
Design and Analysis of Approximate
Matching Algorithms

By

Monika Singh

Under the Supervision of

Dr. Donghoon Chang

Dr. Somitra Kumar Sanadhya

Indraprastha Institute of Information Technology Delhi

February, 2022

©Monika Singh, 2022.

II

Design and Analysis of Approximate
Matching Algorithms

By

Monika Singh

Submitted

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

to the

Indraprastha Institute of Information Technology Delhi

February, 2022

Certificate

This is to certify that the thesis titled - “Design and Analysis of Ap-
proximate Matching Algorithms” being submitted by Monika Singh
to Indraprastha Institute of Information Technology, Delhi, for the award
of the degree of Doctor of Philosophy, is an original research work carried
out by her under our supervision. In our opinion, the thesis has reached the
standards fulfilling the requirements of the regulations relating to the degree.

The results contained in this thesis have not been submitted in part or
full to any other university or institute for the award of any degree/diploma.

Dr. Donghoon Chang

February, 2022
Department of Computer Science
IIIT Delhi
New Delhi, 110020

Dr. Somitra Kumar Sanadhya

February, 2022
School of Artificial Intelligence
and Data Science (AIDE)
IIT Jodhpur
Rajasthan, 342037

IV

To my parents,
for their unwavering support and belief in me.

V

Acknowledgments

First and foremost, I would like to express my sincere gratitude to my
advisors Dr. Donghoon Chang and Dr. Somitra Kumar Sanadhya, for their
constant support and encouragement at every step of the way throughout
my Ph.D. journey. They have guided me towards many opportunities and
have helped and encouraged me to pursue them. Their invaluable guidance
not only has improved my research but also had a huge positive impact on
my life on every front. I consider myself incredibly fortunate to have them
as my mentors. Without both of them, the journey wouldn’t have been the
same.

I would also like to convey my sincere gratitude to Barbara Guttman
and Douglas White for providing me the opportunity to collaborate with
them at NIST. I am eternally grateful for their guidance, encouragement,
and insightful suggestions. I would also like to thank my supervisor Douglas
Montgomery for giving me the flexibility to work on my Ph.D. while working
full time.

I would also like to take this opportunity to thank all my dear friends from
IIIT-Delhi and NIST. I am very grateful to my friend Mohona and Robin
for the insightful discussion and fruitful collaborations on various projects.
I would like to thank my friends Sweta, Suvarna, Shuvo, Megha, Surabhi,
Sneihil, Jyoti, and Tarun for making the experience enjoyable with their
friendly interactions, various technical & non-technical discussions, and just
by being wonderful people.

I would also like to thank Tata Consultancy Services (TCS), India, for
awarding me the prestigious TCS Fellowship for my entire Ph.D. period.

Finally, and most importantly, I would like to thank my parents, sisters,
and brother for their unconditional love, care, encouragement, and immense
support. I cannot thank them enough for giving me the privilege to choose,
the confidence to decide, and the comfort of always having my back. This
thesis is dedicated to them. This acknowledgment wouldn’t be complete
without the mention of my US family, Nick, Mary, and Leah. Without their
tremendous support, understanding, and motivation, it wouldn’t have been
possible.

Above all, I am grateful to God, who granted me countless opportunities,
blessings, wisdom, strength, and the courage to pursue my dreams and goals.

VI

List of Publications

The authors are listed in alphabetical order by their last names.

1. Donghoon Chang, Mohona Gosh, Somitra Kumar Sanadhya, Monika
Singh� and Douglas R. White. FbHash: A New Similarity Hashing
Scheme for Digital Forensics. In Digital Investigation, DFRWS 2019
USA - Proceedings of the Nineteenth Annual DFRWS USA, Portland,
OR, July 14-17, 2019.[Journal]

2. Donghoon Chang, Somitra Kumar Sanadhya, Monika Singh�, Secu-
rity Analysis of mvHash-B Similarity Hashing, In International Con-
ference on Digital Forensics & Cyber Crime(ICDF2C) 2016, New York,
U.S.,[Journal] September 28-30 2016.

3. Donghoon Chang, Somitra Kumar Sanadhya, Monika Singh� and
Robin Verma. A Collision Attack on sdhash Similarity Hashing. In
Systematic Approaches to Digital Forensic Engineering(SADFE) 2015
- 10th International Conference, Málaga, Spain, September 30 – Octo-
ber 2, 2015.

4. Donghoon Chang, Somitra Kumar Sanadhya and Monika Singh�. A
Second Preimage and Collision Attack on sdhash Similarity Hashing.
In IFIP WG 11.9 - 12th International Conference , New Delhi, India,
January 4-6,2016.[Poster]

List of Submitted Papers

1. Donghoon Chang, Mohona Gosh, Anviksha Khuneta, Somitra Kumar
Sanadhya and Monika Singh�. FbHash-E:A Time and Memory ef-
ficient Version of FbHash Similarity Hashing Algorithm. In Forensic
Science International: Digital Investigation, September, 2021.

2. Donghoon Chang, Somitra Kumar Sanadhya, Monika Singh� and Dou-
glas R. White. Approximate matching evaluation tool. In NIST Inter-
agency Report (NISTIR), August 2021.

3. Monika Singh�. Essential Characteristics of Approximate Matching
Algorithms. In IJCSDF, June, 2021.

VII

List of Published Open-source Tools

1. Donghoon Chang, Mohona Gosh, Somitra Kumar Sanad-
hya, Monika Singh� and Douglas R. White. FbHash:
A New Similarity Hashing Scheme for Digital Forensics.
https://github.com/MonikaSinghGit/FbHash

2. Monika Singh and Douglas R. White.
Approximate matching evaluation tool.
https://github.com/MonikaSinghNIST/AMtoolTestingFramework

Other Publications

1. Paul E. Black, and Monika Singh. Opaque Wrappers and Patching:
Negative Results. IEEE Computer (Volume: 52, Issue: 12), December,
2019.

2. Monika Singh, and Mudumbai Ranganathan. Formal Verification of
Bootstrapping Remote Secure Key Infrastructures (BRSKI) Protocol
Using AVISPA. NIST TN, October, 2020.

VIII

https://github.com/MonikaSinghGit/FbHash
https://github.com/MonikaSinghNIST/AMtoolTestingFramework

Abstract

With the rapid growth of the World Wide Web and the Internet
of Things, huge amounts of digital data are being produced every day.
Digital forensics investigators face an uphill battle when they have to
manually screen through and examine such humongous data during an
investigation. A major requirement of modern forensic investigation
is to perform automatic filtering of correlated data, thereby reducing
and focusing the manual effort of the investigator. There are two types
of filtering: blacklisting and whitelisting. Blacklisting is the process
of filtering data by matching them with the set of known-to-be-bad
files (as determined by the investigator). The resultant files after this
process are the ones which an investigator needs to examine closely.
On the other hand, whitelisting is the process of filtering by matching
the files with a set of already known-to-be-good files. The files passing
this process need not be examined by the investigator.

Approximate matching algorithm, also known as Similarity hash-
ing, is a generic term used to describe the techniques that are used
to perform the filtering process by measuring similarity between two
digital objects, typically by assigning a ‘similarity score’. Over the
years, several approximate matching algorithms have been proposed
and are being used in practice. Some of the prominent approximate
matching schemes are ssdeep, sdhash, mvHash-B, etc.

This dissertation presents security analyses of existing approximate
matching tools and techniques. We show that most of the existing
schemes are prone to active adversary attacks. An attacker by making
feasible changes in the content of the file can intelligently change the
final similarity score produced to evade detection. Thus, an alternate
hashing scheme is required which can resist this attack.

As a core contributions of this dissertation, we develop a new ap-
proximate matching algorithm FbHash. We show that our algorithm
is secure against active attacks and can detect similarity with 98%
accuracy in some common use-cases. We also provide a detailed com-
parative analysis of our construction with other existing schemes and
show that our scheme has a 28% higher accuracy than other schemes
for uncompressed file formats (e.g., text files) and a 50% higher ac-
curacy for compressed file formats (e.g., docx, etc.) Our proposed
algorithm is able to correlate a file fragment as small as 1% to the
source file with an observed 100% detection rate and is able to detect
commonality as small as 1% between two documents with an appropri-
ate similarity score. Further, we show that our scheme also produces

IX

the least false negatives among all such schemes.
In order to identify the capabilities of similarity matching schemes,

it is important to have a systematic method to evaluate the exist-
ing and future algorithms. This dissertation also presents a general
platform-independent approximate matching algorithm evaluation tool
to assess existing and future algorithm on four pragmatic test cases on
the following metrics: true negative rate, false positive rate, precision,
recall, F-score, and Matthews Correlation Coefficient (MCC). In order
to understand the true capabilities of an algorithm, it is important to
evaluate them on a real-world dataset. Our tool provides a real-world
dataset for each of the four test cases previously referred. The tool
also provides an automated way to generate a real-world dataset for
other cases, which will help support future research in this domain.

X

Contents

1 Introduction 1
1.1 Motivation . 6
1.2 Contributions . 9
1.3 Organization of the Thesis . 14

2 Background and Related Work 16
2.1 Introduction to approximate matching algorithm constructions 16

2.1.1 Context Triggered Piecewise Hashing(CTPH) 17
2.1.2 sdhash . 19
2.1.3 bbHash . 21
2.1.4 mvHash . 23
2.1.5 mrsh and mrsh-v2 Hash 25
2.1.6 Lempel-Ziv Jaccard Distance(LZJD) 25

2.2 Analysis of Approximate Matching Algorithms 27
2.2.1 Performance Analysis 27
2.2.2 Security analysis . 32

2.3 Approximate matching algorithm testing tools 35
2.4 Applications of Approximate Matching Algorithms 37

2.4.1 Network traffic analysis 37
2.4.2 Malware Detection . 38
2.4.3 Data exfiltration and leakage prevention 39

3 A Collision attack on sdhash similarity hashing 40
3.1 Notations . 41
3.2 Description of sdhash . 42
3.3 Existing Results . 47
3.4 Our Contribution . 50

3.4.1 Random Modification 52

XI

3.4.2 Deliberate Modification 54
3.5 Countermeasures . 57

3.5.1 Minimization of popularity score threshold 57
3.5.2 Bit level feature formation 58

3.6 Summary . 59

4 Security Analysis of mvHash-B Similarity Hashing 60
4.1 Notations . 61
4.2 Description of mvHash-B . 62
4.3 Anti-BlackListing attack on mvHash-B 64
4.4 Results . 69

4.4.1 Experiment 1 . 69
4.4.2 Experiment 2 . 70

4.5 Countermeasures . 71
4.6 Summary . 74

5 FbHash: A New Similarity Hashing Scheme for Digital
Forensics 75
5.1 Construction of FbHash (FbHash-B) Similarity Hashing Scheme 77

5.1.1 Notation and Terminology 77
5.1.2 Design of FbHash-B . 77

5.2 Digest Comparison and Similarity Score Calculation 83
5.3 Design of FbHash-S . 83
5.4 Security Comparison of FbHash with Other Schemes Against

Active Adversary Attacks . 84
5.5 Comparative Evaluation of FbHash 87

5.5.1 Fragment Detection 88
5.5.2 Single-common-block file correlation 99

5.6 Summary . 103

6 FbHash-E: A Time and Memory efficient Version of FbHash
Similarity Hashing Algorithm 104
6.1 FbHash . 106
6.2 Design Limitations of FbHash 109
6.3 Proposed improvements to FbHash Similarity Hashing Scheme 112

6.3.1 Alteration in the chunk size 112
6.3.2 Redefining the document-frequency data-structure . . . 116
6.3.3 Performance Comparison of FbHash-E with FbHash . . 118

XII

6.4 Performance Comparison with other Tools 121
6.4.1 Runtime Efficiency . 122

6.5 Testing with benchmark problems 125
6.5.1 Consistency Test . 125
6.5.2 Resemblance Test . 125
6.5.3 Containment Test . 132

6.6 Summary . 139

7 Essential Characteristics of Approximate matching algo-
rithms : A Survey of Practitioners Opinions and requirement
regarding Approximate Matching 140
7.1 Survey Methodology . 141

7.1.1 Purpose Of the Survey 141
7.1.2 Survey Design . 141
7.1.3 Survey Results . 142

7.2 Summary . 149

8 Approximate Matching Evaluation Framework 150
8.1 Use-Cases . 151
8.2 Evaluation Framework . 153

8.2.1 Fragment Identification Test 158
8.2.2 Embedded Object Identification Test 166
8.2.3 Related Document Detection Test 171
8.2.4 Identification of code version 176

8.3 Summary . 181

9 Conclusions 182
9.1 Summary . 182
9.2 Future Work . 184

Appendices 195

A Deliberate modification algorithm 196

B Anti-BlackListing attack algorithm on mvHash-B 198

XIII

List of Figures

2.1 Pseudo code of rolling hash from [27] 18
2.2 Generation of Building Blocks from [2] 22
2.3 bbHash Algorithm from [2] . 23
2.4 Embedded Object Detection(Higher is better) from [3] 29
2.5 Single Common Block file correlation(Lower is better) from [3] 29
2.6 Multiple common block correlation probability(Higher is bet-

ter) from [3] . 30
2.7 True positive, False Positive and Total known positive from [3] 30
2.8 Results of Precision and recall tests over the ssdeep, sdhash

and mrsh-v2 approximate matching algorithms from [4] 32

3.1 Empirical probability density function for experimental data
set of doc files taken from (Roussev, 2009, 2010a) 44

3.2 Popularity Rank Calculation from (Roussev, 2009, 2010a) . . . 46

4.1 Processing of RLE encoding by mvHash-B from [5] 64
4.2 mvHash-B similarity digest generation considering n=2 66
4.3 Example of one byte modification 68
4.4 Example illustrating number of Deliberate Modifications re-

quired in order perform anti-blacklisting attack 69
4.5 Example: First image from the left is original image taken

from Microsoft Windows Bitmap Sample Files 71
4.6 Counter measure for the proposed attack 73

5.1 FbHash Digest . 82
5.2 Fragment Detection Test Results on Text dataset 91
5.3 Figure shows the F-score comparison for Fragment Identifica-

tion test on Text dataset. The value of t is taken to be 22 for
all three schemes. 95

XIV

5.4 Figure shows the F-score comparison for Fragment Identifica-
tion test on Text dataset. The value of t is taken to be 22 for
ssdeep and sdhash and 16 for FbHash. 96

5.5 Fragment Detection Test Results on Docx dataset 98
5.6 FbHash-S Fragment Detection Test Results on Docx dataset . 98
5.7 Fragment Detection Test F-score comparison on Docx dataset 99
5.8 Single-common-block file correlation Results for Text-Data Set 101
5.9 Single-common-block file correlation Results for Docx dataset 102

6.1 file system distribution within different operating system from [6]114
6.2 FbHash vrs FbHash-E . 122

7.1 Demographic Data . 143
7.2 Applications of Approximate Matching Algorithms 144
7.3 Key Measure to Identify the Ground Truth 147
7.4 Image Similarity . 147
7.5 Executable Program File Similarity 148
7.6 File System Information . 149

8.1 Customized assessment . 160
8.4 Results of customized assessment of ssdeep on text sequential

fragment dataset for Smallest fragment identification test . . . 162
8.2 Customized assessment of ssdeep on text sequential fragment

dataset . 163
8.3 Comparative assessment report of fragment correlation test . . 164
8.5 Comparative assessment result for smallest fragment identifi-

cation test . 165
8.7 F-score generated on Docx dataset by embedded object iden-

tification test . 168
8.6 ssdeep results on Docx embedded file and jpeg object 169
8.8 sdhash results on common object identification test 170
8.9 F-score comparison result generated by common object iden-

tification test . 171
8.10 Single common block test results generated by ssdeep on text

dataset . 174
8.11 Multiple common block test results generated by ssdeep on

text dataset . 175
8.12 Single-common-block test results for Text-Data Set 176

XV

8.13 Single-common-block test results for Docx dataset 177
8.14 Code version identification test results of ssdeep for exe files . 178
8.15 Code version identification test results of sdhash for dll files . 179
8.16 Recall rates comparison of code version identification test . . . 180
8.17 F-Score comparison of code version identification test 180

XVI

List of Tables

3.1 Different statistic on sdhash from (Breitinger & Baiber, 2012) 49
3.2 Minimum number of random modification, that modifies final sd-

hash digest with probability 1. 53
3.3 Number of modification with maximal similarity score through pro-

posed algorithm . 58

4.1 Experimental results obtained from the proposed attack technique

on Text file . 72
4.2 Experimental results obtained from the proposed attack technique

on bitmap images . 72

5.1 Fragment Identification test case F-Score calculation for Text-Data

set. Total number of comparisons performed for each sequential

and Random fragments is 9200. 94

6.1 Average number of unique chunks (five-byte) in different file
sizes (from 2KB to 100 MB) file 115

6.2 F-score . 120
6.3 Comparative runtime analysis (in ms) of all tools. The Total

Time column reflects the total time taken for digest creation
and comparison. 124

6.4 Comparative Analysis of Random Noise Test. Here, Avg.(NZ)
denotes average score over non-zero values. 126

6.5 Comparative Analysis of multiple common block test. Here,
Avg.(NZ) denotes average score over non-zero values. 129

6.6 Code version identification test 132
6.7 Comparative Analysis of Alignment Test. Here, Avg.(NZ) de-

notes average score over non-zero values. 133

XVII

6.8 Comparative Analysis of Alignment Test for fixed block size
over Dataset 1 (y ≤ 50 KB). Here, Avg.(NZ) denotes average
score over non-zero values. 137

6.9 Comparative Analysis of Alignment Test for fixed block size
over Dataset 2 (y > 50 KB). Here, Avg.(NZ) denotes average
score over non-zero values. 138

XVIII

Chapter 1

Introduction

The modern world has been turning increasingly digital; conven-
tional books have been replaced by ebooks, letters have been
replaced by emails, paper photographs have been replaced by
digital images, and compact audio and video cassettes have been
replaced by mp3 and mp4 CD/DVDs. Due to the reducing costs
of storage devices and their ever-increasing size, the amount
of digital data around us has increased exponentially. Conse-
quently, a digital forensic investigator is confronted with several
terabytes of digital data on a crime scene, which is too enor-
mous to be analyzed manually. For efficient utilization of time
and resources, the foremost requirement of today’s forensic in-
vestigation process is to have the capability to extract or filter
potentially relevant data from all the data collected at a crime
scene that an investigator can examine manually in a reasonable
amount of time.

The filtering process used in extracting the data typically uses
fast hashing-based algorithms. Large files are passed through a
hash function to produce a hash output called a digital finger-
print. The fingerprints of the case files are then matched with
a known reference dataset, the most popular being the NIST

1

reference data set [7] to extract unknown files. The filtering
process can be performed in the following two ways:

� Blacklisting or Deny-listing is the process of filtering
data by matching them with the set of Known-to-be-bad
files (as determined by the investigator). The resultant files
after this process are the ones that an investigator needs to
examine closely.

� Whitelisting or Allow-listing is the process of filtering
by matching the files with a set of already Known-to-be-
good files. The files passing this process need not be exam-
ined by the investigator.

The traditional (cryptographic) hash function could be used
to perform the filtering. However, it suffers from a limitation
that this kind of filtering only indicates an exact copy of another
file. This is due to the fact that even a single bit change in the file
content produces a completely unrelated and random-looking
hash output [8], whereas the requirement in practical scenarios
is often to find similar files. The relevant data or the evidence
can be present in the captured data in various forms, such as
fragmented, modified, deleted, or partially deleted. Therefore
there is a need for a technique that can find similarity between
two digital artifacts, not just duplicates.

‘Approximate Matching’ is a generic term that denotes any
technique that can be used to detect similarity between two
digital artifacts and produces a ‘similarity score’ typically on
a scale of 0 to 100. The definition and terminology have been
defined by Breitinger et al. [9]. According to [9] an approxi-
mate matching technique can be characterized into one of the
following categories:

2

� Bytewise Matching relies on the byte sequence of the
digital object without considering the internal structure of
the data object. These techniques are known as fuzzy hash-
ing or similarity hashing.

� Syntactic Matching measures the similarity based on the
internal structure of the data object. For example structure
of TCP packet can be used for network packet analysis.

� Semantic Matching relies on the contextual attributes of
the digital objects which is more closely related to human
perception. It is also called Perceptual Hashing or Robust
Hashing.

Our primary focus is Bytewise Approximate matching algo-
rithms (also known as ‘Fuzzy Hashing’ or ‘Similarity Hashing’)
due to their wide applicability and growing prominence in the
digital forensics community. Over the years, several fuzzy hash-
ing algorithms have been proposed. Most of the existing algo-
rithms work in the following two phases:

� Similarity Digest Generation: Similarity digest (also
called data fingerprint) is a distinct representation of the
input data that preserves the similarity features of the data
and can be used efficiently and securely to compute simi-
larity score. Generally, the similarity digest is smaller than
the original data object, and the similarity digest genera-
tion process is a one-way function.

� Digest comparison: This phase compares the similar-
ity digest of two data objects and generates the similarity
score. In most cases, the similarity score is computed on a

3

scale of 0 to 100, where 0 indicates no similarity and 100
indicates 100% similarity or an exact copy.

The essential characteristics of an efficient and secure approx-
imate matching algorithms have been defined by NIST [9] [10]
and are as follows.

� Similarity preservation: The similarity digest should be
able to represent the data object in such a way that it can
be uniquely identified. Each and every byte of input is
expected to influence the final similarity digest, and the
similarity score between two digital artifacts.

� Self-evaluation: The algorithms should provide the defi-
nition and the measure of the accuracy of the resulting sim-
ilarity score under various scenarios such as default margin
of error.

� Compression: The generated digest should preferably be
smaller than the input size. However, the size of out-
put may or may not be fixed. The digest generation and
comparison process should be efficient in terms of required
memory space and time.

� Ease of computation: Similarity digest calculation (fea-
ture extraction) and comparison should be efficient and
easy to compute.

Breitinger et al. also stated [9] following fundamental relia-
bility measure that an approximate matching algorithm should
have:

� Sensitivity & robustness The sensitivity and robustness
measures of the algorithm should be provided. The sen-

4

stivity and robustness is the measure to identitify maxi-
mum and minimum size of the data objects and the simi-
larity between two objects that can be detected by the al-
gorithm. There are several tests that can be performed to
identify the sensitivity and robustness of an algorithm. For
example, fragment detection, common object identification,
alignment robustness, and random-noise-resistance [11].

� Precision & recall The algorithms should provide the
details of the test dataset used to evaluate the perfor-
mance. Precision, recall, F-score, and other relevant mea-
sures should be used to assess the performance.

� Security Algorithm should be resistant towards active ad-
versary attacks to ensure the reliability of the results. For
example, A malicious user should not be able to manip-
ulate the input in such a way so that dissimilar artifacts
appear similar to the algorithm or vice versa. The algo-
rithms should describe whether and how it prevents such
attacks.

Similarity queries can be broadly divided into two cate-
gories [12][9][11][3]:

1. Resemblance Queries,

2. Containment Queries.

We denote a measure of similarity and commonality between
data object D1 and D2 by R(D1, D2). Similarly, we denote a
measure of containment of data object D1 within data object
D2 by C(D1, D2). An approximate Matching algorithm should
attain one of the following problems:

5

1. Object similarity detection : This can be categorized as a
resemblance problem. An algorithm should identify simi-
lar/related artifacts, such as identifying different versions
of a document or malicious code file.

2. Cross correlation : The proposed algorithm should identify
artifacts that share a common object, for example, a Mi-
crosoft Word document and a HTML document comprising
the same the embedded object e.g. an image or a video clip.
This can also be characterized as a resemblance query.

3. Embedded object detection : This problem comes under
the category of containment. Given a piece of data, such
as a JPEG, the algorithm needs to be able to search for
(traces of) its existence inside another document, archive,
disk image, or network trace.

4. Fragment detection : This is also a containment query. The
approximate matching algorithm should identify the frag-
ments of a known artifact. For example, such queries could
be used to find the fragments of a deleted and partially
overwritten file. Another instance could be when an inves-
tigator receives a hard disk that is formatted in quick mode.
Thus he is only able to analyze the low-level HDD blocks.
These block fragments can be identified in the reference
dataset of good and harmful files.

1.1 Motivation

Approximate matching is a relatively new area but conceived as
a prominent approach to assist the digital investigation process
by automatically filtering correlated data to reduce the amount

6

of data an investigator has to examine manually. Over the last
decade, the area has evolved a lot, and several algorithms have
been proposed. Some of the most prominent and commonly
used approximate matching schemes are ssdeep [1], sdhash [13],
mrsh [14] [15], and mvHash [5]. However, there remain several
open questions and challenges with regards to these tools as well
as the general problem of approximate matching.

The first and foremost challenge is the security aspect of ap-
proximate matching algorithms. To understand the reliability
and robustness of a new design, it is essential to present a though
security analysis. By security, we mean that it should not be
possible for a malicious user to mislead the outcome of an al-
gorithm by manipulating the input data. Such kinds of attacks
are known as ‘active adversary attacks’. Approximate matching
algorithms aim to assist the critical investigation process, al-
though little has been done to analyze their security robustness.
Hence there is a strong need for security analysis of existing
constructions.

The second major challenge is that very limited or no se-
curity properties have been considered in the existing schemes.
Therefore, a primary requirement is a design that can provide
security and thorough security analysis to prove its resistance
against active adversary attacks. Practical implementations of
such algorithms often require a tradeoff between security and
performance. Security add-ons impact other factors of a sys-
tem which can incur additional costs. Some of these factors
are throughput, scalability, usability, etc. The need of the hour
is a construction that provides a balance between security and
efficiency while maintaining the accuracy and reliability of the
results.

7

Another challenge is to understand the essential features re-
quired from the point of view of practitioners and investiga-
tors. The baseline definition and terminology of the approx-
imate matching algorithm is already given by [9]. The NIST
Special Publication 800-168 [9] defines the properties at a more
general and broader level. However, the definition of similar-
ity as well as the requirements of the approximate matching
algorithms vary for different data object types. For example,
two files with similar text content may have entirely different
underlying structures. They would be perceived as highly dis-
similar if an inappropriate algorithm is applied; the actual simi-
larities would remain unnoticed. It is crucial to establish the key
characteristics of the approximate matching algorithm based on
the requirement of digital forensics practitioners as well as re-
searchers with foundational understanding of different perspec-
tives towards these algorithms.

Another significant challenge is the assessment or evaluation
of existing and future approximate matching techniques. For
the growth and advancement of this domain, it is essential to
have a standard automated evaluation technique. The evalua-
tion technique can be used to assess the absolute and relative
performance of existing and future schemes. It is also crucial to
perform the test on a real-world dataset and practical test cases.
Therefore producing a real-world dataset with known similarity
is further required. This thesis aims to address all of the chal-
lenges mentioned above and presents solutions, mitigation, and
conclusions.

8

1.2 Contributions

Among the list of publications presented on pages (vi)
of (vii) of this dissertation, all the results reported
in [16], [17], [18], [19], [6], [8] form the basis of this thesis. In the
joint works, the author of the thesis has played a leading role
in obtaining the results reported in this thesis. There are three
main contributions of this thesis:

1. Security analysis of existing approximate matching algo-
rithms,

2. A new approximate matching design,

3. The evaluation framework.

The following are the details of each of these contributions:

� Security analysis of existing approximate matching
algorithms: Chapter 3 and 4 present the security analysis
of two prominent approximate matching schemes, sdhash
and mvHash-B. We briefly describe these results next.

1. Chapter 3 presents an anti-forensic attack [20] to by-
pass the sdhash filtering. sdhash is a well-known fuzzy
hashing scheme used for finding similarity among files.
This digest produces a ‘score of similarity’ on a scale
of 0 to 100. The results include the following:

– In a prior analysis of sdhash, Breitinger et al.
claimed that 20% contents of a file could be mod-
ified without influencing the final sdhash digest of
that file. They suggested that the file can be mod-
ified in certain regions, termed ‘gaps’, and yet the

9

sdhash digest will remain unchanged. In this work,
we show that their claim is not entirely correct. In
particular, we show that even if 2% of the file con-
tents in the gaps are changed randomly, then the
sdhash gets changed with probability close to 1.

– We then provide an algorithm to modify the file
contents within the gaps such that the sdhash re-
mains unchanged even when the modifications are
about 12% of the gap size.

– On the attack side, the proposed algorithm can
deterministically produce collisions by generating
many different files corresponding to a given file
with a maximal similarity score of 100.

2. mvHash-B is another prominent approximate matching
scheme. However, no security analysis of mvHash-B is
available in the literature. In chapter 4, we performs
the first academic security analysis of this algorithm.
Our results include the following:

– We show that it is possible for an attacker to fool
the outcome of the mvHash-B algorithm by causing
the similarity score to be close to zero even when
the objects are very similar. By similarity of the
objects, we mean semantic similarity for text and
visual match for images.

– The designers of mvHash-B had claimed that the
scheme is secure against ‘active manipulation.’ We
contest this claim in this chapter. We propose an
algorithm that starts with a given document and
produces another one of the same size without in-
fluencing its semantic and visual meaning (for text

10

and image files, respectively) but which has low
similarity score as measured by mvHash-B. In our
experiments, we show that the similarity score can
be reduced from 100 to less than 6 for text and im-
age documents. We performed experiments with 50
text files and 200 images and the average similarity
score between the original file and the file produced
by our algorithm was found to be 4 for text files
and 6 for image files. In fact, if the original file size
is small, then the similarity score between the two
files was close to 0, almost always.

– To improve the security of mvHash-B against ac-
tive adversaries, we propose a modification in the
scheme. We show that the amendment prevents the
attack we describe in this work.

� A new secure approximate matching design: In chap-
ter 5, we propose a new approximate matching scheme
called FbHash (Frequency-based Hashing) which we show
to produce best correlation results compared to other ex-
isting techniques. Our scheme also resists active adversary
attack unlike other schemes. The results include the fol-
lowing:

1. We present design details of FbHash construction, and
show the following for our design.

– We show that our scheme is secure against active
attacks and detects similarity with 98% accuracy.

– We provide a detailed comparative analysis with ex-
isting schemes and show that our scheme has a 28%

11

higher accuracy rate than other schemes for uncom-
pressed file format (e.g., text files) and 50% higher
accuracy rate for compressed file format (e.g., docx
etc.).

– Our scheme is able to correlate a fragment as small
as 1% to the source file with 100% detection rate
and able to detect commonality as small as 1% be-
tween two documents with appropriate similarity
score.

– Further, we also show that our scheme produces the
least false negatives compared to other schemes.

2. Chapter 6, presents a time and memory-efficient ver-
sion of FbHash and we term it as FbHash-E. The chap-
ter includes the following.

– We show some limitations of the current best ap-
proximate matching tool (in terms of security),i.e.,
FbHash and propose a time and memory-efficient
version of the same. We term the new design as
FbHash-E.

– We present a novel bloom filter based document
frequency design implementation in FbHash-E that
reduces the memory requirements compared to its
predecessor FbHash.

