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Abstract

Industrial robots are complex systems that require technical expertise for condition
monitoring and diagnostics. In small and medium scale industries, adequate skilled
resources may not be available to monitor the robots consistently. In such cases, domain
experts can provide maintenance advisory based on data collected through remote
monitoring. The goal of this thesis is to develop and validate data-driven approaches to
detect and identify the source of mechanical degradation in industrial robots using data
typically collected through remote monitoring.

Performance of data-driven methods is influenced by both data and algorithms. The
factors that influence the data include robot application, tasks, and environment. Algorithms
differ in terms of the extent to which they rely on an underlying model, and how they weight
bias versus variance to isolate anomalous situations. With a remote monitoring solution,
knowledge about all the factors may not be available and thus create uncertainty about
the data generation process. Therefore, we adopted a two-pronged approach for the study:
a) evaluate data-driven methods on simulated data, b) apply the algorithms that worked
well with simulated data on real data enhanced with preprocessing methods. For evaluating
data-driven methods, we identified wear through significant changes in torque values from
normal operating conditions using principal component analysis and studied the effect of
source and type of training data on detecting failures in industrial robots.

Towards application of these results on real data, we next formulated strategies to detect
the occurrence of wear-induced fault using supervised learning algorithm in a systematic
hypothesis-driven study. That study sought to identify effective combinations of four
preprocessing techniques on data collected from twenty-six industrial robots. Our results
show that preprocessing techniques improved the fault detection performance. Finally,
we investigated the problem of isolating the axis of fault by inferring pairwise directional
relationships between all axes using an information-theoretic approach called Transfer
Entropy (TE). The approach was validated on simulated data generated with an in-house
robotic simulation tool. The axis responsible for wear was always detected when the wear
was 10% above nominal value. The results of these two studies form the basis for informed
data-driven strategies for fault detection and isolation in industrial robots and sets the
stage for advanced adaptive detection approaches.

VII



THIS PAGE INTENTIONALLY LEFT BLANK

VIII



Research Dissemination

Archival journal articles

J1 Vallachira, Sathish, Michal Orkisz, Mikael Norrlöf, and Sachit Butail. "Data-

driven gearbox failure detection in industrial robots." IEEE Transactions on Industrial

Informatics 16, no. 1 (2019): 193-201

Impact Factor - 9.112.

J2 Vallachira, Sathish, Michal Orkisz, Mikael Norrlöf, and Sachit Butail. "A Transfer

Entropy Based Approach for Fault Isolation in Industrial Robots." ASME Letters in

Dynamic Systems and Control (2021): 1-23.

Peer Reviewed Conference Publications

C1 Sathish, V., Sithu D. Sudarsan, and Srini Ramaswamy. "Event based robot

prognostics using principal component analysis." In 2014 IEEE International

Symposium on Software Reliability Engineering Workshops, pp. 14-17. IEEE, 2014.

C2 Sathish, V., Srini Ramaswamy, and Sachit Butail. "A simulation based approach

to detect wear in industrial robots." In 2015 IEEE International Conference on

Automation Science and Engineering (CASE), pp. 1570-1575. IEEE, 2015.

C3 Sathish, V., Srini Ramaswamy, and Sachit Butail. "Training data selection criteria for

detecting failures in industrial robots." In IFAC International Conference on Advances

in Control and Optimization Of Dynamical Systems, volume 49, pp. 385-390. IFAC,

2016.

IX



THIS PAGE INTENTIONALLY LEFT BLANK

X



Table of Contents

I Introduction 2

1 Introduction 3

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

II Peer reviewed conference proceedings 12

2 Event Based Robot Prognostics using Principal Component Analysis 13

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.1 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.2 Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.3 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.5 Challenges and Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3 Simulation based approach to detect wear in industrial robots 25

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2.1 Manipulator Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . 28

XI



3.2.2 Principal Component Analysis and Cross-correlation . . . . . . . . . 28

3.3 Simulating wear induced due to friction . . . . . . . . . . . . . . . . . . . . . 30

3.3.1 Implementation on the robotics toolbox . . . . . . . . . . . . . . . . . 31

3.3.2 Adding disturbance and measurement noise . . . . . . . . . . . . . . 31

3.4 Detecting and locating wear . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.4.1 Identification of onset of wear . . . . . . . . . . . . . . . . . . . . 33

3.4.2 Identification of location of wear . . . . . . . . . . . . . . . . . . . . . 34

3.5 Experiments and analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4 Training Data Selection Criteria for Detecting Failures in Industrial

Robots 41

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.2.1 Failures in Industrial robots . . . . . . . . . . . . . . . . . . . . . . . 44

4.2.2 Training data selection and preprocessing for PCA . . . . . . . . . . 44

4.3 Data collection, pre-processing and experimental analysis . . . . . . . . . . . 45

4.3.1 Data collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.3.2 Preprocessing of data . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.3.3 Test setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.5 Discussion and conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

III Archival journal articles 60

5 Data Preprocessing for Improving Classifier Performance in Detecting

Gearbox failures in Industrial Robots 61

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.2 Classification methods and their performance evaluation . . . . . . . . . . . 65

5.2.1 Binary classification . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.2.2 Classification performance . . . . . . . . . . . . . . . . . . . . . . . . 68

XII



5.3 Data acquisition and processing . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.3.1 Data acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.3.2 Data preprocessing techniques . . . . . . . . . . . . . . . . . . . . . 70

5.3.3 Training data selection . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.3.4 Data analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.4 Results of classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.4.1 Signal differencing improves detection performance of gearbox faults

in industrial robots (H1) . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.4.2 Inclusion of local variation improves detection performance of gearbox

faults in industrial robots (H2) . . . . . . . . . . . . . . . . . . . . . 77

5.4.3 Inclusion of estimated torque and speed improve detection

performance of gearbox faults in robots in at least one of the

classification methods (H3) . . . . . . . . . . . . . . . . . . . . . . . . 78

5.4.4 Selecting principal components of the data improves detection

performance of gearbox faults in industrial robots (H4) . . . . . . . . 79

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6 A Transfer Entropy Based Approach for Fault Isolation in Industrial

Robots 81

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.2.1 Robot model simulation . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.2.2 Transfer entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.3.1 Simulating different tasks with wear . . . . . . . . . . . . . . . . . . 87

6.3.2 Data pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.4 Analysis and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

XIII



IV Conclusion 96

7 Conclusion 97

7.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

7.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

7.2.1 Methods and algorithms . . . . . . . . . . . . . . . . . . . . . . . . . 101

7.2.2 Data collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

7.2.3 Faults other than those from wear . . . . . . . . . . . . . . . . . . . . 102

Appendix A Performance evaluation of preprocessing techniques 105

XIV



List of Abbreviations
ANOVA – Analysis of Variance

AUC – Area Under Curve

CC – Cross Correlation

COV – Coefficient of Variation

DOF – Degree of Freedom

ES – Ensemble Stacking

FDI – Fault Detection and Isolation

FPR – False Positive Rate

KL – Kullback-Leibler

LR – Logistic Regression

OTM – One-to-many

OTO – One-to-one

PC – Principal Components

PCA – Principal Component Analysis

RF – Random Forest

ROC – Receiver Operating Characteristic

SVM – Support Vector Machine

TE – Transfer Entropy

TPR – True Positive Rate

XV



List of Symbols

𝜏 𝑖
𝑘 Input torque for axis 𝑖 at time step 𝑘

𝜔𝑖
𝑘 Disturbance for axis 𝑖 at time step 𝑘

𝜈𝑖
𝑘 Measurement noise for axis 𝑖 at time step 𝑘

𝑐(𝛿𝑡)𝜏 𝑗𝜏 𝑗 co-variance at lag 𝛿𝑡 for two time series 𝜏 𝑖 and 𝜏 𝑗

𝑅(𝛿𝑡)𝜏 𝑗𝜏 𝑗 Cross correlation coefficient for the time series 𝜏 𝑖 and 𝜏 𝑗

𝜆−1 Diagonal matrix with inverse eigen values for 𝑘 principal components

𝑝(𝑥) Probability distribution function

𝐷(𝑝||𝑞) Kullback-Leibler divergence between 𝑝(𝑥) and 𝑞(𝑥)

𝑃 Principal Component Coefficient matrix

𝑇 Score matrix of principal components

𝐸 Residual Error matrix

Λ Inverse gear ratio matrix

𝜑 Vector of robot joint angles

𝜑̇ Vector of robot joint velocity

𝜑 Vector of robot joint acceleration

𝜏 Vector of robot joint torque

𝑇𝑖→𝑗 Transfer entropy from process 𝑖 to 𝑗

𝑛𝑒𝑡𝑇𝑖→𝑗 net transfer entropy from process 𝑖 to 𝑗

XVI



1



Part I

Introduction

2



Chapter 1

Introduction

Industrial robots are significant contributors to increased productivity, quality and safety

in automated manufacturing. Therefore, ensuring continuous availability of the robots is a

non-negotiable demand from the industry. Industrial robots are widely used in applications

such as automotive, electrical and electronics, food and beverages, packaging and palletizing

and welding.

This thesis deals with data-driven fault detection methods and the effect of preprocessing

methods on detection performance. Simulated as well as real robot data are analyzed to

detect faults caused by wear of the mechanical parts of the industrial robots. While such

wear processes may take several years to affect the performance of robot, once they appear,

wear-induced faults can be caused rapidly [1]. An early detection of excessive wear can help

the industries to plan their maintenance activities so that the influence on the production

is minimized. This chapter presents an introduction and motivation to the problem of

detecting wear-induced faults, the main research contributions of the thesis and an outline

of the rest of the thesis.

1.1 Motivation

Unexpected breakdown of robots can lead to loss of production time and result in

considerable financial losses. Therefore, timely maintenance of robots is very crucial. In

practice, robot monitoring is focused on protection and safety and not many commercial
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solutions are available for monitoring the health of the robots [2].

The requirement of high availability of robots is typically attained through preventive

maintenance schedules. These schedules are arrived on the basis of estimated life expectancy

of various robot components - the actual condition of the robot is typically not taken into

account [3], a scenario that leads to high maintenance costs. Condition-based maintenance

is an alternative strategy that uses the data collected from various parts of the robots to

assess the condition of the robot. ABB’s Connected service offering is one of the available

commercial approaches to monitor the robots remotely. In a remote service set-up for

industrial robots, information such as events and measurements from important variables in

the system are sent to a remote database for hundreds of robots located at customer sites [4].

This information is further processed to prepare advisory reports that assist field engineers

or customers to prioritize their maintenance activities. Such arrangement is economically

viable if the users of the robots are not experts in identifying problems with robots (Fig. 1-1

). The value of remote monitoring can be enhanced by improving the capability of predicting

faults across multiple robots.

Cloud service

On-site Maintenance Team

Remote Monitoring

Advisory information

Figure 1-1: Remote monitoring of industrial robots.
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1.2 Problem Statement

Robot manipulators are composed of links connected by joints into a kinematic chain (Fig.

1-2). Joints are typically rotary (revolute) or linear (prismatic). Robot manipulators can

be classified by several criteria, such as their power source, or way in which the joints are

actuated, their geometry, or kinematic structure, their intended application area, or their

method of control [5].

Figure 1-2: An ABB industrial robot (IRB 6700)

A typical robot drive chain consist of bearings, gears and ball-spindles. The regular

operation of the robots can lead to wear and tear in these components. Similar wearing effects

are present in various peripherals that include moving parts such as motors, transmission

systems, and measurement systems [6]. A typical industrial robot consist of 6 gearboxes in

each of the six axes (Fig. 1-2). The characteristics of link joint strongly influence the dynamic

behavior of robots. In order to perform a task by robot, each joint requires a transmission

through geared or ball-screws to drive the end-effector at a required speed. The work load
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can impose severe stress on the transmission system that results in wear, lead to increased

backlash, and eventually degrade robot performance. The transmission system is the weakest

link in the robot reliability model [6] and most robot failures in manufacturing plants are

due to wear in the gears of transmission system [7]. The most common failures in gearbox

are: a) bearing failure - due to excessive loads on bearing and improper lubrication, b) gear

failure - contaminated oil within gearbox causing micro pitting or fretting, misalignment of

gears, excessive heat, and c) sealing failure.

Spare part information from failure cases reported from ABB robots from a specific

region over a period of one year are analyzed for this study. The critical components are

classified in terms of frequency of change and cost of downtime (information proprietary to

ABB). The distribution of spare parts with respect to frequency of change and working time

for replacement is shown in Fig. 1-3a. The median working time for replacing gearbox is

highest among all spare-parts of an industrial robot (around 10 hrs) (Fig. 1-3b). The most

frequently changed spare parts include cables, motor and controller. The controller has many

sub components like main board, i/o card, controller module etc., these sub components are

aggregated as a single count in the chart for a concise representation. Since many of the

failures in electrical/electronic components are abrupt in nature and difficult to predict,

only mechanical failures of the robots are considered in this study. Therefore, with focus on

avoiding failures, data-driven approaches are used to predict excessive degradation caused by

wear of the mechanical parts and preceded by warning in terms of performance degradation.

In this study, wear induced mechanical degradation such as gearbox failures are considered.

Once the type of failures - wear induced failures - were identified for the investigation, all

the measurements and event logs, minimum 30 days prior to failure for all the failed robots

were extracted from connected service database. Significant effort is spent on understanding

the data generation process, familiarizing database structure and evaluating preprocessing

methods.

The research objective is to enhance the capability of data-driven fault detection with

actionable lead time using data collected with the remote monitoring set-up. The following

questions are formulated to address the objective along with the peer-reviewed publications

that describe the associated studies (C# refers to peer-reviewed conference paper and J#
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Figure 1-3: Sample spare part change information: a) Frequency distribution most commonly
changed spare parts, b) Box plot of repair time for replacement of spare-part

refers to archival journal paper):

Q1: What is the effectiveness of principal component analysis (PCA) in terms of detecting

the onset of wear induced failures in industrial robots? (C1, C2)

Q2: Can the effectiveness of failure identification using standard classification methods be

improved by curating the data using pre-processing methods? (C3, J1)

Q3: Can correlation and information theoretic methods be used to isolate the source axis

of the failure? (C2, J2)

The above questions are addressed by analyzing data using time-series methods, applying

preprocessing techniques to develop machine learning based fault prediction models and

evaluating the effectiveness of the preprocessing techniques on model performance. An

information theoretic approach is further developed to locate the source axis of failure.

1.3 Contributions

The contributions of this thesis are:
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∙ PCA results are evaluated in terms of their ability to detect the onset of failure on real

and simulated data (C1, C2, C3) and also as an effective pre-processing approach for

developing data-driven models (J1).

∙ The effect of different preprocessing techniques on fault detection using standard machine

learning methods is evaluated. In a systematic hypothesis-driven study four different

preprocessing techniques are applied to training data , collected from 26 industrial

robots from the field were found to affect the performance of data-driven fault-detection

methods (Fig.1-4) (C3, J1).

Data from
field

Training
data

Test Data Classifier

Pre-processing
Techniques

Evaluate
Classifier

Train Classifier
Failure
Detection

Figure 1-4: Research objective - evaluate the effect of data preprocessing techniques on
failure detection in industrial robots.

∙ Correlation-based techniques are found to be less effective in isolating source axis of fault.

An information theoretic based approach is developed to detect source axis of the

failure in multi axes industrial robots (Fig. 1-5). Specifically, wear induced failures

are simulated in an in-house robotic simulation tool, and the source axis of failure is

identified as one which has the highest net transfer entropy (TE) across all pairs of

axes (J2).
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Figure 1-5: Accuracy of isolating source axis of wear using TE approach with varying wear
percentages for a specific simulated task.

1.4 Outline

This thesis comprises five self-contained research articles with relevant literature reviews and

it is organized in four parts, each with one or more chapters. Part 1 consists of Introduction,

part 2 is based on material from three peer reviewed conference publications updated to

address comments from thesis examiners, part 3 is based on material from two archived

journal articles, and finally part 4 concludes the thesis with a summary of work and future

directions.

Data such as event logs and measurements from robot controllers were collected using

the existing remote data collection solution. Many events are getting generated with respect

to predefined thresholds on various measurements and analyzing individual events may not

be an optimal way to detect the failure. In the first paper 𝐶1, a Principal Component

Analysis (PCA) based approach is adapted on event logs to detect a gearbox fault. The

proposed method reduce the dimensionality of the original data which consist of correlated

events while retaining the variation present in the data. An abnormal pattern was observed

within 30 days before failure by using multivariate statistics: Hotelling 𝑇 2, Q Residuals and

Q contribution chart [8]. However, this approach of using event logs could not be generalized

as there exist variation in configured events across robots.
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In second paper 𝐶2, a method is proposed to detect the onset of wear and subsequently

locate the source axis of wear using the simulated data. Wear is simulated by increasing

friction coefficients of different axes in a PUMA 560 robot model available in MATLAB

Robotics toolbox on three separate tasks. Load disturbances and measurement noise are

added in the simulation to evaluate the robustness of the wear detection. Wear in robot

is detected using principal component analysis, and the source axis is located by cross-

correlating the output data from all axes through time.

In third paper 𝐶3, the effect of source and type of training data are studied with Principal

Component Analysis (PCA) on detecting field failures in industrial robots. Specifically, using

field data across multiple robots performing different tasks, two scenarios are compared: first,

where training data obtained from a single robot is used to evaluate multiple robots (one-

to-many), and second, where each robot is evaluated on the basis of its own training data

(one-to-one). The effect of data preprocessing prior to running PCA on ability to detect and

predict failures is investigated. To reduce task dependence of the raw signal, the signal is

preprocessed by computing the absolute difference between successive measurements and the

results are compared with a PCA model that is built using raw signal alone and another that

is built from a combined signal having both raw measurements and their absolute difference.

The effectiveness of detecting failures is quantified in terms of three measures: coefficient of

variation of the Q-residual obtained by projecting the test data on the PCA model, number of

samples above a data-driven confidence threshold, and lead time, measured as the number of

days prior to failure when the residual error rises above a given threshold. The preprocessing

of signal has been found to have significant influence on detecting failures.

In the fourth paper 𝐽1, data from 26 robots are used to study the effect of preprocessing

techniques on gearbox fault detection performance using machine learning models. The

performance data is collected from robots with gearbox faults occurred over a period of 4

years. Standard machine learning algorithms are limited in their ability to detect gearbox

failures, mainly due to task variability arises from robot-specific data. To improve detection

performance of machine learning approaches, pre-processing techniques are proposed to

curate the data prior to building a classification model. In a systematic hypothesis-driven

study exploring the effect of different pre-processing techniques, training data augmentation
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with estimated measurements, data differencing to suppress task dependence, inclusion of

local variation, and selection of principal components from the robots are evaluated. The

pre-processing techniques have resulted in improving the failure detection performance.

In the fifth paper 𝐽2, a method is proposed to isolate the axis of failure in industrial

robots. With implementation of such method, the service time and field visits are expected

to reduce further. The problem of failure isolation was cast as that of causal analysis within

coupled dynamical processes and hence, the efficacy of the information theoretic approach

of transfer entropy is evaluated. Wear induced failure is simulated in an in-house robotic

simulation tool, and source axis of failure is identified as one which has the highest net

transfer entropy across all pairs of axes. To compare these results with an existing standard

approach, the torque signal is correlated for each axis across time to identify the source axis

of the wear. Compared with cross-correlation, the average source axis detection across the

three tasks with TE is twice as effective at friction coefficient 10% above the nominal value.
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2

Event Based Robot Prognostics using

Principal Component Analysis 1

Abstract: As industrial systems are getting complicated, challenges in coming up with

efficient maintenance strategies which include predicting failures in the system become

important industry specific research topic. Traditionally, research focuses on developing

failure prediction models based on physical understanding of the system. But, development

of such models are often time consuming and labor intensive for complex systems. In recent

past, due to advent of cheaper data collection mechanisms and efficient algorithms, data

driven approaches for predicting failures are gaining significant interest in industrial research

community. In this paper, we provide a Principal component Analysis (PCA) based approach

of failure prediction in industrial robots using event log information. The event logs are

collected through remote service set-up from a robot controller. The proposed method will

reduce the dimensionality of the original data which consist of interrelated events while

retaining the variation present in the data. Using PCA and multivariate statistics such

as Hotelling T2, Q Residuals and Q contributions charts, we are able to detect abnormal

behavior of event pattern within 30 days before failure.

