
MINING HIGH-UTILITY ITEMSETS FROM A TRANSACTION DATABASE

BY

SIDDHARTH DAWAR

Under the supervision of Dr. Vikram Goyal, Dr. Debajyoti Bera

COMPUTER SCIENCE AND ENGINEERING

INDRAPRASTHA INSTITUTE OF INFORMATION TECHNOLOGY DELHI

NEW DELHI– 110020

APRIL, 2021

MINING HIGH-UTILITY ITEMSETS FROM A TRANSACTION DATABASE

BY

SIDDHARTH DAWAR

A THESIS

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

DEGREE OF

Doctor of Philosophy

COMPUTER SCIENCE AND ENGINEERING

INDRAPRASTHA INSTITUTE OF INFORMATION TECHNOLOGY DELHI

NEW DELHI– 110020

APRIL, 2021

Certificate

This is to certify that the thesis titled Mining high-utility itemsets from a transac-

tion database being submitted by Siddharth Dawar to the Indraprastha Institute

of Information Technology Delhi, for the award of the degree of Doctor of Phi-

losophy, is an original research work carried out by him under my supervision.

In my opinion, the thesis has reached the standard fulfilling the requirements of

the regulations relating to the degree.

The results contained in this thesis have not been submitted in part or full to

any other university or institute for the award of any degree or diploma.

April, 2021

Dr. Vikram Goyal

Dr. Debajyoti Bera
Indraprastha Institute of Information Technology Delhi

New Delhi 110020

Abstract

Technological advances have enabled organizations to store large amounts of
data cost-effectively. Patterns hidden in such massive databases can be valu-
able to industries to gain actionable knowledge and promote their business. For
example, a retail store can utilize information about the products frequently
purchased together by its customers for shelf-space management and inventory
management. Frequent itemset mining has been studied extensively by the re-
search community to mine such patterns from a transaction database. A trans-
action represents the set of products purchased together by a customer in the
above-mentioned example. An example of a frequent itemset can be products
like milk and bread purchased together frequently by customers from a retail
store. Frequent itemset mining assumes that the items present in a transaction
database have equal importance. However, customers purchase products in dif-
ferent quantities, and products generate different profits for the retail store. The
notion of mining high-utility itemsets was formulated by researchers to mine
such a set of items. For example, high-utility itemset mining can extract the set
of profitable products purchased by customers from a retail store.

High-utility itemset mining is a generalization of the frequent itemset min-
ing problem that associates a positive weight with each item in a transaction.
The utility of an itemset in a transaction is the sum of the weights associated
with its items. High-utility itemset mining is a more challenging problem com-
pared to frequent itemset mining as the utility measure is neither monotone nor
anti-monotone, unlike for frequent itemset mining. During a search space explo-
ration, if the frequency of an itemset is less than the minimum frequency thresh-
old, the itemset and its supersets can not be frequent. However, the superset of a
low-utility itemset can have a high-utility, and the subset of a high-utility item-
set can be a low-utility itemset. So, the search space can not be pruned solely
based on the utility of a partially explored itemset.

In this thesis, we analyze, “how can we improve the performance of exist-

i

ing high-utility itemset mining algorithms?” The existing algorithms for min-
ing high-utility itemsets can be categorized into one-phase and two-phase al-
gorithms. The two-phase tree-based algorithms for mining high-utility item-
sets generate candidate high-utility itemsets in the first phase by constructing
a tree data structure recursively, and compute the utility of candidate itemsets
through another database scan in the second phase called the verification phase.
It has been observed by researchers that the performance of such two-phase tree-
based algorithms can be improved by reducing the number of generated candi-
dates. We begin by proposing a novel tree data structure called UP-Hist tree that
augments a histogram of item weights frequency and a two-phase tree-based
algorithm called UP-Hist Growth. We compare the performance of UP-Hist
Growth against the state-of-the-art two-phase tree-based algorithms on several
benchmark sparse and dense datasets. Our results demonstrate that the UP-Hist
Growth algorithm performs better than those algorithms.

We observe in our experimental study that the two-phase tree-based algo-
rithms, including UP-Hist Growth, run out of memory on some of the dense
datasets and the state-of-the-art list-based algorithms like HUI-Miner perform
faster than the two-phase tree-based algorithms on dense datasets. We also
observe that the tree-based algorithms generate candidates quickly in the first
phase, but spend a lot of time in the verification phase. The list-based algorithms
construct an inverted-list data structure for every itemset by intersecting the
inverted-lists of its immediate subsets. The intersection operation can become
a performance bottleneck for list-based algorithms, and list-based algorithms
can also generate itemsets that are non-existent in the database during search-
space exploration. To combat the limitations of these approaches, we propose
a hybrid algorithm that can harness the benefits of both types of algorithms by
combining any tree-based algorithm with a list-based algorithm to extract high-
utility itemsets. As a case study, we construct two hybrid algorithms by joining
two tree-based algorithms named UP-Hist Growth and UP-Growth+ with a list-
based algorithm called FHM. Our experimental study validates that the hybrid
algorithms have less total execution time compared to the existing two-phase
tree-based algorithms on sparse and dense datasets. Additionally, the hybrid
algorithms also perform better than the list-based algorithms on sparse datasets.

We observe that a faster high-utility itemset mining algorithm can be de-
signed by augmenting the inverted-list data structure on the top of a tree data
structure as it can reduce the amount of information stored within the tree and

ii

also cost of the intersection operation during the search-space exploration. To
implement this idea, we propose a tree structure called UT_Mem-tree that aug-
ments information compactly in a HashMap with each node of the tree and
design the first “one-phase tree-based” algorithm called UT-Miner to mine high-
utility itemsets. We also propose a mechanism to construct a lightweight pro-
jected database during the mining process for superior performance, especially
for dense datasets. We also conduct experiments to compare the performance
of UT-Miner with the state-of-the-art high-utility itemset mining algorithms.
The results confirm that UT-Miner performs better than the state-of-the-art tree-
based, list-based, and hybrid algorithms on sparse and dense datasets.

The existing algorithms and data structures for mining high-utility itemsets
are designed for a specific utility function only. We explore the possibility of
designing data structures and algorithms that can mine high-utility itemsets for
any subadditive monotone utility function. In this scenario, the utility of an item-
set in a transaction need not be the sum of its item utilities. We design tighter
upper-bounds and algorithms that can mine high-utility itemsets for such utility
functions. We believe that generalization of utility functions can be useful. To
demonstrate this we identify an application of high subadditive-monotone util-
ity itemsets to find active high-influential groups of users from a Twitter dataset
for applications like viral marketing.

In this thesis, we have explored how to improve the state-of-the-art tech-
niques in high-utility itemset mining. We designed tighter bounds to reduce the
search space exploration and algorithms for a class of utility functions that can
generalize the classical addition function used by the existing algorithms.

iii

Dedication

This thesis is dedicated to my parents and my advisors, Dr. Vikram Goyal, and
Dr. Debajyoti Bera, who helped me to continue and complete this research.

iv

Acknowledgements

First and Foremost, I would like to express my sincere gratitude to my research
supervisors, Dr. Vikram Goyal and Dr. Debajyoti Bera. Without their con-
tinuous support, motivation, valuable guidance, and consistent encouragement
throughout my Ph.D. journey, this work would have never been completed.

I am much indebted to Dr. Tanmoy Chakraborty, Dr. V. Raghava Mutharaju,
Dr. Chetan Arora, and Dr. Venkata M. Viswanath Gunturi for being a part of the
internal review committee and their insightful comments which motivated me to
widen my research from different perspectives. I want to express my immense
gratitude for the invaluable feedback to the external examiners Dr. Bac Le, Dr.
P. K. Reddy, and Dr. Vasudha Bhatnagar.

I would also like to thank Dr. Ganesh Bagler, Dr. Mukesh Mohania, Dr.
Pravesh Biyani, Dr. Pushpendra Singh, Dr. Rahul Purandare, Dr. Rajiv Ratn
Shah, Dr. Pankaj Jalote, and Dr. Samaresh Chatterji for guiding me during the
different stages of my Ph.D. journey towards career opportunities.

I am profoundly grateful to the Indraprastha Institute of Information Tech-
nology for providing excellent infrastructure and research environment. I want
to thank the Visvesvaraya Ph.D. scheme for Electronics and IT for providing
me a research fellowship throughout my Ph.D.

Most importantly, none of this could have happened without my parents and
friends who always motivated me to do better and trusted me a lot. I also express
my regards to all those who supported me in any aspect during the completion
of my Ph.D.

v

Previously Published Material

• S. Dawar, V. Goyal "UP-Hist Tree: An efficient data structure for mining
high utility patterns from transaction databases ", International Database
Engineering & Applications Symposium, 2015, pp 56-61.

• S. Dawar, V. Goyal, D. Bera "A hybrid framework for mining high-utility
itemsets in a sparse transaction database", Applied Intelligence, 2017, pp
809-827.

• S. Dawar, D. Bera, V. Goyal "High-utility itemset mining for subadditive
monotone utility functions", arXiv preprint (arXiv:1812.07208), 2018.

• S. Dawar, V. Goyal, D. Bera "A one-phase tree-based algorithm for mining
high-utility itemsets from a transaction database", arXiv preprint
(arXiv:1911.07151), 2019.

vi

Contents

Abstract i

Dedication iv

Acknowledgements v

Publications vi

List of Tables x

List of Figures xii

1 Introduction 2

1.1 High-utility itemset mining . 5

1.2 Research contributions . 8

1.3 Thesis structure . 10

2 Literature review 12

2.1 Frequent itemset mining . 13

2.2 High-utility itemset mining . 20

2.3 Summary . 27

3 UP-Hist Growth: A two-phase tree-based algorithm for mining high-

vii

utility itemsets 28

3.1 Our proposed UP-Hist Tree and utility estimates 29

3.1.1 Construction of a global UP-Hist tree 30

3.1.2 Construction of a local UP-Hist tree 34

3.2 UP-Hist Growth Algorithm . 41

3.2.1 Complexity Analysis 42

3.2.2 An Illustrated Example 44

3.3 Experiments and Results . 46

3.4 Summary . 53

4 A hybrid algorithm for high-utility itemset mining 54

4.1 Hybrid algorithm . 56

4.1.1 Caveats and Optimizations 58

4.2 Case study: Integration of UP-Hist Growth and UP-Growth+
with FHM . 61

4.3 Experiments and Results . 64

4.4 Summary . 71

5 A one-phase tree-based algorithm for mining high utility itemsets 73

5.1 UT_Mem-tree Structure . 74

5.1.1 The elements of a UT_Mem-tree 75

5.1.2 The construction of a UT_Mem-tree 76

5.1.3 Construction of a lightweight projected database through
a local_lists . 78

5.2 UT-Miner Algorithm . 80

5.3 Experiments and Results . 84

5.4 Summary . 98

viii

6 High-utility itemset mining for subadditive monotone utility func-
tions 100

6.1 Problem Statement . 102

6.1.1 Subadditive and monotone (SM) utility functions 102

6.1.2 High-utility itemset mining for SM functions (HUIM-SM)104

6.2 Coverage: A graph-based utility function 105

6.3 Bounds for HUIM-SM . 111

6.3.1 TU and TWU bounds 112

6.3.2 Exact-utility (EU) and Remaining-utility (RU) bounds . 113

6.4 Algorithms for HUIM-SM . 115

6.4.1 List-based algorithm 115

6.4.2 Tree-based algorithm 119

6.4.3 Projection-based algorithm 120

6.5 Case Study of HUIM-SM on a Twitter dataset 121

6.6 Performance evaluation of HUIM-SM algorithms 127

6.7 Summary . 134

7 Conclusion 135

7.1 Future Research Directions . 138

References 141

ix

List of Tables

1.1 Example database . 4

1.2 Frequent itemsets for threshold (f) = 3 4

1.3 Example database . 7

2.1 Example database . 13

3.1 Example database . 33

3.2 TWU of items . 33

3.3 Reorganized transactions . 33

3.4 Characteristics of real datasets 47

3.5 Candidate generation and verification time (sec) on Kosarak
dataset . 47

4.1 Example database . 61

4.2 TWU of items . 61

4.3 Characteristics of real datasets 65

5.1 Information stored with a node N of a UT_Mem-tree 75

5.2 Example database . 77

5.3 TWU of items . 78

5.4 local_list for the prefix { B } 79

5.5 local_list for the prefix { BA } 84

x

5.6 Characteristics of real datasets 85

6.1 Transaction database for coverage utility (ucov) 105

6.2 Comparison of ucov(X,T) + ucov(Y,T) with ucov(X∪Y,T) (Lemma
6.1) . 109

6.3 Example (Lemma 1) . 109

6.4 Example (Theorem 6.3) . 110

6.5 Comparison of ucov(X,T) with ucov(X∪Y,T) (Theorem 6.4) . . 111

6.6 SMI-List of {A} . 116

6.7 SMI-List of {B} . 116

6.8 SMI-List of {AB} . 116

6.9 Characteristics of Twitter transaction dataset 122

6.10 Overlap between the top 100 patterns generated by fim, fcov,
sum, and sumcov with ucov. 124

6.11 Statistics showing distribution of pattern length for top 100 pat-
terns generated by fim, fcov, sum, sumcov, and ucov. 124

6.12 Statistics showing distribution of Co(·) for top 100 patterns gen-
erated by fim, fcov, sum, sumcov, and ucov. 124

6.13 Statistics showing distribution of f(·) for top 100 patterns gener-
ated by fim, fcov, sum, sumcov, and ucov. 125

6.14 Comparison of ucov(X,T) with sumcov(X,T) (Theorem 6.5) . . 126

6.15 Characteristics of real datasets 127

xi

List of Figures

1.1 Search-space for I={a, b, c, d, e} [68] 5

2.1 Execution tree of Apriori algorithm [1]. 14

2.2 FP-tree construction [1] . 16

3.1 Global UP-Hist tree . 33

3.2 Performance evaluation (Time and number of candidates) for
UP-Growth+, UP-Growth, IHUP-Growth and UP-Hist Growth
on sparse datasets. The UP-Hist Growth and IHUP-Growth al-
gorithms ran out of memory for the NyTimes dataset. The UP-
Growth algorithm did not terminate execution for more than 24
hours on the NyTimes dataset for threshold less than 0.45 %. . . 48

3.3 Memory consumption of UP-Growth+, UP-Growth, IHUP-Growth
and UP-Hist Growth on sparse datasets. UP-Growth ran out of
memory during the candidate generation phase on Retail and
Kosarak datasets at lower thresholds. IHUP-Growth ran out
of memory during the candidate generation phase on Kosarak
dataset. IHUP-Growth also ran out of memory on Retail dataset
for threshold less than 0.002%. The UP-Hist Growth and IHUP-
Growth algorithms ran out of memory for the NyTimes dataset.

. 49

3.4 Performance evaluation (Time and number of candidates) for
UP-Growth+, UP-Growth, IHUP-Growth, and UP-Hist Growth
on dense datasets. All tree-based algorithms did not terminate
their execution for more than 24 hours on Chess and Connect
datasets. 50

xii

3.5 Memory consumption of UP-Growth+, UP-Growth, IHUP-Growth,
and UP-Hist Growth on dense datasets. All tree-based algo-
rithms ran out of memory during the candidate generation phase
for Accidents dataset at 2% threshold. 51

3.6 Scalability experiment on ChainStore and Accidents dataset for
0.01% and 2% threshold respectively. All tree-based algorithms
did not terminate for more than 24 hours for the Accidents
dataset. 51

4.1 Utility-list of itemset {E}, {B} and {EB} 61

4.2 EUCS data structure . 62

4.3 Global UP-Hist tree . 63

4.4 Performance evaluation (Time and number of candidates) on
sparse datasets. HUI-Miner and FHM did not terminate for
more than 24 hours on the Kosarak dataset for threshold less
than 0.7%. 66

4.5 Memory consumption on sparse datasets. The UPHist-Hybrid
and the UP-Hist Growth algorithms ran out of memory on the
NyTimes dataset. 67

4.6 Performance evaluation (Time and number of candidates) on
dense datasets. UP-Growth+ and UP-Hist Growth did not termi-
nate for more than 24 hours on the Accidents dataset at thresh-
old less than 10%, and 8% respectively. The UPHist-Hybrid
algorithm ran out of memory on the Accidents dataset. All algo-
rithms did not terminate their execution for more than 24 hours
on the Connect dataset. 68

4.7 Memory consumption on dense datasets. The UPHist-Hybrid
algorithm ran out of memory on the Accidents dataset. 68

4.8 Scalability experiment on ChainStore and Accidents dataset for
0.01% and 2% threshold respectively. All algorithms did not
terminate for more than 24 hours on the Accidents and NyTimes
datasets. 70

xiii

5.1 Global UT_Mem-tree with gmap associated with each node . . 78

5.2 Performance evaluation (Time and number of candidates) for
FHM, mHUIMiner, UPG+-Hybrid and UT-Miner on sparse datasets.
FHM did not terminate for more than 24 hours on Kosarak
dataset for threshold value less than 0.7 % and mHUIMiner did
not terminate on Kosarak dataset for threshold value less than
0.75 %. 86

5.3 Performance evaluation (Time and number of candidates) for
FHM, mHUIMiner, UPG+-Hybrid, and UT-Miner on dense datasets.
FHM, mHUIMiner, and UPG+-Hybrid did not terminate for
more than 24 hours on Connect dataset. FHM, mHUIMiner,
and UPG+-Hybrid did not terminate for more than 24 hours on
Accidents dataset at 2% threshold. 87

5.4 Memory Consumption by FHM, mHUIMiner, UPG+-Hybrid
and UT-Miner on sparse and dense datasets. 88

5.5 Performance evaluation (Time and number of candidates) for
EFIM, d2HUP, HMiner and UT-Miner on sparse datasets. d2HUP
did not terminate for more than 24 hours on Kosarak dataset for
threshold less than 0.7 %. 89

5.6 Memory Consumption by EFIM, d2HUP, HMiner and UT-Miner
on sparse datasets. 91

5.7 Performance evaluation (Time and number of candidates) for
EFIM, d2HUP, HMiner and UT-Miner on dense datasets. d2HUP
did not terminate for more than 24 hours on Connect dataset and
Accidents dataset at 2% threshold. 92

5.8 Memory Consumption by EFIM, d2HUP, HMiner and UT-Miner
on dense datasets. 93

5.9 Scalability experiment on ChainStore and Accidents dataset for
0.01% and 2% threshold respectively. FHM, mHUIMiner, d2HUP,
and UPG+-Hybrid did not terminate for more than 24 hours on
Accidents dataset when more than 60% of the transactions is
input to the algorithms. 94

xiv

5.10 Memory consumption on ChainStore and Accidents dataset for
scalability . 94

5.11 Comparison of UT-Miner with UT-Miner-LT on sparse datasets. 95

5.12 Comparison of UT-Miner with UT-Miner-LT on dense datasets. 96

6.1 Graph over items . 106

6.2 Performance evaluation on sparse datasets for ucov. 128

6.3 Number of candidates and memory consumption on sparse datasets
for ucov. 129

6.4 Performance evaluation on dense datasets for ucov. 130

6.5 Number of candidates and memory consumption on dense datasets
for ucov. 131

1

Chapter 1

Introduction

We are living in the age of big data where data is being generated in huge vol-

umes at a very fast pace from different sources like satellites, sensors, wifi

hotspots, the world wide web, social media platforms, retail giants like Wal-

mart, Amazon, etc. It is difficult to manually analyze such an enormous amount

of data for extracting actionable insights in a timely manner. Hence, there is a

need for automated techniques to gather insights from such data. Data mining,

also called as knowledge discovery from data (KDD) [38] is the process of dis-

covering interesting patterns and knowledge from large amounts of data. The

knowledge discovery pipeline has different phases starting from data collection

and cleaning, data integration, data transformation, data mining, and data visual-

ization. Data mining includes techniques like classification [19], clustering [3],

association rule mining [4], and outlier detection [2]. In this thesis, we focus on

the problem to mine high-utility patterns that can find interesting associations

among items from a transaction database. We start by discussing an application

of association rule mining on a retail store transaction database below.

2

Association rule mining [4] generates interesting rules from a transaction

database, and the extracted rules can be used for recommending products to a

customer in a retail store. Every transaction contains the set of products pur-

chased by a customer from a retail store. Association rule mining algorithms

can be applied to the customer transaction database of any retail giant like Wal-

mart to generate rules that can be used for inventory management, shelf-space

management, and for recommending products to a customer. The application

of association rule mining in retail domain is popularly called market-basket

analysis [4] as the retail basket of customers is analyzed to find interesting asso-

ciations. An example of an association rule might be that 90 % of the customers

who buy bread also purchase butter.

The association rules are generated from a transaction database through a

two-step process, In the first step, frequent itemset mining [4] is applied on a

transaction database to generate frequent itemsets and the association rules are

generated from frequent itemsets in the next step. Frequent itemset mining finds

itemsets from a transaction database with a frequency no less than a user-defined

minimum frequency threshold denoted by f . An example transaction database

is shown in Table 1.1 and frequent itemsets for a minimum frequency threshold

(f) equal to 3 is shown in Table 1.2. An example of an itemset can be the set

of products, bread, butter, and milk purchased together frequently from a retail

store. Frequent itemset mining has several applications outside of market-basket

analysis, e.g., in classification [19], clustering [3], bug mining [46], biclustering

[41], pattern mining for location prediction [56], outlier detection [81] etc.

3

Table 1.1: Example database

Transaction Items
1 A C T W
2 C D W
3 A C T W
4 A C D W
5 A C D T W
6 C D T

Table 1.2: Frequent itemsets for threshold (f) = 3

Frequency Itemsets
6 C
5 W, CW
4 A, D, T, AC, AW, CD, CT, ACW
3 AT, DW, TW, ACT, ATW, CDW,

CTW, ACTW

The search-space for a set of I items contains 2|I| − 1 itemsets. For exam-

ple, the itemset lattice for I={a, b, c, d, e} is shown in Figure 1.1. A brute-force

approach is to enumerate the complete itemset lattice and find out the frequent

itemsets by computing their frequency through a database scan. However, the

brute force approach results in exploring an exponential number of itemsets.

Several data structures and algorithms [4, 40, 80, 59] were proposed to prune

the search space and extract frequent itemsets from a transaction database. The

research on frequent itemset mining led to the expansion of pattern mining algo-

rithms to mine complex patterns like a sub-sequence, substructure, etc. A sub-

sequence pattern can be purchase of a computer followed by that of a printer.

An example of a substructure can be a motif, i.e., a subgraph frequently occur-

ring in a database composed of chemical compounds. The problem of frequent

pattern mining can be categorized into frequent itemset mining [4, 40, 80], fre-

quent sequence pattern mining [60, 5, 39], frequent episode mining [84, 70, 55],

frequent pattern mining from a data stream [45, 54, 15], and frequent subgraph

mining [77, 30, 57] based on the nature of the pattern and database.

4

Figure 1.1: Search-space for I={a, b, c, d, e} [68]

1.1 High-utility itemset mining

There are real-life applications where items in a transaction have different im-

portance and have positive weights associated with them. Frequent itemsets can

not capture such interesting patterns as frequent itemset mining assumes the bi-

nary presence/absence of items in a transaction, and all items are given equal

importance. The notion of high-utility itemset mining was designed to capture

such an interesting set of items with the weights defined from an application

domain. Consider the application of market-basket analysis from the customer

transaction logs of a retail store. Customers purchase a product/item in some

quantity, and every sold item generates different profit for the retail store. For

example, a customer can buy two units of bread and one unit of butter, and the

5

retail store owner earns a different profit on selling every unit of bread and but-

ter. The weight associated with an item in a transaction can be defined as the

product of its quantity and profit. High-utility itemset mining can find the set

of products [71] that generate a total profit more than a user-defined threshold

when purchased together.

High-utility itemset mining has been applied to mine interesting groups of

items from different data sources like gene expression microarray data [52],

and spatio-temporal data [43]. A gene expression microarray data can be con-

verted to a transaction database with every transaction created according to a

timestamp, and genes with its state as items. The upregulation and downregu-

lation of genes are considered as separate items. The quantity associated with

a gene in a transaction is a function of the number of samples that contain the

gene with its associated state. The importance of a gene is defined by its neigh-

bors from a gene co-expression network. Liu et al. [52] applied high-utility

itemset mining to find the set of genes with different expression levels under

two different experimental conditions from human and mice datasets. Kiran et

al. [43] applied high-utility itemset mining to mine spatio-temporal high-utility

itemsets for the application of congestion detection and pollution monitoring

from Tokyo datasets. The transaction database was constructed from the tempo-

ral data mined by different sensors, and weights were associated with each item

in the transaction according to the application. An additional constraint of prox-

imity among the items extracted from the high-utility itemset mining algorithms

was applied to ensure the spatial proximity of the mined patterns.

6

Table 1.3: Example database

TID Transaction TU
T1 (B : 4) (C : 4) (E : 3) (G : 2) 13
T2 (B : 8) (C : 13) (D : 6) (E : 3) 30
T3 (A : 5) (C : 10) (D : 2) 17
T4 (A : 30) (B : 2) (C : 1) (D : 8) (H : 2) 43
T5 (A : 10) (C : 6) (E : 6) (G : 5) 27
T6 (A : 10) (B : 4) (D : 12) (E : 6) (F : 5) 37

Now we define the problem statement for mining high-utility itemsets for-

mally.

Problem Statement: Consider a set of items I = {i1, i2, ..., im} and a trans-

action database DB = {T1, T2, ..., Tn} where every transaction is a subset of I .

Every item in a transaction is associated with a positive weight. The utility of

an item i in a transaction T , denoted by u(i, T), is the weight associated with

the item in T . The utility of an itemset X in a transaction T denoted by u(X,T)

is the sum of utility of its items. The utility of itemset X in the database is de-

fined as: u(X) =
∑

X⊆T
T∈D

u(X,T). An itemset X is called a high-utility itemset

if u(X) is no less than a given minimum user-defined threshold denoted by θ.

Given a transaction database D, and a minimum user-defined threshold θ, the

aim is to find all high-utility itemsets.

For example, consider the transaction database shown in Table 1.3. In our

example, I = {A,B,C,D,E, F,G,H}. The utility of item {B} in T1 is 4.

The utility of itemset {BC} in T1 is 8. The utility of the itemset {AD} in our

example database is 67. The set of high-utility itemsets for θ equal to 50 are

{AD}:67, {AC}:62, {ABD}:66, {ACD}:56, and {A}:55 respectively.

7

1.2 Research contributions

High-utility itemset mining is a challenging problem as the search space is ex-

ponential in the number of items. It is a harder problem compared to frequent

itemset mining as the utility can not be used to prune the search space, unlike

frequency. The frequency of an itemset decrease as more items is added to the

current itemset. During the search space exploration, if the frequency of an

itemset X is less than the minimum frequency threshold, itemset X and its su-

persets can not be frequent. However, it is not true for the case of high-utility

itemset mining algorithms.

There is a need to improve the performance of the existing algorithms for

mining high-utility itemsets. We observed that the existing algorithms did not

terminate for several days at low utility thresholds on datasets like NyTimes

[29], and PubMed [29]. The existing data structures and algorithms are de-

signed to mine itemsets for a specific utility function only. We ask the following

questions:

• Can we improve the performance of the existing high-utility itemset mining

algorithms?

• Can we design a high-utility itemset mining algorithm for a class of utility

functions that can generalize the classical addition function used by the

existing algorithms?

• Will the existing bounds designed to reduce the search space exploration

8

still work?

• Can we demonstrate the significance to mine high-utility itemsets for a

class of utility functions through an application on a real-life dataset?

Motivated by these questions, our contributions are the following:

• We propose a novel tree data structure called UP-Hist tree and an algorithm

called UP-Hist Growth. Our experimental study validates that UP-Hist

Growth is faster in terms of total execution time and generates fewer can-

didates compared to the state-of-the-art two-phase tree-based algorithms.

• We design a hybrid algorithm that can combine any tree-based algorithm

like UP-Growth+ [71] with a list-based algorithm like FHM [32]. We dis-

cuss caveats that must be taken into account while designing a hybrid al-

gorithm and techniques to improve the performance of a hybrid algorithm.

We present a case study to understand the integration of UP-Growth+ [71]

and UP-Hist Growth [21] with FHM [32]. Our experimental study shows

that the hybrid algorithms perform better than the state-of-the-art list-based

algorithms on sparse datasets and tree-based algorithms on both sparse and

dense datasets.

• We propose a novel data structure called UT_Mem-tree and the first one-

phase tree-based algorithm called UT-Miner that performs better in terms

of total execution time compared to the state-of-the-art tree-based, list-

based, and hybrid algorithms across dense and sparse datasets as validated

9

from our experimental study. We also propose a mechanism to reduce the

cost of recursive data structure created during the mining process.

• We propose an inverted-list data structure and an algorithm to mine high-

utility itemsets for any arbitrary monotone utility function. We also design

a subadditive monotone utility function to find the groups of active and

influential users from a Twitter dataset that can influence their followers

for applications like viral marketing. Our experimental study suggests that

the computation of utility can also play an important role in deciding the

relative performance of algorithms belonging to different categories across

several sparse and dense datasets.

1.3 Thesis structure

This thesis is organized as follows. In chapter 2, we further review the data

structures and algorithms proposed for itemset mining. In chapter 3, we pro-

pose a data structure called the UP-Hist tree, and a two-phase algorithm called

UP-Hist Growth. We propose a hybrid algorithm that can combine any tree-

based algorithm with a list-based algorithm to mine itemsets in one-phase only

in chapter 4. In chapter 5, we propose a data structure called UT_Mem-tree

and an algorithm called UT-Miner that avoids the construction of complete lo-

cal trees to improve the total execution time and memory consumed during the

mining process. In chapter 6, we formulate the problem of mining high-utility

itemsets for the class of subadditive monotone functions. We further propose an

10

inverted-list data structure and an algorithm to mine high-utility itemsets. We

also discuss the changes required in the tree-based and projection-based algo-

rithms to adapt them for mining itemsets for subadditive monotone utility func-

tions. We demonstrate the application of subadditive monotone utility functions

by designing a function to capture the active group of influential users from a

publicly available Twitter dataset. We conclude this thesis by summarizing the

contributions and highlighting several directions for future research in the area

of high-utility pattern mining in chapter 7.