– We show that design changes done to improve the
performance of FbHash do not impact its ability to
detect similar files significantly and there is only an
average difference of 7.5 in the scores generated by
FbHash and FbHash-E.

– We show a detailed security analysis of FbHash-E,
perform more tests to evaluate its robustness. Some

12

of these tests were not performed earlier for FbHash.
We compare the results with other state-of-the-art
forensic tools. We show that FbHash-E outperforms
all the tools in all the security tests conducted.

– We also show the results of Consistency Test and
Code Version Identification Test, discuss their sig-
nificance in relation to the evaluation of a forensic
tool, and present the comparative results. We fur-
ther show that FbHash-E delivers the best results
under these two sets of tests as well.

� Evaluation framework: In chapter 8, we present an au-
tomated tool to assess the abilities of approximate match-
ing algorithms based on their practical application. Some
salient work presented in chapter 7 and 8 are as follows.

1. We present the findings of a closed survey conducted
among a highly experienced group of US federal
state and local law enforcement practitioners and re-
searchers, aimed to understand the practitioner and
researcher’s opinion regarding approximate matching
algorithms. The study provides baseline attributes of
approximate matching tools that a scheme should pos-
sess to meet the real requirement of an investigator.

2. We present a general platform-independent approxi-
mate matching algorithm evaluation tool to assess ex-
isting and future algorithms on four pragmatic test
cases. The work includes:

– Each test case performs the evaluation on the fol-
lowing metrics: false-positive rate, false-negative

13

rate, precision, recall, F-score, and Matthews Cor-
relation Coefficient (MCC).

– To understand the true capabilities of an algorithm,
it is important to evaluate them on a real-world
dataset. We perform each test on real-world data.

– Our tool provides the first real-world dataset of
known similarity for each test case. We also provide
an automated platform to generate a real-world
dataset for each test case. This dataset can be in-
dependently used for further research in this area.

1.3 Organization of the Thesis

In this thesis, we present security analysis and improvements
in the security of the existing approximate matching algorithm.
We provide a secure approximate matching design and present
an approximate matching tool testing framework. Our main
results are presented in Chapters 3, 4, 5, 6, 7, and 8. Each
chapter provides a literature review, followed by our results and
conclusions. The thesis outline is as follows:

� In Chapter 2, we first present an overview of the history
and state-of-the-art in the domain of approximate matching
algorithms. We review a number of existing approximate
matching techniques, which will facilitate understanding of
the work discussed in subsequent chapters.

� In Chapter 3, we re-evaluate the security bound of sd-
hash similarity hashing against active adversary attack. We
present an algorithm that can enable an active adversary
attack to mislead the sdhash filtering process.

14

� In Chapter 4, we investigate the mvHash-B algorithm’s re-
sistance against active adversary attacks. First, we present
an automated attack technique to evade mvHash-B filter-
ing. Then, we propose a few improvements in the design of
mvHash-B construction to mitigate such attacks.

� In Chapter 5, we provide a new approximate matching algo-
rithm called ”FbHash” or ”frequency-based hashing.” We
show that FbHash is secure against active adversary at-
tacks and produces more reliable results compared to ex-
isting state-of-art algorithms. We compare the performance
of FbHash with other significant approximate matching al-
gorithms and present a detailed analysis of FbHash.

� In Chapter 6, we propose an improvement over FbHash,
called FbHash-E that has much lower memory footprint,
and is computationally faster compared to FbHash. We
perform various tests to evaluate the security and correct-
ness of FbHash-E.

� In Chapter 7, we discuss the results of a survey conducted
in a closed group of highly experienced and trained digital
investigators, practitioners, and researchers regarding es-
sential characteristics of approximate matching algorithms.

� In Chapter 8, we present an automated evaluation tool that
evaluates the performance of existing and upcoming ap-
proximate matching algorithm on a real-world dataset. Our
tool also provides a way to generate a real-world dataset for
each test case.

� In Chapter 9, we conclude the thesis by discussing the
results and giving some future research directions.

15

Chapter 2

Background and Related Work

This thesis primarily focuses on bytewise approximate matching
algorithms. This chapter provides a brief overview of the nec-
essary background required to understand the results included
in this thesis. This chapter is divided into three sections. The
first section introduces the most popular approximate matching
algorithms. The second section focuses on the analysis results
of approximate matching algorithms in the literature. The third
section discusses the known approximate matching testing tools.

2.1 Introduction to approximate matching

algorithm constructions

The first Approximate Matching Technique was proposed in the
year 2002 by Nicholas Harbour [21] called dcfldd 1 which is an
extension of the well-known disk dump tool dd. dcfldd is also
called block-based hashing as it divides the input into fixed-size
blocks, generates hash each block separately, and concatenates
all hash values. By inserting or removing one byte at the begin-

1http://dcfldd.sourceforge.net/

16

ning of the input, the security and accuracy of this scheme can
easily be compromised [22]. Since it causes a one-byte shift in
each block, hence the resulting hash value is entirely different.

2.1.1 Context Triggered Piecewise Hashing(CTPH)

CTPH can be considered an improvement of dcfldd to overcomes
the weakness of dcfldd. Context Triggered Piecewise Hashing
(CTPH) was proposed by Kornblum [1] in the year 2006. The
CTPH scheme is based on the spamsum algorithm proposed by
Andrew et al. [23] for spam email detection. The implemen-
tation tool of Kornblum’s CTPH algorithm is called ssdeep 2.
CTPH computes a digest of the given file by first dividing the
file into several variable size blocks and then concatenating the
least significant 6-bits of the hash value of each block. A hash
function named FNV [24] is used to compute the hash of each
block.

In Context Triggered Piecewise Hashing, the block size is not
fixed like dcfldd. Each block is determined by a rolling hash
function. A rolling hash function takes a byte string as input
and outputs an integer. It proceeds as follows, A window of
a fixed size s (in current implementation s = 7 bytes) moves
through the input, byte by byte, and generates a rolling hash
value of each window.

BSk = Bk−s+1 +Bk−s+2 + ...+Bk−1 +Bk (2.1)

Let equation 2.1 denote the byte sequence in the current window
of size s at position k within the file and let Rolling Hash(Bk) de-
notes the corresponding rolling hash value. If Rolling Hash(Bk)
matches to a specific value called triggered value, the end of the

2https://ssdeep-project.github.io/ssdeep/index.html

17

current block is identified. Byte Bk is called the trigger point
and the current byte sequence BSk a trigger sequence. The next
block starts at byte Bk+1 and ends at the next trigger point or
at the end of the input file. The proposed rolling hash func-
tion in [1] is shown in fig 2.1. The proposed algorithm allows
to compute the rolling hash value cheaply and efficiently. If Bk

is not a trigger point, the next processed byte sequence will be
following:

Figure 2.1: Pseudo code of rolling hash from [27]

BSk+1 = Bk−s+2 +Bk−s+3 + ...+Bk +Bk+1 (2.2)

The trigger point value is defined as follows. Let b denotes
a value called block-size, then the byte Bk is a trigger point if
and only if Rolling Hash(Bk) ≡ -1 mod b. The total number of
resultant blocks depends on the value of b. If b is too small, we
have too many trigger points and vice-versa. The block-size b
is defined by equation 2.3 where bmin is the minimum block-size
with a default value of 3. S is spamsum length that sets the
desired number of blocks(which is by default 64), and n is the

18

input file size in bytes:

b = bmin · 2blog2(n
s.bmin

)c
(2.3)

Once a block is identified by the trigger point, a cryptographic
hash (FNV) of this block is computed. Let BS denote a block
and h the cryptographic hash function. Then the base64 en-
coding of the least significant 6 bits of h(BS) is calculated. Let
least significant 6 bits of h(BS) is represented as LS6B(h(BS)).
The final digest is the concatenation of base64 encoding of
LS6B(h(BS)) of each identified block. Since the block-size is
used for determining the blocks, only ssdeep hash digest with
the same block-size can be compared. ssdeep uses two different
block-sizes b and 2b to provide more flexibility.

Two digest are compared by computing the edit-distance [25].
Edit distance is defined by the minimum number of operations
required to transform one digest into another. The operations
that can be performed are insertion, deletion, and substitution.
The final score is computed on a scale of 0-100, where 0 indicates
no similarity and 100 indicates a perfect match.

Chen et al. [26], Breitinger et al. [27], Roussev [28] and Seo
et al. [29] proposed some modifications to ssdeep to improve
its efficiency and security. Baier et al. [20] presented a thorough
security analysis of ssdeep and showed that it does not withstand
an active adversary for blacklisting and whitelisting. We discuss
the results of the work [20] in details in the next section.

2.1.2 sdhash

Roussev [30, 13] proposed a new fuzzy hashing scheme called
sdhash. The basic idea of sdhash scheme is to identify statisti-
cally improbable features that can uniquely represent the input

19

document. A feature is any consecutive 64-byte sequence of the
input data. Based on the shannon entropy [31] of each feature,
few of them are chosen as statistically improbable features. Only
these selected features are used to generate the digest. In or-
der to compute the sdhash digest SHA-1 hash of each selected
features is generated and further divided into five parts; we call
it sub-hash. Each sub-hash is later inserted into a bloom fil-
ter [32]. Thus each selected feature is represented by five bits in
the bloom filter. There is an upper limit to the maximum num-
ber of elements in one bloom-filter to reduce the false-positive
rate. sdhash implementation uses 256 bytes (211 bit) bloom filter
with maximum 128 elements per filter. Once the bloom filter
has reached its limit, a new bloom filer is created. The final
digest is the set of bloom filters.

Two digests are compared by comparing each filter in one
digest with all the filters in the other digest. The final score is
the average of each comparisons. The resultant similarity score
ranges between 0 to 100, where 0 indecates no similarity and
100 indecates the highest similarity. We provide an in-depth,
step-by-step description of the sdhash algorithm in chapter 3.

Breitinger et al. [33] showed some weaknesses of sdhash and
presented improvements to the scheme. Detailed security and
implementation analysis of sdhash is also done by Breitinger et
al. in [34]. Chapter 3 and work [17] uncover several implemen-
tation bugs and show that it is possible to deceive the similarity
score by tampering the input file without changing the percep-
tual behavior of this file (e.g., image files look almost the same
despite the tampering).

20

2.1.3 bbHash

bbHash approximate matching scheme was proposed by Bre-
itinger et al. in the year 2012 [2]. bbHash aims to two properties
of the approximate matching algorithm: 1) Coverage: Every
byte of input is expected to be involved in final hash digest gen-
eration. Thus every byte should influence the hash digest. 2)
Variable sized length:, Unlike the traditional hash functions,
the bbHash design ensures that the hash digest length is pro-
portional to the size of the input. The key idea of bbHash is
based on data deduplication (e.g., [35]) and eigenfaces (e.g., [36]
). bbHash works in the following three phases:

1. Building Block Generation A building block is a ran-
dom byte sequence of l byte. A set of N building blocks is
generated using the algorithm shown in 2.2 where the de-
fault value of N is 16. Let bbi represent ith building block
in the set. The set of N building block can be represented as
follows, bb0,bb1,bb2,. . . ,bbN−1. Since the cardinality of the
set N is 16, it can be indexed using a hex digit between 0 to
f. The size of one building block (denoted as l) impacts the
performance of bbHash. If l is too big then it will shorten
the length of hash digest, and if l is too small then it will
increase the hash generation time. In order to maintain run
time efficiency, bbHash uses a reasonably small value of l.
The default value of l is 128 bytes (1024 Bits).

2. bbHash Digest Calculation Consider a window of l
bytes. Slide the window through the input file byte-by-byte
and compute the Hamming distances of all the building
blocks against the input byte sequence of the current win-
dow. The building block, which results the smallest ham-

21

Figure 2.2: Generation of Building Blocks from [2]

ming distance and is also smaller than a certain threshold,
is called the triggered building block. All triggered building
blocks are used to generate the final bbHash digest. The
bbHash digest is an ordered sequence of triggered build-
ing blocks indexes. figure 2.3 shows the pseudocode of the
bbHash algorithm.

bbHash ensure that every byte of the input is represented
by atleast one trigger building block in the digest. Thus for
every l-bytes, there should be a trigger. The authors have
shown that for l=128 Bytes and N=16, threshold value 461
provides full coverage.

3. Digest Comparison Similarity between two files can be
calculated by comparing the corresponding digest. Digest
comparison can be done in the following two ways: 1) By
storing the digests of both the file in bloom filters and cal-
culating the hamming distance between both the bloom
filters. 2) By calculating the weighted edit distance of both
the digest.

A significant limitation of bbhash is that it does not perform
efficiently and is extremely slow for practical use. For instance,

22

Figure 2.3: bbHash Algorithm from [2]

it requires 10 minutes to process a 10 MB file.

2.1.4 mvHash

Majority vote hashing (mvHash) [37] was first proposed by
Åstebøl et al. in the year 2012. mvHash algorithm is based
on the idea of majority voting in conjunction with run-length
encoding to represent the input data. The paper [37] present
two variants of the algorithm: 1) mvHash-B and mvHash-L.
Later in the year, 2013 Breitinger et al. published a detailed
description of mvHash-B design and analysis in [5]

mvHash-B works in the following three phases:

1. Majority Votes: This phase converts the input data into
a sequence of 0x00s and 0xFFs. The decision has been made

23

by taking the neighboring bytes into account. If the major-
ity of bits are 1’s in a particular byte’s n-neighborhood [38],
it is set to 0xFF otherwise to 0x00.

2. Encoding the majority vote bit sequence with RLE:
Run-length encoding [39] is a form of lossless data com-
pression. Run-length encoding counts identical subsequent
bytes. mvHash starts the RLE count with the number of
identical 0x00 bytes.

3. Fingerprint generation using Bloom filters: mvHash
stores the resultant RLE sequence in bloom filter [32] for
fast and efficient comparison.

Two mvHash-B digests are compared by computing the
Hamming distance between the bloom filters. We discuss the
mvHash-B design in details in chapter 4. The key difference
between mvHash-B and mvHash-L is that mvHash-L does not
use bloom filters. Instead, it compares the RLE sequence using
the Levenshtein distance [25]. Levenshtein distance is a com-
parison operation which computes the number of edit operation
required to transform one string into another. The calculation of
Levenshtein distance is very time-consuming, whereas hamming
distance computation is very fast. Therefore mvHash-B is much
faster than mvHash-L. Breitinger et al. have shown in their
work [5] that mvHash-B is faster than all other previously pro-
posed similarity preserving hashing algorithms. Although there
is a limitation of the mvHash-B algorithm in that it requires a
specific configuration for each file type.

24

2.1.5 mrsh and mrsh-v2 Hash

Roussev et al. introduced a variant of ssdeep called ‘Multi-
resolution similarity hashing (mrsh)’ [14] in the year 2007. In
this design, rolling hash (used for chunk identification in ssdeep)
is replaced by a Polynomial hash function djb2 and another
cryptographic hash function MD5 is used in the place of FNV
hash function. The final digest is represented in bloom filters.
Breitinger et al. in [15] presented an extension of mrsh called
mrsh-v2. mrsh-v2 identifies trigger points using rolling hash in
any given byte sequence (e.g., a file or a device) to identify the
chunks in the input data. Next, each chunk is hashed using
FNV. Till this point, mrsh-v2 works exactly like ssdeep. mrsh-
v2 represents the hash digest in bloom filters. Bloom filter is
an array of size m elements. In mrsh-v2 implementation m=256
bytes (211 bits). FNV hash outputs the 64-bit hash. The least
significant 55 bits are taken and divided into five sub-hashes of
11 bits. Each sub-hash sets one bit in the bloom filter. mrsh-v2
allows a maximum of 160 chunks per Bloom filter which means
at most 160*5=800 bits of a bloom filter can be set. If this
limit is reached, a new Bloom filter is created. Hence, the final
fingerprint for an input can be a sequence of multiple Bloom
filters. Two digests are compared by calculating the Hamming
distance between the bloom filters. As we can see, mrsh-v2 is a
combination of the ssdeep and sdhash algorithm.

2.1.6 Lempel-Ziv Jaccard Distance(LZJD)

LZJD is a comparatively recent similarity hashing scheme
proposed by Raff et al. [40] in the year 2018. LZJD uses
Lempel–Ziv 77 [41] compression algorithm to generate the

25

digest and Jaccard similarity [42, 43] to compare two digests.
Lempel–Ziv 77 is a universal algorithm for sequential data
compression. Lempel–Ziv 77 splits the input data into unique
variable-size sub-strings of shortest redundancy. The algorithm
starts with an empty set and a substring of size 1. Each
previously unseen smallest sub-string is added to the set. If the
current substring has appeared in the set, then the substring
size is increased by adding the next subsequent byte in the
input until a new substring is encountered. After each insertion,
the substring size is reset to one. The same is repeated until
the end of the input. Once the substring set of both input
is generated. The Jaccard similarity between the two sets is
calculated. A faster LZJDh [44] approach is used to compute
approximate similarity. The authors have shown that LZJD
performs fastest compared to all currently existing approximate
matching algorithms. They have shown that it is 60 times
faster than the sdhash scheme.

There are few more similarity hashing algorithms that have
also been proposed such as simHash [45], minHash [12], and
TLSH [46]. However, they do not completely align with the
concept of approximate matching. They more coincide with
the idea of Locality-Sensitive Hashing(LSH). Harichandran et
al. [47] clarify the distinction between the two. LSH algorithm
hashes similar input items into the same buckets with high prob-
ability, whereas approximate matching outputs a comparable
similarity digest, which can be used for whitelist and blacklist
filtering.

Apart from the above-mentioned schemes, several forensic
tool-kits use different similarity hashing techniques to deter-

26

mine related or similar documents. FTK or Forensic Toolkit
is one of the popular computer forensics tools build by Access-
Data. FTK [48] performs cluster analysis to identify related
documents and email threads. Encase [49] is another well know
digital investigations tool by Guidance Software. Encase per-
forms an entropy analysis technique to discover near matches.
X-ways Forensics [50] is an integrated computer forensics soft-
ware. X-ways incorporates a new similarity hashing technology
called FuzZyDoc to identify known documents. Autopsy [51],
an open-source digital forensics tool, uses sdhash in its AHBM 3

(Approximate Hash Based Matching) module to match files
against other files or search for similar files.

2.2 Analysis of Approximate Matching Algo-

rithms

The analysis of approximate matching algorithms can be cate-
gorized into two broad categories: 1) Performance Analysis 2)
Security Analysis. In this section, we review existing literature
in the both categories.

2.2.1 Performance Analysis

There is substantial literature available regarding performance
analysis. The performance analysis measures include scalabil-
ity, robustness, sensitivity, efficiency, etc. The first detailed
study was performed by Roussev [3] in the year 2011. The
paper provides a baseline evaluation of the approximate match-
ing tool capabilities in a controlled environment and real-world

3https://github.com/pcbje/autopsy-ahbm

27

data. Controlled environment evaluation is performed to find
an upper bound of the abilities of the tools under ideal condi-
tions. Controlled environment evaluation considered following
three scenarios:

� Embedded object detection: This test aims to measure
the ability of an approximate matching tool to correlate
a known embedded object to a document. For example,
Given an object, such as a JPEG image, the algorithm
needs to search for its existence inside another document,
archive, disk image, or network trace.

� Single-common-block file correlation: This test simulates a
situation where two files have a single common object or
data. For example, documents sharing an image/header/-
footer or pieces of software sharing library code.

� Multiple-common-blocks file correlation: This test identi-
fies the ability of a tool or algorithm to find similarities
between two digital artifacts where commonality might be
significant but fragmented.

This paper compared the performance of two most prominent
schemes, ssdeep and sdhash. Figure 2.4 shows table from [3]
showing the result of embedded object detection test. The
gtable in the figure shows that maximum file size for which ss-
deep and sdhash detected similarity with atleast 95% true pos-
itive rate. The results conclude that ssdeep can correlate an
embedded object to its source document if the object size is no
less than 1/3 of the source file. However, sdhash results reliably
regardless of the document or object size. Fig. 2.5 shows snippet
from [3] showing the result of single common block correlation

28

test. The figure represents the minimum size of shared single-
common-block-data or object between two documents that can
be identified with atleast a 95% true positive rate. The results
show that sdhash can detect similarity for smaller objects or
data-block in comparison to ssdeep. The result of the multi-
ple common block file correlation test is summarized in fig 2.6
from [3] where the total amount of common data is split into four
and eight (non-overlapping) pieces, respectively. Each piece is
then independently and randomly placed into the targets. The
figure presents the probability of correlation detection of ssdeep
and sdhash. The results indicate that sdhash performs better
than ssdeep.

Figure 2.4: Embedded Object Detection(Higher is better) from [3]

Figure 2.5: Single Common Block file correlation(Lower is better) from [3]

29

Figure 2.6: Multiple common block correlation probability(Higher is better)
from [3]

The result of the real-world data is shown in Fig. 2.7 [3]. This
figure provides the number of true and false file detection for
both the tools for various file types. The ‘total’ column provides
the total number of known true positive detection identified by
both the tools.

Figure 2.7: True positive, False Positive and Total known positive from [3]

All of the above results show that sdhash outperforms ssdeep
in terms of all the above-mentioned test cases. However, further
analysis must validate the results in different scenarios, such as
real network and RAM captures.

30

Breitinger et al. in [11] proposed a framework to test the ap-
proximate matching algorithms called ‘FRASH’ which includes
two test cases called efficiency and sensitivity, & robustness.
The efficiency test comprises the runtime efficiency, fingerprint
comparison, and compression tests. The efficiency test results
show that ssdeep has better compression and fingerprint com-
parison, whereas sdhash supports parallelism and outperforms
ssdeep in runtime efficiency. Sensitivity & robustness test com-
prises of four tests: single-common-block correlation, fragment
detection, alignment robustness, and random-noise-resistance.
Test results show that sdhash dominates in all of the tests. We
discuss FRASH in detail in section 2.3. Later, Breitinger et al.
in their work [52] extended the FRASH framework and incor-
porated precision and recall test. The results of this work also
align with the previous outcome.

[4] presents automated precision and recall tests on real-
world data. Using real-world data yields more realistic results
and allows a better characterization of the behavior of approx-
imate matching algorithms. Precision and recall tests quantify
the detection error trade-off between false positive and false neg-
ative rates for the algorithms. Fig. 2.8 shows that recall rates
for all the tools are relatively low; therefore, negative results can
not be trusted completely. Precision rates for ssdeep and sdhash
are high, which means that a positive result is a clear indication
of similarity at the byte level. Overall, sdhash shows the best
performance.

Most performance analysis papers in existing literature have
extensively analyzed ssdeep and sdhash tools, and a few have
included mrsh-v2. This is due to the popularity of these algo-
rithms as well as the fact that ssdeep and sdhash have shown

31

Figure 2.8: Results of Precision and recall tests over the ssdeep, sdhash and
mrsh-v2 approximate matching algorithms from [4]

the most promising results so far. This points to the belief of
the forensic community that ssdeep and sdhash are the most
prominent algorithms.

2.2.2 Security analysis

Security analysis is necessary to ensure the reliability of a tool.
If a malicious program or image in a suspect’s hard disk can
evade detection by minor and non-significant modifications to
the file, then this will defeat the purpose of the tool. Such
modifications can easily be automated and can be used to make
all malicious data detection proof. Such counter-forensic tools
will impact investigation results, hence it is essential to ensure
the security features of the approximate matching algorithm.
However, very little security studies have been attempted in the
current literature. In this section, we provide a brief review of
published security analysis.

2.2.2.1 Security analysis of ssdeep

Baier et al. [20] have shown an active anti-blacklisting attack
on the ssdeep algorithm and practically proven that ssdeep does
not withstand an active adversary against a blacklist. An Anti-

32

blacklisting attack generates false-negative results. Let F1 be a
malicious file and F2 be another file generated by manipulating
F1 in a way that it is semantically similar to F1. However,
ssdeep finds F2 as non-similar to F1, which is a false negative.
[20] presents two anti-blacklisting approaches as follows:

� Editing between trigger points: As we discussed in § 2.1
ssdeep first divides the input byte sequence into several
blocks by identifying trigger points. Interestingly, a trigger
point depends only on seven bytes. The critical point is
that apart from the seven bytes of a block that contribute
to the value of the trigger point; any other byte of each
block can be modified without affecting the trigger point.
The modification is done in such a way so that it preserves
the semantic similarity of both the files, for example, chang-
ing a character from upper case to lower case or replacing
spaces with underscores or vice-versa. Only after one-byte
modification in each block, the corresponding traditional
hash value will change with a high probability, and it will
change the resultant ssdeep digest completely. This anti-
blacklisting approach is suitable for text files and bitmap
images.

� Adding trigger points: This attack takes advantage of an
implementation weakness of the ssdeep scheme, which con-
siders only 64 trigger points. Suppose a file has more than
64 trigger points. In such case, ssdeep considers only the
first 63 trigger points, calculates their traditional hash, and
adds LS6B (least significant six bits) of its base64 encoding
to the digest. The rest of the trigger points are ignored, and
the last block will include all remaining bytes in the files.

33

This attack is easily applicable to jpg files or pdf files. For
example, we have a file F1. We insert 63 trigger sequences
in the header of F1. Let’s term the resultant modified file
with the updated header as F2. This will not affect the
semantic of the contents of the file. However, it will alter
the digest significantly. The authors have provided a way
to pre-compute a set of global trigger sequences. To de-
ceive the similarity between F1 and F2, these global trigger
sequences (producing different base64 hash strings than for
F1) can be used.

2.2.2.2 Security analysis of sdhash

A detailed analysis of sdhash has been done by Breitinger et
al. [34]. Their work shows that it is possible to perform undis-
covered modifications to the input of sdhash. An undiscovered
modification implies that the input can be modified without in-
fluencing the final sdhash digest. Hence two or more documents
can have exactly the same sdhash digest. Breitinger et al. [33]
have shown that 20% of the input bytes are not part of any
selected feature. Therefore any alteration to these bytes will
not influence the sdhash digest. The author has termed such
part of the input as ‘gap’. This work also uncovers a few im-
plementation errors in sdhash. We discuss this work in detail in
chapter 3.

Security analysis of the remaining schemes has not been done
in the current literature. The most significant constructions are
ssdeep, sdhash, bbhash, mvHash, and mrsh-v2. Though they
are being used to assist critical investigations, little has been
done to analyze their security robustness. For example, FNV
(Fowler–Noll–Vo) hash function is used in ssdeep construction

34

to compute the hash. FNV hash is a non-cryptographic hash
function based on multiplication and xor operations. Similarly,
mvHash uses Run-length encoding (which claims no security
characteristics) in its construction. So these schemes may not be
secure and are likely to be prone to attacks. Any sensible design
strategy should provide analysis of its security but it is lacking
in these schemes. Therefore, independent security analysis of
the schemes is needed to verify their reliability, dependability,
and robustness. Emergence of new techniques of analysis can
also be take place by such studies. We have pointed to the
previous security analysis of ssdeep and sdhash in this section.
Another scheme bbHash has low practical relevance due to its
run time inefficiency (e.g. a 10 MB file needs nearly 2 minutes).
We present a thorough security analysis of sdhash and mvHash
in chapter 3 and chapter 4, respectively.

2.3 Approximate matching algorithm testing

tools

The first approximate matching tool testing framework was
proposed by Breitinger et al. [11] in the year 2013. It was
termed “FRamework to test Algorithms of Similarity Hashing”
(FRASH). This tool provides an automated assessment of effi-
ciency, sensitivity, and robustness. Later, precision and recall
tests were added by Breitinger et al. in the work [52]. All of
these tests were conducted on synthetic data. While it is conve-
nient to use synthetic data as it provides perfect ground truth,
it does not yield realistic results. Further, Breitinger et al. in
the work [4] presented automated precision and recall tests on
real-world data by relating approximate matching results to the

35

longest common substring (LCS).
FRASH generates the synthetic data by creating manual mu-

tations of the target files. The sensitivity and robustness test is
performed on the following four test cases.

� Single-common block correlation: analyzes the smallest
amount of commonality between two data objects which
can be correlated by the similarity hashing tool. The
dataset is generated by generating two random files and
overwriting a common block on both the files at different
and randomly generated offsets. The same has been done
for various sizes of randomly generated blocks.

� Fragment detection: identifies the smallest fragment of a
file that can be matched by the similarity tool. The frag-
ments are generated by cutting the randomly generated
files.

� Alignment robustness: inserts blocks of various sizes at the
beginning of a file; this attribute simulates scenarios like
expanding log files or emails.

� Random-noise-resistance: analyses random modification in
an input. The test is performed by randomly altering the
input at a random position. Various amount of arbitrary
modification has been done.

Precision and recall tests have also been done on synthetic
and real-world data. These tests are performed to indicate the
similarity algorithm’s reliability. Real-world data ground truth
has been defined by using ‘approximate longest common sub-
string (aLCS)’, which computes the longest common substrings
between two files. The work [4] declares two inputs as similar if

36

their aLCS is sufficient (e.g., 1% of the total input length, or at
least 2 KiB).

While this framework is the first step in the right direction,
there are several concerns with FRASH to be used practically.
As Harichandran et al. rightly mention in [47], it is challenging
to implement FRASH, which is why [47] couldn’t compare many
algorithms. Another major issue is the definition of ground truth
for real-world data. Longest common substring does not reflect
the real similarity in many cases. The ground truth varies for
each test case. Hence there should be a dedicated dataset for
each test case.

2.4 Applications of Approximate Matching

Algorithms

Over the years, researchers have shown the application of ap-
proximate matching algorithms in various areas apart from dig-
ital forensics [47]. In this section, we review a number of cur-
rently known results.

2.4.1 Network traffic analysis

Gupta [53] and Breitinger et al. [54] have shown a novel tech-
nique using approximate matching to detect files in network traf-
fic. The papers propose the optimization and application of the
presented technique on single network packets. The authors
conclude that approximate matching with minor modifications
can reliably perform file identification on network traffic. These
works have shown the results on random network data as well
as on real-world data. The paper demonstrates that in the case

37

of random data the detection rate is 100% and in case of real-
world data, the detection is done with the false positive rate
between 10−4 and 10−5. Jimoh [55] presented the performance
testing of GPU and CPU implementation of sdhash to deter-
mine its suitability in high-network traffic environments. The
test results demonstrate that CPU implementation of sdhash
is more appropriate for small to medium-network environment,
whereas GPU implementation is more suitable for high-network
environment and sensitive data.

2.4.2 Malware Detection

Several recent studies have shown the application of approxi-
mate matching to malware detection. A study by Bjelland et
al. [56] shows that approximate matching tools may be able to
identify malware by comparing unknown documents to known
malware. Another interesting work by Payer et al. [57] presents a
technique to create diversified malware instances with low simi-
larity but equivalent functionality. It demonstrates the effective-
ness of similarity metrics on diversified malware instances and
concludes that similarity-based metrics are not effective due to
the variations in the binary layout. In the year 2015, Faruki el
al. has presented a mechanism called AndroSimilar [58] to de-
tect variants of Android malware. The paper uses the concept
of sdhash [13] to find the similarity. The authors have shown
that AndroSimilar effectively discovers the existing and variants
of known malware families with an accuracy of more than 76%.