1This chapter is a slightly modified version of paper published in 2014 IEEE International Symposium
on Software Reliability Engineering Workshops and has been reproduced here with the permission of the
copyright holder
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2.1 Introduction

High reliability and availability are essential for industrial products. Intelligent prognostics

and diagnosis methods are very important in maximizing productivity, ensuring high

product quality and reducing the maintenance cost. Positive impact of this approach will be

reduction in total cost of ownership of the product[9]. The main functions of these systems

include detection, isolation prediction and correction. From the end-user point of view,

the distinction of prognostic with diagnostic is the availability of lead time to useful life

or failure. Identification of the remaining useful life will depend on the system complexity

and application domain [10] and this study focus on the failure progression time-line. The

ability to predict failure helps customers to plan their downtime for maintenance. This

avoids (at best) or reduces (at worst) production losses. This strategy is more efficient

compared to the traditional periodic maintenance where maintenance is performed whether

it is really needed or not and help us to move up the value chain by performing need based

maintenance as against the current practice of periodic maintenance.

2.2 Related Work

There are various approaches discussed in literature about prognostics and diagnostics of

industrial systems. Techniques for condition based maintenance can be classified into two

categories: diagnostics and prognostics [11]. Diagnosis deals with fault detection, isolation,

and identification of faults when they occur. Prognostics, however, attempts to predict faults

or failures before they occur. Simply stated, while prognostics is proactive, diagnostics is

post-mortem. There are various prognostic approaches based on physical, data driven and

experience models.Roemer et.al.[12] summarizes the range of possible prognostic approaches

and their cost implications. As our current study is based on data driven approaches to

predict faults in an industrial robot, we will discuss the related work in this section.

Data driven methods use a wide variety of data processing and analysis techniques such

as multivariate statistical methods, cluster analysis, spectral analysis etc. One of the basic

multivariate method is Principal Component Analysis(PCA) and PCA is simple and easy
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to implement. PCA has been widely used in the area of signal processing, fault diagnosis,

pattern recognition in various fields and provides good results [13].

Some of the related work in which fault detection is based on usage of PCA for predicting

faults in reciprocating compressor[14]. Features are extracted from vibration signals collected

from the compressor and used for model building and consequently for fault prognosis. In

another study [9], PCA is used for gearbox fault diagnosis. On-line monitoring is difficult as

this approach required pre-processing of vibration signals. But in case of process industries,

measurements collected are directly used for model development [15]. The PCA model is

applied to new data and then, associated 𝑇 2 and Q statistics are calculated and used for

monitoring. Any deviation of these values from the confidence limits indicate an aberration in

process performance and alarm is raised to process operator [16]. Lin et.al. [17] recommends

the usage of PCA for fault diagnosis as the characteristic parameter of traditional methods

cannot effectively reflect the trend of mechanical fault when the equipment load changes

significantly. As the demand of practical use of PCA is growing, researchers have studied

and discussed many improvements on PCA [13],[9],[18]. However, in our current study we use

the PCA without any modifications. Most of the related work is based on the data collected

on a continuous basis and for a continuous process. In our study that we conducted on failure

prognosis of industrial robots by analyzing discrete event logs. In earlier studies, researchers

[19] have developed model-driven methods for fault isolation in robots using discrete event

logs. However, application of data-driven methods such as PCA on discrete event logs from

real world robot systems makes the study unique compared to previous work.

2.3 Approach

2.3.1 Problem Definition

Industrial robots are widely used to automate repetitive tasks and thereby increasing

productivity. In order to maximize the productivity, minimizing the downtime of robots

due to maintenance or repair is essential. Robot manufactures provide various maintenance

strategies to help their customers. In ABB, one of the important service offering to our
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customers is remote service which involve monitoring the robots remotely and provide

advisory and assistance to minimize the downtime of robots. For a complex system like

robots, rule based alarms and warnings may not be enough to predict failures or planned

maintenance. With focus on service, it is important to detect the change in condition

before the critical degradation occurs and subsequently perform timely maintenance. Wear

in robot joint can lead to a degradation of performance and to an eventual failure. Wear

typically develops slowly with usage and it can be detectable in an early stage using

data-driven methods. However, faults such as electronic faults and broken cables cannot be

detected with the data that is collected using remote service solution. In the present study,

we attempt to use data driven approaches to predict wear induced failures which can occur

through the life of an industrial robot.

2.3.2 Data Collection

In this study, we collected data from two sources. One source is related to Field failure

information about robot controllers reported by service engineers and the second source is

the event logs which are collected automatically in a remote server from robot controllers.

Field failure information is gathered at the time of failure. This information includes, serial

number of robot which failed, date and time of failure and a brief description of the failure.

These details are reported manually by service engineers while addressing the issue at the

customer site. On contrary, events are specific occurrence of a thing which generate an

item in the log. For instance, if the manipulator collides with an obstacle, this will cause a

message to be sent to the log. A typical event log consist of event number, event title, event

time, description of event, consequence and probable actions [20]. In this study, we have

identified a specific failure of Robot and studied how the event pattern changes in normal

and failure condition. The failure date is super imposed with event log data in time domain

so that we can observe the pattern based on events before failure. One month data of event

log is considered for assessing the pattern of normal working condition of robot. Events are

getting collected in the remote service database based on the event of interest configured by

service engineers in agreement with customers. When an event of interest (alarm) happens,

a collection of events along with the alarm are sent to remote database. In this study, about
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7 months event data are used for analysis. The frequency of event types are calculated on a

daily basis. The data set consist of daily count for each of the sixty-seven events. It is noted

that if we analyze the frequency of event types on an hourly basis, the resulting data leads

to sparse matrix. We also observed that not all event types generated during normal and

failure condition are same. This was solved by introducing zeros for those variables which do

not appear in either before or after failure. The number of distinct event types considered

for this study is sixty seven.

2.3.3 Analysis

Initially, we set a hypothesis that the events pattern near failure and normal condition are

different. But, it was a challenge for us to identify the number of days before the failure where

the event log pattern changes. We tried clustering analysis assuming that pattern near to

failure will be different from that away from failure. But, k-mean clustering did not reveal any

pattern near failure compared that of away from failure. We used multivariate monitoring

technique such as PCA which accounts for correlation between parameters and therefore alert

when relationship between parameters change as well as mean level of individual parameter

change. Since we do not know exactly the number of days before the changes happen in

the event log distribution, we decided to consider all six month data before failure as failure

data. In the following section, we discuss about the PCA approach and our results.

2.3.3.1 Model development using PCA

The objective of PCA is to capture variability of the data for identifying components which

explain maximum variability of the data. This is done by transforming the original data into

a set of uncorrelated variables called Principal Components(PCs)[21]. This helps to reduce

the noise in the data. PCA is also used as a pattern finding technique.

Let the variables or events in our case, be m dimensional data set: X =𝑥1, 𝑥2, 𝑥3, ...𝑥𝑚,

PCA decomposes the event vector X, into new direction P as [22]
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𝑋 = 𝑇𝑃 𝑇 =
𝑚∑︁

𝑖=1
𝑡𝑖𝑃

𝑇
𝑖 (2.1)

Where 𝑃𝑖 is an eigen vector of the covariance matrix of X. P is known as principal component

coefficient matrix and T is defied as score matrix of PCs. The matrix P gives information

about the contribution of each variable to a specific PC. Score matrix represents the data X in

PC space and reflects the relationship among the samples(rows in X). In PCA, it is expected

that relatively few components will account for maximum variance in the data. Therefore,

there will be minimal information loss by choosing on few PCs expressed as equation 2.2

[15],[14].

𝑋 = 𝑇𝑃 𝑇 + 𝐸 =
𝑘∑︁

𝑖=1
𝑡𝑖𝑝

𝑇
𝑖 + 𝐸 (2.2)

where E denotes residual error matrix. Cumulative variance of first 5 PCs explain 85%

of variability [17], and this means that the subspace consisting of 5 PCs contains enough

variation of the original features (event types). Here, 𝑘 is 5 as we selected only 5 PCs.

Events data collected during normal working condition is used for developing a PCA

model and test is performed with the event data before failure.

2.3.3.2 Fault Detection using PCA Model

In PCA based anomaly detection, Hotelling 𝑇 2 and Q Statistics are used. The use of Q

statistic and 𝑇 2 statistics are complimentary. Hotelling 𝑇 2 provides the overall variation

from the center of data set and Q statistic explains how well the PCA model fits to the given

data[16].

For new measurement feature vector X, the 𝑇 2 statistic can be found from equation

2.3[15]:

𝑇 2 = 𝑥𝑇 𝑃𝜆−1𝑃 𝑇 𝑥 ≤ 𝑇 2
𝛼 (2.3)

where 100(1 − 𝛼)% control limit for 𝑇 2
𝛼 is calculated by means of F distribution as in

equation 2.4. 𝜆−1 is a diagonal matrix with inverse eigen values for k PCs used for the
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model [22]:

𝑇𝛼
2 = (𝑘(𝑚 − 1)

𝑚 − 𝑘
𝐹 (𝑘, 𝑚 − 1; 𝛼) (2.4)

where 𝐹 (𝑘, 𝑚 − 1; 𝛼) represents F distribution with k and m-1 degrees of freedom, 𝛼 is

the level significance 𝛼, 𝑘 is the number of PCs retained in the model, 𝑚 is the number of

samples used to develop the model.

Lack of model fit can be calculated with 𝑄 statistic and is expressed as sum of squares

of each row of 𝐸 (refer equation 2.2) as

𝑄 = 𝑋(𝐼 − 𝑃𝑘𝑃 𝑇
𝑘 )𝑋𝑇 ≤ 𝑄𝛼 (2.5)

Let the eigenvalues 𝜆𝑖 of the covariance matrix of X and with 100(1 − 𝛼)% confidence

level, upper control 𝑄𝛼 is calculated as in equation 2.6 [15] :

𝑄𝛼 = 𝜃1[
ℎ0𝑐𝛼

√
2𝜃2

𝜃1
+ 1 + 𝜃2ℎ0(ℎ0 − 1)

𝜃2
1

]
1

ℎ0 (2.6)

where :

𝜃𝑖 = ∑︀𝑚
𝑗=𝑘+1 𝜆𝑖

𝑗, ℎ0 = 1 − 2𝜃1𝜃3
3𝜃2

2
, and 𝑐𝛼 represent standard normal deviate corresponding

to upper (1-𝛼) percentile.

The new event pattern can be detected using Q or 𝑇 2. When an unusual event pattern

occurs and it results in change in structure of covariance matrix which will be detected by

high value of Q. The plot has first twenty eight samples that belong to normal working

condition of robot and event frequency is ordered from the failure date to seven months

before failure. In Fig. 2-1a, significant increase in value of Q residual was observed between

samples twenty eight to sixty where twenty-eighth sample represent the failure date and

sixtieth sample represent thirty two days before failure (right side of the vertical line). Similar

behavior is also observed with Hotelling 𝑇 2 plot as shown in 2-1b. This information indicates

that event pattern indeed can be used for predicting the failure.
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Sample 7

(a)

Sample 7

(b)

Figure 2-1: Fault Detection using PCA Model: a) Q Residual plot, b) Hotelling T Squared
plot.

Once we identified the samples which caused the abnormal behavior using Q- residual

and Hotelling 𝑇 2 plots, next step is to identify what are the contribution levels of each

events(attributes) to this abnormal phenomena. This can be done with the help of Q and

Hotelling 𝑇 2 contribution plots.
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Q contribution show how much each attribute contribute to overall Q statistic while

retaining the sign. 𝑇 2 contribution explains the contribution of each attribute to the

Hotelling 𝑇 2 value. These contributions are calculated for a given sample.

The T contribution for 𝑖𝑡ℎ sample, 𝑡𝑐𝑜𝑛,𝑖, is calculated as given in equation 8 [8]:

𝑡𝑐𝑜𝑛,𝑖 = 𝑥𝑖𝑃𝑘𝜆1/2𝑃 𝑇
𝑘 (8)

In the study that we conducted, the Q-Contribution plot is given in Fig 2-2a and T-

Contribution plot Fig 2-2b for given sample which was outside the control limit(sample 7 of

test data as in figures 2-1a and 2-1b). From this plot we can find that some of the events

(eg. E56, E47) have higher influence on Q-Residual and Hotelling 𝑇 2. This analysis helps

to build causal models which is beyond the scope this paper.

It is very important from service perspective to predict the failures of robots, especially

when factories are located in remote locations. It may take days or weeks to reach the location

and fix the failure. These predictions will also equip service engineers to arrange spare parts

so that the delays can be avoided and thus improve customer experience. Predicting failures

or repairs have significant benefits by offering service level agreements with high confidence

level.

2.4 Conclusion

Our results show that using PCA for detecting the abnormal condition in event log pattern

is a promising approach and can be used for giving sufficient indication to service engineers

about the impending failure. Model is developed based on 5 PCs which explain 85%

variability of the calibration data with 67 event types. The presence of fault or abnormal

behavior can be identified with help of Q Residual or Hotelling 𝑇 2 statistics by comparing

even log frequency pattern in time domain. The study results shows that it is possible

identify the anomaly in event pattern around 30 days before failure.
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(a) Q Contribution plot

(b) T Contribution plot

Figure 2-2: Q Contribution and T Contribution plot for identifying the contributing events
for the anomaly/fault

2.5 Challenges and Future work

In this study, we attempted to predict failures with help of event log patterns using PCA.

However, this study is limited to a specific type of failure- wear induced fault such as gearbox

faults and generalization of this method to other types of failures need to be verified. The

results show there is a possibility to predict failures with event pattern. This approach can
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detect the changes in behavior of the equipment from the normal working condition. The

event pattern may vary depending on the type of failure. For complex systems, there can

be failure modes and types of failures. Our objective is to incorporate these aspects and

enhance our approach for predicting failures. It is also observed that setting a threshold

for number of type of event across different robot controllers for a specific failure will not

be meaningful. This is because remote service data center will receive a bunch of event

data from the controller at the time of alarm generation and configuration of the alarms

for robot controllers is customer specific. As future work, we will be examining more

field failures and corresponding event pattern. We are also exploring the possibility to

simulate failures and events so that we can cover wide range of scenarios. In addition, we

will evaluate the possibility to use t-SNE(t-distributed stochastic neighbor embedding), a

non-linear alternative to PCA [23].
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3

Simulation based approach to detect

wear in industrial robots1

Abstract: In this paper we simulate, detect, and locate wear in industrial robots operating

over long time-periods on repetitive tasks. We simulate wear using the MATLAB robotics

toolbox by increasing the Coulomb friction coefficient on select robot axes. Disturbance

and measurement noise are included in each axis while computing the inverse and forward

kinematics. To compare change across all configurations within a repetitive cycle, the output

torque data is transformed into a normalized distribution sampled once every hour. We

identify wear as significant change in torque values from normal operating conditions, and

detect wear using principal component analysis; the source axis is located by cross-correlating

the output data from all axes through time. Simulation results with a range of friction

values tested for three different tasks across all axes show that wear detection on the basis

of comparison with normal operating condition depends on the manipulator task, whereby

onset of wear was detected in five out of six axes for one task and two out of six axes in the

rest. Wear location was correctly identified in all successful detections except one.

1This chapter is a slightly modified version of paper published in IEEE International Conference on
Automation Science and Engineering (CASE) 2015 and has been reproduced here with the permission of the
copyright holder
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3.1 Introduction

Friction has been reported as the primary cause behind more than 50% of the faults in

heavy industrial robots [24]. Friction in robot joints can occur due to inadequate lubrication

[25], high operating temperatures [2], accumulation of wear debris [26], and heavy load [2].

Unattended friction can lead to wear and tear, which eventually results in critical damage

[2], [27]. Friction effects in robotic manipulators are also widely studied for their importance

in determining the overall performance in terms of accuracy and stability [25], [28], [29].

In industrial robots, wear and tear is typically avoided as part of preventive maintenance

schedules. These schedules are arrived on the basis of estimated life expectancy of various

robot components—the actual condition of the robot is ignored [3], a scenario that leads to

high maintenance costs. Condition-based maintenance is an alternative strategy that uses

the data collected from various parts of the robots to assess the condition of the robot. Data

from multiple robots is then subject to conservative thresholds on measurement data such as

torque, temperature and voltage, which are then used to generate different types of events

such as information events, warning events, and error events. While low thresholds may

be used to avoid damage of expensive equipment, these are bound to raise the rate of false

alarms from error or warning events leading to consumer complacency and missed detections

[30].

Fault monitoring of industrial systems is performed using a wide variety of techniques that

can be broadly classified into knowledge-based, model-based, and data-driven methods [30],

[31]. Among these, knowledge-based methods rely on user expertise to arrive at customized

thresholds for output signals that are input to a monitoring system [32]. These are specific to

robot types and the operating conditions and are therefore non-transferable across different

situations [30]. Model-based methods rely on friction models to predict the occurrence of a

fault [3], [33]. In [33], for example, a friction model is used to estimate physical parameters of

an industrial robot which are then utilized for fault diagnosis. While modeling approaches

focus on an accurate representation of friction effects [28], [34], their direct application

in fault detection and prediction requires the additional step of calibrating the robot to

determine robot-specific model parameters, and may therefore be difficult to implement on
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industrial systems that have a diverse line up [35]. Instead, data-driven approaches rely

on statistical/signal processing or machine learning methods to characterize normal and

faulty situations. While data-driven methods are designed for model independence, they

require high-volume data inputs to perform reliably [30], [10], and rely on the variability

in the training data for an exhaustive fault detection framework [36]. Following a recently

proposed approach [37], we use an approximate model to generate high-volume synthetic

data of wear due to low maintenance across multiple scenarios. The resulting data is used

to develop and validate a wear detection and identification approach.

We model wear as a slow exponential growth in Coulomb friction spread over a period

of five days to simulate instances of oversight in maintenance [26]. Realistic values of

disturbance and measurement noise are introduced [38]. To allow detection and location

of wear irrespective of the joint configuration, we transform the periodic torque values into

a normalized distribution, and compute Kullback-Leibler (KL) divergence from the initial

distribution as the new output data. The resulting output for all axes is then subject to

principal component analysis (PCA) to compare with normal operating conditions. Wear

is identified as an error in the data fit beyond a fixed confidence interval and located by

cross-correlating the output data between axes. The approach is tested by simulating an

increase in friction in all of six robot axes, one at a time, in three different tasks simulated

using the open source MATLAB robotics toolbox [39]. The contributions of this paper are:

(i) we add the capability of simulating wear due to friction in industrial robots in an open

source software [39]; (ii) we implement PCA and cross-correlation based approach to detect

the onset of wear in robots and identify the source location axis; (iii) we validate and analyse

the proposed detection and identification approach on simulated data.

This paper is organized as follows: Section 2 gives a background of manipulator dynamics,

PCA, and cross-correlation as a measure of detecting the delay between two signals. Section

3 describes the approach for simulating a gradual increase in friction in the presence of

disturbance and noise, and its implementation on the MATLAB robotics toolbox [39].

Section 4 presents the wear detection and source identification approach. Section 5 provides

results from data generated from an exhaustive set of experiments performed on three

different tasks and finally, Section 6 summarizes the findings and discusses future work.
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3.2 Background

3.2.1 Manipulator Dynamics

The simulation model used in this study is based on a six degrees-of-freedom (dof)

manipulator called PUMA 560 (Programmable Universal Machine for Assembly). Given

the joint angles 𝜑 ∈ R6, velocity 𝜑̇ ∈ R6 and acceleration 𝜑 ∈ R6, the required torque

𝜏 ∈ R6 is given by the dynamic model

𝜏 = 𝑀(𝜑)𝜑̈ + 𝐶(𝜑, 𝜑̇) + 𝐹 (𝜑̇) + 𝐺(𝜑), (3.1)

where 𝑀, 𝐶, 𝐹 and 𝐺 are inertia matrix, coriolis and centrifugal force matrix, friction matrix,

and the gravity torque matrix respectively.

Equation (6.1) can be represented in a discrete state-space form for a single axis 𝑖 with

the state variable x𝑖 = [𝜑𝑖, 𝜑̇𝑖, 𝜑𝑖]T, ∈ R3 as

x𝑖
𝑘+1 = 𝐴𝑖x𝑖

𝑘 + 𝐵𝑖𝜏 𝑖
𝑘 + 𝜔𝑖

𝑘

y𝑖
𝑘 = 𝐶𝑖x𝑖

𝑘 + 𝜈𝑖
𝑘,

(3.2)

where 𝜏 𝑖
𝑘 ∈ R1 is the input torque at time step k, y𝑖 = 𝜑𝑖 ∈ R1 is the measured output,

𝜔𝑖
𝑘 ∈ R1 is disturbance and 𝜈𝑖

𝑘 ∈ R3 is the measurement noise. 𝐴𝑖, 𝐵𝑖, and 𝐶𝑖 are known

system matrices [40], [41].