11

Chapter 2

Literature review

The algorithms for itemset mining can be divided into two categories: one-phase

and two-phase algorithms. The two-phase algorithms generate candidate high-

utility itemsets in the first phase and scan the database again to compute the

utility of candidate itemsets in the next phase. The one-phase algorithms gener-

ate candidates and compute their utility in a single phase. Several data structures

and algorithms have been proposed to mine frequent and high-utility itemsets

from a transaction database. These data structures are designed to reduce the to-

tal execution time, the number of candidate itemsets explored during the search

process, and the memory consumption. We start by reviewing the fundamental

concept of association rules and frequent itemset mining in Section 2.1. The

data structures and algorithms proposed for high-utility itemset mining are dis-

cussed in Section 2.2.

12

Table 2.1: Example database

TID Transaction
1 a b c d e
2 a b c d f h
3 a f g
4 b e f g
5 a b c d e h

2.1 Frequent itemset mining

Several algorithms have been proposed for frequent itemset mining. These algo-

rithms explore the search space in different order to find frequent itemsets and

several data structures were designed to improve the time and space efficiency.

Now, we will discuss some data structures and algorithms proposed to mine

frequent itemsets from a transaction database.

Apriori: Agrawal et al. [4] coined the concept of association rules for a sales

transactions database. An example of an association might be that 90 % of the

customers who buy bread also purchase butter. An association rule is an impli-

cation of the form X ⇒ Y , where X ⊂ I , Y ⊂ I , and X
⋂
Y = φ. Two

measures called support and confidence were defined to capture interesting as-

sociation rules from a transaction database. The rule X ⇒ Y has a support s in

a transaction database DB if s% of the transactions contain the itemset X
⋃
Y .

The ruleX ⇒ Y has a confidence c if c% of the transactions inDB that contain

X also contain Y . The problem is to extract association rules from a transac-

tion database with support and confidence no less than a user-defined minimum

support (minsup) and confidence (minconf) threshold. The association rules

13

26 C. C. Aggarwal et al.

Fig. 2.4 Execution tree of Apriori algorithm

node is potentially of the order of the total number of items. An example of such an
implementation is provided in [12], and it seems to work quite well. An algorithm
that shares some similarities to the Apriori method, was independently proposed in
[44], and subsequently a combined work was published in [3].

Figure 2.4 illustrates the execution tree of the join-based Apriori algorithm over
the toy transaction database mentioned in Table 2.1 for minimum support value 3.
As mentioned in the pseudocode of Apriori, a candidate k-patterns are generated
by joining two frequent itemset of size (k − 1). For example, at level 3, the pattern
{a, b, c} is generated by joining {a, b} and {a, c}. After generating the candidate
patterns, the support of the patterns is computed by scanning every transaction in
the database and determining the frequent ones. In Fig. 2.4, a candidate patterns is
shown in a box along with its support value. A frequent candidate is shown in a solid
box, and an infrequent candidate is shown in a dotted box. An edge represents the
join relationship between a candidate pattern of size k and a frequent pattern of size
(k−1) such that the latter is used to generate the earlier. The figure also illustrates the
fact that a pair of frequent patterns are used to generate a candidate pattern, whereas
no candidates are generated from an infrequent pattern.

2.1.1 Apriori Optimizations

Numerous optimizations were proposed for the Apriori algorithm [1] that are referred
to as AprioriTid and AprioriHybrid respectively. In the AprioriTid algorithm, each
transaction is replaced by a shorter transaction or null transaction) during the kth
phase. Let the set of k + 1-candidates in Ck+1 that are contained in transaction T be
denoted by R(T , Ck+1). This set R(T , Ck+1) is added to a newly created transaction
database T ′

k . If the set R(T , Ck+1) is null, then clearly, a number of different tradeoffs
exist with the use of such an approach.

Figure 2.1: Execution tree of Apriori algorithm [1].

can be mined from a transaction database through a two-step process.

The first step is to extract frequent itemsets from DB that have support no

less than minsup. The next step is to form association rules from the frequent

itemsets and remove the association rules with confidence less than minconf .

An algorithm called Apriori was proposed to mine frequent itemsets. The Apri-

ori algorithm follows the candidate generation and verification paradigm and

explores the search space in a breadth-first or level-wise manner. Consider a

transaction database as shown in Table 2.1 and let minsup be 3. The execution

tree of Apriori algorithm is shown in Figure 2.1. The execution tree shows the

candidate itemsets generated by the Apriori algorithm at different levels. The

itemsets within a solid box are the frequent itemsets, and the itemsets within a

black box are the candidate itemsets in Figure 2.1. The itemsets within a dotted

box are infrequent. Initially, the algorithm scans the database to compute the

support for the itemsets of length one shown at the first level of the tree. Only

14

the items g and h are identified as infrequent at the first level. The candidate

itemsets at level two are generated by joining the frequent items from the first

level. Another database scan is performed by the Apriori algorithm to find the

itemsets that are frequent at the second level. For example, the itemset {ab} is

generated by combining the frequent itemsets {a} and {b} from the first level.

The Apriori algorithm proceeds further in a similar manner. If the length of

longest frequent itemset is k, this algorithm performs k scans of the database.

This algorithm uses the downward closure property for pruning the search space.

The downward closure property states that the subsets of an frequent itemset are

frequent. It can be observed that if an itemset of length l is infrequent, its su-

persets will be infrequent too as the support measure monotonically decreases

with the length of an itemset. For example, the itemset {ce} is infrequent in

our example database. Therefore, the itemset {ce}, and its supersets will be

infrequent too.

FP-Growth: The Apriori algorithm scans the database multiple times to find

the frequent itemsets during its breadth-first search. Now, we will discuss an

algorithm called FP-Growth that can mine frequent itemsets in two database

scans without the requirement of a separate verification phase, unlike the Apri-

ori algorithm. Han et al. [40] proposed a new data structure called FP-tree

that stores the transaction database compactly in the form of a tree. An FP-tree

is built to avoid scanning the database multiple times for computing support of

candidate itemsets. Initially, the FP-Growth algorithm performs a database scan

to find the frequent items. The infrequent items are removed from every trans-

15

42 C. C. Aggarwal et al.

{}

ADD 1st
TRANSACTION

a,b,c,d,e

{}

ADD 2nd
TRANSACTION

a,b,c,f,d

{}

ADD 3rd
TRANSACTION

a,f

{}

ADD 4th
TRANSACTION

b,f,e

{}

ADD 5th
TRANSACTION

a,b,c,d,e

a:1

b:1

a:2

b:2

a:3

b:2 f:1

a:3

b:2

b:1

f:1

a:4

b:3 f

b:1

f

c:1

d:1

c:2

d:1 f:1

c:2

d:1 f

f

c:2

d:1 f:1

e:1 c:3

d:2 f:1

f:1 f:1

e:1

e:1 e:1 d:1 e:1 d:1 e:1 d:1 e:2 d:1

ADD POINTERS

{}

a:4 b:1

c:3

b:3 f:1 f:1

e:1

d:2

e:2

f:1

d:1

f:1

Fig. 2.10 FP-Tree construction

additional overhead. This results in a different set of trade-offs as compared to the
array representation.

The initial FP-Tree is constructed as follows. We start with the empty FP-Tree
FPT . Before constructing the FP-Tree, the database is scanned and infrequent items
are removed. The frequent items are sorted in decreasing order of support. The initial
construction of FP-Tree is straightforward, and similar to how one might insert a
string in a trie. For every insertion, the counts of the relevant nodes that are affected
by the insertion are incremented by 1. If there has been any sharing of prefix between
the current transaction t being inserted, and a previously inserted transaction then
t will be in the same path until the common prefix. Beyond this common prefix,
new nodes are inserted in the tree for the remaining items in t , with support count
initialized to 1. The above procedure ends when all transactions have been inserted.

To store the items in the final FP-Tree, a list structure called header table is
maintained. A chain of pointers threads through the occurrence of the item in the
FP-Tree. Thus, this chain of pointers need to be constructed in addition to the trie
data structure. Each entry in this table stores the item label and pointers to the
node representing the leftmost occurrence of the item in the FP-Tree (first item in
the pointer chain). The reason for maintaining these pointers is that it is possible
to determine the conditional FP-Tree for an item by chasing the pointers for that
item. An example of the initial construction of the FP-Tree data structure from a

Figure 2.2: FP-tree construction [1]

action, and the items are sorted in decreasing order of support. The transactions

are inserted one by one to construct an FP-tree. For example, the FP-tree for

our example database (Table 2.1) and minsup equal to 3 is shown in Figure 2.2.

A FP-tree contains a special node called root that points to its child nodes. The

remaining nodes in the tree represents an item and a path from the root to a node

N represents a set of transactions along that path. Each node in an FP-tree con-

tains the following fields: name, support, link to the child nodes and a link to the

parent node. The name field of a node n represents the identifier of the item and

support value indicates the number of transactions along the path which contain

item n. The FP-Growth is a recursive depth-first search algorithm which gen-

erates frequent itemsets without candidate generation as the support of itemsets

16

can be computed from the local FP-trees generated during the mining process.

Eclat and dEclat: The Apriori and FP-Growth algorithms view a database

horizontally i.e. a database has transactions and each transaction contains a set

of items. Now, we will discuss an algorithm that views a transaction database

vertically i.e. for every itemset, a list of transaction identifiers containing the

itemset is maintained. Zaki [80] proposed an algorithm named Eclat that con-

structs Tid-list data structure associated with every itemset. A Tid-list stores a

list of transaction identifiers that contains its associated itemset. The support on

an itemset can be computed by counting the number of transaction identifiers

contained in its Tid-list. Initially, the algorithm scans the database to compute

the Tid-list of single items. The algorithm explores the search space in a breadth-

first manner. The frequent items are identified and Tid-list of pairs is computed

by intersecting the list of individual items. If an itemset is found to be infrequent,

its supersets are not explored. The Tid-list of k length itemset is computed by

interesting the lists of its {k− 1} length subsets. The advantage of vertical min-

ing based algorithm is the use of simple set intersection operation to compute

the support of an itemset. A problem with the vertical mining approach is that

the size of Tid-lists can be large and therefore the intersection operation is costly.

Zaki et al. [82] proposed another representation called diffsets for storing the

Tid-lists in a compressed form to reduce the memory consumption. The authors

proposed an algorithm called dEclat that uses diffsets as a data structure to mine

frequent itemsets.

H-Mine: Pei et al. [59] proposed a novel data structure called H-struct, and an

17

algorithm called H-Mine to mine frequent itemsets. The H-Struct data structure

constructs a header table similar to the FP-Growth [40] algorithm and augments

a support count and a hyper-link structure to each item. The H-Mine algorithm

utilizes the H-Struct data structure to mine frequent itemsets.

FEM: Vu et al. [73] proposed an algorithm called FEM that combines the

techniques of FP-Growth and Eclat. The FEM algorithm constructs the FP-tree

and starts the mining process by calling the FP-Growth algorithm. However,

the FEM algorithms checks the length of linked-list associated with each item i

in the header table. If the length is less than a threshold value K, the algorithm

converts the local tree of item i to Tid-lists and Eclat algorithm is executed.

Otherwise, the FP-Growth algorithm is executed. The idea is to run the Eclat

algorithm on dense datasets as they have a smaller number of transactions and

few distinct items compared to sparse datasets. A smaller number of transac-

tions results in less cost for performing Tid-list intersection operations during

the mining process and a small number of distinct items results in less number

of generated itemsets. Vu et al. [74] proposed another method to compute dy-

namically the value of thresholdK for switching between FP-Growth and Eclat

algorithm.

Algorithms based on N-list and PPC-tree: Deng et al. [24] proposed a data

structure called N-list and a prefix tree structure called PPC-tree like FP-tree

[40] to mine frequent itemsets. Each node of the PPC-tree stores the pre-order

and post-order rank in addition to the information stored by a FP-tree node. The

PPC-tree is a lightweight tree that does not have a header table and a node-link

18

field with each node. The PPC-tree is constructed only to generate the pre-

order and post-order rank with each node. The N-list data structure for a node

N is defined as a list of tuples, where each tuple stores a PP-code of the form

〈(N.pre−order,N.post−order) : count〉. The pre-order and post-order ranks

are stored with each node to check for ancestor-descendant relationship during

the execution of their proposed algorithm called Prepost. Initially, the N-lists of

frequent 1-itemsets is constructed and a PPC-tree is built. The algorithm finds

the frequent 2-itemsets by traversing the PPC-tree. The frequent k+ 1-itemsets

where k ≥ 2 are generated by intersecting the N − lists of frequent k-itemsets

and the intersection operation is performed with linear time complexity. Deng

et al. [27] proposed another algorithm called PrePost+ that employs a strategy

called children-parent equivalence pruning to reduce the search space. Deng et

al. proposed two algorithm called FIN [26] and dFIN [25] based on data struc-

tures similar to N-list and PPC-tree for mining frequent itemsets. Aryabarzan

et al. [8] proposed a data structure called NegNodeSet similar to the N-list data

structure that employs a novel encoding scheme with bitmap representation and

an algorithm called negFIN to mine frequent itemsets. The authors compared

the performance of the negFIN algorithm with FP-Growth* [34], Eclat [80],

and dFIN [25]. Their experimental study showed that negFIN is the fastest al-

gorithm on all datasets with different minimum support thresholds. However,

the dFIN [25] algorithm performed similar to negFIN [8] on some datasets.

19

2.2 High-utility itemset mining

Frequent itemset mining assumes the binary presence/absence of items in a

transaction and the items within a transaction have equal importance. How-

ever, items within a transaction can have positive weights associated with them.

Consider the customer transaction logs from a retail store. The items within a

transaction can be defined as the set of products purchased by a customer. It

can be observed in real life that customers purchase a product in some quanti-

ty/copies and selling a product generates some profit for the retail store. For ex-

ample, someone may buy six boxes of DVDs, one video player from a store and

furthermore, the store will not make same profit with each item. The positive

weight associated with every item in a transaction is defined as the product of

its quantity and profit in the retail domain application. The notion of weighted

association rule mining (WARM) [13, 75, 69, 10] and utility mining [64, 78, 79]

models were defined to capture interesting association rules with measures apart

from support and confidence.

It can be observed that frequent itemset mining is a special case of high-

utility itemset mining, where the utility of an itemset in a transaction is al-

ways equal to one. However, the utility measure is neither monotone nor anti-

monotone. The super-set of a low-utility itemset can have utility more than θ

and vice-versa can also be true. Liu et al. [50] defined an upper-bound called

transaction-weighted utility (TWU) [50] that satisfies the anti-monotonicity prop-

erty. The transaction utility (TU) for a transaction is defined as the sum of utili-

20

ties of its items. The transaction-weighted utility of an itemset X is the sum of

TU of transactions that contain X . If the TWU of an itemset is less than θ, nei-

ther the itemset nor its super-sets can have utility more than θ. This property is

known as the transaction-weighted downward closure property (TWDCP) [50].

The TWDCP property holds true as the supersets of an itemset will be contained

in a subset of transactions that contains it.

Now, we will discuss some of the algorithms for high-utility itemset mining

below.

Two-Phase: Liu et al.[51] proposed a two-phase algorithm to mine high-utility

itemsets. In the first phase, a set of candidate high-utility itemsets is generated

through a level-wise search of the itemset lattice. The authors observed that

only the {k − 1}-itemsets that have a TWU no less than the mininum utility

threshold can be combined and added into the set of candidates for the kth level.

The database is scanned again in the second phase in order to filter out the high-

utility itemsets from the high TWU itemsets.

IHUP-Growth: The Two-phase [51] algorithm discussed above scans the

database multiple times to generate candidate high-utility itemsets in the first

phase and filters the high-utility itemsets in the last phase. Ahmed et al. [6] pro-

posed the first tree-based two-phase recursive algorithm for mining high-utility

itemsets. Three variants of a data structure called IHUP − tree were proposed

to incremental mining of high-utility itemsets that allows addition, deletion and

modification of existing transactions. The IHUPL-tree arranges the items in a

21

lexicographic order along every path from the root to a leaf node. Similarly, the

IHUPTF -tree and IHUPTWU -tree sort the items in decreasing order of trans-

action frequency and TWU respectively. Every node of an IHUP − tree stores

the item name, transaction frequency, TWU, a pointer to the parent node, and a

list of pointers to its children. The authors analyzed the effect of different item

ordering strategies on the performance of their algorithm and observed that sort-

ing items in every transaction by descending order of TWU value gives a bet-

ter performance compared to lexicographic or transaction frequency ordering.

They proposed an algorithm called IHUP-Growth [6] that generates candidates

that have TWU no less than θ by recursively constructing local IHUP-trees and

filters the high-utility itemsets through a database scan in the verification phase.

UP-Growth and UP-Growth+: Tseng et al.[72] proposed a data structure

called UP-tree data structure and four strategies to reduce the number of candi-

dates generated in the first phase compared to IHUP-Growth [6]. Each node N

of the UP-tree stores the following information, N.name, support, node utility,

a pointer to its parent node, a list of pointers to its child node, and a hlink that

points to a node whose item name is same as N.name. The node utility is an

estimated upper-bound score associated with each node of the UP-tree. The UP-

tree also maintains a header table to facilitate traversal of a UP-tree. The header

table stores the item name, estimated utility value, and a link that points to the

first occurrence of the node which has the same name as the item name in the

header table.

Now, we will discuss the proposed strategies to compute a reduced estimated

22

utility compared to the TWU measure with each node of the UP-tree. Initially,

the transaction database is scanned to compute the TWU for every distinct item

present in the database. This paper defines an item as unpromising if its TWU

is less than the minimum utility threshold. Such items can not be a part of any

high-utility itemset due to the transaction-weighted downward closure property.

Such items can be removed from the transaction database and this strategy is

called the “discarding global unpromising items (DGU)” strategy. The tree-

based algorithms like FP-Growth [40] grow a prefix in a bottom-up manner

from the leaf towards the root node during the execution of a pattern-growth

algorithm. So, the utilities of a node descendants can be removed from its

node utility during the construction of a global UP-tree from the transaction

database. This strategy is called “discarding global node utilities (DGN)”. The

remaining strategies called the “discarding local unpromising items (DLU)” and

the “discarding local node utilities (DLN)” are similar to DGU, DGN and are

applied during the construction of local UP-trees during the mining process.

The process to construct a global UP-tree from the transaction database and

local UP-trees is similar to the one followed for the FP-tree [40], and IHUP-tree

[6] construction. The utility of items can not be used in the DLU and DLN strate-

gies as it is not available during the generation of local UP-trees. A table called

minimum item utility is maintained that stores the minimum utility of global

promising items in the database. The authors proposed an algorithm called

UP-Growth [72] that constructs the UP-tree data structure to mine high-utility

itemsets. Tseng et al. [71] proposed another algorithm called UP-Growth+ that

23

maintains a minimum node utility in every node of the UP-tree and uses it dur-

ing the DLU and DLN strategy instead of the minimum item utility table. The

minimum node utility associated with a node N is its minimum utility in the set

of transactions present in the path from the node N to the root in a UP-tree.

HUI-Miner and FHM: The two-phase [51] and the tree-based [72, 71] algo-

rithms suffer from the computational bottleneck observed in algorithms based

on the candidate generation and verification framework. Liu et al. [49] proposed

a data structure called utility-list and a list-based algorithm called HUI-Miner

that can extract high-utility itemsets in one-phase only. The utility-list struc-

ture keeps enough information to compute the utility of an itemset generated

during the search space exploration. The utility-list associated with an itemset

X stores tuples of the form 〈(Tid, EU,RU)〉. The Tid stores the transaction

identifier that contains the itemset X . The exact-utility(EU) is the utility of X

in a transaction. The HUI-Miner algorithm sorts the items in the transaction

database according to the ascending order of their TWU. The remaining-utility

(RU) stores the sum of utilities of remaining items after X in a transaction.

The HUI-Miner algorithm explores the search space in a depth-first search

fashion and constructs the utility-list of 1-itemsets before starting the mining

process. The utility-list of 2-itemsets are generated by intersecting/joining the

utility-lists of the items present in the itemset based on their common transac-

tion identifiers. The utility-list of a k-itemset is generated by intersecting the

utility-lists of two {k − 1}-itemsets with the utility-list of the prefix itemset. A

typical problem associated with list-based algorithms is the costly operation of

24

intersecting the utility-lists. Viger et al. [32] proposed a novel data structure

EUCS and an algorithm FHM to reduce the number of intersection operations.

The EUCS structure maintains the TWU for every pair of items and the FHM

algorithm generates utility-list of a new itemset only if the TWU of the item

of the current itemset and last appended item to the prefix is greater than the

minimum utility threshold.

mHUIMiner: Peng et al. [61] proposed an algorithm called mHUIMiner that

constructs an IHUP-tree [6] to avoid generating candidates that are non-existent

in the database during the invocation of the HUI-Miner [49] algorithm.

EFIM: Zida et al. [85] proposed an algorithm called EFIM that constructs a

projected database in the form of transactions only during the mining process

and performs transaction merging to reduce the size of the projected database

in every recursive invocation of the algorithm. EFIM is the state-of-the-art algo-

rithm on dense datasets that have very similar transactions with a higher average

transaction length with fewer items.

d2HUP: EFIM [85] is not the state-of-the-art algorithm on sparse datasets as it

performs binary search during the creation of projected database and transaction

merging works better for dense datasets. Liu et al. [48] proposed a hyperlink

data structure called CAUL and an algorithm called d2HUP bundled with strate-

gies like lookahead pruning to efficiently mine high-utility itemsets from sparse

datasets. d2HUP is the state-of-the-art algorithm on sparse datasets.

HMINER: Krishnamoorthy [44] proposed an algorithm called HMINER that

25

constructs a compact utility-list data structure and mines high-utility itemsets

by integrating techniques like transaction merging, lookahead pruning etc. to

reduce the search space and total execution time of the algorithm.

Apart from itemset mining, the research community has contributed by em-

bedding constraints into the pattern mining process and this area of research

is called constraint pattern mining [58, 42, 66, 23, 37]. Guns et al. [36] in-

troduced a declarative framework named MiningZinc for constraint-based data

mining. To the best of our knowledge, MiningZinc is the first framework that

can express the high-utility itemset mining problem. MiningZinc uses a cover

function that returns the set of transaction identifiers containing an itemset and

the actual data to compute its utility. MiningZinc expresses the itemset mining

problem over integer and set variables with no explicit data structures. Coussat

et al. [20] defined the problem of high-utility itemset mining in uncertain ten-

sors, and showed that an algorithm called multidupehack [14] could be deployed

to mine itemsets. The authors studied a generalized version of high-utility item-

set mining problem where the utilities can be positive and negative and are not

restricted to matrices. It can be an interesting research direction to integrate

the constraint pattern mining techniques into the existing itemset mining frame-

work. Interested readers can refer to some recent survey papers [65, 35] for a

global view on the integration of constraints in pattern mining.

26

2.3 Summary

In Section 2.1, we discussed the concept of association rules, frequent itemsets,

data structures, and algorithms to mine frequent itemsets. In Section 2.2, we

presented a literature review to discuss the data structures and algorithms for

mining high-utility itemsets. In the next chapter, we propose a tree data struc-

ture called UP-Hist tree, and a two-phase tree-based algorithm called UP-Hist

Growth to mine high-utility itemsets.

27

Chapter 3

UP-Hist Growth: A two-phase tree-based

algorithm for mining high-utility itemsets

In this chapter, we propose a data structure called UP-Hist tree and an algo-

rithm called UP-Hist Growth that generates fewer candidates in the first phase

compared to existing two-phase tree-based algorithms. We propose a tighter

score to estimate the utility of an itemset and its supersets that allows UP-Hist

Growth to prune the search space better compared to other two-phase tree-based

algorithms. We conduct extensive experiments on several benchmark sparse

and dense datasets to compare the performance of UP-Hist Growth with other

state-of-the-art two-phase tree-based algorithms. Our results validate the supe-

rior performance of UP-Hist Growth on several benchmark sparse and dense

datasets.

This chapter is organized as follows. In Section 3.1, we define a histogram

that can be stored with every node of our proposed UP-Hist tree structure and es-

timates to compute a correct bound on the utility of an itemset and its supersets.

28

We also discuss the process to construct a UP-Hist tree from the transaction

database. In Section 3.2, we propose the UP-Hist Growth algorithm. The ex-

perimental results are presented in Section 3.3 and Section 3.4 summarizes the

research contributions of this chapter.

3.1 Our proposed UP-Hist Tree and utility estimates

A two-phase tree-based algorithm like UP-Growth [72], UP-Growth+ [71] ex-

tracts high-utility itemsets in two phase. The tree-based algorithms generate

candidate high-utility itemsets by recursively generating tree data structures

like a UP-tree [71] in the first phase, and compute the utility of the candi-

dates through another database scan in the second phase. The time spent by

the algorithms in the verification phase depends on the number of candidates

generated in the first phase. We believe that designing a tighter upper-bound

will reduce the number of candidates, and improve the performance of two-

phase tree-based algorithms. We augment a histogram with each node of the

UP-Hist tree to compute a tighter upper-bound compared to the state-of-the-art

two-phase tree-based algorithms. A histogram associated with every node of

UP-Hist tree stores the number of transactions that contain the positive utility

associated with an item and is formally defined below.

Definition 3.1 (Histogram). A histogram h for an item-node Ni is a set of pairs

〈wi, numi〉, wherewi is a non-negative utility associated with an item and numi

is the number of transactions that contain the item associated with node Ni and

29

the item has wi utility associated with it.

Each nodeN of a UP-Hist tree stores the following information: itemN.item,

identifier uid, histogram N.hist, node utility nu, support count N.count, a

pointer to the parent node N.parent, and a pointer N.hlink that points to an-

other node with the same item N.item. The root of a UP-Hist tree is a special

empty node that points to its child nodes. Every path from root to the leaf rep-

resents a set of transactions in the transaction database. The support count of

a node N along a path from root to N stores the number of transactions that

contain N.item. The node utility stores an upper-bound score (like TWU) com-

puted for each node of the UP-Hist tree. The field uid stores a randomly gen-

erated unique identifier that is associated with each node of the global UP-Hist

tree.

A header table is also maintained to efficiently traverse the UP-Hist tree. The

header table stores three columns: item name, overestimated utility, and a link

to the node withN.item equal to item name. The header table allows to traverse

all the nodes associated with a particular item in UP-Hist tree as the nodes are

connected through a linked-list.

3.1.1 Construction of a global UP-Hist tree

The global UP-Hist tree is constructed from the transaction database in two

database scans. Initially, the transaction database is scanned to compute the

TWU [50] for the items present in the database. Transaction utility (TU) of

30

a transaction [50] is defined as the sum of utility of the items present in the

transaction. The transaction-weighted utility (TWU) [50] for an item is defined

as the sum of transaction utility for the transactions that contain the item. The

items with TWU less than the given minimum utility threshold denoted by θ are

labeled as unpromising items. The unpromising items can not be a part of any

high-utility itemset due to the transaction-weighted downward closure property

[50] and can be removed from the database. The strategy to remove unpromis-

ing items and recompute the transaction utility (TU) for every transaction is

called the “discarding global unpromising items (DGU)” [72, 71] strategy. The

unpromising items are removed from the transaction database, and the items

are sorted in descending order according to their TWU values during the sec-

ond database scan. The transactions after the removal of unpromising items are

called reorganized transactions.

We apply another strategy called “discarding global node utility (DGN)”

[72, 71] after the application of DGU strategy to compute a tighter upper-bound

score. The tree-based algorithms like UP-Growth [72], UP-Growth+ [71] etc.

are pattern growth algorithms that grow a prefix in a bottom-up manner. There-

fore, the utility of descendants can be removed from the node utility for every

node of the UP-Hist tree. The new transactions called reorganized transactions

are inserted one by one to construct a global UP-Hist tree through a procedure

called Add_transaction_globaltree (Algorithm 3.1). The procedure takes as in-

put a transaction with its transaction utility, and the global UP-Hist tree. Initially

a pointer called currentNode points to the root of the tree (line 1). The first item

31

from the beginning of the transaction is selected, and a variable called RU stores

the sum of utility of the remaining items (line 4-10). A new node is created for

the selected item by calling a method called createNewNode(), if there is no

child node with the same item name as the selected item (line 13-17). The func-

tion createNewNode() returns a pointer to the new node created for the selected

item from the transaction. The header table associated with the tree T is also

updated in the CreateNewNode function. The node utility is computed by apply-

ing the DGN strategy (line 16). Else, the histogram and other fields associated

with the existing node in the tree are updated (line 19-23), and the procedure is

called recursively to process the next item from the transaction.

For example, consider the transaction database shown in Table 3.1 and let

the minimum utility threshold (θ) be 75. The TWU for the items present in the

transaction database is shown in Table 3.2. The items F, G, and H are identified

as unpromising, and can be removed from the database. The items within each

transaction are sorted according to the descending order of TWU values. The

reorganized transactions for our example database is shown in Table 3.3. The

global UP-Hist tree constructing from the reorganized transactions after apply-

ing the DGU, and DGN strategy is shown in Figure 3.1. Let us focus on the

histogram associated with node C in the global UP-Hist tree. The histogram

associated with node C is h = {(1 : 1), (4 : 1), (6 : 1), (10 : 1), (13 : 1)}. It

can be observed from the transaction database that the item C appears in five

transactions with the utility stored in its associated histogram.

