

tance of the DAC array is Ch = 2n−1Cu, where Cu is the unit capacitance of the

DAC array, as illustrated in Fig. 6.6.

In particular, during acquisition phase the input signal x(t) is connected to
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the top plate of the DAC capacitor array, while the bottom plate is connected to

the common mode voltage, i.e., Vcm = Vref
2 . Once the acquisition phase is over,

the voltage at the top plate of the DAC capacitor array is reduced by common

mode voltage, and hence equals to x(kTs) − Vref/2. The top plate of the DAC

capacitor array is connected to the positive terminal of the comparator, while

the negative terminal of the comparator is grounded, as illustrated in Fig. 6.1(b).

The comparator then compares the voltage of its positive terminal with its neg-

ative terminal. If the voltage at the positive terminal is higher than the negative

terminal, the comparator yields an output to be logic ‘1’, else logic ‘0’. The

output of the comparator is passed to the SAR logic, which resolves the most

significant bit (MSB). The decision on the MSB is fed back to the DAC and the
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bottom plate of the largest capacitor of DAC capacitor array is switched from

Vcm to ground (if MSB=1) or Vref (if MSB=0). The overall resistance of the

switches is the binary scale switch resistance, Rq illustrated in Fig. 6.6. This

operation changes the voltage at the top plate of the DAC capacitor array, and

a new decision is made by the comparator, which is sent to the SAR logic to

resolve the second MSB and so on. The process continues for all n bits.

As discussed in Subsection 6.2.1, the energy consumption of S/H SAR ADCs

is effectively determined by its quantization sub-blocks. Therefore in the follow-

ing, we present the detailed circuitry used for the quantizer along with its energy

usage per sample.

The voltage comparator is implemented using a dynamic latch. The energy

consumed per sample of a dynamic latch comparator is given by [119]

Ec = nCcV
2

ref + 2Vrefγn, (6.18)

where γn := VeCc

(
n ln 1/Ak + n(n+1)

2 ln 2 + n
)
, Cc is the capacitive load of the

comparator, Ak is the gain during regenerative phase, and Ve is the ratio of the

drain current of the device with its trans-conductance [133]. The SAR logic is

realized using two arrays of shift registers that operate in serial-in-parallel-out

and parallel-in-parallel-out modes [134]. Each register is implemented using a

D flip-flop circuit, and the resulting energy consumption is given by [119]

Esl = 16n2gCsV
2

ref , (6.19)
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where Cs is the input capacitance of the D flip-flop, and g ∈ [0, 1] is the total

activity parameter of the SAR logic. Finally, the DAC is based on a binary-

weighted capacitive DAC, designed using the MCS scheme [115]. The energy

consumption of the MCS DAC is given by [115]

EDAC = ρnnCuV
2

ref , (6.20)

where ρn =
∑n−1

i=1 2n−3−2i(2i − 1).

To summarize, the total energy consumption during hold phase of our ded-

icated eSampling ADC circuit design, which dictates the overall energy con-

sumed per sample, is given by

Ehold = EDAC + Esl + Ec

(a)
= V 2

ref

(
ρnCu + nCc + 16n2Csg

)
+ 2Vrefγn, (6.21)

where (a) follows from (6.18), (6.19), and (6.20). The energy term in (6.21)

obeys the second-order polynomial model of (6.4), used in our analysis of

eSampling ADCs in Section 6.3.

6.4.3 Energy Harvesting Circuit

The proposed eSampling ADC harvests the input signal energy during hold

phase and stores this energy in a capacitor, CEH. As detailed in Subsection

6.2.2, energy harvesting circuits typically consist of a capacitor, in which the

harvested energy is stored, and a signal conditioning circuit, whose purpose is
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to facilitate the charging of the capacitor. In our design, we do not include a

signal conditioning circuit and forward the input signal directly to CEH during

hold time. This simplified design is sufficient for our experimental purposes,

where we use synthetic controlled input signals with strictly positive voltage

values. However, in order to achieve efficient energy harvesting from a low

voltage complex rapidly alternating signals, one should also include signal con-

ditioning devices [121–123], such as a rectifier, voltage regulator and DC-DC

converter.

To quantify the maximum amount of energy that can be harvested in an ana-

lytically tractable manner, we consider the case where the input signal is approx-

imately constant during the hold phase, i.e., x(t) ≈ x(Ts) for each t ∈ [Taq, Ts].

In addition, we focus on the scenario in which the capacitor is empty at the be-

ginning at the hold phase, basically, the voltage on the capacitor CEH, denoted

VEH(0), satisfies VEH(Taq) = 0. In this setup, the capacitor voltage at the end of

the hold phase, i.e., at time instance t = Ts, is given by

VEH(Ts) ≈ x(Ts)
(

1− e−
Th

RhCEH

)
, (6.22)

where, as defined in Subsection 6.3.1, Rh is the resistance of the energy harvest-

ing circuit. This resistance is dictated here by the on-resistance of the PMOS

transistor in a two-way switch. The amount of energy harvested in such a sam-
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pling interval is given by

Eh =
1

2
CEHV

2
EH(Ts)

(a)
≈ 1

2
CEH

(
1− e−

Th
RhCEH

)2

x2(Ts)

(b)
≈ 1

2Th
CEH

(
1− e−

Th
RhCEH

)2
Th∫

Taq

|x(t)|2dt, (6.23)

where (a) follows from (6.22), and (b) stems from the fact that the input is ap-

proximately constant during the hold phase. Comparing (6.23) and (6.8) reveals

that the efficiency of this simple energy harvesting circuit can be approximated

as

η ≈ RhCEH

2Th

(
1− e−

Th
RhCEH

)2

. (6.24)

The expression for the energy harvesting efficiency in (6.24) can be used

to provide guidelines for determining the capacitance CEH used in the circuit.

In particular, it can be shown that (6.24) is maximized when CEH ≈ 0.796 Th
Rh

.

However, the derivation of (6.24) is carried out assuming that the capacitor is

empty at the beginning of the hold phase. This implies that its stored energy

is transferred to some external storage device, e.g., battery, after each sample.

In practice, energy transfer typically takes much longer than a single sampling

interval, and thus it is preferable to carry out such a transfer only once every

multiple samples. This is achieved by using a capacitor with a larger value of

CEH, which allows to store more energy and provides a nearly constant voltage

at the load, but requires more time to charge. In particular, in our experimental
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setup detailed in Subsection 6.5.2, we set CEH = 42.2 Th
Rh

, which results in the

capacitor taking approximately 340 samples to charge up. Under such a setting,

the period dedicated to transferring its energy once it is fully charged, during

which energy harvesting is inactive, has only a minor impact on the overall

harvested energy.

6.5 Experimental study

In this section we evaluate the proposed eSampling ADC in an experimental

study. We first numerically evaluate the the energy-fidelity tradeoff character-

ized in Section 6.3, after which we present experimental results obtained with

the eSampling ADC circuit simulated on Cadence Virtuoso platform detailed in

Section 6.4.

6.5.1 Numerical Simulations

We begin by numerically evaluating the energy-fidelity tradeoff of eSampling

ADCs, characterized in Theorem 2, for various ADC configurations. We con-

sider three models for the analog input signals with the following PSDs:

• Flat PSD: A bandlimited signal with Sx(f) = σ2
x

2fm for f ∈ [−fm, fm],

fm > 0, and Sx(f) = 0 otherwise.

• Unimodal PSD: Sx(f) = αe−
f2

2σ2 , where α = σ2
x√

2πσ2
such that

∫∞
−∞ Sx(f)df =

σ2
x. The parameter σ2 controls the PSD width, and the signal is approxi-
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mately bandlimited with frequency fm = 3σ.

• Multimodal PSD: Sx(f) = α
2 (e−

(f−ft)
2

2σ2 + e−
(f+ft)

2

2σ2 ), where ft = fm MHz.

The resulting signal is approximately bandlimited fm = 6σ.

We set K2 = 20, guaranteeing a probability of over 95% that |x(t)| ≤ Vref ,

and hence the ADC accuracy is not compromised by quantizer overloading. The

design parameters can be selected from the range provided in [119, 133, 135].