3.2.2 Principal Component Analysis and Cross-correlation

We use PCA and cross-correlation to detect and locate onset of wear.

Principal Component Analysis

PCA is a multivariate analysis technique [30] used to classify patterns in data [21]. Briefly,

PCA finds principal components (PCs) that can best approximate the variation in original

data [42]. We use PCA to detect a change in the overall torque values over extended periods

of time. Given 𝑛 torque values from all six robot axes, a torque matrix is constructed as
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𝒯 ∈ R𝑛×6. PCA eigen-decomposes the matrix 𝒯 into eigenvectors 𝑃𝑚 ∈ R6×𝑚, and scores

matrix 𝑇𝑚 ∈ R𝑛×𝑚, as [43]

𝒯 = 𝑇𝑚𝑃 ᵀ
𝑚 + 𝐸, (3.3)

where 𝑚 is selected so that the principal components account for more than seventy five

percent of the variation in data [44], and 𝐸 is the residual error matrix.

The accuracy with which new data can be projected onto the principal components

represents the degree of data fit and can be calculated using 𝑄 statistic [16]

𝑄 = 𝒯 (𝐼 − 𝑃𝑚𝑃 𝑇
𝑚)𝒯 ᵀ (3.4)

In our case, we use PCA to detect onset of wear by setting a threshold on 𝑄-statistic. In

other words, an onset of wear is identified if the 𝑄 value rises above a data-driven threshold

[45]. We use 95% confidence level to set threshold on the 𝑄-statistic [46].

Cross-correlation

Cross-correlation compares two signals at different time lags by correlating them. Given 𝑁

pairs of observations of two time series 𝜏 𝑖 and 𝜏 𝑗, the cross-covariance at lag 𝛿𝑡 is [47]

𝑐(𝛿𝑡)𝜏 𝑖,𝜏 𝑗 =

⎧⎪⎪⎨⎪⎪⎩
∑︀𝑁−𝛿𝑡

𝑡=1 (𝜏 𝑖
𝑡 − 𝜏 𝑖)(𝜏 𝑗

𝑡+𝛿𝑡 − 𝜏 𝑗)/𝑁, 𝛿𝑡 ≥ 0∑︀𝑁
𝑡=1−𝛿𝑡(𝜏 𝑖

𝑡 − 𝜏 𝑖)(𝜏 𝑗
𝑡+𝛿𝑡 − 𝜏 𝑗)/𝑁, 𝛿𝑡 < 0

(3.5)

and the cross-correlation coefficient for the time series 𝜏 𝑖, 𝜏 𝑗, is

𝑅(𝛿𝑡)𝜏 𝑖,𝜏 𝑗 = 𝑐(𝛿𝑡)𝜏 𝑖,𝜏 𝑗

𝑠𝜏 𝑖𝑠𝜏 𝑗

, (3.6)

where 𝜏 𝑖, 𝜏 𝑗 are the average of series 𝜏 𝑖 and 𝜏 𝑗; 𝑠𝜏 𝑖 , 𝑠𝜏 𝑗 are the standard deviation of 𝜏 𝑖

and 𝜏 𝑗, respectively.

The time delay 𝛿𝑡 at which the two signals give the maximum cross-correlation 𝑅(𝛿𝑡)𝜏 𝑖,𝜏 𝑗

corresponds to the lag at which the signals are best aligned. In the case of two similar

signals, 𝛿𝑡 at maximum 𝑅 corresponds to the delay between them. A positive value of 𝛿𝑡

indicates that 𝜏 𝑗 is trailing 𝜏 𝑖; conversely, a negative value indicates that 𝜏 𝑗 is leading 𝜏 𝑖.
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We use the delay in cross-correlation to determine the direction of fault propagation.

3.3 Simulating wear induced due to friction

To simulate wear, we increase Coulomb friction coefficient over an extended period of time

(5 days) representing oversight in scheduled maintenance. The increase is set up so that the

maximum torque stays within the recommended operational limits.

Denoting the Coulomb friction coefficient for positive and negative joint velocity as 𝜇+

and 𝜇−, the change in friction with time 𝑘 is modeled as

𝜇+
𝑘 = 𝑟+

0 + 𝑐1

1 + exp(−(𝑐2𝑘)4)

𝜇−
𝑘 = 𝑟−

0 − 𝑐1

1 + exp(−(𝑐2𝑘)4) ,
(3.7)

where 𝑟+
0 and 𝑟−

0 are set so that at 𝑘 = 0, the initial values of Coulomb friction, 𝜇+
0 and

𝜇−
0 are equal to the default values available from the PUMA560 Robotics toolbox [39], and

𝑐1 and 𝑐2 are constants computed by solving (3.7) for increase in friction at the end of the

five days. For each 𝑘, the updated value of Coulomb friction coefficient is substituted in

equation (3.1) to arrive at Friction matrix F [39]

𝐹 (𝜑̇) = 𝑉 𝜑̇ + 𝜇, (3.8)

where V denotes the coefficient of viscous friction. Figure 3-1 shows a sample change in

friction torque as a result of change in Coulomb friction using (6.6) (Note that disturbance

and noise are added in the same sample as per Section III B). Operational torque limit for

the Puma 560 robot model is given in Table 3.1 [48].

Table 3.1: Operational torque limit for the Puma 560 robot model

Axis 1 2 3 4 5 6

𝜏𝑚𝑎𝑥(Nm) 120 200 100 22 22 21
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Figure 3-1: Change of frictional torque due to increase in Coulomb friction.

3.3.1 Implementation on the robotics toolbox

The MATLAB robotics toolbox is a set of open source MATLAB functions that allow ease

of simulation and analysis of robotic manipulators [39]. The toolbox consists of user-defined

functions that can help visualize and create a robot trajectory, compute input torque using

inverse dynamics (1), and compute output torque using forward dynamics [39]. We use

the robotic toolbox to simulate increase in Coulomb friction along with disturbance and

measurement noise in a PUMA 560 manipulator.

3.3.2 Adding disturbance and measurement noise

In order to represent a realistic scenario where disturbance and measurement can cause

high false alarm rates, we add disturbance and measurement noise to the simulations of

manipulator tasks. In particular, unknown disturbances may occur during the operation

of a robotic manipulator due to minor variations in load torques and change in lubricant

temperatures [36]. Measurement noise may occur due to sensor degradation and high or low

operating temperatures.

Disturbance 𝜔𝑘 in (4.1) is added in the form of a zero-mean Gaussian process with unit

standard deviation scaled to one percent of the average torque [49]. Using (4.1) as reference,

here, we assume 𝐶 ∈ R3×3 to be an identity matrix. Similarly as in [49], the measurement

noise 𝜈𝑘 is also modeled as a zero mean Gaussian process. To obtain the noise levels in 𝜑̇

and 𝜑, 𝜈𝑘 is then scaled with the inverse of the sampling time-step 𝛿𝑡 and 𝛿𝑡2 respectively.

The modified measurement equation is
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y𝑖
𝑘 = 𝐶x𝑖

𝑘 +

⎡⎢⎢⎢⎢⎢⎣
1
1
𝛿𝑡

1
𝛿𝑡2

⎤⎥⎥⎥⎥⎥⎦ 𝜈𝑘, (3.9)

where 𝐶 ∈ R3×3 is an identity matrix, 𝜈𝑘 is 0.0001 rad, based on the average accuracy of

the encoder in robotic manipulators [50] and 𝛿𝑡 = 0.5 s. Once y is obtained, we use inverse

dynamics (6.1) to obtain the measured torque.

Table 3.2: Algorithm to simulate wear due to friction

Input: Start and end position of trajectory, duration of operation, time step between
successive operation, and torque operational limits

For each time step 𝑘

1. Generate joint position,velocity, and acceleration, 𝜑, 𝜑̇, 𝜑 using forward kinematic
equation (jtraj)

2. Calculate torque for each time step using inverse dynamic equation (rne). Introduce
friction increase by modifying Coulomb friction coefficient (6.6) along with disturbance
as in (4.1) modeled as zero mean Gaussian process

3. Compute 𝜑, 𝜑̇, 𝜑 for each axis.

4. Add measurement noise as per equation (3.9) to 𝜑, 𝜑̇, 𝜑

5. Calculate measured torque using inverse dynamic equation (rne)

Table 3.2 lists the schematic of the algorithm for simulating wear in robots using the

MATLAB robotics toolbox [39].

3.4 Detecting and locating wear

In this section, we describe the wear detection and location method. The torque in an

axis is dependent on configuration and may vary drastically depending on the task to be

performed. Sampling the torque at fixed time intervals of time does not guarantee measuring

it at the same configuration due to changes in acceleration and velocity of robot joints.

Further, sampling the torque at a fixed configuration may also lead to completely ignoring
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a problematic configuration of joints and extent of wear depends on velocity, acceleration,

and direction of movement of the axes. To make the comparison of torque independent of

configuration, we implement the proposed wear detection approach on the KL distance [36]

of the normalized torque distribution. The KL distance measures the similarity between two

distributions [1, 51] The torque is sampled in every ten seconds for first ten minutes of every

hour. Thus, in an hour, sixty samples are collected. This ensures that we obtain the torque

values for six possible configurations in a trajectory that repeats itself once every minute.

These sixty values are then normalized with respect to maximum torque and binned into

twelve equal-sized intervals. We generated such torque histograms to simulate our existing

data collection from robots at customer site and comparing histograms help to evaluate full

trajectory within a cycle instead of a single configuration.

3.4.1 Identification of onset of wear

We use PCA based data-driven approach that does not depend on predefined thresholds to

detect changes in axis torque due to increase in friction. In particular, we use the torque

distribution in normal operation as training data to generate principal components using

equation 3.3. Torque from all six axes are used together to create a single normal-working

profile. Fig. 3-2 shows the KL distance over time across all axes for trajectory 1 when we

introduce 10% wear in Axis 1. The value of KL distance was increased significantly after

seventieth hour for axis 1 and KL distance for axis 6 appears to be very sensitive. However,

such sensitiveness of KL distance for axis 6 is not observed consistently across all trajectories

and the variation in KL distance depends on the robot trajectory and the load. In further

analysis (not shown here), for 20% wear in axis 1, KL distance is significantly higher for

axis 1 compared with all other axes. The number of PCs are selected as described in

Section 3.2.2 and ranges between 3-4 in our case. Figure 3-3 shows a sample training and

testing procedure where one-hundred and twenty hours of normal working operation is used

to obtain the output data for training. Friction is introduced at the 120th hour. Therefore,

Q-residual shows an increase in value from 120th hour and significant increase after 180th

hour. Anomalies are detected by checking if the data falls within the thresholds defined

using the 𝑄-statistic (3.4).
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Figure 3-2: KL Distance Vs Time. Friction increase of 10% is introduced in axis 1.
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Figure 3-3: PCA analysis based on KL distance. Circles represents training or calibration
data and diamond represents test data

3.4.2 Identification of location of wear

We have used the classical time lag analysis to infer whether a process is leading or following

the other. We cross-correlate the output data (torque distribution for each axis across time)

to locate the source axis of the wear. Specifically, we use the sign of lag at maximum cross-

correlation between torque from two axes as an indicator of whether the process is leading

or trailing.
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Table 3.3: Lag (hours) at maximum correlation between axes when friction is introduced in
axis 1. Leading signal will register negative time lag. Axis with wear is identified as one
that has all negative lags.

Source Axis Axis 1 Axis 2 Axis 3 Axis 4 Axis 5 Axis 6
Axis 1 0 -3 -3 -27 0 -4
Axis 2 3 0 0 0 -38 -2
Axis 3 3 0 0 0 6 0
Axis 4 27 0 0 0 -22 5
Axis 5 0 38 -6 22 0 32
Axis 6 4 2 0 -5 -32 0

In this case, we expect that a leading signal will register a negative time lag. Table 3.3

shows the lag (in hours) at maximum cross-correlation for all pairs of axes where the friction

was increased in axis 1. We identify the source axis as one that has all negative lags. Fig.

3-2 shows the KL distance of each axis from a reference distribution.

3.5 Experiments and analysis

The details of simulation experiments is given in Table 3.4. We introduce increase in friction

corresponding to 10% and 20% change over five days (this resulted in the overall torque not

exceeding more than 50% of the maximum allowed design torque for any axis). We simulate

the friction change in all six axes, one axis at a time.

Table 3.4: Experimental design

Trajectory % Friction Increase No. of simulation runs
1 10 6
1 20 6
2 10 6
2 20 6
3 10 6
3 20 6

We designed three different tasks to exhaustively validate the detection and location

approach described in this paper. The tasks represent pick-and-place operations and involve

the robot end-effector reaching its workspace limits and rotation of all joints (Fig. 3-4).
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Figure 3-4: End-effector trajectories for three different manipulator tasks. Top and side
view of a single run of the trajectories are shown for each task. The tasks represent simple
pick-and-place operations. Green circle denotes start and red circle denotes the stop position

Duration of one cycle for each task is set to one minute repeated over five days (120 hours).

The top and side view of the end-effector for each of the three trajectories are shown in

Figure 3-4.
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Table 3.5 shows the detection and source location performance for all thirty-six

simulations. Onset of wear on the basis of a data-driven threshold using PCA is both

detected and located in all axes except axis 2 for task 2, two axes for task 1, one axis for

task 3 with 10 % friction increase, and four axes in task 3 with 20% friction increase. While

we increased the friction coefficient by the same amount in all axes, the maximum absolute

torque at the time of detection or at the end of simulation period (Table 3.6) shows that the

increase does not have the same effect on all axes. Between all tasks, task 2 has the lowest

loads for axes two and three of the manipulator, and has the highest load for the sixth axis.

At the same time, task 2 has a low coefficient of variation (Table 3.7) for most of the axes

between all tasks. This shows that the detection of wear is dependent on the torque load

and variability on an axis. Between axes, 4-6 are closer to end-effector and their movement

and rotation depends on the task at hand and it is likely that the disturbance and noise,

also introduced into the training data, do not allow the change due to increase in friction

to manifest.

Table 3.5: Wear detection and location using PCA and cross correlation- with the number
of hours at the time of detection

Friction Increase 10% Friction Increase 20%
Axis T1 T2 T3 T1 T2 T3

1 X(60) X (60) × X(50) X(50) X(40)
2 × × × × × ×
3 X(100) X(90) × X(85) X(78) X(105)
4 × X (80) × × X(60) X(90)
5 × X (115) × × X (95) ×
6 × X (90) X (95) × X (90) X (90)

Task 2 trajectory is different from that of tasks 1 and 3 in terms of the region of workspace

it explores. The low coefficient of variations could possibly result from a simpler path that

has less workspace region to cover compared to task 1 and task 3. Both tasks 2 and 3

involve the rotation of sixth axis, an effect of which is indicated in the similarity between

the absolute torque values for axis 6 for these two tasks as compared to task 1.

The detection and location of the onset of wear is the same for tasks 1 and 2 for both

ten and twenty percent increase in friction with the detection taking place earlier for twenty
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Table 3.6: Maximum absolute torque (Nm) at the time of detection or at the end of five
days if wear was not detected

Friction Increase: 10% Friction Increase: 20%
Axis T1 T2 T3 T1 T2 T3

1 28.520 29.705 29.070 29.724 29.475 28.799
2 81.842 64.176 71.769 82.533 64.665 71.735
3 26.240 9.248 25.620 26.421 9.484 25.442
4 2.292 1.381 2.226 2.292 1.409 2.249
5 2.434 3.183 2.822 2.446 3.231 2.803
6 0.000 0.912 0.834 0.000 0.928 0.873

percent than ten percent. For task 3, the wear is detected in three additional axes when

the friction increase is 20 percent. This is expected since the anomalous change in torque

distribution will be quicker with a larger increase in friction over the same time period. The

time of detection itself indicates that disturbance and noise can overshadow an increase in

friction for over three days before any change in torque can be detected.

Table 3.7: Coefficient of variation of absolute torque (Nm) at the time of detection or at the
end of five days

Friction Increase 10% Friction Increase 20%
Axis T1 T2 T3 T1 T2 T3

1 0.733 0.049 0.047 0.733 0.048 0.051
2 0.210 0.227 0.230 0.225 0.233 0.233
3 0.766 0.254 0.350 0.773 0.242 0.351
4 0.625 0.192 0.824 0.625 0.189 0.798
5 0.758 0.614 0.675 0.757 0.607 0.677
6 0.731 0.409 0.445 0.692 0.405 0.422

Studies on fault detection and prediction using simulation, focus on introducing faults

artificially by incorporating sudden load changes in operation [37], [52]. In [37], two types

of faults: actuator fault and sensor fault, are introduced and detected immediately using

statistical differences. The source of the actuator fault is identified by comparing regression

coefficients between normal and faulty condition. In [52], actuator faults in two-link

manipulators are detected with negligible delay in all of the nine test cases. In contrast, the
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wear simulated and detected in this paper does not create sudden changes in manipulator

performance but indicative of an alarm event. Accordingly, although the onset of wear is

detected hours after it is introduced, the actual fault may appear still later. Finally, using

our approach, the source axis was correctly identified in all cases where the onset of wear

was detected.

To ensure that the algorithm can be implemented in practice, we ensured that the

measurement data matches the format of the output from the remote servicing agent and the

normal operating condition is characterized on the basis of sixty days of normal operation, a

time period for which we expect data to be easily available. The computation of secondary

measures such as KL divergence and cross-correlation lags is computationally simple and

can be implemented on the remote servicing agent. Finally, open issues include identifying

optimal thresholds that likely depend on robot and environment specific disturbance and

measurement noise values for usable fault time prediction.

3.6 Conclusion

In this paper, we present an approach to detect and locate the onset of wear in industrial

robots operating over long time periods. Wear is simulated on a PUMA 560 robot using

MATLAB Robotics toolbox by increasing Coulomb friction in the presence of process and

measurement noise. PCA and cross-correlation is used to create data-driven thresholds for

detecting wear, and locating the source axis. Multiple simulation experiments are conducted

on output data represented in the form of torque distribution data and compared during

periodic cycles.

Our results show that the detection and location of wear depends on the manipulator

task. Low variability in load and movement of axis that may result from different trajectories

affect the change in torque as a result of adding friction. Further, given disturbance and

noise in the system, the time of detection shows that the onset of wear may take more than

three days to manifest.

Future studies will focus on two directions: first, on validation of this approach on real

data collected from the field, and second on developing methods to characterize and identify

the cause behind an increase in friction that may result from multiple sources [25], [2], [26].
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4

Training Data Selection Criteria for

Detecting Failures in Industrial

Robots1

Abstract: We study the effect of source and type of training data on detecting failures in

industrial robots using Principal Component Analysis (PCA). Specifically, using field data

across multiple robots performing different tasks, we compare two scenarios: first, where

training data obtained from a single robot is used to evaluate multiple robots (one-to-many),

and second, where each robot is evaluated on the basis of its own training data (one-to-one).

We further investigate if the data preprocessing prior to running PCA affects the ability to

detect and predict failures. To reduce task dependence of the raw signal, we preprocess the

same by computing the absolute difference between successive measurements and compare

the results with a PCA model that is built using raw signal alone and another that is built

from a combined signal having both raw measurements and their absolute difference. We

quantify effectiveness of detecting failures in terms of three measures: coefficient of variation

of the Q-residual obtained by projecting the test data on the PCA model, number of samples

above a data-driven confidence threshold, and lead time, measured as the number of days

prior to failure when the residual error rises above a given threshold. Our results show that

1This chapter is a slightly modified version of paper published in IFAC-PapersOnLine 49, no. 1 (2016):
385-390 and has been reproduced here with the permission of the copyright holder
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coefficient of variation of the Q-residual from a PCA model built using absolute difference

between measurements serves as a robust descriptor for predicting and detecting failure in

robots in the one-to-many training scenario. Specifically, we show that while both one-to-one

and one-to-many training sources are valid for detecting failures, signal preprocessing has a

significant influence. With the same signal, when using number of samples above threshold,

we find that one-to-one training source is able to detect failure in robots. Finally, with lead

time, we find that one-to-one training scenario with absolute difference as signal type can

be used to raise warning as early as nineteen days before failure.

4.1 Introduction

In a remote service set-up for industrial robots, information such as events and measurements

are sent to a remote database for hundreds of robots ([4]). This information is further

processed to prepare advisory reports that assist field engineers. The value of a remote

service support can be enhanced by improving the capability of predicting and detecting

failures across multiple robots.