32

Table 3.1: Example database

TID Transaction TU
T1 (B : 4) (C : 4) (E : 3) (G : 2) 13
T2 (B : 8) (C : 13) (D : 6) (E : 3) 30
T3 (A : 5) (C : 10) (D : 2) 17
T4 (A : 30) (B : 2) (C : 1) (D : 8) (H : 2) 43
T5 (A : 10) (C : 6) (E : 6) (G : 5) 27
T6 (A : 10) (B : 4) (D : 12) (E : 6) (F : 5) 37

Table 3.2: TWU of items

Item A B C D E F G H
TWU 124 123 130 127 107 37 40 43

Table 3.3: Reorganized transactions

TID Reorganized Transaction TU
T1 (C : 4) (B : 4) (E : 3) 11
T2 (C : 13) (D : 6) (B : 8) (E : 3) 30
T3 (C : 10) (D : 2) (A : 5) 17
T4 (C : 1) (D : 8) (A : 30) (B : 2) 41
T5 (C : 6) (A : 10) (E : 6) 22
T6 (D : 12) (A : 10) (B : 4) (E : 6) 32

107

Item LinkTWU

130C

D

A

B

E

127

124

123

({1:1, 4:1, 6:1,
10:1, 13:1}, 34,5)

({4:1}, 8,1)

E

({3:1}, 11,1)

B

C

D

B

E

({2:1, 6:1,
8:1}, 40,3)

({8:1}, 27,1)

({3:1}, 30,1)

A

B

({5:1, 30:1},
56,2)

({2:1}, 41,1)

A

E

({10:1}, 16,1)

({6:1}, 22,1)

D

A

B

E

({12:1}, 12,1)

({10:1}, 22,1)

({4:1}, 26,1)

({6:1}, 32,1)

{ }

Figure 3.1: Global UP-Hist tree

33

Algorithm 3.1 Add_transaction_globaltree (Itemset tx, TU,T)
Input: A transaction tx, transaction utility of tx, and a global UP-Hist tree T.
Output: Returns the global UP-Hist tree T after the insertion of transaction tx

1: currentNode = T.root
2: size = tx.size(), i=0
3: while i < size do
4: k = i+1, RU=0
5: while k < size do
6: RU = RU + tx.get(k).utility
7: k = k + 1
8: end while
9: item = tx.get(i).item

10: utility = tx.get(i).utility
11: childNode = currentNode.getChildWithID(item)
12: if childNode==NULL then
13: currentNode = createNewNode(currentNode,item,utility)
14: currentNode.count = 1
15: currentNode.updateHist(utility,1)
16: CurrentNode.nu = TU - RU
17: currentNode.uid = random_number()
18: else
19: childNode.count = childNode.count + 1
20: childNode.updateHist(utility,childNode.count)
21: childNode.nu = childNode.nu + TU - RU
22: currentNode = childNode
23: end if
24: i = i+1
25: end while
26: Return T

3.1.2 Construction of a local UP-Hist tree

Local trees are constructed by tree-based algorithms during the extraction of

candidate high-utility itemsets. The algorithms aim to reduce the number of

candidates by computing tighter upper-bound estimates for the utility of the cur-

rently explored prefix itemset and its supersets. Tseng et. al. [72, 71] proposed

two strategies called “discarding local unpromising items (DLU)”, and “discard-

ing local node utility (DLN)” to compute tighter utility estimates. The strategies

DLU, and DLN are similar to DGU, and DGN. However, the exact utility of

34

items in a transaction is not available during the mining process. Therefore, a

score called minimum node utility is stored with each node of the UP-tree [71]

that is used by the UP-Growth+ [71] algorithm for DLU and DLN. The mini-

mum node utility associated with a node Ni is the minimum utility of item i in

the transactions represented by the path from the root to a leaf node containing

node Ni as an intermediate node.

We utilize the information stored in the histogram associated with each node

of the UP-Hist tree to compute tighter upper-bound scores compared to the state-

of-the-art algorithm UP-Growth+ [71]. We will also compute a lower-bound

utility estimate to reduce the number of candidates that are passed for verifica-

tion. Now, we define two functions minC(I, s), and maxC(I, s) that takes as

input the histogram associated with a node for item I and return a number as

output.

Definition 3.2. Let h be a histogram, associated with an item-node Ni, con-

sisting of n, (1 ≤ i ≤ n) pairs < wi, numi >, sorted in ascending or-

der of wi. minC(Ni, s) returns the sum of item-copies of k entries of h, i.e.,

minC(Ni, s) =
∑k

1 wi, such that k is the maximal number fulfilling k ≤∑k
1 numi.

Definition 3.3. Let h be a histogram, associated with an item-node Ni, con-

sisting of n, (1 ≤ i ≤ n) pairs < wi, numi >, sorted in descending or-

der of wi. maxC(Ni, s) returns the sum of item-copies of k entries of h, i.e.,

maxC(Ni, s) =
∑k

1 wi, such that k is the minimal number fulfilling k ≤∑k
1 numi.

35

In the UP-Hist tree, we maintain a histogram sorted in only ascending order

of item-utility (wi) only. minC(·) will process the pairs from the front of the

histogram, and maxC(·) will process pairs from rear to front of the histogram.

For example, minC(C,3), and maxC(C,3) for the histogram h = {(1 : 1), (4 :

1), (6 : 1), (10 : 1), (13 : 1)} associated with C is 11 and 29 respectively.

Definition 3.4. Given an itemset I =< a1, a2, ..., ak > corresponding to a path

in a UP-Hist tree, with support count value of item ak as s, the UB and LB

utility values of I are computed as defined below.

UB(I) =
k∑
i=1

maxC(ai, s)

LB(I) =
k∑
i=1

minC(ai, s)

Theorem 3.1. LB(I) and UB(I) are correct lower and upper bound estimates

of the exact utility for any itemset I with support s.

Proof. As per Definition 3.4, the lower bound utility estimate of I i.e. LB(I)

is computed as a summation of minC(ai, s) for each item ai ∈ I . The exact

utility of the itemset I is computed as summation of the exact utility of each

item ai ∈ I associated with each item in the set of transactions containing I. As

minC(I,s) computes the sum of utility from the front of the histogram, the exact

utility of I can not be less than minC(I,s). Therefore, LB(I) is a correct lower-

bound estimate for the exact utility of I . Similarly, the summation of the utility

associated with each item ai in I can not be more than computed by maxC(I,s)

36

as the histogram is constructed from the set of transactions containing I only.

Therefore, UB(I) is a correct upper-bound estimate for the exact utility of I .

The method to construct a local UP-Hist tree is presented by Algorithm 3.2.

The algorithm takes as input a UP-Hist tree T , an item i, and the user-defined

minimum utility threshold θ as input and returns the local tree for item i. Ini-

tially, the entry for the item i is fetched from the header table of the input UP-

Hist tree T , and a conditional pattern base (CPB) for item i is constructed (line

1-20). The conditional pattern base for item i stores a list of paths, where each

path contains the nodes between the root and the node corresponding to item

i by traversing the linked-list associated with item i from the header table H .

list of paths from the tree T that contain item i. The node corresponding to

item i is also stored in the list of paths called PrefixPath, but it will not be in-

serted in the local UP-Hist tree. A HashMap called itemPathUtility stores the

path utility for the ancestors of item i. An empty local UP-Hist tree is cre-

ated (line 21), and every path stored in the conditional pattern base is processed

and inserted to construct a local UP-Hist tree (line 22-39). Only the nodes

corresponding to the promising items i.e. items with path utility of at least θ

are added to the local tree. The strategy called DLU is applied to remove the

contribution of unpromising items (line 33-35). The nodes in every path are

sorted in descending order of their path utility scores and the method called

Add_transaction_localtree (Algorithm 3.3) inserts the localPath into the local

UP-Hist tree. The strategy called discarding local node utility (DLN) is applied

in the method called Add_transaction_localtree. We illustrate an example to

37

construct the local UP-Hist tree for the item {A} from the global UP-Hist tree

(Figure 3.1) below.

The CPB of {A} consists of the following paths: 〈ADC〉:56, 〈AC〉:16, and

〈AD〉:22. The path utility for the ancestors present in CPB(A) i.e. C and D

respectively is 72, and 78. Therefore, item C is unpromising and its utility

must be removed from the CPB(A). Now, we will calculate the estimated utility

using our histogram. The support of the unpromising item C is 2 and minC(C,2)

is 5. The path utility of path < CD > after applying the DLU strategy is 51.

Therefore, the local UP-Hist tree of {A}will consist of only node corresponding

to the item D. It can be observed that there are two nodes associated with item

D in the global UP-Hist tree. Both nodes have a different unique identifier (uid)

associated with it. Therefore, the node D in the local tree for the item {A} will

have the histogram {(2 : 1), (6 : 1), (8 : 1), (12 : 1)} associated with it (line

20-22) after the execution of the method called Add_transaction_localtree.

Theorem 3.2. The recomputed path utility and node utility is an upper-bound

on the utility for an itemset and any of its supersets,

Proof. It has been proved from Theorem 3.1 that minC(·) computes a correct

lower-bound estimate for the exact utility of an item. Therefore, the recomputed

path utility and node utility after applying the DLU, and DLN strategy computes

a correct upper-bound estimate for the utility of an itemset and its supersets.

38

Algorithm 3.2 Construct_local_tree (T , i,θ)
Input: A UP-Hist tree T , an item i, a minimum utility threshold θ.
Output: The local tree for the item i.

1: Get a pointer to the first node for item i in T from the header table associated with T and store it in a
variable called path

2: Initialize an list called CPB and a HashMap called itemPathUtility to store path utility of the ancestors
of i in CPB

3: while path 6= NULL do
4: prefixPath.add(path)
5: parentnode = path.parent
6: nodeutility = path.nu
7: while parent 6= T.root do
8: prefixPath.add(parentnode)
9: pu = itemPathUtility.get(parentnode.itemID)

10: if pu==NULL then
11: pu = nodeutility
12: else
13: pu = pu + nodeutility
14: end if
15: itemPathUtility.put(parentnode.itemID,pu)
16: parentnode = parentnode.parent
17: end while
18: CPB.add(prefixPath)
19: path = path.nodeLink
20: end while
21: Create an empty UP-Hist tree called local_tree
22: for prefixPath in CPB do
23: pathCount = prefixPath.get(0),count
24: pathUtility = prefixPath.get(0).nu
25: Initialize an empty list called localPath
26: J = 1
27: while J < prefixPath.size() do
28: value = 0
29: node = prefixPath.get(J)
30: if itemPathUtility.get(node.itemID) ≥ θ then
31: localPath.add(node)
32: else
33: value = minC(node,pathCount)
34: end if
35: pathUtility = pathUtility - value
36: J = J+1
37: end while
38: Sort localPath in descending order of path utility
39: local_tree.Add_transaction_localtree(localPath, pathUtility, pathCount)
40: end for
41: Return local_tree

39

Algorithm 3.3 Add_transaction_localtree (localPath, pathUtility,pathCount)
Input: A list of nodes stored in localPath, utility of the path stored in pathUtility, and number of
transactions containing the path stored in pathCount.
Output: Inserts a localPath in a local UP-Hist tree

1: currentlocalNode = root
2: size = localPath.size(), i=0
3: while i < size do
4: k = i+1, RU=0
5: while k < size do
6: node = localPath.get(k)
7: RU = RU + minC(node,pathCount)
8: k = k + 1
9: end while

10: item = localPath.get(i).item
11: childNode = currentlocalNode.getChildWithID(item)
12: if childNode==NULL then
13: currentlocalNode = createNewNode(currentlocalNode,item)
14: currentlocalNode.count = pathCount
15: currentlocalNode.updateHist(localPath.get(i).hist)
16: CurrentlocalNode.nu = pathUtility - RU
17: currentlocalNode.uid = localPath.get(i).uid
18: else
19: childNode.count = childNode.count + pathCount
20: if childNode.uid 6= localPath.get(i).uid then
21: childNode.updateHist(localPath.get(i).hist)
22: end if
23: childNode.nu = childNode.nu + pathUtility - RU
24: currentlocalNode = childNode
25: end if
26: i = i+1
27: end while

40

3.2 UP-Hist Growth Algorithm

In this section, we propose the UP-Hist algorithm to mine high-utility itemsets.

The UP-Hist algorithm (Algorithm 3.4) takes as input a global UP-Hist tree, a

prefix α, and a user-defined minimum utility threshold θ as input, and outputs a

set of candidate high-utility itemsets. The exact utility of the candidate itemsets

is computed in the verification phase by scanning the database.

UP-Hist Growth is a pattern-growth algorithm that starts with an empty pre-

fix, and explores the search space in a depth-first manner. Every item ai is

processed from the header table of the global UP-Hist tree in a bottom-up man-

ner (line 1). The node utility of ai is computed by traversing the nodes in the

linked-list associated with the entry ai from the header table (line 3). If the esti-

mated node utility is no less than θ, the upper-bound and lower-bound estimates

for the current prefix I is computed (line 5). If the lower-bound utility of itemset

I is at least θ, I is output as a high-utility itemset as the utility of I in the database

will be at least θ too as per Theorem 3.1. Else, if the upper-bound utility of I is

no less than θ, I is added to the set of candidate high-utility itemsets (line 10).

The conditional pattern base (CPB) for I is constructed, and unpromising items

in the CPB of I is identified. The strategy DLU and DLN is applied and a local

UP-Hist tree for I is constructed (line 14). If the local UP-Hist tree is not empty,

the UP-Hist growth algorithm is called recursively (line 16). The exact utility

of the candidate high-utility itemsets generated by UP-Hist Growth is computed

to scanning the database and high-utility itemsets are identified (line 20).

41

Algorithm 3.4 UP-Hist Growth(α,T , H ,θ)
Input: Prefix α (initially empty),a global UP-Hist tree T , a header table H for T , a minimum utility
threshold θ.
Output: All high-utility itemsets with α as prefix.

1: for each entry {i} in H do
2: Itemset I = α ∪ i.
3: Compute node.nu by following the links from the header table for {i}.
4: if node.nu(ai) ≥ θ then
5: Compute UB({I}) and LB({I}).
6: if UB(I) ≥ θ then
7: if LB(I) ≥ θ then
8: Output I as a high-utility itemset.
9: end if

10: Add I to the list of candidate high-utility itemsets.
11: end if
12: TI = Construct_local_tree (T , i,θ)
13: if TI 6= null then
14: Call UP-Hist Growth(I ,TI , HI ,θ)
15: end if
16: end if
17: end for
18: Compute the exact utility for every generated candidate high-utility itemset by scanning the database

again and output the high-utility itemsets.

3.2.1 Complexity Analysis

The UP-Hist Growth algorithm is a two-phase tree-based algorithm that gener-

ates candidates in the first phase, and scans the database to compute the utility

of candidates in the verification phase. Let us analyze the complexity of the

candidate generation phase.

Let “|I|” be the number of items, “n” be the number of transactions, and let

the maximum transaction length be “w”. We can assume that all transactions

have “w” items for the analysis of worst-case time complexity. The initial UP-

Hist tree is constructed by inserting each transaction from the database. The

cost of initial tree creation is O(n × w), where O(w) is the cost of inserting a

transaction in the tree either by finding a path from the root node or adding a new

42

path to the tree. The search-space for itemset mining consists of 2|I| itemsets,

and a local UP-Hist tree is created for every explored itemset by the UP-Hist

Growth algorithm. The length of the header-list for any item in the header table

can be maximum “n” assuming that the item is present in every transaction.

It takes another O(n × w) cost to construct the conditional pattern base. The

method named updateHist(·) is called during the creation of local tree and takes

O(m × log (m)) cost to update the histogram at every node. The minC(·) and

maxC(·) methods perform a linear scan on the histogram and take O(m) cost.

The insertion of a path from the conditional pattern base to construct a local

tree can take O(w× (m× log (m)) cost. The total cost of candidate generation

phase is O(2|I|× (nw× (m× log (m))).

In the verification phase, utilities of the candidate itemsets are computed by

scanning the database. It takes O(n × w) cost to scan the complete transaction

database. For every transaction, the utilities of the candidate itemsets present in

it is computed. The worst case complexity of verification phase is O (n × w ×

2|I|).

In terms of space complexity, the main cost is the space used by the global

and local UP-Hist trees constructed during the candidate generation phase. The

height of a UP-Hist tree is bounded by the longest transaction. Without con-

sidering the root node, the number of nodes in a UP-Hist tree is bounded by

O(n × w) assuming that the transactions share no path in the tree. The his-

togram associated with a node of the tree can occupy O(m) space assuming that

the histogram contains “m” key-value pairs. There can be a maximum of “w”

43

local trees in memory. The space complexity of UP-Hist Growth algorithm can

be bounded by O(w× (nwm + |I|)), where |I| factor accounts for the size of

header table.

3.2.2 An Illustrated Example

We will now illustrate an example for the execution of UP-Hist Growth on a

transaction database. Consider the transaction database as shown in Table 3.1,

and let the minimum utility threshold θ be 75. The database is scanned to com-

pute the TWU of items as shown in Table 3.2. Item F, G, and H are identified as

unpromising items and are removed from the transaction database. The items in

every transaction are sorted in decreasing order of TWU values and inserted to

construct the global UP-Hist tree as shown in Figure 3.1. The items in the global

header table will be processed in a bottom-up manner. Let us focus on the pro-

cessing of item A. The linked-list associated with item A will be traversed to

compute its total node utility [71]. The total node utility computed by summing

up the node utility for every node present in the linked-list for item A is 94. The

prefix {A} will be processed further as it’s total node utility is greater than the

minimum utility threshold. The UB({I}) and LB({I}) is 55. Therefore, prefix

{A} will not be added to the list of candidate high-utility itemset. The condi-

tional pattern base (CPB) for the current prefix is computed. The CPB of {A}

consists of the following paths: 〈ADC〉:56, 〈AC〉:16, and 〈AD〉:22. The TWU

for the items present in CPB(A) i.e. C and D respectively is 72, and 78. There-

fore, item C is unpromising and its utility must be removed from the CPB(A).

44

The reorganized utility of the path < CD > by UP-Growth+ is computed as

shown below.

pu(< CD >,A− CPB) = 56−mnu(C)× s(c) = 56− 1× 2 = 54.

The estimated utility for the itemset < AD > by UP-Growth+ is equal to the

sum of path utility of < CD > and < D > in {A} − CPB i.e. 76.

Now, we will calculate the estimated utility using our histogram. The support

of the unpromising item C is 2 and minC(C,2) is 5. The path utility of path

< CD > using the histogram of item {C} {(1 : 1), (4 : 1), (6 : 1), (10 :

1), (13 : 1)} is given below:

pu(< CD >, {A} − CPB) = 56−minC(C, 2) = 56− 5 = 51.

The estimated utility of itemset < AD > is 73. Therefore, < AD > is

a potential high utility itemset according to the UP-Growth and UP-Growth+

algorithm, but a low utility itemset according to UP-Hist Growth.

UP-Hist Growth will not generate any candidate high-utility itemset for veri-

fication at minimum utility threshold equal to 75. However, UP-Growth+ gener-

ates the following candidate high-utility itemsets: {A}:94, {AD}:76, {B}:102,

{BD}:77, and {E}:95. This example highlights that the histogram associated

with a UP-Hist tree allows to compute a tighter bound compared to the bound

computed by UP-Growth+.

45

3.3 Experiments and Results

In this section, we compare the performance of the proposed UP-Hist Growth

algorithm with state-of-the-art two-phase tree-based algorithms, IHUP-Growth

[6], UP-Growth [72], and UP-Growth+ [71]. The source code of the algorithms

was downloaded from the SPMF library [31]. The total execution time, the

number of candidates generated during the mining process, and maximum main

memory consumed are used as the metrics to compare the performance of algo-

rithms on several benchmark dense and sparse datasets.

The experiments were performed on an Intel Xeon(R) CPU=26500@2.00

GHz with 16 GB RAM and Windows Server 2012 operating system. All datasets

except NyTimes used for our experiments were obtained from the SPMF library

[31], and the characteristics of the datasets are shown in Table 3.4. The Ny-

Times dataset is a bag of words dataset obtained from the UCI Machine Learn-

ing repository [29]. The Retail dataset contains customer transactions from

an anonymous Belgian retail store. The Kosarak dataset was generated from

click-stream data from a Hungarian news portal. The ChainStore dataset con-

tains customer transactions from a grocery store chain in California, USA. The

Chess, Mushroom, and Connect datasets were prepared from their correspond-

ing datasets in the UCI machine learning repository. The Accidents dataset was

prepared from anonymized traffic accident data. Only the ChainStore and Ny-

Times datasets contained utility values associated with every item in a transac-

tion. For the remaining datasets, the internal utility values were generated from

46

Table 3.4: Characteristics of real datasets

Dataset #Tx Avg. length #Items (I) Density score R
(%) =(A/I)x100 [7]

Type

Retail 88,162 10.3 16,470 0.062 Sparse
Kosarak 9,90,002 8.1 41,270 0.019 Sparse
Chainstore 11,12,949 7.2 46,086 0.015 Sparse
NyTimes 3,00,000 232.2 1,02,660 0.22 Sparse
Chess 3,196 37 75 49.33 Dense
Mushroom 8,416 23 119 19.32 Dense
Connect 67,557 43 129 33.33 Dense
Accidents 3,40,183 33.8 468 7.22 Dense

Table 3.5: Candidate generation and verification time (sec) on Kosarak dataset

Threshold(%) UP-Hist Growth UP-Growth+
0.6 242 sec (20 sec) 51 sec (105 sec)
0.65 226 sec (11 sec) 41 sec (80 sec)
0.7 151 sec (13 sec) 32 sec (68 sec)
0.75 126 sec (11 sec) 22 sec (56 sec)
0.8 96 sec (11 sec) 24 sec (49 sec)

a uniform distribution in the range of 1 to 10, and the external utility values

were generated from a Gaussian distribution. The positive weight associated

with every item in a transaction is a product of their internal and external utility.

Effect of varying minimum utility threshold: We study the effect of vary-

ing minimum utility threshold on the performance of the two-phase tree-based

algorithms on different datasets. The results on sparse datasets is shown in Fig-

ure 3.2 and Figure 3.3 respectively. The UP-Hist Growth algorithms has the

minimum number of candidates generated during the mining process compared

to the other algorithms on every sparse dataset. The UP-Hist Growth al-

gorithm executes at least 19 times faster compared to other algorithms on the

Retail dataset for a threshold equal to 0.01 %. The UP-Hist Growth algorithm

executes around 3 times faster compared to the UP-Growth+ algorithm at lower

47

0.01 0.015 0.02 0.025 0.03
4

6

8

10

12

14

Minimum utility threshold%

Ti
m

e
lo

g
ba

se
2

sc
al

e
(s

ec
)

Retail (Sparse)

0.01 0.015 0.02 0.025 0.03
12

14

16

18

20

22

Minimum utility threshold%

N
o.

of
ca

nd
id

at
es

lo
g

ba
se

2
sc

al
e Retail (Sparse)

0.6 0.65 0.7 0.75 0.8
6

8

10

12

14

Minimum utility threshold%

Ti
m

e
lo

g
ba

se
2

sc
al

e
(s

ec
)

Kosarak (Sparse)

0.6 0.65 0.7 0.75 0.8

10

15

20

Minimum utility threshold%

N
o.

of
ca

nd
id

at
es

lo
g

ba
se

2
sc

al
e Kosarak (Sparse)

0.3 0.35 0.4 0.45 0.5

12

13

14

Minimum utility threshold%

Ti
m

e
lo

g
ba

se
2

sc
al

e
(s

ec
)

NyTimes (Sparse)

0.3 0.35 0.4 0.45 0.5
14

15

16

17

18

Minimum utility threshold%

N
o.

of
ca

nd
id

at
es

lo
g

ba
se

2
sc

al
e NyTimes (Sparse)

0.01 0.015 0.02 0.025 0.03

8

10

12

Minimum utility threshold%

Ti
m

e
lo

g
ba

se
2

sc
al

e
(s

ec
)

ChainStore (Sparse)

0.01 0.015 0.02 0.025 0.03

10

12

14

16

18

Minimum utility threshold%

N
o.

of
ca

nd
id

at
es

lo
g

ba
se

2
sc

al
e ChainStore (Sparse)

UP-Growth+ UP-Growth IHUP-Growth UP-Hist Growth

Figure 3.2: Performance evaluation (Time and number of candidates) for UP-Growth+, UP-Growth, IHUP-Growth
and UP-Hist Growth on sparse datasets. The UP-Hist Growth and IHUP-Growth algorithms ran out of memory for
the NyTimes dataset. The UP-Growth algorithm did not terminate execution for more than 24 hours on the NyTimes
dataset for threshold less than 0.45 %. 48

0.01 0.015 0.02 0.025 0.03

11

11.2

11.4

11.6

11.8

12

Minimum utility threshold%

M
em

or
y

lo
g

ba
se

2
sc

al
e

(M
B

)

Retail (Sparse)

0.6 0.65 0.7 0.75 0.8

11.8

12

12.2

12.4

12.6

Minimum utility threshold%

M
em

or
y

lo
g

ba
se

2
sc

al
e

(M
B

)

Kosarak (Sparse)

0.3 0.35 0.4 0.45 0.5
13.35

13.4

13.45

13.5

13.55

13.6

Minimum utility threshold%

M
em

or
y

lo
g

ba
se

2
sc

al
e

(M
B

)

NyTimes (Sparse)

0.01 0.015 0.02 0.025 0.03

11.8

12

12.2

12.4

Minimum utility threshold%

M
em

or
y

lo
g

ba
se

2
sc

al
e

(M
B

)

ChainStore (Sparse)

UP-Growth+ UP-Growth IHUP-Growth UP-Hist Growth

Figure 3.3: Memory consumption of UP-Growth+, UP-Growth, IHUP-Growth and UP-Hist Growth on sparse
datasets. UP-Growth ran out of memory during the candidate generation phase on Retail and Kosarak datasets
at lower thresholds. IHUP-Growth ran out of memory during the candidate generation phase on Kosarak dataset.
IHUP-Growth also ran out of memory on Retail dataset for threshold less than 0.002%. The UP-Hist Growth and
IHUP-Growth algorithms ran out of memory for the NyTimes dataset.

49

2 4 6 8 10
4

6

8

10

12

14

Minimum utility threshold%

Ti
m

e
lo

g
ba

se
2

sc
al

e
(s

ec
)

Mushroom (Dense)

2 4 6 8 10
14

16

18

20

22

24

Minimum utility threshold%

N
o.

of
ca

nd
id

at
es

lo
g

ba
se

2
sc

al
e Mushroom (Dense)

8 8.5 9 9.5 10
13

14

15

16

Minimum utility threshold%

Ti
m

e
lo

g
ba

se
2

sc
al

e
(s

ec
)

Accidents (Dense)

4 5 6 7 8 9 10

18

20

22

24

26

28

Minimum utility threshold%

N
o.

of
ca

nd
id

at
es

lo
g

ba
se

2
sc

al
e Accidents (Dense)

UP-Growth+ UP-Growth IHUP-Growth UP-Hist Growth

Figure 3.4: Performance evaluation (Time and number of candidates) for UP-Growth+, UP-Growth, IHUP-Growth,
and UP-Hist Growth on dense datasets. All tree-based algorithms did not terminate their execution for more than 24
hours on Chess and Connect datasets.

threshold values on the ChainStore dataset. However, it can be observed that

the UP-Growth+ algorithm has less total execution time compared to UP-Hist

Growth on the Kosarak dataset. We observe from Table 3.5 that the UP-Hist

Growth algorithm spends more time in the candidate generation phase com-

pared to the UP-Growth+ algorithm.

Therefore, the UP-Growth+ algorithm executes faster even though it gen-

erates more candidates and spends more time in the verification phase for the

Kosarak dataset. The UP-Growth and IHUP-Growth algorithms ran out of mem-

ory during the candidate generation phase on the Retail dataset for a threshold

50

2 4 6 8 10

8

9

10

11

12

Minimum utility threshold%

M
em

or
y

lo
g

ba
se

2
sc

al
e

(M
B

)

Mushroom (Dense)

8 8.5 9 9.5 10

11.3

11.4

11.5

11.6

Minimum utility threshold%

M
em

or
y

lo
g

ba
se

2
sc

al
e

(M
B

)

Accidents (Dense)

UP-Growth+ UP-Growth UP-Hist Growth

Figure 3.5: Memory consumption of UP-Growth+, UP-Growth, IHUP-Growth, and UP-Hist Growth on dense
datasets. All tree-based algorithms ran out of memory during the candidate generation phase for Accidents dataset
at 2% threshold.

60 70 80 90 100
6

8

10

12

No. of transactions%

Ti
m

e
lo

g
ba

se
2

sc
al

e
(s

ec
)

ChainStore (Sparse) 0.01%

60 70 80 90 100

12

14

16

18

No. of transactions%

N
o.

of
ca

nd
id

at
es

lo
g

ba
se

2
sc

al
e ChainStore (Sparse) 0.01 %

60 70 80 90 100

11.6

11.8

12

12.2

12.4

No. of transactions%

M
em

or
y

lo
g

ba
se

2
sc

al
e

(M
B

)

ChainStore (Sparse) 0.01 %

UP-Growth+ UP-Growth IHUP-Growth UP-Hist Growth

Figure 3.6: Scalability experiment on ChainStore and Accidents dataset for 0.01% and 2% threshold respectively.
All tree-based algorithms did not terminate for more than 24 hours for the Accidents dataset.