However, to be consistent with our circuit level design, we have considered

the design parameters obtained through our own design simulated on Cadence

virtuso platform, i.e., fm = 19.8 MHz, Taq = 2.5 ns, Cu = 10 fF, Cc = 5

fF, Cs = 0.7 fF, Rh = 23.75 Ω, Ak = 1.8, Ve = 0.05 V, ατ = 5, Vref = 0.8

V and g = 0.4. We set the efficiency of the energy harvesting system η to be

0.7, which is in line with similar values reported for energy harvesting circuits

in [136–138]. Finally, the signal power σ2
x is accordingly set to V 2

ref

K2 .

Figs. 6.7, 6.8 and 6.9 depict the resulting energy-fidelity tradeoff, i.e., the

NMSE against the energy ratio Eratio (in dB) for an input with a flat PSD, uni-

modal PSD and a multimodal one, respectively. In these figures, different trade-

off values for each configuration are achieved by varying the sampling rate. All

simulated eSamplers utilize relatively high resolution quantization, i.e., n ≥ 8,

resulting in negligible distortion due to quantization, and thus the main source

of error stems from the sampling operation, as treated in our analysis in Sec-

tion 6.3. It is emphasized that for a given sampling rate, eSampling ADCs

implement the same acquisition mapping as conventional S/H ADCs, and thus
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their the ability to harvest energy using eSampling ADCs does not come at the

expense of conversion accuracy. However, eSampling provides the possibility

to increase the amount of energy harvested by increasing the sampling interval,

which in turn may degrade the ability to recover the analog signal.

The results shown in Fig. 6.7 demonstrate that an eSampling ADC with

up 12 bits, which acquires an analog signal with a flat PSD, can harvest more

power than it consumes while sampling at Nyquist condition, and hence achiev-

ing zero-approaching reconstruction error. However, for the ADC to operate at

zero power with higher resolution quantization, one has to sample below the

Nyquist rate and hence compromise with reconstruction error. The correspond-

ing energy-fidelity curves for the non-purely-bandlimited signals are illustrated

in Figs. 6.8 and 6.9. These results demonstrate that eSampling ADCs can op-

erate with zero power for up to n = 16 bits of quantization resolution, while
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achieving approximately ideal reconstruction by using sampling rate not smaller

than fm, which here is only an approximate maximal frequency.

As noted in Section 6.3, both the amount of energy harvested from a station-

ary signal as well as that consumed in eSampling do not depend on the spectral

profile of the signal, but on the sampling rate and the signal variance σ2
x. Here,

the amount of energy harvested (6.8) when eSampling at fs = 2fm is numeri-

cally evaluated as 0.35 pJ, while the corresponding amount of energy consumed

(6.21) when using n = 8 bit quantizers is 21.2 pJ.

This implies that the eSampling ADC is able to harvest much more energy

from the signal than it consumes in converting it into a digital representation,

as the energy ratio indicates an energy gain of 17.8 dB. In particular, it is ob-

served that eSampling ADCs operating with less than 12 bits are capable of

saving power. However, this mode of operation comes at the cost of increased

NMSE for higher values of n. The numerical results presented in this subsec-

tion indicate that the power consumption of high resolution ADCs can be no-

tably reduced and even mitigated by properly combining acquisition and energy

harvesting via eSampling. In the next subsection we demonstrate that these re-

sults do not follow only from a numerical evaluation of our theoretical results,

but also reflect the performance in terms of recovery accuracy and energy effi-

ciency of an dedicated eSampling ADC circuit design.
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6.5.2 Circuit-level Experiment

To validate that the energy saving potential of eSampling ADC observed in the

previous subsection also reflects in a real world environment, we next evaluate

the eSampler circuit design. To that aim, a schematic of eSampling SAR ADC

has been created in Cadence Virtuoso platform based on the circuit-level design

detailed in Section 6.4. The proposed eSampling ADC operates at a sampling

frequency of 40 MHz with an n = 8 bit quantizer. For our experimental pur-

pose, we use a sinusoidal signal, being a common benchmark for evaluating the

accuracy of ADC circuits [139, Ch. 2]. The maximum frequency of the input

signal is 19.8 MHz, thus the sampling rate satisfies the Nyquist condition. The

amplitude of the signal varies from 0 to Vref . Here, we use an energy harvesting

capacitor of CEH = 40 nF, while the remaining design parameters are the same

those utilized in our numerical evaluation in the previous subsection.

We first assert that the eSampling ADC is indeed capable of accurately re-

constructing the signal sampled at the Nyquist rate. To that aim, we depict

the fast Fourier transform (FFT) of the reconstructed signal, computed using a

1024-point FFT, in Fig. 6.10. As expected, the FFT noise floor is determined by

the SNDR due to quantization, computed by the 6 dB rule of thumb as approx-

imately 48 dB, with the additional FFT processing gain of 10 log10(1024/2) ≈

27 dB [139, Ch. 2]. In particular, the gap between the noise floor observed in

Fig. 6.10 and the energy of the signal at its central frequency of 19.8 MHz, is

roughly 75.52 dB, settling with the theoretical performance of ADCs satisfying
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Figure 6.10: FFT plot of reconstructed signal for 8 bit eSampling ADC.

Nyquist condition, and indicating that the designed eSampling ADC accurately

reconstructs the observed analog signal.

Next, we focus on the energy harvesting circuit of the designed eSampler, in

order to identify how many sampling rounds are required for the capacitor to

charge up. To that aim, we plot in Fig. 6.11 the voltage on the energy harvest-

ing capacitor over time. Observing Fig. 6.11, we note that for the given input

signal, the capacitor reaches a steady level of VEH = 481.152 mV after 8.432 µs,

which correspond to 337 samples at 40 MHz. Based on Fig. 6.11, we design the

eSampling ADC to transfer the energy stored in its energy harvesting capacitor

once every 337 samples. We dedicate approximately 1.5 µs for each transfer,

during which the energy harvesting circuit is inactive, resulting in each cycle of

harvesting and transferring taking approximately 500 samples. Consequently,

139



0 5 10 15 20 25 30 35 40 45 50
Time ( s)

0

0.1

0.2

0.3

0.4

0.5

V
o

lt
ag

e 
ac

ro
ss

 C
E

H
(V

)
V

EH
= 481.152 mV

 8.423 s

Figure 6.11: Voltage obtained across CEH for 8 bit eSampling ADC.

the effective amount of energy harvested per sample of the eSampling ADC is

given by

Eh =
1

2 · 500
CEHV

2
EH(337 · Ts) = 9.26pJ. (6.25)

The amount of energy harvested per sample, evaluated in (6.25) based on

the experiment in Fig. 6.11, does not represent the overall energy balance of

the eSampling ADC, as it accounts only for the amount of energy harvested.

Therefore, to demonstrate that the eSampling ADC circuit design not only accu-

rately recovers the signal and harvests energy, but also saves more energy than

it consumes, we next evaluate both the energy harvested and the energy con-

sumed by the ADC circuit. The average energy consumption of our designed

circuit is computed by evaluating the current drawn from its reference source

Vref , denoted Iref(t), and thus the energy consumed at each time instance can be
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obtained by

Econs(t) = Vref

∫ t

0

Iref(τ)dτ. (6.26)

The resulting growth of both the energy consumed and the energy harvested

are depicted in Fig. 6.12. Observing Fig. 6.12, we note that the eSampling

ADC harvests much more energy than it consumes, while still being able to ac-

curately reconstruct its input signal as demonstrated in Fig. 6.10. In particular,

the consumed energy is shown to grow in an approximately linear manner, with

an average energy consumption of 0.56 pJ per sample. The maximal amount of

energy which can be obtained is dictated by the external battery, to which the

harvested power is periodically transferred. Comparing this to (6.25) reveals

that the true energy ratio of the eSampling ADC, which periodically transfers

its harvested energy to an external battery, is approximately 12.1 dB, which is

within a relatively small gap from the theoretical results observed in Subsec-
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tion 6.5.1. This gap can be further reduced by using more advanced energy

harvesting circuitry, compared to the simplistic design detailed in Subsection

6.2.2. In particular, using more advanced harvesting architecture is expected to

improve the efficiency η, allowing to achieve improved energy-fidelity tradeoffs

compared to those observed here. Nonetheless, despite its relatively simple ar-

chitecture, the eSampling ADC circuit design is still able to achieve accurate

reconstruction while harvesting substantially more energy than it consumes.