Failure detection can be improved by modeling the robot operation subject to different

loads ([2]). However, given the variability in the type of tasks and loads borne by industrial

robots, and the difficulty in accurately modeling a failure within a robot operation, data-

driven approaches provide an alternative black-box type approach to detect failures ([53, 54]).

Data-driven methods do not require prior knowledge about the process and rely entirely on

collected data ([17]. Such algorithms learn the nominal behavior of the system from the

actual data itself and are validated on the basis of accurate classification of new unseen data

called the test data. Anomalous behavior is then detected in the form of error in a model

fit ([13, 36, 55, 56]).

Industrial robots are typically instrumented with many sensors, monitoring and

reporting the health of the robot in terms of multiple measurements including torque loads,

temperature, arm speeds, and position. With more than a hundred such measurements

reported on an hourly basis, it is not immediately clear which measurement is important

for which type of failure.
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Principal component analysis (PCA) is a statistical learning approach that helps to reduce

the dimensionality of the input dataset under the assumption that the data points are linearly

separated. It has been used in the past effectively for dimensionality reduction ([17, 30,

57]) and fault detection in equipment and processes ([14, 42, 44, 58–60]). However, PCA

effectiveness is evaluated on the basis of model fit which traditionally entails using data from

the same source that has to be tested ([14, 57]).

Here, we first investigate if failure detection across multiple robots is significantly affected

by the source of training data, that is, a single reference robot for all tests (one-to-many) or

nominal data from the same robot (one-to-one) for all tests (Hypothesis 1). Instead of using

measurement data as is, which is likely a function of the specific task performed by the robot,

we further investigate if signal preprocessing can make detection of failure task invariant. For

example, assuming that a failure is accompanied by large changes in measurement values,

measurement change over time may be used to represent normal operation across multiple

robots. Accordingly, we test if the effectiveness of the data-driven approach depends on three

types of signal input used to build the PCA model: raw signal, absolute difference between

two successive raw signal values, and a combination of both (Hypothesis 2).

We test hypotheses 1 and 2 on the basis of the descriptors on the residual error obtained

after projecting the test data on the PCA model. In particular, we use multiple descriptors

such as coefficient of variation of Q-residuals, number of test samples above Q-residual

threshold limit, and lead time (in days), defined as the remaining time in days left in the

test data set when the first sample above threshold is detected, to quantify the effectiveness

of the failure detection and prediction approach using PCA. The contributions of this paper

are: (i) we collect data from industrial robots for analysis of fault-detection strategies, (ii)

we describe and test alternative data selection criteria to reduce collection time and task

dependence, and (iii) we perform experimental analyses to demonstrate the effectiveness of

signal processing on a PCA based approach for failure detection.

This paper is organized as follows: Section 2 gives a background on different failures

in industrial robots and training strategies for PCA model development. Data collection,

preprocessing and experimental analysis are described in Section 3. Section 4 provides the

results followed by discussion, conclusion and a summary of ongoing work in Section 5.
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4.2 Background

4.2.1 Failures in Industrial robots

Failures in industrial robots can be classified as mechanical based, sensor related, and

actuator system related ([61]). Different reasons have been attributed to each of these

failures. For example, gearbox and brake failures occur mainly due to wear ([1]), and motor

failure can be due to a short circuit ([61]). Because the pattern of change of data and the

time of change can vary widely across all failures ([1]), combining all the failures into a single

failure-detection framework is difficult when a single model is used. Instead, an approach

that uses all reported measurements and events may be able to capture robot operation for

failure detection across multiple tasks and operating environment.

4.2.2 Training data selection and preprocessing for PCA

Principal Component Analysis is a multivariate analysis technique ([30]) that helps to

reduce the number of features to a small number of principal components without losing

important information ([13], [21]). PCA has been widely used in other fields such as face

recognition ([62]), fault detection in semiconductor processes ([60]), and anomaly detection

in by monitoring sensor data in air plane systems ([63]).

Given 𝑛 instances of 𝑚 different measurements, the PCA algorithm eigen-decomposes

the input data 𝒳 ∈ R𝑛×𝑚 into the principal components, where the number of principal

components are selected such that they account for maximum variation in data ([44]). The

accuracy with which data can be projected onto the principal components represents the

degree of model fit and can be represented using 𝑄-residual ([16]). 𝑄-residual is calculated

as the difference between a sample and its projection into the principal components retained

in the model ([60]). We use a 95% confidence level to set the threshold on the 𝑄-residual

beyond which a model is declared not fit ([46]).

The effectiveness of PCA to classify new data accurately depends on the size and extent

of the training data ([62]). At the same time, a generic PCA model that is built using a

large volume of training data may give rise to higher incidence of false negatives in a failure-
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detection framework ([64]). PCA model is traditionally developed with training data from

the same system where the test is to be performed ([14, 17]). To overcome variability and

underfitting due to new data, Li et. al. ([64]) have used a recursive PCA algorithm that is

periodically revised to recalculate the thresholds for the Q-residuals. This approach helps

to reduce false alarms because of slow and normal changes in the industrial processes over

period such as equipment aging and sensor drifting.

4.3 Data collection, pre-processing and experimental

analysis

4.3.1 Data collection

Time-series data collected from industrial robots can be classified into two categories:

measurements, which in turn can be mechanical (e.g. speed, torque) and non mechanical

(e.g. CPU temperature, fan speed), and events, which are generated using rule-based criteria

on measurements, reported or otherwise. An example of an event is the over-temperature

event, generated because temperature of the main computer unit is too high. We obtained

data from seven different instances of four types of failures and three instances of normal

operation from ten different robots. The seven failure instances consist of two gearbox

failures, two motor failures, two brake failures and one computer unit failure. All robots

have six axes performing different tasks within the same application domain. For each

robot, measurements and event frequency was extracted by querying the remote servicing

database using a custom SQL script. Fault types, wherever a failure instance was found,

was reported in the comment log of the service engineer. Robot type and application were

confirmed using remote service data2.

2For confidentiality reasons ABB specific information such as robot type, location, and measurements
are not disclosed.
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4.3.2 Preprocessing of data

Data from the three normally operating robots was further split so that six instances of

normal operation were available for testing. Specifically, two datasets of 20 days each were

extracted from each normal robot so that they were furthest apart in time. Each training

and test dataset comprised 60 days of operation time that was further split into first 40 days

of training data followed by 20 days of test data. The last day of the 60-day dataset (20th

day in the test data) was the day of failure. To avoid including measurements and events

very close to failure in time, the last five days of test data (including the day of failure if it

occurred) was removed from the test data. This approach also ensured predictive capability

of a model for up to at least five days (one work week) before failure. While there was

some variability in the number of measurements and events reported by each robot, a total

of 104 measurements and 13 events were found to be common across all robots and were

therefore used for training and testing. The events were reported in the form of number of

observations per day.

The measurements and events were further preprocessed to provide three different types

of inputs as training data for PCA: i) raw signal, ii) absolute difference between two successive

raw signal values and iii) combination of both (i) and (ii). Some axis-specific measurements

such as position and torque were available in the form of a frequency distribution. To

compare such values we used a probabilistic measure called Kullback Leibler (KL) distance.

While preserving the difference in such measurements, this approach also reduced the total

number of measurements. Given two probability distributions of measurement X, 𝑝(𝑥) and

𝑞(𝑥), KL distance 𝐷(𝑝||𝑞), is defined as ([65],[51])

𝐷(𝑝||𝑞) =
∑︁
𝑥∈𝜒

𝑝(𝑥) × log 𝑝(𝑥)
𝑞(𝑥) (4.1)

In the case of raw signal, KL distance was computed between the current measurement

and the first measurement. As an example, for a given data set with twenty days of data,

first measurement indicates the measurement that is farthest away from the failure date

for failed cases and farthest away from the last measurement date for normal robots (Fig.

4-1). For absolute difference, KL distance was computed between successive measurements.
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Linear trends in measurements were removed prior to training by detrending the signal. The

number of final measurements and events for each data set were 117 for raw and absolute

difference signal, and 234 for the combined signal.

1 20
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 121 2 3 4 5 6 7 8 9 10 11 12

Date of first 
measurement

Date of failure – for failed cases
Date of last measurement – for 
normal cases

Number of days

Figure 4-1: Concept of first measurement and last measurement for a given data set.

4.3.3 Test setup

A three-way analysis is designed to test the effect of training source and training signal type

and robot condition on the ability to isolate failures using the defined descriptors. However,

we have not considered the effect of failure type in the study due to few failure cases in

each failure type. The training source was set as one-to-many (OTM), or one-to-one (OTO)

(Figure 4-2); the training signal type was set to raw, absolute difference, and combined; and

the robot condition was selected as failure or normal. To avoid bias due to training data

from particular robot in the OTM scenario, PCA models were trained using 7 failure and 6

normal robots to create 42 test cases. Table 4.1 provides a list of test scenarios. The number

of Principal Components were chosen in such a way that selected components explains 90%

variability in the training data (Fig. 4-3).

In addition to testing hypotheses 1 and 2 on the 15-day test data, we varied the number

of test samples to 10, 12 and, 13 days to identify a higher lead time for predicting failure.

We compared different scenarios using the following descriptors based on Q-residual:

coefficient of variation ([46]), defined as the ratio of standard deviation to the mean; number

of test samples above a threshold limit; and lead time defined as the number of days prior

to failure when the model fit error first rises above threshold. Note that since we ignore the

47



1

1 2 n 1 2 n

1 2 n

Training

Testing

. .  . 

. .  . 
. .  . 

(a) (b)

Figure 4-2: Test Conditions. (a) One-to-many scenario: PCA model built using training
data from a single robot. (b) One-to-one scenario: PCA model is built for each robot using
its own training data, shown as dashed line. Robot image is obtained from ABB product
catalogue.

Table 4.1: Experimental Design

Training Source Signal Type Robot Condition Number of test Cases
OTM Raw Failure 42
OTM Raw Normal 36
OTM Difference Failure 42
OTM Difference Normal 36
OTM Combined Failure 42
OTM Combined Normal 36
OTO Raw Failure 7
OTO Raw Normal 6
OTO Difference Failure 7
OTO Difference Normal 6
OTO Combined Failure 7
OTO Combined Normal 6
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last five days of the test data the actual lead time adds five days to the value obtained.

We used analysis of variance (ANOVA) to compare the different scenarios. Given groups

of experiments for each independent variable, ANOVA measures the source of variation in

the data and compares the relative sizes ([66]). The sources of variation can be within-

group or between-groups. The ANOVA comparison reports the probability of rejection of

the null hypothesis (𝑝-value), namely that the groups are not significantly different, and the

F-statistic which is the ratio of variation between the group to within the group, we evaluate

the significance. A large F value indicates that there is more difference between groups

compared to within groups ([66]). If the 𝑝-value is less than 0.05, then the group means are

considered to be significantly different.

We assume an interaction model for the following reasons: (i) signal type and training

source will likely be impacted by the condition of the robot that is tested; (ii) it is also likely

that the impact of the signal type (raw or difference) will be affected by the training source

(OTO or OTM); and (iii) the absolute difference signal captures variation in data and is

therefore more representative of the condition of the robot (normal or failure), where as raw

signal is more representative of the task.

Significance level is set to 𝑝 < 0.05. If an interaction effect is found, post-hoc comparisons

are made using Tukey’s honest significant difference (hsd) test. All statistics were performed

using MATLAB (R2014a, Mathworks, Natick, MA). Generalized Linear Models (GLMs)

are as secondary analysis using "Stat" package in R language [67].

Figure 4-3: Selection of Principal Components: number of PCs selected which explains 90%
variability in the data .

49



4.4 Results

ANOVA comparison of coefficient of variation (COV) of Q-residual across different scenarios

shows a combined interaction effect between signal type and robot condition. Specifically,

results show that while there was no interaction effect found between training source ×

signal type × robot condition (𝑝 = 0.789), training source × robot condition was significant

(𝑝 = 0.033); there was no interaction between training source × signal type (𝑝 = 0.661)

and signal type × robot condition (𝑝 = 0.123). Averaging across all other variables (main

effects), the coefficient of variation from both signal type and robot condition was found to be

significantly different (p<0.01), but not for training source (p=0.823). Post-hoc comparisons

between different robot conditions across signal types show that the normal and failure robots

were significantly different when absolute difference was used as the signal type and training

source as OTM (Figure 4-4). With fewer days of test data, the significant difference between

normal and failure robots was lost for 12 days and less.

ANOVA comparison of the number of test samples above threshold limit shows that the

interaction effects as well as main effects are significant (𝑝 < 0.01 ). Post-hoc analysis for all

pairs shows that number of samples above threshold is significantly more for failure robots

than normal robots when absolute difference is used as signal type with OTO as the training

source (Figure 4-5). This result of significant difference between normal and failure robot

continued to hold even when the test-data was reduced to 10 days.

ANOVA results on lead time in days shows that the interaction effects are significant

for all combinations and main effects (𝑝 < 0.01). Post-hoc comparisons across all pairs of

conditions show that when signal type is absolute difference, the lead time is significantly

more for a failure robot with OTO training source (Figure 4-6). This result of significant

difference between normal and failure robot continued to hold even when the test-data was

reduced to 10 days.

COV of Q residual includes the changes in Q- residual that are below threshold. However,

other two descriptors (lead time and number of samples above threshold) are based on the

samples above threshold; therefore, these descriptors are not capturing the changes in Q

residual observed below the threshold value. As a result, COV of Q residual shows a clear
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difference between evaluated factors compared to other two descriptors. ANOVA results are

provided in Tables 4.2, 4.4, and 4.3.

Figure 4-4: Coefficient of variation of Q-residual for each robot condition. * indicates
significantly different conditions in post-hoc comparisons. Error bars denote standard error
of the mean.

Table 4.2: Analysis of Variance – Coefficient of Variation (CoV) of Q Residual

Source DF Adj SS Adj MS F-Value P-Value

TrainingSource 1 0.02 0.0197 0.02 0.88

SignalType 2 7.376 3.6878 4.32 0.014 *

RobotCondition 1 20.306 20.3064 23.78 0 ***

TrainingSource*SignalType 2 1.056 0.5282 0.62 0.539

TrainingSource*RobotCondition 1 3.073 3.0727 3.6 0.059

SignalType*RobotCondition 2 5.817 2.9086 3.41 0.035 *

TrainingSource*SignalType*RobotCondition 2 0.965 0.4823 0.56 0.569

Error 261 222.833 0.8538

Total 272 278.307
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Figure 4-5: Number of samples above threshold for each robot condition. * indicates
significantly different conditions in post-hoc comparisons. Error bars denote standard error
of the mean.

Table 4.3: Analysis of Variance: Number of samples above threshold

Source DF Adj SS Adj MS F-Value P-Value

TrainingSource 1 278.35 278.35 28.89 0 ***

SignalType 2 319.6 159.802 16.59 0 ***

RobotCondition 1 114.94 114.939 11.93 0.001 ***

TrainingSource*SignalType 2 160.95 80.474 8.35 0 ***

TrainingSource*RobotCondition 1 55.39 55.386 5.75 0.017 *

SignalType*RobotCondition 2 276.69 138.347 14.36 0

TrainingSource*SignalType*RobotCondition 2 134.21 67.106 6.97 0.001 ***

Error 261 2514.6 9.634

Total 272 3445.63
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Table 4.4: Analysis of Variance: Lead time

Source DF Adj SS Adj MS F-Value P-Value
TrainingSource 1 44.52 44.516 10.39 0.001 ***
SignalType 2 174.5 87.251 20.37 0 ***
RobotCondition 1 87.25 87.251 20.37 0 ***
TrainingSource*SignalType 2 89.03 44.516 10.39 0 ***
TrainingSource*RobotCondition 1 44.52 44.516 10.39 0.001 ***
SignalType*RobotCondition 2 174.5 87.251 20.37 0 ***
TrainingSource*SignalType*RobotCondition 2 89.03 44.516 10.39 0 ***

Error 261 1117.89 4.283
Total 272 1567.37

Figure 4-6: Lead time (measured as number of days prior to failure) for each robot condition.
* indicates significantly different conditions in post-hoc comparisons. Error bars denote
standard error of the mean.

To check for robustness against normality assumptions additional analysis was performed

using generalized linear models (GLMs) [68]. GLMs can be used to find the influence of

factors and their interactions on the response variable when ANOVA assumption are not

met. GLMs are regression models and consist of a random component and a systematic

component. The choice of probability distribution should be based on response variable.

The systematic component depends on how the exploratory variables relate to the mean of

the response variable after a transformation called the link function [69]. GLM models were
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generated by using the following probability distributions and link functions:

• Response variable COV of Q residual (Variable type: Continuous): Gamma

distribution (link “log”)

• Response variable Lead time (Variable type: Count): Poisson distribution (link “log”)

• Response variable Number of samples above threshold (Variable type: Count): Poisson

distribution (link “log”)

Comparison of GLM models for response variable COV of Q residuals, lead time and
Number of samples above threshold were made ( Tables 4.6, 4.7, 4.8, 4.9, 4.10, and 4.11). It
was noted that factors influencing COV of Q residual is same as that observed in ANOVA.
However, the results of GLM analysis for lead time and number of samples above threshold
are different from ANOVA results. The attribution for this difference associated with
significant violation of normality assumptions for lead time and number of samples above
threshold.

Formulation of models 1-8 considered for this analysis are given in Table 4.5. All three
descriptors are considered as response variables.

Table 4.5: Models considered for GLM analysis

Model 1: Response variable ∼ 1
Model 2: Response variable ∼ 𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝑆𝑜𝑢𝑟𝑐𝑒
Model 3: Response variable ∼ 𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝑆𝑜𝑢𝑟𝑐𝑒 + 𝑆𝑖𝑔𝑛𝑎𝑙𝑇𝑦𝑝𝑒
Model 4: Response variable ∼ 𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝑆𝑜𝑢𝑟𝑐𝑒 + 𝑆𝑖𝑔𝑛𝑎𝑙𝑇𝑦𝑝𝑒 + 𝑅𝑜𝑏𝑜𝑡𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛

Model 5: Response variable ∼ 𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝑆𝑜𝑢𝑟𝑐𝑒 + 𝑆𝑖𝑔𝑛𝑎𝑙𝑇𝑦𝑝𝑒 + 𝑅𝑜𝑏𝑜𝑡𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 +
𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝑆𝑜𝑢𝑟𝑐𝑒 * 𝑆𝑖𝑔𝑛𝑎𝑙𝑇𝑦𝑝𝑒

Model 6: Response variable ∼ 𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝑆𝑜𝑢𝑟𝑐𝑒 + 𝑆𝑖𝑔𝑛𝑎𝑙𝑇𝑦𝑝𝑒 + 𝑅𝑜𝑏𝑜𝑡𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 +
𝑆𝑖𝑔𝑛𝑎𝑙𝑇𝑦𝑝𝑒 * 𝑅𝑜𝑏𝑜𝑡𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛

Model 7: Response variable ∼ 𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝑆𝑜𝑢𝑟𝑐𝑒 + 𝑆𝑖𝑔𝑛𝑎𝑙𝑇𝑦𝑝𝑒 + 𝑅𝑜𝑏𝑜𝑡𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 +
𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝑆𝑜𝑢𝑟𝑐𝑒 * 𝑆𝑖𝑔𝑛𝑎𝑙𝑇𝑦𝑝𝑒 + 𝑆𝑖𝑔𝑛𝑎𝑙𝑇𝑦𝑝𝑒 *
𝑅𝑜𝑏𝑜𝑡𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛

Model 8: Response variable ∼ 𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝑆𝑜𝑢𝑟𝑐𝑒 + 𝑆𝑖𝑔𝑛𝑎𝑙𝑇𝑦𝑝𝑒 + 𝑅𝑜𝑏𝑜𝑡𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 +
𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝑆𝑜𝑢𝑟𝑐𝑒 * 𝑆𝑖𝑔𝑛𝑎𝑙𝑇𝑦𝑝𝑒 + 𝑆𝑖𝑔𝑛𝑎𝑙𝑇𝑦𝑝𝑒 *
𝑅𝑜𝑏𝑜𝑡𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 + 𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝑆𝑜𝑢𝑟𝑐𝑒 * 𝑆𝑖𝑔𝑛𝑎𝑙𝑇𝑦𝑝𝑒 *
𝑅𝑜𝑏𝑜𝑡𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛
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Table 4.6: GLM Analysis: Coefficient of Variation of Q Residual

Model no Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 272 142.55

2 (w.r.t 1) 271 142.52 1 0.04 0.7788

3 (w.r.t 2) 269 135.99 2 6.52 0.0009 ***

4 (w.r.t 3) 268 126.87 1 9.12 0.0000 ***

5 (w.r.t 4) 266 126.23 2 0.64 0.5039

6 (w.r.t 4) 266 121.94 2 4.93 0.0051 **

7 (w.r.t 6) 264 121.38 2 0.56 0.5504

8 (w.r.t 7) 261 119.13 3 2.25 0.1859

For Cov of Q, model 4 is found to be statistically significant with minimal residual deviance.