51

less than 0.02 and 0.015 %, respectively. The IHUP-Growth ran out of memory

during the candidate generation phase on the Kosarak dataset. The UP-Growth

ran out of memory for a minimum utility threshold of less than 0.7 % on the

Kosarak dataset. The UP-Hist Growth algorithm ran out of memory on the

NyTimes dataset during the creation of the global tree.

The results on dense datasets is shown in Figure 3.4 and 3.5. The UP-

Hist Growth has the least execution time and the number of candidates than

other tree-based algorithms on the Mushroom and Accidents dataset. The UP-

Growth+, UP-Growth, and IHUP-Growth algorithms did not terminate their

execution on the Accidents dataset for more than 24 hours. Every two-phase

tree-based algorithm ran out of memory during the candidate generation phase

on the Accidents dataset at 2% threshold. It can be observed that the UP-Hist

Growth did not terminate its execution for more than 24 hours on the Accidents

dataset for a threshold of less than 8 %. We observe that the performance of

two-phase tree-based algorithms depends on the number of candidates gener-

ated during the mining process, and there is a need to design faster algorithms

that have less memory consumption compared to the two-phase algorithms.

Effect of scalability: We study the effect of increasing the number of trans-

actions on the performance of tree-based algorithms for the ChainStore and

Accidents dataset at 0.01% and 2% respectively. The ChainStore and Accidents

dataset is the largest dataset in the category of sparse and dense datasets. The

result is shown in Figure 3.6. The total execution time, the number of generated

candidates, and the memory consumed increases with the number of transac-

52

tions for the ChainStore dataset. The tree-based algorithms did not terminate

their execution for more than 24 hours for the Accidents dataset.

3.4 Summary

In this chapter, we propose a two-phase tree-based algorithm called UP-Hist

Growth, and a data structure called UP-Hist tree that stores additional infor-

mation compared to the UP-tree to compute a better utility estimate to reduce

the number of generated candidates in the first phase. Our experimental study

in Section 3.3 shows the superior performance of UP-Hist Growth compared to

the state-of-the-art two-phase tree-based algorithms on several dense and sparse

datasets. However, we observe that the two-phase tree-based algorithms either

do not terminate its execution for more than 24 hours or run out of memory for

extremely dense benchmark datasets like Chess and Connect. In the next chap-

ter, we design a one-phase algorithm that can combine any tree-based algorithm

with a list-based algorithm to mine high-utility itemsets faster compared to the

two-phase tree-based algorithms.

53

Chapter 4

A hybrid algorithm for high-utility itemset

mining

Tree-based algorithms like UP-Growth+ [71], UP-Hist Growth [21] generate

candidates quickly, but mine high-utility itemsets in two phases. The candidate

high-utility itemsets are generated in the first phase, and the high-utility itemsets

are filtered in the next phase by computing their utility through another database

scan. It has been observed that tree-based algorithms can spend a lot of time in

the verification phase, especially for dense datasets that can have a large of

candidates generated after the first phase.

The list-based algorithms like HUI-Miner [49], FHM [32] store an inverted-

list for every itemset to keep information about the utility of the itemset in every

transaction. The list-based algorithms mine high-utility itemsets in one-phase

only without any verification phase. However, the joining/intersection of the

inverted-lists of two {k − 1}-itemsets to generate the list of a k-itemset can

become a performance bottleneck especially on dense datasets that can have a

54

large of high-utility itemsets for lower threshold values. List-based algorithms

also generate itemsets that are non-existent in the database during the mining

process.

In this chapter, we propose a hybrid algorithm to combine the benefits of

tree-based and list-based algorithms. We propose an algorithm that can com-

bine any tree-based algorithm with a list-based algorithm to design a one-phase

algorithm. Such a hybrid algorithm can generate candidates quickly by running

a tree-based algorithm and compute the utility of itemsets in one-phase only by

switching its execution to a list-based algorithm once a pre-defined switching

condition is satisfied. We perform a case study by joining the state-of-the-art

tree-based algorithm UP-Growth+ [71] and UP-Hist Growth [21] with the state-

of-the-art list-based algorithm FHM [32]. We also compare the performance of

hybrid algorithms against state-of-the-art tree-based and list-based algorithms.

In Section 4.1, we propose a hybrid algorithm that can integrate a tree-based

algorithm with a list-based algorithm. We further highlight some caveats that

must be kept in mind while designing a hybrid algorithm and discuss several

techniques that can be integrated to improve the performance of a hybrid algo-

rithm. In Section 4.2, we present a case study to discuss the integration of UP-

Growth+ [71] with FHM [32] called UPG+-Hybrid, and UPHist-Growth [21]

with FHM [32] called UPHist-Hybrid. Our experimental study is presented in

Section 4.3 and the summary of this chapter is presented in Section 4.4.

55

4.1 Hybrid algorithm

Our proposed hybrid algorithm (Algorithm 4.1) takes as input a prefix α (ini-

tially empty), a transaction database D, and a minimum utility threshold θ.

It returns the complete set of high-utility itemsets. Initially, the transaction

database is scanned to compute the TWU of items, and remove the unpromising

items (lines 1-2). The items in every transaction are sorted according to a pre-

defined ordering (like ascending order of TWU), and optimizations like trans-

action merging [85] can be performed (lines 3-4). The transactions are inserted

one by one to form a global tree data structure, and an inverted-list data structure

(lines 5-6). The algorithm Tree-Growth that represents the generic structure of a

tree-based algorithm is called (line 7). The Tree-Growth algorithm (Algorithm

4.2) takes as input a global tree, a header table, a prefix α (initially empty), and

a minimum utility threshold θ. A tree-based algorithm like UP-Growth+ [71],

UP-Hist Growth [21], IHUP-Growth [6] generate candidate high-utility item-

sets by constructing the local trees recursively and compute a score like TWU

[50], node utility [72, 71] to decide whether the current prefix itemset and its

supersets can be high-utility or not. Similarly, the Tree-Growth algorithm com-

putes a score (line 4) and proceeds its execution further if the score is no less

than θ. A UB(·) function that can compute an upper-bound utility score for

the new prefix (itemset I generated in line 2) generated is called. An example

of a UB(·) function can be the maxC(i, s) (defined in the Chapter 3) used by

the UP-Hist Growth [21] algorithm. If the UB(·) score for the current prefix

56

I is no less than the minimum utility threshold (θ), execution can be switched

to an inverted-list based algorithm (Algorithm 4.3). Else, the local tree corre-

sponding to the current prefix itemset I is constructed and Tree-Growth is called

recursively (line 10-14).

Algorithm 4.1 Hybrid algorithm(α, D, θ)
Input: Prefix α (initially empty),Transaction database D, and minimum utility threshold θ.
Output: Complete set of high-utility itemsets.

1: Scan D once to find the unpromising items.
2: Scan the database again to remove the unpromising items from each transaction.
3: Sort the items in the transactions according to a predefined global ordering.
4: Perform transaction merging.
5: Insert all the reorganized transactions to form a tree T with header table H .
6: Construct the inverted-list for the promising items.
7: Call Tree-Growth(T ,H ,{α},θ).

Algorithm 4.2 Tree-Growth(T , H , α, θ)

1: for each entry {i} in H do
2: Itemset I = α ∪ i.
3: Compute node.nu by following the links from the header table for {i}.
4: if node.nu(ai) ≥ θ then
5: Compute UB({I}).
6: if UB(I) ≥ θ then
7: Construct the inverted-list of I and call List-Miner(I , Extensions of I , θ).
8: Return.
9: else

10: Construct the conditional pattern base of itemset I .
11: end if
12: Construct the local tree (TI) with header table (HI).
13: if TI 6= null then
14: Call Tree-Growth(TI , HI ,I ,θ)
15: end if
16: end if
17: end for

A generic list-based algorithm like List-Miner (Algorithm 4.3) takes as input

a inverted-list of the current prefix, inverted-lists for the possible extensions of

the current prefix, and a minimum utility threshold. If the utility of the itemset is

no less than θ, the itemset is output as a high-utility itemset (line 2). List-based

algorithms [49, 32] construct an inverted-list for every itemset. An inverted-

57

Algorithm 4.3 List-Miner(I , Extensions of I (Ext_I), θ)
1: for each itemset Ix in Ext_I do
2: if u(Ix) ≥ θ then
3: Output Ix as a high-utility itemset.
4: end if
5: if UpperBound(Ix) ≥ θ then
6: Ext_Ix={}.
7: for each itemset Iy in Ext_I such that y comes after x do
8: Ixy=Ix ∪ Iy.
9: Construct the list for Ixy.

10: Ext_Ix=Extensions of the itemset {Ix ∪ Ixy}.
11: end for
12: List-Miner (Ix,Ext_Ix,θ).
13: end if
14: end for

list structure stores information about transactions that can contain the itemset

along with its utility and an upper-bound estimate denoted by UpperBound(·)

(line 5) on the utility of the itemset and its supersets. For example, the HUI-

Miner [49] and FHM [32] algorithm compute the sum of exact-utility [49] and

remaining-utility [49] to decide whether the current itemset and its supersets

can be high-utility or not. The sum of exact-utility and remaining-utility is an

example of UpperBound(·) function (line 5 of Algorithm 4.3). If the score

computed by the UpperBound(·) function is no less than θ, the List-Miner

algorithm constructs the inverted-lists for the extensions of the current prefix

itemset and the algorithm List-Miner is called recursively (line 5-12).

4.1.1 Caveats and Optimizations

In this subsection, we discuss few caveats that must be taken into consideration

while merging a tree-based algorithm with a list-based algorithm. We will fur-

ther discuss some optimizations that can improve the performance of a hybrid

58

algorithm.

Tree-based algorithms [71, 21] like UP-Growth+ [71], and UP-Hist Growth

[21] remove unpromising items during local tree generation and sort the trans-

actions again in descending order of TWU during the construction of local

trees. Our proposed hybrid algorithm constructs the global tree, and inverted-

lists based on the globally defined ordering of items only. If the ordering of

items is changed during the local tree creation by Tree-Growth, it might result

in the missing of few valid extensions by a list-based algorithm. For example,

list-based algorithms like HUI-Miner [49], FHM [32] order the items in ascend-

ing order of TWU before starting the mining process and that ordering of items

is not changed during the mining process. Therefore, we keep the ordering of

items intact during the execution of a tree-based algorithm. In the next section,

we will present a case study with an example to integrate the UP-Hist Growth

[21], and UP-Growth+ [71] algorithms with the FHM [32] algorithm.

List-based algorithms [49, 32] generate candidates that are non-existent in

the transaction database as they join an itemset with all possible extensions

from the defined global ordering of items. However, we can reduce the number

of candidates generated by a list-based algorithm by utilizing the information

stored in the tree data structure. A tree-based algorithm starts its execution with

an item from the header table, and grows the prefix in a bottom-up manner. We

can pass the list of extensions for an itemset to a list-based algorithm during the

switching procedure.

59

We further implement few strategies to reduce the computation and memory

consumption of a list-based algorithm after the execution is switched from a

tree-based algorithm. Recall that the inverted-list for an itemset and its possible

extensions is given as an input to a list-based algorithm when the execution is

switched from a tree-based algorithm. It is possible to construct that inverted-

list from scratch in every recursive call. However, the memoization technique

can be used to store the inverted-list of an itemset and avoid the creation of

inverted-lists from scratch during the switching process. For example, suppose

we want to switch to a list-based algorithm for the prefix {ABC} assuming that

{ABC} is a candidate high-utility itemset. The inverted-list for {ABC} can be

constructed by joining the list of itemAwith itemB followed by an intersection

with the list of item C. The inverted-list of itemset {AB} generated during the

construction of list for itemset {ABC} can be reused to construct the list for

another candidate {ABD}, and many other candidates in the mining process.

List-based algorithms compute an upper-bound score (like the sum of exact-

utility and remaining-utility) to decide whether the current prefix and its super-

sets become high-utility itemset or not. We store those itemsets as blacklisted

that have an upper-bound score computed by a list-based algorithm less than the

minimum utility threshold. Such a list of itemsets can be used during the mining

process to avoid processing any of its supersets by a list-based algorithm. We

call the above optimization as early termination strategy.

60

Table 4.1: Example database

TID Transaction TU
T1 (B : 4) (C : 4) (E : 3) (G : 2) 13
T2 (B : 8) (C : 13) (D : 6) (E : 3) 30
T3 (A : 5) (C : 10) (D : 2) 17
T4 (A : 30) (B : 2) (C : 1) (D : 8) (H : 2) 43
T5 (A : 10) (C : 6) (E : 6) (G : 5) 27
T6 (A : 10) (B : 4) (D : 12) (E : 6) (F : 5) 37

Table 4.2: TWU of items

Item A B C D E F G H
TWU 124 123 130 127 107 37 40 43

4.2 Case study: Integration of UP-Hist Growth and UP-Growth+ with

FHM

In this section, we will illustrate the integration of tree-based algorithm, UP-

Hist Growth [21], and UP-Growth+ [71] with a list-based algorithm, FHM [32]

through an example. Consider an example database as shown in Table 4.1, and

let θ be 50. The transaction database is scanned to compute the TWU of the

the present in it, and the result is shown in Table 4.2. Items F, G, and H are

identified as unpromising, and removed from the database. The items in every

transaction is sorted according to ascending order of TWU. The ordering of

items for our example dataset after the removal of unpromising items is E ≤ B

≤ A ≤ D ≤ C.

TID EU RU
1 3 8
2 3 27
5 6 16
6 6 26

TID EU RU
1 4 4
2 8 19
4 2 39
6 4 22

TID EU RU
1 7 4
2 11 19
6 10 22

Figure 4.1: Utility-list of itemset {E}, {B} and {EB}

61

The FHM [32] algorithm constructs a utility-list structure for every item. A

utility-list stores the following information: a transaction identifier(TID), Ex-

act utility (EU), and remaining utility (RU) for every itemset. The utility-list

for promising items is constructed, and the utility-list for a {k}-itemset is con-

structed by intersecting the list of two {k−1}-itemset with the prefix itemset by

FHM. The utility-list for itemsets {E}, {B}, and {EB} is shown in Figure 4.1.

FHM also constructs an EUCS data structure to store the TWU for every pair of

items. The EUCS structure is utilized to reduce the number of candidates dur-

ing the mining process by FHM. The EUCS structure for our example database

is shown in Figure 4.2. We will first illustrate an example below to integrate

UP-Hist Growth with FHM. We call the hybrid algorithm as UPHist-Hybrid.

Item C D A B E
D 88
A 80 90
B 82 103 73
C 63 62 54 73

Figure 4.2: EUCS data structure

UPHist-Hybrid: The UPHist-Hybrid algorithm constructs the UP-Hist tree and

utility-list before starting the mining process. The UP-Hist tree for our exam-

ple database is shown in Figure 4.3. UPHist-Hybrid processes items from the

header table of the UP-Hist tree in a bottom-up manner, and computes node

utility, and a UB(·) function for every candidate itemset generated from the

UP-Hist tree. The upper-bound function for UPHist-Hybrid is equal to the

value returned by the function maxC(i, s) (defined in the Chapter 3) for ev-

ery item present in the candidate itemset on which the maxC(i, s) function is

62

107

Item LinkTWU

130C

D

A

B

E

127

124

123

({1:1, 4:1, 6:1,
10:1, 13:1}, 34,5)

({4:1}, 8,1)

E

({3:1}, 11,1)

B

C

D

B

E

({2:1, 6:1,
8:1}, 40,3)

({8:1}, 27,1)

({3:1}, 30,1)

A

B

({5:1, 30:1},
56,2)

({2:1}, 41,1)

A

E

({10:1}, 16,1)

({6:1}, 22,1)

D

A

B

E

({12:1}, 12,1)

({10:1}, 22,1)

({4:1}, 26,1)

({6:1}, 32,1)

{ }

Figure 4.3: Global UP-Hist tree

invoked. The candidate itemsets generated from the UP-Hist tree that have an

upper-bound score no less than θ are {BA}:52, {BDC}:55, and {A}:55 respec-

tively. The execution is switched to FHM for further search space exploration.

For example, the utility-list of the itemset {BA} is constructed, and passed

to the FHM algorithm to compute its exact utility, and explore its supersets for

high-utility itemsets. The next candidate high-utility itemset generated by FHM

with {BA} as the prefix itemset is {BAD}. The set of high-utility itemsets for

θ equal to 50 are {AD}:67, {AC}:62, {BAD}:66, {ADC}:56, and {A}:55

respectively.

UPG+-Hybrid: The candidates generated from the UP-tree with an upper-

bound score no less than θ are {EBD}:52, {EA}:72, {BA}:76, {BD}:60,

{BC}:63, and {A}:120 respectively. The UP-Growth [72] defined the mini-

mum item utility as the minimum weight/quantity associated with an item in

the transaction database. A similar notion called maximum item utility can be

63

defined and use it during the implementation of the UPG+-Hybrid algorithm as

an UB(·) function. For example, the maximum weight associated with items

B, D, and E in our example database is 8, 12, and 6 respectively. The support

(s) of the itemset {EBD} is 2. Therefore, UB({EBD}) is 52.

In the next section, we compare the performance of UPG+-Hybrid, and

UPHist-Hybrid with the state-of-the-art tree-based and list-based algorithms on

several sparse and dense datasets.

4.3 Experiments and Results

In this section, we compare the performance of our proposed algorithms UPG+-

Hybrid, and UPHist-Hybrid against the state-of-the-art tree-based algorithms -

UP-Growth+ [71], UP-Hist Growth [21], and the state-of-the-art list-based al-

gorithms - HUI-Miner [49], and FHM [32]. The experiments were performed

on an Intel Xeon(R) CPU=26500@2.00 GHz with 16 GB RAM and Windows

Server 2012 operating system. All datasets except NyTimes used for our exper-

iments were obtained from the SPMF library [31], and the characteristics of the

datasets are shown in Table 4.3. The NyTimes dataset was obtained from the

UCI Machine Learning repository [29].

Effect of varying minimum utility threshold: We study the effect of varying

the minimum utility threshold on the performance of tree-based, list-based, and

our proposed hybrid algorithms on several sparse and dense datasets. The re-

sult on the sparse datasets is shown in Figure 4.4. The UPG+-Hybrid algorithm

64

Table 4.3: Characteristics of real datasets

Dataset #Tx Avg. length #Items (I) Density score R
(%) =(A/I)x100 [7]

Type

Retail 88,162 10.3 16,470 0.062 Sparse
Kosarak 9,90,002 8.1 41,270 0.019 Sparse
Chainstore 11,12,949 7.2 46,086 0.015 Sparse
NyTimes 3,00,000 232.2 1,02,660 0.22 Sparse
Chess 3,196 37 75 49.33 Dense
Mushroom 8,416 23 119 19.32 Dense
Connect 67,557 43 129 33.33 Dense
Accidents 3,40,183 33.8 468 7.22 Dense

performs the best in terms of execution time compared to other tree-based and

list-based algorithms on sparse datasets. The UPG+-Hybrid algorithm performs

at least 10 times faster compared to the tree-based and list-based algorithms on

the Retail dataset for the minimum utility threshold equal to 0.01 %. The UPG+-

Hybrid algorithm performs at least 15 times faster compared to the list-based al-

gorithms on the ChainStore dataset. The UPG+-Hybrid algorithm performs 1.5

to 2 times faster compared to the UP-Growth+ and UP-Hist Growth algorithm

for the minimum utility threshold equal to 0.6 % and 0.01 % on the Kosarak and

ChainStore datasets.

The list-based algorithms HUI-Miner and FHM did not terminate for more

than 24 hours on the Kosarak dataset for a threshold of less than 7%. Our pro-

posed algorithms UPG+-Hybrid and UPHist-Hybrid, have less execution time

compared to other tree-based and list-based algorithms on ChainStore and Re-

tail dataset. The list-based algorithms generate more candidates compared to

the tree-based and hybrid algorithms on the sparse datasets as they also gener-

ate candidates that are non-existent in the transaction database.

65

0.01 0.015 0.02 0.025 0.03
2

4

6

8

10

12

Minimum utility threshold%

Ti
m

e
lo

g
ba

se
2

sc
al

e
(s

ec
)

Retail (Sparse)

0.01 0.015 0.02 0.025 0.03

15

20

25

Minimum utility threshold%

N
o.

of
ca

nd
id

at
es

lo
g

ba
se

2
sc

al
e Retail (Sparse)

0.6 0.65 0.7 0.75 0.8

6

8

10

12

14

16

Minimum utility threshold%

Ti
m

e
lo

g
ba

se
2

sc
al

e
(s

ec
)

Kosarak (Sparse)

0.6 0.65 0.7 0.75 0.8

10

15

20

25

30

Minimum utility threshold%

N
o.

of
ca

nd
id

at
es

lo
g

ba
se

2
sc

al
e Kosarak (Sparse)

0.3 0.35 0.4 0.45 0.5

12

13

14

15

16

Minimum utility threshold%

Ti
m

e
lo

g
ba

se
2

sc
al

e
(s

ec
)

NyTimes (Sparse)

0.3 0.35 0.4 0.45 0.5

15

20

25

30

Minimum utility threshold%

N
o.

of
ca

nd
id

at
es

lo
g

ba
se

2
sc

al
e NyTimes (Sparse)

0.01 0.015 0.02 0.025 0.03

6

8

10

Minimum utility threshold%

Ti
m

e
lo

g
ba

se
2

sc
al

e
(s

ec
)

ChainStore (Sparse)

0.01 0.015 0.02 0.025 0.03

10

15

20

25

Minimum utility threshold%

N
o.

of
ca

nd
id

at
es

lo
g

ba
se

2
sc

al
e ChainStore (Sparse)

UP-Growth+ HUI-Miner FHM UPG+-Hybrid
UPHist-Hybrid UP-Hist Growth

Figure 4.4: Performance evaluation (Time and number of candidates) on sparse datasets. HUI-Miner and FHM did
not terminate for more than 24 hours on the Kosarak dataset for threshold less than 0.7%.

66

0.01 0.015 0.02 0.025 0.03

10

10.5

11

11.5

12

Minimum utility threshold%

M
em

or
y

lo
g

ba
se

2
sc

al
e

(M
B

)

Retail (Sparse)

0.6 0.65 0.7 0.75 0.8

11.8

12

12.2

12.4

12.6

Minimum utility threshold%

M
em

or
y

lo
g

ba
se

2
sc

al
e

(M
B

)

Kosarak (Sparse)

0.3 0.35 0.4 0.45 0.5

13

13.2

13.4

13.6

13.8

14

Minimum utility threshold%

M
em

or
y

lo
g

ba
se

2
sc

al
e

(M
B

)

NyTimes (Sparse)

0.01 0.015 0.02 0.025 0.03

11.5

12

12.5

Minimum utility threshold%

M
em

or
y

lo
g

ba
se

2
sc

al
e

(M
B

)

ChainStore (Sparse)

UP-Growth+ HUI-Miner FHM UPG+-Hybrid
UPHist-Hybrid UP-Hist Growth

Figure 4.5: Memory consumption on sparse datasets. The UPHist-Hybrid and the UP-Hist Growth algorithms ran
out of memory on the NyTimes dataset.

67

2 4 6 8 10

5

10

15

Minimum utility threshold%

Ti
m

e
lo

g
ba

se
2

sc
al

e
(s

ec
)

Mushroom (Dense)

2 4 6 8 10

14

16

18

20

22

24

Minimum utility threshold%

N
o.

of
ca

nd
id

at
es

lo
g

ba
se

2
sc

al
e Mushroom (Dense)

4 5 6 7 8 9 10
10

12

14

16

Minimum utility threshold%

Ti
m

e
lo

g
ba

se
2

sc
al

e
(s

ec
)

Accidents (Dense)

4 5 6 7 8 9 10

16

18

20

22

24

26

Minimum utility threshold%

N
o.

of
ca

nd
id

at
es

lo
g

ba
se

2
sc

al
e Accidents (Dense)

UP-Growth+ HUI-Miner FHM UPG+-Hybrid
UP-Hist Growth

Figure 4.6: Performance evaluation (Time and number of candidates) on dense datasets. UP-Growth+ and UP-Hist
Growth did not terminate for more than 24 hours on the Accidents dataset at threshold less than 10%, and 8%
respectively. The UPHist-Hybrid algorithm ran out of memory on the Accidents dataset. All algorithms did not
terminate their execution for more than 24 hours on the Connect dataset.

2 4 6 8 10

8

9

10

11

12

Minimum utility threshold%

M
em

or
y

lo
g

ba
se

2
sc

al
e

(M
B

)

Mushroom (Dense)

4 5 6 7 8 9 10

12

13

14

Minimum utility threshold%

M
em

or
y

lo
g

ba
se

2
sc

al
e

(M
B

)

Accidents (Dense)

UP-Growth+ HUI-Miner FHM UPG+-Hybrid
UP-Hist Growth

Figure 4.7: Memory consumption on dense datasets. The UPHist-Hybrid algorithm ran out of memory on the
Accidents dataset.

68

It is evident from the results that the tree-based algorithms generate the least

candidates on sparse datasets compared to other algorithms as their tree struc-

ture guides the algorithm to generate only the candidates existent in the database.

The UPG+-Hybrid and UPHist-Hybrid algorithms consume less memory com-

pared to the tree-based algorithms for smaller datasets like Retail and consume

more memory than tree-based algorithms for larger datasets like ChainStore as

shown in Figure 4.5. We observe that the UPHist-Hybrid generates fewer can-

didates than the UPG+-Hybrid algorithm, but has total execution time 1.5 to 3

times higher on all sparse datasets. Recall that we observed a similar result in

Chapter 3 that the UP-Hist Growth algorithm had more running time even af-

ter generating fewer candidates than the UP-Growth+ algorithm on the Kosarak

dataset. The time to recursively generate local trees in the candidate generation

process can also be an important factor in deciding the relative performance

among hybrid algorithms designed from different tree data structures. On the

NyTimes dataset, the UP-Hist Growth and the UPHist Hybrid algorithms ran

out of memory during the creation of the global tree. The UPG+-Hybrid, FHM

and HUI-Miner algorithms did not terminate execution for more than 24 hours

on the NyTimes dataset for threshold less than 0.4%, 0.4%, and 0.45%.

The results on dense datasets is shown in Figure 4.6 and 4.7. The list-based

and our proposed hybrid algorithms perform at least 15 times faster than the

tree-based algorithms on the Mushroom dataset at a threshold of less than 4

%. The UP-Growth+ and UP-Hist Growth did not terminate their execution

on the Accidents dataset for more than 24 hours at threshold less than 10 %

69

60 70 80 90 100

6

8

10

No. of transactions%

Ti
m

e
lo

g
ba

se
2

sc
al

e
(s

ec
)

ChainStore (Sparse) 0.01%

60 70 80 90 100
10

15

20

25

No. of transactions%

N
o.

of
ca

nd
id

at
es

lo
g

ba
se

2
sc

al
e ChainStore (Sparse) 0.01 %

60 70 80 90 100
11.5

12

12.5

No. of transactions%

M
em

or
y

lo
g

ba
se

2
sc

al
e

(M
B

)

ChainStore (Sparse) 0.01 %

UP-Growth+ HUI-Miner FHM UPG+-Hybrid
UPHist-Hybrid UP-Hist Growth

Figure 4.8: Scalability experiment on ChainStore and Accidents dataset for 0.01% and 2% threshold respectively.
All algorithms did not terminate for more than 24 hours on the Accidents and NyTimes datasets.

and 8 %, respectively. The performance of list-based and hybrid algorithms is

quite similar for dense datasets. The total execution time is correlated with the

number of candidates. We observe that the list-based algorithms generate more

candidates compared to the hybrid algorithms on sparse datasets, but generate a

similar number of candidates on dense datasets.

This behavior can be attributed to the fact that sparse datasets have a large of

items with few items in every transaction. Therefore, the list-based algorithms

generate a lot more candidates that are non-existent in the dataset on sparse

datasets. The UPHist-Hybrid algorithm ran out of memory on the Accidents

70

dataset. All algorithms did not terminate for more than 24 hours on the Connect

dataset. The tree-based and hybrid algorithms did not terminate execution for

more than 24 hours on the Chess dataset.

Effect of scalability: We study the effect of scalability on the performance of

algorithms and the result is shown in Figure 4.8. The execution time, number of

generated candidates, and the memory consumed by every algorithm increases

with the number of transactions. UPG+-Hybrid, and UPHist-Hybrid beat the

tree-based and list-based algorithms in terms of execution time for the Chain-

Store dataset. All algorithms did not terminate the execution for more than 24

hours on the Accidents dataset at 2% threshold.

4.4 Summary

In this chapter, we design an algorithm that can combine any tree-based algo-

rithm with a list-based algorithm to mine high-utility itemsets without a separate

verification phase. As a case study, we design and compare the performance of

two hybrid algorithms UPG+-Hybrid, and UPHist-Hybrid, against the state-of-

the-art tree-based and list-based algorithms on several dense and sparse datasets.

Our experiments highlight that hybrid algorithms perform better than the list-

based algorithms on sparse datasets and tree-based algorithms on every dataset.

We observed that none of the state-of-the-art tree-based, list-based, and our pro-

posed hybrid algorithms terminate its execution in less than 24 hours on the

Connect dataset. In the next chapter, we will design an algorithm that maps

71

the utility-list structure on the top of a tree data structure to mine high-utility

itemsets more efficiently on sparse as well as dense datasets.

72

Chapter 5

A one-phase tree-based algorithm for

mining high utility itemsets

Tree-based algorithms like UP-Growth+ [71], and UP-Hist Growth [21] ex-

tract the complete set of high-utility itemsets through the candidate genera-

tion and verification paradigm. The state-of-the-art tree-based algorithms are

two-phase as they do not maintain enough information with each tree node to

mine high-utility itemsets in a single phase. Such algorithms perform worse,

especially on dense datasets against the state-of-the-art list-based algorithms

[49, 32], and projection-based algorithms [85, 48]. Tree-based algorithms also

consume more memory due to the construction of complete local trees recur-

sively during the candidate generation phase. In this chapter, we propose a

one-phase tree-based algorithms to address the shortcomings mentioned above.