6.6 Real time Validation of eSampling

In this section, we have discussed the hardware setup of eSampling for a sensing

application. The work has been demonstrated for both environment as well as

health monitoring application. Section 6.6.1 discusses the circuit of the setup

and Section 6.6.2 discusses the experimental results.

6.6.1 Hardware setup
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Figure 6.13: Hardware Prototype

To demonstrate the proposed eSampling framework in real world environ-
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ment, a hardware set up similar to Fig. 6.2 has been built. The hardware pro-

totype has been shown in Fig. 6.13. The input analog signal is obtained via

sensing of the external temperature using a sensing element i.e., thermal elec-

tric generator (TEG). TEG can produce an output voltage from 10 mV to 50

mV per ◦C change in temperature [140]. The switch S̃ have been implemented

using single pole double throw (SPDT) ADG791 monolithic CMOS switch. A

Clk signal based upon Ts and Taq = 0.1Ts has been generated externally and

applied to ADG719 through its terminal IN as illustrated in Fig. 6.13. The

switch will connect the input signal, D to one output terminal for duration of

10% of the total sampling period (Ts) and to another output terminal with dura-

tion of 90% of Ts, respectively. The output terminals obtaining 10% and 90%

time of the total sampling period has been connected to Ch for acquiring data

samples, through S2 and CEH for storing energy through S1, respectively. The

voltage received at the input of the energy harvesting circuit, denoted as Ve will

be passed to an signal conditioning circuit, i.e., LPR6235-253 step-up converter

and LTC3108, which will boost the voltage signal to 5V. Hence, the maximum

voltage received at energy storage capacitor i.e., VEH is 5V.

6.6.2 Experimental Results

The pictorial view of the hardware prototype has been shown in Fig. 6.14. The

value for Ch, CEH and VEH is 1 µF, 10 µF and 5 V, respectively. Further, the

value of C1, C2 and Cstore is 330 pF, 1 nF and 0.1 F, respectively. The experi-

ment has been performed on two different sets of input signals; one is generated
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from the controlled environment and another from the human palm. In subse-

quent sub-sections, we will be discussing the different experiments performed

on the designed setup.

Figure 6.14: Pictorial view of Hardware Prototype

6.6.2.1 Controlled Environment

For this experiment, the input analog signal generated from TEG is in a con-

trolled environment. The samples obtained at Ch has been used to reconstruct

the analog signal using NI DAQ USB-6210, and Fig. 6.15 compares the recon-

structed signal obtained with the traditional sampling process and the proposed

eSampling process for sampling frequency of 1 KHz. From the figure, it can be

observed that the reconstructed signal with both process is similar, and hence
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harvesting the energy along with sampling using eSampling is not degrading

the performance of conventional sampling process of an ADC.
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Figure 6.15: Reconstructed signal obtained with traditional sampling and the proposed eSampling method for
controlled environment

For the fixed value of CEH and VEH, the amount of energy harvested will

always same (6.23). However, the amount time required by VEH to reach 5V

will be different, and hence the amount of energy harvested per time will vary

and is dependent on various parameters such asCe, CEH, fs and Taq. For fixed fs

and Taq, the size of the Ce plays an important role in harvesting maximum input

signal energy. This is due to the fact that the signal at the input of the EH circuit

(obtained from the output terminal S1 of ADG719 switch) is discontinuous, as

shown in fig. 6.13. The frequency of discontinuity is the same as the sampling

frequency of the system. To harvest maximum power from the signal obtained

at S1 terminal, an optimum value of Ce must be chosen. This is obvious as the

charge stored in Ce will be transferred to the succeeding blocks of the circuit.

In other words, if Ce is not optimum, the maximum power can’t be harvested

from the input signal.
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Figure 6.16: Voltage across CEH obtained from controlled environment with different Ce.

In order to store maximum charge at low frequency, a large Ce should be

chosen because more time is available (Th) to charge Ce. However, at high

frequency, the Th is small, and hence a large Ce will take more time and can’t

charge to the peak value of the input signal. Therefore, comparatively a small

value capacitor should be chosen for high sampling frequency. To validate the

Table 6.1: Performance metric with different Ce at fs = 1 kHz

Ce

(µF)
tCEH

(s)

1
2
CEHV

2
EH

tCEH

(µW)

η
(%)

100 29.42 4.248 38.03
500 25.829 4.8395 43.33

1000 20.035 6.2391 55.86
2000 15.66 7.9821 71.47

above argument that the amount of energy harvested per time can be increased

by optimally choosing the Ce, the voltage obtained at CEH has been plotted for

different values of Ce in fig. 6.16. The observations have been summarized

in Table 6.1. It has been observed that the amount of time required by CEH to

reach VEH = 5V, denoted as tCEH
has been reduced significantly by increasing
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Ce. This is because, at fs = 1 kHz, more charging time is available, and hence

by increasing Ce, more charge could be stored in the capacitor, which will be

passed to the succeeding booster circuit (LPR6235-253 step-up converter and

LTC3108). As soon the booster circuit will receive the required charge, it will

reach to VEH = 5 V. At Ceh = 2000 µF, LTC3108 provides VEH = 5 V in 15.66

seconds, and hence the achieved η is 71.47%.

6.6.2.2 Human Palm
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Figure 6.17: Reconstructed signal obtained with traditional sampling process and with the proposed method from
human palm.

In order to harvest energy during data acquisition for human monitoring ap-

plication, the eSampling has been experimented by generating the input signal

from the heat produced through the human palm. Further, to be consistent with

the above setup, the selected fs is 1 kHz, which is enough to sample the consid-

ered data. Also, Taq = 1 ms and Th = 9 ms. The input signal is sampled with

traditional sampling process and also with the eSampling method at Ch. The

samples obtained at Ch has been used to reconstruct the analog signal using NI
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DAQ USB-6210. The reconstructed signal using both processes has been plot-

ted in Fig. 6.17. The signal obtained at the output of EH circuit has been shown

in Fig. 6.18. The time taken by VEH to reach up to 5 V is tCEH
= 11.12 s, and

hence the energy harvested per tCEH
is 11.24 µW.
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Figure 6.18: Voltage across CEH obtained from human palm.

6.7 Discussion

In this chapter, we proposed the eSampling ADC architecture, which modifies

the traditional sampling process of a S/H ADC to harvest energy from the dis-

carded portion of the input signal. We analyzed the amount of energy which

can be harvested from stationary signals and characterized the underlying fun-

damental tradeoff between energy harvested and reconstruction fidelity which

arises from the joint acquisition and energy harvesting paradigm. Then, we

presented a circuit-level design of an eSampling ADC using CMOS 65 nm tech-

nology. Our numerical results demonstrate the potential of eSampling in realiz-

ing ADCs operating with high resolution and near ideal reconstruction accuracy
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while harvesting the amount of energy which approaches and can even surpass

that consumed in ADC operation. Similar results were observed in an experi-

mental study dedicated to design eSampling ADC circuit, indicating potential

of self-powered ADCs.We have numerically demonstrated that an eSampling

ADC with up to 12 bits can harvest more power than it consumes, while sam-

pling at Nyquist condition. The result has been validated on a circuit-level de-

sign of an eSampling 8-bit ADC, which is shown to harvest more power than it

consumes while allowing to recover the analog signal in a nearly perfect man-

ner. Finally, we have provided a proof-of-concept, by designing the hardware

of eSampling, which is demonstrated at sensing element for both environment

and health monitoring application.
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Chapter 7

Integrated data and energy gathering

using eSampling for correlated stochastic

signals

7.1 Introduction

Physical signals are analog in nature, taking values in continuous sets over a

CT interval. Analog-to-digital converter (ADC) allows the discrete-time (DT)

representation of the analog signals using the sampling process, followed by

its digital representation using the quantization process. It is possible to recon-

struct the analog signal from its digital representation by utilizing the funda-

mental Shannon-Nyquist paradigm [141] with high quantization resolution, if

the signal is uniformly sampled with a sampling rate of at least twice the signal

bandwidth. However, the power dissipation of ADC grows with the sampling

rate and the quantization resolution, and hence the amount of available power
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limits the ability to accurately represent the acquired signal [93]. The recent

developments in signal processing allow to reconstruct the signal at lower quan-

tization resolution [142–149] as well as lower sampling rate [5–9, 15–19, 150]

by exploiting the a-prior knowledge, and thus overcome the power dissipation

to some extent.