Significant factors that contribute to model 4 are given in Table 4.7.

Table 4.7: GLM Analysis: COV of Q. Significant factors that contribute to model 4

Df Deviance Resid. Df Resid. Dev Pr(>Chi)

NULL 272 142.55

𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝑆𝑜𝑢𝑟𝑐𝑒 1 0.04 271 142.52 0.7768

𝑆𝑖𝑔𝑛𝑎𝑙𝑇𝑦𝑝𝑒 2 6.53 269 135.98 0.0008 ***

𝑅𝑜𝑏𝑜𝑡𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 1 10.85 268 125.13 0.0000 ***
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Table 4.8: GLM Analysis: Lead Time

Model no Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 272 159.83

2 (w.r.t 1) 271 157.75 1 2.08 0.1496

3 (w.r.t 2) 269 153.79 2 3.96 0.1382

4 (w.r.t 3) 268 151.50 1 2.30 0.1297

5 (w.r.t 4) 266 146.88 2 4.61 0.0995

6 (w.r.t 4) 266 146.60 2 4.90 0.0865

7 (w.r.t 6) 264 141.99 2 4.61 0.0995

8 (w.r.t 7) 261 131.92 3 10.07 0.0180 *

For lead time, model 8 is found to be statistically significant with minimal residual deviance.

Significant factors that contribute to model 8 are given in Table 4.9

Table 4.9: GLM Analysis: Lead Time. Significant factors that contribute to model 8

Df Deviance Resid. Df Resid. Dev Pr(>Chi)

NULL 272 159.83

𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔.𝑡𝑦𝑝𝑒 1 2.08 271 157.75 0.1496

𝑆𝑖𝑔𝑛𝑎𝑙𝑇𝑦𝑝𝑒 2 3.96 269 153.79 0.1382

𝑅𝑜𝑏𝑜𝑡𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 1 2.30 268 151.50 0.1297

𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝑆𝑜𝑢𝑟𝑐𝑒 * 𝑆𝑖𝑔𝑛𝑎𝑙𝑇𝑦𝑝𝑒 2 4.61 266 146.88 0.0995

𝑆𝑖𝑔𝑛𝑎𝑙𝑇𝑦𝑝𝑒 * 𝑅𝑜𝑏𝑜𝑡𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 2 4.90 264 141.99 0.0865

𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝑆𝑜𝑢𝑟𝑐𝑒 * 𝑅𝑜𝑏𝑜𝑡𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 1 2.83 263 139.16 0.0924

𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝑆𝑜𝑢𝑟𝑐𝑒 * 𝑆𝑖𝑔𝑛𝑎𝑙𝑇𝑦𝑝𝑒 *

𝑅𝑜𝑏𝑜𝑡𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛

2 7.24 261 131.92 0.0268
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Table 4.10: GLM Analysis: Number of samples above threshold (NSAT)

Model no Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 272 302.02

2 (w.r.t 1) 271 287.79 1 14.23 0.0002 ***

3 (w.r.t 2) 269 280.50 2 7.29 0.0261 *

4 (w.r.t 3) 268 277.36 1 3.14 0.0765

5 (w.r.t 4) 266 267.70 2 9.66 0.0080 **

6 (w.r.t 4) 266 269.25 2 8.11 0.0174 *

7 (w.r.t 6) 264 259.59 2 9.66 0.0080 **

8 (w.r.t 7) 261 241.66 3 17.93 0.0005 ***

For number of samples above threshold (NSAT), model 8 found to be statistically significant

with minimal residual deviance. Significant factors that contribute to model 8 are given in

Table 4.11

Table 4.11: GLM Analysis: NSAT. Significant factors that contribute to model 8.

Df Deviance Resid. Df Resid. Dev Pr(>Chi)

NULL 272 302.02

𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝑆𝑜𝑢𝑟𝑐𝑒 1 14.23 271 287.79 0.0002 ***

𝑆𝑖𝑔𝑛𝑎𝑙𝑇𝑦𝑝𝑒 2 7.29 269 280.50 0.0261 *

𝑅𝑜𝑏𝑜𝑡𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 1 3.14 268 277.36 0.0765

𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝑆𝑜𝑢𝑟𝑐𝑒 * 𝑆𝑖𝑔𝑛𝑎𝑙𝑇𝑦𝑝𝑒 2 9.66 266 267.70 0.0080 **

𝑆𝑖𝑔𝑛𝑎𝑙𝑇𝑦𝑝𝑒 * 𝑅𝑜𝑏𝑜𝑡𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 2 8.11 264 259.59 0.0174 *

𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝑆𝑜𝑢𝑟𝑐𝑒 * 𝑅𝑜𝑏𝑜𝑡𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 1 4.13 263 255.46 0.0421 *

𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝑆𝑜𝑢𝑟𝑐𝑒 * 𝑆𝑖𝑔𝑛𝑎𝑙𝑇𝑦𝑝𝑒 *

𝑅𝑜𝑏𝑜𝑡𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛

2 13.80 261 241.66 0.0010 **
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4.5 Discussion and conclusion

Our results show that the failure in robots can be detected using coefficient of variation

of Q-residual while using signal type as absolute difference and training source as OTM.

Using lead time and number of samples above threshold as the descriptor, the failure can be

detected if training source is OTO and signal type is absolute difference.

Contrary to our expectations in hypothesis 1, training source was not found to

significantly affect COV across different conditions. However, the combination of robot

condition and signal type was significantly different across other two descriptors. Further

analysis showed that it is possible to use a single reference robot to generate training data

for testing multiple scenarios if absolute difference is used as the signal type for training the

PCA model. The OTO strategy is task and robot dependent and is therefore expected to

reflect any variability present in different robots. On the other hand, in the OTM strategy,

we are combining data from multiple robots to develop a single model to test and therefore

likely to dilute variability within the robot and affect the performance of failure detection.

In agreement with hypothesis 2, signal type affects the ability to detect a failure in

robots. In particular, all descriptors were significantly different for different signal types

(main effect). For signal type as absolute difference, all descriptors were able to differentiate

between a failure and a normal robot at least seven days before failure. The absolute

difference is a measure of change in robot operation and is expected to be similar across

different tasks as long as the robot operates normally without any sudden changes. The

sampling rate of once per day possibly further reduced any anomalous changes due to task

stop and start operations that occurred within a single day.

The significant difference in lead time for detecting failure as the time when the first data

point is detected above threshold is an expected result for OTO. At the same time, the high

variability in Q-residual itself implies that it is difficult to use a single threshold that can be

used across all scenarios. In this respect, the lead time can be used as a warning to further

process the data over the next few days for computing COV and number of samples above

threshold. This can help in reducing the number of false positives. Between training sources,

we find that while OTO finds significant difference between failure and normal robots when
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using number of samples, OTM is able to register a similar change with COV. In an industrial

setting, a combination of these training strategies can be adopted. Using OTM approach,

effort on training model for every robot can be avoided and help to identify the robots that

may require closer inspection.

Future studies will focus on collecting more data to highlight significant differences and

contributing factors to different types of failures and identifying the correlation between

events and measurements in time domain. In our analysis, we have considered measurements

that are periodic as well as event driven. In ongoing work we seek to extend the current

approach to study the effect of measurement type in prediction capability.
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5

Data Preprocessing for Improving

Classifier Performance in Detecting

Gearbox failures in Industrial Robots1

Abstract: Gearbox failures cost thousands of lost production hours in plants that use

industrial robots. In this context, an automated monitoring system that can warn the

user of an impending failure can save precious resources. This problem has been addressed

in many other domains through the use of machine learning approaches. However, standard

machine learning algorithms are limited in their ability to detect gearbox failures, mainly

due to task variability arises from robot-specific data. To improve detection performance of

machine learning approaches, we propose techniques to curate the data prior to building

a classification model. In a systematic hypothesis-driven study exploring the effect of

different preprocessing techniques, we evaluate training data augmentation with estimated

measurements, data differencing to suppress task dependence, inclusion of local variation,

and selection of principal components on data collected from 26 industrial robots from

the field. Our results show that preprocessing techniques improve the failure detection

performance.
1This chapter is a slightly modified version of paper published in IEEE Transactions on Industrial

Informatics 16, no. 1 (2019): 193-201 and has been reproduced here with the permission of the copyright
holder
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5.1 Introduction

Industrial robots are vital equipment to improve productivity, quality and safety in many

applications (Fig 5-1). In a typical manufacturing line the loss of production from an

unexpected failure of an industrial robot can cause heavy economic losses. At the same

time, without a clear way to predict failure, overcautious maintenance schedules can lead to

unproductive downtimes. Therefore robust and reliable failure detection is an active area of

research [70, 71].

Failures in industrial robots can occur both in electrical and electronic components such

as sensors, encoders, electrical drives and computer control systems [72] and mechanical

components such as the mechanical structure, gearbox, actuators, and cables [73].

Approximately 45% of failures are attributed to mechanical problems [74]. Being a highly

complex and coupled system detecting the onset of failure in industrial robots is a difficult

problem.

Figure 5-1: An example of six axis industrial robot similar to the one that was monitored in
this study.

Failure detection in industrial robots can be broadly classified into knowledge-based,

model-based, and data-driven methods [75]. While knowledge-based systems rely on the

experience of expert users to detect failure, these are typically conservative leading to high
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false alarm rate [76]. Model-based methods rely on a mathematical representation of the

system to recreate the fault scenarios witnessed during robot operation [76]. However,

there can be a number of factors responsible for a fault which may not be captured by

a mathematical model, thus posing the risk of low detection rate or attributing the cause

of the fault wrongly [76]. By contrast, machine learning methods use measurement data to

build a detailed representation of the robot operation process, which in turn can then be

used to classify anomalous situations based on deviation from a statistical model of normal

operation process [71].

Machine learning provides a broad array of classification algorithms that can be used to

detect faults in industrial robots. However, in their standard form, most of the classification

algorithms such as logistic regression and support vector machines are designed to deal with

static data, where examples are independent and identically distributed [77]. On the other

hand, robot operation data is typically available in the form of time series implying time

dependence. Standard classification algorithms cannot be directly used with time series data

due to high feature correlation, high dimensionality, and large amount of noise [78]. Further,

nearly all classification algorithms require large volumes of data to capture the wide variety

of conditions in order to perform reliably [76]. In such scenarios, data preprocessing can

be used to highlight the temporal and low-dimensional features and may therefore provide

a means for extending the vast number of machine learning approaches to detect faults in

robot operation.

In this paper, we propose four new preprocessing techniques for implementation on

training data used to identify gearbox failures in industrial robots (Fig. 5-2). First, since

the dataset consists of robots that perform different tasks, we investigate if taking the first

order difference of the signal will improve classification accuracy across all robots, possibly

due to task invariance [79]. Second, inspired from methods used to detect sudden crashes

in ecosystems and financial markets, which show that change in variance in time-series can

be a reliable predictor of a sudden event [80], we investigate the effect of including local

variation in training data on classification performance. Third, to evaluate if augmenting

the measurement data with original values can improve classification accuracy, we estimate

actual torque and speed values from aggregated measurement data typically available in the
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data stream from connected systems, and concatenate the same to the measurement data

prior to training. Finally, use of correlated and noisy measurements can result in overfitting

in classification [81]. Therefore, we investigate if replacing the original high-dimensional

data with principal components improves classification performance [76]. Accordingly, we

test the following hypotheses on monitoring data obtained from the field towards improved

detection of gearbox faults.

H1: Signal differencing improves fault detection performance

H2: Inclusion of local variation improves fault detection performance

H3: Inclusion of estimated torque and estimate speed improve fault detection performance

H4: Selecting principal components of the data improves fault detection performance

Data from
field

Training
data

Test Data Classifier

Pre-processing
Techniques

Evaluate
Classifier

Train Classifier
Failure
Detection

Figure 5-2: Research objective - evaluate the effect of meaningful data preprocessing
techniques on failure detection in industrial robots.

We analyze the effect of these preprocessing techniques on four different classification

algorithms that are selected on the basis of ease of use, popularity, and their ability to

tradeoff bias and variance issues in classification from training data [81]. Specifically, we use

logistic regression (LR), which has high bias and low variance and, support vector machine

(SVM), which has low bias and high variance [82]. In order to obtain a classifier that balances

bias and variance, we further use two type of ensemble methods: random forest (RF) and

ensemble stacking (ES) [81]. Other machine learning algorithms such as deep learning and

neural networks may also be used to detect gearbox failures [83], however, these algorithms
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typically require large number of samples for each type of robot (normal and failed) [84]

than what is available to us. Accordingly, their effectiveness on limited datasets available

from the field has not been tested to the best of our knowledge.

Section 2 explains classification methods and performance evaluation of the classification

models. Section 3 describes data collection, preprocessing, training, the testing strategy

adopted in applying classification algorithms, and the procedure for data analysis. Section

4 provide the results of classification methods along with discussions followed by conclusion

in Section 5.

5.2 Classification methods and their performance

evaluation

Classification is the task of learning a target function 𝑓 that maps each attribute set 𝑋

to one of the predefined class labels [82]. This section discuss binary classification and the

performance of such classifiers.

5.2.1 Binary classification

A binary classifier is a function 𝑓 : 𝑋 → {0, 1} that maps a space of input measurements to

binary labels 𝑌 . Robots are monitored to get data, which can be used to infer the state of

the the robot. The data are sampled at different time instances and are here denoted by 𝑋𝑘,

where the 𝑘 = 1, ..., 𝑁 denotes the sample number. Each sample contains 𝑀 measurement

components, 𝑋𝑘 = [𝑋𝑇
𝑘,1, 𝑋𝑇

𝑘,2, .., 𝑋𝑇
𝑘,𝑀 ]𝑇 ∈ R𝑀 examples of such components include angular

distance, torque, and speed, in general the components can be vectors of different length.

Therefore, in the context of classifying a robot as normal or failed 𝑌𝑘 ∈ 0, 1, we seek the

following binary relationship between the state of the robot, and the measurement vector

𝑋𝑘,

𝑌𝑘 =

⎧⎪⎪⎨⎪⎪⎩
0, 𝑔(𝑋𝑘, 𝛼) < 𝛾

1, otherwise,
(5.1)
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where 𝑌𝑘 = 0 implies a normal robot, and 𝑌𝑘 = 1 implies a failed robot; 𝑔 comprises a model

of the robot performance in terms of measurements, 𝛾 is the associated threshold, and 𝛼

denotes the set of classifier dependent parameters.

LR is a supervised classification method that bounds the measurement output to lie

between 0 and 1. In this sense, the output can be used to build a probabilistic model of

the training data that quantifies the probability of a certain event. For example, if the

measurement 𝑋𝑘 belongs to a failed data then 𝑔 quantifies in some sense the probability of

failure 𝑝(𝑌𝑘 = 0|𝑋𝑘) as

𝑔(𝑋𝑘, 𝛼) = 1
1 + exp(−𝛼0 + 𝑋𝑇

𝑘 𝛼) , (5.2)

where 𝛼 ∈ R𝑀 is an unknown model parameter vector, 𝛼0 is an unknown scalar term, and

𝑔 is a sigmoidal function that constrains the output between 0 and 1. The parameters of

a logistic regression model are estimated by the probabilistic framework called maximum

likelihood estimation. Using the training data, the model fitting routine searches across

different values of these two parameters to find a combination that, given the observed

training data, maximizes the likelihood of the binomial distribution [82].

With SVM the principle is to find a decision boundary that maximizes the separation

between two types of data, such as measurements from failed and normal robots. Depending

on the number of features, the decision boundary can be a line, or a hyperplane. For example,

with two features, the data can be represented on a two-dimensional plane and the decision

boundary will be a line. For n features, the decision boundary will lie on a n-1 dimensional

hyperplane. The output of the SVM algorithm can in turn be constrained to lie between 0

and 1 with a function [81],

𝑔(𝑋𝑘, 𝛼) = 1
1 + exp(−𝛽0 − ∑︀𝑁

𝑙=1 𝛼𝑙𝐾(𝑋𝑘, 𝑋𝑙))
, (5.3)

where 𝐾 is the Gaussian radial basis kernel function, 𝑋𝑘 and 𝑋𝑙 are two samples in the data-

set, and 𝛽0 and 𝛼 are parameters to be determined. Tuning of parameters are performed

using Classification and Regression Training (CARET) package in R language [67] and it

helps to automatically choose the optimal values for the model tuning parameters, where
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optimal is defined as values that maximize the model accuracy.

We consider two ensemble methods, namely RF and ES. RF is a classifier that aggregates

predictions from multiple decision trees using majority voting. The probability of failure

can be calculated by [81] 𝑔(𝑋𝑘, 𝛼) = 1
𝐵

∑︀𝐵
𝑏=1 𝑇𝑟(𝑋𝑘, 𝛼𝑏), where 𝑇𝑟(𝑋𝑘, 𝛼𝑏) represents each

classification tree and 𝐵 is total number of trees. On the other hand, in ES, an ensemble of

classifiers are first trained with the training data to create a set of base classifiers. The base

classifiers are then used to generate a new dataset of, measurements and associated estimated

labels, that is merged with the original training data to train a meta-classifier. The meta-

classifier can be any one of the base classifiers. This approach of stacking multiple classifiers

addresses the statistical, computational, and representational shortcomings of individual

classifiers [85], and has been shown to improve classification performance both in theory [86]

and in experiments [87]. In our implementation, we used the base classifiers of LR and SVM

for their competing effects on the bias and variance of estimated values. Our meta-classifier

is LR(Fig. 5-3). We used LR model as meta classifier because of its simplicity and ability

to make inferential statements about model terms and providing a smooth interpretation of

the predictions made by the base classifiers [82].

Pre-processing
Techniques

Test Data

Training Data

LR

SVM

LR

Base classifiers Meta-classifier

Failure detection

Evaluate
Classifier

Train
Classifier

Figure 5-3: Ensemble Stack: LR and SVM are base classifiers and LR is meta- classifier.
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5.2.2 Classification performance

A widely used metric for evaluating classifier performance is receiver operating characteristic

(ROC) curve [81]. The ROC curve marks the true positive rates (TPR) against false positive

rates (FPR) for different values of decision threshold 𝛾. An ROC curve has operating points

that corresponds to the “cutoff” value which provide optimal performance in a given sense,

such as the highest true positive rate and lowest false positive rate. The operating point

corresponding to higher TPR and lowest FPR on the ROC curve is located by finding the

point that is closest to the upper left corner.

In an ROC, the area under curve (AUC) is used to measure the performance of classifier

and is frequently applied for comparison among different classification methods. A high

AUC denotes better accuracy with AUC=1 for 100% accuracy and AUC=0.5 for chance

level accuracy.

5.3 Data acquisition and processing

This section introduces the data and the acquisition of the data in Section 5.3.1, Section 5.3.2

explains the preprocessing of data, Section 5.3.3 describes the selection of data for training

and finally Section 5.3.4 discusses the data analysis procedure.

5.3.1 Data acquisition

The dataset consists of data from 26, six degree of freedom (DOF) industrial robots. Out of

26 robots, 13 have reported gearbox failures while 13 are normally operating robots with no

reported gearbox issues. This data was acquired over more than four years and represents

one of the challenges in data-driven methods developed using real data. The robots are

used in different environments and in different processes such as welding, painting, and

palletizing. Size and load of the robots also varies. Fig. 5-4 shows the normalized average

estimated speed and torque for all 26 robots that indicates task variability across robots.

Failure description and date for the robots with reported gearbox failure was received from

engineers and it is based on their expert judgment to assess the condition of the robot. The
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minimum number of days for which the data was available across all failed robots is 23 days.
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Figure 5-4: Average speed (a) and torque (b) for each of the six axes of failed (red squares)
and normal (blue circles) robots. The speed and torque data are normalized with respect to
maximum values.

Measurements collected from the robot systems can be classified as controller level and

manipulator level. Measurements such as temperature, CPU load are examples of controller

level measurements while speed and torque are examples of manipulator level measurements.