We design a data structure called UT_Mem-tree that stores the complete

information compactly with each node and a tree-based algorithm called UT-

Miner that can extract high-utility itemsets in one-phase only. We propose

73

a mechanism to construct a lightweight projected database instead of a com-

plete local tree during the mining process for superior performance, especially

for dense datasets. We conduct extensive experiments on several benchmark

sparse and dense datasets to compare the performance of our proposed algo-

rithm against the state-of-the-art tree-based, list-based, hybrid, and projection-

based algorithms. Our results validate that the proposed UT-Miner algorithm

has less total execution time than the tree-based, list-based, and hybrid algo-

rithms on sparse and dense datasets.

5.1 UT_Mem-tree Structure

In chapter 4, we observed that the hybrid algorithms that combine the benefits

of tree-based and list-based algorithms perform better than the state-of-the-art

tree-based and list-based algorithms. In this section, we propose a data struc-

ture called UT_Mem-tree that augments the information stored in an inverted-

list data structure like utility-list [49, 32] with each node of the tree. We will

observe in the next few sections that the amount of information required to be

stored with each node can be reduced during the recursive invocations of the

UT-Miner algorithm through a technique called transaction merging [85]. It has

been observed that the intersection/join operations to construct data structures

like utility-lists [49] is costly and becomes a bottleneck for list-based algorithms

like HUI-Miner [49], and FHM [32]. The integration of information stored in

inverted-list structures with each node of a tree can reduce the cost of such in-

74

Table 5.1: Information stored with a node N of a UT_Mem-tree

Field Description
N.item item associated with node N
N.gmap HashMap of key-value pairs (Definition 5.1)
N.local_list linked-list of local nodes (Definition 5.2)
N.id unique identifier
N.parent pointer to the parent node
N.hlink pointer to a node with same name as N.item

tersection operations. We will observe later in this section that a HashMap can

be augmented with each node of the UT_Mem-tree to reduce the cost of such

intersection operations by utilizing the following property maintained for each

node of the tree structures like UP-tree [71], UP-Hist tree [21], etc.

Property 1: The set of transactions containing a node N of a tree will be

present in every ancestor of N . The ancestors for a node N consists of the

nodes from the N till the node below the root node of a tree.

5.1.1 The elements of a UT_Mem-tree

Each node N of the UT_Mem-tree stores the information shown in Table 5.1.

We define the gmap associated with each node of a UT_Mem-tree, and the

procedure to construct the global UT_Mem-tree from a transaction database

with an example below.

Definition 5.1 (gmap). N.gmap for an item-node N is a set of tuples 〈 Tid: (

exact-utility (EU),remaining-utility (RU)) 〉. Tid is the unique transaction iden-

tifier associated with a transaction in the database, and the exact-utility (EU)

is the utility of the item represented by node N in the transaction with identifier

75

Tid. The remaining-utility (RU) is the sum of utility of items that appear after

the item represented by node N in the transaction with identifier Tid.

5.1.2 The construction of a UT_Mem-tree

The UT_Mem-tree is constructed from a transaction database in two database

scans. In the first scan, the TWU [50] score is computed for each item present

in the database. The items with a TWU score less than the minimum utility

threshold are identified as unpromising items. The unpromising items can not

be a part of any high-utility itemset due to the transaction-weighted downward

closure property [50] and can be removed from the transaction database. The

strategy to remove unpromising items from the transaction database is called the

“discarding global unpromising items (DGU)” strategy [71]. The unpromising

items are removed and the items within each transaction are sorted according

the descending order of their TWU scores. The transactions are inserted one by

one to construct the UT_Mem-tree. A header table is also constructed with the

UT_Mem-tree for efficient traversal. All nodes with the same label are stored in

a linked-list, and link pointer points to the head node in the list. The local_list

associated with each node of the UT_Mem-tree is initially empty.

Consider the example database shown in Table 5.2. Let the minimum utility

threshold denoted by θ be 50. The TWU for the items present in the database

is shown in Table 5.3. The items F, G, and H are identified as unpromising and

removed from the transaction database. The item E has the least TWU and item

C has the highest TWU. The transactions are sorted and the global UT_Mem-

76

Table 5.2: Example database

TID Transaction TU
T1 (B : 4) (C : 4) (E : 3) (G : 2) 13
T2 (B : 8) (C : 13) (D : 6) (E : 3) 30
T3 (A : 5) (C : 10) (D : 2) 17
T4 (A : 30) (B : 2) (C : 1) (D : 8) (H : 2) 43
T5 (A : 10) (C : 6) (E : 6) (G : 5) 27
T6 (A : 10) (B : 4) (D : 12) (E : 6) (F : 5) 37

tree is constructed from the transaction database.

Let us analyze the insertion of the first transaction in the tree. The item G is

removed from T1 and the items present in T1 are sorted according to decreasing

order of their TWU score. The transaction labelled T1 after the removal of

unpromising items and sorting of transactions is (C:4, B:4, E:3). The transaction

T1 is inserted into the UT_Mem-tree tree. Initially, the UT_Mem-tree consists

of an empty root node only. The node for the first item C is created below the

root node and its associated gmap consists of the tuple 〈 1:(4,0) 〉. The exact-

utility of item C in T1 is 4, and the remaining utility is 0. The node for itemB is

constructed as the child node of C and its associated gmap consists of the tuple

〈 1:(4,4) 〉. The item E is inserted and the gmap associated with it consists

of the tuple 〈 1:(3,8) 〉. The remaining-utility for item E in T1 is the sum of

the exact-utility of the items B and C respectively. The global UT_Mem-tree

after the insertion of transactions present in the database (Table 5.2) is shown

in Figure 5.1. The number shown in brackets with each node of the tree is the

unique identifier (ID) associated with it. The gmap (Definition 5.1) associated

with each node is also shown in Figure 5.1.

77

Table 5.3: TWU of items

Item A B C D E F G H
TWU 124 123 130 127 107 37 40 43

107

Item LinkTWU

130C

D

A

B

E

127

124

123

({1:(4,0), 2:(13,0), 3:(10,0),
4:(1,0), 5:(6,0)})

({1:(4,4)})

E (3)

({1:(3,8)})

B (2)

C (1)

D (4)

B (5)

E (6)

({2:(6,13),
3:(2,10), 4:(8,1)})

({2:(8,19)})

({2:(3,27)})

A (7)

B (8)

({3:(5,12),
4:(30,9)})

({4:(2,39)})

A (9)

E (10)

({5:(10,6)})

({5:(6,16)})

D (11)

A (12)

B (13)

E (14)

({6:(12,0)})

({6:(10,12)})

({6:(4,22)})

({6:(6,26)})

{ }

Figure 5.1: Global UT_Mem-tree with gmap associated with each node

5.1.3 Construction of a lightweight projected database through a local_lists

In this subsection, we discuss the structure of a local_list and the procedure to

construct it on the top of a UT_Mem-tree to mine high-utility itemsets. The

structure of a local_list is defined below.

Definition 5.2 (local_list and lmap). A linked-list called local_list associated

with a node N stores a list of nodes, where each node L present in the local_list

stores the following information: 1) a prefix I , 2) a HashMap of key-value pairs

L.lmap. A HashMap lmap is a set of tuples 〈 ID, exact-utility ,remaining-utility,

prefix-utility 〉.

For example, consider the local_list associated with the ancestors of a node

78

Table 5.4: local_list for the prefix { B }

Node Prefix lmap
C (1) { B } 〈 2:(4,0,4), 5:(13,0,8), 8:(1,0,2) 〉
D (4) { B } 〈 5:(6,13,8), 8:(8,1,2) 〉
A (7) { B } 〈 8:(30,9,2) 〉
D (11) { B } 〈 13:(12,0,4) 〉
A (12) { B } 〈 13:(10,12,4) 〉

B as shown in Table 5.4. Let us consider the local_list associated with the

nodeA(7) from the global UT_Mem-tree shown in Figure 5.1 to understand the

structure through an example. The node A(7) is the ancestor of node B(8). The

lmap associated with node A(7) consists of the tuple 〈 8:(30,9,2) 〉, where 8 is

the ID of the nodeB(8), 30 is the exact-utility ofA(7), 9 is the remaining-utility

of A(7), and 2 is the exact-utility of node B(9). The procedure to construct the

local_list on the top of a global UT_Mem-tree is presented as Algorithm 5.1.

The Construct method takes as input a list of nodes associated with an item

i, a prefix α, an itemset I, and a UT_Mem-tree T. This method appends a tu-

ple in the local_list for the ancestors of item i. We will explain the Construct

method through an example. Let us consider the global UT_Mem-tree as shown

in Figure 5.1 and construct The local_list for the ancestors of I = {B} with

prefix α = φ. The list_nodes_prefix consists of the nodes B(2), B(5), B(8),

and B(13). The node B(2) is accessed through the for loop (line 1), and the

current_ancestor variable points to the node C(1). The variable id_set = {1}

and PU is equal to the sum of exact-utility from the gmap associated with

the node B(2) in the set of transactions present in the id_set (line 3-5) i.e. 4.

The local_list associated with the node C(1) is initially empty and will be ini-

79

tialized with an entry for the prefix I (line 10-14). The tuple 〈 2:(4,0,4) 〉 is

added to the lmap associated with the local_list of the node C(1) (line 15-24),

and the current_ancestor variable will be set to the parent of node C(1). The

local_list associated with the ancestors of node B is shown in Table 5.4. It can

be observed that the set of identifiers present in the id_set will be present in

the gmap or local_list associated with every ancestor of the nodes for item i in

the UT_Mem-tree due to Property 1. We also compare the performance of cre-

ating a lightweight projected database through our Construct (Algorithm 5.1)

procedure against a procedure to construct the complete local UT_Mem-tree

in Section 5.3. The results validate the superior performance of the proposed

Construct method, especially for dense datasets.

5.2 UT-Miner Algorithm

In this section, we present an algorithm called UT-Miner (Algorithm 5.2). The

algorithm takes as input a prefix itemset denoted by α, a UT_Mem-tree T , a

header table H , a set of possible extensions for α denoted by hlist, and a min-

imum utility threshold indicated by θ. UT-Miner returns the complete set of

high-utility itemsets that have α as its prefix. The UT_Mem-tree is constructed

from the transaction database in two database scans. In the first scan, the TWU

of items present in the database is computed. The items with TWU less than

θ called unpromising items will be removed from the database during the next

scan. The unpromising items are removed, and transaction merging [85] is per-

80

Algorithm 5.1 Construct (list_nodes_prefix,I,α,T)
Input: List of nodes associated with item i (list_nodes_prefix), itemset I = {α⋃

i}, a prefix α, UT_Mem-
tree T
Output: Global UT_Mem-tree with a local_list associated with the ancestors of item i

1: for each node N in list_nodes_prefix do
2: current_ancestor = N.parent
3: if α == φ then
4: id_set=N.gmap.keySet()
5: PU = N.sumEU
6: else
7: id_set=N.local_list.get(α).lmap.keySet()
8: PU = N.local_list.get(α).sumEU + N.local_list.get(α).sumPU
9: end if

10: while current_ancestor 6= T.root do
11: sumEU=0,sumRU=0
12: if not(current_ancestor.local_list.contains(I)) then
13: Create an entry for Itemset I in current_ancestor.local_list and add the tuple 〈N.id, 0, 0, 0〉 to

its lmap
14: end if
15: for each tid in id_set do
16: if α == φ then
17: sumEU = sumEU + current_ancestor.gmap.get(tid).EU
18: sumRU = sumRU + current_ancestor.gmap.get(tid).RU
19: else
20: sumEU = sumEU + current_ancestor.local_list.get(α).get(tid).EU
21: sumRU = sumRU + current_ancestor.local_list.get(α).get(tid).RU
22: end if
23: end for
24: Update the tuple 〈 N.id,sumEU,sumRU,PU 〉 for the itemset I to current_ancestor.local_list
25: current_ancestor = current_ancestor.parent
26: end while
27: end for

formed. The transactions are inserted one by one to construct a UT_Mem-tree.

A header table is also constructed along with the UT_Mem-tree. The items in

the header table are scanned in a bottom-up manner and inserted in the list of

extensions denoted as hlist. The prefix α passed to UT-Miner after the con-

struction of UT_Mem-tree is empty.

The UT-Miner algorithm picks an item from the hlist (line 1) denoted by

{i} and appends it to the current prefix α to generate a new itemset denoted by I

81

(line 2). The nodes associated with the appended item i is scanned by following

the links from the header table to compute the exact-utility and remaining-utility

for I from the gmap associated with each node in the UT_Mem-tree (line 3).

The itemset I will be output as a high-utility itemset if its exact-utility is no

less than θ (line 4). The linked-list associated with item {i} is scanned again

through the header table entry for item {i} to compute TWU for the ancestors

of {i} in the UT_Mem-tree. The ancestors of item {i} in the tree will be the

set of extensions for the itemset I as tree-based algorithms expand a prefix in

a bottom-up manner (line 7). The set of unpromising ancestors are identified

and stored in a list called ulist (line 7). The utility of the unpromising items

is removed from the sum of exact-utility and remaining-utility upper-bound for

itemset I (line 9). If the updated upper-bound score denoted by updatedub is

less than θ, the algorithm stops processing for I (line 11) as neither the itemset

I nor its supersets can be high-utility itemsets. The computation of a reduced

upper-bound score by removing the exact-utility of unpromising items is an

application of the DLU strategy [71, 72]. If the updated upper-bound is no

less than θ, the local_list for the extensions of I is constructed along with the

new hlist and the algorithm UT-Miner is called recursively (line 13-15). After

processing the complete set of extensions for a prefix α, the algorithm removes

the nodes associated with α in the local_list of its ancestors. We illustrate the

working of UT-Miner through an example below.

Consider an example database shown in Table 5.2 and let θ be 50. The TWU

of items present in the database is shown in Table 5.3. The items F, G, and H are

82

Algorithm 5.2 UT-Miner (α,T,H,hlist,θ)
Input: Prefix α (initially empty), a UT_Mem-tree (T), a header table (H) associated with (T), list of
extensions to explore (hlist), and a minimum utility threshold θ.
Output: All high-utility itemsets with α as prefix.

1: for each entry {i} in hlist do
2: Itemset I = α ∪ i.
3: Store the nodes associated with item i that have α as its descendant in list_nodes_prefix by following

the links from the header table H. Compute sumEU and sumRU for I from list_nodes_prefix.
4: if I .sumEU ≥ θ then
5: Output I as a high-utility itemset.
6: end if
7: Compute TWU for the extensions i.e. ancestors of I in T and identify unpromising items (ulist).
8: Initialize variable ub = I.sumEU+I.sumRU.
9: Remove the contribution of items in ulist from ub. We represent the updated bound as updatedub.

10: if updatedub ≤ θ then
11: Return
12: end if
13: T = Construct(list_nodes_prefix„I,α,T).
14: Construct the list of extensions for I denoted by hlistI .
15: Call UT-Miner(I ,T ,H ,hlistI ,θ).
16: end for
17: Remove the node associated with α from local_list associated with ancestors of α in T .

unpromising and will be removed from every transaction before constructing

the UT_Mem-tree. The global UT_Mem-tree is shown in Figure 5.1. Let us

consider the processing of item {B} from the header table. The linked-list

associated with the itemB is scanned to compute its exact-utility and remaining-

utility. The exact-utility and remaining-utility of the itemset {B} is 18, and

74 respectively. The itemset {B} will be explored further by the UT-Miner

algorithm as the sum of its exact-utility, and remaining-utility is more than the

minimum utility threshold. Items A, C, and D are extensions for The itemset

{B} and have TWU values 67, 76, and 94, respectively. The local_list created

for the ancestors of prefix {B} is shown in Table 5.4.

The UT-Miner algorithm picks the item A from the header table and com-

putes its exact-utility and remaining-utility. The exact-utility and remaining-

83

Table 5.5: local_list for the prefix { BA }

Node Prefix lmap
C (1) { BA } 〈 7:(1,0,32) 〉
D (4) { BA } 〈 7:(8,1,32) 〉
D (11) { BA } 〈 12:(12,0,14) 〉

utility of the itemset {BA} is 46, and 21. The items C and D are the extensions

for the itemset {BA} and have TWU of 41, and 67 respectively. Item C is iden-

tified as an unpromising item, and its utility will be subtracted from the bound

(line 10) computed for {BA} by UT-Miner. The bound for {BA} is 67 after

removing the utility of item C. The Construct method (line 13) is called for the

itemset I = {BA}, and α = {B}. The list_nodes_prefix consists of the nodes

A(7), and A(12). The local_list associated with the ancestors for the itemset I is

shown in Table 5.5. The itemset {BA} will be extended by the item D to gen-

erate the itemset {BAD}. The itemset {BAD} is identified as a high-utility

itemset by UT-Miner algorithm. The complete set of high-utility itemsets for

θ equal to 50 are {AD}:67, {AC}:62, {BAD}:66, {ADC}:56, and {A}:55

respectively.

5.3 Experiments and Results

In this section, we compare our proposed algorithm’s performance against the

state-of-the-art tree-based, list-based, and projection-based algorithms. We com-

pare the performance of UT-Miner against FHM [32], mHUIMiner [61], UPG+-

Hybrid [22], HMINER [44], d2HUP [48], and EFIM [85] on several benchmark

sparse and dense datasets. The datasets were downloaded from the SPMF li-

84

Table 5.6: Characteristics of real datasets

Dataset #Tx Avg. length #Items (I) Density score R
(%) =(A/I)x100 [7]

Type

Retail 88,162 10.3 16,470 0.062 Sparse
Kosarak 9,90,002 8.1 41,270 0.019 Sparse
Chainstore 11,12,949 7.2 46,086 0.015 Sparse
NyTimes 3,00,000 232.2 1,02,660 0.22 Sparse
Chess 3,196 37 75 49.33 Dense
Mushroom 8,416 23 119 19.32 Dense
Connect 67,557 43 129 33.33 Dense
Accidents 3,40,183 33.8 468 7.22 Dense

brary [31], and the UCI Machine Learning repository [29]. The characteristics

of the datasets are shown in Table 5.6. The experiments were performed on an

Intel Xeon(R) CPU=26500@2.00 GHz with 16 GB RAM and Windows Server

2012 operating system.

Effect of varying minimum utility threshold: We evaluate the performance

of UT-Miner against the state-of-the-art high-utility itemset mining algorithms

in terms of total execution time, number of candidates, and the main memory

consumption.

Comparison with FHM, mHUIMiner, and UPG+-Hybrid: The comparison

of UT-Miner with FHM, mHUIMiner, and UPG+-Hybrid algorithms on sparse

datasets is shown in Figure 5.2. UT-Miner has the least execution time on all

sparse datasets. The UT-Miner algorithm performs at least 4 times and 10 times

faster than the mHUIMiner and FHM algorithm at lower threshold values on

the Retail dataset. The FHM and mHUIMiner algorithms did not terminate for

more than 24 hours at lower thresholds on the Kosarak dataset. The UT-Miner

algorithm performs at least 15 times faster than the mHUIMiner and FHM al-

85

0.01 0.015 0.02 0.025 0.03
2

3

4

5

6

7

Minimum utility threshold%

Ti
m

e
lo

g
ba

se
2

sc
al

e
(s

ec
)

Retail (Sparse)

0.01 0.015 0.02 0.025 0.03

15

20

25

Minimum utility threshold%

N
o.

of
ca

nd
id

at
es

lo
g

ba
se

2
sc

al
e Retail (Sparse)

0.6 0.65 0.7 0.75 0.8
4

6

8

10

12

14

Minimum utility threshold%

Ti
m

e
lo

g
ba

se
2

sc
al

e
(s

ec
)

Kosarak (Sparse)

0.6 0.65 0.7 0.75 0.8

15

20

25

Minimum utility threshold%

N
o.

of
ca

nd
id

at
es

lo
g

ba
se

2
sc

al
e Kosarak (Sparse)

0.4 0.42 0.44 0.46 0.48 0.5
12

13

14

15

16

17

Minimum utility threshold%

Ti
m

e
lo

g
ba

se
2

sc
al

e
(s

ec
)

NyTimes (Sparse)

0.4 0.42 0.44 0.46 0.48 0.5

22

24

26

28

Minimum utility threshold%

N
o.

of
ca

nd
id

at
es

lo
g

ba
se

2
sc

al
e NyTimes (Sparse)

0.01 0.015 0.02 0.025 0.03

6

8

10

Minimum utility threshold%

Ti
m

e
lo

g
ba

se
2

sc
al

e
(s

ec
)

ChainStore (Sparse)

0.01 0.015 0.02 0.025 0.03

15

20

25

Minimum utility threshold%

N
o.

of
ca

nd
id

at
es

lo
g

ba
se

2
sc

al
e ChainStore (Sparse)

FHM mHUIMiner UPG+-Hybrid UT-Miner

Figure 5.2: Performance evaluation (Time and number of candidates) for FHM, mHUIMiner, UPG+-Hybrid and
UT-Miner on sparse datasets. FHM did not terminate for more than 24 hours on Kosarak dataset for threshold value
less than 0.7 % and mHUIMiner did not terminate on Kosarak dataset for threshold value less than 0.75 %.

86

6 8 10 12 14
4

6

8

10

12

14

16

Minimum utility threshold%

Ti
m

e
lo

g
ba

se
2

sc
al

e
(s

ec
)

Chess (Dense)

6 8 10 12 14

24

26

28

30

Minimum utility threshold%

N
o.

of
ca

nd
id

at
es

lo
g

ba
se

2
sc

al
e Chess (Dense)

2 4 6 8 10
0

2

4

6

8

Minimum utility threshold%

Ti
m

e
lo

g
ba

se
2

sc
al

e
(s

ec
)

Mushroom (Dense)

2 4 6 8 10

14

16

18

20

22

Minimum utility threshold%

N
o.

of
ca

nd
id

at
es

lo
g

ba
se

2
sc

al
e Mushroom (Dense)

2 4 6 8 10

6

8

10

12

14

16

Minimum utility threshold%

Ti
m

e
lo

g
ba

se
2

sc
al

e
(s

ec
)

Accidents (Dense)

2 4 6 8 10

14

16

18

20

22

24

26

Minimum utility threshold%

N
o.

of
ca

nd
id

at
es

lo
g

ba
se

2
sc

al
e Accidents (Dense)

FHM mHUIMiner UPG+-Hybrid UT-Miner

Figure 5.3: Performance evaluation (Time and number of candidates) for FHM, mHUIMiner, UPG+-Hybrid, and
UT-Miner on dense datasets. FHM, mHUIMiner, and UPG+-Hybrid did not terminate for more than 24 hours on
Connect dataset. FHM, mHUIMiner, and UPG+-Hybrid did not terminate for more than 24 hours on Accidents
dataset at 2% threshold.

87

0.01 0.015 0.02 0.025 0.03
9.5

10

10.5

11

Minimum utility threshold%

M
em

or
y

lo
g

ba
se

2
sc

al
e

(M
B

)

Retail (Sparse)

0.6 0.65 0.7 0.75 0.8

12

12.2

12.4

12.6

Minimum utility threshold%

M
em

or
y

lo
g

ba
se

2
sc

al
e

(M
B

)

Kosarak (Sparse)

0.4 0.42 0.44 0.46 0.48 0.5

13.4

13.6

13.8

14

Minimum utility threshold%

M
em

or
y

lo
g

ba
se

2
sc

al
e

(M
B

)

NyTimes (Sparse)

0.01 0.015 0.02 0.025 0.03

11.8

12

12.2

12.4

12.6

Minimum utility threshold%

M
em

or
y

lo
g

ba
se

2
sc

al
e

(M
B

)

ChainStore (Sparse)

6 8 10 12 14

10

10.5

11

11.5

12

Minimum utility threshold%

M
em

or
y

lo
g

ba
se

2
sc

al
e

(M
B

)

Chess (Dense)

2 4 6 8 10

8

9

10

11

Minimum utility threshold%

M
em

or
y

lo
g

ba
se

2
sc

al
e

(M
B

)

Mushroom (Dense)

2 4 6 8 10
12

12.5

13

13.5

14

Minimum utility threshold%

M
em

or
y

lo
g

ba
se

2
sc

al
e

(M
B

)

Accidents (Dense)

FHM mHUIMiner UPG+-Hybrid UT-Miner

Figure 5.4: Memory Consumption by FHM, mHUIMiner, UPG+-Hybrid and UT-Miner on sparse and dense
datasets.

88

0.01 0.015 0.02 0.025 0.03

2

4

6

8

Minimum utility threshold%

Ti
m

e
lo

g
ba

se
2

sc
al

e
(s

ec
)

Retail (Sparse)

0.01 0.015 0.02 0.025 0.03

14

16

18

20

Minimum utility threshold%

N
o.

of
ca

nd
id

at
es

lo
g

ba
se

2
sc

al
e Retail (Sparse)

0.6 0.65 0.7 0.75 0.8
4

6

8

10

12

Minimum utility threshold%

Ti
m

e
lo

g
ba

se
2

sc
al

e
(s

ec
)

Kosarak (Sparse)

0.6 0.65 0.7 0.75 0.8
10

15

20

25

Minimum utility threshold%

N
o.

of
ca

nd
id

at
es

lo
g

ba
se

2
sc

al
e Kosarak (Sparse)

0.3 0.35 0.4 0.45 0.5

11

12

13

14

15

Minimum utility threshold%

Ti
m

e
lo

g
ba

se
2

sc
al

e
(s

ec
)

NyTimes (Sparse)

0.3 0.35 0.4 0.45 0.5

14

16

18

20

22

24

Minimum utility threshold%

N
o.

of
ca

nd
id

at
es

lo
g

ba
se

2
sc

al
e NyTimes (Sparse)

0.01 0.015 0.02 0.025 0.03
4

6

8

10

12

Minimum utility threshold%

Ti
m

e
lo

g
ba

se
2

sc
al

e
(s

ec
)

ChainStore (Sparse)

0.01 0.015 0.02 0.025 0.03

14

16

18

20

Minimum utility threshold%

N
o.

of
ca

nd
id

at
es

lo
g

ba
se

2
sc

al
e ChainStore (Sparse)

UT-Miner HMINER EFIM (without tx merging) d2HUP

Figure 5.5: Performance evaluation (Time and number of candidates) for EFIM, d2HUP, HMiner and UT-Miner on
sparse datasets. d2HUP did not terminate for more than 24 hours on Kosarak dataset for threshold less than 0.7 %.

89

gorithm on the ChainStore dataset at lower thresholds. The UT-Miner algo-

rithm ran out of memory during the construction of the global tree on the Ny-

Times dataset. The execution time of the algorithms increases with a decrease

in the minimum utility threshold as more candidates will be generated for lower

thresholds. The UT-Miner algorithm generates the least number of candidates

at lower threshold values on sparse datasets. The FHM [32] algorithm generates

the maximum number of candidates on the ChainStore and Retail dataset as it

also generates candidates that are non-existent in the database. The mHUIMiner

[61] algorithm utilizes the IHUP-tree structure to avoid the generation of non-

existent itemsets and explores the search space through the HUI-Miner [49]

algorithm. The UPG+-Hybrid [22] algorithm switches execution from the UP-

Growth+ [71] algorithm to FHM [32] when a candidate high-utility itemset is

generated. The UT-Miner algorithm augments the complete information on the

UT_Mem-tree to avoid the generation of non-existent candidates in the transac-

tion database and also removes the contribution of unpromising items in every

recursive invocation of the algorithm.

The results on dense datasets is shown in Figure 5.3. The UT-Miner algo-

rithm performs at least 25 times faster compared to the mHUIMiner and FHM

algorithm on the Chess dataset. The UPG+-Hybrid algorithm did not terminate

for more than 24 hours on the Chess dataset. The results for the Connect dataset

is not shown as the FHM, mHUIMiner, and UPG+-Hybrid algorithms don’t ter-

minate for more than 24 hours. The UT-Miner algorithm performs at least 20

times and 30 times faster than the FHM, and mHUIMiner, and UPG+-Hybrid

90

0.01 0.015 0.02 0.025 0.03

8

9

10

11

12

Minimum utility threshold%

M
em

or
y

lo
g

ba
se

2
sc

al
e

(M
B

)

Retail (Sparse)

0.6 0.65 0.7 0.75 0.8

10

11

12

Minimum utility threshold%

M
em

or
y

lo
g

ba
se

2
sc

al
e

(M
B

)

Kosarak (Sparse)

0.3 0.35 0.4 0.45 0.5

12.5

13

13.5

14

Minimum utility threshold%

M
em

or
y

lo
g

ba
se

2
sc

al
e

(M
B

)

NyTimes (Sparse)

0.01 0.015 0.02 0.025 0.03
10

11

12

Minimum utility threshold%

M
em

or
y

lo
g

ba
se

2
sc

al
e

(M
B

)

ChainStore (Sparse)

UT-Miner HMINER EFIM (without tx merging) d2HUP

Figure 5.6: Memory Consumption by EFIM, d2HUP, HMiner and UT-Miner on sparse datasets.

at lower threshold on the Mushroom and Accidents datasets. The UT-Miner al-

gorithm generates the least number of candidates compared to other algorithms

on dense datasets. The comparison of different algorithms in terms of memory

consumption is shown in Figure 5.4. The UT-Miner algorithm consumes the

least amount of memory on the Kosarak and Accidents dataset.