The low resolution hardware-limited quantization has been proposed in lit-

erature for various applications such as multiple input multiple-output (MIMO)

communication systems [142, 143] channel estimation [144, 145], subspace es-

timation [146,147], and direction of arrival (DOA) estimation [148,149]. Addi-

tionally, in scenarios where the signal is acquired for some task, i.e., to recover

some underlying information, not the entire signal, task-based quantizers have

been also proposed, which can recover the desired information from the output

of low resolution ADCs [100–104, 125, 151–153].

The area of compressed sensing gives rise to sub-Nyquist sampling [5, 6],

which exploits the underlying structure of the analog signal to allow reconstruc-

tion from its low rate sampled version [7–9]. The effect of sub-Nyquist sam-

pling has been studied in various applications, such as channel capacity [15–17],

channel estimation [150], source coding [18, 19]. Unlike these works, where a

single scalar signal is sampled and reconstructed, there exist multiple applica-

tions such as autonomous vehicles, radar, and communication receivers, where

multiple signals are acquired simultaneously. Thus, results in a correlation be-

tween the observed analog signals, and hence introducing additional informa-

tion which can be utilized to obtain accurate reconstruction at lower sampling
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rates. The sampling of multiple deterministic signals was studied in the recent

works [151, 154], which modeled correlation as the ability to represent each

of the observed signals by a linear ensemble of a smaller amount of signals.

Conditions for perfect recovery of deterministic multidimensional signals from

their projections were studied in [152]. Moreover, sub-Nyquist sampling of

the random signal has also been proposed [153], which focused on linear re-

construction. However, [125] proposed a multi-rate interpolation scheme. In

previous work [100], we have provided an understanding of how general cor-

relation contributes to the ability to reconstruct a set of acquired signals when

sampling below the Nyquist rate.

It is to be noted that in above mentioned works, sampling rate and quanti-

zation resolution have been reduced, which result in a reduction in the power

dissipation of the ADC. However, in previous chapter 6, a method named as

eSampling has been proposed [155], which shows that even by sampling at

Nyquist rate and quantizing at high resolution, we can harvest energy from

the input analog signal. This work extends the structure of sample-and-hold

(S/H) ADC without altering its conversion procedure, while harvesting energy

from the analog signal during the time periods where the signal is not being

tracked [155]. In S/H architectures, the circuit used to sample the input analog

signal consists of two phases in each sampling period, acquisition phase and

hold phase. In the acquisition phase, the S/H circuit tracks the input analog sig-

nal. The sampled value captured in the acquisition phase is then converted into

digital form, i.e., a sequence of bits, during hold phase. Therefore, during the
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sampling process of S/H ADCs, the input signal is processed only for a fraction

of the overall sampling period (acquisition phase) and is neglected/discarded

for the remaining time interval (hold phase). The fact that the signal is not ac-

cessed in a dominant portion of the sampling period motivates the extension of

S/H ADCs to continuously utilize the analog signal in order to mitigate power

consumption. Additionally, the amount of energy harvested can be increased by

reducing the sampling rate, however reducing the sampling rate also impacts the

reconstruction accuracy. This work focused on a single input signal. However,

by exploiting the joint acquisition in multiple correlated signals, the sampling

frequency can be reduced without compromising the reconstruction accuracy,

and hence the amount of energy harvested can be increased. Additionally, the

joint sampling system can also reduce the hardware cost and energy consump-

tion by reducing the number of required ADCs. To meet this goal, in this paper,

we have extended our previous work for joint acquisition and reconstruction of

multiple correlated sources [100], in context of maximizing the energy ratio,

i.e., the amount of energy harvested and the amount of energy consumed by

exploiting eSampling structure.

Here we study a joint framework of sampling, energy harvesting and the re-

construction of the correlated CT sources. By focusing on stochastic signals,

we adopt the standard notion of correlation, namely, the joint second-order sta-

tistical moments of these signals, and in particular, their cross PSD. We model

joint esampling and reconstruction as multivariate linear operations with inter-

mediate uniform sampling. Under this model, we characterize the achievable
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Figure 7.1: System model

NMSE, maximum harvested energy from the observed analog signals, and the

corresponding configuration of the sampling system for arbitrary sampling rates,

without restricting our attention to bandlimited signals. The proposed system

mitigates the error induced by sub-Nyquist sampling by preserving the domi-

nant eigenmodes among all aliased components and hence allow us to harvest

more energy while maintaining the reconstruction accuracy. The resulting char-

acterization of the achievable recovery accuracy is used to derive sufficient con-

ditions for error-free recovery.

The rest of this chapter is organized as follows: Section 7.2 presents the

system model and problem formulation. Section 7.3 derives the joint esampling

system, which optimizes the reconstruction accuracy and the amount of energy

harvested. Numerical examples are discussed in Section 7.4.

7.2 System model

In this section, we study the joint eSampling and reconstruction of M CT zero-

mean jointly wide-sense stationary (WSS) random signals {xm(t)}Mm=1, t ∈ R,
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using K samplers and K quantizers such that K < M as depicted in Fig. 7.1.

Here, acquisition is carried out in a joint manner, where the input to each of the

K uniform samplers is a linear combination of the outputs of M scalar filters,

i.e., for each k ∈ {1, . . . , K} , K, the input to the kth sampler can be written

as

yk(t) =
M∑
m=1

(hk,m ? xm)(t) (7.1)

for some set of scalar filters {hk,m(t)}. This joint filtering is modeled as anK×

M multivariate filter with frequency responseH(f), f ∈ R, where (H(f))k,m

is the Fourier transform of hk,m(t) for each k ∈ K, m ∈ {1, . . . ,M} , M.

The outputs of this filter are esampled at a uniform sampling rate fs to form

the DT signals {yk[n]}Kk=1, n ∈ Z . We use Ts = 1
fs

to denote the sampling

period. Further, the total sampling rate is f tot
s , K · fs. In our previous work,

we have designed an eSampler, which allows to harvest the energy during the

sampling process [155]. The sampling period of the sampling process is divided

into two phases, acquisition phase, represented as Taq and the hold phase, given

by Ts− Taq. The acquisition phase tracks the input analog signal to provide the

discrete sample, however the hold phase allows the ADC to provide the digital

representation, corresponding to the discrete sample. It is to be noted that dur-

ing hold phase, the input analog signal is not tracked, and hence not utilized.

Therefore, eSampler extends the conventional architecture of S/H ADC to har-

vest the energy during hold phase, without altering the conventional conversion

procedure [155]. Utilizing the concept of eSampling, the total amount of energy

harvested per sampling period in joint sampling system depicted in Fig. 7.1 is
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given by [155]

E = η(Ts − Taq)
K∑
k=1

E{|yk(t)|2}, (7.2)

where η ∈ [0, 1] is the efficiency of the energy harvesting system. The amount

of energy consumed in the system as illustrated in Fig. 7.1 is dependent on the

analog circuits used in the system, i.e., filterH , samplers and the quantizers. It

is to be noted that, we have neglected the amount of energy consumed by the

analog filter, as it is entirely design dependent, which is not the scope of this

work. However, the total energy consumed during sampling and quantization

can be modelled as second-order polynomial function of the supply voltage,

Vref , and is given by [155]

Econs = K(a1(n)Vref + a2(n)V 2
ref). (7.3)

The coefficients a1(n) and a2(n) in (7.3) are positive constants determined by

the number of bits n and the quantization circuit parameters, and can grow dra-

matically with n. Furthermore, the amount of energy consumed Econs also

increases linearly with the number of samplers or quantizers, i.e., K (7.3). This

makes energy consumption a major bottleneck, motivating the proposed joint

eSampling and reconstruction, which increases the amount of energy harvested

and reduces the amount of energy consumed, while maintaining the reconstruc-

tion accuracy. It is to be noted that, the Vref used in (7.3) can be written as a

combination of a scalar Kp > 1, the output signal power of the multivariate fil-

ter and K, i.e., V 2
ref =

K2
p

K Tr
(
E
{
|y(t)|2

})
, where y(t) is the output of the filter

h(t) [155]. This general formulation allows us to relate the reference voltage
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with the overload probability of the quantizer, since the overload probability

satisfies P (|yk(t)| ≥ Vref) ≤ K−2
p by Chebyshev’s inequality [101]. There-

fore, the ratio between the energy harvested (7.2) and consumed (7.3) for joint

eSampling of multiple WSS signals can be written as

ξ =
η(Ts − Taq)Tr

(
E
{
|y(t)|2

})
a1(n)Kp

√
KTr (E {|y(t)|2}) + a2(n)K2

pTr (E {|y(t)|2})
(7.4)