38

2.4.3 Data exfiltration and leakage prevention

Symantec [59] has demonstrated a new technique, ‘Describe,
Fingerprint, Learn’ to prevent data loss. Here, fingerprint part
may use partial data matches, which is similar to the concept
of approximate matching algorithm. Jimoh [55] examined the
suitability of the approximate matching algorithm to prevent
data exfiltration and leakage. The paper tests sdhash imple-
mentation and conclude that while sdhash may work well for
detecting exfiltration of sensitive files, it can not assure complete
exfiltration and leakage prevention. Furthermore, it is possible
for a malicious insider to trick the algorithm if they are aware
of its presence in the network.

39

Chapter 3

A Collision attack on sdhash
similarity hashing

Sdhash, proposed by Roussev (Roussev, 2010a) in 2010, is one
of the most widely used fuzzy hashing schemes. It is used as
a third-party module in the popular forensic toolkit ‘Autop-
sy/Sleuthkit’ 1 and in another toolkit ‘BitCurator’ 2.

Breitinger et al. analyzed sdhash in [34, 33] and stated
that “approximately 20% of the input bytes do not influence
the similarity digest. Thus it is possible to do undiscovered
modifications within gaps”. In this chapter, we show that this
claim is not entirely correct. We show that if data between the
‘gaps’ is randomly modified, the digest changes even when the
modifications are only about 2% of the ‘gap size.’ After that,
we propose an algorithm that can generate multiple files with a
sdhash similarity score of 100 corresponding to a given file by
modifying up to 12% of the ‘gap size’. The proposed algorithm
can also be used to carry out an anti-forensic mechanism that
defeats the purpose of digital forensic investigation by filtering

1http://sleuthkit.org/
2https://bitcurator.net/

40

out similar files from a given storage media. An attacker could
generate multiple dissimilar files corresponding to a particular
file with 100% matching sdhash digest using our technique.

The rest of the chapter is organized as follows: We discuss
notations and definitions used in this chapter in section 3.1.
In section 3.2, we have provided an elaborate description of the
sdhash scheme. Existing analysis of the scheme is presented in
section 3.3. section 3.4 contains our analysis and attack on
sdhash and proposed algorithm in the appendix A. Finally, we
conclude the chapter in section 3.5 by proposing solutions to
mitigate our attack on sdhash.

3.1 Notations

Following notations are used throughout this chapter:

� D denotes the input data object of N bytes, D =
B0B1B2.....BN , where Bi is the ith byte of D .

� fk is a L byte subsequence of consecutive bytes of data
object D. It is termed the kth ‘feature’ of the data
object. In the sdhash implementation, L = 64, fk =
Bk+0Bk+1Bk+2.....Bk+63 where 0≤ k< n and n is the total
number of features of the data object D. Thus n = N - L
+ 1.

� H(X) represents the entropy of random variable X.

� Hmax(X) represents the maximum entropy of random vari-
able X.

� Hmin(X) represents the minimum entropy of random vari-
able X.

41

� Hnorm(X) denotes the normalized entropy of random vari-
able X.

� nbfk denotes the next byte of feature fk of data object D.

� Rprec,D(fk) denotes the precedence rank of feature fk of data
object D.

� Rpop,D(fk) denotes the popularity score of feature fk of data
object D.

� bf denotes the bloom filter of 256 bytes.

� bf represents the number of features within bloom filter bf .

� |bf | denotes number of bits set to one within the bloom
filter bf .

� t denotes some threshold (sdhash uses t = 16).

� SFscore(bf 1,bf 2) represents the similarity score of bloom fil-
ter bf 1 and bf 2.

3.2 Description of sdhash

We now describe the working of sdhash using the notation
defined in § 3.1. Given a data object D of length N bytes
(B0B1B2.....BN−1), a feature fk is a subset of L (= 64) consecutive
bytes of D, that is fk:Bk+0Bk+1Bk+2...Bk+63 where 0≤k<n and n
= N-L+1. In order to generate sdhash fingerprint, the first step
is to calculate the normalized entropy of each feature. Entropy
of a random variable X with probability PX and alphabet α is
defined as

H(X) =
∑
x∈α

(P [X = x]log2P [X = x])

42

The entropy of X attains its maximum value if P [X = x] =
1
|α| ,∀x ∈ α; that is, if all possibilities for X are equiprobable.

This maximum value of entropy Hmax(X) is log2|α|. Similarly,
the entropy is minimum if ∃x ∈ α : P [X = x] = 1; hence
Hmin(X) = 0. Entropy of a random variable ranges between 0 to
log2|α|. Normalized entropy of a random variable X is defined

as Hnorm(X)= H(X)
Hmax(X) . The normalized entropy ranges between

0 to 1. Random variable in the context of a feature (fk) is the
next byte of the feature (fk), represented as nbfk. In sdhash
implementation, α is the set of all possible 256 values of x. The
probability distribution of nbfk is defined as:

∀x ∈ α P [nbfk = x] =
|{j|Bk+j = x, 0 ≤ j < 64}|

64
where fk = Bk+0Bk+1Bk+2.....Bk+63. The Entropy of nbfk is:

H(nbfk)=
∑
x∈α

(P [nbfk = x]log2P [nbfk = x])

Hmax(nbfk)= log2|α|= 8 and Hmin(nbfk)=0. Normalized entropy

of nbfk is H(nbfk)
Hmax(nbfk) = H(nbfk)

8 . Range of normalized entropy of
nbfk is 0 to 1. It is being scaled up to the range 0 to 1000 and
represented by Hnorm(nbfk):

Hnorm(nbfk)=

⌊
1000 ∗ H(nbfk)

8

⌋
After calculating the normalized entropy of each feature, a prece-
dence rank is assigned to the respective feature of the data ob-
ject D based on the empirical observation of probability density
function for normalized entropy of experimental data set.

Let Q is the experimental data set of q data objects
D1D2D3.....Dq of same type and same size. Here the random
variable is normalized entropy of next data object’s nbfk of set

43

Q, represented as nenfd Q. Let A is a set of integers from 0 to
1000 i.e. 0,1,2,....,1000.

For a∈A P [nenfd Q = a] =
|{(i,k)|Hnorm(nbf ik)=a,0≤k<n,0≤i<q}|

qn

where q is number of data object in set Q, nbfik is next byte
of feature fk of Di data object, 0≤i<q, 0≤k<n. Hnorm(nbfik)
is normalized entropy of nbfik. Each Di consists n features. A
characteristic probability distribution of each type of data object
(i.e. doc, html, gz etc.) can be found.

Figure 3.1: Empirical probability density function for experimental data set
of doc files taken from (Roussev, 2009, 2010a)

Based on the probability distribution, each element of set
A (all possible outcomes) is now assigned a rank. Let ta =
Pr[nenfd Q=a] ∀ a∈A, where A is the set of integers {0,1,2,3,. .
. .,1000}.

t0= Pr[nenfd Q=0],
t1= Pr[nenfd Q=1],

44

.

.

.
t1000= Pr[nenfd Q=1000].

We assign a rank ri to each ti as follows: ri=1000 if ti is the
largest, and ri=0 if ti is the smallest.
Now each feature fk of D is assigned a precedence rank
Rprec,D(fk) as follows:

∀ fk of D, Rprec,D(fk) = ri, where Pr[nenfd Q=Hnorm(nbfk)]=ti

where D is the given data object, n is number of features of data
object D and 0≤k<n. Data type of data object D and data ob-
jects Di(0≤i<q) of set Q is the same. Hnorm(nbfk) is normalized
entropy of next byte of feature fk of data object D. Essentially,
the least common fk gets the lowest rank whereas the most com-
mon one is assigned the highest rank.
Now based on the precedence rank, each feature(fk) is assigned
a popularity score denoted by Rpop,D(fk). The non-zero popular-
ity score of a feature fk of a data object D shows that there are
(Rpop,D(fk)+W-1) W-neighboring features of a feature fk such
that the precedence rank of its left neighboring feature fi is
greater than the precedence rank of fk; and precedence rank
of its right neighboring features fj is greater than or equal to
precedence rank of fk where i<k, j>k; and number of fi + num-
ber of fj = (Rpop,D(fk)+W-1). W-neighboring features of feature
fk: A feature fnb is called a W-neighboring feature of feature fk
if |k-W| <nb<k or k<nb< |k+W|. If |k-W| < nb < k: feature
fnb is called left neighboring feature of feature fk. If k < nb <
|k+W|: feature fnb is called right neighboring feature of feature
fk. Rpop,D(fk) for 0≤k<n is calculated as follows:

45

� Initialize Rpop,D(fk) = 0 for each 0≤k<n.

� Consider a window of size W (64).

� For every sliding window leftmost feature fk with lowest
Rprec,D(fk) is taken and value of Rprec,D(fk) is incremented
by 1.

� Slide window by one and same steps are repeated (n-W)
times,.

Fig.2 shows an example of the Rpop,D(fk) calculation of a data
object D where n=18.

Figure 3.2: Popularity Rank Calculation from (Roussev, 2009, 2010a)

Now features with Rpop,D(fk) ≥ t(threshold) are selected (in
sdhash implementation t=16). Selected features are the least
likely features to occur in any data object. These features are
called “Statistically Improbable Features”. These Statistically
Improbable Features will be used to generate fingerprint of the
data object D. Let {fs0,fs1,. . . .,fsx} are the selected features,
where 0< x <n, and n is the total number of features of data
object D. SHA-1 [60] hash of each selected feature is calculated.

46

Then the resultant 160 bit hash is split into 5 chunks of 32 bits
and least significant 11 bits of each chunk are used to address
a bit in the bloom filter array. sdhash implementation uses 256
byte (211 bit) bloom filter with maximum 128 element per filter
(i.e. 5 bits per feature hence 640 bits per bloom filter).
Similarity between two different sdhash digests is defined as the
number of overlapping bits of the corresponding bloom filters.
Let bf1 and bf2 are two bloom filters. Then the similarity be-
tween two bloom filter is defined as follows and represented as
SFscore(bf1,bf2) :

SFscore(bf1, bf2) =

{
0, if e ≤ C

[100 e−C
Emax−C], otherwise

where e =|bf1∩ bf2| (number of overlapping bits), C is the cut-
toff of minimum and maximum number of possible overlapping
bits by chance, defined as C=α(Emax− Emin) + Emin and Emin,
Emin are minimum and maximum number of overlapping bits by
chance respectively.

3.3 Existing Results

Implementation and security analysis of sdhash has been done
by Breitinger et al. [34]. Two of the implementation bugs, ‘Win-
dow size bug’ and ‘left most bug’ mentioned in [34] still exist in
the latest version 3.4 of sdhash implementation.

Listing 3.1 shows the implementation of above stated bugs.
At line number 13, there is an error in first condition that
causes incorrect identification of minimum precedence rank
(Rprec,D(fk)), referred to as the ‘Window size bug’. This error

47

can be removed by replacing the first condition of while loop
with ‘chunk ranks[i+pop win-1] ≥ min rank’. There is another
error in the if condition at line number 14-15 and 26-27, that
has been referred to as the ‘Left most bug’.

If two features (fi, fj) have equal precedence rank (Rprec,D(fi)
=Rprec,D(fj)) and are lowest within a popularity window, then
this condition will cause the selection of right most feature that
contradicts the proposed sdhash scheme. According to the pro-
posed sdhash scheme [13], the left most feature with lowest
precedence rank should get selected. In order to mitigate this
bug, line numbers 14-15 & 26-27 should be removed from the
code. We corrected the above mentioned bugs in the provided
sdhash version 3.43, and the same corrected code is used to carry
out experiments stated in § 6.

In the same work [34], the authors have indicated that undis-
covered modifications to the input of sdhash are possible. How-
ever, details of how to achieve this are not provided. An undis-
covered modification means that input can be modified without
influencing the final sdhash digest. Therefore two or more files
can generate same sdhash digest, which is called collision in
terms of cryptographic hash functions and such files are called
‘colliding files’ in rest of the chapter.

Collision detection violates one of the basic properties of
similarity preserving hash functions called ‘Coverage’ [33].
Every byte of input is expected to influence the final sdhash
digest. Breitinger et al. [33] have statistically shown that 20%
of the input bytes are not part of any selected feature. So, these
bytes are not expected to influence the final sdhash digest, and
are referred to as ‘gap’. Table 3.1 shows statistics of both

3http://roussev.net/sdhash/sdhash.html

48

Table 3.1: Different statistic on sdhash from (Breitinger & Baiber, 2012)

Average improved original

1 filesize* 428,912 428,912

2 gaps count 2888 2889
3 min gap* 1.09 1.076
4 max gap* 1834 1834
5 avg gap* 33.46 34.27
6 ratio to file size 20.65% 21.21%

original sdhash code and improved code (after correcting the
bugs discussed above).

1 void
2 sdbf : : g en chunk score s (const u i n t 1 6 t * chunk ranks , const u i n t 6 4 t chunk s ize

, u i n t 1 6 t * chunk scores , i n t 3 2 t * s c o r e h i s t o) {
3 u i n t 6 4 t i , j ;
4 u i n t 3 2 t pop win = con f ig=>pop win s i z e ;
5 u i n t 6 4 t min pos = 0 ;
6 u i n t 1 6 t min rank = chunk ranks [min pos] ;
7
8 memset (chunk scores , 0 , chunk s i z e * s izeof (u i n t 1 6 t)) ;
9 i f (chunk s i z e > pop win) {

10 for (i =0; i<chunk s ize=pop win ; i++) {
11 // t ry s l i d i n g on the cheap
12 i f (i >0 && min rank >0) {
13 while (chunk ranks [i+pop win] >= min rank && i<min pos && i<chunk s ize=pop win

+1) {
14 i f (chunk ranks [i+pop win] == min rank)
15 min pos = i+pop win ;
16 chunk score s [min pos]++;
17 i ++;
18 }
19 }
20 min pos = i ;
21 min rank = chunk ranks [min pos] ;
22 for (j=i +1; j<i+pop win ; j++) {
23 i f (chunk ranks [j] < min rank && chunk ranks [j]) {
24 min rank = chunk ranks [j] ;
25 min pos = j ;
26 } else i f (min pos == j=1 && chunk ranks [j] == min rank) {
27 min pos = j ;
28 }
29 }
30 i f (chunk ranks [min pos] > 0) {
31 chunk score s [min pos]++;

49

32 }
33 }
34 // Generate score histogram (fo r b=sdb f s i gna tu r e s)
35 i f (s c o r e h i s t o) {
36 for (i =0; i<chunk s ize=pop win ; i++)
37 s c o r e h i s t o [chunk score s [i]]++;
38 }
39 }
40 }

Listing 3.1: sdfb core.cc from sdhash-3.4

3.4 Our Contribution

The purpose of fuzzy hashing or similarity hashing schemes is
to filter similar or correlated files corresponding to a given file
that an investigator needs to examine. These schemes reduce
the search space and corresponding manual effort of analysis
for the investigator. The process of filtering the files by match-
ing them with a set of already known to be bad files is called
Blacklisting.

We propose a scheme that can generate multiple similar files
corresponding to a given file with a similarity score of 100 for
the sdhash similarity hashing. The scheme shows a weakness of
the sdhash algorithm that an attacker could exploit to confuse
and delay the investigative process. An example attack scenario
is explained in the following paragraph.

Let us suppose a scenario where a suspected person ‘X’ has
accessed and downloaded some proprietary images from a com-
mercial website ‘A’ while she is logged in as a registered user. X,
as an anonymous owner, runs a parallel website ‘B’ that hosts
content from the original website available for free from a host-
ing location in some different part of the world. She intends to
popularize her website ‘B’ to get a large viewership that might

50

attract web advertisers to put their ads on the website. A con-
sistent viewership over a period would result in high chances
of advertisement hits and consequently monetary returns for X.
She would recover the membership cost gradually while the rest
of the revenue is profit.

The original website ‘A’ eventually comes to know about the
existence of website ‘B’ which is hosting their proprietary con-
tent. Since the owner of the domain name is registered as anony-
mous on records, the only way to track her is her IP address.
Fortunately, the country where the website is hosted follows
anti-piracy and Intellectual property protection laws. The phys-
ical location of systems on which the data of website ‘B’ is stored
can be determined. X uploads content downloaded from orig-
inal website after putting a watermark of his own website on
each image. The use of cryptographic hash functions is ruled
out in that case and investigators would need a similarity digest
algorithm, possibly sdhash to find the files.

Here, in this condition if X has any time to prepare herself for
such an investigation, she could use our tool to generate multi-
ple similar files, with same metadata, corresponding to each file.
The approach is definitely heavy on storage but can help X in
increasing the effort of the investigation by forcing the investi-
gators to analyze the files manually. Secondly, the investigation
process could also be confused as by X’s claim that she is in-
nocent and it is a work of someone else who has access to her
system or even a malware. In both the cases, investigation ef-
fort is increased many folds. Moreover, the primary purpose of
a similarity digest to help investigators quickly filter out files of
interest is defeated.

Breitinger et al. in [34] mentioned that 20% of the input

51

data can be modify without influencing the final sdhash digest.
We used two approaches to verify the number of undiscovered
modification within gaps. These are (1) Random modification
and (2) Deliberate Modification.

In the random modification approach, gap bytes are filled
with randomly chosen ASCII characters. Our experiments on
text files show that random modification of only 2% of the gap
bytes influences the sdhash digest with probability close to 1. In
the second approach of ‘Deliberate modification’ we propose an
algorithm for careful modifications in order to increase the avail-
able bytes for modification within gaps. Experimental analysis
of the proposed algorithm shows that by using this algorithm,
around 12% of the gap bytes can be modified with maximal
similarity score of 100.

3.4.1 Random Modification

We randomly choose several byte positions within the gap and
modify each with a randomly chosen ASCII character to find the
maximum number of random modifications within the gap that
do not influence the sdhash digest of the entire document. We
performed experiments on a data set of 50 text files of variable
size from the T5-corpus dataset. We found that even one byte of
random modification within the gap would influence the sdhash
digest with an average probability of 0.22, and the modification
of all bytes in the 20% gap will impact the final hash digest with
probability 1. So, we focused on finding the minimum number of
modifications that would influence the final sdhash digest with
probability 1.

We started with single byte modifications and generated more

52

Table 3.2: Minimum number of random modification, that modifies final sdhash
digest with probability 1.

S.No. File size Gap Random Modification
(In KBs) (In Bytes) Bytes Gap% File%

1† 1.5 354 45 12.70% 3%
2 22.9 3948 50 1.26% 0.21%
3 50 8917 70 0.78% 0.14%
4 81 14084 60 0.42% 0.07%
5 307 46296 80 0.17% 0.03%
6 841 215894 20 0.01% 0.00%
7 1095 139038 50 0.04% 0.00%
8 1554 378636 35 0.01% 0.00%

On an avg. 51.25 1.92% 0.42%

† This file is not from T5-corpus database

than 5000 files with only one byte tampering and evaluated its
influence the hash digest.

We gradually increased number of modifications until the
hashes for all 5000 files got influenced. It was found that with a
random modification of only around 2% bytes of the gap there
is an influence on the sdhash digest of each of the randomly
generated file which is on an average 0.42% of the respective
file size. Experimental results for a small sample of 8 files is
given in table 3.2.

As described in § 3, only the selected features (statistically
improbable features) participate in the generation of final simi-
larity digest. Therefore gaps (the data bytes which are not part
of any selected feature) are expected not to influence the final
hash digest. However, as we showed in the experiments, these
bytes do influence the sdhash digest. This happens since each
feature in the sdhash construction is highly correlated to its
neighbors. Each feature differs from its left and right neighbor
by only one byte. For example, let D be a data object under

53

investigation which has the following byte sequence and features.

B0B1B2B3B4B5. B63B64B65B66B67. . .BN

f0 B0B1B2B3B4B5. B63 B64B65B66B67. . .BN

f1 B1B2B3B4B5B6 B64 B65B66B67. . .BN

f2 B2B3B4B5B6B7 B65 B66B67. . .BN

.

.

.
fn BN−63BN−62.BN−2BN−1BN

where N is the number of bytes in the data object D, and n
is the number of features in D (n=N-L+1). Each byte is part
of atleast one and at-most L (i.e. 64) features. Each byte (Bk),
except the first L-1 and the last L-1 bytes (L≤k≤N-L+1), is
part of exactly L features. Change in any byte, Bk will reflect
in a change in features fk to fk−L+1, which may lead to a change
in the precedence ranks Rprec,D(fk−L+1) to Rprec,D(fk). A change
in the rank of any feature(Rprec,D(fk)) will reflect in a change
in the popularity score of features of D, which may affect the
list of selected features. Any modification in the list of selected
features will lead to changes in the final hash digest.

3.4.2 Deliberate Modification

The experiment results from § 3.4.1 show that the entire 20%
gap of any file cannot be modified by random modification. We
now propose an algorithm that performs careful modifications
in order to increase the number of changes within the gaps while
still ensuring no change in the similarity digest.

54

3.4.2.1 Algorithm Description

As discussed in § 3.4.1, modification in any byte Bk will influ-
ence the rank of all features containing Bk. This might cause
changes in the list of selected statically improbable features. In
the sdhash construction, a feature with leftmost lowest rank gets
selected in a popularity window. If the rank of a feature is left-
most lowest in t or more than t (threshold) popularity windows
then it gets selected as a statistically improbable feature. These
selected statistically improbable features participate in the com-
putation of the final sdhash digest. Let D be a data object with
fS1

and fS2
as two consecutive statistically improbable features.

f0 f1 f2. . . fS1
fS1+1 . . .fS1+63 fS1+64. . .fS2−1 fS2

. . .fn
B0B1B2. . BS1

BS1+1. . BS1+63 BS1+64. .BS2−1 BS2
. .Bn. . .BN

where fs1 : Bs1Bs1+1Bs1+2.BS1+L+1

fs2 : Bs2Bs2+1Bs2+2.BS2+L+1

Data bytes BS1+64 to BS2−1 are not a part of any selected
features. The aim is to modify these bytes in such a way that
modified features never get selected over fS1

and fS2
. For every

data byte Bk, where S1+L≤ k≤ S2−1, a specific value among all
possible ASCII characters satisfying the following two conditions
is chosen:

1. Rprec,D(f
′

j) > Rprec,D(fS2
) AND Rprec,D(f

′

j) ≥ Rprec,D(fS1
)

2. Rprec,D(f
′

j) ≥ Rprec,D(fj)

where (k-L+1) ≤ j ≤ k and (S1+L) ≤ k ≤ S2-1 and f
′

j is mod-
ified feature fj obtained as the result modification of byte Bk.
The above two conditions ensure that all the modified features

55

f
′

j have rank Rprec,D(f
′

j) greater than the rank of the right se-
lected statistically improbable feature (j<S2) i.e. Rprec,D(fS2

).
At the same time, Rprec,D(f

′

j) is greater than or equal to the
rank of the left selected (j>S1) statistically improbable feature,
i.e. Rprec,D(fS1

). It can be equal to this value because even if
two features have equal rank, the left most feature always gets
selected. Ultimately, no other feature gets selected over both
the statistically improbable features.

The above mentioned conditions are not enough if (S2-1)-
(S1+L) ≥ t, where L is the feature length and t is the threshold.
Even if each modification satisfies both the conditions, still new
features may get selected. The reason this happens is that if
the distance between two selected features is more than L+t,
then after modification, the rank of some modified features may
become local minimum among their t or more neighbors. Since t
is the threshold for a feature to get selected, it may get selected
as a statistically improbable feature and hence may influence
the final sdhash digest. In the case mentioned above, it needs
to be verified that no modification causes any change in the list
of selected statistically improbable features. To mitigate this
problem, after modification of the gaps bytes being considered,
the popularity score(Rpop,D) of all the features of D is calculated.
If any new feature, f′j contains the popularity score Rpop,D(fj) > t
then all the previous modifications are discarded. Similarly the
gaps between each adjacent pair of selected improbable features
are modified.

Algorithm 1 and 2 (presented in appendix A) cab be used to
generate multiple colliding files corresponding to a given data
object with maximal similarity score. Each execution of algo-
rithm1 produces a different file with dissimilar modification and

56

different number of modifications. Therefore, we can generate
G256 different files with maximal similarity corresponding to a
given file, where G denotes the total number of gap bytes in the
data object. The attacker can easily confuse the investigator by
generating a huge number of files corresponding to a malicious
or desired file. Since our current implementation is focused on
text files, so we have chosen the characters only from the set of
95 printable ASCII characters, starting from char 32 till char
126. The maximum number of files that can be generated are
G95, which is sufficiently large even for G = 2.

We ran the proposed algorithms for the same data set of 50
text files which were used for our earlier random experiment. We
found that around 12% of the gap bytes can be modified with
maximal similarity score of 100 using the proposed algorithm.
This is a huge improvement over the random modification case
when even 2% of the gap bytes cannot be modified without
changing the final sdhash digest. Experimental results for a
small sample of 8 files are presented in table 3.3.

3.5 Countermeasures

In order to reduce the amount of undiscovered modifications, we
propose the following two mitigations.

3.5.1 Minimization of popularity score threshold

Decrease in the threshold of popularity score in selection of sta-
tistically improbable features will increase the number of se-
lected features. This, in turn, will result in the reduction of gap

57

Table 3.3: Number of modification with maximal similarity score through pro-
posed algorithm

S.No.
File size Gap Deliberate Modification

(In KBs) (In Bytes) Bytes Gap% File%
1† 1.5 354 89 25.14% 5.99%
2 22.9 3948 552 13.98% 2.41%
3 50 8917 1065 11.94% 2.13%
4 81 14084 1273 9.03% 1.50%
5 307 46296 3357 7% 1.09%
6 841 215894 31371 14% 3.73%
7 1095 139038 6211 4% 0.56%
8 1554 378636 13787 3.60% 0.88%

On an avg. 7185.25 11.08% 2.28%

† This file is not from T5-corpus database

bytes that could be modified without affecting the final sdhash
digest.

3.5.2 Bit level feature formation

In the sdhash scheme, each feature differs from its neighboring
features by one byte. Therefore, the attacker has 28 possible
choices to modify the feature without influencing its neighboring
feature. If each neighboring feature differs by only 1 bit (in place
of the original one byte), it will reduce the number of possible
choices with the attacker from 256 to 2. Hence the probability of
modifying each bit without affecting the final hash will also get
reduced substantially. However, it will increase the number of
features and hence the selected features, thereby causing some
loss in efficiency. Increase in the number of selected improbable
features will not only increase the computation time, it will also
cause an increase in the size of the final sdhash digest.

58

3.6 Summary

Currently sdhash is one of the most widely used byte-wise sim-
ilarity hashing scheme. It is possible to do undiscovered modi-
fication to a file and yet obtain exactly the same sdhash digest.
We have proposed a novel approach to do maximum number
of byte modification with maximal similarity score of 100. We
also provided a method to do an anti-forensic attack in order to
confuse or delay the investigation process.

59

Chapter 4

Security Analysis of mvHash-B
Similarity Hashing

mvHash-B, proposed by Breitinger et al. [5] in 2013, is one of
the most well known fuzzy hashing schemes. The runtime com-
plexity of the mvHash-B scheme is almost equivalent to crypto-
graphic hash function SHA-1, which makes it fastest among the
existing approximate matching schemes. Moreover, the length of
the mvHash-B similarity digest is just 0.5% of the input length.
Both of the above desirable features make it one of the most
prominent approximate matching scheme.

The work [5] claims that mvHash-B is sufficiently robust
against active manipulations. In this work, we propose an anti-
forensic attack on mvHash-B similarity hashing. We develop an
algorithm that can be used to circumvent the blacklisting based
filtering of the mvHash-B scheme, i.e. it is possible to hide a
malicious file from the blacklisting process of mvHash-B similar-
ity hashing. This work shows that less than 0.03 % deliberate
modifications can take down the similarity score of a file from
100 to less than 6 without influencing the file semantically and
visually.

60

Our attack can also be used to carry out an anti-forensic
mechanism that defeats the very purpose of the approximate
matching scheme by hiding a malicious file from the filtering pro-
cess. An attacker could modify the desired file without chang-
ing its semantics and visual meaning. When an investigator
tries to filter the desired malicious file using mvHash-B similar-
ity preserving hashing from the hard disk of a suspect, it will
not appear in the filtered output.

Finally, we also propose an improvement to the mvHash-B
construction in order to prevent our attack. The minor tweak
we propose to the scheme ensures the security of the modified
mvHash against an active adversary.

The rest of the chapter is organized as follows: Notations and
definitions used in the paper are provided in § 4.1. The mvHash-
B scheme is explained in § 4.2 . § 4.3 contains our analysis and
attack on mvHash-B, followed by our proposed attack against
the scheme. Experimental results on text and image files vali-
dating our attack are presented in § 4.4. Finally, we conclude
the paper in § 4.5 and § 4.6 by proposing solutions to mitigate
our attack on mvHash-B.

4.1 Notations

� BS denotes input byte sequence i.e. BS= B0B1B2.....BL−1

where Bi represents the ith byte of input and L denotes the
length of the input file in bytes

� Nk,n denotes the n-neighborhood of input byte Bk

Nk,n = Bk−n
2

Bk−n
2

+1....Bk−1BkBk+1.....Bk+n
2

−1Bk+n
2

where n denotes size of
neighborhood and n is always even.

61

� bitcount(Nk,n) denotes the function that outputs number
of bits set to 1 in binary representation of Nk,n

� t denotes the threshold

� ib denotes average number of influencing bits for one byte.

4.2 Description of mvHash-B

mvHash-B works in following three phases:

1. Majority Votes: The idea of this phase is to convert
each input byte into 0x00 or 0xFF in order to compress
the input in subsequent phases. mvHash-B counts num-
ber of bits set to one for n-neighboring of each input byte
i.e. bitcount(Nk,n) for 06k6(L-1). If bitcount(Nk,n)>
t(threshold), then the value majority vote of the byte Bk is
set to 0xFF else 0x00. The value threshold t is calculated
as follows:

t = (n+1)·ib
2

where ib denotes average number of influencing bits for one
byte(0≤ib≤8), default value of ib=8.

2. Encoding the majority vote bit sequence with RLE:
Run length encoding(RLE) [39] is a data compression al-
gorithm. Number of the identical subsequent byte is called
‘Sun-count’. The output of run length encoding is the se-
quence of run-counts as shown in Fig 4.1 and denoted as
RLE. mvHash-B assumes that each RLE starts with num-
ber of identical 0x00 bytes, therefore, if the majority vote

62

of input starts with 0xFF then run-length-encoding keeps
0 in the beginning.