Comparison with EFIM, d2HUP, and HMINER: The results for sparse datasets

is shown in Figure 5.5. UT-Miner has the least execution time for the Kosarak

dataset. d2HUP has the least execution time for the Retail and ChainStore

datasets. We compare the performance with transaction merging disabled in

91

6 8 10 12 14

5

10

15

Minimum utility threshold%

Ti
m

e
lo

g
ba

se
2

sc
al

e
(s

ec
)

Chess (Dense)

6 8 10 12 14

24

26

28

30

Minimum utility threshold%

N
o.

of
ca

nd
id

at
es

lo
g

ba
se

2
sc

al
e Chess (Dense)

2 4 6 8 10

0

2

4

6

Minimum utility threshold%

Ti
m

e
lo

g
ba

se
2

sc
al

e
(s

ec
)

Mushroom (Dense)

2 4 6 8 10

14

16

18

20

22

Minimum utility threshold%

N
o.

of
ca

nd
id

at
es

lo
g

ba
se

2
sc

al
e Mushroom (Dense)

10 12 14 16 18

6

8

10

12

Minimum utility threshold%

Ti
m

e
lo

g
ba

se
2

sc
al

e
(s

ec
)

Connect (Dense)

10 12 14 16 18
26

28

30

Minimum utility threshold%

N
o.

of
ca

nd
id

at
es

lo
g

ba
se

2
sc

al
e Connect (Dense)

2 4 6 8 10

4

6

8

10

12

14

16

Minimum utility threshold%

Ti
m

e
lo

g
ba

se
2

sc
al

e
(s

ec
)

Accidents (Dense)

2 4 6 8 10

15

20

25

Minimum utility threshold%

N
o.

of
ca

nd
id

at
es

lo
g

ba
se

2
sc

al
e Accidents (Dense)

UT-Miner HMINER EFIM d2HUP

Figure 5.7: Performance evaluation (Time and number of candidates) for EFIM, d2HUP, HMiner and UT-Miner on
dense datasets. d2HUP did not terminate for more than 24 hours on Connect dataset and Accidents dataset at 2%
threshold.

92

6 8 10 12 14

8

10

12

14

Minimum utility threshold%

M
em

or
y

lo
g

ba
se

2
sc

al
e

(M
B

)

Chess (Dense)

2 4 6 8 10

8

10

12

Minimum utility threshold%

M
em

or
y

lo
g

ba
se

2
sc

al
e

(M
B

)

Mushroom (Dense)

10 12 14 16 18

12.5

13

13.5

Minimum utility threshold%

M
em

or
y

lo
g

ba
se

2
sc

al
e

(M
B

)

Connect (Dense)

2 4 6 8 10

11

12

13

Minimum utility threshold%

M
em

or
y

lo
g

ba
se

2
sc

al
e

(M
B

)

Accidents (Dense)

UT-Miner HMINER EFIM d2HUP

Figure 5.8: Memory Consumption by EFIM, d2HUP, HMiner and UT-Miner on dense datasets.

the EFIM [85] algorithm. It is known from the literature [85, 22] that EFIM

performs better on sparse datasets without its transaction merging feature.

The EFIM algorithm performs a binary search to find an item in every trans-

action during the projected database creation. d2HUP [48] is the state-of-the-art

algorithm for sparse datasets. It utilizes the hyperlink structure to find the trans-

actions during the projected database creation. The EFIM algorithm generates

the least number of candidates for sparse datasets. The memory comparison for

sparse datasets is shown in Figure 5.6. The EFIM algorithm consumes the least

memory for sparse datasets. The UT-Miner algorithm consumes less memory

93

60 70 80 90 100

4

6

8

10

12

No. of transactions%

Ti
m

e
lo

g
ba

se
2

sc
al

e
(s

ec
)

ChainStore (Sparse) 0.01%

60 70 80 90 100

15

20

25

No. of transactions%

N
o.

of
ca

nd
id

at
es

lo
g

ba
se

2
sc

al
e ChainStore (Sparse) 0.01 %

60 70 80 90 100

6

8

10

12

14

16

No. of transactions%

Ti
m

e
lo

g
ba

se
2

sc
al

e
(s

ec
)

Accidents (Dense) 2 %

60 70 80 90 100
23

24

25

26

No. of transactions%

N
o.

of
ca

nd
id

at
es

lo
g

ba
se

2
sc

al
e Accidents (Dense) 2 %

FHM mHUIMiner UPG+-Hybrid UT-Miner
HMINER EFIM d2HUP

Figure 5.9: Scalability experiment on ChainStore and Accidents dataset for 0.01% and 2% threshold respectively.
FHM, mHUIMiner, d2HUP, and UPG+-Hybrid did not terminate for more than 24 hours on Accidents dataset when
more than 60% of the transactions is input to the algorithms.

60 70 80 90 100
9

10

11

12

13

No. of transactions%

M
em

or
y

lo
g

ba
se

2
sc

al
e

(M
B

)

ChainStore (Sparse) 0.01 %

60 70 80 90 100

12

12.5

13

13.5

14

No. of transactions%

M
em

or
y

lo
g

ba
se

2
sc

al
e

(M
B

)

Accidents (Dense) 2 %

FHM mHUIMiner UPG+-Hybrid UT-Miner
HMINER EFIM d2HUP

Figure 5.10: Memory consumption on ChainStore and Accidents dataset for scalability

94

0.01 0.015 0.02 0.025 0.03
2.2

2.4

2.6

2.8

3

3.2

3.4

Minimum utility threshold%

Ti
m

e
lo

g
ba

se
2

sc
al

e
(s

ec
)

Retail (Sparse)

0.01 0.015 0.02 0.025 0.03

10.2

10.3

10.4

10.5

10.6

10.7

Minimum utility threshold%
M

em
or

y
lo

g
ba

se
2

sc
al

e
(M

B
)

Retail (Sparse)

0.6 0.65 0.7 0.75 0.8

4.6

4.8

5

5.2

5.4

Minimum utility threshold%

Ti
m

e
lo

g
ba

se
2

sc
al

e
(s

ec
)

Kosarak (Sparse)

0.6 0.65 0.7 0.75 0.8
11.95

12

12.05

12.1

12.15

12.2

Minimum utility threshold%

M
em

or
y

lo
g

ba
se

2
sc

al
e

(M
B

)
Kosarak (Sparse)

0.01 0.015 0.02 0.025 0.03

5.4

5.6

5.8

6

6.2

Minimum utility threshold%

Ti
m

e
lo

g
ba

se
2

sc
al

e
(s

ec
)

ChainStore (Sparse)

0.01 0.015 0.02 0.025 0.03
12.35

12.4

12.45

Minimum utility threshold%

M
em

or
y

lo
g

ba
se

2
sc

al
e

(M
B

)

ChainStore (Sparse)

UTMiner-LT UT-Miner

Figure 5.11: Comparison of UT-Miner with UT-Miner-LT on sparse datasets.

95

6 8 10 12 14

6

8

10

12

Minimum utility threshold%

Ti
m

e
lo

g
ba

se
2

sc
al

e
(s

ec
)

Chess (Dense)

6 8 10 12 14

12

12.1

12.2

12.3

12.4

Minimum utility threshold%

M
em

or
y

lo
g

ba
se

2
sc

al
e

(M
B

)

Chess (Dense)

2 4 6 8 10

1

2

3

4

Minimum utility threshold%

Ti
m

e
lo

g
ba

se
2

sc
al

e
(s

ec
)

Mushroom (Dense)

2 4 6 8 10

8

9

10

11

12

Minimum utility threshold%

M
em

or
y

lo
g

ba
se

2
sc

al
e

(M
B

)

Mushroom (Dense)

10 12 14 16 18
7

8

9

10

11

12

Minimum utility threshold%

Ti
m

e
lo

g
ba

se
2

sc
al

e
(s

ec
)

Connect (Dense)

10 12 14 16 18

12.38

12.39

12.4

12.41

12.42

Minimum utility threshold%

M
em

or
y

lo
g

ba
se

2
sc

al
e

(M
B

)

Connect (Dense)

2 4 6 8 10

6

8

10

Minimum utility threshold%

Ti
m

e
lo

g
ba

se
2

sc
al

e
(s

ec
)

Accidents (Dense)

2 4 6 8 10

12.4

12.6

12.8

13

Minimum utility threshold%

M
em

or
y

lo
g

ba
se

2
sc

al
e

(M
B

)

Accidents (Dense)

UTMiner-LT UT-Miner

Figure 5.12: Comparison of UT-Miner with UT-Miner-LT on dense datasets.

96

compared to the HMINER [44] algorithm on all datasets.

The results on dense datasets is shown in Figure 5.7. The d2HUP algorithm

has the highest execution time for dense datasets. The EFIM algorithm has the

least execution time as its transaction merging feature works quite well on dense

datasets due to higher similarity among transactions. It can be observed from

our study that there is no high-utility itemset mining algorithm that performs

the best on both sparse and dense datasets. The UT-Miner algorithm is among

the top algorithms in terms of total execution time on sparse and dense datasets.

The comparison of the algorithms in terms of memory consumption is shown in

Figure 5.8. The results demonstrate that EFIM and UT-Miner algorithm have

similar memory consumption on the Connect dataset. The EFIM algorithm has

the least memory consumption as its transaction merging feature works effec-

tively on dense datasets during the creation of local projected databases.

Effect of scalability: In this set of experiments, we study the influence of

varying the number of transactions on the performance of high-utility itemset

mining algorithms. The results are shown in Figure 5.9 and 5.10. The total ex-

ecution time, the number of candidates, and the memory consumption increase

with the number of transactions. The FHM, mHUIMiner, d2HUP, and UPG+-

Hybrid algorithms did not terminate their executions for more than 24 hours on

the Accidents dataset.

Comparison with UT-Miner-LT: We compare the performance of UT-Miner

with a variant of UT-Miner called UT-Miner-LT that constructs a complete

97

local-tree for every recursive invocation of the algorithm instead of augmenting

local_list with each node of the global UT_Mem-tree. The results for sparse

and dense datasets is shown in Figure 5.11 and Figure 5.12 respectively. The

UT-Miner-LT algorithm executes 1.1 to 1.2 times faster than the UT-Miner algo-

rithm on the Retail and ChainStore dataset. However, the UT-Miner algorithm

is 1.4 to 2 times faster compared to UT-Miner-LT on dense datasets. The al-

gorithms generate a large number of candidate high-utility itemsets on dense

datasets compared to sparse datasets as dense datasets have average transac-

tion length larger compared to sparse datasets. Theefore, we observe that the

UT-Miner algorithm consumes less memory and executes faster compared to

UT-Miner-LT on dense datasets.

5.4 Summary

In this chapter, we propose a data structure called UT_Mem-tree and an algo-

rithm called UT-Miner to extract high-utility itemsets in one-phase only. We

further propose a lightweight construction procedure for local tree generation

during the recursive invocation of UT-Miner. Our experimental study highlight

that the UT-Miner algorithm performs better than the tree-based, list-based, and

hybrid algorithms on sparse and dense datasets. Our proposed local tree con-

struction procedure reduces the memory consumption and the total execution

time of the UT-Miner algorithm on dense datasets.

Till now, we have focused our attention on improving the performance of

98

high-utility itemset mining algorithms for a specific utility function. In the next

chapter, we explore the possibility of designing data structures and algorithms

that can mine high-utility itemsets for any subadditive monotone utility function.

We design a novel subadditive monotone utility function for mining active, influ-

ential groups of users from a Twitter dataset that can be targeted for applications

like viral marketing.

99

Chapter 6

High-utility itemset mining for subadditive

monotone utility functions

In this chapter, we generalize the notion of high-utility itemset mining to utility

functions that need not be the sum of individual utilities of items. The gen-

eralization of the utility function can lead to interesting applications of item-

set mining techniques firstly by allowing novel mapping of quantities to utility

and, furthermore by allowing the integration of additional information (say, on

items) for computing utility. We investigate the problem of high-utility item-

set mining for utility functions that are subadditive and monotone (HUIM-SM).

Monotonicity is a natural requirement for pattern mining algorithms to prune

the search space by defining upper-bound functions like TWU. Subadditivity

imposes the constraint that the utility of an itemset X is less than the sum of

utility of the itemsets Y and Z where Y ⊆ X and Z ⊆ X . The notion of sub-

additivity appears in the retail domain where customers are offered discounts

[9] on purchasing a hamper of products. Subadditive monotone functions have

100

been used in various domains [16, 76, 17, 11, 62] but not specifically in high-

utility itemset mining. So, it is a natural question to ask what such functions

can enable us to do in high-utility itemset mining.

In this chapter, we study how itemset mining can be applied for utility func-

tions that are subadditive and monotone (SM). We ask the following questions:

Can we design a high-utility itemset mining algorithm for any arbitrary sub-

additive monotone utility function? Will the existing bounds used for search

space exploration still work? We investigate whether the existing tree-based,

projection-based, and list-based algorithmic frameworks for HUIM are suffi-

cient to design algorithms for HUIM with SM functions (HUIM-SM). These

frameworks are fuelled by “upper bounds” like “Transaction-weighted utility

(TWU)" and "Exact-utility, Remaining-utility (EU−RU)". We derive new upper

bounds (TSMWU and CU) that are better than TWU and EU−RU and use them

to adapt existing tree-based and projection-based algorithms to HUIM-SM. We

observe that the information stored in the list structures like utility-list [49, 32]

is not sufficient to generalize high-utility itemset for any chosen SM utility

function. We define a novel data structure called SMI-list with a lightweight

construction method and design a list-based algorithm called SM-Miner.

We show that SM functions can be designed that can capture relationships

among items in the form of a relationship graph. We design a function called

ucov that can find groups of influential and active users from a social media

dataset that can be attractive for applications like viral marketing. We also

adapt some of the tree-based, list-based, and projection-based high-utility item-

101

set mining algorithms and compare their performance on several dense and

sparse datasets. Our experimental study reveals that the computation of util-

ity can also be an important factor in the relative performance of algorithms for

complex utility functions like ucov.

6.1 Problem Statement

Consider the usual setting of HUIM on a transaction database D with n trans-

actions {T1, T2, . . . , Tn} over items I = {i1, i2, ..., im}. Each transaction can be

thought of as a subset of I along with a positive quantity (or weight) associated

with every item i ∈ T ; we will express T as {(ij1 : nj1), (ij2 : nj2), . . . (ijk : njk)}

where ij denotes an item in T and nj ≥ 0 is its weight in T . By an “itemset X

in T ” we will mean a set of some items appearing in T and associated with the

same weight as that in T . We will use “weighted itemset” to refer to such sets

with quantities/weights.

6.1.1 Subadditive and monotone (SM) utility functions

The subadditive monotone functions on a weighted itemset is defined below.

Definition 6.1 (subadditive and monotone function). Consider functions that

map weighted itemsets over I to positive real numbers. Such a function f(·) is

subadditive if ∀ X, Y ⊆ T , f(X ∪ Y) ≤ f(X) + f(Y). f(·) is monotone if

∀X ⊆ Y ⊆ T , f(X) ≤ f(Y). A utility function u(·, T) is subadditive and

monotone if satisfies the above for every transaction.

102

We now give a few examples of subadditive and monotone utility functions.

First is Sum({x1 : n1, . . . , xk : nk}) =
∑

j nj, essentially returning the total

quantity of items in an itemset. One should note that this is the utility function

used in HUIM.

Theorem 6.1. The function Sum(·) is monotone and subadditive.

Proof. Let us consider a transaction T with non-negative real weights associated

with items and let us consider a set S ⊆ T and a item v ∈ T such that v /∈

S. Sum(·) is a monotone function as the below equation holds true when the

weights associated with items are non-zero real numbers.

Sum(S ∪ v) ≥ Sum(S)

We will now prove that Sum(·) is subadditive. Let us consider two sets S and

Z such that S ⊆ T and Z ⊆ T. The function Sum(·) is subadditive if.

Sum(S
⋃

Z) ≤ Sum(S) + Sum(Z)

The equation below holds When the sets S and Z are disjoint

Sum(S
⋃

Z) = Sum(S) + Sum(Z)

When the sets S and Z are not disjoint, the below equation holds

Sum(S
⋃

Z) < Sum(S) + Sum(Z)

Hence, Sum(·) is subadditive.

103

Another example is the
√∑

j nj. It is known that the last function is subad-

ditive and monotone [33].

6.1.2 High-utility itemset mining for SM functions (HUIM-SM)

A utility function u(·, T) is subadditive and monotone for a transaction T if it is

a subadditive and monotone function over the items in T. The utility of X in the

database is defined as in HUIM: u(X) =
∑

X⊆T
T∈D

u(X,T). It should be noted

that we require u(X,T) to be subadditive and monotone for any T but no such

property may hold for u(X) i.e. the utility of an itemset X in the database.

HUIM-SM problem: An itemset X is called a high utility itemset if u(X) is

no less than a given minimum user-defined threshold denoted by θ. Given a

transaction database D, a subadditive monotone utility function u(·, ·) and a

minimum user-defined threshold θ, the aim is to find all high-utility itemsets.

Current HUIM algorithms work by recursively growing an itemset (called

as the prefix) by appending an item from the set of items (I) to the prefix and

then determining whether the newly formed prefix (called β) is high-utility or

not. For this, a projected database for β is constructed that contains all transac-

tions with itemset β, and the algorithm recursively extends β. Since the search

space is exponential in the number of distinct items present in the database, the

computational challenge is to efficiently determine whether there could be any

high-utility itemset containing β. For this purpose, current HUIM algorithms

use upper bound functions of u(β) to decide for further exploration.

104

Table 6.1: Transaction database for coverage utility (ucov)

TID Transaction TU TSMU EU({AC}, T)
+
RU({AC}, T)

CU({AC}, T)

T1 (A : 5) (C : 10) (D : 2) 58 37 58 37
T2 (A : 10) (C : 6) (E : 6) (G : 5) 97 62 97 62
T3 (A : 10) (B : 4) (D : 12) (E : 6) (F : 5) 139 69 0 0
T4 (A : 5) (B : 2) (C : 3) (D : 2) (H : 2) 47 26 41 26
T5 (B : 8) (C : 13) (D : 6) (E : 3) 99 58 0 0
T6 (B : 4) (C : 4) (E : 3) (G : 2) 42 27 0 0
T7 (F : 1) (G : 2) 9 7 0 0
T8 (F : 4) (G : 3) 21 15 0 0

Even if the current HUIM algorithms are adapted for HUIM-SM, it is unclear

if the current bounds will be correct for a different, general, utility function.

Since a correct, and preferably tight, bound is crucial for efficient pruning of

search space and also depends on the data structures used, careful attention

must be given to come up with an appropriate bound function. We undertake

this task in the next few sections.

6.2 Coverage: A graph-based utility function

Now, we describe a subadditive monotone utility function called ucov that not

only depends upon the items but also allows us to incorporate any additional

information on the relationship between the items into the utility function. We

design such a function to highlight that itemset mining can be used by pattern

mining researchers and practitioners to find interesting groups in different do-

mains. Such knowledge may be useful to find active communities in a social

network.

Given an undirected unweighted graph G with vertices V , graph coverage

105

B A

C D E

F G

H

Figure 6.1: Graph over items

(Co(X)) of a subset of vertices X ⊆ V is defined as the cardinality of the set

containing X 1 and the immediate neighbors of the vertices in X . For example,

coverage of {A,C} in the graph shown in Figure 6.1 is equal to |{A,B,C,D}|

= 4.

Theorem 6.2. The function Co(·) is monotone and subadditive.

Proof. Let us consider a set S ⊆ I and a item v ∈ I such that v /∈ S. Co(·) is a

monotone function if and only if,

Co(S ∪ v) ≥ Co(S)

Let us consider Co(S) and v. If item v is not an immediate neighbor for any

node in the set S, then

Co(S ∪ v) > Co(S)

If v is a immediate neighbor for any node in S, then Co(S) = Co(S∪v). Hence,

Co(·) is a monotone function.

We will now prove that Co(·) is subadditive. Let us consider two sets S and T

such that S ⊆ I and T ⊆ I, where I is the set of items which forms vertices of
1Co(X) returns the cardinality of a set containing X to ensure that Co(X) of an itemset X is greater than zero.

106

the graph G. The function Co(·) is subadditive if.

Co(S
⋃

T) ≤ Co(S) + Co(T)

The equation below holds when Co(S) and Co(T) have no vertex in common

Co(S
⋃

T) = Co(S) + Co(T)

The below equation holds when Co(S)
⋂
Co(T) 6= φ.

Co(S
⋃

T) < Co(S) + Co(T)

Hence, Co(·) is subadditive.

Coming back to high-utility itemset mining, suppose in addition to a transac-

tion database we are also given an additional graph G over the items (objects)

that capture their pairwise relationships (e.g., see Figure 6.1). Assume that a

transaction defines a set of users along with their frequency of activities on a

particular day. A follower-followee graph can be constructed with users as ver-

tices and a directed edge from a vertex X to vertex Y denotes that user Y follows

user X. Now, we define a utility function called ucov that combines the quan-

tity information in the database and relationship among the users in terms of

the coverage information in G. The function ucov captures the notion of min-

imal coverage/influence of a set of active users on their immediate neighbours

and mined patterns can be used as a target for marketing purposes. Functions

like ucov can be designed to capture sets of influential users who can be given

107

incentives to promote a product in their immediate neighbourhood [62].

We do a comparative analysis of the patterns generated by using ucov on

Twitter dataset against existing baseline functions like frequency, HUIM and

some of our-defined functions in Section 6.5. Please note that ucov is our de-

signed example of a subadditive monotone function. The study in this thesis is

valid for any subadditive monotone function.

Definition 6.2 (Coverage utility of an itemset (ucov)). Let T = {(x1 : q1),

(x2 : q2), . . . (xn : qn)} be a transaction such that ∀i ∈ {1 . . . n}, qi > 0.

Suppose that the items are ordered 2 such that qi ≤ qi+1 for all i. Let X be

an itemset with k items from T: X = {x1, x2, . . . , xk}. We define the coverage

utility of X in T in the following manner.

ucov(X,T) = q1 × Co({X}) +
k∑
j=2

(qj − qj−1)× Co({xj · · · xk})

For example, ucov(ACD, T1) in the database in Figure 6.1 can be computed

as 2×Co({DAC})+3×Co({AC})+5×Co({C}) = 2×5+3×4+5×3 = 37.

Lemma 6.1. Let T = {(A1 : q1), . . . (An : qn), (B1 : r1), . . . (Bm : rm)} be

a transaction with positive quantity associated with every item in T . Suppose

that the items are ordered such that q1 ≤ · · · ≤ qn ≤ r1 ≤ · · · ≤ rm. Let X

be an itemset with n items from T: X = {A1, A2, . . . , An}. Let Y be an itemset

with m items from T: Y = {B1, B2, . . . , Bm}. Then, ucov(X,T) + ucov(Y,T) ≥

ucov(X∪Y,T).
2 We order the items in a transaction T and define ucov as per Definition 6.2 to make the subsequent proofs for ucov easier

to understand.

108

Proof. Let us analyze the terms in ucov(X,T), ucov(Y,T), and ucov(X∪Y,T).

The first term in ucov(Y,T) is (r1)×Co({T}). The first term in ucov(Y,T) can

be expanded such that ucov(X,T) + ucov(Y,T) ≥ ucov(X∪Y,T) for the first

n+1 terms as shown in Table 6.2 as (r1)×Co({T}) = (q1)×Co({T}) + (q2 −

q1)×Co({T}) + · · ·+ (r1 − qn)×Co({T}). The remaining terms in ucov(Y,T)

and ucov(X∪Y,T) are equal.

Table 6.2: Comparison of ucov(X,T) + ucov(Y,T) with ucov(X∪Y,T) (Lemma 6.1)

Quantity ucov(X,T) + ucov(Y,T) ≥ ucov(X∪Y,T)
m1 = q1 m1×Co({A1 · · ·An}) + m1 × Co({Y }) ≥ m1 × Co({A1 · · ·An ∪ Y })
m2 = q2 − q1 m2×Co({A2 · · ·An}) + m2 × Co({Y }) ≥ m2 × Co({A2 · · ·An ∪ Y })
.
mn = qn − qn−1 mn × Co({An}) + mn × Co({Y }) ≥ mn × Co({An ∪ Y })
mn+1 = r1 − qn mn+1 × Co({Y }) = mn+1 × Co({Y })
mn+2 = r2 − r1 mn+2 × Co({B2 · · ·Bm}) = mn+2 × Co({B2 · · ·Bm})
.
mm = rm − rm−1 mm × Co({Bm}) = mm × Co({Bm})

Table 6.3: Example (Lemma 1)

Quantity ucov(X,T) + ucov(Y,T) ≥ ucov(X∪Y,T)
m1 = 2 2× Co({A1, A2, A3}) + 2× Co({B1, B2}) ≥ 2× Co({A1, A2, A3, B1, B2})
m2 = 1 1× Co({A2, A3}) + 1× Co({B1, B2}) ≥ 1× Co({A2, A3, B1, B2})
m3 = 1 1× Co({A3}) + 1× Co({B1, B2}) ≥ 1× Co({A3, B1, B2})
m4 = 1 1× Co({B1, B2}) = 1× Co({B1, B2})
m5 = 3 3× Co({B2}) = 3× Co({B2})

For example, consider a transaction T = {(A1 : 2), (A2 : 3), (A3 : 4), (B1 :

5), (B2 : 8)}, X = {A1, A2, A3}, and Y = {B1, B2} respectively. Refer Table

6.3 for an example for Lemma 6.1.

Theorem 6.3. The function ucov(·,T) is subadditive.

Proof. Let T be a transaction with positive quantity associated with every item

in T . Let the items in T be sorted in ascending order of quantity. Let X ⊆ T

109

and Y ⊆ T . ucov(X∪Y,T) will find an item with minimum quantity either

from set X or Y in transaction T . ucov(X∪Y,T) will find items with minimum

quantity from one set X(or Y) followed by an item from the other set Y(or X)

respectively. Using Lemma 1, the terms in ucov(X,T) and ucov(Y,T) can be

expanded such that ucov(X,T) + ucov(Y,T) ≥ ucov(X∪Y,T). Hence, ucov(·,T)

is a subadditive function.

For example, consider a transaction T = {(A1 : 2), (A2 : 3), (B1 : 4), (A3 :

7), (B2 : 8), (A4 : 9), (B3 : 10)},X = {A1, A2, A3, A4}, and Y = {B1, B2, B3}

respectively. Refer Table 6.4 for an example for Theorem 6.3.

Table 6.4: Example (Theorem 6.3)

Quantity ucov(X,T) + ucov(Y,T) ≥ ucov(X∪Y,T)
m1 = 2 2× Co({A1, A2, A3, A4}) + 2×Co({B1, B2, B3}) ≥ 2×Co({A1, A2, A3, A4, B1, B2, B3})
m2 = 1 1× Co({A2, A3, A4}) + 1×Co({B1, B2, B3}) ≥ 1× Co({A2, A3, A4, B1, B2, B3})
m3 = 1 1× Co({A3, A4}) + 1×Co({B1, B2, B3}) ≥ 1× Co({A3, A4, B1, B2, B3})
m4 = 3 3× Co({A3, A4}) + 3× Co({B2, B3}) ≥ 3× Co({A3, A4, B2, B3})
m5 = 1 1× Co({A4}) + 1× Co({B2, B3}) ≥ 1× Co({A4, B2, B3})
m6 = 1 1× Co({A4}) + 1× Co({B3}) ≥ 1× Co({A4, B3})
m7 = 1 1× Co({B3}) = 1× Co({B3})

Theorem 6.4. ucov(·,T) is a monotone function.

Proof. Let T = {(A1 : q1), . . . (An : qn), (B1 : r1)} be a transaction with

positive quantity associated with every item in T . Suppose that the items are

ordered such that q1 ≤ · · · ≤ qn and qi−1 ≤ r1 ≤ qi. Let X be an itemset

with n items from T: X = {A1, A2, . . . , An}. Let Y be an itemset from T:

Y = {B1}. Let us analyze the terms ucov(X,T) and ucov(X∪Y,T) as shown in

Table 6.5. It can be quickly verified that the terms from 1st till i − 1th rows in

Table 6.5 from ucov(X,T) is less than or equal to ucov(X∪Y,T) asCo(·) is mono-

110

tone (Theorem 6.2). Let us consider the ith term in ucov(X∪Y,T). It can be ob-

served that the next term from ucov(X,T) can be expanded such that ucov(X,T)

≤ ucov(X∪Y,T) as (qi − qi−1)×Co({Ai · · ·An}) = (qi − r1)×Co({Ai · · ·An})

+(r1 − qi−1)×Co({Ai · · ·An}). Hence, ucov(·,T) is a monotone function.

Table 6.5: Comparison of ucov(X,T) with ucov(X∪Y,T) (Theorem 6.4)

Quantity ucov(X,T) ≤ ucov(X∪Y,T)
m1 = q1 m1 × Co({A1 · · ·An}) ≤ m1 × Co({A1 · · ·An ∪ Y })
m2 = q2 − q1 m2 × Co({A2 · · ·An}) ≤ m2 × Co({A2 · · ·An ∪ Y })
.
mi−1 = qi−1 − qi−2 mi−1 × Co({Ai−1 · · ·An}) ≤ mi−1×Co({Ai−1 · · ·An ∪ Y })
mi = r1 − qi−1 mi × Co({Ai · · ·An}) ≤ mi × Co({Ai · · ·An ∪ Y })
mi+1 = qi − r1 mi+1×Co({Ai · · ·An}) = mi+1 × Co({Ai · · ·An})
mi+2 = qi+1 − qi mi+2 × Co({Ai+1 · · ·An}) = mi+2 × Co({Ai+1 · · ·An})
.
mn+1 = qn − qn−1 mn+1 × Co({An}) = mn+1 × Co({An})

6.3 Bounds for HUIM-SM

Consider the Sum() function used by HUIM algorithms. The Sum() function

does not follow the anti-monotonicity property. A superset of a low-utility item-

set can have high-utility. Hence, high-utility itemset mining algorithms define

upper-bounds like TWU [50], exact-utility summed with remaining utility [49]

to prune the search space. We derive new upper bounds that are better than the

bounds designed for HUIM. We now discuss these bounds in the context of a

general subadditive and monotone utility function u(X,T).