The CT signals {xm(t)}Mm=1 are jointly reconstructed from their sampled ver-

sions {yk[n]}Kk=1, yielding the recovered signals {x̂m(t)}Mm=1. We focus on shift-

invariant linear joint recovery [125], namely, the recovered signals can be writ-

ten as

x̂m(t) =
K∑
k=1

∑
n∈Z

gm,k (t− nTs) · yk[n], m ∈M, (7.5)

where {gm,k(t)} are a set of CT functions. LetG(f) be an M ×K matrix such

that (G(f))m,k is the Fourier transform of gm,k(t), m ∈ M, k ∈ K. Note that

when recovering xm(t), the system can utilize samples from all {xm(t)}Mm=1,

thus exploiting possible correlation between the signals. Since the recovered

signals {x̂m(t)}Mm=1 are jointly wide-sense cyclostationary [125], the recovery

accuracy is measured via the TNMSE, defined as

ζ ,
1

Ts

M∑
m=1

Ts∫
0

E
{
|xm(t)− x̂m(t)|2

}
dt

M∑
m=1

E {|xm(t)|2}
. (7.6)

Our goal is to determine the achievable TNMSE i.e., ζ (7.6) and the maxi-

mum harvested energy, i.e., E (7.2) for the system illustrated in Fig. 7.1, and to
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characterize the optimal analog filtersH(f) and reconstruction functionsG(f).

The motivation for this model stems from its ability to jointly combine the sig-

nals in acquisition and reconstruction, allowing the resulting system to exploit

spatial correlation in order to improve the recovery accuracy at lower sampling

rate, and hence improves the energy ratio by increasing the harvested energy

and decreasing the energy consumption.

The system model bears similarity to that considered in [156]. However,

while [156] studied conditions under which the reconstruction functions G(f)

can achieve error-free recovery for fixed H(f) for uncorrelated bandlimited

sources with f tot
s being larger than M times the Nyquist rate, we consider the

design of the overall joint sampling system such that the TNMSE is minimized,

even when error-free recovery cannot be achieved. In particular, perfect re-

construction is clearly achievable when M = K, the signals {xm(t)}Mm=1 are

bandlimited, and the sampling rate fs satisfies Nyquist criterion. Hence, in the

following, we are more interested in the sub-Nyquist regime, i.e., either the

signals are not bandlimited, or sampling is carried out below the Nyquist rate.

Under this regime, we study how the correlation between the signals can be

exploited to facilitate their joint recovery.

7.3 Joint eSampling and Reconstruction

In this section we study the achievable TNMSE and the amount of harvested

energy for the system presented in Section 7.2. We first characterize the analog
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filters and reconstruction functions which minimize the TNMSE for a given

sampling rate fs in Subsection 7.3.1. Then, we identify conditions for error-

free recovery in Subsection 7.3.2. Finally, in Subsection 7.3.3 we determine the

maximum amount of energy harvested, while maintaining the TNMSE derived

in Subsection 7.3.1.

7.3.1 Minimizing TNMSE

To characterize the achievable TNMSE, we define the multivariate processes

x(t) ,
[
x1(t), . . . , xM(t)]T and y[n] ,

[
y1[n], . . . , yK [n]]T . Let Sx(f) denote

the M ×M PSD of the multivariate WSS process x(t), i.e.,

Sx(f) ,

∞∫
−∞

E{x(t+ τ)xH(t)}e−j2πfτdτ. (7.7)

Using these notations, we characterize the achievable TNMSE for a givenH(f)

and fs in the following lemma:

Lemma 1 For a fixed H(f) and fs, the reconstruction functions Go(f) which

minimize (7.6) satisfy

Go(f)QH(f) = Sx(f)HH(f), (7.8a)

whereQH(f) is the K ×K matrix

QH(f) ,
∑
l∈Z

H
(
f−lfs

)
Sx

(
f−lfs

)
HH

(
f−lfs

)
. (7.8b)

The resulting TNMSE is given by
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ζH (fs)=

∞∫
−∞

Tr
(
Sx(f)−Sx(f)HH(f)GH

o (f)
)
df

∞∫
−∞

Tr (Sx(f))

. (7.8c)

It follows from (7.8a) that whenQH(f) is invertible for each frequency f ∈

[−fs/2, fs/2) , FK for which Sx(f) 6= 0, the reconstruction filters which min-

imize (7.6) can be obtained in closed form as Go(f) = Sx(f)HH(f)Q−1
H (f).

Since QH(f) is periodic with period fs, this condition is equivalent to QH(f)

being non-singular whenever Sx (fmodfs) 6= 0.

We are now ready to derive the achievable TNMSE and the corresponding

sampling system. Let λi(f) and ui(f) be the ith largest eigenvalue of Sx(f)

and its corresponding eigenvector, respectively, and define S(f) , {λi(f −

lfs)}i∈M;l∈Z . For each f ∈ FK , the set S(f) contains the eigenvalues of all

the multivariate spectral components aliased to the frequency f after uniform

sampling with rate fs. Additionally, for any f ∈ FK we use {λ̃j(f)}j∈N

to denote the elements of the set S(f) arranged in a descending manner, and

{ũj(f)}j∈N to denote their corresponding eigenvectors. In particular, if for

some f ∈ FK , it holds that λij(f − ljfs) is the jth largest element of S(f), then

λ̃j(f) = λij(f − ljfs) and ũj(f) = uij(f − ljfs). The achievable TNMSE and

the corresponding joint sampling system are stated in the following theorem:

Theorem 3 For a fixed sampling rate fs and number of uniform samplersK, let

H̃(f) be an M ×K matrix whose jth column is ũj (fmodfs) if there exists some

i ∈ M such that λi(f) = λ̃j (fmodfs), and zero otherwise. Among all filters
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H(f) for which QH(f) is non-singular when Sx (fmodfs) 6= 0, the analog

filters which minimize the TNMSE are given by

Ho(f) = D(f)H̃
H

(f), (7.9a)

where D(f) is some non-singular K ×K matrix periodic in f with period fs.

The reconstruction filters are given by

Go(f) = H̃(f)D−1(f). (7.9b)

The resulting TNMSE can be written as

ζo (fs) = 1−

fs/2∫
−fs/2

K∑
j=1

λ̃j(f)df

∞∫
−∞

Tr (Sx(f)) df

. (7.9c)

It is emphasized that while Ho(f) in (7.9a) minimizes the TNMSE among

the analog filters for which QH(f) is non-singular when Sx (fmodfs) 6= 0, the

resulting ζo (fs) is still obtained by the proposed system when QH(f) which

stems fromHo(f) does not satisfy this condition.

The sampling system proposed in Theorem 3 operates in the following man-

ner: Prior to sampling, the matrix H̃
H

(f) preserves at each frequency f ∈ FK

theK eigenmodes corresponding the largest eigenvalues among frequency com-

ponents which are aliased to that frequency after uniform sampling. By doing

so, only a single aliased component is preserved at each spatial dimension, and

the spectral overlapping induced by sampling is effectively canceled. At re-
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construction, each of the preserved eignemodes is recovered, and the resulting

estimation error is due to the weaker eigenmodes nullified by the system. The

non-singular periodic matrix D(f) in Theorem 3 does not affect the overall

TNMSE as it operates in the same manner on each aliased component of the

PSD and can thus be compensated for in reconstruction.