3. Fingerprint generation using Bloom filters: mvHash-
B stores the resultant RLE sequence in bloom filter. The
reason behind using bloom filter is its efficient comparison
capability. Bloom filter is an array of m elements with
all elements initialized to 0. In mvHash-B implementation
m=2018(211). Select first 11 bytes of RLE sequence to built
a group and perform mod 2 of each RLE element of this
group. Mod 2 operation transforms the RLE sequence into
11 bit sequence of 1 or 0 i.e. b0b1b2. . . b10 where biε 0,1
and 0≤i≤10. This is further divided into two parts:

� v1 = b10b9b8b7b6b5b4b3 is used to identify the byte
within the Bloom filter and

� v2 = b2b1b0 is used to identify the bit within the byte.

Identified bit position of bloom filter is set to 1. Next group
can not be consecutive in order to ensure alignment robust-
ness. Next group starts will the alternate element of RLE
sequence. This process is explained in detailed in Fig 4.1.
Same process is applied to till the last element of RLE se-
quence.

In order to find similarity between two bloom filters, a
distance score is calculated which is represented as discore.
discore computation uses the hamming distance. Let bf1
and bf2 are two bloom filters, the value of discore is calcu-
lated as follows:

discore =hd(bf1,bf2)
|bf1|+|bf1| · 100

63

where hd(bf1, bf2) denotes the hamming distance between
bf1 & bf2 and |bfi| denotes the number of bits set to 1
in bloom filter bfi. Value of discore ranges from 0 to 100.
Where 0 indicates the exact similarity(100% similarity) and
100 indicates zero similarity.

Figure 4.1: Processing of RLE encoding by mvHash-B from [5] .

4.3 Anti-BlackListing attack on mvHash-B

We present an anti-forensic attack based on mvHash-B blacklist-
ing i.e. we have shown that it is possible to circumvent mvHash-
B blacklist filtering. We have provided an algorithm/tool that
can be used to avoid the automated detection of the blacklisted
or malicious files by the blacklisting process of mvHash-B sim-
ilarity hashing. Blacklisting is the process of filtering out the
files by matching it with the set of already Known-to-be-bad
files. The resultant file of the blacklisting process is similar
to known-to-be-bad or malicious files and need to be examined
manually. The proposed algorithm modifies the target file with-
out changing the semantics of the file in a way so that it does
not appear in the list of blacklisted files. These kind of attacks
are termed as an ‘Anti-Blacklisting attack’ in literature by baier

64

et al. [20].
The proposed Anti-Blacklisting attack shows that mvHash-B

scheme does not withstand an active adversary against a black-
list. This paper follows the definition of anti-blacklisting pro-
vided by Baier et al. in their paper [20]. Proposed attack gen-
erates false negatives for mvHash-B similarity results. Let F1

is a malicious file. The malicious user or attacker can use the
proposed algorithm and generate file F2, which is semantically
and perceptually same as F1. However, mvHash-B similarity
hashing results F2 as non-similar to F1, thus a false negative.

As discussed in § 4 mvHash-B works in three phases 1)Ma-
jority Votes 2)Encoding the majority vote bit sequence with
RLE 3) Fingerprint generation using Bloom filters, where the
first phase majority votes converts each input byte into 0x00 or
0xFF then the next phase Run length encoding transforms the
input into run-count of the identical subsequent bytes (0x00 or
0xFF) and finally the last phase performs a modulo 2 operation
on the resultant RLE sequence and stores the resultant RLE
sequence in bloom filter as shown in Fig. 4.1. Each consecutive
11 elements of RLE-sequence forms a group. Each group sets
one bit in bloom filter. Fig.4.2 shows an example.

The key idea of the attack is by modifying one element in each
group, we can change the position of all the set bits in bloom fil-
ter. Since the bloom filter represents the final mvHash-B digest
hence the entire digest is modified. Each element of a group is
modulo 2 representation of corresponding RLE elements, there-
fore, it is either 1 or 0. We need to flip any one bit among all 11
bits of a group. Which requires to increase or decrease any of
the corresponding 11 RLE-elements just by 1. Any modification
in the RLE sequence requires replacement of the corresponding

65

Figure 4.2: mvHash-B similarity digest generation considering n=2

input byte with the byte containing more or less number of 1’s
(in its binary representation). Now the important question is,
how to modify RLE-encoding without influencing the semantics
of the file. Algorithm 3 (shown in appendix B) presents a way
of making such modifications. Algorithm3 works in following
steps:

1. Go through each byte of the input file. Check if the number
of bits set to 1 in the n-neighborhood(bitcount(Nk,n)) of
the current byte(Bk) is equal to t or (t-1), where k is the
current byte index and t is the threshold. If yes, proceed
with following steps:

(a) Modify the Bk with semantically similar character (de-
fined later in this section). Let B

′

k denotes modification
on Bk and similarly N

′

k,n denotes modification on Nk,n.
Check for following condition:

i. bitcount(N
′

k,n)<bitcount(Nk,n) and
bitcount(Nk,n)=t

ii. bitcount(N
′

k,n)>bitcount(Nk,n) and
bitcount(Nk,n)=(t-1)

66

If any of the above condition satisfies then accept the
modification else revert the changes.

(b) If the modification happens at step (a) it will change
the majority vote of the corresponding byte from 0x00
to 0xFF or vice versa.

(c) Any change in majority vote will reflect modification
in corresponding RLE element since it is the count of
consecutive 0x00 or 0xFF.

(d) Any alteration in RLE sequence will modify the index
of bloom filter element addressed by the group con-
taining the modified RLE element. Fig. 4.3 shows an
example of one byte modification. One RLE modifica-
tion may effect several groups.

2. Perform step 1 after the last byte of the last modified group.

3. Repeat all the above steps till the last byte of the input file.

The semantically and perceptually similar alteration can be
performed as follows:

� For text documents:

1. Lower case to upper case conversion or vice-versa

2. Space to tab or tab to space, etc

� For the image documents:
The modification can be performed by doing a minor
change in the RGB value of a pixel. For example, in bmp
(RGB32) format each pixel in an indexed color image is de-
scribed by 3 bytes, representing its RGB (Red-Green-Blue)

67

value. This RGB value is the index of single color described
by the color table. Altering the least significant bit of any
of these three bytes does not produce a visual change in the
image.

� For a program file:

1. changing the names of variables

2. writing looping constructs in a different way

3. adding comments, etc.

Figure 4.3: Example of one byte modification

One byte modification in a group is enough. Since a mod-
ulo 2 operation is performed on the RLE elements so addition
or subtraction of one byte will change the position of the ad-
dressed bit in bloom filter. Each group differs from its neigh-
boring group only by two elements. Therefore one modification
influences several groups. Fig. 4.4 contains an example which
shows that for a 174 byte long document, just 2 input byte mod-
ifications are enough to change the entire mvHash-B digest of
te document. The value of n considered in te example explained

68

Figure 4.4: Example illustrating number of Deliberate Modifications required
in order perform anti-blacklisting attack

in Fig. 4.4 is 2, where as recommended value of n by design of
mvHash-B scheme is 50 or 20 depending on the file type. If the
value of neighborhood(n) is higher then number of modifications
required are smaller. For example if n is 50 then one byte mod-
ification will impact majority vote calculation of 50 neighboring
bytes.

4.4 Results

We performed two experiments: One on the textual data(text
documents) and other on visual data(images).

4.4.1 Experiment 1

Our first experiment was performed on a dataset of 50 text files
of variable sizes from the T5-corpus dataset1. As recommended

1http://roussev.net/t5/t5.html

69

 http://roussev.net/t5/t5.html

in [5], we took parameters n and ib to be 50 and 7, respectively.
The results obtained from the experiment show that merely 3%
deliberate modification in the file takes down the similarity score
from 100 to 4 (on an average), whereas the modified file is se-
mantically similar to the original file. Table 4.1 shows the ex-
perimental results of our proposed anti-blacklisting attack for a
small sample of 10 text files.

4.4.2 Experiment 2

We performed a second set of experiments on a dataset of 200
bitmap images of variable sizes. We took images from various
publicly available datasets such as Microsoft Windows Bitmap
Sample Files 2, CVonline: Image Databases 3 and Yokogawa Y-
Link 4). The value of input parameter n was chosen to be 50
and ib was taken to be 8. This is as per the suggestion in [5].

Table 4.2 illustrates the experimental results of our proposed
attack on a sample set of 10 bitmap images. Observed results
demonstrate that by varying as little as 0.3% of the original im-
age bytes, the similarity score of mvHash-B digest for the image
reduces from 100 to 6 on an average. Moreover, the resultant
modified images are visually same as the original image. Fig. 4.5
shows an image and a similar image obtained by our attack al-
gorithm. The left image is the unmodified source RAY.BMP,
taken from Microsoft Windows Bitmap Sample Files 5 while the
image on the right is the modified image generated by our algo-

2http://www.fileformat.info/format/bmp/sample/
3http://homepages.inf.ed.ac.uk/rbf/CVonline/Imagedbase.htm
4https://y-link.yokogawa.com/YL008/?V_ope_type=Show&LANG=EN&Language_

id=EN&Login_type=2&Download_id=DL00002164
5http://www.fileformat.info/format/bmp/sample/1d71eff930af4773a836a32229fde106/

view.htm

70

http://www.fileformat.info/format/bmp/sample/
http://homepages.inf.ed.ac.uk/rbf/CVonline/Imagedbase.htm
https://y-link.yokogawa.com/YL008/?V_ope_type=Show&LANG=EN&Language_id=EN&Login_type=2&Download_id=DL00002164
https://y-link.yokogawa.com/YL008/?V_ope_type=Show&LANG=EN&Language_id=EN&Login_type=2&Download_id=DL00002164
http://www.fileformat.info/format/bmp/sample/1d71eff930af4773a836a32229fde106/view.htm
http://www.fileformat.info/format/bmp/sample/1d71eff930af4773a836a32229fde106/view.htm

rithm. Visual similarity between these two files can be seen to
be very high. However, the mvHash-B similarity score for these
images is 0.

An attacker can apply the proposed algorithm on a malicious
image and can generate a modified image, which is visually same
as the original malicious image but can not be detectable from
mvHash-B similarity hashing. Therefore an attacker can easily
hide the malicious image/text file from the mvHash-B filtering
process defeating the very purpose of approximate matching al-
gorithms.

Figure 4.5: Example: First image from the left is original image taken from
Microsoft Windows Bitmap Sample Files7 and the other image is the gen-
erated modified image from the proposed algorithm; mvHash-B similarity
score of above images is 0

4.5 Countermeasures

In order to prevent the proposed attack, we suggest some im-
provement in the design of mvHash-B construction. The root
cause of the attack is that attacker has the ability to identify the

71

Table 4.1: Experimental results obtained from the proposed attack technique on
Text file

S.No. File Name File size Number of Modification Similarity
(In Kilo Bytes) (in Kilo Bytes) Score

1† Test 02.text 0.47 0.01 0
2 Test 4955.text 14 0.40 0
3 Test 4950.text 23 0.61 0
4 Test 4954.text 27 0.74 0
5 Test 4956.text 30 0.91 0
6 Test 3518.text 34 0.41 0
7 Test 4960.text 47 1.20 7
8 Test 4953.text 76 2.00 14
9 Test 4953.text 189 6.00 9
10 Test 4953.text 190 4.00 10

On an avg. 2.59% 4

† This file is not from T5-corpus database

Table 4.2: Experimental results obtained from the proposed attack technique on
bitmap images

S.No. File Name File size Number of Modification Similarity
(In Kilo Bytes) (in Kilo Bytes) Score

1 Air Conditioner S.bmp 6 0.01 0
2 Pressure Transmitter 03 M.bmp 20 0.45 0
3 Control Valve L.bmp 55 0.028 0
4 DadWood.bmp 265 0.480 0
5 Edison.bmp 500 1.838 8
6 carsgraz 287.bmp 901 2.383 10
7 Ray.bmp 1407 2.14 0
8 Alex bit.bmp 3984 16.682 13
9 MARBLES.bmp 4165 13.424 16
10 12x12 Women sample 400 dpi.bmp 22502 42.244 16

On an avg. 0.228% 6.3

† This file is not from T5-corpus database

72

Figure 4.6: Counter measure for the proposed attack

position of input byte that he can modified with the maximum
influence over the mvHash digest. We want to restrict this lib-
erty by adding two secret input parameter called ‘trigger’ and
‘x’ to the scheme. The investigator can choose any value of these
two parameter during mvHash digest computation.

Let T be the trigger value chosen by the investigator. Fig. 4.6
explains our suggested improvement to mvHash-B scheme. Be-
fore Majority vote calculation rolling hash over the input byte
is calculated. The rolling hash calculation is be done in same
way as explained by Kornblum in Context Triggered Piecewise
Hashing [1]. The value of rolling hash depends only on last s
bytes of the input file. Let Ri denotes the rolling hash of ith

input byte.
Ri=Rolling-Hash(Bi,Bi−1,Bi−2,. . .,Bi−s)

73

where Bi represents the ith input byte. If Ri== -1 mod T for
s≤i< n where n denotes input size. ith byte position is called trig-
ger point. Select last x bytes from the trigger point for further
digest calculation as shown in Fig. 4.6. The number of trigger
points is inversely proportional to T [20]. Thus, for the higher
value of T number of trigger points will be smaller or vice-versa.
An investigator can choose the value of T and x based on in-
put file size and these values are unknown to the attacker. The
attacker does not know selected input byte. Therefore, cannot
perform the deliberate intelligent modification. Random modifi-
cation also does not impact the mvHash-B digest much because
every input byte is not taking part in final digest calculation.
Since the attacker is unaware of trigger positions, thus cannot
perform random insertion/deletion as well.

4.6 Summary

This chapter explored the weakness of mvHash-B similarity di-
gest scheme, which can be exploited by an active adversary to
defeat the purpose of the approximate matching scheme. We
showed an Anti-Blacklisting attack on mvHash-B similarity di-
gest and practically proved that mvHash-B does not withstand
an active adversary against blacklist. We provided an anti-
forensic tool that can be used by an adversary to bypass the
blacklist filtering process of mvHash-B similarity digest. Ad-
ditionally, we suggested an improvement to mvHash design to
conquer the proposed attack. Furthermore the proposed im-
provement ensures the security of scheme against active adver-
sary.

74

Chapter 5

FbHash: A New Similarity
Hashing Scheme for Digital
Forensics

We present a new approximate matching scheme which is se-
cure against active attacks. We term our scheme as FbHash

-Frequency Based Hashing. The idea of FbHash is based on
the TF-IDF (Term Frequency - Inverse Document Frequency)
concept of information retrieval [61]. TF-IDF is a statistical
measure used to evaluate the importance of a word to a doc-
ument in a collection or corpus. FbHash uses this notion to
identify important fragments (features) of a document. A file
fragment’s contribution to the final similarity score is based on
its importance or relevance as per this measure.

We also provide a comprehensive comparative analysis of
FbHash with other prominent approximate matching approaches
i.e., ssdeep and sdhash. We show that FbHash detects similar-
ity with 28 % higher accuracy for uncompressed file formats (i.e.,
text files) and around 50 % higher accuracy for compressed file
formats (i.e., docx). We also show that our proposed scheme is
able to correlate a fragment as small as 1 % to its source file

75

with 100 % detection rate and able to detect commonality as
small as 1 % between two documents with correct appropriate
(low) similarity score and 100 % detection rate. Further, our
scheme also produces the least false negatives in comparison to
other schemes.

We also observe that measuring similarity only at the byte-
level does not allow a good match for compressed file format
documents. Hence, we present two versions of our tool:

� FbHash-B. This version of our tool measures similarity at
the byte-level. We show in section 5.5 that it can detect
similarity with 98 % accuracy for uncompressed file for-
mats.

� FbHash-S. This version performs Syntactic matching and
uses information about the internal structure of a document
in order to measure similarity. This is recommended for
compressed file formats.

Finally, we also provide security analysis of our scheme and show
that FbHash is resistant against active adversary attacks.

The rest of the chapter is organized as follows: In Section 5.1,
we present our scheme FbHash and its variant FbHash-B that
works for uncompressed file formats. In Section 5.2, we show
how our scheme generates the final hash to calculate a similarity
score. This is followed by Section 5.3, in which we present
our FbHash-S scheme for finding similarity in compressed file
formats. Section 5.4 presents the security analysis of FbHash

followed by comparative analysis with other existing schemes in
Section 5.5. Finally, we summarize this chapter in Section 5.6.

76

5.1 Construction of FbHash (FbHash-B) Simi-

larity Hashing Scheme

To facilitate better understanding of our scheme, we first define
some important terms and notations that are used throughout
the paper.

5.1.1 Notation and Terminology

� Chunk : Sequence of k consecutive bytes of a document.

� chDi : represents the ith chunk of a document D.

� Chunk Frequency : Number of times a chunk chi appears
in a document D. Represented as chfDchi.

� Document Frequency : The number of documents that con-
tain chunk ch. Represented as dfch.

� N : denotes the total number of documents in the docu-
ment corpus.

� RollingHash(chi) : Rolling hash value of chi

� ch-wghtchi : Chunk weight of chi

� doc-wghtchi : Document weight of chi.

� WD
chi

: denotes the chunk-Score of chi in document D.

5.1.2 Design of FbHash-B

Our scheme adopts the TF-IDF weighing method [61] to find
similar documents. The working of our scheme FbHash-B is
divided into the following three steps:

77

5.1.2.1 Chunk Frequency calculation:

In this step, we first divide our document into certain blocks
of bytes. We term each block as a chunk. The aim is to then
calculate the number of times each chunk appears in the given
document, i.e., calculate chunk frequency

1. Let D =BD
0 , BD

1 , BD
2 , . . . , BD

l−1 be a l byte long document,
where BD

i indicates the ith byte of the document D. A chunk
is a sequence of k consecutive bytes of D, where

chD0 =BD
0 , BD

1 , BD
2 , , BD

k−2, BD
k−1

chD1 =BD
1 , BD

2 , BD
3 , , BD

k−1, BD
k

chD2 =BD
2 , BD

3 , BD
4 , , BD

k , BD
k+1

.

.
chDi =BD

i , BD
i+1, BD

i+2, , BD
i+k−2, BD

i+k−1

.

.
chDl−k=BD

l−k, BD
l−k+1, BD

l−k+2, , BD
l−2, BD

l−1

2. To compute the frequency of each of the identified chunks in
the document, rolling hash technique is used. A rolling hash
is a non-cryptographic hash function which allows the rapid
computation of hash of each of the consecutive chunks. The
fast computation of the rolling hash is due to the fact that
the hash computation of a chunk utilizes the hash of the
previous chunk, with which the current chunk shares most
of the data bytes.

In our construction, we use the Rabin Karp rolling hash
function [62], which calculates the hash value with a

78

very simple function using multiplications and additions as
shown below:

RollingHash(chi) = BD
i a

k−1 + BD
i+1a

k−2+BD
i+2a

k−3 +. . .
+ BD

i+k−1a
0 modulus n

RollingHash(chi+1) = a*RollingHash(chi) - BD
i ak + BD

i+k

modulus n

where a is a constant, k is the chunk size, and n is a large
prime number.

In our implementation, the value of RollingHash(chi) is an
unsigned 64-bit number, i.e., the rolling hash value lies be-
tween 0 to (264 − 1). the byte value Bi and the constant a
range between 0 to 255. This in turn puts a limitation on
k as the value of k must satisfy the following relation:

BD
i ∗ ak−1 ≤ 264 − 1

As the maximum values of Bi and a can be 255, thus,

255 ∗ 255k−1 ≤ 264 − 1.

The maximum value of k which satisfies the above equation
is 7 as shown below

264 − 1 > 255 ∗ (255)6 ≈ 256.

Hence, we choose k=7.

3. Once the rolling hash value of a chunk is calculated, the
frequency of each chunk will be computed by the number

79

of times a rolling hash value appears. We make this obser-
vation by storing the rolling hash values in a hash table as
follows :

� Index of the hash table is the rolling hash value of a
chunk

� Value of the hash table is the number of times that
rolling hash value (i.e., the chunk) appears in a docu-
ment.

4. To guarantee that each unique chunk gets a unique rolling
hash value, i.e., no collision happens, the value of n is taken
as a prime number greater than 256 (since, 256 ∗ 256k−1 =
256)

5. Based on chunk frequency, a chunk weight will be assigned
to each chunk, using the following formula:

ch-wghtch =1+log10 (chfdch)

Thus, the higher chunk frequency, the higher weight and
vice-versa. 1

5.1.2.2 Document frequency calculation:

Document frequency of a chunk is the number of documents
containing that chunk. The aim of this step is to identify the
important chunks of the given document that can help identify
it. Usually, the chunks that occur too frequently in a document
have little relevance with respect to identifying the document.
On the other hand, the less frequent chunks of a document are

1The chunk frequencies are normalized.

80

more important and relevant. Thus, there is a need to weigh up
the effects of less frequently occurring chunks.

1. In order to calculate Document Frequency, a dataset of
N document files has been taken (in our implementation
N=1000). The document Frequency of a chunk ch is re-
ferred as dfch. Document frequency is being calculated as
follows:

� Identify chunks of each document in the dataset.

� Calculate rolling hash of each chunk.

� Create a hash-table where the index of the hash table
indicates the rolling hash value of chunks and the value
of the hash table indicates the document frequency of
the corresponding chunk.

� Every unique chunk of each document will increase the
value of the hash-table indexed by it′s rolling hash by
1.

2. Based on the document frequency, a document weight will
be assigned to each chunk indicating the informativeness
or uniqueness of the chunk. We denote it as doc-wghtch
and doc-wghtch is calculated as follows.

if dfch >0 : doc-wghtch = log10 (1000/dfch).
2

otherwise : doc-wghtch = 1

5.1.2.3 Digest Generation

1. Once we have the chunk-weight and document-weight of
each chunk in document D, a Chunk-Score (denoted is as

21000 denotes the total documents considered in the dataset

81

Figure 5.1: FbHash Digest

WD
chi

) is then calculated as follows

WD
chi

= ch-wghtDchi * doc-wghtchi

This chunk score will be utilized to calculate similarity be-
tween two documents as shown later.

2. Now, the final FbHash digest of document D can be repre-
sented as a n element long vector where the index of vector
represents the RollingHash(chi) and the value of the corre-
sponding element is WD

chi
as shown in fig 5.1. The index of

the vector is represented by RollingHash(chi) because this
value uniquely identifies chi. This is because, since we form
7-byte chunks, the total number of unique chunks can not
be more than n.

For ease of explanation in this paper, we represent the
FbHash digest as shown below.

digest(D)=WD
ch0

, WD
ch1

, WD
ch2

, . . . , WD
chn−1

The time complexity of FbHash-B digest generation is cal-
culated as follows: The total chunks in a given document
is l − k where, l is the length of the document in bytes as
mentioned at the start. Thus, computations of chunk fre-
quencies in Section 5.1.2.1 will be done in l−k steps. Steps
involving document frequency calculation and assigning of
document weights in Section 5.1.2.2 will be done offline

82

and incurs no complexity in the online stage. Again, in
Section 5.1.2.3, calculating the chunk score will be done in
l − k steps. Since the complexities of all the steps will be
added, the overall complexity of FbHash-B digest genera-
tion will be O(l), where, l is the length of the document in
bytes.

5.2 Digest Comparison and Similarity Score

Calculation

This section explains digest comparison and similarity score cal-
culation of two documents. Let D1 and D2 be two documents
and FbHash vector digest of D1 and D2 is as follows.

digest(D1)=WD1

ch0
, WD1

ch1
, WD1

ch2
, . . . , WD1

chn−1

digest(D2)=WD2

ch0
, WD2

ch1
, WD2

ch2
, . . . , WD2

chn−1

The similarity score between D1 and D2 is calculated using
cosine similarity [63] as follows:

Similarity(D1, D2) =
∑n−1

i=0 W
D1
chi
∗WD2

chi√∑n−1
i=0 W

D1
chi

2
∗
√∑n−1

i=0 W
D2
chi

2
∗ 100

Final similarity score ranges between 0 to 100. where, 100 in-
dicates the files are exactly the same whereas score of 0 indicates
no similarity.

5.3 Design of FbHash-S

The purpose of Fbhash-S is to find similarity in compressed
file format documents, e.g., docx, pptx, pdf etc. During our

83

experiments, we observed that similarity detection at the byte-
level does not work for compressed documents. For example,
if there are two docx files that have 90 % similar content after
compression, at the byte level there won’t be any similarity with
high probabilty. Thus, applying FbHash-B does not deliver good
results.

The idea of FbHash-S is to use internal structure information
of a document and perform syntactic matching to find similar-
ity. Using the internal structure information of the document,
FbHash-S first extracts the uncompressed content of the doc-
ument. For example, in case of docx files, it will extract the
text content (available in xml files stored in word folder) and
images (stored in media folder under word folder). In our im-
plementation we have used Apache POI package to extract text
and images from the docx files. Then all the four steps, i.e., 1)
Chunk frequency calculation 2) Document Frequency Calculation
3) Digest Generation 4) Digest Comparison and Similarity Score
Calculation are peformed similarly as FbHash-B but individually
on the text content and the images. Then the final score is the
average of the score generated by text content and images. The
run-time complexity of FbHash-S is higher than FbHash-B due
to the additional step of content extraction.

5.4 Security Comparison of FbHash with

Other Schemes Against Active Adver-

sary Attacks

ssdeep, sdhash, mrsh, mvHash are some of the most popular
and prominent approximate matching schemes. Several papers
have shown that these algorithms are not secure against active

84

adversary attacks. In the subsequent part, we discuss attacks
on each of the above mentioned schemes and explain why
FbHash is not prone to these attacks:

ssdeep[1]: The paper ‘Security Aspects of Piecewise Hashing
in Computer Forensics [20]’ by Baier and Breitinger shows an
anti-blacklisting attack by performing intentional modification.
ssdeep divides the input document into variable sized non
overlapping blocks and then computes a cryptographic hash
(e.g., md5) of each block, which then contribute to the final
ssdeep hash digest. The blocks are generated based on some
trigger points. The way ssdeep works, irrespective of the file
size, the file will always be split into 64 blocks of variable size.
Thus the final hash signature will also consist of 64 bytes only.
Also, for ssdeep to detect a similar file to a known blacklisted
file, the two hash signatures should have at least a common
7-byte substring in both.

� To evade detection, an attacker thus makes sure that such
a common 7-byte substring is never found by making minor
modifications in the malcious file’s content. For example, in
one of the attack scenarios, the attacker changes one byte
in only the 7th block, 14th block, 21st block (multiples of
7 blocks) and so on while preserving the trigger point lo-
cations to change the hash signature. In the other attack
scenario, the attacker finds few global trigger sequences that
will always create a trigger irrespective of the file size. In-
sertion of such global trigger sequences will lead to different
blocks creation, which will change the hash signature com-
pletely and thus will help evading detection. The advantage
of such attacks is that by making very small changes in the

85

content, the hash signature can be changed significantly.

However, in our case such attacks won’t work. This is so
because making small changes in the content will lead to
creation of only few new chunks, having very low chunk
frequency and thus low chunk score, preserving most of
the high scoring chunks. In our similarity calculation, the
low scoring chunks (i.e., the less relevant chunks) do not
contribute much in the actual similarity comparison and the
file will still be detected as similar to a known file with very
high probability. In order to change the hash signature,
the attacker will have to modify the majority of the high
scoring chunks. In FbHash, as each chunk differs from its
neighboring chunk by only one byte (the rest of the bytes
are overlapping), in order to highly influence the final score,
each chunk needs to be modified. Since the chunk size is
7-bytes only, in order to impact similarity score every 7th
byte has to be modified. This will alter the content of the
original document data significantly and the attacker’s aim
to make feasible changes will be defeated and thus of no
use.

sdhash: Breitinger et al. in their work titled - “Security and
Implementation Analysis of the Similarity Digest sdhash” [34]
state that given a file, it is easily possible to tamper a given
file to bring down the similarity score to approximately 28. An-
other paper titled - “A collision attack on sdhash similarity
hashing” [16] by Chang et al. shows an anti-forensics mecha-
nism that allows someone to generate multiple dissimilar files
corresponding to a particular file with 100% sdhash similarity,
which can confuse the filtering process. Both of the attacks are
possible because the entire content of a file doesn’t contribute

86

to the final hash generation. Only some of the selected chunks
participates in the final hash generation.

In our scheme, each and every byte of the document con-
tributes to the final score (by formation of a new chunk) and
their influence on the final score depends on their importance
to the document. Hence, any modification will impact the final
score. Further, to bring the similarity score really low or close to
zero, almost every chunk has to be modified, which as discussed
earlier will alter the content of the document significantly and
make it altogether a different file.

mvHash-B The paper titled - “Security Analysis of
MVhash-B Similarity Hashing” [17] shows that it is possible
for an attacker to fool the algorithm by causing the similarity
score to be close to zero even when the objects are very similar.
The proposed attack is possible because mvHash compresses the
input document using Run-length encoding (RLE). This gives
the attacker freedom to bring the similarity score down with
very few modifications.

No such compression is performed in FbHash. Every byte
contributes to the final score calculation and hence our scheme
is resistant to the attack.

5.5 Comparative Evaluation of FbHash

In this section, we present a comparative analysis of Fbhash with
the two most prominent approximate matching algorithms, (i.e.,
ssdeep and sdhash) on two test cases: Fragment Detection
and Single-common-block correlation. We chose these two
algorithms for comparison as their reference standard implemen-
tation codes are available online and they are the most popu-

87

lar algorithms used by the forensics community. Section 5.5.1
describes the results of the Fragment Detection test, and the
results of the Single-common-block correlation test are shown in
Section 5.5.2.

5.5.1 Fragment Detection

This test aims to identify the tool’s ability to correlate a frag-
ment (small part of a file) to its source file. We present a compar-
ison between ssdeep, sdhash and FbHash performance. Frag-
ments are generated in two ways - Sequential Fragments and
Random Fragments, in a similar way as shown in [11].

� Sequential Fragments: Create the fragment from the
beginning of the file. For example, for a 1000 byte long file,
a 1 % fragment of a file is the first 10 bytes of the source
file.

� Random Fragments: Generate the fragment from a ran-
domly chosen position in the file . For example, for a 1000
byte long file, if the randomly chosen position is ‘r’, then
the 1 % long fragment is the next 10 bytes from r.

We perform the test on ‘Text dataset’and ‘Docx dataset’ de-
scribed in sections 5.5.1.1 and 5.5.1.2 respectively.

5.5.1.1 Text Dataset Result

Experimental Setup: The test is performed on a dataset of
960 fragment files (480 sequential fragments and 480 randomly
generated fragments), generated from 20 variable size text files
(5 KB to 1 MB taken from T5 corpus[64]). Each text file
generates 24 sequential fragment files and 24 random fragment

88

files of the following sizes: 95 %, 90 %, 85 %, 80 %, 75 %, 70 %,
65 %, 60 %, 55 %, 50 %, 45 %, 40 %, 35 %, 30 %, 25 %, 20 %,
15 %, 10 %, 5 %, 4 %, 3 %, 2 %, 1 %, <1 %. The total number
of comparisons performed by each scheme for text files is thus
19 200.