111

6.3.1 TU and TWU bounds

The TU of a transaction is the sum of the utilities of its items. TWU of an

itemset X is the sum of TU for transactions that contains X . The transaction-

weighted downward closure property of TWU ensures that if TWU(X) is less

than the threshold, X and its super-sets cannot be high-utility itemsets [50]. We

now define a related concept of transaction subadditive-monotone utility.

Definition 6.3 (TSMU and TSMWU). The transaction subadditive monotone

utility of a transaction T is defined as TSMU(T) = u(T, T). The transaction

subadditive monotone weighted utility (TSMWU) of an itemset X is the sum of

TSMU(T) for all the transactions containing X .

For example, consider transaction T1 from Table 6.1. TU for T1 for ucov is

equal to ucov({A}, T1) + ucov({C}, T1) + ucov({D}, T1) which evaluates to

20 + 30 + 8 = 58. TSMU for T1 for ucov is equal to ucov({ACD}, T1) which

evaluates to 37. Observe that TSMU(T) = TU(T) when Sum() is used as the

utility function. Now we show that TSMWU satisfies the downward-closure

property making it useful in mining algorithms and a tighter bound compared

to TWU for an arbitrary u(·, ·).

Lemma 6.2. If TSMWU(X) is less than the threshold, X and its super-sets can-

not be high-utility itemsets.

Proof. For any transaction T and any X ⊆ X ′ ⊆ T , u(X ′, T) ≤ TSMU(X)

as the set of transactions containingX ′ is always a subset of the transactions con-

112

tainingX and u(·, T) is a monotone function. Therefore, u(X ′) ≤ TSMWU(X)

for all X ⊆ X ′.

Lemma 6.3. TSMWU(X) is a tighter upper-bound compared to TWU(X).

Proof. This can be easily proved since TU(X) =
∑

T∈D
∑

x∈T u(x, T)

≥∑
T∈D u(T, T) = TSMU(X) due to subadditivity. Therefore, TSMWU(X) ≤

TWU(X).

6.3.2 Exact-utility (EU) and Remaining-utility (RU) bounds

List-based [49, 32] and projection-based [85, 48] HUIM algorithms use the

Exact-utility (EU) and Remaining-utility (RU) bounds that are tighter compared

to the TU bound explained earlier. These algorithms process items accord-

ing to some fixed order and items in each transaction are sorted accordingly;

let X be some itemset that is being processed, T be some transaction con-

taining X and T/X be the items appearing after X in T . One should note

that X ∪ (T/X) is not T , in particular, items appearing in T before X in

the processing order are not in T/X . The exact utility EU(X,T) is the sum

of the utilities of the items in X in T and the remaining utility RU(X,T) is

defined as the sum of the utilities of the items in T/X . It is known that X

and its extensions (according to the processing order) cannot be high utility if

EU−RU(X) =
∑

T⊇X EU(X,T) + RU(X,T) is less than the threshold [49];

this fact is used in HUIM algorithms to decide whether to examine extensions

of the currently explored itemset X . Now, we define combined utility in an

113

analogous manner for subadditive monotone utility functions and analyze its

applicability for itemset mining.

Definition 6.4 (Combined utility (CU)). Given an itemset X and a transaction

T with X ⊆ T , the combined utility of X is defined as CU(X,T) = u(X ∪

T/X, T) and CU(X) =
∑

T⊇X CU(X,T).

For example, consider transaction T1 from Table 6.1. Let us compute

EU({AC}, T1) + RU({AC}, T1), and CU({AC}, T1).

EU({AC}, T1)+RU({AC}, T1) evaluates to 58, and CU({AC}, T1) evaluates

to 37.

Lemma 6.4. If CU(X) is less than a threshold, any extension X ′ of X in the

processing order of items is not a high-utility itemset.

Proof. Let X ′ be some extension of X in the processing order of items; since

transactions are also (implicitly) stored in the same order, X ′ ⊆ X ∪T/X . The

proof of the lemma follows easily since the set of transactions containing X ′ is

always a subset of the set of transactions containingX and u(·, T) is a monotone

function which implies that u(X ′, T) ≤ u(X ∪ T/X, T) = CU(X,T).

Lemma 6.5. CU(X) is a tighter upper-bound compared to EU−RU(X).

Proof. First observe that subadditivity implies thatEU(X,T) =
∑

x∈X u(x, T)

≥ u(X,T). Similarly it follows that RU(X,T) ≥ u(T/X, T). Therefore, we

immediately get EU(X,T) + RU(X,T) ≥ u(X,T) + u(T/X, T) ≥ u(X ∪

114

T/X, T) = CU(X,T) (second inequality is again due to subadditivity). There-

fore it follows that EU−RU(X) ≥ CU(X).

It should be noted that CU(X) = EU−RU(X) when Sum is used as the

utility function. The results of Subsections 6.3.1 and 6.3.2 show that we can use

TSMWU in place of TWU and CU in place of EU−RU in HUIM algorithms.

We illustrate these bounds in our example transaction database presented in

Table 6.1 for ucov.

6.4 Algorithms for HUIM-SM

Existing algorithms can be categorized into tree-based, list-based and projection-

based algorithms. We show that the data structures and the corresponding algo-

rithms can be adapted with suitable change in the upper-bound function.

6.4.1 List-based algorithm

List-based algorithms like HUIM and FHM [49, 32] etc. construct a data struc-

ture called utility-list for every itemset explored during the mining process

that consists of tuples (Transaction id (T), Exact-utility (EU(X,T)), Remaining-

utility (RU(X,T))). The utility-list for a {k}-itemset (an itemset consisting of k

items) is constructed by intersecting lists of two {k − 1} itemsets Px and Py

that have a prefix itemset P in common. Another intersection operation with the

utility-list of the prefix itemset P is also performed to avoid the double count-

115

Table 6.6: SMI-List of {A}

TID CWI RWI
1 {(A : 5)} {(C : 10), (D : 2)}
2 {(A : 10)} {(C : 6), (E : 6), (G : 5)}
3 {(A : 10)} {(B : 4), (D : 12), (E : 6), (F : 5)}
4 {(A : 5)} {(B : 2), (C : 3), (D : 2), (H : 2)}

Table 6.7: SMI-List of {B}

TID CWI RWI
3 {(B : 4)} {(D : 12), (E : 6), (F : 5)}
4 {(B : 2)} {(C : 3), (D : 2), (H : 2)}
5 {(B : 8)} {(C : 13), (D : 6), (E : 3)}
6 {(B : 4)} {(C : 4), (E : 3), (G : 2)}

ing of EU(P) in EU(Pxy), i.e. EU(Pxy,T)=EU(Px)+EU(Py)-EU(P). Two vari-

ables sumEU(X), and sumRU(X) store the sum of EU(X,T), and RU(X,T) for

all transactions which contain itemset X.
Table 6.8: SMI-List of {AB}

TID CWI RWI
3 {(A : 10), (B : 4)} {(D : 12), (E : 6), (F : 5)}
4 {(A : 5), (B : 2)} {(C : 3), (D : 2), (H : 2)}

To support the efficient calculation of utility for any sub-additive and mono-

tone function, we propose a data structure called SMI-list. For each transac-

tion T that contains X, the SMI-list stores a tuple of the form (Transaction

Id (T), Current Weighted Itemset (CWI), Remaining Weighted Itemset (RWI)).

The Current Weighted Itemset of an SMI-list for an itemset X stores the item-

quantity information for all items in X. The Remaining Weighted Itemset stores

the items with their quantities which appear after X in a transaction. The vari-

ables SumEU, and SumCU accumulate the the exact EU and CU value during

the construction of the inverted-list for an itemset X. The variable SumEU is

116

used to decide whether to report the itemset at the output using the utility thresh-

old value. And, the variable SumCU is used to decide whether to explore further.

A variable CU stores the Combined Utility (CU(X)) bound with the utility-list

for every itemset X. The construction process is presented as Algorithm 6.1.

We observe that there is no need to scan the SMI-list of the prefix while con-

structing the list for a k-itemset from {k−1}-itemsets, unlike required by some

algorithms like HUI-Miner, FHM [49, 32] for HUIM. It is due to the reason that

a set union operation is performed when the SMI-list of two {k − 1}-itemsets

are joined. The SMI-List for the itemsets {A}, {B}, and {AB} are shown in

Table 6.6, 6.7, and 6.8 respectively.

Algorithm 6.1 Construct-SMI-List (Ix,Iy,f(·))
Input: LIx: SMI-List of k-1 itemset Ix, LIy: SMI-List of k-1 itemset Iy, f(·): subadditive monotone
utility function.
Output: LIxy: SMI-List of k itemset Ixy.

1: LIxy = {}
2: for each element Ex in LIx do
3: if ∃Ey ∈ LIy and Ex.T id == Ey.T id then
4: Exy = 〈Ex.T id,Ex.CWI ∪ Ey.CWI,Ey.RWI〉
5: LIxy.append(Exy)
6: Ixy.sumEU+ = f(Ex.CWI ∪ Ey.CWI)
7: Ixy.sumCU+ = f(Ex.CWI ∪ Ey.CWI ∪ Ey.RWI)
8: end if
9: end for

10: Return Ixy

Our proposed algorithm called SM-Miner (Algorithm 6.2) takes as input a

prefix (say I), a list of SMI-Lists for the 1=extensions of the prefix (LExt_I ,

a minimum utility threshold (θ), and a subadditive monotone utility function

(f(·)) and mines pattern using depth first search strategy. The 1-extensions

of a prefix are the items that can extend the currently explored prefix itemset

by an itemset mining algorithm. Initially, the database is scanned to compute

117

the TSMWU of the items present in the transaction database as TSMWU is a

tighter bound then TWU as per Lemma 6.3. Another database scan is performed

to remove items with TSMWU less than θ (Lemma 6.2) and construct the SMI-

List of the remaining items present in the transaction database to get LExt_I with

I being empty. The algorithm SM-Miner explores the search space in a depth-

first search manner and returns the complete set of high-utility itemsets. During

each step, SM-Miner constructs the SMI-List of a {k}-itemsets from SMI-List

of two {k − 1}-itemsets. Two variables SumEU, and SumCU accumulate the

EU and CU values during the construction of the SMI-List of an itemset as CU

is a tighter bound (Lemma 6.5). If SumCU for an itemset X is less than θ, X

and its supersets can not be high-utility as per Lemma 6.4.

Algorithm 6.2 SM-Miner (I , LExt_I , θ,f(·))
Input: Prefix I (initially empty), LExt_I :List of SMI-Lists of I 1-extensions, θ: a user-specified threshold,
f(·): subadditive monotone utility function.
Output: the set of high-utility itemsets with I as prefix.

1: for each SMI-List LIx in LExt_I do
2: if Ix.sumEU ≥ θ then
3: Ix is a high-utility itemset and report in output
4: end if
5: if Ix.sumCU ≥ θ then
6: LExt_Ix=∅
7: for each SMI-List LIy after LIx in Ext_I do
8: LIxy=Construct-SMI-List(Ix,Iy,f(·))
9: LExt_Ix=LExt_Ix ∪ LIxy

10: end for
11: SM-Miner (Ix,LExt_Ix,θ,f(·))
12: end if
13: end for

118

6.4.2 Tree-based algorithm

A two-phase tree-based algorithm like UP-Growth and UPGrowth+ [71] gen-

erate candidate high-utility itemsets in the first phase and compute their utility

through another database scan in the second phase. The tree-based algorithms

construct a global tree data structure from transaction database and store an

upper-bound estimate like TWU with each node to generate candidates quickly.

Tree-based algorithms remove unpromising items during the mining process

through techniques like DGU, DLU [71]. An itemset X is unpromising in a

transaction database if TWU(X) is less than the minimum utility threshold θ.

Local trees are recursively created from the global tree to generate candidates in

the first phase. Tree-based algorithms remove unpromising items during global

and local tree creation to compute better utility estimates. We observe that un-

promising items can be removed during global tree creation as it is possible to

recompute the utility of a transaction after removing the unpromising items for

any arbitrary subadditive function.

However, we observe that removing unpromising items during local tree cre-

ation may not give correct upper-bound estimates for any arbitrary subadditive

function, even though it works for the Sum() function. Imagine a tree-based

algorithm at an intermediate stage and let Y denote a node (rather, a path) in the

tree. Further, consider a case where an item A appears on the path Y and, at that

intermediate stage, A was found to be unpromising. The tree-based algorithm at

this point removes A from the local tree and re-adjusts the utility upper bounds

119

of the path Y. To update the utility upper-bound of node Y, the algorithm sub-

tracts the u(A) from the utility of path Y. This happens to be correct when the

u = Sum() since the Sum(Y/A, T) = Sum(Y, T)− Sum(A, T). However, it

may not necessarily hold for other SM utility function. If we use the same pro-

cedure and update u(Y/A, T) = u(Y, T) − u(A, T), we may incorrectly prune

itemsets with high-utility; since the subadditivity property only guarantees that

u(Y/A, T) > u(Y, T) − u(A, T) which clearly shows that the updated value,

which appears on the right-hand side, could be lesser than the actual value on

the left.

We propose that the tree-based algorithms for HUIM can be adapted with

minimal change for an arbitrary subadditive monotone function. There is no

change in the tree data structure, and the only change is that removing unpromis-

ing items during local tree creation must be disabled during the candidate gener-

ation phase. The tree construction and verification phase remain the same. This

leads to direct use of utility values associated with the tree nodes in the mining

process. However, the absence of removing unpromising items during local tree

creation can result in the generation of a large set of potential candidates.

6.4.3 Projection-based algorithm

Projection-based algorithms like EFIM [85] merge two identical transactions

to reduce the cost for database scan during the construction of the projected

database for an itemset. Let T = {(A1 : q1), . . . (An : qn)} be a transac-

tion with positive quantity associated with every item in T . Let S = {(A1 :

120

r1), . . . (An : rn)} be another transaction with positive quantity associated with

every item in S. Let M = {(A1 : q1 + r1), . . . (An : qn + rn)} be another

transaction with positive quantity associated with every item in M . Merging

transactions does not change the utility of the itemset 〈A1, A2,An〉 in the

database for the Sum function defined by HUIM. However, utility of an itemset

in the merged transaction can be less than the sum of its utility in individual

transactions for an arbitrary subadditive function. Consider the transactions T7

and T8 in Figure 6.1. The utility (ucov) of the itemset {FG} in T7 and T8

is 7 and 15 respectively. Consider merging transactions T7 and T8 to a single

transaction M = {(F : 5), . . . (G : 5)}. The utility of itemset {FG} in this

merged transaction i.e. u({FG},M) is 20. Therefore, transaction merging can

change the utility of an itemset in the database. We disable transaction merging

when adapting projection-based algorithms like EFIM for an arbitrary subaddi-

tive monotone function.

6.5 Case Study of HUIM-SM on a Twitter dataset

We conduct an experimental study on a publicly available Twitter dataset to

emphasize that utility functions like ucov can be designed that can combine in-

formation from a transaction database and domain knowledge from an external

data source in the form of a graph. We extract the top-100 patterns extracted

by ucov and other mining methodologies like frequent itemset mining and high-

utility itemset mining.

121

Table 6.9: Characteristics of Twitter transaction dataset

Dataset #Tx Avg. length #Items Max. length
Twitter 2,631 87 14,766 381

The Twitter-Dynamic-Net dataset3 was constructed by selecting "Lady Gaga"

on Twitter, and randomly selecting 10,000 of her followers. The selected fol-

lowers were taken as seed users, and all their followers were collected by a

crawler. Every tweet has information like user name, tweet id, timestamp, and

retweet by user name, etc. fields associated with it. We construct a transaction

database and a directed follower-followee graph from the dataset. Every trans-

action captures the users who were active during the period associated with the

transaction. The quantity associated with a user is the number of tweets posted

by that user in the time interval associated with the transaction. The follower-

followee graph has users as vertices, and a directed edge from a user ’A’ to

user ’B’ if ’B’ has retweeted at least one tweet posted by user ’A’ in the com-

plete dataset. We fix the time duration to three hours and construct a transaction

database whose statistics are given in Table 6.9. The followee-follower graph

constructed from the dataset contains 14,766 followees and 20,423 followers

with 46,164 edges between followees and followers. The average degree of a

followee is 3, and the maximum degree is 48. We ensured that every user in the

constructed graph has at least one follower by removing nodes that do not meet

this criteria. Even though we discussed coverage on an undirected graph earlier,

it is straightforward to adapt it for directed graphs and we do the same.
3The dataset is publicly available as a part of the AMiner repository.(https://aminer.cn/data-sna)

122

https://aminer.cn/data-sna

We compare the top-100 patterns extracted by ucov with the existing base-

lines: frequent itemset mining (fim), and HUIM (sum). We also define two

new baseline functions by integrating domain knowledge captured in the form

a graph with frequent itemset mining, and HUIM. We call our-defined base-

line as frequent itemset mining with coverage (fcov), and HUIM with coverage

(sumcov) respectively.

Frequent itemset mining (fim) is applied to the transaction dataset only to

extract top-k frequent itemsets. fcov for an itemset returns the frequency of

the itemset in the transaction database multiplied by its graph coverage Co(·).

sum function captures the high-utility itemsets from the transaction database

only. To integrate the coverage graph in the existing framework of high-utility

itemset mining, we define the utility of an item in a transaction as the product

of its quantity and coverage from the directed follower-followee graph. The

utility of an itemset in a transaction is simply the sum of the utility of its items.

We call this function as sumcov. It can be observed that fim(·, T), fcov(·, T),

sum(·, T), and sumcov(·, T) for a transaction T are a subadditive monotone

functions.

We compare the overlap among top-100 patterns generated by ucov with

fim, fcov, sum and sumcov in Table 6.10. It can be observed that ucov ex-

tracts different patterns compared to fim, and sum functions. There is a sig-

nificant overlap in the top-100 patterns generated by sumcov, and ucov. We

claim that the patterns generated by ucov will always be a subset of the patterns

generated by sumcov for the same minimum utility threshold. We present a for-

123

Table 6.10: Overlap between the top 100 patterns generated by fim, fcov, sum, and sumcov with ucov.

Function Total number of patterns Patterns common with ucov
fim 100 21
fcov 100 37
sum 100 16
sumcov 100 71

Table 6.11: Statistics showing distribution of pattern length for top 100 patterns generated by fim, fcov, sum, sumcov,
and ucov.

Statistics fim fcov sum sumcov ucov

Minimum 1 1 1 1 1
Maximum 1 2 316 7 5
Mean 1 1.4 249 2.5 2.06
Median 1 1 315 2 2

mal proof for our claim in Theorem 6.5. We observed empirically that sumcov

generates a large number of patterns compared by ucov for a fixed utility thresh-

old. For example, sumcov generated 10,29,921 patterns while ucov generated

only 681 patterns when the minimum utility threshold was set to 10,000 for the

Twitter dataset used in our experimental study.

We also analyze the pattern length and Co(·) for the top-100 patterns gen-

erated by the different utility functions. Table 6.11 shows the distribution of

pattern length i.e. number of items contained in a pattern by different func-

tions for the top-100 patterns. It can be observed that fim generates patterns

containing one item only.

Table 6.12: Statistics showing distribution of Co(·) for top 100 patterns generated by fim, fcov, sum, sumcov, and
ucov.

Statistics fim fcov sum sumcov ucov

Minimum 1 12 7 16 16
Maximum 40 64 1798 105 79
Mean 14.97 30.62 1421 42.7 38.9
Median 15.5 29 1793 38 38

124

Table 6.13: Statistics showing distribution of f(·) for top 100 patterns generated by fim, fcov, sum, sumcov, and
ucov.

Statistics fim fcov sum sumcov ucov

Minimum 179 68 1 8 15
Maximum 482 462 462 462 462
Mean 231 181 40.9 99.6 115
Median 213 170 1 67.5 73

The sum function is applied on the transaction database only and it generates

very long patterns with a length greater than 300. However, our preference is

to find patterns with a reasonable length as it’s infeasible to give a discount to

many active users so that they influence their set of followers for applications

like viral marketing. Table 6.12 shows the distribution of graph coverage Co(·)

for different functions. Frequent itemset mining and high-utility itemset mining

ignores the domain knowledge captured in the form of a graph completely and

only considers the transaction database to generate patterns. It can observed

that the patterns generated by ucov have better Co(·) compared to the patterns

generated by fim, and sum. Table 6.13 shows the distribution of the frequency

i.e. the number of transactions for the top-100 patterns generated by different

functions. The sum function generates patterns with very low frequency as

longer patterns are usually present in few transactions in a transaction database.

The frequent itemset mining functions generate patterns that have frequency

higher than sum, sumcov and ucov. We end this section with a proof that the

ucov function selects only a small subset of patterns generated by the sumcov

utility function. Itemset mining is known to have the problem of generating

too-many-patterns, and ucov appears to be doing a better filtering of available

information in that context.

125

Table 6.14: Comparison of ucov(X,T) with sumcov(X,T) (Theorem 6.5)

Quantity ucov(X,T) ≤ sumcov(X,T)
m1 = q1 m1×Co({A1 · · ·An}) ≤ m1× (Co({A1}) + Co({A2}) +. . .+Co({An}))
m2 = q2 − q1 m2×Co({A2 · · ·An}) ≤ m2× (Co({A2}) + Co({A3}) +. . .+Co({An}))
.
.
.
mn = qn − qn−1 mn×Co({An}) = mn×Co({An})

Theorem 6.5. For a fixed minimum user-defined threshold θ, the set of high-

utility patterns generated by ucov(·) will always be a subset of the patterns

generated by sumcov(·).

Proof. Let T = {(A1 : q1), . . . (An : qn)} be a transaction with positive quantity

associated with every item in T . Suppose that the items are ordered such that

q1 ≤ · · · ≤ qn. LetX be an itemset with n items from T:X = {A1, A2, . . . , An}.

Let’s analyze the functions ucov(X,T) and sumcov(X,T). ucov(X,T) =

(q1)×Co(X) + (q2−q1)×Co({A2 · · ·An})+ . . . +(qn)×Co({An}). sumcov(X,T)

= (q1)×Co({A1}) + (q2)×Co({A2}) + (q3)×Co({A3}) + . . . +(qn)×Co({An}).

It can be quickly verified that the first term in ucov(X,T) i.e.

(q1)×Co({A1 · · ·An}) ≤ (q1)× (Co({A1}) + Co({A2})+...+Co({An})).

Similarly, (q2 − q1)×Co({A2 · · ·An}) ≤ (q2 − q1)× (Co({A2}) + Co({A3})+

. . .+Co({An})). For the proof refer to Table 6.14 where we compare the expres-

sions of ucov(X,T) and sumcov(X,T) term-by-term. The table shows that

sumcov(·) can assign an equal or higher utility score compared to ucov(·). All

patterns with ucov(·) no less than θ will have sumcov(·) no less than θ and

this proves the theorem. In fact, sumcov(·) can overestimate the coverage of

patterns if the set of vertices covered by individual items present in the pattern

126

have lots of common neighbors.

For example, ucov(ACD, T1) in the database in Figure 6.1 is 37.

sumcov({ACD}, T1) can be computed as 5×Co({A})+10×Co({C})+2×

Co({D}) = 5× 4 + 10× 3 + 2× 4 = 58.

6.6 Performance evaluation of HUIM-SM algorithms

In this section, we compare the performance of algorithms from the category

of tree-based, list-based, and projection-based algorithms. We specifically ask

which category algorithms performs best on sparse and dense datasets? Do we

get the same performance trends as we get for HUIM?

Table 6.15: Characteristics of real datasets

Dataset #Tx Avg. length #Items (I) Density score R
(%) =(A/I)x100 [7]

Type

Retail 88,162 10.3 16,470 0.062 Sparse
Kosarak 9,90,002 8.1 41,270 0.019 Sparse
Chainstore 11,12,949 7.2 46,086 0.015 Sparse
Chess 3,196 37 75 49.33 Dense
Mushroom 8,416 23 119 19.32 Dense
Accidents 3,40,183 33.8 468 7.22 Dense

Experimental Setup: We choose UP-Growth+ [71] from tree-based, SM-Miner,

EFIM [85] and D2HUP [48] from projection-based algorithms. We obtained

the Java source code of UP-Growth+, EFIM and D2HUP algorithm from the

SPMF library [31] and adapt them to mine patterns for any arbitrarily subad-

ditive monotone function as described in Section 6.4. We call the algorithms

adapted for SM functions as UPG+SM, EFIMSM, and D2HUPSM respectively.

127

0 1 2 3 4 5 6

6

8

10

12

14

Minimum utility threshold%

Ti
m

e
lo

g
ba

se
2

sc
al

e
(s

ec
)

Retail (Sparse)

0 1 2 3 4 5 6

23

24

25

26

27

Minimum utility threshold%
#

U
FC

lo
g

ba
se

2
sc

al
e

Retail (Sparse)

14 16 18 20 22
9

10

11

12

13

14

Minimum utility threshold%

Ti
m

e
lo

g
ba

se
2

sc
al

e
(s

ec
)

Kosarak (Sparse)

14 16 18 20 22

26

27

28

29

30

Minimum utility threshold%

#
U

FC
lo

g
ba

se
2

sc
al

e
Kosarak (Sparse)

0 1 2 3 4 5 6
8

9

10

11

12

13

Minimum utility threshold%

Ti
m

e
lo

g
ba

se
2

sc
al

e
(s

ec
)

ChainStore (Sparse)

0 1 2 3 4 5 6
25

26

27

28

29

30

Minimum utility threshold%

#
U

FC
lo

g
ba

se
2

sc
al

e

ChainStore (Sparse)

UPG+SM SM-Miner EFIMSM D2HUPSM

Figure 6.2: Performance evaluation on sparse datasets for ucov.

128

0 1 2 3 4 5 6

10

15

20

25

Minimum utility threshold%

N
o.

of
ca

nd
id

at
es

lo
g

ba
se

2
sc

al
e Retail (Sparse)

0 1 2 3 4 5 6

11.6

11.8

12

12.2

12.4

Minimum utility threshold%
M

em
or

y
lo

g
ba

se
2

sc
al

e
(M

B
)

Retail (Sparse)

14 16 18 20 22

6

8

10

12

14

16

Minimum utility threshold%

N
o.

of
ca

nd
id

at
es

lo
g

ba
se

2
sc

al
e Kosarak (Sparse)

14 16 18 20 22

10

11

12

13

Minimum utility threshold%

M
em

or
y

lo
g

ba
se

2
sc

al
e

(M
B

)
Kosarak (Sparse)

0 1 2 3 4 5 6

10

15

20

25

Minimum utility threshold%

N
o.

of
ca

nd
id

at
es

lo
g

ba
se

2
sc

al
e ChainStore (Sparse)

0 1 2 3 4 5 6

10

11

12

13

Minimum utility threshold%

M
em

or
y

lo
g

ba
se

2
sc

al
e

(M
B

)

ChainStore (Sparse)

UPG+SM SM-Miner EFIMSM D2HUPSM

Figure 6.3: Number of candidates and memory consumption on sparse datasets for ucov.

129

64 66 68 70 72

10

12

14

16

Minimum utility threshold%

Ti
m

e
lo

g
ba

se
2

sc
al

e
(s

ec
)

Chess (Dense)

64 66 68 70 72

30

32

34

Minimum utility threshold%
#

U
FC

lo
g

ba
se

2
sc

al
e

Chess (Dense)

64 66 68 70 72

4

6

8

10

Minimum utility threshold%

Ti
m

e
lo

g
ba

se
2

sc
al

e
(s

ec
)

Mushroom (Dense)

64 66 68 70 72

24

26

28

Minimum utility threshold%

#
U

FC
lo

g
ba

se
2

sc
al

e
Mushroom (Dense)

64 66 68 70 72

13

13.5

14

Minimum utility threshold%

Ti
m

e
lo

g
ba

se
2

sc
al

e
(s

ec
)

Accidents (Dense)

64 66 68 70 72
31.5

32

32.5

33

Minimum utility threshold%

#
U

FC
lo

g
ba

se
2

sc
al

e

Accidents (Dense)

SM-Miner EFIMSM D2HUPSM

Figure 6.4: Performance evaluation on dense datasets for ucov.

130

64 66 68 70 72

12

14

16

18

20

Minimum utility threshold%

N
o.

of
ca

nd
id

at
es

lo
g

ba
se

2
sc

al
e Chess (Dense)

64 66 68 70 72

10

11

12

Minimum utility threshold%
M

em
or

y
lo

g
ba

se
2

sc
al

e
(M

B
)

Chess (Dense)

64 66 68 70 72

6

8

10

12

14

16

Minimum utility threshold%

N
o.

of
ca

nd
id

at
es

lo
g

ba
se

2
sc

al
e Mushroom (Dense)

64 66 68 70 72
7

8

9

10

11

12

Minimum utility threshold%

M
em

or
y

lo
g

ba
se

2
sc

al
e

(M
B

)
Mushroom (Dense)

64 66 68 70 72

8

10

12

14

16

Minimum utility threshold%

N
o.

of
ca

nd
id

at
es

lo
g

ba
se

2
sc

al
e Accidents (Dense)

64 66 68 70 72
9

10

11

12

13

14

Minimum utility threshold%

M
em

or
y

lo
g

ba
se

2
sc

al
e

(M
B

)

Accidents (Dense)

UPG+SM SM-Miner EFIMSM D2HUPSM

Figure 6.5: Number of candidates and memory consumption on dense datasets for ucov.