To further clarify the structure of H̃(f), we consider the following example:

Example 3 Consider a set of correlated inputs with multivariate PSD Sx(f)

sampled using K = 4 uniform samplers at sampling rate fs. For some fixed

f0 ∈ FK , the four largest eigenvalues of the set S(f0) are λ1(f0), λ2(f0),

λ1(f0 − fs), and λ1(f0 + fs). Consequently, the matrix H̃(f), which dictates

the structure of theHo(f) andGo(f), satisfies

H̃(f0)=
[
u1(f0) u2(f0) 0 0

]
,

H̃(f0−fs)=
[
0 0 u1(f0−fs) 0

]
,

H̃(f0+fs)=
[
0 0 0 u1(f0+fs)

]
,

while H̃(f0 − kfs) = 0 for each integer |k| > 1.

Example 3 illustrates how, prior to sampling, the pre-sampling matrix perse-

veres only K dominant eigenmodes of the multivariate PSD among all frequen-

cies aliased to f0 after sampling. In the special case of M = K = 1, this

reduces to saving the largest value among all aliased components at each fre-

quency, which is the sampling mechanism of [157, Thm. 4]. However, for
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M > 1, this standard mechanism is substantially outperformed by the joint

sampling system of Theorem 3.

7.3.2 Conditions for Error-Free Reconstruction

We next use (7.9c) to identify when can one obtain error-free reconstruction (in

the sense of zero TNMSE). A sufficient condition is stated in the following

corollary:

Corollary 2 The joint sampling system of Fig. 7.1 with K uniform samplers at

rate fs achieves zero TNMSE whenever at most K elements of S(f) are non

zero for each f ∈ R.

A trivial special case of Corollary 2 is obtained by considering Nyquist sam-

pling, i.e., Sx(f) = 0 for each f /∈ FK . In this case, the set S(f) contains at

most M non-zero elements. Thus, by Corollary 2, zero TNMSE reconstruction

is achievable when the number of uniform samplers is equal to the number of

inputs, M = K, settling with the conventional sampling theorem. Furthermore,

when the input signals are linearly deterministically dependent, which is the

setup considered in [151, 154], then r , max
f∈R

(
rank (Sx(f))

)
< M . In this

case, as expected, Corollary 2 states that zero TNMSE can be achieved with

Nyquist sampling using K = r uniform samplers, since the input signals can

be perfectly reconstructed from their lower dimensional projection.
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7.3.3 Maximizing Energy harvested for Joint eSampling system

While maintaining the achievable TNMSE obtained through Theorem 3, the

amount of energy harvested from the observed analog signals in the joint eSampling

system, illustrated in Fig. 7.1, given in (7.2) can be re-written as

E(fs) = η(Ts − Taq)
∫ ∞
−∞

Tr(Ho(f)Sx(f)HH
o (f))df. (7.10)

This energy harvested, which maintains the achievable TNMSE and also con-

ditioned on the fact that the analog filter must not contribute towards energy

harvesting can be maximized by the solution to the following optimization prob-

lem:

Eo(fs) = η(Ts − Taq) max
D(f)

∫ ∞
−∞

Tr(Ho(f)Sx(f)HH
o (f))df

s.t. D(f) = D(f + fs), ∀f ∈ R (7.11)

rank (D(f)) = K, ∀f ∈ (−fs/2, fs/2).∫ ∞
−∞

Tr(Ho(f)Sx(f)HH
o (f))df ≤

∫ ∞
−∞

Tr(Sx(f))df.

Theorem 4 For a fixed sampling rate fs and number of samplers K, the max-

imum amount of energy harvested from M input signals, while satisfying the

criteria of minimum achievable TNMSE provided in Theorem 3 is given by

Eo(fs) =η(Ts − Taq)∫ fs/2

−fs/2
λ̃max(f)(1−Kε) + ε

∑
k

λ̃k(f)df (7.12)
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As ε is small, this can be approximated as

Eo(fs) = η(Ts − Taq)
∫ fs/2

−fs/2
λ̃max(f)df (7.13)

Proof: See Appendix 7.5.1.

Corollary 3 Theorem 4 also implies, the ratio between the amount of energy

harvested and consumed (7.4) for the system illustrated in Fig. 7.1 can be

written as

ξo =
η(Ts − Taq)

∫ fs/2
−fs/2

√
λ̃max(f)df

a1(n)Kp

√
K + a2(n)K2

p

∫ fs/2
−fs/2

√
λ̃max(f)df

. (7.14)

7.4 Numerical Study

In this section we numerically evaluate the performance of the joint esampling

system studied in Section 7.3. We computed the achievable time-averaged

NMSE of the joint esampling system derived in Theorem 3 with respect to the

energy ratio, ξ shown in Corollary 3 by varying f tot
s from 1 MHz to 40 MHz.

The scalar analog filters are set according to [157, Thm. 4]. The value of co-

efficients a1(n) and a2(n) are set according to [155, (27)] by considering the

value for all the capacitance to be 200 fF. We set the efficiency of the energy

harvesting system η to 0.5, which is in line with similar values reported for en-

ergy harvesting circuits in [136–138]. Also, we use Kp = 10, guaranteeing a

probability of over 99% for all samplers that |yk(t)| ≤ Vref ∀ k, and hence the
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Figure 7.2: Time-averaged sum TNMSE and Er versus f tots , unimodal PSD.

accuracy is not compromised by quantizer overloading. Additionally, the acqui-

sition time Taq is set to be the 10% of the Ts [155]. Furthermore, we consider

a set of M = 10 non-bandlimited jointly WSS signals {xk(t)}Mk=1. To formu-

late the multivariate PSD Sx(f), we define an M ×M matrix P (f), and set

Sx(f) = P (f)P (f)H . We have considered following setting for P (f)

• Unimodal PSD: Here we set (P (f))k,l =
√
ak,le

−ak,lf2 where ak,l , α ·

min(k, l) and α = 10−6. It is noted that the parameter ak,l and particularly

the value of α, affects the shape of the PSD.

• Multimodal PSD: Under this setting, (P (f))k,l =
√
ak,le

−ak,l(f−fk,l)2 where

ak,l is defined above and fk,l , (1 + 0.2 ·min(k, l))106.

Fig. 7.2 computes the TNMSE (ζ) and energy ratio (Er) against different

values of the total sampling frequency (f tot
s ) for 16-bit ADC with unimodal

PSD. The results have been computed for K = 2, 4, 6 and 8. From graph,
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we can observe increasing the sampling frequency reduces the TNMSE and

also reduces the energy gain. To bring more insights, in Fig. 7.3 and 7.4, the

TNMSE has been computed against ξ, for different value of K varying from

2 to 9, while considering 16-bit ADC. From Fig. 7.3, it is to be observed that

TNMSE of around 10−3 and 10−4 has been obtained for unimodal PSD atK = 2

and K = 4, respectively, while the system is operating at zero power since

the amount of energy harvested is same as the amount of energy consumed.

Similarly, a multimodal PSD can achieve TNMSE of less than 10−2 and of

around 10−3, for K = 4 and K = 6, respectively for zero power ADC. We can

also harvest more energy than consumed to obtain power saving ADcs, however,

it leads to increment in TNMSE. Similarly, to improve reconstruction accuracy,

we need to compromise the energy, and hence there is a trade-off.

In Fig. 7.5, we have computed the TNMSE against ξ, by varying f tot
s for

different n bits and also for K = 2, 5 by considering unimodal PSD. It can be

168



observed that for n ≤ 16 bits, we can operate the ADC at zero power, while

achieving minimal TNMSE.