Results:

� The graph in Fig. 6.1 represents the results of ssdeep,
sdhash and FbHash on Text datasets.

1. X-axis represents the different fragment sizes.

2. The first Y-axis(left) represents the Match Percentage.
Match percentage or correlation detection rate is de-
fined as the percentage of those test samples where,
the tools are able to detect similarity by giving a valid
match score (in other words, the number of times on
a scale of 100, the tool is able to correlate fragments
to their original source files for a given particular frag-
ment size). This is illustrated in the form of lines in the
graph. For example, in Fig. 6.1, for the fragment size
50 %, ssdeep (represented by blue line) detects simi-
larity between a fragment and its source file for 90 %
of the total samples tested but fails for the remaining
10 %. On the other hand, for the fragment size 50 %,
sdhash (red line) and FbHash-B (green line) are able to
correlate the fragments to their original source files for
all the samples tested, i.e., 100 % correlation detection
rate (due to overlap between the red and green line,
only the red line is visible). Since the test is performed

89

for the fragments as small as 1 % of the file, hence any
similarity score greater than 1 is being considered as a
valid match in these experiments.

3. The second (right) Y-axis represents the average sim-
ilarity score calculated by the ssdeep, sdhash and
FbHash-B between a fragment considered as one doc-
ument and the original source file as the other doc-
ument for a given fragment size. Bars in the graph
illustrate the average score. For example, in Fig. 6.1
for 95 % long fragments, we calculated the similarity
score between each file and its 95 % long fragment.
The blue bar represents ssdeep, the red bar repre-
sents sdhash and FbHash is represented by the green
bar. The averge similarity scores generated by ssdeep,
sdhash and Fbhash for 95 % fragments are 95, 89 and
97 (out of total of 100) respectively.

From Fig. 6.1, it can be seen that all the three tools show
a 100 % correlation detection rate for fragment sizes ≥ 55
% (due to overlap only the horizontal blue line is visible).
ssdeep can correlate a fragment to its source file if it is 50
% or more of the source file with high correlation detection
percentage, i.e., ≥ 90 % of the times of the total samples
tested. However, it cannot identify similarity for 20 % or
smaller fragment size. sdhash can detect similarity for
fragment size of 15 % or more with high percentage, i.e.,
≥ 85 % of the times for the total samples tested. However,
its correlation detection rate drops to 60 % or less as the
fragment size decreases beyond 10 % or less. On the other
hand, the correlation detection rate for FbHash is 100 %
for all the fragment sizes, i.e., all the fragments that were

90

Figure 5.2: Fragment Detection Test Results on Text dataset

tested were successfully correlated to their original source
files even when the fragment size was as low as 1 % as
represented by the horizontal green line.

If we look at the right y-axis of Fig. 6.1, it can be seen that
in case of sdhash, the relationship between the similarity
scores predicted by the tool and actual similarity of the
fragment to its source file is not consistent. For example,
for fragment size 30 %, the similarity score given by sdhash

is comparatively higher than that given for fragment size 95
% whereas it should be the reverse. This shows that sdhash
similaritiy scores do not reflect the actual similarity. On
the other hand, this relationship is correctly reflected by
FbHash. It can be seen that as the fragment sizes decrease
from 95 % to 1 %, the average score given by FbHash also

91

decreases. This holds true for ssdeep as well up to fragment
size ≥ 25 %. However, beyond that ssdeep, cannot identify
the similarity which is not the case for FbHash. FbHash

shows the correct relationship even for fragments as small
as 1 % to 5 % of the file.

� F-score: We calculate the F-score in order to calculate
the accuracy of the ssdeep, sdhash and FbHash-B. The
F-score is a generic measure to test the accuracy of a tool
that considers both the precision and recall values of the
tool while computing the final score. The precision param-
eter signifies how many similar files were predicted similar
by the tool and recall indicates how many similar files pre-
dicted by the tool were actually similar. Precision, Recall
and F-score are calculated as follows:

F -score = 2 ∗ precision∗recall
precision+recall

precision = TP
TP+FP

recall = TP
TP+FN

where, TP refers to true positive, TN refers to true neg-
ative, FP refers to false positive and FN refers to False
negative results generated by the tool.
Let f1 and f2 be two given files and the similarity score
generated by an approximate matching tool be represented
as AM(f1,f2) which ranges between 0 to 100. Let t be a
threshold value, defined later in this section. Since we have
generated the dataset with known similarity, thus, we know
the actual similarity in the files which we call as ground
similarity represented by GS(f1,f2) (ranges between 0 to

92

100 where 0 indicates no similarity and 100 indicated f1
and f2 are identical). Any value of GS(f1,f2) > 0 indicates
that f1 and f2 shares some similarity. The result of a tool is
considered TP, TN, FP and FN according to the following
conditions:

TP : if GS≥1 and AM(f1,f2)≥ t
TN : if GS<1 and AM(f1,f2)< t
FP : if GS<1 and AM(f1,f2)≥ t
FN : if GS≥1 and AM(f1,f2)< t

t represents the threshold value of the similarity score gen-
erated by a tool. It is considered that a tool has found a
match if the similarity score generated by the tool is greater
than or equal to t (i.e. AM(f1,f2)≥ t is a match). The pa-
per [13] claims that the threshold score of up to 22 yields
near-perfect detection for sdhash. Since no such value is
suggested for ssdeep, the value of t is taken to be 22 for all
three schemes in order to compare the results. We observed
that for t=16 we get the best detection rate for FbHash.
Thus we have shown F-score results of FbHash for both
t=22 and t=16 shown in Fig. 6.2 and 5.4 respectively.
Table 5.5.1.1 shows the TP, TN, FP, FN, precision, recall
and F-score value generated by the experiment. A total of
9200 comparisons are performed for each sequential frag-
ment and random fragment test case.

As the results show, all the three schemes have 0 False
Positive Rate (FPR). However, ssdeep has the highest false
Negative Rate (FNR) and FbHash has the minimum FNR.
Figs. 6.2 and 5.4 show that FbHash-B detects similarity
with the highest accuracy of 98 % with suggested threshold

93

ssdeep sdhash FbHash-B FbHash-B

(t=22) (t=22) (t=22) (t=16)

Sequential Random Sequential Random Sequential Random Sequential Random

True Positive (TP) 244 246 373 373 408 419 438 442

True Negative (TN) 8740 8740 8740 8740 8740 8740 8740 8740

False Positive (FP) 0 0 0 0 0 0 0 0

False Negative (FN) 216 214 87 87 52 41 22 18

False positive rate (FPR) 0 0 0 0 0 0 0 0

False negative rate (FNR) 0.0234 0.023 26 0.009 404 0.0094 0.0056 0.0044 0.0023 0.0019

Precision 1 1 1 1 1 1 1 1

Recall 0.5304 0.5347 0.8108 0.8108 0.8869 0.9108 0.9521 0.9608

F-score 0.6931 0.6968 0.8955 0.8955 0.9400 0.9533 0.9755 0.9789

Table 5.1: Fragment Identification test case F-Score calculation for Text-Data
set. Total number of comparisons performed for each sequential and Random
fragments is 9200.

94

Figure 5.3: Figure shows the F-score comparison for Fragment Identification
test on Text dataset. The value of t is taken to be 22 for all three schemes.

(16) and 95 % with threshold 22, whereas the accuracy of
ssdeep is 69 % and sdhash is 89 %.

5.5.1.2 Docx Dataset Results

We also test ssdeep, sdhash and FbHash for docx dataset. Fol-
lowing are the details of the experiment.

Experimental Setup: The test is performed on the dataset
of 960 fragment files (480 sequential fragments and 480 ran-
domly generated fragments), generated by 20 variable size docx
files. Each docx file generates 24 sequential fragment file and 24
random fragment files of the following sizes: 95 %, 90 %, 85 %,
80 %, 75 %, 70 %, 65 %, 60 %, 55 %, 50 %, 45 %, 40 %, 35 %,
30 %, 25 %, 20 %, 15 %, 10 %, 5 %, 4 %, 3 %, 2 %, 1 %, <1
%. The fragments are generated only by segmenting (cutting)
content of docx files into pieces. Total number of comparisons

95

Figure 5.4: Figure shows the F-score comparison for Fragment Identification
test on Text dataset. The value of t is taken to be 22 for ssdeep and sdhash
and 16 for FbHash.

96

performed by each scheme for docx files is 19 200.
Results:

� Fig. 5.5 shows the average similarity score and match per-
centage of ssdeep, sdhash and FbHash-B on docx dataset.
The results obtained by all three algorithms are imprecise
(inaccurate). As shown in Fig. 5.5, sdhash can detect sim-
ilarity for all fragment sizes with higher match percentage
compared to ssdeep. FbHash-B on the other hand is able to
correlate even the smallest fragment with 100 % detection
rate (green horizontal line). However, the average matching
scores of all the three algorithms do not reflect the actual
similarity as fragment sizes decrease from 95 % to 1 %.
Thus, none of these algorithms is useful.
The reason behind this is that docx is a compressed file
structure due to which any modification in the content of a
file changes the final compressed file completely with high
percentage. Hence, at the byte level, the two different frag-
ments or versions of a docx file are completely different.
Since both ssdeep and sdhash work at byte level, the re-
sultant similarity score is completely inaccurate. Hence,
we state that byte-level matching is not sufficient to find
similarity of compressed file structures.

Fig. 5.6 presents a comparison between the results obtained
by ssdeep, sdhash, FbHash-B and FbHash-S. As Fig. 5.6
shows, the results obtained by FbHash-S are accurate in
terms of similarity score and its relationship to the actual
similarity of a fragment to its source file, i.e., as the frag-
ment sizes decrease, the scores also decrease.

� F-score: F-score is calculated similarly as explained in Sec-

97

Figure 5.5: Fragment Detection Test Results on Docx dataset

Figure 5.6: FbHash-S Fragment Detection Test Results on Docx dataset

98

Figure 5.7: Fragment Detection Test F-score comparison on Docx dataset

tion 5.5.1.1. Fig. 5.7 shows the comparison between the F-
score of ssdeep, sdhash, FbHash-B and FbHash-S. It shows
that FbHash-S outperforms ssdeep, sdhash and FbHash-B

by 50 %, 53 % and 73 % respectively higher accuracy for se-
quential fragments and by 53 %, 47 % and 64 % respectively
higher accuracy for random fragments. FbHash-S achieves
accuracy of 95 % and 92 % for sequential and random frag-
ments respectively.

5.5.2 Single-common-block file correlation

This test was first proposed in paper [3] by Vassil Roussev. It
aims to identify the ability of a tool to correlate the related doc-
uments, i.e., those which share a common single block of data.
For this test case as well we generated the ground truth dataset
with known similarity. To generate the dataset, T5 corpus [64]
is being used. the dataset is generated following the steps given

99

below.

� 3 files of the same size are taken from the T5 corpus.

� The following 10 different sized fragments of the first file is
created: 100 %, 66.66 %, 42.86 %, 25 %, 11.11 %, 5.2 %,
4.1 %, 3.09 %, 2.04 %, 1.01 %.

� Each fragment will be inserted in randomly chosen positions
in the second and third file one by one. This will result in
the creation of 10 pairs of the second and third file with
shared common block of 50 %, 40 %, 30 %, 20 %, 10 %, 5
%, 4 %, 3 %, 2 %, 1 % respectively.

� Take another triplet of files and repeat from step 1 to step
3 for various file sizes.

We perform the test on ‘Text dataset’ and ‘Docx dataset’,
and the results of the tests are shown in Section 5.5.2.1 and
Section 5.5.2.2 respectively.

5.5.2.1 Text Dataset Result

Experimental Setup: The test is performed on a dataset of
280 document pairs with a shared single common block, gener-
ated from 60 variable sized text files (5 KB to 10 MB).

Results:
The graph in Fig. 5.8 represents the results of ssdeep, sdhash
and FbHash-B on Text datasets. The results show that ssdeep

(blue line) can detect the similarity for ≥ 30 % single-common-
block similarity (commonality) with high percentage (≥ 75 %).
sdhash (red line) can detect similarity up to 3 % single-common-
block size with high percentage (≥ 93 %) whereas FbHash-B

100

Figure 5.8: Single-common-block file correlation Results for Text-Data Set

(green line) can detect similarity up to 1 % single-common-block
size with high percentage (≥ 93 %). sdhash and FbHash-B both
perform well in this case and the similarity score generated by
both the tools are very close to the actual similarity.

5.5.2.2 Docx Dataset Results

This subsection presents the results of the ‘Single-Common
Block Detection’ test for docx dataset. Following are the de-
tails of the experiment.

Experimental Setup: The test is performed on a dataset
of 280 document pairs with a shared single common block, gen-
erated from 60 variable size docx files (5 KB to 1 MB).

Results:
Fig. 5.9 shows the average similarity score and match per-

101

Figure 5.9: Single-common-block file correlation Results for Docx dataset

centage of ssdeep, sdhash, FbHash-B and FbHash-S on Docx
dataset. The correlation detection rate or the match percentage
of ssdeep, sdhash and FBHash-B fluctuates with common block
size and is not consistent. On the other hand, the correlation
detection rate of FBHash-S is consistent and very high (≥ 90 %)
for all block sizes from 50 % to 1 %.

In terms of average matching score, it can be seen that results
obtained by ssdeep, sdhash and FBHash-B are imprecise and do
not reflect the actual similarity, since docx is a compressed file
structure. On the other hand, results obtained by FbHash-S are
more accurate and consistent.

102

5.6 Summary

In this chapter, we presented the first approximate matching
scheme which is secure against active manipulations. The pro-
posed scheme is able to correlate a fragment as small as 1 % to
the source file and able to detect commonlaity as small as 1 %
between two documents with correct/appropriate (low) similar-
ity score. We experimentally demonstrated that the proposed
approach provides 98 % accuracy in some test cases.

103

Chapter 6

FbHash-E: A Time and
Memory efficient Version of
FbHash Similarity Hashing
Algorithm

FbHash [18], described in the previous chapter of this thesis, is
the only recent algorithm which has been shown to be secure
against active attacks and provides the highest (98%) accuracy.
However, the incorporation of security features impacts other
factors such as throughput, scalability, usability, etc., of a sys-
tem which can incur additional costs. Due to this, FbHash is
slower and memory intensive compared to other popular existing
algorithms. Often practical implementations of such algorithms
require a trade-off between security and performance. Security
add-ons impact other factors such as throughput, scalability, us-
ability, etc., of a system which can incur additional costs. The
need of the hour is a construction that provides a balance be-
tween security and efficiency while maintaining the accuracy and
reliability of the results.

In this chapter, we propose a new version of FbHash termed as

104

FbHash-E. We propose some new implementation changes and
show that FbHash-E is faster and requires lower memory usage
compared to its predecessor. We provide a detailed performance
analysis of the same and compare its performance with respect
to FbHash and other popular algorithms available in the litera-
ture. We also perform a thorough security analysis of FbHash-E
which was missing for FbHash in [18] by performing a variety of
state-of-the-art containment and resemblance tests. We provide
a comprehensive comparative analysis with other existing pop-
ular algorithms and show that our tool outperforms all other
tools in all of the tests performed. This shows that though our
tool is a little less accurate than FbHash, our tool still is the
best compared to other existing tools in terms of security and
robustness.

The contributions of this chapter are as follows:

1. We show that the current best approximate matching tool
(in terms of security),i.e., FbHash is not very efficient in
design in terms of memory consumption and run time per-
formance and list out possible reasons behind them.

2. We then propose a more time and memory-efficient version
of FbHash and term it as - FbHash-E.

3. We present a novel bloom filter based document frequency
design implementation in FbHash-E that reduces the mem-
ory requirements to a few MBs compared to its predecessor
FbHash.

4. We show that design changes done to improve the perfor-
mance of FbHash does not impact its ability to detect sim-
ilar files by much, and there is only an average difference
of 7.5 in the scores generated by FbHash and FbHash-E.

105

5. We show a detailed security analysis of FbHash-E, perform
more tests to evaluate its robustness that was not done ear-
lier for FbHash and compare its results with the other state-
of-the-art forensic tools. We show that FbHash-E outper-
forms all the other tools in all the security tests conducted.

6. We also demonstrate the result of Consistency Test and
Code Version Identification Test, discuss their significance
in relation to the evaluation of a forensic tool and present
their results. We further show that FbHash-E delivers the
best results under these two sets of tests as well.

The rest of the chapter is organized as follows: Section 6.1
provides a brief overview of FbHash similarity hashing scheme.
Section 6.2, discusses the design limitation of FbHash. This is
followed by Section 6.3, which presents improvements to Fb-
Hash scheme and propose a new scheme FbHash-E. Section 6.4
presents the performance statistics, followed by Section 6.5 that
provides a thorough comparative evaluation of FbHash-E with
other existing schemes on benchmark test cases. Finally, we
conclude our work in Section 6.6 and discuss future prospects.

6.1 FbHash

In this section, we briefly discuss the working of FbHash
algorithm. For further details, one can refer [18].

Notations: We first present some important notations that
have been adopted by FbHash and also in FbHash-E.

� Chunk : Sequence of k consecutive bytes of a document.

106

� chDi : represents the ith chunk of a document D.

� N : denotes the total number of documents in the docu-
ment corpus.

� RH(chi) : Rolling hash value of chi

� ch-wghtchi : Chunk weight of chi

� doc-wghtchi : Document weight of chi.

� WD
chi

: denotes the chunk-Score of chi in document D.

FbHash (Frequency-based hashing) adapts the concept of
TF-IDF (Term Frequency — Inverse Document Frequency)
technique to quantify similarity between two documents. TF-
IDF is a statistical measure used to estimate the importance
of a word to a document in a collection or corpus. FbHash
uses this concept to identify important fragments (features) of a
document. Based on the importance or relevance of a fraction,
its contribution to the final similarity score is measured. How-
ever, each and every part of the document contributes to the
final score depending on its relevance. The FbHash algorithm
comprises of the following two steps:

� Digest Generation: The digest of document is gener-
ated as follows:

– The document is first divided into byte chunks. A
chunk is a sequence of k consecutive bytes of the doc-
ument, where each neighboring chunk has (k-1) bytes
in common. In FbHash, the value of k is 7.

– The frequency of each chunk in the document is next
calculated. The chunk frequency is represented by its

107

corresponding rolling hash frequency in FbHash. It is
computed by calculating rolling hash of each chunk and
incrementing the corresponding frequency value in a
hash table by 1 at the rolling hash index upon each
occurrence of a rolling hash.

– Based on the chunk frequency, a chunk weight (ch-
wght) of each unique chunk is computed using the fol-
lowing formula:

ch-wght =1+log10 (chunk-frequency)

– To calculate the digest of a document, the document
frequency of each chunk is required. Document fre-
quency of a chunk indicates the number of the docu-
ment containing the chunk in a data-corpus. Document
frequency is used to signify the importance of the chunk
in a document. Usually, the chunks that occur in very
many documents have little significance to identifying
a document. On the contrary, the less frequent chunks
are more critical and relevant to represent a document
in a collection. This is a pre-computed value, which is
computed using a dataset of N documents and calcu-
lating the number of documents containing that chunk.

– Using the calculated document frequency (denoted by
df), a document-weight (doc-wght) is assigned to each
chunk as follows:

if df >0 : doc-wght = log10
N
df

otherwise : document weight = 1

– Once we know the chunk-weight and document-weight
of a chunk, a chunk score is assigned to each chunk in

108

the document as follow:
Chunk-score = Chunk-weight × document-weight

– The final digest is vector of<rolling-hash,chunk-score>
tuple. The digest of a document D with n unique
chunks is represented as follows:

digest(D) = (RH(ch0),W
D
ch0

), (RH(ch1),W
D
ch1

), . . . ,
(RH(chn−1),W

D
chn−1)

� Digest comparison and similarity score calculation
Let D1 and D2 be two documents with n1 and n2 unique
chunks respectively. The FbHash digests of D1 and D2 are
respectively as follows:

digest(D1)=(RH(ch0),W
D1
ch0

), (RH(ch1),W
D1
ch1

), . . . ,
(RH(chn−1),W

D1
chn1−1)

digest(D2)=(RH(ch0),W
D2
ch0

), (RH(ch1),W
D2
ch1

), . . . ,
(RH(chn−1),W

D2x
chn2−1)

The similarity score between D1 and D2 is calculat ed
using cosine similarity [63] as follows:

Similarity(D1, D2) =
∑n1∩n2

i=0 W
D1
chi
∗WD2

chi√∑n1−1
i=0 W

D1
chi

2
∗
√∑n2−1

i=0 W
D2
chi

2
∗ 100

The final similarity score ranges between 0 to 100. where
100 indicates, the files are exactly the same, whereas a score
of 0 indicates no similarity.

6.2 Design Limitations of FbHash

In this section, we discuss the design issues and limitations of
FbHash based on following three dimensions - Compactness, Ef-

109

ficiency and Correctness.

� Compactness refers to the amount of memory (space)
needed for one execution of the tool to produce expected
results. Space or memory efficiency becomes crucial for the
fast execution of the tool as the size of the input grows. The
memory resource requirement increases with the size of the
input data. Particularly in case of approximate matching
algorithm, where the input size is uncertain, it becomes
important to limit the memory consumption as much as
possible to run the tool correctly and efficiently on devices
with regular computing power. In the current version of
FbHash, high amount of memory is required for the follow-
ing steps:

– Document-weight dictionary : While calculating the
FbHash digest, each chunk is assigned a document
weight calculated using inverse document frequency
value. Since we need this value for each chunk of
the document under investigation, we need quick ac-
cess to the document-weight dictionary during runtime.
This necessitates the storage of this dictionary into the
RAM. However, theoretically, this dictionary may con-
tain 256 unique chunks, as the chunk size is 7 bytes and
as FbHash uses hash table data structure to store it, this
in turn leads to significant memory overhead as stor-
ing such a huge table requires a RAM memory space
close to 220GB while requiring the RAM for perform-
ing other computations as well simultaneously which is
humongously large.

– Digest size: The chunk size of the previous version of

110

FbHash implementation is 7 bytes and rolling hash size
is 55 bytes. Theoretically, in the worst case, digest cal-
culation and storage of one file may have 256 distinct
chunk and needs huge RAM memory, which is practi-
cally infeasible to execute on regular devices. Even in
other cases, it has been observed that the digest size is
still quite big for large files.

In the new version FbHash-E, we have focused on these
limitations and addressed each of them.

� Efficiency refers to the amount of computing time required
to obtain the similarity score. The aim is that the tool can
run as fast as possible while preserving the correctness and
compactness of the algorithm. In case of runtime efficiency
the previous version of FbHash had the following limita-
tions:

– For every execution, the tool needed to load (read and
create) the document-weight-dictionary into the RAM,
which added a constant execution time to each run of
the tool.

– Creating a big hash table to calculate the chunk fre-
quency again leading to increased time execution.

We have done some alterations in the new proposed version
of FbHash-E tool to significantly reduce the run-time.

� Correctness refers to the accuracy of the results obtained
by the algorithm. This dimension ensures that the similar-
ity score produced by the tool reflects actual similarity or
very close to the actual similarity of the data objects. Ac-
curacy is one of the most crucial dimension since the other

111

two dimension can be improved by providing a resource-
ful and higher computing environment. While in [18] it
has been shown that FbHash gives most accurate similarity
scores compared to other peer tools existing in the litera-
ture. However, the tests done are too limited and a more
thorough investigation on its security and robustness is re-
quired.

The main design challenge is to carefully balance the re-
quirement of these three dimensions such that FbHash is
compact, efficient and accurate. Achieving the trade-off is
difficult because of the contradicting requirements. While
a short digest creation will significantly improve time and
memory footprint, it will severely impact the accuracy of
the similarity score so generated. In the next section, we
propose a few important modifications to improve FbHash

tool’s efficiency and compactness while maintaining the cor-
rectness of the similarity score.

6.3 Proposed improvements to FbHash Simi-

larity Hashing Scheme

In order to overcome the limitations of FbHash, we propose the
following refinements to the tool and present FbHash-E, an im-
proved version of FbHash.

6.3.1 Alteration in the chunk size

In the context of the previous implementation of FbHash, as dis-
cussed earlier, a chunk is the sequence of 7 consecutive bytes.
To generate the digest of a file, we need to calculate the chunk

112

frequency of each and every chunk of the file. Chunk frequency
is computed by calculating the rolling hash of the chunks and
placing their occurrence into a look-up table on the respective
rolling hash index, and incrementing the count for every occur-
rence. In FbHash implementation, the rolling hash is 56 bit
long based on the selected prime number to compute rolling
hash. (For more details please refer [18] section 3.2.). Hence
theoretically speaking, in the worst-case scenario, it is possible
to have 256 unique chunks leading to 256 unique hash indices in
the hash table, making hash table extremely huge and outside
the RAM memory range. Also, experimentally, it was observed
that a chunk size of 7-bytes was increasing the sample space for
the possible rolling hash values and increasing the size of the
chunk frequency table. This, in turn was causing an increase in
the digest size so generated and subsequently the run time of
the tool.

To overcome this issue, in FbHash-E, we have reduced the
chunk size and rolling hash size to 5-bytes, respectively. This
implementation change has brought in 2 performance implica-
tions - reduced memory requirements and reduced time taken
to calculate the file digest. Due to rolling hash size getting re-
duced to 5 bytes (= 240 bits), theoretically, the total number of
unique chunks that can now get generated is 240, which is still
substantially huge. However, generation of such a huge num-
ber of unique chunks does not happen in a regular file system
due to repetition, language structure, and file format. This fact
is further strengthened by an experiment that we performed
where we tested files of various sizes and calculated the number
of unique chunks generated. The files in the experiment ranges

113

from 2KB to 100 MB from T5 corpusa 1, digital corpora 2, Bio-
stat Datasets 3 and kaggle 4. We choose this range based on the
study conducted by Dinneen et al. [6] and Douceur el al. [65] [66]
file sizes are fairly consistent across the file system. figure 6.3.1
summarizes the file system distribution within different oper-
ataing system. Small files are very common in each OS files
below 5 KB account for 50% of Mac and Linux collections, and
files below 8.5 KB account for 50% of files in Windows. 95%
of the files are under 8 MB and files larger than 32MB are rare
(probability ≤ 0.001).

Figure 6.1: file system distribution within different operating system from [6]

The result of the experiment is shown in table 6.1. The first
column represents the different file size that has been consid-
ered. We have considered dataset of 20 file for each sizes. The
second column represents the avg. number of unique chunks
for each file size, and the third column denotes the average of
the fraction of unique chunks to the total number of chunk. As
seen from Table 6.1, the number of distinct chunks, that rep-
resent a particular file does not exponentially increase with the

1http://roussev.net/t5/t5.html
2https://digitalcorpora.org/
3http://courses.washington.edu/b517/Datasets/datasets.html
4https://www.kaggle.com

114

Table 6.1: Average number of unique chunks (five-byte) in different file sizes
(from 2KB to 100 MB) file

File size Number of Proportion of

unique chunks total chunks(%)
2KB 872.4 81.24%
5KB 2633.7 58.18%
10KB 4655.9 47.87%
100KB 31133.3 30.13%
200KB 41372 20.11%
1MB 91400.7 8.57%
8MB 311557.5 3.65%
10MB 217023.3 2.03%
100MB 1161093.8 1.14%

file size but stays in a consistent range. For a 10 MB file, on
an average number of unique chunks are only 211 K. Thus, we
can safely assume that the number of unique chunks so gener-
ated will never reach the theoretical limit and populate the hash
table with large number of indices. Instead, the hash table so
constructed will always remain in RAM memory only and not
get exhausted fully for reasonable RAM sizes.

The same reasoning applies for digest size as well. To save
memory space, the digest of a file (represented as < rolling hash,
chunk score > tuple)contains only non-zero frequency chunks
and their corresponding rolling hash indices. Thus, as the num-
ber of unique chunks never reach the theoretical limit, our file
digests so generated also are of limited size and contained with
RAM memory only.

On the other hand, because of reducing the rolling hash size
to 5-bytes, the sample space for total possible rolling hash values
so generated decreased, leading to a decrease in hash table size so
constructed and faster lookup consequently. Also, the file digests

115

so generated were comparatively smaller in size. Hence, the time
taken to compare the file digests automatically decreased.

6.3.2 Redefining the document-frequency data-
structure

As discussed in section 6.1, in order to calculate the importance
of a chunk in a document, we need to know the document fre-
quency. Document frequency is pre-calculated using a big cor-
pus of documents. In FbHash-E also, we use 1k files of various
size and type from T5 corpus. The chunk document-frequency
dataset is large and static. In FbHash, it is stored in a dictionary
or a look-up table to be used at run-time to discover the rele-
vance of a chunk. To calculate the document frequency, we used
around 1k variable size documents. Our document frequency
dictionary contains approximately 6M chunks, which requires
huge memory space and impacts the performance of the tool.
To solve this issue, we propose a novel bloom filter based doc-
ument frequency calculation that has never been used in any
approximate matching forensic tool earlier. We observe that
to determine the relevance of a chunk we do not need exact
document-frequency, instead we just need a rough estimate of
its document-frequency (i.e. low, medium, high), i.e., each doc-
ument frequency can be mapped to its representative pre-chosen
threshold value. To obtain these representative threshold val-
ues, We performed k-means clustering [67] to generate clusters,
and reduced the unique document-frequency values to cluster
centroid value. The number of clusters has been chosen after
empirical analysis so that we can fairly represent all document-
frequencies (preserve the unbiased representation of document-
frequency spectrum). We omitted certain clusters with lower fre-

116

quencies, assuming that chunks with such document frequency
do not hold high importance. The remaining clusters are repre-
sented using bloom filters. Bloom filter is a space-efficient data-
structure, designed to test the membership of an element in a
set quickly and memory efficiently 5. Each chunk in every clus-
ter is inserted into the corresponding bloom filter by calculating
its rolling hash. The size of the rolling hash digest is 40-bit.
The digest is divided into three 19-bit sub-hashes by appending
zero at MSB (most-significant bit) position. Each sub-hash is
inserted into a 64 KByte (219-bits) bloom filter, where the max-
imum number of elements per bloom filer is 27000. Hence, the
expected false positive rate calculated according to Equation 6.1
is 0.0029.

Pr[False Positives] =

(
1− [1− 1

m
]kn
)k
≈
(

1− e
−kn
m

)k
(6.1)

Here, m (=219) is the number of bits in the bloom filter array, k
(=3) is the number of hash functions and n (=27000) represents
the number of inserted elements. The total memory required
to store the 6 bloom filters is thus just 384 KB which is very
small and can be easily loaded into RAM. We chose the values
of number of bloom filters, m,n and k keeping in mind - main-
taining a balance between the false positive rate that should be
as low as possible (below 1%) and RAM memory space occupied
by bloom filters to be below 1GB.