For this study, the focus is on gearbox failures and for this purpose manipulator level

measurements [73] are useful. The following measurements were considered here: i) speed

indicator, ii) torque indicator, iii) accumulated joint angle, iv) joint speed, and v) joint

torque. Speed and torque indicator values are invertible functions of actual speed, actual

torque, production time, and production time difference, and are computed using expert

knowledge 2. Joint angle, speed, and torque measurements were available as histograms

with 12 values per measurement, each representing the fraction of time during which robot

performs in a specific fractional range of maximum design value. As a result a total of 36

values per manipulator axis was collected. Therefore, a total of 38 values (36 plus speed and

torque indicators) were available per axis resulting in a robot sample 𝑋 ∈ R228. Fig. 5-5

shows a schematic of the data collection approach and preprocessing techniques used for the

study.
2Specific information about the functional forms are not disclosed due to company policy.
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5.3.2 Data preprocessing techniques

Measurements can be collected once to four times per day by the current data collection

system. For most robots only one measurement is collected per day and therefore it was

decided to resample the data to have the same sampling frequency (1 measurement per day)

for all robots. Specifically, if a robot had more than one sample per day, we selected the

maximum value across samples to capture the highest intensities in such quantities during

normal operations.

Data is collected using a schedule in the controller which means that the data is collected

at the same time every day. Since the measurements represent average values it is not

necessary that the robot is in a certain condition when the measurement is taken (except

that it has to be switched on).

Compactly representing joint angle, speed and torque measurements

To reduce the size of the data vector, the histograms for joint angle, speed and torque for

axis 𝑗 at instant 𝑘, given as a subset of 𝑋𝑘,

𝑋𝑗
ℎ𝑖𝑠𝑡,𝑘 = {𝑋𝑗,1

𝑘 , 𝑋𝑗,2
𝑘 , . . . , 𝑋𝑗,12

𝑘 }

can be transformed into one single value using the Kullback Leibler(KL) divergence [88].

The KL divergence is computed as distance from the histogram of first sample to histogram

of 𝑘𝑡ℎ sample,

𝐷(𝑋𝑗
ℎ𝑖𝑠𝑡,𝑘||𝑋𝑗

ℎ𝑖𝑠𝑡,1) =
12∑︁

𝑖=1
𝑋𝑗,𝑖

ℎ𝑖𝑠𝑡,𝑘 log
⎛⎝𝑋𝑗,𝑖

ℎ𝑖𝑠𝑡,𝑘

𝑋𝑗,𝑖
ℎ𝑖𝑠𝑡,1

⎞⎠ (5.4)

This representation allows us to transform the histograms into a single value per

histogram type and axis, reducing the size of 𝑋 for the robots from 𝑋 ∈ R228 to 𝑋 ∈ R30.

Data differencing

Since the test dataset consists of robots that are used in different tasks with significant

variation in speeds and loads (Fig. A.1), we investigate if differencing time series can reduce

task dependence. Accordingly we use the absolute difference of consecutive measurements of
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Remote access

Measurement per axis Measurement per axis

Figure 5-5: Overview of data collection approach and preprocessing techniques for the study.

the time series as |𝑋𝑘 − 𝑋𝑘−1| instead of the raw signal for classification. Similarly, the KL

divergence measure is computed between successive measurements as 𝐷(𝑋𝑗
ℎ𝑖𝑠𝑡,𝑘||𝑋𝑗

ℎ𝑖𝑠𝑡,𝑘−1).

Including local temporal variation

It has been shown that change in variance in time-series can be a reliable predictor of a sudden

event [80], therefore we include local variation to improve detection performance. Specifically,

we evaluate the influence of adding variation by considering measurements along a moving

window of 3 and 5 days. In this case the vector 𝑋𝑘 ∈ R𝑀 , is replaced by a concatenated

vector [𝑋T
𝑘−𝑛+1, 𝑋T

𝑘−𝑛+2, . . . , 𝑋T
𝑘 ]T ∈ R𝑛𝑀 for a variation of 𝑛 = 3 and 𝑛 = 5 days. The size

of the concatenated vector increases 𝑛 times the original size of 𝑋𝑘.

Augmenting measurement data with estimates of torque and speed

The measurement data consisted of speed and torque indicators in addition to frequency

distribution of torque and speed. To investigate if augmenting these measurements with

estimates of torque and speed improves failure detection performance, we invert the

functional forms of speed and torque indicators to estimate instantaneous values of torque

and speed and add the same to the existing measurement data for each robot. Fig. 5-6

shows plots of normalized estimated torque for a failed and a normal robot.
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After above initial pre-processing, total number of measurements in the dataset is 42

(seven measurements per manipulator axis) listed in Table 5.1.

Table 5.1: List of measurements per axis after initial preprocessing
Measurement per axis Unit Description
Speed indicator rad/s Function of actual speed and production time
Torque indicator Nm Function of actual speed, actual torque and production time
Estimated Speed rad/s Derived by inverting the functional form for speed indicator
Estimated torque Nm Derived by inverting the functional form for torque indicator
KL Divergence - Speed bits

KL divergence between two measurement (angle, speed, torque)
distribution

KL Divergence - Angle bits
KL Divergence - Torque bits
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Figure 5-6: Estimated torque for each of the six axes of a normal robot (a) and a failed robot
(b). Torque values are normalized with respect to the maximum values.

Extracting Principal components

Despite the reduction of the number of measurements to 42, these are still a large number

of measurements for analysis. To retain the components that explain maximum variation

in data we use principal components analysis (PCA). This helps create uncorrelated

measurements, which improves performance in methods such as LR [76]. Given 𝑛 instances

of 𝑚 different measurements, the PCA algorithm eigen-decomposes the input data into

𝑢 ≤ 𝑚 principal components, where 𝑢 is selected to account for more than ninety percent of

the variation in data [89]. With respect to our training dataset, the PCA algorithm reduces

552 instances of 42 measurements to 10 principal components.
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Combinations of preprocessing techniques

There are total of sixty-six combinations of possible preprocessing techniques. Out of these

we only consider the ones that are compatible with our hypotheses. For example, we exclude

conditions where signal is differenced (+diff) prior to adding estimated values (+estM),

because then we lose any benefits of task invariance that may have resulted due to signal

differencing. Similarly, +pca should be applied after estimated values have been added and

signal differencing has taken place to enable reduction of dimension after including all signal

types.

The combinations of preprocessing techniques used are listed in Table 5.2: control

indicates data without any preprocessing, +diff indicates absolute difference of the raw

time-series data, +estM represent the inclusion of estimated torque and speed, which as

noted before, are not available as part of the original dataset, +pca indicates preprocessing

of data sets with PCA to reduce the dimensionality, and var# represents the inclusion of

local variation of # days in the data set.

5.3.3 Training data selection

To ensure that classifier performance is not dependent on a specific subset of the data,

we develop a strategy to exhaustively evaluate the influence of pre-processing methods on

classifier performance from a limited dataset. Considering a failure prediction capability

of 1, 3, and 5 days, we select data that is ten days prior to the prediction capability. For

example the training data for a 3 day prediction capability was selected as T-13 to T-3,

where T is the day of failure. The value of ten days is based on a sensitivity analysis where

it was found that failed and normal robots can be distinguished for up to ten days prior to

failure.

Each training sample is assigned with a class label depending on the state of the robot.

Procedure 1 describes our approach to train and test each of the classifiers.

We implement the classification methods on a personal computer (Intel Core i5 3.30

GHz processor, 8 GB memory, Windows 7 OS) using Classification and Regression Training

(CARET) package in R language [67] that have many modeling functions for classification
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Procedure 1 Training and testing of classifiers
Input : Preprocessed samples from Failed (F) and Normal (N) robots
Output: Area under ROC curve (AUC)

1: for each robot 𝑖 in the set 𝐹 of failed robots do
2: for each robot 𝑗 in the set 𝑁 of normal robots do
3: Create a training data set {𝐹 ∪ 𝑁} ∖ {𝑖, 𝑗} by combining data from all failed and

normal robots except robots 𝑖 and 𝑗
4: Build the classifier using the training data set
5: Create a test data set {𝑖, 𝑗} by combining data from failed robot 𝑖 and normal robot

𝑗
6: Test the classification model with test data and return failure probability for each

sample
7: Evaluate the classification performance of model using Area Under ROC curve
8: end for
9: end for

problems.

5.3.4 Data analysis

To evaluate the influence of data pre-processing techniques, we statistically compare the

performance of each of the four classification methods after data preprocessing. Specifically,

we classify failed and normal robots after data processing as described in Table 5.2, and use

AUC as performance measure.

We compared variance across preprocessing techniques, with the Levene’s test [90].

Our analysis showed that the AUC does not have equal variance across preprocessing

techniques. Therefore, we use Welch’s Analysis of variance (ANOVA) [91] to identify

the effect of preprocessing (independent factor) on classification performance (dependent

factor) for each of the four classification methods. This is performed across all of fifteen

(Table 5.2) combinations of preprocessing techniques. If the Levene’s test shows that

variance are not significantly different, then regular ANOVA is performed. The procedure

for comparing performance is summarized in Procedure 2. In all the examples of statistical

tests-significance level is set to p < 0.05.

We use R [67] to perform these tests: ANOVA are performed with R package car [94],

Levene’s test is performed with R package lawstat [95] and Games Howell post-hoc test is
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Procedure 2 Comparing classification performance
1: Perform Levene’s test for equal variance of AUC across preprocessing techniques
2: if variances are different (𝑝 < 0.05) then
3: perform Welch’s ANOVA
4: if preprocessing technique is found to be significant (𝑝 < 0.05) then
5: apply Games Howell post-hoc test [92]
6: end if
7: else
8: perform ANOVA [93]
9: if preprocessing techniques is found to be significant (𝑝 < 0.05) then

10: apply Tukey’s HSD as post-hoc test.
11: end if
12: end if

performed using package userfriendlyscience [96].

5.4 Results of classification

Fig. 5-7 shows a summary of classification performance as each preprocessing method is

applied on the original dataset, while Table 5.2 lists the mean AUC for each preprocessing

technique across all classification methods. In particular, we see that preprocessing steps

increase the values of AUC while decreasing its variance and that these changes are dependent

on the type of classification method used. Briefly, while all methods show reduction in

variance, only LR, SVM and ES show increased classification performance as measured by

AUC.

Table 5.2: Mean AUC (with respect to standard deviation) of each classifier for select
combination of preprocessing techniques. Mean AUC greater than 0.7 is highlighted in
bold.

Preprocessing techniques LR SVM RF ES

control 0.47 (0.34) 0.61 (0.48) 0.66 (0.45) 0.64 (0.42)
+estM 0.45 (0.33) 0.59 (0.47) 0.69 (0.42) 0.58 (0.38)
+diff 0.51 (0.23) 0.48 (0.30) 0.71 (0.28) 0.48 (0.30)
+pca 0.69 (0.42) 0.49 (0.50) 0.63 (0.47) 0.44 (0.49)
+var3 0.47 (0.34) 0.55 (0.49) 0.66 (0.44) 0.54 (0.49)
+estM+diff 0.54 (0.24) 0.61 (0.29) 0.77 (0.27) 0.60 (0.30)
+estM+pca 0.50 (0.41) 0.66 (0.44) 0.61 (0.43) 0.67 (0.44)
+estM+var3 0.45 (0.33) 0.55 (0.45) 0.69 (0.43) 0.51 (0.46)
+diff+pca 0.61 (0.33) 0.60 (0.35) 0.63 (0.27) 0.61 (0.34)
+var3+pca 0.69 (0.42) 0.49 (0.50) 0.65 (0.46) 0.48 (0.48)
+estM+diff+pca 0.72 (0.31) 0.65 (0.27) 0.69 (0.28) 0.64 (0.27)
+estM+var3+pca 0.45 (0.33) 0.55 (0.45) 0.61 (0.44) 0.51 (0.46)
+diff+pca+var3 0.67 (0.37) 0.62 (0.37) 0.68 (0.36) 0.67 (0.37)
+diff+var3+pca 0.67 (0.38) 0.61 (0.36) 0.64 (0.33) 0.62 (0.37)
+estM+diff+var3+pca 0.75 (0.30) 0.76 (0.27) 0.77 (0.29) 0.76 (0.27)
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Figure 5-7: Effect of preprocessing on classification performance with training data as recent
as 3 days before failure. Box plot centerline and edges denotes mean ±1 standard deviation,
and upper and lower tails denote maximum and minimum values obtained. Significant
increase in mean value of AUC is denoted by *. * : 𝑝 < 0.05, ** : 𝑝 < 0.01, * * * : 𝑝 < 0.001,
* * ** : 𝑝 < 0.0001.
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Next, we provide results for the relevant pairs of preprocessing techniques related to the

hypothesis presented in Section 5.1.

5.4.1 Signal differencing improves detection performance of

gearbox faults in industrial robots (H1)

We find that signal differencing resulted in reduced variance across all classifiers individually

and also in combination on a limited dataset with other preprocessing methods (Fig. 5-7

and Table 5.2, see values in Appendix section, Tables A.2 and A.3). For SVM and ES, +diff

created significant reduction in variance in all combinations of preprocessing methods. Mean

AUC was also significantly increased for all classifiers when used in conjunction with other

preprocessing methods. Specifically, improvement in mean AUC ranges between 22% (RF)

to 40% (LR) with inclusion of diff along with +estM+var3+pca.

To determine if signal differencing improved task invariance of classification methods, we

correlate the mean AUC per robot (averaged over the 13 different combinations of normal and

failed robots) with the average estimated speed and torque for the preprocessing techniques

+estM+var3+pca and +estM+diff+var3+pca. These techniques differed with respect to

the presence of signal differencing only. Our results show that while there was no correlation

between mean AUC and average estimated speed or torque across all classifiers (𝑝 > 0.78

for estimated speed and 𝑝 > 0.17 for estimated torque) when signal differencing was present,

mean AUC was correlated with average estimated speed for LR when signal differencing was

absent (𝑝 = 0.04, 𝑟2 = 0.13) with a negative slope (0.21) indicating that the performance

degraded with tasks that involved higher speeds. Therefore, we conclude that differencing

shows improvement in a dataset of industrial robots that were performing different tasks,

and therefore serves to induce task invariance in classification.

5.4.2 Inclusion of local variation improves detection performance

of gearbox faults in industrial robots (H2)

Adding local variation did not reduce variance individually when used in conjunction with

pca and augmented with estimated measures (+estM). However, it resulted in reduced

77



variance with LR (Fig. 5-7 and Table 5.2, see values in Appendix, Tables A.2 and A.3). In

the case of mean values, for SVM and ES, +var3 significantly increased mean AUC when used

in conjunction with other preprocessing methods. Specifically, improvement in mean AUC

ranges between 4% (LR) to 17% (SVM) with inclusion of var3 along with +estM+diff+pca.

Further, we found the effect of size of the variation window is not significant between +var3

and +var5 (+estM+diff+var3+pca vs +estM+diff+var5+pca - LR: p=0.957 , SVM:p=0.217,

RF:p=0.667, ES: p=0.124).

Inclusion of local variation in conjunction with other preprocessing techniques improved

classification performance. The tolerance of gearbox degradation of industrial robot might be

varied across the robots depending on robot application. Therefore variation in measurement

across failed robot may not be similar. When we combine data from robots with varied

degradation level to develop model, inclusion of local variation alone may not be very

sensitive to detect failures.

5.4.3 Inclusion of estimated torque and speed improve detection

performance of gearbox faults in robots in at least one of

the classification methods (H3)

Adding estimated measures by itself did not reduce variance but, used in conjunction with

other pre-processing methods, +estM, resulted in reduced variance across all classifiers when

added with +diff+var3+pca method (Fig. 5-7 and Table 5.2, see values in Appendix, Tables

A.2 and A.3). For SVM and ES, +estM created significant reduction in variance in three

out of seven combinations of preprocessing methods.

Addition of estimated measures also significantly increased mean AUC values for

all classifiers except LR when used in conjunction with other preprocessing methods.

Specifically, improvement in mean AUC ranges between 12% (LR) to 24% (SVM) with

inclusion of estM along with +diff+var3+pca.

It is likely that although estimated measures contained the same information as in

the processed data output from the remote system and therefore did not show significant

improvement in performance by itself. However, when preprocessed using signal differencing
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and temporal variation, features that are predictive of failures were amplified adding to a

general improvement in failure detection.

5.4.4 Selecting principal components of the data improves

detection performance of gearbox faults in industrial robots

(H4)

PCA preprocessing resulted in increased variance for LR (Fig. 5-7 and Table 5.2, see values

in Appendix, Tables A.2 and A.3). In this case +pca created significant increase in variance

in five out of six combinations of preprocessing methods.

PCA preprocessing also significantly increased mean AUC values for LR when used in

conjunction with other preprocessing methods. In particular, mean value of AUC for LR

improved around 34 % when PCA preprocessing was included (+estM+diff+pca).

Datasets with correlated measurements can lead to lower performance for LR and PCA

transform original measurements to uncorrelated to principal components. Performance of

other classifier methods such as SVM and RF are not sensitive to data with correlated

measurements and therefore PCA preprocessing did not improve those classifiers ability to

detect faults. However, PCA preprocessing reduced overall execution time of training and

testing of SVM and RF classifier methods to at least one third execution time with original

features and without any significant reduction in classification performance (Appendix, Table

A.1).

5.5 Conclusion

In this paper, we test hypotheses related to the effect of combining four preprocessing

techniques on classification performance in detecting gearbox failures in industrial robots.

We found that preprocessing techniques improved classification performance. Specifically,

differencing reduced variance in AUC across all classification methods, inclusion of local

variation in conjunction with other preprocessing techniques improved classification

performance, among three out four classification methods (except LR), inclusion of
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estimated measures along with other preprocessing methods show significant increase in

performance. In addition, classification performance of LR method improved significantly

with PCA preprocessing. Maximum improvement in mean value of AUC across classification

methods was between no processing and +diff+estM+pca+var3. LR was the most receptive

classification method whose improvement with data preprocessing was comparable with

complex classifiers such as RF and SVM while executing in a fraction of the time (Appendix,

Table A.1). In the presence of high-volume data it is possible that these preprocessing

techniques may aid in reducing the complexity of neural network type approaches where

data redundancy is a growing concern [97].

We note that the preprocessing techniques presented involve extra steps in addition

to a direct application of machine learning. At the same time, these techniques improve

the accuracy of failure detection in industrial robots, are intuitive and straightforward to

implement and significantly reduce the execution time.

However, we foresee some challenges in assessing condition of new robots using this

approach. We assume that robots are performing repetitive operations and higher variation

in measurements associated with deterioration of gearboxes in robots. But, higher variation

in measurements can also be attributed to frequent changes in the operating pattern of robot.

In the absence of high-volume real-world data, the field of fault prediction stands to gain

from focused efforts on enabling machine-learning approaches that operate on limited data

and can isolate features associated with mechanical failures. Further it is desirable that such

failures can be detected independent of the task at hand. In this context, the current study

aims to address these issues through preprocessing techniques that focus on improving task

invariance, highlighting temporal variations, and isolating principal components.

The results presented here set the stage for developing a reliable procedure to prepare

monitoring data from robots for use in fault monitoring and prediction. Future work will be

focusing on addressing the challenges and subsequent improvement of classification models.

Further, we validate these models using data from new set of robots and evaluate the quality

of prediction.
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6

A Transfer Entropy Based Approach

for Fault Isolation in Industrial

Robots1

Abstract: In this paper, we cast the problem of fault isolation in industrial robots as

that of causal analysis within coupled dynamical processes and evaluate the efficacy of the

information theoretic approach of transfer entropy. To create a realistic and exhaustive

dataset, we simulate wear induced failure by increasing friction coefficient on select axes

within an in-house robotic simulation tool that incorporates an elastic gearbox model. The

source axis of failure is identified as one which has the highest net transfer entropy across

all pairs of axes. In an exhaustive simulation study, we vary the friction successively in each

axis across three common industrial tasks: pick and place, spot welding, and arc welding.

Our results show that transfer entropy based approach is able to detect the axis of failure

more than 80 percent of the time when the friction coefficient is 5% above the nominal value

and always when friction coefficient is 10% above the nominal value. The transfer entropy

approach is more than twice as accurate as cross-correlation, a classical time-series analysis

used to identify directional dependence among processes.
1This chapter is a slightly modified version of paper published in ASME Letters in Dynamic Systems

and Control (2021): 1-23, and has been reproduced here with the permission of the copyright holder
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6.1 Introduction

Detecting and diagnosing faults in complex equipment such as an industrial robot requires

technical expertise and onsite assessment that is often time consuming and repetitive.

Therefore, remote monitoring solutions serve to provide a pre-assessment of problems in

industrial robots by a robotic specialist from a distant location saving time and expense.

Remote monitoring, however, can only help in determining if a failure has occurred, or is

about to occur [98]—identifying the source of failure is something the specialist is expected

to do in person. Because fixing faults involves bringing the right parts and components to

the robot location, knowing which part to carry can reduce overall maintenance costs.