7.5 Appendix

7.5.1 Proof of Theorem 4

The objective function given in (7.11), i.e.,
∫∞
−∞ Tr(Ho(f)Sx(f)HH

o (f))df can

be re-written as

= Tr
(∫ ∞
−∞
Ho(f)Sx(f)HH

o (f)df

)
= Tr

( ∞∑
k=−∞

∫ fs/2

−fs/2
Ho(f − kfs)Sx(f − kfs)

HH
o (f − kfs)df

)
(a)
= Tr

(∫ fs/2

−fs/2

∞∑
k=−∞

D(f − kfs)H̃(f − kfs)Sx(f − kfs)

H̃
H

(f − kfs)DH(f − kfs)df
)

(b)
= Tr

(∫ fs/2

−fs/2
D(f)

( ∞∑
k=−∞

H̃(f − kfs)Sx(f − kfs)

H̃
H

(f − kfs)
)
DH(f)df

)
(c)
= Tr

(∫ fs/2

−fs/2
D(f)Λ̃(f)DH(f)df

)

=

∫ fs/2

−fs/2
Tr
(
D(f)Λ̃(f)DH(f)

)
df, (7.5.1.1)
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where Λ̃(f) is a K × K diagonal matrix whose jth diagonal entry is λ̃j(f)

defined in Theorem 3. Here, (a) follows from (7.9a); (b) follows from the fs-

periodicity of D(f); and (c) stems from the definition of H̃(f). Furthermore,

the constraint
∫∞
−∞Tr(Ho(f)Sx(f)HH

o (f))df ≤
∫∞
−∞Tr(Sx(f))df given in

(7.11) can be understood as follows:

For allH , at kth sampler,

yk(t) =
M∑
m=1

(hk,m ? xm)(t) (7.5.1.2)

The amount of power received at kth sampler is given by

|yk(t)|2 =

∣∣∣∣∣
M∑
m=1

(hk,m ? xm)(t)

∣∣∣∣∣
2

(7.5.1.3)

Furthermore,

|Yk(f)|2 (a)
=

∣∣∣∣∣
M∑
m=1

(Hk,m(f)Xm(f))

∣∣∣∣∣
2

(b)

≤
M∑
m=1

|Hk,m|2(f)
M∑
m=1

|Xm|2(f). (7.5.1.4)

Here, (a) is frequency domain representation of (7.5.1.3) and (b) follows from

Cauchy–Schwartz inequality. Additionally, the total amount of energy har-

vested from all the K samplers will be given by

K∑
k=1

|Yk(f)|2 ≤

(
K∑
k=1

M∑
m=1

|Hk,m|2(f)

)(
M∑
m=1

|Xm|2(f)

)
. (7.5.1.5)
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This implies

∑K
k=1 |Yk(f)|2(∑M
m=1 |Xm|2(f)

) ≤ ( K∑
k=1

M∑
m=1

|Hk,m|2(f)

)
. (7.5.1.6)

Additionally, to design any generic energy conservative filter, following should

be satisfied ∑K
k=1 |Yk(f)|2(∑M
m=1 |Xm|2(f)

) ≤ 1. (7.5.1.7)

In order to meet the conditions obtained in (7.5.1.7) and (7.5.1.6), we can con-

clude the following (
K∑
k=1

M∑
m=1

|Hk,m|2(f)

)
≤ 1. (7.5.1.8)

This implies ||H(f)||2F ≤ 1, and hence Tr(H(f)HH(f)) ≤ 1. Since Tr(D(f)DH(f)) ≤

Tr(H(f)HH(f)), the constraint will become Tr(D(f)DH(f)) ≤ 1. And

hence, using (7.5.1.1), the optimization framework (7.11) can be re-written as

max
D(f)

∫ fs/2

−fs/2
Tr(D(f)Λ̃(f)DH(f))df

s.t. rank (D(f)) = K, ∀f ∈ (−fs/2, fs/2)

Tr(D(f)DH(f)) ≤ 1. (7.5.1.9)

Note that the constraint on D(f) to be periodic is no longer needed as it is

already encapsulated in how the objective is formulated. It should be noted that
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(7.5.1.9) can be solved for each frequency separately. Namely, we need to solve

max
D(f)

Tr(D(f)Λ̃(f)DH(f))

wds.t. rank (D(f)) = K,

Tr(D(f)DH(f)) ≤ 1, (7.5.1.10)

for each f ∈ (−fs/2, fs/2). In particular, the objective in (7.5.1.10) can be

written as Tr(DH(f)D(f)Λ̃(f)). Since this is the trace of the product of Her-

mitian positive semi definite matrices and as Λ̃(f) is diagonal with decreasing

elements along its main diagonal, it follows that the objective is maximized

when DH(f)D(f) is diagonal with decreasing elements along its main diago-

nal [158]. By letting d2
k(f) be those diagonal elements, the problem boils down

to

max
{d2k(f)>0}

∑
k

d2
k(f)λ̃k(f)

s.t.
∑
k

d2
k(f) ≤ 1. (7.5.1.11)

Defining, xk(f) = d2
k(f)− ε, (7.5.1.11) will become a simple linear problem as

follows

max
xk(f)

∑
k

xk(f)λ̃k(f) + ελ̃k(f)

s.t.
∑
k

xk(f) ≤ 1−Kε.

xk(f) ≥ 0 ∀ k (7.5.1.12)
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The solution to this problem will be xk(f) =

1−Kε at k = index of max(λ̃k(f))

0 otherwise
,

and hence the maximum value of the problem is λ̃max(f)(1−Kε)+
∑

k ελ̃k(f),

where λ̃max(f) = max(λ̃1(f), λ̃2(f), ...λ̃K(f)). This also implies DH(f)D is

a diagonal matrix with first entry at the diagonal is 1 − Kε + ε and all other

entries are zero.
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Chapter 8

Conclusion and Future Work

8.1 Contributions and Impact

The main contributions of the dissertation are summarized below:

8.1.1 PCI based CS

CS has been used to recover the data at a lower sampling rate by exploiting the

underlying structure of the analog signal. However, the conventionally linear

combination of the data using Gaussian and Bernoulli matrices have been uti-

lized for the compressive measurements. We propose to use PCI sensing matrix

to obtain compressive measurements, which randomly picks the data instead of

taking the linear combination of the data. Consequently, it reduces the com-

plexity, latency, hardware cost and energy consumption. We have shown, if

the data is sparse in the DCT or DFT domain, the PCI based CS improves the

reconstruction performance as compared to the conventional methods.
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It has been shown previously that WSN data is smoothly varying in both

spatial and temporal domain, which results in sparsity in the DCT domain, and

hence PCI-CS has been first exploited in WSN application. Further, in the pres-

ence of noise, the smoothness in the WSN data get affected, which impacts the

level of sparsity, and hence the performance of PCI-CS. Therefore, a two-stage

algorithm to de-noise the data has been proposed, which is the next contribution

of this thesis, mentioned below.

8.1.2 A Two-stage algorithm: PCI-MF

The performance of PCI-CS method has been improved by introducing a two-

stage algorithm, named as PCI-MF. This algorithm utilizes PCI-CS at the first

stage to recover the sparsest solution and the rank of the data, which is used

jointly in the second stage in a matrix factorization framework to recover the

complete data.

It is observed that this framework resembles missing data recovery problems,

as it can recover complete data with partial availability of the data. Therefore,

this algorithm has been compared in the context of missing data recovery frame-

work with the conventional and the recent state-of-the-art methods for WSN on

the real data set of “Intel lab" and “data sensing lab". It has been observed that

the proposed PCI-MF consistently outperforming the existing algorithms. Fur-

thermore, at higher data loss of approximately 90%, an improvement of around

12dB has been observed, when compared to conventional missing data recovery

methods for WSN application.

175



The robustness of PCI-MF has been further validated by utilizing it for esti-

mating the mmWave massive MIMO communication channel from a few noisy

channel coefficients. The performance of the method has been evaluated by

calculating NMSE between the actual CSI and the recovered CSI. NMSE re-

sults show considerable improvement in performance with PCI-MF compared

to the state-of-the-art methods. For further validating the PCI-MF, the NMSE

is simulated with various parameters, such as different MIMO configurations,

low and high values of SNR and MR, as well as different channel fading mod-

els. It is observed that PCI-MF consistently outperforms in different MIMO

configurations such as 32 × 32, 64 × 64, for all values of SNR and also for

all MR. The improvement in performance is observed with both ULA as well

as UPA antenna configurations. The performance of PCI-MF is also shown by

evaluating SER and ASE. It is observed that PCI-MF outperforms the existing

methods and approaches the ASE values of perfect CSI. For instance, at 25 dB

SNR, ASE of 16.49 bits/sec/Hz is obtained with perfect CSI for 32×32 MIMO

configuration. Using PCI-MF, with only 30% availability of channel informa-

tion, ASE of 16.09 bits/sec/Hz (close to perfect CSI) has been obtained. In

order to validate the performance of PCI-MMF in realistic scenarios, another

data set of New York City with real-world outdoor cellular propagation param-

eters has also been considered. It is observed that even in a practical scenario

when transmitter and receiver are 100 m apart, PCI-MF obtains 5.45 dB and

16.933 dB improvement with 10% and 90% availability of channel information,

respectively, as compared to the existing methods.
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8.1.3 iDEG: Integrated data and energy gathering for WSN

It is to be noted that in WSN, sensor node senses some physical parameter and

produces an analog signal, which is sampled and digitized for further process-

ing and transmission. In this thesis, we have first proposed an iDEG protocol

for WSN. In this protocol, we have allowed only a fraction of sensor nodes to

transmit the signal to the FC, and the rest of the nodes are utilized to harvest

energy from the received analog signal itself. The proposed PCI-MF algorithm

has been utilized at FC to recover the entire data of the WSN, and hence the

energy harvesting procedure didn’t affect the data reconstruction accuracy.