131

The experiments were performed on an Intel Xeon(R) CPU=26500@2.00

GHz with 64 GB RAM and Windows Server 2012 operating system. The

datasets are obtained from the SPMF library [31] and vary in the number of

transactions, the number of items, and the average transaction length as shown

in Table 6.15. The coverage graph was constructed from the transaction database

by taking the set of distinct items present in the database as vertices and link-

ing them by edges. The average degree of a vertex in the coverage graph is four.

The metrics for performance measure are total execution time, the number of ex-

plored candidates, the number of utility function calls (UFC) and main memory

consumption.

Result-1: Which category algorithm performs better on Sparse datasets?

The results for sparse datasets are shown in Figure 6.2 and 6.3. We observe that

tree-based algorithm UPG+SM and list-based algorithm SM-Miner perform

better than projection based algorithms EFIMSM and D2HUPSM on Sparse

datasets. The reason for this behavior is less number of utility function calls by

UPG+SM. The UPG+SM algorithm does not call the utility function during the

candidate generation phase. The function calls are made only during the tree

construction and verification phase. However, EFIMSM and D2HUPSM iden-

tify promising items during every recursive call, unlike SM-Miner and UPG+SM.

Hence, the number of function calls by EFIMSM, D2HUPSM is more compared

to SM-Miner and UPG+SM. There is an outlier at 14 % threshold on Kosarak

dataset which is due to a large number of candidates generated by UPG+SM and

the overhead for candidate verification dominates the execution time. D2HUP

132

is the state-of-the-art algorithm on sparse datasets for high-utility itemset min-

ing. However, we observe that the tree-based and list-based algorithms perform

better compared to projection-based algorithms on sparse datasets. We observe

that the total execution time of the algorithms is more correlated with the num-

ber of utility function calls compared to the number of candidates generated

during the mining process.

Result-2: Which category algorithm performs better on Dense datasets?

The results for dense datasets is shown in Figure 6.4 and 6.5. SM-Miner per-

forms the best on the Mushroom dataset and EFIMSM performs the best on

Accidents dataset. UPG+SM performs the worst for Mushroom and Accidents

dense datasets as it generates lots of candidates, and the verification phase dom-

inates the runtime performance for tree-based algorithms. The execution for

UPG+SM did not complete on Accidents dataset even after 24 hours and was

terminated. EFIMSM performs the best for Accidents dataset as it generates

the least number of candidates as well as the number of calls to the utility com-

putation function. SM-Miner performs the best for Mushroom dataset followed

by EFIMSM. EFIM is known to be the state-of-the-art algorithm in high-utility

itemset mining for dense datasets. We observe that the SM-Miner competes

with EFIMSM for the best performance on dense datasets and the total execu-

tion time is more correlated with the number of utility function calls compared

to the number of candidates.

133

6.7 Summary

In this chapter, we formalize the problem of high-utility itemset mining for

the class of subadditive monotone utility functions. We focus on designing

upper-bounds for high-utility itemset mining problem with subadditive mono-

tone functions (HUIM-SM). We propose a new inverted-list data structure called

SMI-List with a lightweight construction method and an algorithm called SM-

Miner to find high-utility itemsets for arbitrary subadditive monotone functions.

We also adapt the existing tree-based and projection-based high-utility itemset

mining algorithms for SM functions. We compare the performance of several

HUIM-SM algorithms on dense and sparse datasets. Our results demonstrate

that the computation of utility can play an important role in the performance

of algorithms for complex utility functions like ucov. Subadditive monotone

utility functions like ucov can be designed to find high-influence active groups

that can be attractive for applications like viral marketing.

134

Chapter 7

Conclusion

Frequent itemset mining [4, 40, 80, 27] is a very important problem that has

been studied extensively by the data mining community in the last three decades.

Frequent itemset mining assumes the binary presence/absence of items within

a transaction. The notion of high-utility itemset mining was coined to associate

positive weights with each item in a transaction. It is a harder problem to solve

compared to frequent itemset mining as the utility measure is neither monotonic

nor anti-monotonic. Despite recent attention and significant advances, several

challenges remain to be resolved with respect to efficiency and applicability of

high-utility itemset mining. We were able to address some of these which are

summarized below. We conclude with several interesting research directions

that are left to be pursued.

In Chapter 3, we designed a data structure called UP-Hist tree and an al-

gorithm called UP-Hist Growth that performed better than the state-of-the-art

two-phase tree-based algorithms [6, 72, 71]. We observed that two-phase tree-

135

based algorithms take a lot of time in the verification phase for dense datasets,

and take more computational resources like memory, execution time compared

to the one-phase list-based algorithms. We further observed that the intersec-

tion operation to construct an inverted-list data structure like utility-list [49, 32]

is a costly operation and can impact the performance of a high-utility itemset

mining algorithm. List-based algorithms can also generate itemsets that are non-

existent in the database. In Chapter 4, we proposed an approach to construct a

high-utility itemset mining algorithm by starting the execution with a tree-based

algorithm and switching to a list-based algorithm when switching criteria is met.

The advantage of using a hybrid approach is that it avoids constructing the

inverted-lists of smaller itemsets that have large inverted-lists as the number of

transactions containing an itemset decrease with an increase in itemset length.

The tree data structure can also guide the search space exploration of a list-

based algorithm, and non-existent itemsets generation can be avoided. We fur-

ther embedded several optimizations to improve the performance of a hybrid

algorithm and presented a case study that integrated UP-Growth+ [71] and UP-

Hist Growth [21] with FHM [32]. Our experimental study validated that the

hybrid algorithms have superior performance compared to the state-of-the-art

tree-based and list-based algorithms.

However, even the state-of-the-art hybrid tree-based, list-based, and the hy-

brid algorithms presented as a case study did not terminate for more than 24

hours on very dense datasets like Connect. It motivated us to design a novel

data structure called UT_Mem-tree and the first one-phase tree-based algorithm

136

called UT-Miner presented in Chapter 5. The information stored in an inverted-

list data structure like utility-list [49, 32] is augmented on a tree structure and we

propose a lightweight tree construction mechanism to improve the performance

of UT-Miner on dense datasets. We observed in our experimental study that the

lightweight tree construction mechanism made the UT-Miner algorithm about

1.4 to 2 times faster on dense datasets. We observed that the UT-Miner, and

UP-Hist Growth algorithm ran out of memory during the global tree creation on

the NyTimes [29] dataset. However, the UPG+-Hybrid algorithm performs bet-

ter than the FHM and mHUIMiner algorithms on NyTimes as shown in Section

5.3. We conclude that it is better to use lightweight tree structures like UP-Tree

compared to other tree structures for datasets like NyTimes that have longer

transactions.

The above approaches led to significant improvement in the running time

required for high-utility itemset mining. For example, the UT-Miner algorithm

performed at least 20 and 30 times better than the state-of-the-art tree-based,

list-based and hybrid algorithms on the Mushroom and Accidents datasets. Our

next focus was on enhancing the applicability of HUIM.

A lot of effort has been made by the pattern mining community to design effi-

cient algorithms where the utility of an itemset is defined as the sum of the utility

of its items. We wanted to explore if the high-utility itemset mining framework

can incorporate utility functions that are subadditive and monotone. The gen-

eralization of utility can lead to interesting applications that allow integration

of domain knowledge with itemsets generated from a transaction database. In

137

Chapter 6, we defined the problem of high-utility itemset mining for any ar-

bitrary subadditive monotone utility function. We presented a case study to

highlight the application of designing a novel utility function that can capture

groups of active and influential users from a real Twitter dataset for applications

like viral marketing. We showed that the existing upper-bounds and high-utility

itemset mining algorithms could be adapted to mine itemsets for any subaddi-

tive monotone utility function. We also pointed out some caveats that must be

kept in mind by data mining researchers and practitioners while designing an

algorithm for their designed utility function.

7.1 Future Research Directions

The high-utility itemset mining problem requires extensive efforts to design an

efficient algorithm that performs well on sparse and dense datasets. There is

a possibility of coming up with an algorithm that can utilize the hybrid frame-

work similar to the one in Chapter 4 to combine algorithms like EFIM [85]

and D2HUP [48]. The EFIM algorithm creates a compact projected database

by implementing the transaction merging technique that makes it the state-of-

the-art algorithm on dense datasets. The D2HUP algorithm uses it hyperlink

data structure during projected database creation that improves its performance

on sparse datasets. It will be interesting to design an algorithm that can take

advantage of both algorithms. An extensive study can be performed to decide

the switching criteria in the hybrid framework. There is a need for an adaptive

138

high-utility itemset mining algorithm that can dynamically tune its search-space

exploration strategy according to the dataset characteristics observed during the

mining process. Techniques to reduce the projected database size similar to the

one proposed in Chapter 5 and storing information in a compressed form sim-

ilar to a histogram proposed in Chapter 3 can be investigated to improve the

efficiency and memory requirements of high-utility mining algorithms.

In Chapter 6, we integrated the constraint of subadditive monotone utility

functions in the high-utility itemset mining framework. The objective of the

constraint pattern mining [65, 35] field of research is to develop general systems

and programming languages that provide a framework to identify the general

classes of constraints that can be processed by pattern mining systems during

the search. It can be an interesting research direction to integrate the constraint

pattern mining techniques into the itemset mining framework. We designed

a subadditive monotone function that can integrate knowledge from a Twitter

network in the form of a follower-followee graph with a transaction database.

We believe that designing novel applications [43, 53, 63] to mine interesting

patterns will lead to a much wider acceptance and usability of pattern mining

algorithms.

Another interesting research direction can be to estimate the number of po-

tential high-utility itemsets for a given transaction dataset and a user-defined

minimum utility threshold. We can investigate techniques like data clustering

[28], and locality-sensitive hashing [83, 12] to identify the set of items that can

generate high-utility itemsets. We believe that estimating the number of poten-

139

tial high-utility itemsets can help to improve the load balancing for high-utility

itemset mining algorithms applied on big data platforms [47, 18, 67]. The al-

gorithms designed on parallel architectures need to be evaluated on datasets big

enough to validate their performance at the big data scale. An extensive study

can be conducted to evaluate and improve the performance of dynamic load

balancing strategies.

140

References

[1] AGGARWAL, C. C., BHUIYAN, M. A., AND AL HASAN, M. Frequent

pattern mining algorithms: A survey. In Frequent pattern mining. (2014),

pp. 19–64.

[2] AGGARWAL, C. C., AND YU, P. S. Outlier detection for high dimensional

data. In Proceedings of the ACM International Conference on Manage-

ment of Data (2001), pp. 37–46.

[3] AGRAWAL, R., GEHRKE, J., GUNOPULOS, D., AND RAGHAVAN, P. Au-

tomatic subspace clustering of high dimensional data for data mining ap-

plications. In Proceedings of ACM SIGMOD International Conference on

Management of Data (1998), pp. 94–105.

[4] AGRAWAL, R., AND SRIKANT, R. Fast algorithms for mining association

rules. In Proceedings of the 20th International Conference on Very Large

Databases, VLDB (1994), pp. 487–499.

[5] AGRAWAL, R., AND SRIKANT, R. Mining sequential patterns. In Pro-

ceedings of the Eleventh International Conference on Data Engineering

(1995), pp. 3–14.

141

[6] AHMED, C. F., TANBEER, S. K., JEONG, B., AND LEE, Y. Efficient tree

structures for high utility pattern mining in incremental databases. IEEE

Transactions on Knowledge and Data Engineering (2009), pp. 1708–1721.

[7] AHMED, C. F., TANBEER, S. K., JEONG, B.-S., AND LEE, Y.-K. HUC-

Prune: An efficient candidate pruning technique to mine high utility pat-

terns. Applied Intelligence (2011), pp. 181–198.

[8] ARYABARZAN, N., MINAEI-BIDGOLI, B., AND TESHNEHLAB, M.

negFIN: An efficient algorithm for fast mining frequent itemsets. Expert

Systems with Applications (2018), pp. 129 – 143.

[9] BANSAL, R., DAWAR, S., AND GOYAL, V. An efficient algorithm for

mining high-utility itemsets with discount notion. In International Confer-

ence on Big Data Analytics (2015), pp. 84–98.

[10] BARBER, B., AND HAMILTON, H. J. Extracting share frequent itemsets

with infrequent subsets. Data Mining and Knowledge Discovery (2003),

pp. 153–185.

[11] BAVELAS, A. Communication patterns in task-oriented groups. The Jour-

nal of the Acoustical Society of America (1950), pp. 725–730.

[12] BERA, D., AND PRATAP, R. Frequent-itemset mining using locality-

sensitive hashing. In International Computing and Combinatorics Con-

ference (2016), pp. 143–155.

142

[13] CAI, C. H., FU, A. W. C., CHENG, C. H., AND KWONG, W. W. Mining

association rules with weighted items. In Proceedings of International

Database Engineering and Applications Symposium (1998), pp. 68–77.

[14] CERF, L., AND MEIRA, W. Complete discovery of high-quality patterns

in large numerical tensors. In 2014 IEEE 30th International Conference

on Data Engineering (2014), pp. 448–459.

[15] CHANG, J. H., AND LEE, W. S. Finding recent frequent itemsets

adaptively over online data streams. In Proceedings of the Ninth ACM

SIGKDD International Conference on Knowledge Discovery and Data

Mining (2003), pp. 487–492.

[16] CHEN, C., WANG, W., AND WANG, X. Efficient maximum closeness cen-

trality group identification. In Australasian Database Conference (2016),

pp. 43–55.

[17] CHEN, M., KUZMIN, K., AND SZYMANSKI, B. K. Community detection

via maximization of modularity and its variants. IEEE Transactions on

Computational Social Systems (2014), pp. 46–65.

[18] CHEN, Y., AND AN, A. Approximate parallel high utility itemset mining.

Big Data Research (2016), pp. 26 – 42.

[19] CHENG, H., YAN, X., HAN, J., AND HSU, C. Discriminative frequent

pattern analysis for effective classification. In IEEE 23rd International

Conference on Data Engineering (2007), pp. 716–725.

143

[20] COUSSAT, A., NADISIC, N., AND CERF, L. Mining high-utility patterns

in uncertain tensors. Procedia Computer Science (2018), pp. 403 – 412.

[21] DAWAR, S., AND GOYAL, V. UP-Hist tree: An efficient data structure for

mining high utility patterns from transaction databases. In Proceedings of

the 19th International Database Engineering & Applications Symposium

(2015), pp. 56–61.

[22] DAWAR, S., GOYAL, V., AND BERA, D. A hybrid framework for mining

high-utility itemsets in a sparse transaction database. Applied Intelligence

(2017), pp. 809–827.

[23] DE RAEDT, L., GUNS, T., AND NIJSSEN, S. Constraint programming for

itemset mining. In Proceedings of the 14th ACM International Conference

on Knowledge Discovery and Data Mining (2008), pp. 204–212.

[24] DENG, Z., WANG, Z., AND JIANG, J. A new algorithm for fast mining

frequent itemsets using n-lists. Science China Information Sciences (2012),

pp. 2008–2030.

[25] DENG, Z.-H. Diffnodesets: An efficient structure for fast mining frequent

itemsets. Applied Soft Computing (2016), pp. 214 – 223.

[26] DENG, Z.-H., AND LV, S.-L. Fast mining frequent itemsets using node-

sets. Expert Systems with Applications (2014), pp. 4505 – 4512.

[27] DENG, Z.-H., AND LV, S.-L. Prepost+: An efficient n-lists-based algo-

rithm for mining frequent itemsets via children–parent equivalence prun-

ing. Expert Systems with Applications (2015), pp. 5424–5432.

144

[28] DJENOURI, Y., CHUN-WEI LIN, J., NÃŸRVÃĚG, K., AND RA-

MAMPIARO, H. Highly efficient pattern mining based on transaction de-

composition. In 2019 IEEE 35th International Conference on Data Engi-

neering (ICDE) (2019), pp. 1646–1649.

[29] DUA, D., AND GRAFF, C. UCI machine learning repository, 2017.

[30] ELSEIDY, M., ABDELHAMID, E., SKIADOPOULOS, S., AND KALNIS,

P. Grami: Frequent subgraph and pattern mining in a single large graph.

Proceedings of the VLDB Endowment (2014), pp. 517–528.

[31] FOURNIER-VIGER, P., GOMARIZ, A., GUENICHE, T., SOLTANI, A.,

WU, C.-W., AND TSENG, V. S. SPMF: A java open-source pattern min-

ing library. The Journal of Machine Learning Research (2014), pp. 3389–

3393.

[32] FOURNIER-VIGER, P., WU, C.-W., ZIDA, S., AND TSENG, V. S. FHM:

Faster high-utility itemset mining using estimated utility co-occurrence

pruning. In Foundations of Intelligent Systems (2014), pp. 83–92.

[33] GARCÍA-MORATILLA, S., MARTÍNEZ-MUÑOZ, G., AND SUÁREZ, A.

Evaluation of decision tree pruning with subadditive penalties. In Intelli-

gent Data Engineering and Automated Learning (2006), pp. 995–1002.

[34] GRAHNE, G., AND ZHU, J. Fast algorithms for frequent itemset mining

using fp-trees. Knowledge and Data Engineering, IEEE Transactions on

(2005), pp. 1347–1362.

145

[35] GROSSI, V., ROMEI, A., AND TURINI, F. Survey on using constraints in

data mining. Data mining and knowledge discovery (2017), pp. 424–464.

[36] GUNS, T., DRIES, A., NIJSSEN, S., TACK, G., AND RAEDT, L. D. Min-

ingzinc: A declarative framework for constraint-based mining. Artificial

Intelligence (2017), pp. 6 – 29.

[37] GUNS, T., NIJSSEN, S., AND RAEDT, L. D. Itemset mining: A constraint

programming perspective. Artificial Intelligence (2011), pp. 1951 – 1983.

[38] HAN, J., PEI, J., AND KAMBER, M. Data mining: concepts and tech-

niques. 2011.

[39] HAN, J., PEI, J., MORTAZAVI-ASL, B., CHEN, Q., DAYAL, U., AND

HSU, M.-C. Freespan: frequent pattern-projected sequential pattern min-

ing. In Proceedings of the sixth ACM SIGKDD international conference

on Knowledge discovery and data mining (2000), pp. 355–359.

[40] HAN, J., PEI, J., AND YIN, Y. Mining frequent patterns without candidate

generation. In ACM SIGMOD Record (2000), pp. 1–12.

[41] HENRIQUES, R., ANTUNES, C., AND MADEIRA, S. C. A structured

view on pattern mining-based biclustering. Pattern Recognition (2015),

pp. 3941 – 3958.

[42] JIAN PEI, JIAWEI HAN, AND LAKSHMANAN, L. V. S. Mining frequent

itemsets with convertible constraints. In Proceedings 17th International

Conference on Data Engineering (2001), pp. 433–442.

146

[43] KIRAN, R. U., ZETTSU, K., TOYODA, M., FOURNIER-VIGER, P.,

REDDY, P. K., AND KITSUREGAWA, M. Discovering spatial high util-

ity itemsets in spatiotemporal databases. In Proceedings of the 31st Inter-

national Conference on Scientific and Statistical Database Management

(2019), pp. 49–60.

[44] KRISHNAMOORTHY, S. HMiner: Efficiently mining high utility itemsets.

Expert Systems with Applications (2017), pp. 168 – 183.

[45] LI, H.-F., AND LEE, S.-Y. Mining frequent itemsets over data streams us-

ing efficient window sliding techniques. Expert Systems with Applications

(2009), pp. 1466–1477.

[46] LI, Z., LU, S., MYAGMAR, S., AND ZHOU, Y. Cp-miner: A tool for

finding copy-paste and related bugs in operating system code. In OSDI

(2004), pp. 289–302.

[47] LIN, Y. C., WU, C.-W., AND TSENG, V. S. Mining high utility itemsets

in big data. In Advances in Knowledge Discovery and Data Mining. 2015,

pp. 649–661.

[48] LIU, J., WANG, K., AND FUNG, B. C. M. Mining high utility patterns

in one phase without generating candidates. IEEE Transactions on Knowl-

edge and Data Engineering (2016), pp. 1245–1257.

[49] LIU, M., AND QU, J. Mining high utility itemsets without candidate

generation. In Proceedings of the 21st ACM International Conference on

Information and Knowledge Management (2012), pp. 55–64.

147

[50] LIU, Y., LIAO, W.-K., AND CHOUDHARY, A. A fast high utility itemsets

mining algorithm. In Proceedings of the 1st International Workshop on

Utility-based Data Mining (2005), pp. 90–99.

[51] LIU, Y., LIAO, W.-K., AND CHOUDHARY, A. A two-phase algorithm for

fast discovery of high utility itemsets. In Advances in Knowledge Discov-

ery and Data Mining (2005), pp. 689–695.

[52] LIU, Y.-C., CHENG, C.-P., AND TSENG, V. S. Mining differential top-

k co-expression patterns from time course comparative gene expression

datasets. BMC Bioinformatics (2013).

[53] MA, F., MENG, C., XIAO, H., LI, Q., GAO, J., SU, L., AND ZHANG,

A. Unsupervised discovery of drug side-effects from heterogeneous data

sources. In Proceedings of the 23rd ACM SIGKDD International Confer-

ence on Knowledge Discovery and Data Mining (2017), pp. 967–976.

[54] MANKU, G. S., AND MOTWANI, R. Approximate frequency counts over

data streams. In Proceedings of the 28th international conference on Very

Large Data Bases (2002), pp. 346–357.

[55] MANNILA, H., TOIVONEN, H., AND VERKAMO, A. I. Discovery of fre-

quent episodes in event sequences. Data mining and knowledge discovery

(1997), pp. 259–289.

[56] MONREALE, A., PINELLI, F., TRASARTI, R., AND GIANNOTTI, F.

WhereNext: A location predictor on trajectory pattern mining. In Proceed-

148

ings of the 15th ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining (2009), pp. 637–646.

[57] NIJSSEN, S., AND KOK, J. N. A quickstart in frequent structure min-

ing can make a difference. In Proceedings of the tenth ACM SIGKDD

international conference on Knowledge discovery and data mining (2004),

pp. 647–652.

[58] PEI, J., AND HAN, J. Can we push more constraints into frequent pattern

mining? In Proceedings of the Sixth ACM SIGKDD International Confer-

ence on Knowledge Discovery and Data Mining (2000), pp. 350–354.

[59] PEI, J., HAN, J., LU, H., NISHIO, S., TANG, S., AND YANG, D. H-Mine:

Hyper-structure mining of frequent patterns in large databases. In Proceed-

ings IEEE International Conference on Data Mining (2001), pp. 441–448.

[60] PEI, J., HAN, J., MORTAZAVI-ASL, B., PINTO, H., CHEN, Q., DAYAL,

U., AND HSU, M.-C. Prefixspan: Mining sequential patterns efficiently

by prefix-projected pattern growth. In ICCCN (2001), pp. 215–224.

[61] PENG, A. Y., KOH, Y. S., AND RIDDLE, P. mHUIMiner: A fast high

utility itemset mining algorithm for sparse datasets. In Pacific-Asia Con-

ference on Knowledge Discovery and Data Mining (2017), pp. 196–207.

[62] PEROZZI, B., AND AKOGLU, L. Discovering communities and anoma-

lies in attributed graphs: Interactive visual exploration and summarization.

ACM Transactions on Knowledge Discovery from Data (2018), pp. 1–40.

149

[63] QIN, X., KAKAR, T., WUNNAVA, S., RUNDENSTEINER, E. A., AND

CAO, L. MARAS: Signaling multi-drug adverse reactions. In Proceed-

ings of the 23rd ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining (2017), pp. 1615–1623.

[64] RAYMOND CHAN, QIANG YANG, AND YI-DONG SHEN. Mining high

utility itemsets. In Third IEEE International Conference on Data Mining

(2003), pp. 19–26.

[65] SILVA, A., AND ANTUNES, C. Constrained pattern mining in the new era.

Knowledge and Information Systems (2016), pp. 489–516.

[66] SOULET, A., AND CRÉMILLEUX, B. An efficient framework for mining

flexible constraints. In Pacific-Asia Conference on Knowledge Discovery

and Data Mining (2005), pp. 661–671.

[67] TAMRAKAR, A. High utility itemsets identification in big data (2017).

[68] TAN, P.-N., STEINBACH, M., AND KUMAR, V. Introduction to Data

Mining, (First Edition). (2005).

[69] TAO, F., MURTAGH, F., AND FARID, M. Weighted association rule min-

ing using weighted support and significance framework. In Proceedings of

the ninth ACM SIGKDD international conference on Knowledge discovery

and data mining (2003), pp. 661–666.

[70] TATTI, N., AND CULE, B. Mining closed episodes with simultaneous

events. In Proceedings of the 17th ACM SIGKDD international conference

on Knowledge discovery and data mining (2011), pp. 1172–1180.

150

[71] TSENG, V. S., SHIE, B., WU, C., AND YU, P. S. Efficient algorithms for

mining high utility itemsets from transactional databases. IEEE Transac-

tions on Knowledge and Data Engineering (2013), pp. 1772–1786.

[72] TSENG, V. S., WU, C.-W., SHIE, B.-E., AND YU, P. S. UP-growth: An

efficient algorithm for high utility itemset mining. In Proceedings of the

16th ACM SIGKDD International Conference on Knowledge Discovery

and Data Mining (2010), pp. 253–262.

[73] VU, L., AND ALAGHBAND, G. A fast algorithm combining fp-tree and

tid-list for frequent pattern mining. Proceedings of Information and Knowl-

edge Engineering (2011), pp. 472–477.

[74] VU, L., AND ALAGHBAND, G. Mining frequent patterns based on data

characteristics. In Proceedings of the International Conference on Infor-

mation and Knowledge Engineering (IKE) (2012).

[75] WANG, W., YANG, J., AND YU, P. S. Efficient mining of weighted as-

sociation rules (WAR). In Proceedings of the Sixth ACM SIGKDD Inter-

national Conference on Knowledge Discovery and Data Mining (2000),

pp. 270–274.

[76] YAN, Q., HUANG, H., GAO, Y., LU, W., AND HE, Q. Group-level influ-

ence maximization with budget constraint. In International Conference on

Database Systems for Advanced Applications (2017), pp. 625–641.

[77] YAN, X., AND HAN, J. gspan: Graph-based substructure pattern mining.

In IEEE International Conference on Data Mining (2002), pp. 721–724.

151

[78] YAO, H., HAMILTON, H. J., AND BUTZ, C. J. A Foundational Approach

to Mining Itemset Utilities from Databases. pp. 482–486.

[79] YAO, H., HAMILTON, H. J., AND GENG, L. A unified framework

for utility-based measures for mining itemsets. In Proceedings of ACM

SIGKDD 2nd Workshop on Utility-Based Data Mining (2006), pp. 28–37.

[80] ZAKI, M. J. Scalable algorithms for association mining. IEEE Transac-

tions on Knowledge and Data Engineering (2000), pp. 372–390.

[81] ZAKI, M. J., AND AGGARWAL, C. C. Xrules: an effective structural

classifier for xml data. In Proceedings of the ninth ACM SIGKDD in-

ternational conference on Knowledge discovery and data mining (2003),

pp. 316–325.

[82] ZAKI, M. J., AND GOUDA, K. Fast vertical mining using diffsets. In Pro-

ceedings of the ninth ACM SIGKDD international conference on Knowl-

edge discovery and data mining (2003), pp. 326–335.

[83] ZHANG, C., TIAN, P., ZHANG, X., JIANG, Z. L., YAO, L., AND WANG,

X. Fast eclat algorithms based on minwise hashing for large scale transac-

tions. IEEE Internet of Things Journal (2019), pp. 3948–3961.

[84] ZHU, H., WANG, P., HE, X., LI, Y., WANG, W., AND SHI, B. Efficient

episode mining with minimal and non-overlapping occurrences. In IEEE

10th International Conference on Data Mining (2010), pp. 1211–1216.

152

[85] ZIDA, S., FOURNIER-VIGER, P., LIN, J. C.-W., WU, C.-W., AND

TSENG, V. S. EFIM: a fast and memory efficient algorithm for high-utility

itemset mining. Knowledge and Information Systems (2017), pp. 595–625.

153

	Abstract
	Dedication
	Acknowledgements
	Publications
	List of Tables
	List of Figures
	Introduction
	High-utility itemset mining
	Research contributions
	Thesis structure

	Literature review
	Frequent itemset mining
	High-utility itemset mining
	Summary

	UP-Hist Growth: A two-phase tree-based algorithm for mining high-utility itemsets
	Our proposed UP-Hist Tree and utility estimates
	Construction of a global UP-Hist tree
	Construction of a local UP-Hist tree

	UP-Hist Growth Algorithm
	Complexity Analysis
	An Illustrated Example

	Experiments and Results
	Summary

	A hybrid algorithm for high-utility itemset mining
	Hybrid algorithm
	Caveats and Optimizations

	Case study: Integration of UP-Hist Growth and UP-Growth+ with FHM
	Experiments and Results
	Summary

	A one-phase tree-based algorithm for mining high utility itemsets
	UT_Mem-tree Structure
	The elements of a UT_Mem-tree
	The construction of a UT_Mem-tree
	Construction of a lightweight projected database through a local_lists

	UT-Miner Algorithm
	Experiments and Results
	Summary

	High-utility itemset mining for subadditive monotone utility functions
	Problem Statement
	Subadditive and monotone (SM) utility functions
	High-utility itemset mining for SM functions (HUIM-SM)

	Coverage: A graph-based utility function
	Bounds for HUIM-SM
	TU and TWU bounds
	Exact-utility (EU) and Remaining-utility (RU) bounds

	Algorithms for HUIM-SM
	List-based algorithm
	Tree-based algorithm
	Projection-based algorithm

	Case Study of HUIM-SM on a Twitter dataset
	Performance evaluation of HUIM-SM algorithms
	Summary

	Conclusion
	Future Research Directions

	References