Faults can happen in both the manipulator and controller of an industrial robot. A

typical industrial manipulator consists of rigid links called axes. Fault detection and

identification of the failure axis in industrial robots are established areas of research [99].

This involves detecting the occurrence of fault (fault detection) and recognizing the location

(fault isolation) [100]. Such methods have been successfully applied to various safety-critical

systems such as nuclear plants [101] and flight control systems [102].

Fault detection and isolation in industrial robots can be broadly classified into knowledge-

based, model-based, and data-driven methods[75]. While knowledge-based methods rely on

user expertise, model-based methods rely on a mathematical representation of the system to

detect and isolate the fault during robot operation [30]. Bittencourt et.al [103] for example,

have used a detailed model with a maximum likelihood estimator to isolate the changes

of friction. However, this approach needs re-estimation of friction parameters to adapt to

variations due to robot model and gearbox type. As industrial systems become more complex

it becomes even more difficult to develop a high fidelity physical model of the mechanical

system, particularly when the machine is operating in an uncertain environment with a lot of

external disturbances from the process. Data-driven methods mitigate this problem provided

enough data is available [104], however they have been primarily used for fault detection by

statistically distinguishing between normal and faulty processes.

In industrial robots, fault isolation entails identifying the axis of failure. As the joints are

dynamically and tightly coupled in an industrial manipulator, faults in one joint can influence

82



another joint. In this context, it becomes important to determine the joint that causes

the faults and the corresponding fault propagation route. This entails deriving the causal

structure of the fault propagation. Methods that infer this type of directional dependence in

coupled processes are required in a wide variety of fields and include signed directed graph

modeling for fault propagation [105], information theoretic approach of transfer entropy in

weather forecasting, neuroscience, and animal behavior [106], directed transfer functions,

cross correlation analysis and partial directed coherence in [107].

Among these approaches, transfer entropy (TE) is especially useful in situations where

the coupling between processes is not linear or time invariant. Transfer entropy (TE) is a

model-free approach to detect causal relationship between time series, in that it does not

presume any mathematical relationship between the two processes [108]. Lungarella et. al.

[109] compared methods for quantifying the causal structure of bivariate time series extracted

from systems with complex dynamical behavior and suggested TE as first method of choice

if the given system is complex and with unknown dynamics. In this paper, we evaluate TE

as a possible method for isolating failure in industrial robots.

In an exhaustive analysis, we simulate wear in each axes on a model of ABB IRB

6700, a six-axis manipulator, for three different types of common industrial tasks: pick

and place, spot welding, and arc welding. Using realistic simulations with a model similar

to an extended flexible joint dynamic model [110] that allow us to recreate a wide variety

of scenarios, some of which are rare in industrial setups, we assess the sensitivity of our

approach to intensity of failure, type of task, and location of the failure. We model wear as

slow exponential growth in friction coefficients over 100 repeated cycles. The axis of failure

due to wear is hypothesized as one that most affects other axes, quantified in terms of the

maximum net transfer entropy across all pairs.

The contributions of this paper are: (i) we assemble a framework based on established

methods [33, 111] for creating wear-induced faults in an industrial robot for different tasks

and stages of wear, (ii) we test the hypothesis that TE implemented to mitigate its need

for large data, will be able to detect the location of a wear induced fault (source axis) in an

industrial robot, and (iii) we perform an exhaustive analysis of the accuracy of TE for fault

isolation for all of the robot axes, on a variety of robot tasks for different wear percentages.
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The axis of failure due to wear is hypothesized as the one that most affects other axes,

quantified in terms of the maximum net transfer entropy across all pairs.

The paper is organized as follows: Section 2 provides a background of the robot simulation

model, the friction model and transfer entropy. Section 3 describes the process of simulation

of wear, data collection, prepossessing, and transfer entropy based isolation of source axis

with wear. Section 4 presents the analysis and results along with discussions, followed by

conclusion in Section 5.

6.2 Background

6.2.1 Robot model simulation

The simulation model used in this study is based on a prototype of a large six degrees-of-

freedom (DOF) manipulator, similar to ABB IRB 6700. For a six-axis manipulator, the

joint angles 𝜑a ∈ R6, velocities 𝜑̇a ∈ R6, accelerations 𝜑a ∈ R6, and the required torques

at arm side 𝜏a ∈ R6 are given by the dynamic model [112],

𝜏a = M(𝜑a)𝜑a + C(𝜑a, 𝜑̇a) + fa(𝜑̇a) + ga(𝜑a), (6.1)

where M, C, fa and ga represent inertia, Coriolis and centrifugal force, friction, and the

gravity torque respectively.

Including flexibility

In most cases when modeling robots, a rigid multi-body model is not sufficient to describe

the system in a realistic manner. This approximation is especially unrealistic for compact

gearboxes; a torsional spring damper system connecting successive arms and motors is

a better representation. Given that each arm is driven by a corresponding motor 𝑚 =

1, 2, . . . , 6, an extension to (6.1) with elasticity in the gearbox, can be described by [110],

𝜏a = K(Λ𝜑m − 𝜑a) + D(Λ𝜑̇m − 𝜑̇a), (6.2a)

𝜏m = Mm𝜑m + fm(𝜑̇m) + Λ𝜏a, (6.2b)

84



where K and D represent the linear elasticity and damping of the gearbox, Mm the inertia of

the motor and fm the friction torque in the motor; Λ is the gear transmission ratio, 𝜏a is the

torque generated by the electrical motor, and 𝜑m denote the motor angles. Equations (6.1)

and (6.2) form a coupled system and are solved numerically to simulate a flexible industrial

manipulator.

A model for the nominal behavior of friction

Wear process of mechanical systems can be attributed to friction in components such as

gearboxes and motors of robot joint [113]. A common description of a direction independent

friction is based on the LuGre friction model [114, 115],

fm(𝜑̇m) = (fc
m + fs

me−| 𝜑̇m
𝜑̇s

m
|𝛾 ) sign(𝜑̇m) + fv

m𝜑̇m (6.3)

where fc
m is Coulomb friction parameter, fs

m is static friction parameter 𝜑̇s
m is the Stribeck

velocity, fv
m is viscous friction parameter, 𝜑̇𝑚 is the velocity, and 𝛾 is the exponent of the

Stribeck nonlinearity.

6.2.2 Transfer entropy

Transfer entropy (TE) is an information-theoretic measure which can be used to detect the

directionality of the flow of information within coupled dynamical systems [108]. Being a

probabilistic measure, TE does not assume any underlying model of the dynamical relation

between the coupled processes [116].

To understand transfer entropy, we first consider 𝑋𝑖,𝑡 and 𝑋𝑗,𝑡, 𝑡 = 1, 2, 3, . . . as two

discrete processes, with subscripts 𝑖 and 𝑗 identifying the process and 𝑡 denoting time.

Transfer entropy [108] from process 𝑖 to 𝑗 quantifies additional bits of information from

the history of process 𝑋𝑖 that help predict the future value of 𝑋𝑗. Assuming a history length

of 𝑚 for process 𝑖 and a length of 𝑙 for process 𝑗, TE is defined as

𝑇𝑖→𝑗(𝑚, 𝑙) = ∑︀
𝑝(𝑋𝑗,𝑡+1, 𝑋

(𝑙)
𝑗,𝑡 , 𝑋

(𝑚)
𝑖,𝑡 ) × log

𝑝

(︁
𝑋𝑗,𝑡+1|𝑋(𝑙)

𝑗,𝑡 ,𝑋
(𝑚)
𝑖,𝑡

)︁
𝑝(𝑋𝑗,𝑡+1|𝑋(𝑙)

𝑗,𝑡 )
(6.4)
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where, 𝑝(𝑋𝑗,𝑡+1, 𝑋
(𝑙)
𝑗,𝑡 , 𝑋

(𝑚)
𝑖,𝑡 ) denotes the joint probability of 𝑋𝑗,𝑡+1, 𝑋

(𝑙)
𝑗,𝑡 and 𝑋

(𝑚)
𝑖,𝑡 and

𝑝(𝑋𝑗,𝑡+1 | 𝑋
(𝑙)
𝑗,𝑡 , 𝑋

(𝑚)
𝑖,𝑡 ) denotes conditional probability of 𝑋𝑗,𝑡+1 on 𝑋

(𝑙)
𝑗,𝑡 and 𝑋

(𝑚)
𝑖,𝑡 , and

𝑝(𝑋𝑗,𝑡+1 | 𝑋
(𝑙)
𝑗,𝑡 ) denotes probability of 𝑋𝑗 conditioned on the past 𝑙 values of 𝑋𝑗 . History

lengths 𝑙 and 𝑚 are set as 1 and represent first order Markov processes.

Since information transfer between two processes can occur in either direction, we

compute net transfer entropy to quantify the degree of asymmetry [117]

𝑛𝑒𝑡𝑇𝑖→𝑗 = 𝑇𝑖→𝑗 − 𝑇𝑗→𝑖, (6.5)

which quantifies the preferred direction of information flow and is expected to have a positive

value when 𝑋𝑖 is the driver process and negative otherwise.

For identifying the axis of failure in industrial manipulators, we assume that net transfer

entropy from axis 𝑖 to 𝑗 quantifies the degree of influence. In the event of a failure, this

influence is dominated by the propagation of failure and therefore the total net transfer

entropy for each axis 𝑖 is
6∑︀

𝑗=1,𝑗 ̸=𝑖
𝑛𝑒𝑡𝑇𝑖→𝑗, which will serve to indicate whether that axis is

the failure axis or not. Note that this definition precludes derived dependence (if 𝑖 affects 𝑗

through 𝑘 then, we will pick up that influence between 𝑗 and 𝑘 as well), but assumes that

upon adding all values of net transfer entropy, the maximum influence on all other axes will

be from the axis of failure.

The calculation of TE depends on the availability of large amounts of data. This is

because TE is typically measured by estimating the joint probability densities (equation

6.4) by using binning methods [118] or kernel density estimators [108]. Binning methods

or histograms come with a free parameter—the number of bins - and the estimation of

entropy-based quantities varies dramatically as the number of bins is varied [116]. Further,

a binning approach is sensitive to bin width, which controls the amount of smoothing, and

the start point of the first bin, which affects the shape of the histogram [118]. A reasonable

mitigation for this parameter dependence and data dependence is to create bins by choosing

specific quantiles of the empirical distribution of the data [118] and then recoding the data

in the form of its bin location. Specifically, we create 𝑛 bins, whose bounds are denoted by

𝑞1, 𝑞2, ..., 𝑞𝑛, such that 𝑞1 < 𝑞2 < ... < 𝑞𝑛; using these bins we then symbolically encode the
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time series 𝑋𝑗,𝑡,

𝑆𝑗,𝑡 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 𝑓𝑜𝑟 𝑋𝑗,𝑡 ≤ 𝑞1

2 𝑓𝑜𝑟 𝑞1 < 𝑋𝑗,𝑡 ≤ 𝑞2

3 𝑓𝑜𝑟 𝑞2 < 𝑋𝑗,𝑡 ≤ 𝑞3
...

𝑛 − 1 𝑓𝑜𝑟 𝑞𝑛−2 < 𝑋𝑗,𝑡 ≤ 𝑞𝑛−1

𝑛 𝑓𝑜𝑟 𝑋𝑗,𝑡 > 𝑞𝑛 − 1

where in the recoded process, each value in the observed time series 𝑋𝑗,𝑡 is replaced by

symbols 𝑆𝑗,𝑡 according to the interval specified by the lower and upper bounds 𝑞0 to 𝑞𝑛. This

recoded process 𝑆𝑗,𝑡 is then used to calculate TE as per equation 6.4. The choice of the

number of bins should be motivated by the distribution of the data. However, Behrendt

et.al. [118] recommend that the number of bins be limited in order to avoid too many

zero observations for a given symbol. The use of symbolic encoding instead of samples

themselves in the estimation of the transfer entropy (TE) helps to reduce the sensitivity to

noise contribution which often occur in real world applications [119]. It also helps to run the

algorithm faster.

6.3 Methodology

In this section, we describe simulation of the wear induced torque signal, the pre-processing

of torque signals and the isolation of source axis using TE.

6.3.1 Simulating different tasks with wear

The results in this paper are validated on simulations performed using an in-house

implementation of the RobotStudio software package [120], which significantly extends

the model described by equations ((6.1)) and ((6.2)). As an example, the implementation

includes a friction model as well as several non-actuated 6-DOF spring and damper elements

distributed within the structure of manipulator. These elements introduce elasticity in the

form of a flexible joint dynamic model [110]. During simulation, we consider only motor
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side friction (fm in equation (6.2)) [120] and set the arm side friction (fa in equation (6.1))

to zero because gearbox friction constitutes the low-speed portion of the drive chain, which

is typically considered to be negligible compared to that of motor side [103]. Furthermore,

friction at arm side is difficult to identify in practice.

We simulated three separate tasks while introducing different degrees of wear in the axes

of the robot. We designed task 1 to have maximum range of movement of each axis as

per the design limits [121] and represents a pick and place operation. Task 2 represents

a discontinuous process with maximum acceleration and deceleration with many stoppages

similar to that of spot welding. Finally, Task 3 performs a continuous task such as arc

welding or laser cutting. Geometrically, task 2 (Fig. 6-1) and task 3 are similar, but

applications are different. All the three tasks represent non-contact applications where the

effects of environment factors are limited. Friction coefficients include both Coulomb and

static friction coefficients.

We simulate friction increase one axis at a time. The behavior of friction in a robot

joint is considerably affected by variables other than wear. We ignore effects of load and

temperature on friction based on earlier studies [33] that found this influence to be minimal

in specific speed ranges.

Progress of wear is typically exponential- slow in the beginning and accelerates as time

progresses. We simulate wear by increasing Coulomb and static friction coefficients, fs and fc
in equation (6.3) up to 20% over nominal values during hundred repeated cycles of a specific

task. The exponent of cycle number (k) is chosen to have a steeper slope towards the end

of simulation (Fig. 6-2) to reflect the exponential growth of wear. Specifically, we vary each

coefficient during cycle k according to,

fm,k = fm,0 exp(c1k4) (6.6)

where fm,0 is initial value of friction coefficients at cycle k = 0 and c1 = 1.785 × 10−9 is a

constant computed by solving (6.6) for desired increase in friction at the end of a hundred

cycles. The form of equation 6.6 was selected on the basis of its ability to replicate an

exponential rise in friction observed when manipulators are subject to wear [33]. For each k,
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(a) Side view (b) Top View

1

(c) Side view (d) Top View

1

(e) Side view (f) Top View

Figure 6-1: End-effector trajectories for tasks: (a) & (b) for task 1 which represent pick and
place operation, (c) & (d)) for task 2 which represents a discontinuous process such as spot
welding, and (e) & (f) for task 3 which represents a continuous process such as arc welding
or laser cutting. Top and side views of single run of the trajectories for the tasks is given.
Axis numbers are shown in boxes.
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the updated value of friction coefficients are substituted in equation (6.3) to arrive at friction

torque fm. Fig. 6-2 shows torque vs cycles when friction is introduced in Axis 1.
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Figure 6-2: Average torque per cycle due to friction increase in Axis 1 motor of robot model
when the wear increase is 20 % over the nominal value over a hundred cycles.

We performed seven simulations lasting around 60 minutes for each of the three tasks,

one for no friction increase and remaining 6 runs for friction increase in each of the six axes.

Fig. 6-3 shows raw torque of axis 1 from last few cycles of Task 1 with wear introduced in

axis 1.
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Figure 6-3: Raw torque from axis 1 for Task 1, sampled last few cycles from simulated data.
Wear is introduced in axis 1.

6.3.2 Data pre-processing

The data set consists of simulated data from a six degree of freedom (DOF) industrial robot

model. The simulation model is developed in-house based on theory described in section

6.2.1. The measurements included in the data are i) joint speed, and ii) joint torque, collected

with sampling rate of 4 ms. We sample the torque signals associated with motor speed

range between 50 rad/sec and 120 rad/sec to minimize the effects of load and temperature

variation [103]. Instead of using torque signals as is, which is likely to be a function of
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Table 6.1: Mean ± standard deviation of the absolute torque in Nm for each axis during
the 100th sample for each simulation with 20% wear introduced in each axis, one axis at a
time. Wear effects are shown for all axes for task 1, and only axis 1 for tasks 2 and 3. A ‘0’
in Axis wear location indicates no wear.

Torque per Axis (Nm)
Task Axis /

wear
loc.

1 2 3 4 5 6

1 0 18.42±6.85 7.45±4.29 15.20±2.39 1.95±2.00 2.53±0.97 1.90±1.05
1 1 18.66±6.38 7.45±4.29 15.20±2.39 1.95±2.00 2.54±0.97 2.12±1.05
1 2 18.64±6.38 7.72±4.40 15.18±2.36 1.95±2.00 2.54±0.97 2.12±1.05
1 3 18.62±6.36 7.79±4.39 15.59±2.50 1.96±2.01 2.54±0.97 2.12±1.06
1 4 18.63±6.37 7.78±4.38 15.67±2.51 1.89±2.01 2.54±0.97 2.12±1.06
1 5 18.42±6.85 7.45±4.29 15.20±2.39 1.95±1.99 2.65±0.96 2.11±1.04
1 6 18.42±6.85 7.45±4.29 15.20±2.40 1.95±1.99 2.67±0.96 2.02±1.05
2 0 3.22±5.10 7.67±7.72 10.61±7.12 1.14±1.34 1.45±1.34 1.07±1.04
2 1 3.36±5.20 7.67±7.72 10.61±7.12 1.14±1.34 1.45±1.34 1.07±1.04
3 0 6.23±2.29 10.30±4.16 13.99±5.60 1.93±1.72 2.45±1.01 2.27±0.68
3 1 6.68±2.34 10.30±4.16 13.99±5.60 1.93±1.72 2.45±1.01 2.27±0.68

different configurations within a cycle, we transform the signal to the average of absolute

values per cycle resulting in 100 data points for each simulation. This also mirrors the type

of data that is typically available as part of a remote monitoring solution for such robots.

These values are then symbolically encoded according to the approach described in Section

6.2 and subsequently used to compute TE between pairs of robot axes.

Table 6.1 shows that if we induce 20% wear over a hundred cycles in axis 2 or axis 3, most

of the axes show small changes in torque values compared with torque values associated with

no wear. We attribute this phenomena to the coupling among axes, where raw measurements

make it difficult to detect changes in wear. We use quantile approach discussed in Section

6.2.2 to create the bins and vary the number of bins between 5 to 20 (Fig. 6-5) for Task

1 to compute TE using RTransferentropy package [118] in R language [67]. Although the

torque values are output from a deterministic process, the variability in these values (Fig.

6-3) leads to finite entropy. As a fault is introduced in the form of increased friction in one

of the axes, torque, and in turn entropy, for that axis is expected to change. This change

in entropy is then transferred through the coupled dynamical system of equations to other

axes.

We observe that smaller number of bins are better able to detect the smaller wear changes

(e.g. 1% of change in friction coefficients over a hundred cycles), where as more bins are

needed for higher wear changes of more than 1%. Further, the wear percentage that leads

to degradation in robot performance likely depends on the task at hand. For example, a
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pressing operation may be able to tolerate higher wear, but paint application, which requires

precision will have lower tolerance for wear. To assess these task dependencies we evaluate

fault isolation using TE with both 5 and 10 bins. We select the number of bins to be 10,

which gives us the highest accuracy in terms of fault isolation in task 1 overall.

6.4 Analysis and Results

We compute net transfer entropy between pairs of axes as per equation (6.5). We identify

the source axis as the axis that has the maximum net transfer entropy. In other words, we

assume that fault information encoded in the form of changes in torque is transmitted from

the source axis to all other axes in the robot. Note that this inference ignores relationships

that may be due to indirect couplings. For example if axis 1 is faulty then information

transfer measured between axis 2 and 3 may be partly due to that coming from axis 1.

However, we assume that the information due to a fault or wear overcomes any other

information and will emphasize the source axis.
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Figure 6-4: Net transfer entropy with 10 bins between pairs of axes for normal and wear
induced operations in axis 1 performing task 1. Positive sign indicates information flow from
source axis to destination axis. In the case where wear was induced in axis 1, the same can
be inferred on the basis of all positive net transfer entropy.