In order to access the document-frequency of each chunk we
need to check in each bloom filter until the chunk appears in the
bloom filter. For that reason also, the number of cluster, size
of the bloom filter, and other parameters are chosen very care-
fully based on several empirical assessment/observation, so that

5https://en.wikipedia.org/wiki/Bloom filter

117

smaller number of bloom filters can be used (leading to faster
runtime) without compromising the accurate representation of
document frequency spectrum (while preserving the unbiased
representation of document frequency spectrum).

We show in the next subsection, that despite document fre-
quency approximation, performance of our proposed tool in
terms of accurate similarity detection does not degrade much
compared to FbHash. Incorporating the above changes to
FbHash, we now call our new version as FbHash-E.

6.3.3 Performance Comparison of FbHash-E with
FbHash

In the earlier subsections, we have already shown that FbHash-E
has a comparatively lower memory footprint compared to
FbHash. In this subsection, we present the performance im-
provement because of design changes in FbHash-E by presenting
the analysis of Fragment Detection Test performed in [18]. We
generate a base folder containing original text files from the t5
corpus and a target folder comprising of all the fragments (of
different sizes) for all the base folder files. We then compare the
two folders for similarity against each other. For more details,
refer [18]. For this test, FbHash took a total time (for digest
generation and comparison) of around 1.2 minutes (around 77
seconds) whereas Fbhash-E completed the test in just 13 seconds
showing a significant improvement in runtime.

Tool Accuracy. The Introduction of bloom filters introduces a
minor inaccuracy in the similarity score due to approximation of
the document frequency to a fixed set of values. The reduction
in chunk size (leading to a lesser number of unique chunks being

118

generated) leads to few false positives since the probability of
the random occurrence of a 5-byte string (1/240) is higher than
the probability of random occurrence of 7 bytes string(1/256).
Altogether the similarity score produced by FbHash-E is slightly
higher than the actual similarity between the two files and sim-
ilarity score generated by FbHash.

Fig. 6.2, shows the similarity score comparison ‘between Fb-
Hash and FbHash-E. Fig. 6.2 depicts the results of the fragment
identification test (more details can be found in [18] section 7.1).
The test is performed on a dataset of 960 random fragments gen-
erated from 40 variable size text files(from T5 corpus [64])). In
the graph 6.2, X-axis represents the fragment sizes. The first
Y-axis(left) represents the Match Percentage. Match percent-
age or detection rate represents the percentage of test samples
where for a tool is able to detect similarity by producing a valid
match score. It is illustrated in the form of lines in the graph.
The second (right) Y-axis represents the average similarity score
calculated by the FbHash and FbHash-E. The bars in the graph
illustrate the average score. FbHash-E and FbHash are repre-
sented by blue and green colors respectively in the graph. For
example, for 95% fragments, we calculated the similarity score
between each file and its 95% fragment. The average similarity
scores generated by FbHash-E and FbHash are 98.4 and 97.2(out
of total of 100) respectively.

From the graph, we can see that there is, on an average in-
crease of 7.5 in the similarity score generated by FbHash-E as
compared to FbHash. To mitigate this limitation, we suggest
increasing the threshold similarity score of FbHash-E to 28 6

compared to a threshold score of 16 in FbHash.

6threshold similarity score below which FbHash-E will consider two files to be dissimilar

119

To represent the accuracy, we have computed F-score. F-
score is the harmonic mean of precision and recall. Precision
represents the proportion of the positive results that were cor-
rectly predicted, which means how many similar files were found
similar by the tool. Recall signifies the proportion of the similar
files that was resulted similar. Precision is a good measure when
the cost of False Positive is high. The recall is the best metric
to determine the quality of the classification if there is a high
cost associated with False Negative. In the case of the approx-
imate matching algorithm, the cost of false negative is much
higher than false positive. For example, if approximate match-
ing filtering misses an evidence file suspicious file. Hence, Recall
should be assigned a higher weight than precision to compute
the correctness of the tool. For the same reason, we have calcu-
lated both F and F2-score. F-score and F2-score are computed
using the following formula:

F − score =
2.precision.recall

precision+ recall

Fβ − score =
(1 + β2).precision.recall

β2 ∗ precision+ recall

Where β is 2.

Table 6.2: F-score
ssdeep sdhash LZJD FbHash FbHash-E

(t=22) (t=22) (t=20) (t=16) (t=28)

F-score 0.67 0.87 0.52 0.93 0.87

F2-score 0.56 0.81 0.47 0.90 0.87

In table 6.2, we present the F-score and F2-score results of
FbHash-E along with other state-of-the-art techniques such as ss-
deep, sdhash, LZJD, and FbHash. From the table, it can be seen

120

that FbHash-E detects similarity with an accuracy of 87% (con-
sidering F2-score is the appropriate measure of accuracy here).
Whereas accuracy of ssdeep is 56%, sdhash is 81%, LZJD is
0.47, and FbHash is 90%. Because of the proposed amendment
in FbHash-E several false positive has been introduced, which
impacts the precision and consequently impacts the F-score and
F2-score. Although FbHash-E has a lower false-negative and
higher recall rate. There is only a 3% reduction in accuracy
compared to FbHash. FbHash-E yet outperforms against all
other state-of-art tools.

It is evident that in FbHash-E there is a tradeoff between ac-
curacy and performance. The memory and runtime performance
of FbHash-E is better but the accuracy in detecting similar files
is lower compared to FbHash. However, in Section 6.5, we eval-
uate the security and robustness of FbHash-E against standard
benchmark tests and show that even after increase in false pos-
itives (compared to FbHash), our tool outperforms all the other
state-of-the art approximate matching tools in all the security
tests. Thus, our proposed version FbHash-E is fast as well as
secure, i.e., the design changes introduced in no way affect the
security of the forensic tool.

6.4 Performance Comparison with other

Tools

In this section, we compare the performance of FbHash-E with
other benchmark hashing tools, i.e., ssdeep, sdhash and LZJD.
We ran all the tools on the following testbed:

� Testbed: Conventional standard notebook laptop hav-

121

Figure 6.2: FbHash vrs FbHash-E

ing Windows 10 OS and Quad-Core Processor: Intel(R)
Core(TM) i9-10885H CPU clocked at 2.40GHz with 32 GB
RAM. The current implementation requires java version
1.8.0 or above.

6.4.1 Runtime Efficiency

For the results, we ran the fragment detection test discussed in
Section 6.3.3 and in more details in Section 7.1 in [18]. To define
the runtime efficiency we measured the time using java in built
function. This includes all elapsed time including time slices
used by other processes and blocking time, i.e., if it is waiting
for some I/O to complete.

� Time taken in Preprocessing stage: FbHash-E requires doc-
ument frequency calculation for its digest creation. This is
a one-time calculation for all the files in the reference corpus

122

. Hence, this step is a precomputed step which can be done
anytime offline by the investigator and only once. During
online phase, creation of bloom filters for document fre-
quency is not done and thus does not consume any runtime
processing. As the other testing tools mentioned above, do
not have any preprocessing, we omit them from comparison
in this stage.

� Time required for Digest Creation - This measures the time
taken for reading all the input files from the system and
then creating the input digest for each file. We report the
results for this stage in Table 6.3. As can be seen that in
this stage, ssdeep is the fastest - both for base and target
folder digest creation followed by sdhash, LZJD and then
FbHash-E. For smaller file sizes (e.g., size = 1.88 MB), time
taken by LZJD and FbHash-E are comparable.

� Time taken for Digest Comparison - This measures the time
for comparing the digests of two targets after respective di-
gests have been created. Here, we perform a brute force
comparison of two folders generated in fragment detection
test,i.e., an all-against all digest comparison which is the
standard practice followed in other related works. We re-
port the implementation results in Table 6.3. From the
table,it can be seen that ssdeep outperforms all including
our tool in comparison stage. This is followed by sdhash,
LZJD and then FbHash-E. Again in this stage, time taken
by LZJD and FbHash-E are comparable.

From the table 6.3, it is evident that compared to other ex-
isting tools, FbHash-E is slower. This is attributed to its larger
file digest creation which subsequently affects the comparison

123

Table 6.3: Comparative runtime analysis (in ms) of all tools. The Total Time
column reflects the total time taken for digest creation and comparison.

S.No Stage ssdeep sdhash LZJD FbHash-E

1.
Digest Generation

(no. of file: 20 size: 1.88MB)
76.23 90.05 1125.90 1802

2.
Digest Generation

(no. of file: 480 size: 18.4MB)
272.05 325.227 1482.89 7773

3.
Comparison

(no. of comparison: 9600)
60.85 120.35 1124.08 6023

Total 409.13 535.62 3732.87 15598

stage. However, our run time is usable as it is not exponentially
higher than others. Moreover, running time of our tool can be
further enhanced in future using GPU-based implementations
as done in the case of sdhash. GPUs have far more cores than
Central Processing Units (CPUs). This parallel architecture can
be utilized to render high computing performance. According
to a study conducted by Buber et al. [68] GPU can be 4-5 times
faster than CPU. We suggest that this apparent slowdown in the
performance of FbHash-E is negated by the fact that our tool is
the most accurate, consistent, secure and robust against active
adversary attacks when compared with other state-of-art tools
as shown in Section 6.5. We believe that as long as a forensic
tool is usable, security should be the prime criteria to be consid-
ered whenever evaluating the overall effectiveness of any forensic
tool and here FbHash-E has a clear lead over others. We show
a detailed security analysis of FbHash-E and its comparative
analysis in Section 6.5.

124

6.5 Testing with benchmark problems

In this section, we evaluate the security and robustness of
FbHash-E against standard benchmark tests. We divide the tests
into 3 categories - Containment Tests, Resemblance Tests and
Consistency Tests. We also provide a comparative analysis with
other approximate algorithms - i.e., ssdeep, sdhash and LZJD.

6.5.1 Consistency Test

For any forensics tool, consistency in the results obtained is a
very important metric. By consistency, here, we mean unifor-
mity among the scores produced. A tool would not be very
valuable if it produced non-uniform similarity scores for differ-
ent files under a given test against a fixed absolute score. On the
other hand, the tool which performs vice-versa would be more
effective. Through this test, we want to compare and analyse
the consistency of all the tools under different tests conducted
in the subsequent sub-sections. As the discussion of this test
depends on the test results obtained in subsequent sections, we
discuss the implications of this test in each of the next sections
separately.

6.5.2 Resemblance Test

Let D1 and D2 denote two data objects. Resemblance tests
provide a measure of similarity and commonality between the
two data objects D1 and D2. We performed following tests under
this category:

1. Random Noise Resistance Test - In this test, we randomly
alter few bytes of the file and then check the similarity be-

125

tween the original file and the modified file. Byte locations
are picked randomly and the picked byte value is modified
by adding a random number(can also be negative) to it.
For the test, we give M% of the file bytes (with respect
to the original file size) to be altered as the input. We
vary the size of M between - 0.01% to 10% of the origi-
nal file size and take a ceil value on the total number of
bytes to be changed. E.g., If the length of the original
file is 4982 bytes and we need to make 0.01%change, then
d4982 ∗ (0.01/100) = 0.4982e =⇒ 1 byte of the file cho-
sen randomly will be changed. The results of this test are
summarized in Table 6.4.

Table 6.4: Comparative Analysis of Random Noise Test. Here, Avg.(NZ)
denotes average score over non-zero values.

Tool .01% .05% .25% 1% 5% 10%

Abs. Score 99.9 99.9 99.7 99 95 90

ssdeep

Avg. Score 86.15 71.6 40.45 0 0 0
Avg.(NZ) 90.94 84.23 67.41 - - -

Matches (%) 95 85 60 0 0 0
Std. Dev 13.85 13.30 9.49 - - -

sdhash
Avg. Score 96.6 91.35 68.4 18.15 0 0

Matches (%) 100 100 100 100 0 0
Std. Dev 5.44 5.82 8.76 9.53 - -

LZJD
Avg. Score 78.05 71.9 58 52.35 38.4 29.7

Matches (%) 100 100 100 100 100 100
Std. Dev 20.43 19.37 9.66 7.11 5.97 4.96

FbHash-E
Avg. Score 98.95 98.9 97.85 94.35 77.85 61.9

Matches (%) 100 100 100 100 100 100
Std. Dev 0.22 0.30 0.48 1.03 1.75 1.48

In table 6.4, the absolute score denotes the actual percent-
age ratio similarity between original file F and modified file
F ′. Let us assume the original file is of x-bytes size, then

126

the modified file will also consist of x-bytes only but with
some bytes altered in it. If M% bytes have been changed
in the modified file, then absolute score is computed as fol-
lows:

Absolute Score =
x− (M/100)x

x
× 100 (6.2)

E.g., if M = 5%, then Absolute Score becomes 95% sim-
ilarity. Also,Matches represents how many percent of all
files gave a similarity score.

From the table, it is clear that FbHash-E performs the best
and is most resistant to random byte modifications com-
pared to other tools. FbHash-E generates a matching score
that is very close to absolute score for M ≤ 1%. sdhash

closely follows next, however, beyond M ≥ 5%, it fails to
give any matching score. For M = 1% also, it generates a
very poor similarity score. In case of ssdeep and LZJD, the
results do not look promising and similarity scores seem far
away from the actual absolute score. For this test, ssdeep
is not able to generate similarity scores for all of the files in
the corpus for any of the bucket considered. Also, for LZJD,
the std. deviation obtained for similarity scores in all the
buckets seem to be very high (in one case, it is as high as
20.43) highlighting the fact that it is not producing uniform
results in a single bucket for all the files tested. Thus, in
summary, FbHash-E generates the best results and is most
resistant to random changes in the file.

Consistency Test. In Table 6.4, if we compare the standard
deviation score of each tool, we can see that FbHash-E gen-
erates the most consistent average score under each bucket

127

(i.e., each column) with lowest standard deviation respec-
tively. While standard deviation values of FbHash-E never
go beyond 2 in any of the bucket, the standard deviation
scores of ssdeep and LZJD are very high for M ≤ 0.25%
with a maximum std. dev. score of 13.85 and 20.43, respec-
tively. This shows that FbHash-E results have less variation
and are more uniform compared to other ssdeep and LZJD

where variability in the scores (under a particular bucket)
is quite high. In terms of consistency, ssdeep appears to
be the next best, however, it doesn’t produce results for all
the files in any of the bucket considered.

2. Multiple Common Block Identification - This test
was first proposed by Vassil Roussev in the paper [3].
This test examines the ability to identify two objects that
share multiple common blocks of data dispersed over the
object—for example, document version identification. To
perform this test, we generate a dataset with multiple com-
mon blocks as follows using text files from T5 dataset. We
take three files and resize them to the size of the small-
est file amongst them. We create 10 fragments of the first
file of following sizes: 100%, 66.66%, 42.86%, 25%, 11.11%,
5.2%, 4.1%, 3.09%,2.04%, 1.01%. Each fragment is further
divided into x pieces (where x ∈ {2,4,8,16,32}) one by one.
Each piece is inserted into the second and third files at ran-
domly chosen positions. Doing the above for each value of x
and all 10 fragments, produces 50 pairs of files with shared
multiple common blocks of data. The fragment sizes are
chosen in such a way so that we can generate file pairs with
similarity (/commonality) of 50%, 40%, 30%, 20%, 10%,
5%, 4%, 3%, 2%, 1% receptively.

128

The commonality (on the scale of 0 to 100) between the
generated pairs can be calculated using the fragment size
as follows:

Absolute Score =
f

100 + f
× 100 (6.3)

Here f indicates the fragment size where f ∈ {100, 66.66,
42.86, 25, 11.11, 5.2, 4.1, 3.09,2.04, 1.01}. Since each frag-
ment is divided into 2,4,8,16,32 pieces and inserted into the
second and third files, the first five file pairs, generated by
the previous step share 50% commonality spread across the
document divided into 2, 4, 8, 16, 32 parts. Similarly sec-
ond five pair shares 40% similarity, the next five pairs share
30% similarity, and so on. ‘Similarly, we have generated the
dataset of 800 text file pairs with shared multiple common
blocks. The result of this test is presented in table 6.5.

Table 6.5: Comparative Analysis of multiple common block test. Here,
Avg.(NZ) denotes average score over non-zero values.

Tool 50% 40% 30% 20% 10% 5% 4% 3% 2% 1%

Abs. Score 50.0 40.0 30.0 20.0 10.0 5.0 4.0 3.0 2.0 1.0

ssdeep

Avg. Score 10.04 3.40 1.72 0.30 0 0 0 0 0 0
Avg. Score (NZ) 50.81 43.9 36.26 40.33 - - - - - -

Matches (%) 19.75 7.75 4.75 0.75 0 0 0 0 0 0
Std. Dev 21 12.24 7.92 3.59 0 0 0 0 0 0

sdhash
Avg. Score 17.35 10.75 6.12 2.81 0.82 0.25 0.18 0.12 0.06 0.01

Matches (%) 95.50 79.50 58.00 37.25 19.75 11 9.5 8.5 6.25 1
Std. Dev 11.13 9.94 7.59 4.66 1.9 0.77 0.59 0.4 0.24 0.1

LZJD
Avg. Score 22.15 19.75 16.44 13.01 9.68 8.45 8.14 7.90 7.45 6.69

Matches (%) 100 100 100 100 100 100 100 100 100 100
Std. Dev 8.06 5.91 6.72 5.89 6.08 6.04 6.07 6.22 5.68 5.82

FbHash-E
Avg. Score 57.32 49.82 42.75 34.94 24.97 18.47 17.02 15.62 14.41 13.07

Matches (%) 100 100 100 100 100 100 100 100 100 100
Std. Dev 12.73 13.61 13.89 14.13 14.38 14.75 14.93 14.89 14.88 15.31

In table 6.5 the absolute score denotes actual similarity be-
tween two files. Average score indicates the average score
of the all the file that share a same commonality, where
f ∈ { 50%, 40%, 30%, 20%, 10%, 5%, 4%, 3%, 2%, 1%}.
Match Percentage represents the percentage of all the files

129

where the tool can detect similarity between the related
documents. Standard deviation denotes the variation be-
tween the computed similarity score for the files sharing the
same commonality.

As shown in the table, ssdeep and sdhash both performed
poorly in this test. ssdeep does not generate a valid similar-
ity score for commonality less than 10%. From the match
percentage, we can see ssdeep results similarity for only 20%
of the file with commonality 50% and lower match percent-
age for other that is why have also shown the average of
all non-zero score. sdhash performs better than ssdeep and
finds similarity with higher probability (as we can see the
match %). Although the produced score does not repre-
sent the actual similarity for 50% commonality, it results
on an average 17.35 similarity score, and for 10%, it results
in similarity score below 1. LZJD and FbHash detect sim-
ilarity for all similar files with a match percentage of 100.
However, the similarity scores generated by LZJD are al-
ways between 6 to 22 despite the actual similarity range of
1 to 50. For files with more than 10% commonality FbHash
results, similarity score closer to the absolute similarly and
for 10% and smaller commonality, LZJD results score closer
to the absolute similarity.

Consistency Test. In Table 6.5, if we compare the standard
deviation score of each tool, we can see that LZJD generates
the most consistent average score under each bucket (i.e.,
each column) with the lowest standard deviation respec-
tively. However, the difference between the similarity score
of 1% commonality and 50% is less than 20. This is not the

130

case with FbHash. The similarity score generated across
the different commonalities are more consistent, the differ-
ence between 1% commonality and 50% is about 44 (closer
to absolute difference). sdhash results are more consistent
than ssdeep but do not represent the actual similarity.

3. Code Version Identification - This test evaluates the
approximate matching tool’s ability to detect different ver-
sions of the software and program files. This test was
first mentioned by Vassil Roussev in [3]. To perform this
test, we have used the NSRL dataset of windows program
files [7]. We use 887 executable files obtained from differ-
ent versions of 10 generations of Windows operating sys-
tem release. Table 6.6 shows the result of this test. Since
for this test, we did not generate the dataset; we do not
know the absolute similarity. Therefore for this test case,
we represent the performance using the confusion matrix.
We compute the true positive, true negative, false positive,
and false negative based on the suggested threshold value
of each tool to separate the matches from non-matches. If
the similarity score generated by the approximate matching
tool is greater than or equal to the threshold, it is consid-
ered as a positive or correct result otherwise negative. The
suggested threshold for sdhash is 22 for near-perfect detec-
tion rate [13]. Since ssddep does not specify any threshold
value, we use the same threshold 22 for ssdeep. For LZJD,
we use the default threshold used by LZJD tool, which is
20 7. In the case of FbHash, the suggested threshold was
16. However, due to the amendments in the FbHash-E as
discussed in section 6.3.3, the generated similarity score is

7https://github.com/EdwardRaff/jLZJD

131

Table 6.6: Code version identification test

ssdeep (t=22) sdhash (t=22) LZJD (t=20) FbHash-E (t=28)

True Positive (TP) 4605 5458 9577 18644
True Negative (TN) 753556 753117 747494 745352
False Positive (FP) 1712 2151 7774 9916
False Negative (FN) 26896 26043 21924 12857

Precision 0.728 0.7173 0.5519 0.6528
Recall 0.146 0.1732 0.3040 0.5918
F-score 0.243 0.2791 0.3920 0.6208
F2-score 0.1737 0.2041 0.3340 0.6030

higher. To compensate for that, we suggest a higher thresh-
old for FbHash-E, which is 28. As we can see in the table 6.6
FbHash-E outperforms in comparison to all other tools. Us-
ing the confusion matrix, we compute false-positive rate,
false negative rate, precision, recall and F-score. Precision
represents the proportion of the positive results that were
correctly identified similar. Recall indicates represent the
proportion of similar document resulted similar. F-score is
harmonic mean of precision and recall, representing accu-
racy. FbHash results least false-negative rate and highest
precision and recall rate. F2-score represents the accuracy.
Precision. recall and F-score can range between 0-1, where
1 indicated the highest value and 0 represents the lowest.
The results show that the result obtained by FbHash have
lowest false negative rate and significantly higher accuracy
compared to ssdeep, sdhash, and LZJD.

6.5.3 Containment Test

Let D1 and D2 denote two data objects. Containment tests pro-
vide a measure of containment of one object into another, e.g.,

132

D1 into D2 . We performed following tests under this category:

1. Alignment Tests - This test was introduced in [11]. Here,
the original file is modified by inserting byte sequences at
the beginning of the input and then the impact of this mod-
ification is compared with the original file. The byte se-
quences are added according to the following two methods:

� Percentage length block: In this test, we insert a
block size of M% (with respect to the original file size)
at the beginning of the original file. We vary the size
of M between 10% to 400%, i.e., the block sizes con-
sidered are - 10%, 50%, 100%, 200%, 300% and 400%
of the original file size respectively. The results of this
test are summarized in Table 6.7.

Table 6.7: Comparative Analysis of Alignment Test. Here, Avg.(NZ) denotes
average score over non-zero values.

Tool 10% 50% 100% 200% 300% 400%

Abs. Score 90 66 50 33 25 20

ssdeep

Avg. Score 93 70.6 51.1 11.45 1.45 0
Avg.(NZ) 93 74.31 60.11 45.8 29 -

Matches (%) 100 95 85 20 5 0
Std. Dev 4.72 17.45 23.0 20.04 6.32 -

sdhash
Avg. Score 87.65 87.15 86.9 87.5 89.9 90.5

Matches (%) 100 100 100 100 100 100
Std. Dev 13.3 16.8 15.8 10.44 12.0 11.6

LZJD
Avg. Score 41.5 24 16.95 10.8 7.9 6.6

Matches (%) 100 100 100 100 100 100
Std. Dev 4.90 3.65 3.67 3.51 3.19 3.377

FbHash-E
Avg. Score 91.5 72.45 60.7 46.95 39.75 35.2

Matches (%) 100 100 100 100 100 100
Std. Dev 2.24 5.22 5.31 5.25 4.77 4.42

133

In table 6.7, if a file comprises of x-bytes, then absolute
score is computed as follows:

Absolute Score =
x

x+ (M/100)x
× 100 (6.4)

E.g., if M = 10%, then Absolute Score becomes 90%
similarity. Also,Matches represents how many percent
of all files were matched. From the table, it can be seen
that all algorithms except ssdeep, are able to provide
similarity scores for all the files in the corpus for all
the modifications done, i.e., their match score is 100%.
However, ssdeep, is not able to provide match for all
the files present in the corpus starting with M = 50%
and match score significantly drops beyond M ≥ 200%.
For M = 400%, ssdeep was not able to provide simi-
larity score for any of the files in the corpus,i.e., Match
Score = 0.

As a consequence, it makes sense to calculate Aver-
age Score over only the non zero similarity scores for
ssdeep, termed as Avg.(NZ) and compare it with av-
erage scores of other algorithms. From the table, it
can be seen that FbHash-E performs the best and gives
matching score close to absolute value. When modi-
fications are too large, i.e., ≥200%, ssdeep is hardly
able to detect any similarity (as number of matches
significantly drop) whereas sdhash gives too high un-
realistic matching score, e.g., when added block size
is M = 400%, it gives an average similarity score of
90.5% as against an absolute score of 20%. The perfor-
mance of LZJD also does not look promising as it gives
too low similarity scores even when added percentage

134

block is as low as M = 10%. This could be attributed
to LZSet algorithm used by LZJD, which builds LZSet
incrementally from the beginning of the file.

Thus, from table 6.7, it can be summarized that
FbHash-E gives the best similarity scores in terms of
closesness to actual Absolute score and Match percent-
age.

Consistency Test. In Table 6.7, if we compare the
standard deviation score of each tool, we can see
that both FbHash-E and LZJD generate low standard
deviation values under each bucket (i.e., each column)
with maximum std. dev. value being less than 5 in
each of the tools respectively. However, as mentioned
earlier, FbHash-E produces similarity scores much
closer to actual absolute score as compared to LZJD

and hence performs better. On the other hand,
ssdeep and sdhash both generate very high std. dev.
values (value more than 10) in most of the buckets
indicating scores being produced are far from the mean
similarity score for many of the files under each bucket
for both these tools,i.e., their results are not consistent.

� Fixed length block: This test is similar to the pre-
vious one, except that here, a fixed block of M bytes
(irrespective of the file size) is added at the beginning
of the file. In tables 6.8 and 6.9, we present the results
for fixed block of sizes: 1KB, 4KB, 16KB, 32KB and
64KB respectively. Here, if file size is yKB and fixed
block size = M KB, then absolute score is calculated

135

as:
Absolute Score =

y

y +M
× 100 (6.5)

From the above equation, it can be seen that here, ab-
solute score depends on particular file size. For smaller
values of M , files with smaller y will have larger impact
than files with greater y. In our corpus, the size of text
files vary from 5KB to 800KB. To better analyze the
effect of “fixed block” test, we split our dataset into
2 parts: Dataset 1 comprising of files with size less
than 50 KB, i.e., y ≤ 50 and Dataset 2 comprising
of files with size more than 50 KB, i.e., y > 50. For
each dataset, we calculate the absolute score for all
the files present in it according to Equation 6.5 and
then average it over the total number of files. Thus,
we report the average absolute scores in each of the ta-
bles.Matches is the percentage of files that gave results.

From table 6.8, for Dataset 1 having files with size less
than or equal to 50KB, it can be seen that none of the
tools generate much accurate results. ssdeep fails to gen-
erate similarity score for majority of the files when size of
fixed block added is ≥ 16 KB (matches significantly drop to
below 7%). For the rest of the tools, the results are a mixed
bag. While for M ≤ 4 KB, FbHash-E and sdhash generate
a closer similarity score to absolute value, for M ≥ 16 KB,
LZJD seems to generate closest similarity scores (although
lower) when compared against the average absolute score.

In comparison, from Table 6.9, it can be seen that,
in Dataset 2, when files tested are of size > 50 KB,
FbHash-E performs the best as similarity scores reported

136

Table 6.8: Comparative Analysis of Alignment Test for fixed block size over
Dataset 1 (y ≤ 50 KB). Here, Avg.(NZ) denotes average score over non-zero
values.

Tool 1KB 4KB 16KB 32KB 64KB

Abs. Avg. Score 89.85 69.5 37.31 23.26 13.31

ssdeep

Avg. Score 79 55.28 4.14 3.28 0
Avg.(NZ) 79 55.28 58 46 -

Matches (%) 100 100 6.25 6.25 0
Std. Dev 5.16 9.83 - - -

sdhash
Avg. Score 95.5 85.92 87.42 91.57 86.21

Matches (%) 100 100 100 100 100
Std. Dev 4.86 15.86 15.02 7.70 15.90

LZJD
Avg. Score 45.21 30.71 18.28 12.21 7.35

Matches (%) 100 100 100 100 100
Std. Dev 5.11 7.06 3.63 3.32 2.19

FbHash-E
Avg. Score 94.21 84.57 64.57 54.42 44.57

Matches (%) 100 100 100 100 100
Std. Dev 1.77 3.84 5.96 6.13 5.72

by it closely resemble the actual average absolute score.
After FbHash-E, ssdeep seems to produce the next best
results whereas both sdhash and LZJD generate very low
similarity scores far away from the actual absolute score.

In summary, for this test, when files in the corpus are of
less size, i.e., y ≤ 50 KB, none of the tools seem to produce
accurate similarity scores whereas for larger files, i.e., y >
50 KB, FbHash-E performs the best.

Thus, it can be seen that when random bytes are added at
the start of the file, FbHash-E is the most robust of all and
is able to detect similarity between altered file and actual
file with greatest accuracy.

137

Table 6.9: Comparative Analysis of Alignment Test for fixed block size over
Dataset 2 (y > 50 KB). Here, Avg.(NZ) denotes average score over non-zero
values.

Tool 1KB 4KB 16KB 32KB 64KB

Abs. Avg. Score 99.51 98.09 92.92 87.08 77.86

ssdeep
Avg. Score 98.6 98.6 91.6 87.8 82.2

Matches (%) 100 100 100 100 100
Std. Dev 0.8 0.8 5.27 11.77 15.09

sdhash
Avg. Score 87.4 37.8 37.6 70.6 32.6

Matches (%) 100 100 100 100 100
Std. Dev 0.48 2.48 4.88 1.01 4.58

LZJD
Avg. Score 47.8 47.8 45.8 41.6 36

Matches (%) 100 100 100 100 100
Std. Dev 9.28 9.49 5.52 5.38 1.78

FbHash-E
Avg. Score 99 98.4 95 91.8 87.4

Matches (%) 100 100 100 100 100
Std. Dev 0 0.8 3.28 5.19 7.2

Consistency Test. For dataset 1 (y ≤ 50KB), it can be
seen that both FbHash-E and LZJD have small values of
standard deviation in all of the columns whereas sdhash

seems to perform worst with very high standard devia-
tion. Even ssdeep results are not very consistent and for
16KB ≤ y ≤ 64KB, it fails to generate similarity scores
for almost all of the files under consideration. On the other
hand, for dataset 2 ((y > 50KB)), it is clear from Ta-
ble 6.9, that FbHash-E gives the most consistent results
as its standard deviation values are lowest and the aver-
age score generated is most closest to the actual similarity
score. sdhash too generates small std. dev. values across
all the columns, but if viewed as a tuple <Avg. score, Std.
dev.>, the average scores generated by sdhash are far away

138

from the actual similarity score and thus low std. deviation
in generated scores does not hold any value.