Results show that the proposed iDEG protocol not only reduces the complex-

ity, sensing time, latency and energy losses but also provides better data recov-

ery at FC as compared to various conventional sensing and routing strategies.

The iDEG protocol also provides a method for harvesting the energy from the

unused sensor nodes. Further, the proposed method is self-sufficient in recover-

ing missing entries of the original data set as demonstrated through simulation

on real data set of Intel lab.

8.1.4 eSampling: Re-thinking sampling process with energy harvesting

In this thesis, we proposed the eSampling ADC architecture, which modifies

the traditional sampling process of a S/H ADC to harvest energy from the dis-

carded portion of the input signal. We analyzed the amount of energy which

can be harvested from stationary signals and characterized the underlying fun-
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damental tradeoff between energy harvested and reconstruction fidelity which

arises from the joint acquisition and energy harvesting paradigm. Then, we

presented a circuit-level design of an eSampling ADC using CMOS 65 nm

technology. Our numerical results demonstrate the potential of eSampling in

realizing ADCs operating with high resolution and near ideal reconstruction ac-

curacy while harvesting the amount of energy which approaches and can even

surpass that consumed in ADC operation. Similar results were observed in an

experimental study dedicated to design eSampling ADC circuit, indicating the

potential of self-powered ADCs. We have numerically demonstrated that an

eSampling ADC with up to 12 bits can harvest more power than it consumes

while sampling at Nyquist condition. The result has been validated on a circuit-

level design of an eSampling 8-bit ADC, which is shown to harvest more power

than it consumes while allowing to recover the analog signal in a nearly perfect

manner.

To validate the eSampling in real-world environment, we have also designed

a hardware setup to sample and harvest the energy from the real world continuous-

time input signal for WSN application on two different input signal; one is gen-

erated from the environment temperature and another from the human palm.

As a proof of concept demonstration and performance assessment, the recon-

structed signal obtained from the proposed work has been compared with the

traditional sampling process. From experiments, it has been concluded that

even 10% of the sampling time is sufficient to sample the data, and the remain-

ing time can be allocated for energy harvesting. Furthermore, in the EH circuit,
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the received voltage has been boosted to the 5 V so that it can be used in future

to drive some application or to self-sustain the sensor node itself. The relative

efficiency of around 70% has been obtained in the designed setup.

8.1.5 iDEG using eSampling for multiple correlated stochastic signals

In this work, we studied joint esampling and reconstruction of multiple corre-

lated stochastic analog signals, while improving data reconstruction accuracy

and the amount of harvested energy. We characterized the achievable TNMSE,

maximum energy harvested from the observed analog signals for a given sam-

pling rate and the corresponding joint esampling system. We analyzed the

amount of energy which can be harvested from signals and characterized the

underlying fundamental tradeoff between energy harvested and reconstruction

fidelity which arises from the joint acquisition and energy harvesting paradigm.

We showed that the joint esampling system could operate at sub-Nyquist sam-

pling frequency by preserving the most dominant spatial eigenmodes among all

spectral components aliased to the same frequency and hence allows the system

to operate at zero power by harvesting more energy from the observed analog

signals. We have numerically demonstrated that the joint eSampling and recon-

struction framework with 16 bits can harvest as much energy as it consumes,

while sampling minimizing reconstruction error and also the number of sam-

ples required.
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8.2 Future directions

In this section, we have elaborated the possible future directions of this disser-

tation.

8.2.1 Extension for PCI-MF

A few possible extensions of PCI-MF have been discussed below:

• It has been observed that the real signals are generally smoothly varying,

and hence have sparsity in DCT and DFT domains, and also have depen-

dencies, which results in low-rankness. Hence, the proposed PCI-MF al-

gorithm can be utilized for various other real-world applications, such as

biomedical applications, channel estimation for Unmanned Aerial Vehicle

(UAV) applications etc.

• In this thesis, we have considered PCI-MF method for homogeneous net-

works, where all the nodes are identical. However, the PCI-MF will be

extended for inhomogeneous field. The inhomogeneous network can be

considered as a collection of two or more homogeneous regions separated

by boundaries, and hence it may represents in either a multi-dimensional

sparse framework or a weighted sparse framework, such that the estimated

joint sparsifying domain has less correlation with the PCI matrix.

• The PCI-MF used for channel estimation in mmWave MIMO system can

be extended for the multi-user MIMO systems, where the PCI-MF based
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channel estimation will ease out the process of beam sweeping from base

station to multiple user equipment. Further, we have assumed that AoA

and AoD lie on the discretized grids. In future, PCI-MF can be extended

to overcome this assumption.

8.2.2 Sub-Nyquist eSampling at RF: A new Generation Receiver

A wireless receiver architecture consists of an analog RF front end circuit, fol-

lowed by an ADC and the demodulation circuit. The analog RF front end down-

converts the input signal to the baseband frequency, and also provides signal

amplification and filtering to amplify the weak received signal, while reject-

ing the surrounding. If the ADC is placed at the RF, the amplification, down-

conversion, and filtering can all be done in the digital domain. This results in

a true software radio architecture, where maximum utilization of digital pro-

grammability is achieved. However, the speed and power limitations of ADCS

limit the practical realization of such receivers. Therefore, the development of

high-speed ADCs circuit for computing the RF sampling is an active area of

research. However, instead of the circuit designing approach, we would like to

propose the signal processing approach to reduce the power consumption and

speed of an RF ADC.

To accomplish above, a learning-based eSampling ADC can be used at the

RF for the wireless communication receiver. Since the required information in

the received signal is the type of modulating symbol, the idea is to esample the

RF signal at lower sampling rate to estimate the symbol instead of the complete
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signal. This will allow to harvest the energy from the received signal, and also

reduces the sampling rate. In this work, we would also use ViterbiNet algorithm

proposed in [159], which is a data-driven symbol detector that does not require

CSI. ViterbiNet is obtained by integrating deep neural networks (DNNs) into

the Viterbi algorithm.

8.2.3 eTEM: Energy harvesting with Time encoding machine

The conventional approach in sampling theory is to describe a signal using pairs

of time and amplitude. However, time encoding machine (TEM) allows us to

represent the signal by the sequence of time only. The TEM has the ability

to reduce power usage. Due to the decreasing size of integrated circuits and

the attendant low-voltage, high-precision quantizers is difficult to implement.

Time Encoding circuits provide an increment in timing resolution, which means

that time encoding can help us develop human-made devices by developing

sampling equipment with higher precision. This also has the ability to reduce

power usage.

Consider a TEM as shown in Fig.8.1. The input analog signal, x(t) is ban-

dlimited and bounded as |x(t)| ≤ c < b. Therefore, the positive signal (x(t)+b)

will pass to an RC circuit, i,e., integrator. The voltage across the capacitor C,

i.e, Vc(t) is compared with a pre-defined threshold, say, δ The overall process

of TEM can be divided into two phases, the Phase-1, during which the capaci-

tor, C will charge to δ, as shown in Fig. 8.1a) and the Phase-2, the comparator

resets the voltage across the capacitor by connecting it to ground as shown in
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Fig. 8.1b) for ∆ amount of time, which is also known as refractory period. The

output of TEM is sequence of strictly increasing time tk, such that Vc(tk) = δ,

where k ∈ Z.

In future, we can develop an energy harvesting TEM, named as eTEM, which

will harvest the un-utilized input signal energy in Phase-2, during the refrac-

tory period (∆). In this period, the capacitor transfers the stored charge to the

rechargeable battery as shown in Fig. 8.2.
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