We systematically evaluate the isolation rate of source axis of wear for Task 1 with

different number of bins and wear amount above the nominal value. The wear amount (10%

or 20% ) corresponds to processing data during the 86th cycle or the 100th cycle. In this

context, isolating source axis at a lower wear percentage corresponds to an early isolation

of the fault. Our results indicate (Fig. 6-5) number of bins has significant influence on
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isolation performance. With number of bins 20 and friction increase of ≥ 10%, we detect

source axis of wear for all the cases. For smaller percentage increase in friction, isolation

percentage is higher with lower number of bins. We find bin sizing with quantile approach as

an effective tuning parameter to set the wear threshold for isolation. Fig. 6-4 shows the net

transfer entropy flow between pairs of axes without friction change and with friction increase

introduced in axis 1. The net transfer entropy is highest for axis 1 when we introduce 10%

and 20% increase in friction in axis 1.
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Figure 6-5: Accuracy of isolating source axis as a function of number of bins with different
wear percentages in Task 1.

Table 6.2 shows the isolation performance for Tasks 1, 2, and 3 where we see that the

percentage of times the source axis of wear is isolated correctly improves with increase in

wear percentage. Specifically, we introduce wear in each of the six axes for the three different

tasks with bin sizes 5 and 10. This resulted in six instances of failure for each task. We

then calculated net transfer entropy for each axis at different times representing the different

levels of wear percentages. The accuracy of isolation for a given wear percentage is calculated

as the number of axes out of six identified correctly as the fault axes.

To compare these results with an existing standard approach [122], we cross-correlate the

torque signal for each axis across time to identify the source axis of the wear. Specifically,

we use the sign of lag at maximum cross-correlation between torque from two axes as an

indicator of whether the process is leading or trailing. In this case, we expect that a leading

signal will register a negative time lag. We identify the source axis as one that has all

negative lags. Compared with cross-correlation, the average source axis isolation across the

three tasks with TE is twice as effective at friction coefficient 10% above the nominal value
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for when the number of bins is 10 and 1.4 times when number of bins is 5.

The number of bins used in calculating TE play an important role in fault isolation using

this approach, with lesser bins showing better isolation rates at lower wear rate for tasks

that do not require high precision (e.g. Task 1). This is likely because of high variance in

data from such tasks over the same time. The approach of simulating a task for different

wear percentages in RobotStudio and then using such percentages to determine the number

of bins could also constitute a calibration tool for real world scenarios. Furthermore, cross

correlation results vary significantly across tasks compared with isolation rate using the TE

method.

Table 6.2: Comparing accuracy of isolation of source axis with wear using transfer entropy
(TE) with 5 and 10 bins and cross correlation (CC). Source axis isolation markers are shown
for 10 bins only. Tick mark indicates successful isolation of axis with wear and cross indicates
failure in isolation.

Source Axis of Wear
Task Wear

Pct
1 2 3 4 5 6 Isolation

accuracy
(TE, 10

bins)

Isolation
accuracy
(TE, 5
bins)

Isolation
accuracy

(CC)

T1 1 X × X × × X 50 100 16.7
T1 5 X X X X X X 100 83.3 33.3
T1 10 X X X X X X 100 83.3 33.3
T1 15 X X X X X X 100 100 33.3
T2 1 X X × X X X 83.3 66.7 16.7
T2 5 X X X X × X 83.3 66.7 0
T2 10 X X X X X X 100 66.7 33.3
T2 15 X X X X X X 100 50 33.3
T3 1 X X X X X X 100 83.3 50
T3 5 X X X X X X 100 66.7 66.7
T3 10 X X X X X X 100 66.7 83.3
T3 15 X X X X X X 100 66.7 100

6.5 Conclusion

The problem of identifying causal relationships within multiple processes is prevalent

across natural and engineered systems. In this paper, we evaluate an information-theoretic

approach of transfer entropy to identify the source axis of wear in industrial robots.

Complex systems such as industrial robots, where signals from each axis interact in a highly

nonlinear fashion make it impractical to use methods such as cross-correlation that assume

a linear relationship between processes. Here, we sought to test TE as an approach to
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isolate faults in industrial robots because of its demonstrated effectiveness in identifying

directional relationships in highly non-linear interactive subsystems [106].

We provide evidence of TE’s effectiveness as an approach for fault isolation due to wear

in Industrial robots. Wear is simulated on a prototype robot model, similar to the ABB IRB

6700, by increasing friction coefficients in the model using an ABB simulator. We simulated

data for three common industrial tasks: pick and place, spot welding, and arc welding. The

axis responsible for wear was always detected when the wear was 10% above nominal value

irrespective of the location of wear on the robot. Compared to cross correlation a TE based

approach is able to detect source axis of wear more accurately and consistently in our setup.

When used in conjunction with fault detection methods, the TE approach presented here

has the potential to be used to develop a full fault detection and isolation solution. In

particular, once a fault is detected using model or data-driven methods, the same data can

then be further processed to isolate the location of the fault.

Future studies will focus on online estimation of wear towards an adaptive binning

approach, and evaluating this approach on real data from the field as well as on faults

from other causes including electrical failures of motors.
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Conclusion

96



Conclusion 7

Conclusion

In this chapter, results presented in this thesis are summarized and possible directions for

future research are suggested.

7.1 Summary

Good design is essential for high reliability of industrial robots. However, no amount of

design effort can prevent deterioration over time. The development of failures and wear

is dependent on the accumulated usage of the robot. Unexpected breakdown of robots

can lead to loss of production time and result in considerable financial losses. Therefore,

implementing a condition monitoring system can ensure a high level of equipment availability,

and lower the spares inventory cost. Model based methods are used for condition monitoring

of industrial robots. However, perfect knowledge of the manipulator model is rarely a

reasonable assumption, especially progression of wear is difficult to model. In such contexts,

data-driven methods are widely used to detect faults in industrial equipment which are

subjected to disturbance and uncertain environment. Although wear induced faults develop

slowly and are tolerable initially, it can cause very serious problems at later stages. This

study is mainly motivated to detect, isolate such faults as early as possible, and take planned

actions to maintain the reliability of a system. In this dissertation, the use of data-driven

methods is investigated to detect and isolate wear induced faults in industrial robots using

data typically collected through remote monitoring solution.
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Simulated data and real data are used to develop fault detection models. Both data

and algorithms influence the performance of data-driven methods. The factors that

influence the robot data and associated information content include robot application,

tasks and environment. Algorithms differ in terms of the extent to which they rely on

an underlying model, and how they weight bias versus variance within data to isolate

anomalous situations. With a remote monitoring solution, knowledge about all the factors

may not be available and thus create some of amount of uncertainty about the data

generation process. Therefore, a two-pronged approach is adopted for the study: a) evaluate

data-driven methods on simulated data, b) apply the algorithms that worked well with

simulated data on real data enhanced with preprocessing methods. In addition, simulation

studies are helpful in conducting controlled experiments where one can vary key parameters

of interest while keeping other factors constant. Again, studying wear induced faults with

physical experiments will take more resources in terms of cost and time.

First research question (Q1), "What is the effectiveness of Principal Component Analysis

(PCA) in terms of detecting the onset of wear induced failures in industrial robots?” is

addressed by applying PCA algorithm on real data sets and simulated data sets. PCA is

applied on simulated as well as read data to evaluate its effectiveness in detecting faults(C1,

C2 and C3). The second question (Q2), "Can the effectiveness of failure identification

using standard classification methods be improved by curating the data using pre-processing

methods?” is addressed by curating the data with different pre-processing methods before

developing data-driven models (C3 and Journal paper J1). Initial research work (C1, C2 and

C3) is based on limited data sets. Further the effectiveness of pre-processing is evaluated by

analyzing the data from more failures cases (J1). The third question (Q3), "Can correlation

and information theoretic methods be used to isolate the source axis of the failure?", is

addressed by evaluating the effectiveness of cross correlation (C2) and information theoretic

approach (J2) on isolating the fault in industrial robots.

Data such as event logs and measurements from robot controllers are collected using a

remote data collection solution. The investigation was started by analyzing event logs from

robots to detect wear related failures. Initially, Principal Component Analysis (PCA) based

approach was adapted on event logs to detect a gearbox fault. The proposed method reduces
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the dimensionality of the original data which consist of correlated events while retaining

the variation present in the data. An abnormal pattern is observed within 30 days before

failure by using multivariate statistics: Hotelling 𝑇 2, Q Residuals and Q contribution chart.

However, the approach could not be generalized using event logs as there exist variations in

configured events across robots. During the initial phase of the study, there were not many

field failure cases available for the investigation. Therefore, a simulation based approach was

explored in parallel. A method is proposed to detect the onset of wear and subsequently

locate the source axis of wear using the simulated data. Wear was simulated by increasing

friction coefficients of different axes in a PUMA 560 robot model available in MATLAB

Robotics toolbox on three separate tasks. Load disturbances and measurement noise are

added in the simulation to evaluate the robustness of the wear detection. Wear is detected

using principal component analysis, and the source axis is located by cross-correlating the

output data from all axes through time. The investigation further focused on the multiple

failure cases observed in the field. The effect of source and type of training data on detecting

field failures in industrial robots are studied with Principal Component Analysis (PCA).

Specifically, using field data across multiple robots performing different tasks, two scenarios

are compared: first, where training data obtained from a single robot is used to evaluate

multiple robots (one-to-many), and second, where each robot is evaluated on the basis of its

own training data (one-to-one). The effects of data preprocessing prior to running PCA on

ability to detect and predict failures are investigated. The preprocessing of signal has found

to be significant influence on detecting failures.

As data were gathered for many gearbox failures cases, the research was narrowed

down on fault detection and isolation (FDI) of gearbox faults. First, the occurrence

of fault was detected using supervised learning algorithms in a systematic hypothesis-

driven study. In this work, preprocessing methods are found useful in improving the

performance of simple classification methods such as Logistic regression (LR). Four

common preprocessing techniques are used on data collected from twenty-six industrial

robots. Hypotheses related to the effect of combining four preprocessing techniques are

tested on classification performance. Combinations of preprocessing techniques include

absolute difference of the raw timeseries data (+diff ), inclusion of estimated torque and

99



speed (+estM), preprocessing of data sets with Principal Component Analysis (+pca)

to reduce the dimensionality, and inclusion of local variation of # days (var#) in the

data set. Specifically, differencing reduced variance in area under curve (AUC) across all

classification methods, inclusion of local variation in conjunction with other preprocessing

techniques improved classification performance, among three out of four classification

methods (except Logistics Regression(LR)), inclusion of estimated measures along with

other preprocessing methods showed significant increase in performance. In addition,

classification performance of LR method improved significantly with PCA preprocessing.

Maximum improvement in mean value of AUC across classification methods is between

no processing and +diff+estM+pca+var3. LR is the most receptive classification method

whose improvement with data preprocessing is comparable with complex classifiers such as

Random Forest (RF) and Support Vector Machine (SVM) while executing in a fraction of

the time.

Second, the problem of isolating the axis of fault is investigated. This problem is

addressed by inferring pairwise causal relations between all axes using an information

theoretic approach called Transfer Entropy (TE). In industrial robots, the axes are

dynamically and tightly coupled. The degree of influence between axes are varying across

axis. To isolate the faulty axis from tightly coupled axes, data is simulated using ABB

in-house simulations software that include the industrial control system and realistic

manipulator simulation models and transfer entropy approach that helps to isolate the fault

is evaluated. Simulation data is used instead of real robot data to avoid confounding effect

of other factors on performance of the approach. The axis of fault is located by finding

the axis which has the highest net transfer entropy across all pairs of axes. To generate

representative data sets, three common application tasks are simulated: pick and place,

spot welding and arc welding. Wear is simulated by increasing Coulomb and static friction

coefficients in the simulation model. The axis responsible for wear is always detected when

the wear is 10% above nominal value irrespective of the location on the robot. The results

of TE are compared to that of cross correlation and the performance of TE in detecting

source axis is found to be higher and consistent among the tasks.

Analysis of data collected using a state of the art remote monitoring system at the time
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of its first release, provided very interesting results in detecting wear induced failures of

mechanical arms of industrial robots. However, more real-time data are required to improve

the fault detection performance further. New developments in the area of IoT based solutions

are happening with higher pace than ever. In this context, our methods and results can be

considered as input for the design of next generation condition monitoring systems.

7.2 Future work

In this section, future research directions are identified and grouped into methods and

algorithms, data collection, and faults other than those from wear.

7.2.1 Methods and algorithms

The methods could be fine tuned to detect the right amount of wear that can impair the

functionalities of the gearbox and give enough time to repair or replace the parts. Another

direction is to investigate the association between the length of the data before failure and the

detection lag. In addition, improvement in fault detection performance can be evaluated by

adopting methods to segregate influence of external disturbances -e.g. contact applications

where the effect of disturbances exceed the effect of friction change. It is observed that while

using transfer entropy approach for fault isolation, number of bins is the major influencing

factor. Therefore, correlation between number of bins and fault isolation properties can be

further investigated.

ML algorithms have great potential in detecting faults in industrial robots and can

be of great help to service engineers. However, the decisions/predictions made by these

algorithms usually do not explain the reasoning which is barrier in adopting such technology

in performing service activities. Therefore, explainable ML algorithms for fault detection

can be investigated.

Further, possibility to deploy the algorithms in the control system and use of statistical

control charts for near real time fault detection can be explored.
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7.2.2 Data collection

With respect to data collection, the approaches developed here could be validated on larger

data sets collected from the field. This will help us to address all of the nuances that

occur in real production environment, such as disturbances and unexpected signals from

external devices. In current monitoring system, collection of measurements related to health

condition/state of the robot is more robust than collection of service information on reported

problem which includes causes and resolution on target robot. Therefore, the improved

collection of service information can enhance the information content of the data to detect

faults.

Further, analyzing data from component level sensors and correlating with failures will

be a natural step in the next generation of FDI scheme. The new generation robots are

equipped with additional sensors and we need to continuously evaluate the approaches using

the newly acquired data. Wear and tear of robots can lead to significant vibration of physical

structure of robot. Therefore, possibility of using vibration signal for condition monitoring

of robots can be explored. In addition, faults in multiple axes can be simulated and resulting

data can be used for fault detection and isolation.

7.2.3 Faults other than those from wear

The investigation can be extended on robot faults other than wear induced gearbox faults:

motor faults, faults related to cabling, and drive faults. Faults are structurally different

from one another can be modeled and combined models can provide a better fault detection

performance. Therefore, the use of multiple-model FDI (MM–FDI) approach can be

investigated.

Customers are interested in the reliability of the robot application process along with the

reliability of the robots and detection of faults in robot application can further investigated.

Application processes that are controlled by robots include, but are not limited to welding,

gluing, painting, and picking.

In addition, the effectiveness of the methods in detecting faults in robot software system

can be investigated, for example, detect memory leakages where resources are consumed in
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a way that lead to a system failure.

Finally, simulation models can be further improved by adding new parameters to simulate

wear in components within gearbox such as bearings. In addition, backlash fault in gearbox

can be simulated by changing stiffness of axes in models such as those within the existing

ABB in-house simulation platform.

103



THIS PAGE INTENTIONALLY LEFT BLANK

104



Appendix A

Performance evaluation of

preprocessing techniques
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Figure A.1: Classification performance of LR as mean AUC (with and without differencing)
vs normalized average estimated speed.
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Table A.1: Execution time in minutes. Since ES is a meta classifier that uses the output of
LR and SVM, the execution time for ES is simply the sum of LR and SVM. The execution
time comprises of the time required for executing the procedure described in Procedure I.
Execution time reduces significantly across all classifiers with +pca.

Preprocessing techniques LR SVM RF

control 13 92 120

+diff 12 90 120

+diff+pca 3 49 70

+estM+diff+var3 17 143 213

+estM+diff+var3+pca 4 76 78
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Table A.2: Effect of preprocessing technique on variance of AUC: Value in bold represent
the significant reduction in variance (p < 0.05).

Without +diff With +diff LR SVM RF ES

Control +diff 0 0.00 0 0.00 0 0.01 0 0.00

+pca +diff+pca -0.00 0.44 0 0.00 0 0.00 0 0.00

+estM +estM+diff 0 0.02 0 0.00 0 0.01 0 0.00

+var3+pca +diff+var3+pca 0 0.97 0 0.00 0 0.10 0 0.00

+estM+pca +estM+diff+pca 0 0.00 0 0.00 0 0.00 0 0.00

+estM+var3+pca +estM+diff+var3+pca 0 0.83 0 0.00 0 0.00 0 0.00

Without +var3 With +var3 LR SVM RF ES

control +var3 0.00 1.00 0.00 0.26 0.00 0.96 0 0.05

+pca +var3+pca 0 1.00 0 1.00 0 0.71 0 0.71

+estM +estM+var3 0 1.00 0 0.87 0 0.93 0 0.00

+diff+pca +diff+var3+pca 0 0.33 0 0.42 0 0.00 0 0.27

+estM+pca +estM+var3+pca 0 0.00 0 0.03 0 0.87 0 0.00 0

+estM+diff+pca +estM+diff+var3+pca 0 0.59 0.00 0.38 0 0.65 0 0.44 0

Without +var3 With +var3 LR SVM RF ES

control +var3 0.00 1.00 0.00 0.26 0.00 0.96 0 0.05

+pca +var3+pca 0 1.00 0 1.00 0 0.71 0 0.71

+estM +estM+var3 0 1.00 0 0.87 0 0.93 0 0.00

+diff+pca +diff+var3+pca 0 0.33 0 0.42 0 0.00 0 0.27

+estM+pca +estM+var3+pca 0 0.00 0 0.03 0 0.87 0 0.00 0

+estM+diff+pca +estM+diff+var3+pca 0 0.59 0.00 0.38 0 0.65 0 0.44 0

Without +pca With +pca LR SVM RF ES

control +pca 0 0.03 0 0.05 0 0.58 0 0.10

+diff +diff+pca 0 0.00 0 0.00 0 0.62 0 0.04

+var3 +var3+pca 0. 0.03 0. 0.42 0 0.89 0 1.00

+estM +estM+pca 0 0.00 0.00 0.15 0 0.07 0 0.72

+estM+diff +estM+diff+pca 0 0.00 0 0.49 0 0.36 0 0.15

+estM+var3 +estM+var3+pca 0.00 1.00 0 1.00 0 0.076 0 1.00
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Table A.3: Effect of preprocessing technique on mean value of AUC: Value in bold represent
increase in mean value (p < 0.05).

Without +diff With +diff LR SVM RF ES

Control +diff 0.04 0.99 -0.13 0.15 0.05 0.99 0 0.01

+pca +diff+pca 0 0.14 0 0.06 0 0.44 0 0.05

+estM +estM+diff 0 0.25 0.03 1.00 0 0.69 0 1.00

+var3+pca +diff+var3+pca -0.02 1.00 0.12 0.42 -0.01 1.00 0.14 0.17

+estM+pca +estM+diff+pca 0 0.00 0 1.00 0 0.852 0 1.00

+estM+var3+pca +estM+diff+var3+pca 0 0.00 0 0.00 0 0.00 0 0.00

control +var3 0 1.00 0.00 1.00 0 0.99 0 0.25

+pca +var3+pca 0 1.00 0 1.00 0 1.00 0 1.00

+estM +estM+var3 0 1.00 0 1.00 0 1.00 0 0.95

+diff+pca +diff+var3+pca 0 0.97 0 1.00 0 1.00 0 1.00

+estM+pca +estM+var3+pca 0 0.99 0.11 0.61 0.01 1.00 0 0.05

+estM+diff+pca +estM+diff+var3+pca 0 1.00 0 0.01 0 0.24 0 0.00

Without +estM With +estM LR SVM RF ES

control +estM 0 1.00 0 0.15 0 1.00 0 0.82

+diff +estM+diff 0 1.00 0 0.00 0 0.67 0 0.03

+pca +estM+pca 0 0.00 0 0.08 0 1.00 0 0.00

+var3 +estM+var3 0 1.00 0 1.00 0 1.00 0 1.00

+diff+pca +estM+diff+pca 0 0.08 0 0.97 0 0.88 0 0.99

+var3+pca +estM+var3+pca 0 0.00 0 0.99 0 1.00 0 1.00

+diff+var3+pca +estM+diff+var3+pca 0 0.66 0 0.00 0 0.01 0 0.01

Without +pca With +pca LR SVM RF ES

control +pca 0 0.00 #### 0.99 0 0.26 0 1.00

+diff +diff+pca 0 0.14 0 0.06 #### 0.44 0 0.05

+var3 +var3+pca 0 0.00 #### 0.99 #### 1.00 0 0.99

+estM +estM+pca 0 0.99 0 0.98 #### 0.93 0 0.75

+estM+diff +estM+diff+pca 0 0.00 0 0.99 #### 0.19 0 0.99

+estM+var3 +estM+var3+pca 0 1.00 0 1.00 #### 0.926 0 1.00
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