6.6 Summary

In this chapter, we showed that the current design structure of
FbHash is slower and memory intensive compared to its peers.
We then proposed a novel bloom-filter based efficient version,
FbHash-E, that has much lower memory footprint and is com-
putationally faster compared to FbHash. While the speed of
FbHash-E is comparable to other state-of-the-art tools, it is re-
sistant (like its predecessor) to “intentional/intelligent modifi-
cations that can fool the tool” attacks, unlike its peers. Our
version thus renders FbHash fit for practical use-case. We per-
formed various modification tests to evaluate the security and
correctness of FbHash-E. Our experimental results showed that
our scheme is secure against active attacks and detects similarity
with 87% accuracy. Compared to FbHash, there is only 3% drop
in accuracy results. We have demonstrated the sensitivity and
robustness of our proposed scheme by performing the contain-
ment and resemblance test. We have shown that FbHash-E can
correlate files with up to 10% random-noise with 100% detection
rate and is able to detect commonality as small as 1% between
two documents with an appropriate similarity score. We also
showed that our proposed scheme performs significantly better
than other schemes in code version identification test.

139

Chapter 7

Essential Characteristics of
Approximate matching
algorithms : A Survey of
Practitioners Opinions and
requirement regarding
Approximate Matching

This chapter presents the findings of a closed survey conducted
among a highly experienced group of federal state and local law
enforcement practitioners and researchers, aimed to understand
the practitioner and researcher’s opinion regarding approximate
matching algorithms. The study provides the baseline attributes
of approximate matching tools that a scheme should possess to
meet the real requirement of an investigator.

140

7.1 Survey Methodology

7.1.1 Purpose Of the Survey

The baseline definition and terminology of the approximate
matching algorithm is already defined by [9]. The NIST Special
Publication 800-168 [9] defines the properties at a more general
and broader level. However, similarity definition, as well as the
requirements, vary for different data object type. For example,
files with similar perceived text content may have entirely differ-
ent structure and would be entirely different if an inappropriate
algorithm is applied; the actual similarities would remain un-
noticed. A color and the grayscale version of the same image
would be completely different when using most of the existing
schemes. Hence there is a strong need to define the properties
based on the practical requirements.

The aim of the survey was to establish the key character-
istics of the approximate matching algorithm based on the re-
quirement of digital forensics practitioners and researchers with
the understanding of different perspectives towards these algo-
rithms. Using the results of the survey, in future, our aim is to
build the real dataset with known similarity and evaluate the
existing schemes based on the key characteristics using the real
dataset.

7.1.2 Survey Design

The survey contains a brief introduction to the topic of the
study and the purpose of the survey, followed by 10 questions
consisting following:

141

� 4 optional questions

� 1 Multiple choice question

� 4 likert scale questions

� 1 Ranking question

Each of the questions contained one comment section to share
any other information regarding the question, which allowed the
participants to express their view in more pragmatic and rea-
sonable manner.

The format of the survey was kept simple and short while
capturing all the information needed, In order to maintain the
balance between the amount of time and effort required to com-
plete the survey. The survey was conducted online among a
closed group of 80 digital forensic practitioners; those are part
of NIST steering committee and familiar with the use of NSRL
for filtering. The audience of the survey was kept limited in or-
der to assure the reliability and legitimacy of the results. The
survey was conducted in the entirely anonymous manner, no
personally identifiable information about the participants was
stored. It was available online for two weeks. Among the 80 in-
vitation, we received total 19 completed responses, which is an
acceptable amount of data to analyze and conclude the results
of the survey for such highly targeted surveys.

7.1.3 Survey Results

The results of the survey is presented in this section based on the
all the received responses. However, where appropriate, further
analysis based upon the perspectives of researchers and practi-
tioners is presented.

142

7.1.3.1 Demographic Information

Demographic Information of the survey is represented in fig-
ure 7.1. More than 75% of the participants had more than 10
years experience as shown in figure 7.1. All of the participants
were from the United States of America and working as federal,
state or local law enforcement practitioner or researchers.

Figure 7.1: Demographic Data

7.1.3.2 Awareness About Approximate Matching Algorithms

Results shown in around 65% of the total participants were
aware and are using approximate matching algorithms during
the investigation process. Among them, 45% were aware that
their tools perform approximate filtering but were unaware of
the technique/scheme used by the tool. Whereas remaining
were well aware of the techniques used by the tools or the spe-
cific technique used by them. Following is the list of schemes
mentioned by the participants those are being used by the prac-
titioners these days: Cluster analysis of FTK, FuzzyDocs of
X-ways, md5Deep, CodeSuite, PhotoDNA, sdhash, ssdeep and

143

some of the practitioners are using their self-constructed tf-idf
based schemes. This shows that most of the practitioners find
approximate matching algorithms useful and are willing to use
these algorithms to filter out relevant data. However, since there
is no consensus for one standard scheme hence all of them are
using techniques that are either by default being used by the
tools or they find it more useful for a particular case based on
their personal experience.

7.1.3.3 Primary Applications of Approximate Matching Algo-
rithms

Participants were asked to scale the uses of the approximate
matching algorithm based on their professional experiences. List
of applications was derived by the examining the existing liter-
ature shown in figure 7.2. Responders were also allowed to add
more uses to the list.

Figure 7.2: Applications of Approximate Matching Algorithms

� Based on all of the received responses approximate match-
ing algorithms are being frequently used to identify the Re-
lated Documents.

144

� Fragment Identification was scaled second in the list. Frag-
ment Identification is the identification of a document based
on a piece of data.

� Following are the other important uses in the respective
order of their raking

– Correlation of network (Data packet reconstruction
from the fragmented files over the network)

– Embedded Object Identification (e.g., a jpeg within a
word document)

– Identification of the code version (Identification of
patched or upgraded version of software).

However, approximate matching algorithms don’t work well
for network correlation if the network is encrypted.

On further examination about the type of the data object
that they need to filter out in most frequent cases, the partici-
pants were asked to rate among text, image, executable file, and
multimedia. All of the received responses show that text and
images are the most commonly appeared data types that need
to be filtered. Executable and multimedia files also required to
be filtered in some of the cases.

Hence we can state that one of the important characteristics
of a scheme is its ability of related document correlation and
fragment identification for text and image data type.

7.1.3.4 Key Measure to Identify the Ground Truth

Participants were asked choose among the existing measure
that represents the similarity of two textual documents most

145

closely in their opinion. Proposed measures were ‘Edit distance,’
‘Length of longest common sub-string’ and ‘Length of longest
common subsequence.’ Where Edit Distance is a way of calcu-
lating dissimilarity between two text sequence by counting the
minimum number operations required to transform one sequence
into the other. Length of longest common substring denotes the
length of the common contiguous substring of maximal length.
Length of the longest common subsequence of two text sequence
signifies the length of the common substring of maximal length
where the substring might not appear in contiguous fashion but
preserves the ordering of characters. All of these measures were
taken by examining the current literature. Participants were
also allowed to add new measures. The purpose of this ques-
tion is to find out the key measure to find real similarity in
two text documents. Figure 7.3 shows that based on the expe-
rience of the responder ‘Length of longest Common Substring’
defines similarity between two documents the most. Hence this
measure should be used to build ground truth for Text data set
with known similarity.

However, by further analysis of the responses, we realized this
should be analyzed further to make a persuasive conclusion.

7.1.3.5 Image Similarity

Participants were asked to rank the similar images that they
need to filter out during the real case investigations. Figure 7.4
shows that all of the listed image similarities are almost equally
important from the practitioner’s point of view. However, the
ability of a scheme to find out the similarity between different
formate is ranked highest. Hence it would be useful if a tech-
nique can filter out all of the listed image similarities.

146

Figure 7.3: Key Measure to Identify the Ground Truth

Figure 7.4: Image Similarity

7.1.3.6 Executable Program File Similarity

The purpose of this question to understand similarity definition
for a program file based on the requirement of an investigator.
Figure 7.5 shows the results. All of the listed similarity char-
acteristics are chosen by examining the current literature and
participants were allowed to add missing properties. From the
received responses we can say one of the essential abilities of a

147

tool for program file similarity is to find the same program with
different variable name and looping constructs. According to
practitioner most of the existing tools produce high false posi-
tive results because of the flagging reusable components such as
dlls, icons and other resources obtained from software libraries.

Figure 7.5: Executable Program File Similarity

7.1.3.7 File System Information

Participants were asked if the volume data volume obtained from
the crime scene containing file structure information such as
MFT(Master File Table) for windows files, inode, etc., has in-
creased. From the result, we can say more than 68% of the
cases file structure information is available. Hence this informa-
tion can be used to improve the filtering abilities of the tools.
We also found that amount of application-specific data has also
increased, such as SQLite data on mobile devices. Hence the
major challenge for approximate matching algorithms is to have
the ability to find similarity across the device-specific data.

148

Figure 7.6: File System Information

7.2 Summary

Automated filtering has become one of the essential require-
ments of today’s digital investigation process. Approximate
matching algorithms are being used to perform the filtering. Ap-
proximate matching is a relatively new area of digital forensics,
which is still evolving and needs to be defined more formally.
The aim of the survey was to gain insights of the practitioners
and researchers opinion regarding this new class of algorithms.
From the results of the study, we found that practitioners and
researchers acknowledge the utility of approximate matching al-
gorithms and are willing to use it to speed up the investigation
process. Since there is no standard way to measure the guar-
antees of the algorithms, it is difficult to find the appropriate
tools.

Hence this chapter presents the practitioners and researcher’s
requirement and perspective towards approximate matching al-
gorithms. Future work must focus on formalizing the proper-
ties of approximate matching algorithms and providing a well-
defined evaluation framework to evaluate existing and future
approximate matching schemes.

149

Chapter 8

Approximate Matching
Evaluation Framework

Most of the prominent existing approximate matching schemes
are bytewise matching techniques e.g. ssdeep [23], sdhash[13],
mrsh[15], fbhash[18]. However, there are several scenarios where
some of the existing algorithms do not compute the true sim-
ilarity. In order to understand the potential of the existing or
upcoming schemes, it is crucial to have an automated way to
access the abilities of the proposed algorithms.

In this chapter, we present a general, platform-independent
automated evaluation tool that tests the existing and upcoming
approximate matching techniques and produces a comparative
analysis on various parameters (such as false-negative rate, false-
positive rate, precision, recall, f-score, MCC, etc.). To under-
stand the capabilities of the algorithms in real-life scenario, we
generate a real-world dataset with known similarity. Our tool
allows the users to perform the test on the real-world dataset
provided by the tool, and we also facilitate users a way to gener-
ate their own real dataset with known similarity to analyze the
performance of approximate matching.

150

8.1 Use-Cases

To critique an algorithm meaningfully, it is crucial to understand
the essential features and requirements. The baseline definition
and terminology of the approximate matching algorithm are al-
ready defined by Breitinger et.al. [9]. However, the measure of
accuracy of an algorithm is not formally defined.

The paper [9] defines the properties at a more general and
broader level. However, similarity definition, as well as the re-
quirements, varies for the different data object types. For exam-
ple, files with similar perceived text content may have entirely
different structure. They will be resulted entirely different if an
inappropriate algorithm is applied; the actual similarities would
remain unnoticed. A color and grayscale version of the same
image would be completely different when using most of the ex-
isting schemes. Hence it is important to define the properties
based on the practical requirements.
To understand the requirement, we conducted a survey in a
closed group of highly experienced and trained digital inves-
tigators, practitioners, and researchers. The survey aimed to
establish the key characteristics of approximate matching algo-
rithm based on the requirement of digital forensics practitioners
and researchers, who has an understanding of different perspec-
tives towards these algorithms. The survey was conducted on-
line among a closed group of 80 forensic practitioners, who are
part of the NIST steering committee. The audience of the survey
was kept limited in order to assure the reliability and legitimacy
of the results. Details of the survey can be found 8. Based on
all of the received responses approximate matching algorithms
are being frequently used for the following four use cases:

151

� Fragment Identification: This use-case was proposed
by[11]. Given a part of a file; the ability to correlate to
the original file. For example, the fragment of a deleted
malicious file can be found on the file slack or the unallo-
cated space of the storage device. The ability to correlate
a fragment to the source file is often important. It can also
be useful for network traffic analysis.

� Embedded Object Identification: This characteristic
was first proposed by[3]. Several document formats sup-
port linking and embedding of a document to the other
objects. For example, pdf and word (docx, pptx) files can
have images and videos embedded in the document. Em-
bedded object identification refers to the ability to identify
an object inside a document.

� Related Document Detection: This attribute facilitates
the capability of identifying two objects that share a block
or multiple blocks of data in common. For example, docu-
ments sharing the same header and footer or different ver-
sions of a document. This test case was first proposed by
[3][11]

� Identification of code version: Today, we see software
and operating system updates on a regular basis. The abil-
ity to filter out the different versions of the software and op-
erating system files is often an essential requirement for an
investigator. This requirement was specified by rossev[3].

Our evaluation tool provides a dedicated test case for each
use-case and examines the algorithms on the real-world dataset.

152

8.2 Evaluation Framework

We present an automated evaluation framework/tool to test and
compare the abilities of the approximate matching algorithms.
The evaluation tool assesses the existing approximate matching
algorithms for each essential property and characteristic men-
tioned in section 8.1. Our evaluation framework incorporates
the two most prominent approximate matching techniques, ss-
deep (version 2.14.1) and sdhash (version 3.4). We also present a
way to integrate new techniques and algorithms into our frame-
work by providing the executable of the new tool. The new
algorithm can be integrated into the evaluation tool if it follows
the following instructions/characteristics.

1. The tool should have following two features:

(i) Similarity digest generation : A function that takes a
directory containing digital artifacts as input and gen-
erates the similarity digest or fingerprint.

(ii) Digest comparison : A comparison function that can
take two similarity digest files as input and generates
a similarity score of two fingerprints.

2. Similarity digest generation process should accept a folder
as input and output a file containing digest of each file in
the folder (separated by a new line). The digest generation
command should be in following format/syntax:

ToolName -d FolderPath -o digestfile

Here FolderPath indicates the input folder and digestfile
indicates the output file containing fingerprints.

153

3. The digest comparison can be performed in following for-
mat:
ToolName −c digestfile1 digestfile2

where digestfile1 and digestfile2 are the files containing di-
gest of each file in folder1 and folder2 respectively (digest
of each file is separated by a new line.)

4. Comparison function should compare each file digest of di-
gestfile1 to each and every file digest of digestfile2.

5. The output of the digest comparison step should follow the
following format:
Filei Path | Filej Path | SimilarityScore
where Filei indicates a file from folder1, Filej indicates a
file from folder2 and SimilarityScore indicates the similarity
score calculated by the tool.

The proposed evaluation tool comprises four test cases (i)
Fragment Identification Test (ii) Embedded object Identification
Test (iii) Related document Detection Test (iv) Code version
Identification Test. Each test case consists of the following two-
step:

� Ground-Truth Dataset Generation: One can not reli-
ably estimate the error rates or correctness of the results
obtained by an approximate matching algorithm without
the knowledge of the ground truth’ or the ’correct answer.’
Hence it is crucial to have the ground-truth dataset with
known similarity. In order to meaningfully test the bound-
aries of an algorithm in real-world scenarios, our tool pro-
vides a real-world (non-synthetic) ground-truth dataset for
each test case. We also allow the user to generate their

154

own ground-truth dataset with known-similarity, which can
later be used to perform the evaluation. Before performing
any test, users can generate their own dataset by providing
files with which they want to generate the known-similarity
dataset.

� Evaluation: For each test case, the evaluation can be done
in two ways: Customized assessment and Comparative As-
sessment. Customized Assessment allows the user to per-
form the test for a particular scenario where the user can
specify a particular approximate matching algorithm to test
on a selected dataset and file type. The Comparative As-
sessment performs the test for both pre-incorporated ap-
proximate algorithms in the evaluation tool (i.e. ssdeep
and sdhash) and generates a comparative analysis for the
test case. The analysis is performed on the following pa-
rameters: Let there are two files f1, f2, and S(f1,f2) is the
similarity score generated by an approximate matching al-
gorithm. T represents a threshold value.

1. True Positive (TP) indicates the number of results
correctly predicted similar. A similarity outcome is
considered True positive if f1 and f2 are similar and
S(f1,f2) ≥ T.

2. False positive (FP) indicates the number of results
incorrectly predicted similar. A similarity result is con-
sidered True positive if f1 and f2 are not similar and
S(f1,f2)≥T.

3. True Negative (TN) denotes the number of results
correctly predicted non-similar. For example, f1 and f2
are not similar and S(f1,f2)<T.

155

4. False Negative (FN) indicates the number of results
incorrectly predicted non-similar. for example f1 and
f2 are similar and S(f1,f2)<T.

5. True Positive rate (TPR) represents the sensitivity
of the algorithm. It is calculated as follows:

TPR =
TP

TP + FN

6. False Positive Rate (FPR) is calculated as follows:

FPR =
FP

TN + FP

7. True Negative rate (TNR) represents the specificity
of the algorithm. It is calculated as follows:

TNR =
TN

TN + FP

8. False Negative Rate (FNR) is calculated as follows:

FNR =
FN

TP + FN

9. Precision indicates the relevance of results obtained
by the approximate matching algorithm. This value
can range between 0-1, where 1 indicates that all the
files that resulted similar by the approximate match-
ing algorithm are actually similar and 0 indicates that
all files resulted as similar are un-related. Precision is
calculated using the following formula:

Precision =
TP

TP + FP

156

10. Recall represent the fraction of similar documents re-
sulted similar by the approximate matching algorithm.
This value ranges between 0-1, where 1 indicates that
all the similar files were found similar by the algorithm
and 0 indicates that none of the related or similar files
resulted similar by the approximate matching scheme.

Recall =
TP

TP + FN

11. F-score F-score is harmonic mean of precision and
recall. It can be a more realistic measure of accuracy
than the accuracy metric when false negatives & false
positives are crucial, and there is an uneven class
distribution. In the case of similarity hashing, the
cost of false positives and false negatives are different.
False-negative is much more expensive than false
positive. In such cases, F1 is usually more useful than
accuracy. Hence we calculate F-score to represent
accuracy. This value also ranges from 0 to 1, where 0
indicates 0 accuracy and 1 indicates 100% accuracy.

F − score =
2.precision.recall

precision+ recall

12. Matthews correlation coefficient (MCC) : MCC
measures the quality of the classification. MCC is cal-
culated by using the following formula:

MCC =
TPxTN − FPxFN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)

157

8.2.1 Fragment Identification Test

The purpose of this test is to identify an approximate matching
tool’s ability to correlate a fragment of a file to its source file.
One of the real-life use case of this test could be to find the
fragments of a deleted and partially overwritten data (evidence)
on the suspect’s hard-disc. The test is performed in the following
two phases: Dataset Generation and Evaluation.

8.2.1.1 Fragment Dataset Generation

The current implementation of our evaluation tool supports two
file types i.e., text and docx for dataset generation and evalu-
ation. To generate the data set, the user needs to input the
file (of selected type) that will be used to generate the fragment
dataset. Our tool generates 23 different fragments of each input
file. Where the fragment files are 95%, 90%, 85%, 80%, 75%,
70%, 65%, 60%, 55%, 50%, 45%, 40%, 35%, 30%, 25%, 20%,
15%, 10%, 5%, 4%, 3%, 2%, 1% fragment of the input file. We
generate two types of fragment datasets: Sequential Fragment
Dataset and random Fragment dataset. Let the size of the file
is S.

� Sequential Fragment : The x% sequential fragment is
created by deleting first (S-x)% of the file. For example,
if a file is 100 bytes long and we want to generate a 40%
fragment. To generate a 40% sequential fragment first 60
bytes (100-40% of 100) are deleted in the fragment file.

� Random Fragment: The x% random fragment is gener-
ated by deleting the (S-x)% of data from a randomly chosen
position of the file. For example, if a file is 100 bytes long.
To generate a random fragment, let the random position

158

is 71 then the last 30 and first 30 bytes of the file will be
removed, and the remaining will be 40% random fragment
of the input file.

The name of the resulted fragment signifies the size of the
fragment and its source file. Fragment files are named in the
following format: sourceFile i, where 0≤i≤23; 0 indicates the
95% and 23 denotes the 1% fragment of the sourceFile. Our tool
also provides a pre-generated real-world sequential and random
fragment dataset with the evaluation tool.

8.2.1.2 Evaluation

We performed the following two tests to identify the fragment
identification ability of the approximate matching algorithms.

1. Fragment Correlation Test: The test aims to explore
the tool’s ability to find similarity between various frag-
ments of a file to its source file. Approximate Matching
tools can be examined in two ways for this test case:

(i) Customized Assessment: This approach allows the
user to performs tests by selecting the options shown
in figure 8.1. The figure shows a snippet of the evalu-
ation framework for fragment correlation test for this
approach. To perform the test user needs to specify
the following:

� The dataset, This option allows the user to choose
if he wants to perform the test on his own generated
dataset or on the pre-generated dataset provided by
the tool.

159

Figure 8.1: Customized assessment

� The file type on which the test will be performed.
For this test case, there are two file types text and
docx.

� The fragment type allows performing the test on
sequential or random fragment dataset.

� The approximate matching scheme that one
wants to evaluate. The current implementation of
the tool facilitates performing the test on ssdeep
and sdhash. However, the user can include other
approximate matching tools as well using the ’add
a new tool ’ option and following the guidelines men-
tioned in 8.2.

� The threshold, This is the similarity score value
used to separate matches from non-matches. If
the similarity score generated by the approximate
matching tool is greater than or equal to this value,
it is considered as a positive or correct result other-

160

wise negative. Users can specify any value between
0 to 100. The default value is 22.

Figure 8.2 shows results generated by the evaluation
tool after providing a value for each option. It lists the
name of the fragment file, source file, similarity score
generated by the selected approximate matching tech-
nique, and the actual similarity for each comparison.
We present the True Positive, True Negative, False Pos-
itive, False Negative, False positive rate (FPR), False
negative rate (FNR), Precision, Recall, F-score, MCC
measures based on the similarity score obtained by
the selected approximate matching scheme. Figure 8.2
shows the results obtained of comparative assessment
of ssdeep tool on sequential fragment dataset.

(ii) Comparative Assessment: This approach per-
forms the fragment identification test on both pre-
incorporated algorithms (ssdeep and sdhash), for all
file types, and fragment type datasets. This assessment
generates a report that presents a comparative analy-
sis of both algorithms in all scenarios using measures
such as false positive, false negative, precision, recall,
f-score, and MCC. The tool allows the user to provide
the threshold for the results generated for this test.
Figure 8.3 shows the report generated by the evalua-
tion tool for this test with default threshold value i.e.,
22. The report is shown in the figure 8.3 In this test as
well user gets to choose the threshold; by default, it’s
22. As we can see in the figure, the results obtained
by this test varies for the different file type (text and
docx). In most cases, sdhash outperforms ssdeep for

161

this test case.

2. Smallest Fragment Identification Test: Test aims to
find the smallest fragment size an approximate matching
tool can correlate or identify. This test also can be per-
formed in two ways: Customized assessment and Compar-
ative Assessment.

(i) Customized Assessment: Figure 8.4 shows the re-
sult of the customized test on ssdeep on sequential frag-
ments of the text file dataset with threshold 22. The
first row represents the different fragment sizes exam-
ined during the test. The second row represents the
average score, which is the mean of similarity scores
generated by ssdeep for each fragment size on various
test files. The third row represents the match percent-
age or correlation detection rate which indicates the
percentage of the test samples where the ssdeep was
able to detect similarity by producing a match score
higher or equal to the threshold.

Figure 8.4: Results of customized assessment of ssdeep on text sequential
fragment dataset for Smallest fragment identification test

(ii) Comparative Assessment: Figure 8.5 shows a part
of the comparative assessment report generated for the
smallest fragment identification test. The complete re-
port can be generated using the evaluation tool; we

162

Figure 8.2: Customized assessment of ssdeep on text sequential fragment
dataset

163

Figure 8.3: Comparative assessment report of fragment correlation test

164

do not include the complete report here to conserve
space. In figure 8.5 the x-axis of the graph represents
the fragment size. The bars in the graph represent the
similarity score, and lines represent the match percent-
age or correlation detection rate. Match Percentage is
the percentage of those test samples where the tools
are able to detect similarity by giving a valid match
score. In the figure 8.5 the blue lines and bar indicate
results obtained by ssdeep, and the red line and bar
indicate the results generated by sdhash. The graph is
generated for default threshold 22.

Figure 8.5: Comparative assessment result for smallest fragment identifica-
tion test

The graph shows the avg. similarity score and match
percentage of ssdeep and sdhash on Text dataset with
sequential fragments. The results show that ssdeep can
correlate a fragment to its source file if it’s 50% or more

165

of the source file but can’t identify similarity for 20%
and below fragment size. However, sdhash can detect
the similarity with high probability up to fragment size
15%. Even sdhash can correlate 5% fragment to its
original file up to 30% times. Similarity score in case
of sdhash up-to fragment size 45% is reasonably accu-
rate, but it can not correlate fragments of size 25% or
smaller. We can state, sdhash performs better in this
case.

8.2.2 Embedded Object Identification Test

The purpose of this test is to identify the ability of an approxi-
mate matching algorithm to detect an object within a file. The
object refers to a separate entity that is attached or embedded
to a file, for example, an image, video, or audio clip in a word
file.

8.2.2.1 Enmbedded Object Dataset Generation

The current implementation supports two file types, i.e., docx
and PPTX, and four types of embedded objects i. e. JPEG,
BMP, TIFF, and GIF. The user needs to provide the files and
embedded objects of the selected type to generate the embedded
data set. The dataset is generated by embedding each provided
embedded object in each provided file in a randomly chosen lo-
cation. For example, if 5 docx file and 5 jpeg file has been
provided by the user, then the tool will generate 25 docx file
with embedded jpeg images. The resulted embedded files are
named as follows objectname filename.fileExtension (e.g. im-
age1 doc4.docx) so that by looking at the name of the file, we

166

know which object is embedded in the file.

8.2.2.2 Evaluation

Two different tests have been used to perform the evaluation.

� Embedded Object Detection: This test aims to test
the ability of the approximate matching algorithm to iden-
tify the presence of an object in a document. This test
compares the objects to the embedded files and calculates
the similarity with approximate matching algorithms. This
test addresses the scenarios where an investigator needs to
search for a malicious object (e.g., image) into the suspected
data or files obtained from an incidence.

(i) Customized Assessment Similar to the fragment
Identification test, the user needs to specify a file type,
object type, and the approximate matching algorithm,
which they want to test. Users can also specify a
threshold value which is by default considered 22. The
test compares each embedded document of the speci-
fied type and each the object of the specified type in
the dataset with each other and computes the true pos-
itive, true negative, False positive, False negative, False
positive rate, false-negative rate, Precision, Recall, F-
score, MCC values. Figure 8.6 shows the result of the
customized test on ssdeep with docx file type and jpeg
object type with 22 as the threshold value.

(ii) Comparative Assessment The test performs com-
parative analysis on various parameter i.e., precision,
recall, F-score, MCC score and generates a comparative
report which shows that which tool performs better in

167

which scenario. Figure 8.7 shows a snippet of the gen-
erated report that shows the comparison of ssdeep and
sdhash’s f-score on docx dataset. As we can see, the re-
sults obtained by ssdeep are more accurate in the case
of jpeg and gif embedded objects. However, sdhash
performs better in the case of bmp and tiff.

Figure 8.7: F-score generated on Docx dataset by embedded object identifi-
cation test

� Common Object Identification: This test aims to dis-
cover and verify the capability of an approximate matching
algorithm to correlate the files containing a common object.

(i) Customized Assessment Similar to previous tests,
the user needs to select the algorithm, file type, object
type and specify a threshold value. The test compares
each embedded documents to each other computes the
True positive, true negative, False positive, False nega-
tive, False positive rate, false-negative rate, Precision,
Recall, and F-score values. The figure 8.8 shows the

168

Figure 8.6: ssdeep results on Docx embedded file and jpeg object

169

result of customized test results generated by sdhash
on docx file type, jpeg object type, and threshold 22.

Figure 8.8: sdhash results on common object identification test

(ii) Comparative Assessment Similar to the previous
test, this test performs comparative analysis on various
parameters, i.e., precision, recall, F-score, MCC score,

170

and generates a comparative analysis report compar-
ing performs of both algorithms. Figure 8.9 shows a
snippet of the generated report by this, which shows
the comparison of ssdeep and sdhash’s F-score on the
pptx file. Figure 8.9 shows that the results obtained by
the sdhash are more accurate in comparison to ssdeep
for jpeg, bmp, gif, and tiff.

Figure 8.9: F-score comparison result generated by common object identifi-
cation test

8.2.3 Related Document Detection Test

This test aims to discover and verify the approximate match-
ing algorithm’s ability to identify the related document (i.e.,
those share common data) or a different version of a document.
To examine this characteristic, the evaluation tool provides two
types of tests: Single-common-block file correlation Test and
Multiple-common-blocks file correlation Test.

� Single-common-block Test: This test focuses on the sce-

171

nario where digital objects or files share one block of con-
secutive data.

� Multiple-common-block Test: This test simulates a
scenario where the documents share multiple common
blocks of common data with each other.

8.2.3.1 Related Document Dataset Generation

� Single-common-block dataset The dataset is generated
as follows:

1. User needs to input three or multiple of three files to
generate the dataset.

2. We first resize all the files to the same size.

3. The following 10 different sized fragments of the first
file is created: 100%, 66.66%, 42.86%, 25%, 11.11%,
5.2%, 4.1%, 3.09%,2.04%, 1.01%.

4. Each fragment is inserted in randomly chosen positions
in the second and third files one by one. This will
result 10 pairs of the second and third file with shared
common block of 50%, 40%, 30%, 20%, 10%, 5%, 4%,
3%, 2%, 1% respectively.

5. Take the next triplet of files and repeat from step 1 to
step 3 for all input files.

For example, if f1, f2, and f3, three files were provided by
the user. This process will output the two set of 10 files
and the file are named as follows: f1 f2 i and f1 f3 i where
i ∈ {1,2,3,4,5,10,20,30,40,50}. Two file f1 f2 k and f1 f3 k
represents the k% common data between the files.

172

In this way, we have generated the dataset of 160 text file
pairs with a shared single common block and 160 docx file
pairs using the T5 corpus [64]. This dataset is included in
the tools as existing dataset.

� Multiple-common-blocks dataset The dataset is gen-
erated using following steps:

1. User needs to input three or multiple of three files to
generate the dataset.

2. We first resize all the files to the same size.

3. The following 10 different sized fragments of the first
file is created: 100%, 66.66%, 42.86%, 25%, 11.11%,
5.2%, 4.1%, 3.09%,2.04%, 1.01%.

4. Each fragment will be split into x pieces (where x ∈
{2,4,8,16,32,64}) one by one, and each piece will be
inserted into the second and third file in the randomly
chosen positions. This will result 50 pairs of files with
shared common blocks, where the first 10 files share
50% commonality, the second set 20%, and so on.

5. Take another triplet of files and repeat from step 1 to
step 3 for all input files.

For example if f1, f2 and f3 three files were provided by the
user. This process will output the two set of 50 files and
the file are named as follows: f1 f2 i j and f1 f3 i j where i
∈ {1,2,3,4,5,10,20,30,40,50} and j ∈ {2,3,4,8,16,32}. Two
file f1 f2 k l and f1 f3 k l represents the k% commonality
distributed into l blocks between the files. In this way,
we have generated the dataset of 800 text file pairs with a
shared single common block and 800 docx file pairs using

173

the T5 corpus [64]. This dataset is included in the tools as
existing dataset.

8.2.3.2 Evaluation

Both single and multiple common blocks tests are examined in
the same manner for customized and comparative assessment.

(i) Customized Assessment Similar to previous tests, the
users have the option to select the algorithm and file type that
they want to investigate and can specify the threshold value.
The test compares related documents with each other and com-
putes the similarity score between the files sharing common
blocks of various sizes. The figure 8.10, 8.11 show the result
of customized test results generated obtained by ssdeep on sin-
gle and multiple common block text datasets, respectively. In
the figure, the first row indicates the various block sizes. The
second row represents the average similarity score generated by
the ssdeep for the common block size files. The third row de-
notes the Match Percentage (also called correlation detection
rate). Match Percentage represents the percentage of the test
sample where the tool can detect similarity between the related
documents.

Figure 8.10: Single common block test results generated by ssdeep on text
dataset

174

Figure 8.11: Multiple common block test results generated by ssdeep on text
dataset

(ii) Comparative Assessment The comparative assess-
ment test is conducted in the same fashion for both single
and multiple common block tests. The comparative assessment
draws an analogy between ssdeep and sdhash for the various
dataset and file types. Figure 8.12 and 8.13 presents the results
generated by the comparative assessment of the single common
block file correlation test on the text and docx dataset. The
complete report can be generated using the tool.

The graph in Fig. 8.12 shows that in the case of single-
common-block test, ssdeep (represents as blue) can detect the
similarity between two related documents only if the common-
ality between them is 30% or more of the document size with
a sufficiently high match percentage, i.e., 75. It can not detect
commonality below 10%. Even in the case of 50% similarity, it
does not find the correlation with probability 1. On the other
hand, sdhash performs comparatively better. It detects simi-
larity with 100 match percentages for 50% or more single block
commonality, and the similarity score generated by the tools are
very close to the actual similarity. However, sdhash also does
not reliably correlate the files that share less than 30% data.

Fig. 8.13 shows the average similarity score and match per-
centage of ssdeep, sdhash on Docx dataset. The correlation
detection rate or the match percentage of ssdeep and sdhash

is not consistent. In terms of average matching score, it can

175

Figure 8.12: Single-common-block test results for Text-Data Set

be seen that results obtained by ssdeep and sdhash are im-
precise and do not reflect the actual similarity since docx is a
compressed file structure and both the schemes work on byte
level.

8.2.4 Identification of code version

Nowadays, we see a constant stream of software and operat-
ing system updates on our devices. Most of the operating sys-
tem files and proprietary software are legitimate and need not
be examined by the forensic investigator during an investiga-
tion. Such files are called know-to-be-good files. These files can
be filtered out from further examination. However, storing the
cryptographic hash of each version (which is increasing day by
day) of such files and comparing all of them for each examina-
tion could be infeasible. So this is one of the most important
attributes of an approximate matching algorithm to be able to

176

Figure 8.13: Single-common-block test results for Docx dataset

filter-out, patched and upgraded software versions. This test
aims to identify the approximate matching tool’s ability to find
similarity between the various version of software or program
files.

8.2.4.1 Dataset

For this test case, we do not generate our dataset since the real
dataset is already produced by the NSRL [7] and is publicly
available. We use the NSRL dataset of windows program files.
We have used 887 executable files and 346 DLL (dynamic-link
library) files containing different versions of 10 generations of
Windows operating system releases. We downloaded the NIST
dataset containing images of EXE and DLL files. In the dataset,
the files are named as their SHA-1 hash digest, which we changed
to the name of the file preceded by a unique id provided in
the NSRL data record to each program file and an underscore.
For example, 564930796 winver.exe here 564930796 represents

177

the unique record id, and winver.exe identifies the name of the
operating system file winver.exe.

8.2.4.2 Evaluation and Results

Similar to the previous three tests, we can perform this test also
in both customized and comparative fashion.

(i) Customized Assessment: In order to perform this test,
we can specify the dataset we want to test, i.e., EXE and
DLL, and the tool we want to examine for the code iden-
tification test. We can also specify the threshold value for
the similarity score generated by the tool. This will enable
us to check program version identification for the ability of
any tool on the desired dataset. Figure 8.14 represents the
results obtain by the ssdeep tool for exe files, and figure
8.15 shows the results of the sdhash tool on the dll dataset.

Figure 8.14: Code version identification test results of ssdeep for exe files

178

Figure 8.15: Code version identification test results of sdhash for dll files

(ii) Comparative Assessment: This assessment compares
ssdeep and sdhash for all important parameters, i.e., false-
positive rate, false-negative rates, precision, recall, f-score,
and MCC. Figure 8.16 and 8.17 shows the recall rate and
F-score comparison of ssdeep and sdhash. The complete
report can be generated using the tool. We can see that
both algorithms do not perform well in terms of recall rate
and f-score. For exe sdhash performs slightly better, but
the recall rate is below 0.21 and F-score below 0.32, which
is low. A similar outcome can be seen for DLL files as
well. Based on these two graphs and other measures in
the report, we can state that none of the two algorithms
reliably detect similarity for this test case.

179

Figure 8.16: Recall rates comparison of code version identification test

Figure 8.17: F-Score comparison of code version identification test

180

8.3 Summary

For the growth and advancement of any field, it is essential to
have a standard testing or bench-marking technique. This chap-
ter presented a general-platform-independent-automated evalu-
ation tool that can be used to test the boundaries of approximate
matching algorithms. The evaluation tool performs the tests on
the real-world dataset and provides an automated method to
generate a ground-truth dataset for most test cases. The tool
allows the user to incorporate new algorithms into the frame-
work, which will help understand the abilities of current and
future approximate matching techniques.

181

Chapter 9

Conclusions

In this chapter, we summarize our results presented in this thesis
and give some possible directions for future research.

9.1 Summary

In this thesis, we focused on three significant aspects of approxi-
mate matching algorithms; security aspect, a robust design and
precise assessment technique. We studied the security aspect
of existing approximate matching algorithms and presented a
new secure and robust design ’FbHash’. We presented an auto-
mated assessment tool that tests the boundaries of existing and
upcoming algorithms on real-world data.

We performed a thorough security analysis of two promi-
nent approximate matching algorithms, namely - sdhash and
mvHash-B. We have shown that these tools are not se-
cure against active adversary attacks. We have shown anti-
blacklisting attacks on both schemes and practically prove they
do not withstand an active adversary against a blacklist. We
have presented automated anti-forensics tools which can be used
to bypass and fool mvHash-B and sdhash detection. Addition-

182

ally, we proposed mitigation techniques to conquer the proposed
attack ensures the security of the scheme against an active ad-
versary.

We also presented a noble, robust approximate matching al-
gorithm called ‘Frequency-Based Hashing’ or ‘FbHash,’ which is
secure against active attacks. We provided a detailed compari-
son of our scheme with state-of-art existing algorithms on var-
ious test cases. We experimentally demonstrated that the pro-
posed approach detects similarity with 98% accuracy and pro-
duces the least false negatives in comparison to other schemes.
We have also introduced a new bloom filter based efficient ver-
sion of FbHash; termed as - FbHash-E. We have presented a
detailed performance as well as security examination of our pro-
posed tool and show its comparative analysis with both FbHash

and other existing peer algorithms proposed in the literature.
We have shown that while FbHash-E is both faster and less
memory intensive as compared to its predecessor, it is as secure
as FbHash. Also, compared to other existing tools, our tool is
most secure and robust.

We presented a general, platform-independent automated
evaluation tool that tests the existing and upcoming approx-
imate matching techniques and produces a comparative anal-
ysis on various parameters. We provided four test cases; frag-
ment identification test, embedded object Identification test, re-
lated document detection test, and code version detection test.
Each test case is measured based on the following parameters;
true-positive rate, false-positive rate, true-negative rate, false-
negative rate, precision, recall, F-score, and Matthews Correla-
tion Coefficient (MCC). Our evaluation tool includes the two
most prominent algorithms, ssdeep, and sdhash, and allows

183

users to incorporate new tools to compare its capabilities. To
critic and approach meaningfully, it is crucial to evaluate the
boundaries on real-world data, which was lacking in this do-
main. We have provided the first real-world dataset of known
similarity for each test case. Moreover, we have provided an au-
tomated platform to generate a real-world dataset with known
similarity for each test cases. This dataset can be used as a
reference for any future research in this area.

9.2 Future Work

In this section, we attempt to identify future research directions
related to the work presented in this thesis.

1. In the current implementation of FbHash, the digest size is
comparatively significant. Exploring the possibility of us-
ing a different representation of digest is feasible. Storing
the digest in bloom filter and cuckoo filter is also possi-
ble. This may improve the comparison efficiency since the
comparison with these filters is faster and memory efficient.

2. The current implementation of FbHash is in java. Cur-
rently, we are working on implementing in the ’c’ language.
We will publish the code and comprehensive manual when
the work is completed.

3. Using GPU’s for the FbHash digest generation and compar-
ison calculation is likely to accelerate the implementation
significantly. This can be attempted in future.

4. Another future direction could be to work towards finding a
general technique to perform security analysis of an approx-
imate matching algorithm in the context of active adversary

184

attack. Currently, all attack techniques are targeted to one
particular algorithm. Further, security analysis of other
recent tools such as LZJD and TLSH needs to be done.

5. Extending the evaluation tool is another possibility.
Presently we have incorporated four test cases. We intend
to include sensitivity and robustness tests, cross-object cor-
relation test. We are also working towards adding a few
more file format datasets and dataset generation such as
pdf, HTML, XML, etc., to the tool.

6. Presently, approximate matching algorithms have been
used primarily in digital forensics. The usage of the approx-
imate matching algorithm in other areas such as plagiarism-
detection, text mining and bio-metrics may be investigated
thoroughly.

185

Bibliography

[1] Jesse Kornblum. Identifying almost identical files using con-
text triggered piecewise hashing. Digital investigation, 3:91–
97, 2006.

[2] Frank Breitinger and Harald Baier. A fuzzy hashing ap-
proach based on random sequences and hamming distance.
In Proceedings of the Conference on Digital Forensics, Se-
curity and Law, pages 89–100, 2012.

[3] Vassil Roussev. An evaluation of forensic similarity hashes.
digital investigation, 8:S34–S41, 2011.

[4] Frank Breitinger and Vassil Roussev. Automated evaluation
of approximate matching algorithms on real data. Digital
Investigation, 11(1):S10–S17, 2014.

[5] Frank Breitinger, Knut Petter Astebol, Harald Baier, and
Christoph Busch. mvhash-b - A new approach for similarity
preserving hashing. In Seventh International Conference on
IT Security Incident Management and IT Forensics, IMF
2013, Nuremberg, Germany, March 12-14, 2013, pages 33–
44, 2013.

186

[6] Jesse Dinneen and Ba Nguyen. How big are peoples’ com-
puter files? file size distributions among user-managed col-
lections, 07 2021.

[7] NIST NSRL. National software reference library (NSRL),
2021.

[8] Horst Feistel. Cryptography and computer privacy. Scien-
tific american, 228(5):15–23, 1973.

[9] Frank Breitinger, Barbara Guttman, Michael Mc-
Carrin, and Vassil Roussev. Approximate match-
ing: definition and terminology. URL http://csrc.
nist. gov/publications/drafts/800-168/sp800 168 draft. pdf,
2014.

[10] Frank Breitinger. On the utility of bytewise approximate
matching in computer science with a special focus on digital
forensics investigations. 2014.

[11] Frank Breitinger, Georgios Stivaktakis, and Harald Baier.
Frash: A framework to test algorithms of similarity hashing.
Digital Investigation, 10:S50–S58, 2013.

[12] Andrei Z Broder. On the resemblance and containment of
documents. In Compression and Complexity of Sequences
1997. Proceedings, pages 21–29. IEEE, 1997.

[13] Vassil Roussev. Data fingerprinting with similarity di-
gests. In IFIP International Conference on Digital Foren-
sics, pages 207–226. Springer, 2010.

[14] Vassil Roussev, Golden G Richard, and Lodovico Marziale.
Multi-resolution similarity hashing. digital investigation,
4:105–113, 2007.

187

[15] Frank Breitinger and Harald Baier. Similarity preserving
hashing: Eligible properties and a new algorithm mrsh-v2.
In Digital Forensics and Cyber Crime - 4th International
Conference, ICDF2C 2012, Lafayette, IN, USA, October
25-26, 2012, Revised Selected Papers, pages 167–182, 2012.

[16] Donghoon Chang, Somitra Kr Sanadhya, Monika Singh,
and Robin Verma. A collision attack on sdhash similarity
hashing. In Proceedings of 10th intl. conference on system-
atic approaches to digital forensic engineering, pages 36–46,
2015.

[17] Donghoon Chang, Somitra Sanadhya, and Monika Singh.
Security analysis of mvhash-b similarity hashing. Journal
of Digital Forensics, Security and Law, 11(2):2, 2016.

[18] Donghoon Chang, Mohona Ghosh, Somitra Kumar Sanad-
hya, Monika Singh, and Douglas R White. Fbhash: A new
similarity hashing scheme for digital forensics. Digital In-
vestigation, 29:S113–S123, 2019.

[19] Monika Singh. Essential characteristics of approximate
matching algorithms: A survey of practitioners opinions
and requirement regarding approximate matching. arXiv
preprint arXiv:2102.10087, 2021.

[20] Harald Baier and Frank Breitinger. Security aspects of
piecewise hashing in computer forensics. In IT Security
Incident Management and IT Forensics (IMF), 2011 Sixth
International Conference on, pages 21–36, 2011.

[21] N Harbour. Dcfldd. defense computer forensics lab, 2002.

188

[22] Ajay Divakaran. Multimedia content analysis: theory and
applications. Springer Science & Business Media, 2009.

[23] Andrew Tridgell. Spamsum readme, 2002.

[24] Glenn Fowler, Landon Curt Noll, Kiem-Phong Vo, Donald
Eastlake, and Tony Hansen. The fnv non-cryptographic
hash algorithm. Ietf-draft, 2011.

[25] Vladimir Levenshtein. Binary codes capable of correcting
spurious insertions and deletion of ones. Problems of infor-
mation Transmission, 1(1):8–17, 1965.

[26] Long Chen and Guoyin Wang. An efficient piecewise hash-
ing method for computer forensics. In Knowledge Discovery
and Data Mining, 2008. WKDD 2008. First International
Workshop on, pages 635–638, 2008.

[27] Frank Breitinger and Harald Baier. Performance issues
about context-triggered piecewise hashing. In Digital foren-
sics and cyber crime, pages 141–155. Springer, 2012.

[28] Vassil Roussev, Golden G Richard, and Lodovico Marziale.
Multi-resolution similarity hashing. digital investigation,
4:105–113, 2007.

[29] Kimin Seo, Kyungsoo Lim, Jaemin Choi, Kisik Chang, and
Sangjin Lee. Detecting similar files based on hash and sta-
tistical analysis for digital forensic investigation. In 2009
2nd International Conference on Computer Science and its
Applications, 2009.

[30] Vassil Roussev. Building a better similarity trap with sta-
tistically improbable features. In System Sciences, 2009.

189

HICSS’09. 42nd Hawaii International Conference on, pages
1–10, 2009.

[31] Claude Elwood Shannon. A mathematical theory of com-
munication. The Bell system technical journal, 27(3):379–
423, 1948.

[32] Burton H Bloom. Space/time trade-offs in hash coding with
allowable errors. Communications of the ACM, 13(7):422–
426, 1970.

[33] Frank Breitinger and Harald Baier. Properties of a similar-
ity preserving hash function and their realization in sdhash.
In 2012 Information Security for South Africa, Balalaika
Hotel, Sandton, Johannesburg, South Africa, August 15-17,
2012, pages 1–8, 2012.

[34] Frank Breitinger, Harald Baier, and Jesse Beckingham. Se-
curity and implementation analysis of the similarity digest
sdhash. In First International Baltic Conference on Net-
work Security & Forensics (NeSeFo), 2012.

[35] Srivatsa Maddodi, Girija V Attigeri, and AK Karunakar.
Data deduplication techniques and analysis. In Emerging
Trends in Engineering and Technology (ICETET), 2010 3rd
International Conference on, pages 664–668. IEEE, 2010.

[36] Matthew Turk, Alex P Pentland, et al. Face recognition
using eigenfaces. In Computer Vision and Pattern Recogni-
tion, 1991. Proceedings CVPR’91., IEEE Computer Society
Conference on, pages 586–591. IEEE, 1991.

[37] Knut Petter Åstebøl. mvhash: a new approach for fuzzy
hashing. Master’s thesis, 2012.

190

[38] Robert S Boyer and J Strother Moore. Mjrty—a fast major-
ity vote algorithm. In Automated Reasoning, pages 105–117.
Springer, 1991.

[39] Tokuhiro Tsukiyama, Yoshie Kondo, Katsuharu Kakuse,
Shinpei Saba, Syoji Ozaki, and Kunihiro Itoh. Method and
system for data compression and restoration, April 29 1986.
US Patent 4,586,027.

[40] Edward Raff and Charles Nicholas. Lempel-ziv jaccard dis-
tance, an effective alternative to ssdeep and sdhash. Digital
Investigation, 24:34–49, 2018.

[41] Jacob Ziv and Abraham Lempel. A universal algorithm for
sequential data compression. IEEE Transactions on infor-
mation theory, 23(3):337–343, 1977.

[42] Paul Jaccard. The distribution of the flora in the alpine
zone. 1. New phytologist, 11(2):37–50, 1912.

[43] Taffee T Tanimoto. Elementary mathematical theory of
classification and prediction. 1958.

[44] Edward Raff and Charles Nicholas. An alternative to ncd
for large sequences, lempel-ziv jaccard distance. In Proceed-
ings of the 23rd ACM SIGKDD international conference
on knowledge discovery and data mining, pages 1007–1015,
2017.

[45] Caitlin Sadowski and Greg Levin. Simhash: Hash-based
similarity detection. Technical report, Google, 2007.

[46] Jonathan Oliver, Chun Cheng, and Yanggui Chen. Tlsh–
a locality sensitive hash. In 2013 Fourth Cybercrime and
Trustworthy Computing Workshop, pages 7–13. IEEE, 2013.

191

[47] Vikram S Harichandran, Frank Breitinger, and Ibrahim
Baggili. Bytewise approximate matching: the good, the
bad, and the unknown. Journal of Digital Forensics, Secu-
rity and Law, 11(2):4, 2016.

[48] accessdata. Ftk. 2021.

[49] opentext. Encase. 2021.

[50] X-Ways Forensics. X-ways forensics. 2021.

[51] Autopsy Digital Forensics. Autopsy digital forensics. 2021.

[52] Frank Breitinger, Georgios Stivaktakis, and Vassil Roussev.
Evaluating detection error trade-offs for bytewise approxi-
mate matching algorithms. Digital Investigation, 11(2):81–
89, 2014.

[53] Vikas Gupta. File detection in network traffic using approx-
imate matching. Institutt for telematikk, 2013.

[54] Frank Breitinger and Ibrahim Baggili. File detection on
network traffic using approximate matching. 2014.

[55] Mujeeb B. Jimoh. Performance testing of gpu-based ap-
proximate matching algorithm on network traffic, 2015.

[56] Petter Christian Bjelland, Katrin Franke, and André Årnes.
Practical use of approximate hash based matching in digital
investigations. Digital Investigation, 11:S18–S26, 2014.

[57] Mathias Payer, Stephen Crane, Per Larsen, Stefan Brun-
thaler, Richard Wartell, and Michael Franz. Similarity-
based matching meets malware diversity. arXiv preprint
arXiv:1409.7760, 2014.

192

[58] Parvez Faruki, Vijay Laxmi, Ammar Bharmal, Manoj Singh
Gaur, and Vijay Ganmoor. Androsimilar: Robust signature
for detecting variants of android malware. Journal of In-
formation Security and Applications, 22:66–80, 2015.

[59] Symantec. Machine learning sets new standard for data loss
prevention: Describe, fingerprint, learn, 2015.

[60] James H Burrows. Secure hash standard. Technical report,
DTIC Document, 1995.

[61] Juan Ramos et al. Using tf-idf to determine word relevance
in document queries. In Proceedings of the first instructional
conference on machine learning, volume 242, pages 133–
142, 2003.

[62] Andrei Z. Broder. Some applications of rabin’s fingerprint-
ing method. In Renato Capocelli, Alfredo De Santis, and
Ugo Vaccaro, editors, Sequences II, pages 143–152, New
York, NY, 1993. Springer New York.

[63] Gerard Salton and Christopher Buckley. Term-weighting
approaches in automatic text retrieval. In INFORMA-
TION PROCESSING AND MANAGEMENT, pages 513–
523, 1988.

[64] Vassil Roussev. the t5 corpus. 2011.

[65] John R Douceur and William J Bolosky. A large-scale study
of file-system contents. ACM SIGMETRICS Performance
Evaluation Review, 27(1):59–70, 1999.

[66] Nitin Agrawal, William J Bolosky, John R Douceur, and
Jacob R Lorch. A five-year study of file-system metadata.
ACM Transactions on Storage (TOS), 3(3):9–es, 2007.

193

[67] Kittisak Kerdprasop, Nittaya Kerdprasop, and Pairote Sat-
tayatham. Weighted k-means for density-biased cluster-
ing. In International Conference on Data Warehousing and
Knowledge Discovery, pages 488–497. Springer, 2005.

[68] Ebubekir BUBER and Banu DIRI. Performance analysis
and cpu vs gpu comparison for deep learning. In 2018 6th
International Conference on Control Engineering Informa-
tion Technology (CEIT), pages 1–6, 2018.

194

Appendices

195

Appendix A

Deliberate modification
algorithm

Algorithm 1

1: buffer . Data object
2: chunk size . Size of data object
3: chunk score . Array of score of each feature of the data object
4: pop win size . Window size: default is 64
5: t . Threshold: default is 16
6: indx . index of the selected feature
7: lst indx . index of last selected feature: initialize with 0.
8: for i← 0 to chunk size− pop win size do . Run through input byte

by byte
9: if chunk scores[i] > t then . Selected features

10: modify bytes(buffer, indx, lst indx, pop win size)
11: . Processing is in next algorithm
12: lst indx ← indx
13:

14: end if
15: end for

196

Algorithm 2 Byte Modification algorithm
1: buffer . Input Data object
2: indx . index of the selected feature
3: lst indx . index of last selected feature
4: RANK(buffer,i) . function that returns rank of ith feature of data object buffer
5: SCORE(buffer,i,j) . function that calculates popularity score of ith feature to jth feature of data

object buffer and returns an array containing popularity scores
6: flag . A boolean Variable
7: rank indx . Unsigned int variable for rank of selected feature
8: rank lst indx . Unsigned int variable for rank of last selected feature
9: rank k, rank i . Unsigned int; Temporary variable
10: procedure modify bytes(buffer, indx, lst indx, pop win size)
11: buffer copy ← buffer . Creating one copy of data object
12: rank indx ← RANK(buffer,indx) . Rank of selected feature of buffer
13: rank lst indx ← RANK(buffer,lst indx) . Rank of last selected feature of buffer
14: for i← indx− 1 to lst indx + 1 do . Run through all intermediate bytes between two selected

features byte by byte
15: ch ← buffer[i] . ch is a char variable
16: rank i ← RANK(buffer copy,i) . Rank of ith feature of unmodified buffer
17: for j ← 0 to 255 do . Run through all ASCII value 0 to 255 until all conditions are satisfied.
18: temp ← rand()% 256
19: buffer[i] ← temp . ith byte will be replaced by randomly chosen ASCII char temp
20: flag ← true
21: if RANK(buffer, i) > RANK indx AND RANK(buffer, i) > RANK lst indx AND

RANK(buffer, i) ≥ rank i then . Rank of Modified features should be greater than rank of
selected neighboring features

22: for k ← i− (w − 1) to lst indx do . Run through features those consist ith Byte
23: rank k ← RANK(buffer copy,k) . Rank of kth feature of unmodified buffer
24: if RANK(buffer, k) ≤ RANK indx OR RANK(buffer, k) < RANK lst indx

OR RANK(buffer, k) < RANK k then
25: flag ← false
26: break . Go out of the current loop and check for other values of j
27: end if
28: end for
29: else
30: flag ← false
31: break . Change the ith byte to ASCII character j, check for next byte
32: end if
33: end for
34: if flag == false then
35: buffer[j] ← ch; . reset the jth charecter to its actual value
36: end if
37: end for
38: score ← SCORE(buffer,lst indx+1,indx-1)
39: high ← false;
40: for x← 0 to (indx− lst indx− 1) do
41: if score[x] > 16 then
42: high ← true break;
43: end if
44: end for
45: if high == true then
46: for z ← (indx− 1) to lst indx do
47: buffer[z] ← buffer copy[z] . Revert all the changes
48: end for
49: end if
50: end procedure

197

Appendix B

Anti-BlackListing attack
algorithm on mvHash-B

198

Algorithm 3

1: *input . Pointer to the input file
2: input size . Size of input file in Bytes
3: n . Size of neighhood (Default value for text files is 20)
4: ib . ib denotes average number of influencing bits for one byte(0≤ib≤8), default value of ib=8.
5: bitcount n(k) . Function that outputs number of bits set to 1 in n-neighborhood of kth byte of

input
6: bits[255] . Array containing number of bits set to one in all ASCII characters
7: *output . Pointer to the modified resultant file
8: rle index = 0; . Temporary variable containing the current index position of RLE sequence
9: input index = 0; . Temporary variable containing the index position of current input byte

10: t = 0; . Threshold
11: modification = ‘Y’ . Temporary variable initialised with ’Y’
12: tmp, tmp rle . Temporary variables
13: reduce bitcount(input[k]) . Function that

modifies input byte and write it to the resultant file with simantically similar character if that
modification reduces the bitcount n(kk) and returns ’Y’ else ’N’

14: increase bitcount(input[k]) . Function that modifies input byte and write it to the resultant file
with simantically similar character if that modification increases the bitcount n(kk) and returns
’Y’ else ’N’

15: t = ((n + 1) ∗ ib)/2 . Calculate the threshold value
16: for kk ← 0 to input size− 1 do . Run through each byte of input file
17: if tmp rle == t then
18: tmp rle ← 0
19: modification ← Y
20: tmp rle ← bitcount N(kk)
21: modification ← reduce bitcount(input[kk]) . Try to reduce the bitcount of the byte

without chang-
ing semntic value

22: if modification == ‘Y ′ then . If modification of kkth byte is possible
23: end fl ← 0;
24: while input index ≤ kk do . Get the RLE index of that byte
25: input index = input index + output[rle index]; rle index++;
26: end while
27: if input index<input size then end fl = input index;
28: elseend fl = input size
29: end if
30: if (kk + 1) ≤ input size then . Get the index of last byte of the group involved the

modified byte
31: for i← (kk + 1) to end fl do fputc(input[i], output)
32: end forkk = end fl; . Next modification will be perform after end flth byte of input
33: end if
34: end if
35: else if tmp rle == (t - 1) then tmp = input[kk]; modification = increase bitcount(input[kk])

. Try to increase the bitcount of the byte with changing
semntic value

36: if modification == ‘Y’ then
37: while input index ≤ kk do . Get the RLE index of that byte
38: input index = input index + output[rle index]; rle index++;
39: end while
40: end fl ← 0;
41: if (input index)<input size then end fl = input index
42: else end fl = input size
43: end if
44: if (kk + 1) ≤ input size then . Get index of last byte of the group involved, the

modified byte
45: for j ← (kk + 1) to end fl do fputc(input[j], output)
46: end forkk = end fl; . Next modification will be perform after end flth byte of input
47: end if
48: end if ch value = (char)tmp;
49: else fputc(input[kk], output)
50: end if
51: end for

199

	Introduction
	Motivation
	Contributions
	Organization of the Thesis

	Background and Related Work
	Introduction to approximate matching algorithm constructions
	Context Triggered Piecewise Hashing(CTPH)
	sdhash
	bbHash
	mvHash
	mrsh and mrsh-v2 Hash
	Lempel-Ziv Jaccard Distance(LZJD)

	Analysis of Approximate Matching Algorithms
	Performance Analysis
	Security analysis

	Approximate matching algorithm testing tools
	Applications of Approximate Matching Algorithms
	Network traffic analysis
	Malware Detection
	Data exfiltration and leakage prevention

	A Collision attack on sdhash similarity hashing
	Notations
	Description of sdhash
	Existing Results
	Our Contribution
	Random Modification
	Deliberate Modification

	Countermeasures
	Minimization of popularity score threshold
	Bit level feature formation

	Summary

	Security Analysis of mvHash-B Similarity Hashing
	Notations
	Description of mvHash-B
	Anti-BlackListing attack on mvHash-B
	Results
	Experiment 1
	Experiment 2

	Countermeasures
	Summary

	FbHash: A New Similarity Hashing Scheme for Digital Forensics
	Construction of FbHash (FbHash-B) Similarity Hashing Scheme
	Notation and Terminology
	Design of FbHash-B

	Digest Comparison and Similarity Score Calculation
	Design of FbHash-S
	Security Comparison of FbHash with Other Schemes Against Active Adversary Attacks
	Comparative Evaluation of FbHash
	Fragment Detection
	Single-common-block file correlation

	Summary

	FbHash-E: A Time and Memory efficient Version of FbHash Similarity Hashing Algorithm
	FbHash
	Design Limitations of FbHash
	Proposed improvements to FbHash Similarity Hashing Scheme
	Alteration in the chunk size
	Redefining the document-frequency data-structure
	Performance Comparison of FbHash-E with FbHash

	Performance Comparison with other Tools
	Runtime Efficiency

	Testing with benchmark problems
	Consistency Test
	 Resemblance Test
	Containment Test

	Summary

	Essential Characteristics of Approximate matching algorithms : A Survey of Practitioners Opinions and requirement regarding Approximate Matching
	Survey Methodology
	Purpose Of the Survey
	Survey Design
	Survey Results

	Summary

	Approximate Matching Evaluation Framework
	Use-Cases
	Evaluation Framework
	Fragment Identification Test
	Embedded Object Identification Test
	Related Document Detection Test
	Identification of code version

	Summary

	Conclusions
	Summary
	Future Work

	Appendices
	Deliberate modification algorithm
	Anti-BlackListing attack algorithm on mvHash-B

